WO2002006305A1 - Method of collecting viral envelope from germinating baculovirus - Google Patents

Method of collecting viral envelope from germinating baculovirus Download PDF

Info

Publication number
WO2002006305A1
WO2002006305A1 PCT/JP2001/006109 JP0106109W WO0206305A1 WO 2002006305 A1 WO2002006305 A1 WO 2002006305A1 JP 0106109 W JP0106109 W JP 0106109W WO 0206305 A1 WO0206305 A1 WO 0206305A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
protein
target protein
membrane
envelope
Prior art date
Application number
PCT/JP2001/006109
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Hamakubo
Tatsuhiko Kodama
Hiroko Iwanari
Yukio Itoh
Original Assignee
Institute Of Immunology Co., Ltd.
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Immunology Co., Ltd., Center For Advanced Science And Technology Incubation, Ltd. filed Critical Institute Of Immunology Co., Ltd.
Priority to AU2001271050A priority Critical patent/AU2001271050A1/en
Publication of WO2002006305A1 publication Critical patent/WO2002006305A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a method for recovering a virus envelope from a baculovirus germination virus. More specifically, the present invention relates to a method for recovering a virus envelope from a germinated virus, which comprises treating the budding virus of the Baculovirus expressing the protein of interest with a physicochemical technique. The present invention also relates to a method for screening a chemical substance, a method for producing an antibody, and a method for purifying a target protein using the above-mentioned recovery method.
  • Background art
  • a protein expression system using baculovirus and insect cells is widely used as a membrane protein expression system. Compared to expression systems using Escherichia coli or yeast, such an expression system has the advantage that it does not easily form aggregates and contains post-translational modifications necessary for protein functions such as sugar chain addition and metal ion coordination. There are many.
  • the baculovirus expression system is a system for expressing a target gene in large amounts in insect cells by using a promoter of a viral gene such as a baculovirus polyhedrin protein.
  • the expressed protein is recovered from insect cells, but the seven transmembrane receptors (Loisel TP, Ansanay H, St-Onge S, Gay B, Boulanger P, Strosberg AD, Marullo S, Bouvier M., Nat Biotechnol 1997 Nov; 15 (12): 1300-4., Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles.) ⁇ Japanese Patent Application No. 2000-0- 15 8 2 9 4 Various membrane proteins have been reported to be expressed in the viral envelope.
  • Membrane proteins expressed in the viral envelope are proteins expressed in insect cells It has been reported that the proportion of proteins that retain their functions is higher than that of proteins. In other words, in addition to using proteins expressed in insect cells such as Sf9, a new method using membrane proteins expressed in the envelope of the virus has been considered. It has come to be. In addition, a monoclonal antibody against the target protein was prepared using the method of fusing the target protein to gp64, the only viral membrane protein present in the viral envelope, and displaying it on the viral envelope (Novagen, pBACsurf-1 expression system). Reported how to
  • a protein expressed in a budding virus in addition to a system using a protein expressed in insect cells such as Sf9 and a system using a secreted protein as in the past.
  • the system to be used is beginning to be used for the production of monoclonal antibodies.
  • Baculoviruses have two life cycles: occlusion derived virus (OCD) and budded virus (BV), which are adapted to the process of infection between insects and between cells in individuals. are doing. Both consist of a viral DNA and a viral membrane called the virion envelope, which surrounds a part called nucleocapsid, which is made of structural proteins. Only gp64 is known as a virus-derived membrane protein in the virus envelope. The membrane protein expressed in the budding virus is considered to be present in the virus envelope.
  • OCD occlusion derived virus
  • BV budded virus
  • Membrane proteins include receptors for hormones and chemicals, channel proteins, proteins involved in mass transport, adhesion factors, membrane enzymes, enzyme substrate proteins, enzyme activators, proteins involved in antigen presentation, higher order It has important functions related to the physiological functions of cells, such as proteins involved in structure formation. Express these membrane proteins and use their functions Building a system that can be used is an important technology that will lead to the development of pharmaceuticals, biosensors, and monoclonal antibodies.
  • an object of the present invention is to provide a method for separating a nucleocabside of a budding virus from a virus envelope and recovering a virus membrane fraction (enucleated virion envelope, EVE) in which a target membrane protein is expressed. did.
  • the present invention solves the problem of providing a method for screening a chemical substance, a method for producing an antibody, and a method for purifying a target protein using the above-mentioned method for recovering a viral membrane fraction in which a target membrane protein is expressed. It should be a task to be done.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems.
  • the baculovirus budding virus (Budded Virus) was subjected to a physicochemical method (specifically, a combination of surfactant treatment and density gradient centrifugation).
  • the present invention succeeded in separating the nucleoside peptide of the budding virus from the virus envelope, and recovering the virus membrane fraction (enucleated virion envelope, EVE) in which the target membrane protein was expressed. It was completed.
  • a method for recovering a virus envelope by separating a nucleoforce of the budding virus and a virus envelope, comprising treating the baculovirus germinating virus expressing the target protein by a physicochemical technique.
  • a virus envelope in which a target protein obtained by the method according to any one of (1) to (4) has been expressed a polyclonal antibody against the target protein expressed on the virus envelope or A method for producing a monoclonal antibody.
  • FIG. 1 shows the measurement results of sucrose concentration and protein concentration of each fraction obtained by sucrose density gradient ultracentrifugation.
  • FIG. 2 shows the results of silver staining of the 3rd to 18th fractions obtained by sucrose density gradient ultracentrifugation, after 12% polyacrylamide SDS electrophoresis (SDS-PAGE).
  • FIG. 3 is an electron micrograph of the ninth fraction obtained by sucrose density gradient ultracentrifugation.
  • FIG. 4 is an electron microscope image of the tenth fraction obtained by sucrose density gradient ultracentrifugation.
  • FIG. 5 is an electron microscope image of the eleventh fraction obtained by sucrose density gradient ultracentrifugation.
  • Figure 6 shows an electron microscope image of the 12th fraction obtained by sucrose gradient ultracentrifugation. It is. '
  • FIG. 7 shows the results of Western blotting using each fraction obtained by sucrose density gradient ultracentrifugation and a specific antibody against SREBP2.
  • the method of the present invention relates to a method for separating a nucleoside of a budding virus and a virus envelope, which comprises treating a baculovirus budding virus expressing a target protein by a physical-chemical method.
  • the target protein referred to in the present specification is preferably a membrane protein, and more preferably a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme activator, a membrane-bound transport protein, a channel protein, It is a protein selected from membrane structural proteins, proteins involved in adhesion, proteins involved in antigen presentation, and proteins involved in the formation of higher-order structures of proteins.
  • the membrane protein will be described in more detail.
  • membrane-bound broadly means that the protein is present in the plasma membrane of cell membranes and intracellular organelles (eg, endoplasmic reticulum, Golgi apparatus, etc.). Not limited.
  • a membrane-bound receptor, a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme activator or a membrane-bound transport protein S, a channel protein, a structural protein of a membrane, an adhesion-related protein A protein, a protein involved in antigen presentation, or a protein involved in formation of a higher-order structure of a protein is a membrane-bound protein of an intracellular organelle, for example, a protein bound to the membrane of the endoplasmic reticulum or the Golgi apparatus.
  • Membrane-bound receptors include seven transmembrane receptors for hormones, odors, taste, light, etc., one transmembrane receptors for LDL receptor ⁇ scavenger-one receptor, growth hormone dinsulin, TNF, glutamate, etc. Receptors, ion channel receptors such as GABA, acetylcholine, and ryanodine, and those forming complexes with T cell receptors, Fc receptors, and the like.
  • membrane-bound enzymes include HMG-CoA reductase involved in cholesterol metabolism and ACAT -: such as (acyl coenzyme A cholesterol acyltransferase) s 7 a- hydroxylase , and the like.
  • Examples include cytochrome P450 related to detoxification, electron transfer enzymes such as ATP synthase ⁇ cytochrome oxidase and reductase, and NADH-Q reductase present in mitochondria.
  • SIP site 1 protease
  • furin furin
  • PC proprotein convertase
  • S2P site 2 protease
  • Angiotensin converting enzyme Angiotensin converting enzyme
  • ADAMS disintegrin and metal loprotease
  • Examples include membrane lipid metabolizing enzymes such as synthase, phosphatidic acid phosphatase, and phosphatidylserine synthase, and enzymes involved in signal transmission such as adenylate cyclase.
  • membrane-bound enzyme substrate proteins include sterol regulatory protein (SREBP), Notch, Irel, and ATF6 as proteins involved in signal transduction and transcriptional regulation, as well as other amyloid precursor proteins, Tu (tumor necrosis factor) precursors Stem cell factors M-CSF (monocyte colony stimulating factor) precursor ⁇ Klotho.
  • SREBP sterol regulatory protein
  • Notch Notch
  • Irel Irel
  • ATF6 proteins involved in signal transduction and transcriptional regulation
  • Tu tumor necrosis factor
  • M-CSF monoocyte colony stimulating factor
  • the membrane-bound enzyme activators Purese diphosphate (presenil lin), SCAP (SREBP cleavage activating protein), and the like 0
  • Membrane-bound transport proteins include NPC (Niemann-Pick type c) 1, which transports lipids such as cholesterol, ABC (ATP-binding cassette), transposon, caveolin, and fatty acid transport protein. And sugar transports including glucose transport such as GLUT-4 and amino acid transposers such as glutamate tanspoter and serotonin transporter.
  • Secl2 and the like can be mentioned as a membrane protein involved in substance transport between intracellular vesicles.
  • channel proteins that selectively pass molecules that do not pass through the membrane under certain conditions.
  • aquaporin famili which is a selective channel of water
  • potassium, calcium, and sodium ions For example, an ion channel, which is a selective channel for such a channel, may be used.
  • NCAM Neuronal cell adhesion molecu ⁇ e
  • ICAM matrivasive protein
  • Dherin family Dherin family
  • integrin desmocholine
  • desmoglein L-selectin
  • connexin glycoprotein, etc. Is raised.
  • Major histocompatibility complex (MHC) involved in antigen presentation in immune cells calnexin
  • PDI protein disulfide isomerase
  • CFTR cystic nbrosis transmembrane conductance regulator
  • At least one type of recombinant baculovirus containing a gene encoding a target protein as described above is used.
  • Baculovirus a virus that infects insects and causes disease, is an enveloped virus that has a circular double-stranded DNA as a gene and is susceptible to insects such as Lepidoptera, Hymenoptera, and Diptera.
  • the nuclear polyhedrosis virus NPV
  • Polyhedra are composed of a polyhedrin protein with a molecular weight of 31 kDa and are produced in large quantities at the late stage of infection, in which numerous virus particles are embedded.
  • Polyhedra are essential for the virus to survive in nature, but are not necessary for the growth of the virus itself, so even if a foreign gene that you want to express in place of the polyhedron gene is inserted, the virus will not infect at all. And proliferate.
  • baculovirus used in the present invention examples include Autographa californica NPV (AcNP V) of NPV subfamily and Bombyxmori NPV (BmNP V) of silkworm. Of viruses can be used as vectors.
  • AcNPV hosts include Spodoptera frugiperda cells (Sf cells), etc.
  • BmNPV hosts include BmN4 cells, etc. .
  • AcNPV vectors are preferred because Sf cells have a higher growth rate than BmN4 cells and the like, and AcNPV also has the ability to infect human hepatocytes and human fetal kidney cells.
  • Spodoptera Frugiperda cell lines Sf9 and Sf21 have been established from ovarian tissues of S. frugiperda larvae, and are available from Invitrogen, Pharmingen (San Diego, CA), ATCC, and the like. In addition, live insect larvae can also be used as host cell systems.
  • the method of constructing the recombinant virus used in the present invention may be performed according to a conventional method, and for example, can be performed by the following procedure.
  • the gene of the protein to be expressed is inserted into a transfer vector to construct a recombinant transfer vector.
  • the overall size of the transfer protein is generally about several kb to 10 kb, of which about 3 kb is a plasmid-derived skeleton, which is resistant to antibiotic resistance genes such as ampicillin and bacteria. Contains the signal for initiation of DNA replication.
  • a normal transfer vector contains 5 'and 3' regions of the polyhedron gene, each of which is several kb, and when transfection is performed as described below, the target Homologous recombination occurs between the gene and the polyhedron gene. It is preferable that the transfer vector contains a plasmid for expressing the protein gene. Examples of the promotion include the promotion of the polyhedron gene, the promotion of the P10 gene, and the promotion of the capsid gene.
  • the type of transfer vector is not particularly limited.
  • a specific example of the transfer vector is pEVmX as an AcNPV-based transfer vector. IV2, pAc SGl, VL 1392/1393, pAcMP2 / 3, p Ac JPI s pAcUW21, pAcDZl, pB lueBac III, pAcUW 51, pAcAB3, p Ac 360 s pB lueBacHi s s p VT -B ac 33, pAcUWls pAcUW42 / 43 etc.
  • BmNPV transfer vectors examples include ⁇ 283, ⁇ 5, ⁇ 30, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 52, pBKblue, ⁇ Kb 1 ue2, pBF series (Funakoshi Corporation, (Available from Fujisawa Pharmaceutical Co., Ltd.).
  • the above-mentioned recombinant transfer vector is mixed with the virus and then transferred to a cultured cell used as a host, or the above-described vector is added to a cultured cell used as a host previously infected with the virus. Then, homologous recombination occurs between the recombinant transfer vector and the viral genomic DNA to construct a recombinant virus.
  • the cultured cells used as a host include the above-mentioned hosts, and are usually insect cultured cells (such as Sf9 cells and BmN cells). Culture conditions are appropriately determined by those skilled in the art. Specifically, when Sf9 cells are used, culture is preferably performed at about 28 ° C. in a medium containing 10% fetal bovine serum.
  • the recombinant virus thus constructed can be purified by a conventional method, for example, plaque assay.
  • the recombinant virus thus produced cannot transform into a polyhedron because foreign DNA has been substituted or inserted into the gene region of the polyhedrin protein of the nuclear polyhedrosis virus. It can be easily distinguished from a replacement virus.
  • the above-mentioned recombinant baculovirus is infected to an appropriate host (cultured cells such as Spodoptera Frugiperda cell lines Sf9 and Sf21, or insect larvae), and after a certain period of time (for example, after 72 hours)
  • the target protein can be recovered by collecting extracellular budding virus (BV) from the culture supernatant by a separation operation such as centrifugation.
  • BV extracellular budding virus
  • the extracellular budding baculovirus can be collected, for example, as follows.
  • the culture of the infected cells is centrifuged at 500 to 1,000 g, and the supernatant containing the extracellular budding baculovirus is recovered.
  • the supernatant is centrifuged at about 30,000 to 500,000 g to obtain a precipitate containing extracellular budding baculovirus.
  • the virus (BV) fraction containing the extracellular budding baculovirus can be obtained by suspending the precipitate in an appropriate buffer.
  • a baculovirus budding virus having a target protein obtained as described above is treated by a physicochemical technique to separate a nucleoforce peptide from a virus envelope.
  • the physicochemical method used in the present invention is not particularly limited as long as it can separate the nucleocabside and the virus envelope from the budding virus of baculovirus, and examples thereof include a treatment with a surfactant and a separation operation by density gradient centrifugation. Alternatively, treatment by freeze-thawing and separation by density gradient centrifugation may be mentioned.
  • the type of surfactant that can be used in the present invention is not particularly limited, and examples thereof include tween 20, triton X 305, and the like, and particularly preferably tween 20.
  • a detergent for treatment with a detergent, mix the fraction containing the budding virus with a detergent solution (for example, a 0.5% tween20 / PBS solution) in a suitable buffer such as PBS, and allow to stand at room temperature for an appropriate time. Can be performed.
  • a detergent solution for example, a 0.5% tween20 / PBS solution
  • a suitable buffer such as PBS
  • freeze-thaw treatment involves suspending the virus (BV) in PBS and cooling to 120 ° C. After 30 minutes, the procedure of returning to room temperature and melting may be repeated, for example, about three times.
  • a method of combining with a hypotonic treatment such as phosphate buffer or water instead of or together with PBS, a method of lowering the temperature further (at 180 ° C or in liquid nitrogen, etc.), and a higher melting temperature.
  • a more rapid freeze-thaw method such as a method at 37 ° C.
  • optimal conditions can be set by appropriately combining such conditions.
  • Examples of other physicochemical methods used in the present invention include ultrasonic treatment and a method in which pressure is applied and pressure is rapidly reduced.
  • sonication there is a method of suspending the virus in PBS and treating it on ice three times for 20 seconds on a machine such as a Branson Sonifier 250, but it is better to perform the treatment under milder conditions. It may be preferable.
  • the method of rapidly vacuum keep over pressure, specifically, N 2 by using an apparatus such as Nitrogen cavitation apparatus, under reduced pressure once and allowed to dissolve N 2 over pressure This method is based on the principle that cells are destroyed by evaporating them.
  • a cell destruction method called French press is also available. Specifically, it is a method in which a cell suspension is broken by applying pressure and passing through a small hole.
  • the means of the physicochemical technique used in the present invention is not particularly limited, but particularly preferably includes a treatment with a surfactant and a separation operation by density gradient centrifugation.
  • the baculovirus budding virus is treated with a surfactant or freeze-thawing as described above, and then the separation operation is performed by density gradient centrifugation.
  • sucrose density gradient ultracentrifugation for example, sucrose density gradient ultracentrifugation can be performed. Specifically, a sucrose solution is overlaid with a suitable concentration gradient (for example, 66.5%, 45%, and 30%), and a germinated virus-containing solution treated with a surfactant or freeze-thaw on the upper layer. After centrifugation at 100,000 g to 500,000 g (for example, 350,000 g) for a certain time, fractionate from the bottom layer.
  • a suitable concentration gradient for example, 66.5%, 45%, and 30%
  • a germinated virus-containing solution treated with a surfactant or freeze-thaw
  • sucrose concentration refractometer
  • protein concentration Bio-Rad protein assay system, BSA standard
  • SDS-PAGE polyacrylamide SDS electrophoresis
  • the virus envelope obtained by the above method and expressing the target protein is also within the scope of the present invention.
  • the present invention further includes measuring the interaction between the target protein expressed on the viral envelope and the test substance using the virus envelope in which the target protein obtained by the above method is expressed. It relates to screening methods for chemical substances.
  • Chemicals to be screened include, for example, peptides, polypeptides, synthetic compounds, fermented microorganisms, extracts from organisms (including plant or animal tissues, microorganisms, cells, etc.), and their libraries. Is mentioned. Libraries include synthetic compound libraries (such as combinatorial libraries) and peptide libraries (such as combinatorial libraries).
  • the chemicals to be screened may be natural or synthetic, and even if a single candidate chemical is tested independently, a mixture of several candidate chemicals (including ) May be tested. Further, it is also possible to screen a fractionated mixture such as a cell extract, and to repeat the fractionation to isolate a substance having a desired activity.
  • These chemicals include a target protein (preferably a membrane protein, particularly preferably a membrane-bound receptor, a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme, expressed on the virus envelope). Interacting with activators, membrane-bound transport proteins, channel proteins, membrane structural proteins, proteins involved in adhesion, proteins involved in antigen presentation, or proteins involved in the formation of higher-order structures of proteins) And more preferably an inhibitor or an activating drug for the above protein.
  • a target protein preferably a membrane protein, particularly preferably a membrane-bound receptor, a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme, expressed on the virus envelope.
  • a target protein preferably a membrane protein, particularly preferably a membrane-bound receptor, a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme, expressed on the virus envelope.
  • a target protein preferably a membrane protein, particularly preferably a membrane-bound receptor, a membrane-bound enzyme,
  • the present invention further provides a method for producing a polyclonal antibody or a monoclonal antibody against the target protein expressed on the virus envelope using the viral envelope in which the target protein obtained by the above method is expressed, and It relates to a polyclonal antibody or a monoclonal antibody obtained by the method.
  • a virus envelope in which a target protein obtained by the above method is expressed is used as an immunogen.
  • Antibodies can be prepared by a conventional method.
  • a mammal is immunized with the viral envelope in which the target protein is expressed as an antigen
  • blood is collected from the mammal, and the antibody is separated and purified from the collected blood.
  • mammals such as mice, hamsters, guinea pigs, chickens, rats, rabbits, dogs, goats, sheep, and mice can be immunized. Immunization can be performed according to the usual immunization method, for example, by administering the antigen one or more times.
  • antigen administration for example, it is preferable to administer the antigen twice or three times at intervals of 7 to 30 days, particularly 12 to 16 days, and the dose can be appropriately selected.
  • the route of administration of the antigen is also not particularly limited, and subcutaneous administration, intradermal administration, intraperitoneal administration, intravenous administration, intramuscular administration, etc. can be appropriately selected, but injection is performed intravenously, intraperitoneally or subcutaneously. It is preferable to administer by the following method.
  • the antigen may be an appropriate buffer, for example, complete Freund's adjuvant, RAS CMPL (Monophosphoryl Lipid A) + TDM (Synthetic Trehalose Dicorynomy co 1 ate) + CWS (Ce 11 Wall Skeleton) adjuvant system), aluminum hydroxide Can be used after dissolving it in an appropriate buffer containing a commonly used adjuvant, but the above adjuvant may not be used depending on the administration route and conditions.
  • complete Freund's adjuvant RAS CMPL (Monophosphoryl Lipid A) + TDM (Synthetic Trehalose Dicorynomy co 1 ate) + CWS (Ce 11 Wall Skeleton) adjuvant system
  • aluminum hydroxide can be used after dissolving it in an appropriate buffer containing a commonly used adjuvant, but the above adjuvant may not be used depending on the administration route and conditions.
  • the immunized mammal is bred for 0.5 to 4 months, for example, a small amount of serum from the mammal is sampled from an ear vein or the like, and the antibody titer is measured. If the antibody titer rises, administer the antigen an appropriate number of times according to the situation. For example, booster immunization is performed using an antigen of 100 / g to 100000. 1 to 2 months after last dose
  • Blood is collected from the sensitized mammal by a conventional method, and the blood is collected, for example, by centrifugation, precipitation using ammonium sulfate or polyethylene glycol, gel filtration chromatography, ion exchange chromatography, and affinity chromatography.
  • a desired polyclonal antibody can be obtained as a polyclonal antiserum by separating and purifying by ordinary methods such as chromatography such as two-take mouth chromatography.
  • a desired monoclonal antibody can be obtained, for example, by producing a hybridoma by cell fusion between an antibody-producing cell and a myeloma cell line.
  • a hybridoma producing a monoclonal antibody can be obtained by the following cell fusion method.
  • spleen cells As antibody-producing cells, spleen cells, lymph node cells, B lymphocytes and the like from immunized animals are used.
  • the antigen a virus envelope expressing the target protein is used. Mice, rats, and the like are used as animals to be immunized, and administration of the antigen to these animals is performed according to a conventional method. For example, a suspension or emulsion of an adjuvant, such as complete Freund's adjuvant or incomplete Freund's adjuvant, and a germinated baculovirus as an antigen is prepared and administered several times subcutaneously, intradermally, intraperitoneally, etc., to an animal. Immunize the animal.
  • an adjuvant such as complete Freund's adjuvant or incomplete Freund's adjuvant
  • a germinated baculovirus as an antigen
  • spleen cells as antibody-producing cells from the immunized animal and fusing them with myeloma cells by a method known per se (G. Kohler et al. 3 Nature, 256 495 (1975)). High pre-doma can be produced.
  • myeloma cell lines used for cell fusion include P3X63Ag8, P3U1 strain, and Sp2 / 0 strain in mice.
  • a fusion promoter such as polyethylene glycol or Sendai virus is used.
  • HAT hypoxanthine 'aminopterin' thymidine
  • Hybridomas obtained by cell fusion are cloned by limiting dilution, etc., and screened to specifically recognize the desired protein. Thus, a cell line producing a monoclonal antibody can be obtained.
  • the hybridoma is cultured by a usual cell culture method or ascites formation method, and the monoclonal antibody is isolated from the culture supernatant or ascites. It may be purified. Purification of the monoclonal antibody from the culture supernatant or ascites can be performed by a conventional method. For example, ammonium sulfate fractionation, gel filtration, ion exchange chromatography, affinity chromatography, and the like can be used in appropriate combination.
  • the present invention further provides a method of solubilizing and purifying the target protein, which comprises treating the viral envelope expressing the target protein obtained by the above-described method with a solubilizing agent.
  • a solubilizing agent such as lyso-phosphatidylcholin
  • the virus envelope in which the target protein is expressed is suspended in an appropriate buffer, treated with a lysing agent such as lyso-phosphatidylcholin, and further centrifuged (for example, at 300 rpm). This allows separation into a supernatant and a precipitate.
  • the solubilized autologous protein is recovered in the supernatant.
  • Example 1 Extracellular baculovirus expressing sterol-regulated protein (SREBP-2) treated with surfactant and separation of envelope by ultracentrifugation
  • SREBP-2 Sterol regulatory protein
  • SREBP2 is a transcription factor that regulates cholesterol-dependent transcriptional regulation of intracellular cholesterol regulation enzymes and transport proteins such as LDL receptor and HMG-CoA reductase (Brown MS, Goldstein J., Proc Natl Acad Sci USA 1999 Sep 28; 96 (20): 11041-8, A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood.).
  • SREBP 2 is 1 2 at steady state It is present in the endoplasmic reticulum membrane as a 5 kd twice transmembrane precursor protein.
  • Sf9 cells (Invitrogen) is a 1 Ocm dish at 27 ° C with Grace's supplemented media (GIBCO BRL) containing 10% fetal serum (Sigma), penicillin 100 units / ml, streptmycin 100 jug / ml. Was subcultured.
  • the recombinant baculovirus was prepared according to the instruction manual (Bac-N-BlueTM Transfection Kit, Invitrogen), and Sf9 cells were co-infected with Bac-N-Blue DNA (from ApMNPV) and 4 ⁇ g of pBlueBac-SREBP2 to form SREBP2.
  • a recombinant virus was created.
  • BV fraction (LoiselTP, et al., Nat Biotechnol. 1997 (4) EVE fractionation by virus detergent treatment and sucrose density gradient ultracentrifugation SREBP2 expression BV fraction 250 ⁇ 1 and 0.5% tween20 in PBS solution 250 1 and 1:
  • sucrose concentration refractometer
  • protein concentration Bio-Rad Protein Atsie System, BSA standard
  • Electron microscope observation was performed as follows. A collodion film was applied to a 400 grid mesh for sample observation, and carbon deposition (carbon coating) was performed. In order to easily adsorb the sample, the 400 grid mesh was pre-etched by Ionco overnight. The sample ⁇ was placed on a 400 g mesh and dried, and then negatively stained with a phosphoric acid solution of ginstenic acid ( ⁇ ) and observed.
  • BV was recovered at a sucrose concentration of 44.5 to 34.5% (8 to 13 fractions) in accordance with the evening protein staining, and the nucleoforce pseudo (Fig. 3), the virus envelope (EVE) was concentrated in 12 fractions with a sucrose concentration of 37.0% (Fig. 6), and in the 10 and 11 fractions, a mixture of nucleocabushid and envelope was observed. ( Figures 4 and 5).
  • VP 39 on SDS-PAGE Molecular weight 3 9 kDa protein distributed in agreement with the nucleosid image of the electron microscope, and molecular weight 6 known as the only viral protein present in the virus envelope 6
  • the density of the protein band in SDS-PAGE of gp64 of 4 kilodaltons and the distribution of the envelope image of the electron microscope are in agreement (Fig. 2 and Figs. 3 to 6).
  • these samples were subjected to gel electrophoresis by 8% SDS-PAGE, and then subjected to nitrocellulose membrane (Hybond ECL, Amersham) at 38 V for 20 hours.
  • a salting-out purified antibody (10 zg / ml) of the monoclonal antibody 1C6 (ATCC No CRL-2224) recognizing the carboxyl terminus of SREBP 2 was added at room temperature. Incubate for 1 hour, wash 4 times with TBS (2 OmM Tris-buffered saline, pH 7.4), react with peroxidase conjugated anti-mouse IgG antibody (CAPPEL) for 1 hour, wash with TBS in the same manner, and use ECL reagent (Amersham Pharmacia ), And exposed to an x-ray film.
  • TBS OmM Tris-buffered saline, pH 7.4
  • CAPPEL peroxidase conjugated anti-mouse IgG antibody
  • a simple method for separating a nucleoside peptide of a budding virus and a virus envelope and recovering a virus membrane fraction (enucleated virion envelope, EVE) in which a target membrane protein is expressed is provided.
  • the target membrane protein can be concentrated, and the interference of the Atsushi system with the DNA / nucleoside protein of the virus can be avoided.
  • membrane proteins that have an active site inside the membrane (nucleoside side), proteins that interact with other proteins or chemicals, etc., have a part of the membrane destroyed, and substrates or chemicals added from outside cannot be used. Can reach active sites and interaction sites Need to be. In such cases, EVE technology is better than using the virus itself.

Abstract

It is intended to provide a method of collecting the enucleated virion envelope (EVE) in which a target protein is expressed by separating the viral envelope from the nucleocapsid of a germinating virus. Namely, a method of collecting the viral envelope comprising treating a germinating baculovirus, in which a target protein is expressed, by a physicochemical treatment and thus separating the viral envelope from the nucleocapsid of a germinating virus.

Description

明細書  Specification
バキュロウィルスの発芽ウィルスからウィルスエンベロープを回収する方法  Method for recovering virus envelope from baculovirus budding virus
技術分野 Technical field
本発明は、 バキュロウィルスの発芽ウィ スからウィルスエンベロープを回収 する方法に関する。 より詳細には、 本発明は、 目的蛋白質が発現されたバキュ口 ゥィルスの発芽ウィルスを物理化学的手法で処理することを含む、 該発芽ウィル スからウィルスエンベロープを回収する方法に関する。 本発明はまた、 上記回収 方法を利用した化学物質のスクリーニング方法、 抗体の作製方法、 及び目的蛋白 質の精製方法に関する。 背景技術  The present invention relates to a method for recovering a virus envelope from a baculovirus germination virus. More specifically, the present invention relates to a method for recovering a virus envelope from a germinated virus, which comprises treating the budding virus of the Baculovirus expressing the protein of interest with a physicochemical technique. The present invention also relates to a method for screening a chemical substance, a method for producing an antibody, and a method for purifying a target protein using the above-mentioned recovery method. Background art
バキュロウィルスと昆虫細胞を用いた蛋白質の発現系は、 膜蛋白質の発現系と して広く用いられている。 このような発現系は、 大腸菌や酵母を用いる発現系に 比べ、 凝集物を作りにく く、 糖鎖の付加や金属イオンめ配位などタンパク質の機 能に必要な翻訳後修飾が入るなど利点が多い。  A protein expression system using baculovirus and insect cells is widely used as a membrane protein expression system. Compared to expression systems using Escherichia coli or yeast, such an expression system has the advantage that it does not easily form aggregates and contains post-translational modifications necessary for protein functions such as sugar chain addition and metal ion coordination. There are many.
バキュロウィルス発現系はバキュロウィルスの多角体蛋白質などのウィルス遺 伝子のプロモーターを利用して、 目的遺伝子を昆虫細胞で大量に発現させるシス テムである。  The baculovirus expression system is a system for expressing a target gene in large amounts in insect cells by using a promoter of a viral gene such as a baculovirus polyhedrin protein.
通常、 昆虫細胞から発現蛋白質が回収されるが、 7回膜貫通型受容体 (Loisel TP,Ansanay H, St-Onge S, Gay B, Boulanger P, Strosberg AD, Marullo S, Bouvier M., Nat Biotechnol . 1997 Nov; 15( 12 ) : 1300-4. , Recovery of homogeneous and functional beta 2 - adrenergic receptors from extracellular baculovirus particles. ) ゃ特願 2 0 0 0— 1 5 8 2 9 4号明 細書に記載されている様々な膜蛋白質がウィルスのエンベロープに発現されるこ とが報告されている。  Normally, the expressed protein is recovered from insect cells, but the seven transmembrane receptors (Loisel TP, Ansanay H, St-Onge S, Gay B, Boulanger P, Strosberg AD, Marullo S, Bouvier M., Nat Biotechnol 1997 Nov; 15 (12): 1300-4., Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles.) ゃ Japanese Patent Application No. 2000-0- 15 8 2 9 4 Various membrane proteins have been reported to be expressed in the viral envelope.
ウィルスのエンベロープに発現された膜蛋白質は昆虫細胞に発現された蛋白質 に比べ、 機能を保持している蛋白質の割合が多いことが報告されている。 すなわ ち、 発現蛋白質の利用.法としては、 Sf 9などの昆虫細胞に発現された蛋白質を利 用する方法に加えて、 ウィルスのエンベロープに発現された膜蛋白質を利用する 方法が新たに考えられるようになつてきた。 またウィルスのエンベロープに存在 する唯一のウィルス膜蛋白質である gp 6 4に目的蛋白質を融合、ウィルスェンべ ロープ上にディスプレイする方法 (Novagen, pBACsurf-1 expression system) を用いて目的蛋白質に対するモノクローナル抗体を作成する方法が報告されたMembrane proteins expressed in the viral envelope are proteins expressed in insect cells It has been reported that the proportion of proteins that retain their functions is higher than that of proteins. In other words, in addition to using proteins expressed in insect cells such as Sf9, a new method using membrane proteins expressed in the envelope of the virus has been considered. It has come to be. In addition, a monoclonal antibody against the target protein was prepared using the method of fusing the target protein to gp64, the only viral membrane protein present in the viral envelope, and displaying it on the viral envelope (Novagen, pBACsurf-1 expression system). Reported how to
(Lindley K.M., Su J-L . , Hodges P. K. , Wisely B., Bledsoe R.K. , Condreay J. P . , Winegar D. A. , Hutchins J. T. , Kost T.A. Production of monoclonal antibodies using recombinant baculovirus displaying gp64 - fusion proteins. Journal of Immunological Methods 234, 2000, 123-135) 。 (Lindley KM, Su JL., Hodges PK, Wisely B., Bledsoe RK, Condreay J.P., Winegar DA, Hutchins JT, Kost TA Production of monoclonal antibodies using recombinant baculovirus displaying gp64-fusion proteins.Journal of Immunological Methods 234 , 2000, 123-135).
上記したように、 バキュロウィルス発現系では、 従来のように Sf 9などの昆虫 細胞に発現された蛋白質を利用する系、 分泌されるタンパク質を利用する系に加 えて発芽ウィルスに発現されたタンパク質を利用する系がモノクローナル抗体作 成等に新たに使用され始めている。  As described above, in the baculovirus expression system, a protein expressed in a budding virus in addition to a system using a protein expressed in insect cells such as Sf9 and a system using a secreted protein as in the past. The system to be used is beginning to be used for the production of monoclonal antibodies.
バキュロウィルスには封入体由来ウィルス (occlusion derived virus, 0DV) と発芽ウィルス (budded virus, BV) の 2種類の生活環があり、 それそれ昆虫個 体間感染および個体内細胞間感染の過程に適合している。 両者ともウィルス DNA と構造夕ンパク'質でできたヌクレオ力プシッ ド(nucleocapsid)とよばれる部分 を中心として、 それを包むウィルスエンベロープ (virion envelope) とよばれ るウィルス膜とからできている。 ウィルスエンベロープにはウィルス由来の膜蛋 白質としては gp 6 4だけが知られている。上記の発芽ウィルスに発現されている 膜蛋白質はこのウィルスエンベロープに存在していると考えられる。  Baculoviruses have two life cycles: occlusion derived virus (OCD) and budded virus (BV), which are adapted to the process of infection between insects and between cells in individuals. are doing. Both consist of a viral DNA and a viral membrane called the virion envelope, which surrounds a part called nucleocapsid, which is made of structural proteins. Only gp64 is known as a virus-derived membrane protein in the virus envelope. The membrane protein expressed in the budding virus is considered to be present in the virus envelope.
膜蛋白質はホルモンや化学物質の受容体を始め、 チャネル蛋白質、 物質輸送に 関与する蛋白質、 接着因子、 膜酵素、 酵素の基質蛋白質、 酵素の活性化因子、 抗 原提示に関与する蛋白質、 高次構造形成に関与する蛋白質など細胞の生理的機能 に関わる重要な機能を有している。 これらの膜蛋白質を発現させ、 その機能を利 用できるシステムを構築することは医薬品の開発やバイオセンサ一の開発、 モノ ク口一ナル抗体の作成などにつながる重要な技術である。 Membrane proteins include receptors for hormones and chemicals, channel proteins, proteins involved in mass transport, adhesion factors, membrane enzymes, enzyme substrate proteins, enzyme activators, proteins involved in antigen presentation, higher order It has important functions related to the physiological functions of cells, such as proteins involved in structure formation. Express these membrane proteins and use their functions Building a system that can be used is an important technology that will lead to the development of pharmaceuticals, biosensors, and monoclonal antibodies.
しかしながら、 発芽ウィルスのヌクレオ力プシヅドとウィルスエンベロープを 分離し、 目的膜蛋白質が発現されたウィルス膜画分 (enucleated virion envelope, EVE) を回収する簡易な方法はこれまでの所、 報告されていない。 発明の開示  However, no simple method has been reported so far to separate the nucleoside peptide of the budding virus from the virus envelope and recover the viral membrane fraction (enucleated virion envelope, EVE) in which the target membrane protein is expressed. Disclosure of the invention
即ち、 本発明は、 発芽ウィルスのヌクレオカブシヅ ドとウィルスエンベロープ を分離し、 目的膜蛋白質が発現されたウィルス膜画分 (enucleated virion envelope, EVE) を回収する方法を提供することを解決すべき課題とした。  That is, an object of the present invention is to provide a method for separating a nucleocabside of a budding virus from a virus envelope and recovering a virus membrane fraction (enucleated virion envelope, EVE) in which a target membrane protein is expressed. did.
さらに、 本発明は、 上記した目的膜蛋白質が発現されたウィルス膜画分の回収 方法を利用した、 化学物質のスクリーニング方法、 抗体の作製方法、 及び目的蛋 白質の精製方法を提供することを解決すべき課題とした。  Furthermore, the present invention solves the problem of providing a method for screening a chemical substance, a method for producing an antibody, and a method for purifying a target protein using the above-mentioned method for recovering a viral membrane fraction in which a target membrane protein is expressed. It should be a task to be done.
本発明者らは上記課題を解決するために鋭意検討した結果、 バキュロウィルス の発芽ウィルス (Budded Virus) を物理化学的手法 (具体的には、 界面活性剤処理と密度勾配遠心分離との組み合わせ) で処理することにより、 該 発芽ウィルスのヌクレオ力プシヅ ドとウィルスエンベロープを分離し、 目的膜蛋 白質が発現されたウィルス膜画分 (enucleated virion envelope, EVE) を回収 することに成功し本発明を完成するに至った。  The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, the baculovirus budding virus (Budded Virus) was subjected to a physicochemical method (specifically, a combination of surfactant treatment and density gradient centrifugation). Thus, the present invention succeeded in separating the nucleoside peptide of the budding virus from the virus envelope, and recovering the virus membrane fraction (enucleated virion envelope, EVE) in which the target membrane protein was expressed. It was completed.
即ち、 本発明によれば、 以下の発明が提供される。  That is, according to the present invention, the following inventions are provided.
(1) 目的蛋白質が発現されたバキュロウィルスの発芽ウィルスを物理化学的 手法で処理することを含む、 該発芽ウィルスのヌクレオ力プシッドとウィルスェ ンべロープとを分離してウィルスエンベロープを回収する方法。  (1) A method for recovering a virus envelope by separating a nucleoforce of the budding virus and a virus envelope, comprising treating the baculovirus germinating virus expressing the target protein by a physicochemical technique.
(2) 物理化学的手法による処理が、 界面活性剤による処理または凍結融解に よる処理と密度勾配遠心による分離操作である、 (1) に記載の方法。  (2) The method according to (1), wherein the treatment by a physicochemical technique is a treatment with a surfactant or a treatment by freeze-thawing and a separation operation by density gradient centrifugation.
(3) 界面活性剤として tween20を使用する、 (1) 又は (2) に記載の方法。 (3) The method according to (1) or (2), wherein tween20 is used as a surfactant.
(4) 目的蛋白質が膜蛋白質である、 (1) から (3) の何れかに記載の方法。 (5) (1) から (4) の何れかに記載の方法により得られる、 目的蛋白質が 発現されたウィルスエンベロープ。 (4) The method according to any one of (1) to (3), wherein the target protein is a membrane protein. (5) A virus envelope in which a target protein is expressed, obtained by the method according to any one of (1) to (4).
(6) (1) から (4) の何れかに記載の方法により得られる目的蛋白質が発 現されたウィルスエンベロープを用いて、 該ウィルスエンベロープ上に発現され ている目的蛋白質と被験物質との相互作用を測定することを含む、 化学物質のス クリ一ニング方法。  (6) Interaction between the target protein expressed on the viral envelope and the test substance using the viral envelope expressing the target protein obtained by the method according to any one of (1) to (4). A method of screening for chemicals, including measuring effects.
(7) (1) から (4) の何れかに記載の方法により得られる目的蛋白質が発 現されたウィルスエンベロープを用いて、 該ウィルスエンベロープ上に発現され ている目的蛋白質に対するポリクロ一ナル抗体又はモノクローナル抗体を作製す る方法。  (7) Using a virus envelope in which a target protein obtained by the method according to any one of (1) to (4) has been expressed, a polyclonal antibody against the target protein expressed on the virus envelope or A method for producing a monoclonal antibody.
(8) (7) に記載の方法により得られるポリクロ一ナル抗体又はモノクロ一 ナル抗体。  (8) A polyclonal antibody or a monoclonal antibody obtained by the method according to (7).
(9) ( 1) から (4) の何れかに記載の方法により得られる目的蛋白質が発 現されたウィルスエンベロープを溶解剤で処理し、 該目的蛋白質を可溶化および 精製する方法。 図面の簡単な説明  (9) A method for treating a viral envelope in which a target protein obtained by the method according to any one of (1) to (4) is expressed with a lysing agent, solubilizing and purifying the target protein. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ショ糖密度勾配超遠心で得られた各画分のショ糖濃度と蛋白濃度の測 定結果を示す。  FIG. 1 shows the measurement results of sucrose concentration and protein concentration of each fraction obtained by sucrose density gradient ultracentrifugation.
図 2は、 ショ糖密度勾配超遠心で得られた第 3〜18画分について、 12%ポ リアクリルアミ ド SDS電気泳動 (SDS-PAGE) を行い、 銀染色した結果を示す。 図 3は、 ショ糖密度勾配超遠心で得られた第 9画分の電子顕微鏡の図である。 図 4は、 ショ糖密度勾配超遠心で得られた第 10画分の電子顕微鏡のイメージ である。  FIG. 2 shows the results of silver staining of the 3rd to 18th fractions obtained by sucrose density gradient ultracentrifugation, after 12% polyacrylamide SDS electrophoresis (SDS-PAGE). FIG. 3 is an electron micrograph of the ninth fraction obtained by sucrose density gradient ultracentrifugation. FIG. 4 is an electron microscope image of the tenth fraction obtained by sucrose density gradient ultracentrifugation.
図 5は、 ショ糖密度勾配超遠心で得られた第 11画分の電子顕微鏡のイメージ である。  FIG. 5 is an electron microscope image of the eleventh fraction obtained by sucrose density gradient ultracentrifugation.
図 6は、 ショ糖密度勾配超遠心で得られた第 12画分の電子顕微鏡のイメージ である。 ' Figure 6 shows an electron microscope image of the 12th fraction obtained by sucrose gradient ultracentrifugation. It is. '
図 7は、 ショ糖密度勾配超遠心で得られた各画分と SREBP 2に対する特異抗体 を用いてウエスタンブロットを行った結果を示す。 発明を実施するための最良の形態  FIG. 7 shows the results of Western blotting using each fraction obtained by sucrose density gradient ultracentrifugation and a specific antibody against SREBP2. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施態様及び実施方法について詳細に説明する。  Hereinafter, an embodiment and an implementation method of the present invention will be described in detail.
本発明の方法は、 目的蛋白質を発現するバキュロウィルスの発芽ウィルスを物 理化学的手法で処理することを含む、 該発芽ウィルスのヌクレオ力プシッドとゥ ィルスエンベロープを分離する方法に関する。  The method of the present invention relates to a method for separating a nucleoside of a budding virus and a virus envelope, which comprises treating a baculovirus budding virus expressing a target protein by a physical-chemical method.
本明細書で言う目的蛋白質とは、 好ましくは膜蛋白質であり、 より好ましくは 膜結合型酵素、 該膜結合型酵素の基質、 膜結合型酵素活性化因子、 膜結合型輸送 蛋白質、 チャネル蛋白質、 膜の構造蛋白質、 接着関与蛋白質、 抗原提示に関わる 蛋白質、又は蛋白質の高次構造形成に関わる蛋白質から選択される蛋白質である。 以下、 膜蛋白質についてさらに詳細に説明する。  The target protein referred to in the present specification is preferably a membrane protein, and more preferably a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme activator, a membrane-bound transport protein, a channel protein, It is a protein selected from membrane structural proteins, proteins involved in adhesion, proteins involved in antigen presentation, and proteins involved in the formation of higher-order structures of proteins. Hereinafter, the membrane protein will be described in more detail.
本明細書で言う 「膜結合型」 とは、 蛋白質が細胞膜並びに細胞内小器官 (例え ば、 小胞体やゴルジ体等) の形質膜に存在することを広く意味し、 その蛋白質の 種類は特に限定されない。 好ましくは、 膜結合型受容体、 膜結合型酵素、 該膜結 合型酵素の基質、 膜結合型酵素活性化因子又は膜結合型輸送蛋 S質、 チャネル蛋 白質、 膜の構造蛋白質、 接着関与蛋白質、 抗原提示に関わる蛋白質、 又は蛋白質 の高次構造形成に関わる蛋白質は、細胞内小器官の膜結合蛋白質であり、例えば、 小胞体やゴルジ体の膜に結合した蛋白質である。  As used herein, the term “membrane-bound” broadly means that the protein is present in the plasma membrane of cell membranes and intracellular organelles (eg, endoplasmic reticulum, Golgi apparatus, etc.). Not limited. Preferably, a membrane-bound receptor, a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme activator or a membrane-bound transport protein S, a channel protein, a structural protein of a membrane, an adhesion-related protein A protein, a protein involved in antigen presentation, or a protein involved in formation of a higher-order structure of a protein is a membrane-bound protein of an intracellular organelle, for example, a protein bound to the membrane of the endoplasmic reticulum or the Golgi apparatus.
膜結合型受容体としては、 ホルモン、 臭い、 味、 光などに対する 7回膜貫通型 受容体、 LDL受容体ゃスカベンジャ一受容体,成長ホルモンゃィンスリン、 TNFひ, グルタミン酸等に対する 1回膜貫通型受容体、 GABA、 アセチルコリン、 リアノジ ンなどのイオンチャネル型受容体および T細胞受容体、 F c受容体、 などの複合体 を形成するものなどが挙げられる。  Membrane-bound receptors include seven transmembrane receptors for hormones, odors, taste, light, etc., one transmembrane receptors for LDL receptor ゃ scavenger-one receptor, growth hormone dinsulin, TNF, glutamate, etc. Receptors, ion channel receptors such as GABA, acetylcholine, and ryanodine, and those forming complexes with T cell receptors, Fc receptors, and the like.
膜結合型酵素としては、 コレステロール代謝に関わる HMG-CoA 還元酵素や ACAT( acyl - coenzyme A: cholesterol acyltransferase ) s 7 a— hydroxylase などがあげられる。 また解毒に関わるシトクロ一ム P 4 5 0系、 ミ トコンドリア に存在する ATP合成酵素ゃシトクロム酸化酵素および還元酵素、 NADH-Q還元酵素 などの電子伝達系酵素があげられる。 またホルモンや調節因子、 栄養因子などの プロセッシングに関わるプロセッシングプロテア一ゼ群として S I P ( site 1 protease)、 furin、 PC (proprotein convertase 、 S2P( site 2 protease )s ェ ンドセリン変換酵素 (endothelin converting enzyme), アンギオテンシン変換 酵素 (angiotensin converting enzyme)N neprilysinなど、 また notchシグナ ルなどのシグナル伝達系に関わる ADAMS(a disintegrin and metal loprotease) familyや細胞外基質の分解に関わる matrix metal loprotease群があげられる。 その他 diacylglycerol合成酵素、 ホスファチジン酸ホスファターゼ、 ホスファ チジルセリン合成酵素などの膜脂質代謝酵素、 adenylate cyclaseなどのシグナ ル伝達に関与する酵素があげられる。 Examples of membrane-bound enzymes include HMG-CoA reductase involved in cholesterol metabolism and ACAT -: such as (acyl coenzyme A cholesterol acyltransferase) s 7 a- hydroxylase , and the like. Examples include cytochrome P450 related to detoxification, electron transfer enzymes such as ATP synthase ゃ cytochrome oxidase and reductase, and NADH-Q reductase present in mitochondria. In addition, a group of processing proteases related to the processing of hormones, regulatory factors, and nutritional factors, etc .: SIP (site 1 protease), furin, PC (proprotein convertase, S2P (site 2 protease)) s endothelin converting enzyme, Angiotensin converting enzyme The ADAMS (a disintegrin and metal loprotease) family involved in the signal transduction system such as N neprilysin and notch signal, and the matrix metal loprotease group involved in the degradation of extracellular matrix. Examples include membrane lipid metabolizing enzymes such as synthase, phosphatidic acid phosphatase, and phosphatidylserine synthase, and enzymes involved in signal transmission such as adenylate cyclase.
膜結合型の酵素基質蛋白質としては, シグナル伝達, 転写調節に関わる蛋白質 としてステロール調節蛋白質 (SREBP)、 Notch、 Irel、 ATF6などがあげられ、 ま たその他アミロイ ド前駆体蛋白質 (Amyloid precursor protein)、 Ί (tumor necrosis factor) precursors Stem cel l factors M-CSF (monocyte colony stimulating factor) precursor^ Klothoなどがあげられる。  Examples of membrane-bound enzyme substrate proteins include sterol regulatory protein (SREBP), Notch, Irel, and ATF6 as proteins involved in signal transduction and transcriptional regulation, as well as other amyloid precursor proteins, Tu (tumor necrosis factor) precursors Stem cell factors M-CSF (monocyte colony stimulating factor) precursor ^ Klotho.
膜結合型酵素活性化因子としては, プレセ二リン(presenil lin), SCAP( SREBP cleavage activating protein) , などがあげられる 0 The membrane-bound enzyme activators, Purese diphosphate (presenil lin), SCAP (SREBP cleavage activating protein), and the like 0
膜結合型輸送蛋白質としては, コレステロールなどの脂質を輸送する NPC (Niemann - Pick type c ) 1、 ABC(ATP- binding cassette)卜ランスポ一夕一、 力べオリン (caveol in)、 脂肪酸トランスポー夕一(fatty acid transporter )が あげられ、 また GLUT卜 4などのグルコーストランスポー夕一を含む糖トランスポ —夕一ヽ glutamate tanspoter、 serotonin transporterなどのアミノ酸卜ラン スポ—夕一などがあげられる。 また細胞内ベジクル間の物質輸送に関与する膜蛋 白質として Secl2などがあげられる。 さらに膜を透過しない分子をある条件のもとに選択的に通過させるチャネル蛋 白質があげられる. その中には水の選択的チャネルであるアクアポリンフアミリ ―、 またカリウムイオン、 カルシウムイオン、 ナトリウムイオンなどに対する選 択的チャネルであるイオンチャネルなどがあげられる。 Membrane-bound transport proteins include NPC (Niemann-Pick type c) 1, which transports lipids such as cholesterol, ABC (ATP-binding cassette), transposon, caveolin, and fatty acid transport protein. And sugar transports including glucose transport such as GLUT-4 and amino acid transposers such as glutamate tanspoter and serotonin transporter. In addition, Secl2 and the like can be mentioned as a membrane protein involved in substance transport between intracellular vesicles. In addition, there are channel proteins that selectively pass molecules that do not pass through the membrane under certain conditions. Among them, aquaporin famili, which is a selective channel of water, and potassium, calcium, and sodium ions For example, an ion channel, which is a selective channel for such a channel, may be used.
その他膜の構造蛋白質および接着に関与する蛋白質として、 NCAM(Neural cell adhesion molecu丄 e)、 ICAM(mterecellular adhesion molecule ) 力ドヘリン フアミ リー、インテグリン、デスモコリン、デスモグレイン、 L-selectin、connexin、 グリコプロティンなどがあげられる。 また免疫細胞において抗原提示に関わる主 要組織適合遺伝子複合体 (major histocompatibility complex; MHC), 蛋白質 の高次構造形成に関わると考えられる calnexin、 PDI(protein disulfide isomerase)、 CFTR (cystic nbrosis transmembrane conductance regulator)、 major prion protein precursor (プリオン)などのシャペロン蛋白質があげられ る。  Other membrane structural proteins and proteins involved in adhesion include NCAM (Neural cell adhesion molecu 丄 e), ICAM (mterecellular adhesion molecule), Dherin family, integrin, desmocholine, desmoglein, L-selectin, connexin, glycoprotein, etc. Is raised. Major histocompatibility complex (MHC) involved in antigen presentation in immune cells, calnexin, PDI (protein disulfide isomerase), and CFTR (cystic nbrosis transmembrane conductance regulator), which are thought to be involved in the formation of higher-order structures of proteins ) And major prion protein precursors (prions).
本発明では、 上記したような目的蛋白質をコードする遺伝子を含む少なくとも 1種の組換えバキュロウィルスを使用する。  In the present invention, at least one type of recombinant baculovirus containing a gene encoding a target protein as described above is used.
昆虫に感染して病気を起こすウィルスであるバキュロウィルスは、 環状の二本 鎖 DNAを遺伝子としてもつエンベロープウィルスで、 鱗翅目、 膜翅目および双 翅目などの昆虫に感受性を示す。 バキュロウィルスの中で、 感染細胞の核内に多 角体 (ポリヒドラ) と呼ばれる封入体を大量につくる一群のウィルスが核多角体 病ウィルス (NPV) である。 多角体は、 分子量 3 1 kD aのポリへドリンタン パクより構成され、 感染後期に大量につくられその中に多数のウィルス粒子を埋 め込んでいる。 多角体はウィルスが自然界で生存するためには必須であるが、 ゥ ィルスの増殖そのものには必要ないので、 多角体遺伝子の代わりに発現させたい 外来遺伝子を挿入してもウィルスは全く支障なく感染し増殖する。  Baculovirus, a virus that infects insects and causes disease, is an enveloped virus that has a circular double-stranded DNA as a gene and is susceptible to insects such as Lepidoptera, Hymenoptera, and Diptera. Among the baculoviruses, the nuclear polyhedrosis virus (NPV) is a group of viruses that produce large amounts of inclusion bodies called polyhydra in the nucleus of infected cells. Polyhedra are composed of a polyhedrin protein with a molecular weight of 31 kDa and are produced in large quantities at the late stage of infection, in which numerous virus particles are embedded. Polyhedra are essential for the virus to survive in nature, but are not necessary for the growth of the virus itself, so even if a foreign gene that you want to express in place of the polyhedron gene is inserted, the virus will not infect at all. And proliferate.
本発明で用いられるバキュロウィルスとしては、 NPVのキンゥヮバ亜科のォ —トグラファ 'カリフォルニ力 (Autographa californica) NPV (AcNP V) やカイコのボンビックス .モリ (Bombyxmori ) NPV (BmNP V) など のウィルスがベクターとして用いることができる。 Examples of the baculovirus used in the present invention include Autographa californica NPV (AcNP V) of NPV subfamily and Bombyxmori NPV (BmNP V) of silkworm. Of viruses can be used as vectors.
AcNPVの宿主 (感染、 継代細胞) としてはスポドプテラ · フルギぺルダ (Spodoptera frugiperda ) 細胞 (Sf細胞) などが挙げられ、 BmNPVの 宿主 (感染、 継代細胞) としては BmN 4細胞などが挙げられる。 Sf細胞は、 BmN 4細胞などに比べ増殖速度が速いこと、 また、 AcNPVはヒト肝細胞お よびヒト胎児腎細胞などにも感染する能力を有することから、 AcNPV系のベ クタ一が好ましい。  AcNPV hosts (infected, passaged cells) include Spodoptera frugiperda cells (Sf cells), etc. BmNPV hosts (infected, passaged cells) include BmN4 cells, etc. . AcNPV vectors are preferred because Sf cells have a higher growth rate than BmN4 cells and the like, and AcNPV also has the ability to infect human hepatocytes and human fetal kidney cells.
宿主としては、 Spodoptera Frugiperda細胞系統 Sf9および Sf21などが S. frugiperda 幼虫の卵巣組織から確立しており、 Invitrogen 社あるいは Pharmingen社 (San Diego, CA)、 又は ATCCなどから入手可能である。 さらに、 生きている昆虫幼虫を宿主細胞系として使用することもできる。  As hosts, Spodoptera Frugiperda cell lines Sf9 and Sf21 have been established from ovarian tissues of S. frugiperda larvae, and are available from Invitrogen, Pharmingen (San Diego, CA), ATCC, and the like. In addition, live insect larvae can also be used as host cell systems.
本発明で用いる組換えウィルスを構築する方法は、 常法に従って行えばよく、 例えば次の手順で行うことができる。  The method of constructing the recombinant virus used in the present invention may be performed according to a conventional method, and for example, can be performed by the following procedure.
先ず、 発現させたい蛋白質の遺伝子をトランスファーベクタ一に挿入して組換 えトランスファ一ぺク夕一を構築する。  First, the gene of the protein to be expressed is inserted into a transfer vector to construct a recombinant transfer vector.
トランスファ一ぺク夕一の全体の大きさは一般的には数 kb〜 10 kb程度で あり、 そのうちの約 3 kbはプラスミ ド由来の骨格であり、 アンピシリン等の抗 生物質耐性遺伝子と細菌の DN A複製開始のシグナルを含んでいる。 通常のトラ ンスファ一ベクターではこの骨格以外に、 多角体遺伝子の 5' 領域と 3' 領域を それそれ数 kbずつ含み、 以下に述べるようなトランスフエクシヨンを行った際 に、 この配列間で目的遺伝子と多角体遺伝子との間で相同組換えが引き起こる。 また、 トランスファーベクタ一には蛋白質遺伝子を発現させるためのプラモー夕 一を含むことが好ましい。プロモー夕一としては、多角体遺伝子のプロモー夕一、 P 10遺伝子のプロモー夕一、 キヤプシド遺伝子のプロモー夕一などが挙げられ る。  The overall size of the transfer protein is generally about several kb to 10 kb, of which about 3 kb is a plasmid-derived skeleton, which is resistant to antibiotic resistance genes such as ampicillin and bacteria. Contains the signal for initiation of DNA replication. In addition to this backbone, a normal transfer vector contains 5 'and 3' regions of the polyhedron gene, each of which is several kb, and when transfection is performed as described below, the target Homologous recombination occurs between the gene and the polyhedron gene. It is preferable that the transfer vector contains a plasmid for expressing the protein gene. Examples of the promotion include the promotion of the polyhedron gene, the promotion of the P10 gene, and the promotion of the capsid gene.
トランスファ一ベクタ一の種類は特に限定されない。 トランスファ一ベクタ一 の具体例としては、 AcNPV系トランスファ一ベクターとしては、 pEVmX IV2、 pAc SGl、 VL 1392/1393, pAcMP2/3、 p Ac J P I s pAcUW21、 pAcDZ l、 pB lueBac I I I, pAcUW 51、 pAcAB3、 p A c 360 s pB lueBacHi ss p VT -B a c 33、 pAcUWls pAcUW42/43などが挙げられ、 BmNPV系トラ ンスファ一ベクタ一としては、 ρΒΚ283、 ρΒΚ5、 ρΒΒ30、 ρΒΕ 1、 ρΒΕ 2、 ρΒΚ3、 ρΒΚ52、 pBKblue、 ρΒ Kb 1 u e 2, pBF シリーズ (以上、 フナコシ株式会社、 藤沢薬品工業株式会社等から入手可能) な どが挙げられる。 The type of transfer vector is not particularly limited. A specific example of the transfer vector is pEVmX as an AcNPV-based transfer vector. IV2, pAc SGl, VL 1392/1393, pAcMP2 / 3, p Ac JPI s pAcUW21, pAcDZl, pB lueBac III, pAcUW 51, pAcAB3, p Ac 360 s pB lueBacHi s s p VT -B ac 33, pAcUWls pAcUW42 / 43 etc. Examples of BmNPV transfer vectors include ρΒΚ283, ρΒΚ5, ρΒΒ30, ρΒΕ1, ρΒΕ2, ρΒΚ3, ρΒΚ52, pBKblue, ρΒKb 1 ue2, pBF series (Funakoshi Corporation, (Available from Fujisawa Pharmaceutical Co., Ltd.).
次に、 組換えウィルスを作製するために、 上記の組換えトランスファーベクタ —をウィルスと混合した後、 宿主として用いる培養細胞に移入するか、 あるいは 予めウィルスで感染させた宿主として用いる培養細胞に上記のトランスファ一ベ クタ一を移入し、 組換えトランスファ一ベクタ一とウィルスゲノム DNAとの間 に相同組み換えを起こさせ、 組み換えウィルスを構築する。  Next, in order to produce a recombinant virus, the above-mentioned recombinant transfer vector is mixed with the virus and then transferred to a cultured cell used as a host, or the above-described vector is added to a cultured cell used as a host previously infected with the virus. Then, homologous recombination occurs between the recombinant transfer vector and the viral genomic DNA to construct a recombinant virus.
ここで宿主として用いる培養細胞とは、 上記した宿主が挙げられ、 通常、 昆虫 培養細胞 (Sf 9細胞や BmN細胞など) である。 培養条件は、 当業者により適 宜決定されるが、 具体的には Sf 9細胞を用いた場合は 10%ゥシ胎児血清を含 む培地で、 28 °C前後で培養することが好ましい。 このようにして構築された組 み換えウィルスは、 常法、 例えばプラークァヅセィなどによって精製することが できる。 なお、 このようにして作製された組換えウィルスは、 核多角体病ウィル スの多角体蛋白質の遺伝子領域に外来の D N Aが置換または挿入されており多角 体を形成することができないため、 非組換えウィルスと容易に区別することが可 能である。  Here, the cultured cells used as a host include the above-mentioned hosts, and are usually insect cultured cells (such as Sf9 cells and BmN cells). Culture conditions are appropriately determined by those skilled in the art. Specifically, when Sf9 cells are used, culture is preferably performed at about 28 ° C. in a medium containing 10% fetal bovine serum. The recombinant virus thus constructed can be purified by a conventional method, for example, plaque assay. In addition, the recombinant virus thus produced cannot transform into a polyhedron because foreign DNA has been substituted or inserted into the gene region of the polyhedrin protein of the nuclear polyhedrosis virus. It can be easily distinguished from a replacement virus.
本発明では、前記の組換えバキュロウィルスを、上記した適当な宿主( Spodoptera Frugiperda細胞系統 Sf9および Sf21などの培養細胞、 又は昆虫幼虫など) に感 染させ、 一定時間後 (例えば、 72時間後等) に培養上清から細胞外発芽ウィル ス (budded virus, BV) を遠心などの分離操作によって回収することにより、 目 的蛋白質を回収することができる。 なお、 組換えバキュロウィルスは 1種類のみ 感染させてもよいし、 2種類以上の組換えバキュロウィルスを組み合わせて共感 染させてもよい。 In the present invention, the above-mentioned recombinant baculovirus is infected to an appropriate host (cultured cells such as Spodoptera Frugiperda cell lines Sf9 and Sf21, or insect larvae), and after a certain period of time (for example, after 72 hours) In addition, the target protein can be recovered by collecting extracellular budding virus (BV) from the culture supernatant by a separation operation such as centrifugation. Only one type of recombinant baculovirus The infection may be carried out, or two or more recombinant baculoviruses may be combined and co-infected.
細胞外発芽バキュロウィルスの回収は、 例えば、 以下のように行うことができ る。  The extracellular budding baculovirus can be collected, for example, as follows.
先ず感染細胞の培養液を 5 0 0〜 1 , 0 0 0 gで遠心分離して、 細胞外発芽バ キュロウィルスを含む上清を回収する。 この上清を約 3 0 , 0 0 0〜5 0 , 0 0 0 gで遠心分離して細胞外発芽バキュロウィルスを含む沈殿物を得る。 この沈殿 物を適当な緩衝液に懸濁することにより、 細胞外発芽バキュロウィルスを含むゥ ィルス (BV) 画分を得ることができる。  First, the culture of the infected cells is centrifuged at 500 to 1,000 g, and the supernatant containing the extracellular budding baculovirus is recovered. The supernatant is centrifuged at about 30,000 to 500,000 g to obtain a precipitate containing extracellular budding baculovirus. The virus (BV) fraction containing the extracellular budding baculovirus can be obtained by suspending the precipitate in an appropriate buffer.
本発明では上記のようにして得られる目的蛋白質を有するバキュロウィルスの 発芽ウイルスを物理化学的手法で処理することにより、 ヌクレオ力プシッドとゥ ィルスエンベロープとを分離する。  In the present invention, a baculovirus budding virus having a target protein obtained as described above is treated by a physicochemical technique to separate a nucleoforce peptide from a virus envelope.
本発明で用いる物理化学的手法とは、 バキュロウィルスの発芽ウイルスからヌ クレオカブシヅ ドとウィルスエンベロープとを分離することができれば特に限定 されないが、 例えば、 界面活性剤による処理と密度勾配遠心による分離操作、 あ るいは凍結融解による処理と密度勾配遠心による分離操作などが挙げられる。 本発明で用いることができる界面活性剤の種類は特に限定されないが、例えば、 tween 20、 triton X 305、 などが挙げられ、 特に好ましくは tween20 が挙げら れる。  The physicochemical method used in the present invention is not particularly limited as long as it can separate the nucleocabside and the virus envelope from the budding virus of baculovirus, and examples thereof include a treatment with a surfactant and a separation operation by density gradient centrifugation. Alternatively, treatment by freeze-thawing and separation by density gradient centrifugation may be mentioned. The type of surfactant that can be used in the present invention is not particularly limited, and examples thereof include tween 20, triton X 305, and the like, and particularly preferably tween 20.
界面活性剤による処理は、 発芽ウイルスを含む画分を P B S等の適当な緩衝液 中の界面活性剤溶液 (例えば、 0.5%tween20/PBS溶液) と混合し、 室温で適当 な時間静置することにより行うことができる。  For treatment with a detergent, mix the fraction containing the budding virus with a detergent solution (for example, a 0.5% tween20 / PBS solution) in a suitable buffer such as PBS, and allow to stand at room temperature for an appropriate time. Can be performed.
凍結融解による処理としては、 一般的には, ウィルス (BV) を P B Sに懸濁し、 一 2 0 °Cに冷却する。 3 0分後に室温にもどし、 融解させるという操作を、 例え ば三回程度繰り返す方法を挙げることができる。 P B Sの代わりに又は P B Sと 一緒にリン酸緩衝液又は水等の低張処理と組み合わせる方法や、 温度をさらに下 げる (一 8 0 °C又は液体窒素中等) 方法、 融解温度をより高温にする (例えば、 3 7 °C等) 方法など、 より急激に凍結融解を行う方法を採用することもできる。 凍結融解による処理としては、 このような条件を適宜組み合わせることにより、 最適な条件を設定することができる。 In general, freeze-thaw treatment involves suspending the virus (BV) in PBS and cooling to 120 ° C. After 30 minutes, the procedure of returning to room temperature and melting may be repeated, for example, about three times. A method of combining with a hypotonic treatment such as phosphate buffer or water instead of or together with PBS, a method of lowering the temperature further (at 180 ° C or in liquid nitrogen, etc.), and a higher melting temperature. Yes (for example, It is also possible to adopt a more rapid freeze-thaw method, such as a method at 37 ° C. For the process by freeze-thaw, optimal conditions can be set by appropriately combining such conditions.
本発明で用いるその他の物理化学的手法としては、 超音波処理や、 圧をかけて おいて急激に減圧する方法などを挙げることができる。  Examples of other physicochemical methods used in the present invention include ultrasonic treatment and a method in which pressure is applied and pressure is rapidly reduced.
超音波処理としては、例えば、 ウィルスを P B Sに懸濁し, Bransonの Sonifier 250 などの機械で, 氷上で 2 0秒を三回程処理する方法が挙げられるが、 これよ り穏やかな条件で行う方が好ましい場合もある。 As an example of sonication, there is a method of suspending the virus in PBS and treating it on ice three times for 20 seconds on a machine such as a Branson Sonifier 250, but it is better to perform the treatment under milder conditions. It may be preferable.
また、 圧をかけておいて急激に減圧する方法とは、 具体的には、 Nitrogen cavitation装置などの装置を用いて、 圧をかけて N 2を溶解させておいて一気に 減圧することにより N 2を気化させることにより細胞を破壊するという原理に基 づく方法である。 あるいは、 French pressという細胞破壊法も利用可能であり、 具体的には、 細胞の懸濁液に圧をかけて細い穴を通すことによって破壊する方法 である。 Further, the method of rapidly vacuum keep over pressure, specifically, N 2 by using an apparatus such as Nitrogen cavitation apparatus, under reduced pressure once and allowed to dissolve N 2 over pressure This method is based on the principle that cells are destroyed by evaporating them. Alternatively, a cell destruction method called French press is also available. Specifically, it is a method in which a cell suspension is broken by applying pressure and passing through a small hole.
上記した通り、本発明で用いる物理化学的手法の手段は特には限定されないが、 特に好ましくは、 界面活性剤による処理と密度勾配遠心による分離操作が挙げら れる。 As described above, the means of the physicochemical technique used in the present invention is not particularly limited, but particularly preferably includes a treatment with a surfactant and a separation operation by density gradient centrifugation.
本発明では、 上記したようにバキュロウィルスの発芽ウイルスを界面活性剤ま たは凍結融解で処理した後に、 密度勾配遠心による分離操作を行う。  In the present invention, the baculovirus budding virus is treated with a surfactant or freeze-thawing as described above, and then the separation operation is performed by density gradient centrifugation.
密度勾配遠心としては、 例えば、 ショ糖密度勾配超遠心を行うことができる。 具体的には、 適当な濃度勾配 (例えば、 66.5%、 45%、 及び 30%など) をつけてシ ョ糖溶液を重層し、 その上層に界面活性剤又は凍結融解で処理した発芽ウィルス 含有溶液を重層し、 例えば 100,000 g〜500、000 g (—例としては 350000 g ) で 一定時間遠心した後、 最下層より分画する。  As the density gradient centrifugation, for example, sucrose density gradient ultracentrifugation can be performed. Specifically, a sucrose solution is overlaid with a suitable concentration gradient (for example, 66.5%, 45%, and 30%), and a germinated virus-containing solution treated with a surfactant or freeze-thaw on the upper layer. After centrifugation at 100,000 g to 500,000 g (for example, 350,000 g) for a certain time, fractionate from the bottom layer.
各画分のショ糖濃度 (屈折率計) と蛋白濃度 (バイオラッドプロテインアツセ シゥテム、 BSA スタンダード) を測定し、 ポリアクリルアミ ド SDS 電気泳動 ( SDS-PAGE ) を行い、 次いで銀染色を行うことによりタンパク質を確認すること ができる。 これにより、 ウィルス蛋白質が存在すると考えられる画分を同定する ことができる。 さらに、 ウィルス蛋白質が存在すると考えられる画分を電子顕微 鏡で詳細に観察することにより、 ヌクレオ力プシヅドを含まずにウィルスェンべ ロープを含む画分を単離することができる。 Measure the sucrose concentration (refractometer) and protein concentration (Bio-Rad protein assay system, BSA standard) of each fraction, perform polyacrylamide SDS electrophoresis (SDS-PAGE), and then perform silver staining Confirm protein by Can be. As a result, it is possible to identify the fraction in which the virus protein is considered to be present. Further, by observing the fractions in which the viral proteins are thought to be present in detail with an electron microscope, it is possible to isolate the fractions containing the viral envelope without the nucleoside peptide.
上記した方法により得られる、 目的蛋白質が発現されたウィルスエンベロープ も本発明の範囲内のものである。  The virus envelope obtained by the above method and expressing the target protein is also within the scope of the present invention.
本発明はさらに、 上記した方法により得られる目的蛋白質が発現されたウィル スエンベロープを用いて、 該ウィルスエンベロープ上に発現されている目的蛋白 質と被験物質との相互作用を測定することを含む、 化学物質のスクリーニング方 法に関する。  The present invention further includes measuring the interaction between the target protein expressed on the viral envelope and the test substance using the virus envelope in which the target protein obtained by the above method is expressed. It relates to screening methods for chemical substances.
スクリーニングに供される化学物質としては、 例えばペプチド、 ポリペプチド、 合成化合物、 微生物発酵物、 生物体 (植物又は動物の組織、 微生物、 又は細胞な どを含む) からの抽出物、 あるいはそれらのライプラリーが挙げられる。 ライプ ラリ一としては、合成化合物ライブラリー(コンビナトリアルライブラリーなど)、 ぺプチドライブラリー(コンビナトリアルライブラリ一など)などが挙げられる。 スクリーニングに供される化学物質は、 天然物でも合成物でもよく、 また候補と なる単一の化学物質を独立に試験しても、 いくつかの候補となる化学物質の混合 物 (ライプラリーなどを含む) について試験をしてもよい。 また、 細胞抽出物の ような混合物を分画したものについてスクリーニングを行い、 分画を重ねて、 所 望の活性を有する物質を単離することも可能である。  Chemicals to be screened include, for example, peptides, polypeptides, synthetic compounds, fermented microorganisms, extracts from organisms (including plant or animal tissues, microorganisms, cells, etc.), and their libraries. Is mentioned. Libraries include synthetic compound libraries (such as combinatorial libraries) and peptide libraries (such as combinatorial libraries). The chemicals to be screened may be natural or synthetic, and even if a single candidate chemical is tested independently, a mixture of several candidate chemicals (including ) May be tested. Further, it is also possible to screen a fractionated mixture such as a cell extract, and to repeat the fractionation to isolate a substance having a desired activity.
これらの化学物質は、 ウィルスエンベロープ上に発現した目的蛋白質 (好まし くは膜蛋白質、 特に好ましくは、 膜結合型受容体、 膜結合型酵素、 該膜結合型酵 素の基質、 膜結合型酵素活性化因子、 膜結合型輸送蛋白質、 チャネル蛋白質、 膜 の構造蛋白質、 接着関与蛋白質、 抗原提示に関わる蛋白質、 又は蛋白質の高次構 造形成に関わる蛋白質などから選択される膜蛋白質) と相互作用することが予想 される物質であり、 さらに好ましくは、 上記蛋白質に対する阻害薬または活性化 薬物である。 本発明はさらに、 上記した方法により得られる目的蛋白質が発現されたウィル スエンベロープを用いて、 該ウィルスエンベロープ上に発現されている目的蛋白 質に対するポリクロ一ナル抗体又はモノクローナル抗体を作製する方法、 並びに 該方法により得られるポリクロ一ナル抗体又はモノクローナル抗体に関する。 本発明の抗体の作製方法では、 上記した方法により得られる目的蛋白質が発現 されたウィルスエンベロープを免疫原として用いる。 These chemicals include a target protein (preferably a membrane protein, particularly preferably a membrane-bound receptor, a membrane-bound enzyme, a substrate of the membrane-bound enzyme, a membrane-bound enzyme, expressed on the virus envelope). Interacting with activators, membrane-bound transport proteins, channel proteins, membrane structural proteins, proteins involved in adhesion, proteins involved in antigen presentation, or proteins involved in the formation of higher-order structures of proteins) And more preferably an inhibitor or an activating drug for the above protein. The present invention further provides a method for producing a polyclonal antibody or a monoclonal antibody against the target protein expressed on the virus envelope using the viral envelope in which the target protein obtained by the above method is expressed, and It relates to a polyclonal antibody or a monoclonal antibody obtained by the method. In the method for producing an antibody of the present invention, a virus envelope in which a target protein obtained by the above method is expressed is used as an immunogen.
抗体の作成は定法により行うことができる。 ポリク口一ナル抗体を作製する場 合には、 目的蛋白質が発現されたウィルスエンベロープを抗原として哺乳動物を 免疫感作し、 該哺乳動物から血液を採取し、 採取した血液から抗体を分離,精製 することにより得ることができる。 例えば、 マウス、 ハムスター、 モルモット、 ニヮトリ、 ラッ ト、 ゥサギ、 ィヌ、 ャギ、 ヒヅジ、 ゥシ等の哺乳動物を免疫感作 することができる。 免疫感作は、 通常の免疫感作の方法に従い、 例えば抗原を 1 回以上投与することにより行うことができる。  Antibodies can be prepared by a conventional method. When producing a polyclonal antibody, a mammal is immunized with the viral envelope in which the target protein is expressed as an antigen, blood is collected from the mammal, and the antibody is separated and purified from the collected blood. Can be obtained. For example, mammals such as mice, hamsters, guinea pigs, chickens, rats, rabbits, dogs, goats, sheep, and mice can be immunized. Immunization can be performed according to the usual immunization method, for example, by administering the antigen one or more times.
抗原投与は、 例えば、 7から 3 0日、 特に 1 2から 1 6日間隔で 2または 3回 投与することが好ましく、 投与量も適宜選択できる。 抗原の投与経路も特に限定 されず、 皮下投与、 皮内投与、 腹膜腔内投与、 静脈内投与、 筋肉内投与等を適宜 選択することができるが、 静脈内、 腹膜腔内もしくは皮下に注射することにより 投与することが好ましい。 また、 抗原は適当な緩衝液、 例えば完全フロイントァ ジュバント、 R A S CMPL(Monophosphoryl Lipid A)+TDM( Synthetic Trehalose D i c orynomy co 1 at e ) +CWS ( Ce 11 Wall Skeleton) アジュバン トシステム〕 、 水 酸化アルミニウム等の通常用いられるアジュバントを含有する適当な緩衝液に溶 解して用いることができるが、 投与経路や条件等によっては、 上記したアジュバ ントは使用しない場合もある。  For antigen administration, for example, it is preferable to administer the antigen twice or three times at intervals of 7 to 30 days, particularly 12 to 16 days, and the dose can be appropriately selected. The route of administration of the antigen is also not particularly limited, and subcutaneous administration, intradermal administration, intraperitoneal administration, intravenous administration, intramuscular administration, etc. can be appropriately selected, but injection is performed intravenously, intraperitoneally or subcutaneously. It is preferable to administer by the following method. The antigen may be an appropriate buffer, for example, complete Freund's adjuvant, RAS CMPL (Monophosphoryl Lipid A) + TDM (Synthetic Trehalose Dicorynomy co 1 ate) + CWS (Ce 11 Wall Skeleton) adjuvant system), aluminum hydroxide Can be used after dissolving it in an appropriate buffer containing a commonly used adjuvant, but the above adjuvant may not be used depending on the administration route and conditions.
免疫感作した哺乳動物を、 例えば 0 . 5から 4ヶ月間飼育した後、 該哺乳動物 の血清を耳静脈等から少量サンプリングし、 抗体価を測定する。 抗体価が上昇し てきたら、 状況に応じて抗原の投与を適当回数実施する。 例えば 1 0 0 / g〜l 0 0 0 の抗原を用いて追加免疫を行なう。 最後の投与から 1〜2ヶ月後に免 疫感作した哺乳動物から通常の方法により血液を採取して、 該血液を、 例えば遠 心分離、 硫酸アンモニゥムまたはポリエチレングリコ一ルを用いた沈澱、 ゲルろ 過クロマトグラフィ一、 イオン交換クロマトグラフィー、 ァフィ二テイク口マト グラフィ一等のクロマトグラフィ一等の通常の方法によって分離 ·精製すること により、 ポリクロ一ナル抗血清として、 所望のポリクローナル抗体を得ることが できる。 After the immunized mammal is bred for 0.5 to 4 months, for example, a small amount of serum from the mammal is sampled from an ear vein or the like, and the antibody titer is measured. If the antibody titer rises, administer the antigen an appropriate number of times according to the situation. For example, booster immunization is performed using an antigen of 100 / g to 100000. 1 to 2 months after last dose Blood is collected from the sensitized mammal by a conventional method, and the blood is collected, for example, by centrifugation, precipitation using ammonium sulfate or polyethylene glycol, gel filtration chromatography, ion exchange chromatography, and affinity chromatography. A desired polyclonal antibody can be obtained as a polyclonal antiserum by separating and purifying by ordinary methods such as chromatography such as two-take mouth chromatography.
また、 モノクローナル抗体を作製する場合には、 例えば、 抗体産生細胞とミエ 口一マ細胞株との細胞融合によりハイプリ ドーマを作製することにより所望のモ ノクロ一ナル抗体を得ることができる。 モノクローナル抗体を産生するハイプリ ドーマは、 以下のような細胞融合法によって得ることができる。  When a monoclonal antibody is produced, a desired monoclonal antibody can be obtained, for example, by producing a hybridoma by cell fusion between an antibody-producing cell and a myeloma cell line. A hybridoma producing a monoclonal antibody can be obtained by the following cell fusion method.
抗体産生細胞としては、 免疫された動物からの脾細胞、 リンパ節細胞、 Bリン パ球等を使用する。 抗原としては、 目的蛋白質が発現されたウィルスェンベロ一 プを使用する。 免疫される動物としてはマウス、 ラッ ト等が使用され、 これらの 動物への抗原の投与は常法に従って行う。 例えば完全フロインドアジュバント、 不完全フロインドアジュバントなどのアジュバントと抗原である発芽バキュロウ ィルスとの懸濁液もしくは乳化液を調製し、 これを動物の皮下、 皮内、 腹腔内等 に数回投与することによって動物を免疫化する。 免疫化した動物から抗体産生細 胞として例えば脾細胞を取得し、 これとミエローマ細胞とをそれ自体公知の方法 (G. Kohler et al . 3Nature, 256 495( 1975 )) により融合することにより、 ハイ プリ ドーマを作製することができる。 細胞融合に使用するミエローマ細胞株とし ては、 例えばマウスでは P 3 X 6 3 A g 8、 P 3 U 1株、 S p 2 / 0株などが挙 げられる。 細胞融合を行なうに際しては、 ポリエチレングリコ一ル、 センダイゥ ィルスなどの融合促進剤を用い、 細胞融合後のハイプリ ドーマの選抜にはヒポキ サンチン 'アミノプテリン 'チミジン (H A T ) 培地を常法に従って使用するこ とができる。 As antibody-producing cells, spleen cells, lymph node cells, B lymphocytes and the like from immunized animals are used. As the antigen, a virus envelope expressing the target protein is used. Mice, rats, and the like are used as animals to be immunized, and administration of the antigen to these animals is performed according to a conventional method. For example, a suspension or emulsion of an adjuvant, such as complete Freund's adjuvant or incomplete Freund's adjuvant, and a germinated baculovirus as an antigen is prepared and administered several times subcutaneously, intradermally, intraperitoneally, etc., to an animal. Immunize the animal. By obtaining, for example, spleen cells as antibody-producing cells from the immunized animal and fusing them with myeloma cells by a method known per se (G. Kohler et al. 3 Nature, 256 495 (1975)). High pre-doma can be produced. Examples of myeloma cell lines used for cell fusion include P3X63Ag8, P3U1 strain, and Sp2 / 0 strain in mice. When performing cell fusion, a fusion promoter such as polyethylene glycol or Sendai virus is used. For selection of hybridomas after cell fusion, use of a hypoxanthine 'aminopterin' thymidine (HAT) medium in a conventional manner. Can be.
細胞融合により得られたハイプリ ドーマは限界希釈法等によりクロ一ニングを 行い、 さらにスクリーニングを行なうことにより、 所望の蛋白質を特異的に認識 するモノクローナル抗体を産生する細胞株を得ることができる。 Hybridomas obtained by cell fusion are cloned by limiting dilution, etc., and screened to specifically recognize the desired protein. Thus, a cell line producing a monoclonal antibody can be obtained.
このようにして得られたハイプリ ド一マから目的とするモノクローナル抗体を 製造するには、通常の細胞培養法や腹水形成法により該ハイプリ ドーマを培養し、 培養上清あるいは腹水から該モノクローナル抗体を精製すればよい。 培養上清も しくは腹水からのモノクローナル抗体の精製は、常法により行なうことができる。 例えば、 硫安分画、 ゲルろ過、 イオン交換クロマトグラフィー、 ァフィ二ティ一 クロマトグラフィーなどを適宜組み合わせて使用できる。  To produce the desired monoclonal antibody from the thus obtained hybridoma, the hybridoma is cultured by a usual cell culture method or ascites formation method, and the monoclonal antibody is isolated from the culture supernatant or ascites. It may be purified. Purification of the monoclonal antibody from the culture supernatant or ascites can be performed by a conventional method. For example, ammonium sulfate fractionation, gel filtration, ion exchange chromatography, affinity chromatography, and the like can be used in appropriate combination.
本発明はさらに、 上記した方法により得られる目的蛋白質が発現されたウィル スエンベロープを溶解剤で処理し、 該目的蛋白質を可溶化および精製する方法。 具体的には、 目的蛋白質が発現されたウィルスエンベロープを適当な緩衝液に 懸濁し、 lyso- phosphatidylcholin 等の溶解剤で処理し、 さらに遠心分離 (例 えば、 3 0 0 0 0 r p m等) を行うことにより上清と沈澱に分離することができ る。 可溶化された自的蛋白質は上清中に回収される。  The present invention further provides a method of solubilizing and purifying the target protein, which comprises treating the viral envelope expressing the target protein obtained by the above-described method with a solubilizing agent. Specifically, the virus envelope in which the target protein is expressed is suspended in an appropriate buffer, treated with a lysing agent such as lyso-phosphatidylcholin, and further centrifuged (for example, at 300 rpm). This allows separation into a supernatant and a precipitate. The solubilized autologous protein is recovered in the supernatant.
本出願の優先権主張の基礎となる特願 2 0 0 0 - 2 1 5 4 1 6号明細書に記載 の内容は全て引用により本明細書中に取り込むものとする。  All the contents described in Japanese Patent Application No. 2000-0-215 54 16 which is the basis of the priority claim of the present application are incorporated herein by reference.
以下の実施例により本発明を具体的に説明するが、 本発明は実施例によって限 定されることはない。 実施例  The present invention will be specifically described by the following examples, but the present invention is not limited to the examples. Example
実施例 1 :ステロール調節蛋白質 (SREBP- 2) 発現細胞外バキュロウィルスの界 面活性剤処理および超遠心によるェンペロープの分離 Example 1: Extracellular baculovirus expressing sterol-regulated protein (SREBP-2) treated with surfactant and separation of envelope by ultracentrifugation
( 1 ) ステロール調節蛋白質 (SREBP - 2)  (1) Sterol regulatory protein (SREBP-2)
SREBP 2は LDL受容体や HMG- CoA還元酵素など細胞内コレステロール調節に関 わる酵素や輸送タンパク質のコレステロール依存性の転写調節をつかさどる転写 因子である (Brown MS, Goldstein J. , Proc Natl Acad Sci U S A 1999 Sep 28; 96(20) : 11041-8, A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. )。 SREBP 2は、 定常状態では 1 2 5 kdの 2回膜貫通型の前駆体蛋白質として小胞体膜に存在する。細部内のコレス テロールが欠乏すると、 SREBP2前駆体夕ンパク質の膜貫通部位付近でプロテア —ゼによる 2段階の切断がおこり、 SREBP2の DNA結合部位を含むアミノ端が膜 から切りはなされて細胞質に放出され、 さらに核へと移行する。 そして様々なコ レステロール調節遺伝子のプロモーター領域上の sre配列に結合することにより、 転写を活性化する。 SREBP2 is a transcription factor that regulates cholesterol-dependent transcriptional regulation of intracellular cholesterol regulation enzymes and transport proteins such as LDL receptor and HMG-CoA reductase (Brown MS, Goldstein J., Proc Natl Acad Sci USA 1999 Sep 28; 96 (20): 11041-8, A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood.). SREBP 2 is 1 2 at steady state It is present in the endoplasmic reticulum membrane as a 5 kd twice transmembrane precursor protein. Lack of cholesterol in the details causes a two-step cleavage by the protease near the transmembrane site of the SREBP2 precursor protein, which cuts off the amino terminus, including the SREBP2 DNA binding site, from the membrane to the cytoplasm. Released and translocated to the nucleus. It activates transcription by binding to sre sequences on the promoter regions of various cholesterol regulatory genes.
(2) リコンビナントパキュロウィルスの作成と Sf 9細胞培養  (2) Preparation of recombinant paculovirus and culture of Sf9 cells
ヒト SREBP2全長遺伝子 (Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X·, Proc Natl Acad Sci U S A 1993 Dec 15; 90(24) :11603- 7., SREBP- 2, a second basic- helix-loop- helix- leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. ) を pBlueBacTM ベクタ一 ( Invitrogen, Carlsbad, CA) に組み込んだ。 Sf 9細胞 (Invitrogen) は 1 0 %ゥシ胎児血清 (Sigma)、 penicillin 100 units/ml、 streptmycin 100 ju g/ml を含む Grace' s supplemented media (GIBCO BRL)で 27°Cで 1 Ocm径ディッシュに継代培養し た。 リコンビナン トバキュロウィルスの作成は説明書 ( Bac-N-BlueTM TransfectionKit, Invitrogen) に従い、 Sf 9細胞に Bac- N- Blue DNA (ApMNPV 由来)と 4〃 gの pBlueBac-SREBP2とを共感染させ SREBP 2組換えゥィルスを作 成した。  Human SREBP2 full-length gene (Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X, Proc Natl Acad Sci USA 1993 Dec 15; 90 (24): 11603-7., SREBP-2, a second basic-helix-loop-helix- leucine zipper protein that stimulates transcription by binding to a sterol regulatory element.) was incorporated into pBlueBacTM vector (Invitrogen, Carlsbad, CA). Sf9 cells (Invitrogen) is a 1 Ocm dish at 27 ° C with Grace's supplemented media (GIBCO BRL) containing 10% fetal serum (Sigma), penicillin 100 units / ml, streptmycin 100 jug / ml. Was subcultured. The recombinant baculovirus was prepared according to the instruction manual (Bac-N-BlueTM Transfection Kit, Invitrogen), and Sf9 cells were co-infected with Bac-N-Blue DNA (from ApMNPV) and 4 μg of pBlueBac-SREBP2 to form SREBP2. A recombinant virus was created.
(3) ウィルスへの SREBP 2の発現とウィルスの回収  (3) Expression of SREBP 2 in virus and recovery of virus
大量発現のため、 Sf 9細胞を 1 5cmディヅシュ 8枚に 1ディヅシュあたり 2x 107 細胞の濃度で培養し、 そこに SREBP 2組換えウィルスを M0I (multiplicity of infection) 5で感染させ、 48時間後に培養上清を集めた。 集めた培養上清 は 800g、 1 0分の遠心により細胞を取り除き、 その上清を 40000g、 20 分超遠心して、 その沈澱を 4mlのリン酸緩衝液 (phosphate buffered saline, PBS)に懸濁し、 ウィルス (BV)画分とした (LoiselTP,他, Nat Biotechnol. 1997
Figure imgf000018_0001
(4) ウィルスの界面活性剤処理とショ糖密度勾配超遠心による EVEの分画 SREBP2発現 BV画分の 2 50〃 1と 0.5%tween20 PBS溶液 2 50 1と 1 :
For large-scale expression, Sf9 cells were cultured on eight 15 cm dishes at a density of 2 x 10 7 cells per dish, and the SREBP2 recombinant virus was infected with M0I (multiplicity of infection) 5 and 48 hours later. The culture supernatant was collected. The collected culture supernatant was centrifuged at 800 g for 10 minutes to remove cells, the supernatant was ultracentrifuged at 40,000 g for 20 minutes, and the precipitate was suspended in 4 ml of phosphate buffered saline (PBS). Virus (BV) fraction (LoiselTP, et al., Nat Biotechnol. 1997
Figure imgf000018_0001
(4) EVE fractionation by virus detergent treatment and sucrose density gradient ultracentrifugation SREBP2 expression BV fraction 250〃1 and 0.5% tween20 in PBS solution 250 1 and 1:
1混合し、 室温で 10分間静置処理した。 1 was mixed and left standing at room temperature for 10 minutes.
66.5% (W/V) ショ糖/ PB S溶液 0.5ml, 45% (W/V) ショ糖 /PB S溶 液 1.0ml, 30% (W/V) ショ糖ノ PB S溶液 1.0ml の順に重層し、 その上層に 上記の SREBP2発現 BV画分の tween20処理溶液 0.5ml を重層し、 350000gで 2 時間遠心した後、 最下層より 100 /1ずつ分画した。  66.5% (W / V) sucrose / PBS solution 0.5 ml, 45% (W / V) sucrose / PBS solution 1.0 ml, 30% (W / V) sucrose PBS solution 1.0 ml 0.5 ml of the above-mentioned SREBP2-expressing BV fraction in tween20 treatment was overlaid on the upper layer, centrifuged at 350,000 g for 2 hours, and fractionated 100/1 from the bottom layer.
各画分のショ糖濃度 (屈折率計) と蛋白濃度 (バイオラッドプロテインアツセ ィシステム、 BSAスタンダード) を測定した (図 1)。 3〜; 1 8画分については、 サンプル 1 0 1 に 5 xSDS ノ ソ フ ァ 一 ( 2 M Tris-HCl, pH6.85 15% 3 - mercaptoethano丄, 15%SDS, 50¾ glycerol, 1.5% bromophenolblue) 2.5 ju 1加え 95°C10分熱処理後 1 2%ポリアクリルアミ ド SDS電気泳動(SDS- PAGE)を 行い、 銀染色 (第一化学キッ ト) によりタンパク質を染色した結果、 8〜1 3画 分に gp64、 VP39などのウィルスタンパクと考えられるタンパク質バンドがみ られた (図 2)。 そこで 8〜 1 3画分については電子顕微鏡 (AKASHI EM002A) で観察をおこなった (9〜1 2画分の電子顕微鏡観察の結果を図 3から図 6に示 す)。 The sucrose concentration (refractometer) and protein concentration (Bio-Rad Protein Atsie System, BSA standard) of each fraction were measured (Figure 1). 3; For 1 8 fraction, sample 1 0 1 to 5 xsds Roh source off § one (2 M Tris-HCl, pH6.8 5 15% 3 - mercaptoethano丄, 15% SDS, 50¾ glycerol, 1.5% bromophenolblue ) Add 2.5 ju 1 and heat-treat at 95 ° C for 10 minutes. Perform 12% polyacrylamide SDS electrophoresis (SDS-PAGE) and stain the protein with silver staining (Daiichi Kagaku Kit). There were protein bands considered to be viral proteins such as gp64 and VP39 (Fig. 2). Therefore, 8 to 13 fractions were observed with an electron microscope (AKASHI EM002A) (Figures 3 to 6 show the results of electron microscope observation of 9 to 12 fractions).
(5) 電子顕微鏡観察とウエスタンウエスタンプロッテイング  (5) Electron microscopy and western western printing
電子顕微鏡観察は以下のように行った。 試料観察用 400グリツドメッシュにコ ロジオン膜を貼り、 続いて炭素蒸着 (カーボンコート) した。 試料が吸着し易い ように、 400 グリヅドメッシュには予めィオンコ一夕一によりェヅチング処理を 施した。 試料 ιο〃ιを 400グ ύヅ ドメッシュにのせ、 乾燥させた後、 リン夕 ングステン酸 (ΡΤΑ) 溶液で陰性染色して観察した。  Electron microscope observation was performed as follows. A collodion film was applied to a 400 grid mesh for sample observation, and carbon deposition (carbon coating) was performed. In order to easily adsorb the sample, the 400 grid mesh was pre-etched by Ionco overnight. The sample ιο〃ι was placed on a 400 g mesh and dried, and then negatively stained with a phosphoric acid solution of ginstenic acid (ΡΤΑ) and observed.
ショ糖密度勾配超遠心の画分では BVは夕ンパク染色に一致して、 蔗糖濃度 44.5 〜34.5%の範囲で回収され(8~13画分)、 9画分にはヌクレオ力プシヅ ド(図 3 )、 ショ糖濃度 37.0%の 12画分にはウィルスエンベロープ(EVE)が濃縮されており (図 6)、 1 0、 1 1画分はヌクレオカブシッドとエンベロープの混在した像が観 察された (図 4及び図 5 )。 SDS-PAGE上 VP 3 9と考えられる分子量 3 9キロダル トンのタンパク質は電子顕微鏡のヌクレオ力プシッド像と一致するように分布し、 またウィルスエンベロープに存在する唯一のウィルスタンパク質として知られて いる分子量 6 4キロダルトンの gp 6 4の SDS- PAGEでのタンパクバンドの濃さと 電子顕微鏡のエンベロープ像の分布は一致している (図 2、 並びに図 3〜6 )。 さらに SREBP 2に対する特異抗体を用いて免疫染色 (ウエスタンプロット) を 行うため、 これらのサンプルを 8 %SDS- PAGEでゲル電気泳動したのち、 3 8 V 2 0時間ニトロセルロース膜 (Hybond ECL, Amersham) に転写した。 転写膜はプロ ヅクエースで 3 0分ブロッキング後、 SREBP 2のカルボキシル末端を認識するモ ノクロ一ナル抗体 1 C 6 (ATCC No CRL-2224) の塩析精製抗体 ( 1 0 z g/m l ) を室温で 1時間反応させ、 TBS ( 2 O mMTris- buffered sal ine, pH7.4) で 4回 洗浄後 peroxidase conjugated抗マウス IgG抗体 (CAPPEL) で 1時間反応、 TBS で同様に洗浄後、 E C L試薬 (Amersham Pharmacia) で化学発光させ、 x線フィ ルムに感光させた。 In the fractions from the sucrose gradient ultracentrifugation, BV was recovered at a sucrose concentration of 44.5 to 34.5% (8 to 13 fractions) in accordance with the evening protein staining, and the nucleoforce pseudo (Fig. 3), the virus envelope (EVE) was concentrated in 12 fractions with a sucrose concentration of 37.0% (Fig. 6), and in the 10 and 11 fractions, a mixture of nucleocabushid and envelope was observed. (Figures 4 and 5). VP 39 on SDS-PAGE Molecular weight 3 9 kDa protein distributed in agreement with the nucleosid image of the electron microscope, and molecular weight 6 known as the only viral protein present in the virus envelope 6 The density of the protein band in SDS-PAGE of gp64 of 4 kilodaltons and the distribution of the envelope image of the electron microscope are in agreement (Fig. 2 and Figs. 3 to 6). In addition, to perform immunostaining (Western plot) using a specific antibody against SREBP2, these samples were subjected to gel electrophoresis by 8% SDS-PAGE, and then subjected to nitrocellulose membrane (Hybond ECL, Amersham) at 38 V for 20 hours. Transferred to After blocking the transfer membrane with Proceed Ace for 30 minutes, a salting-out purified antibody (10 zg / ml) of the monoclonal antibody 1C6 (ATCC No CRL-2224) recognizing the carboxyl terminus of SREBP 2 was added at room temperature. Incubate for 1 hour, wash 4 times with TBS (2 OmM Tris-buffered saline, pH 7.4), react with peroxidase conjugated anti-mouse IgG antibody (CAPPEL) for 1 hour, wash with TBS in the same manner, and use ECL reagent (Amersham Pharmacia ), And exposed to an x-ray film.
その結果、 1 2 6 kdの SREBP 2前駆体タンパク質と一致するバンドが EVEの分 布と一致して認められ (図 7 )、 ウィルスエンベロープに発現した膜タンパク質 SREBP 2が EVEに濃縮されたと考えられる。 産業上の利用の可能性  As a result, a band corresponding to the 126 kd SREBP2 precursor protein was found in agreement with the distribution of EVE (Fig. 7), suggesting that the membrane protein SREBP2 expressed in the virus envelope was concentrated in EVE. . Industrial applicability
本発明により、 発芽ウィルスのヌクレオ力プシヅドとウィルスエンベロープを 分離し、 目的膜蛋白質が発現されたウィルス膜画分 (enucleated virion envelope, EVE) を回収するための簡易な方法が提供されることになつた。  According to the present invention, a simple method for separating a nucleoside peptide of a budding virus and a virus envelope and recovering a virus membrane fraction (enucleated virion envelope, EVE) in which a target membrane protein is expressed is provided. Was.
本発明の方法を利用することにより、 目的膜蛋白質を濃縮することができ、 ま たウィルスの DNAゃヌクレオ力プシヅ ドの蛋白質によるアツセィ系の妨害を回避 することができる。 また膜の内側 (ヌクレオカブシヅ ド側) に活性部位がある膜 蛋白質や他の蛋白質や化学物質と相互作用する蛋白質などでは膜の一部が破壊さ れていて、 外から加えた基質や化学物質が活性部位や相互作用部位に到達可能で ある必要がある。 このような場合にも EVE技術はウィルスそのものを使用するよ りも優れている。 By using the method of the present invention, the target membrane protein can be concentrated, and the interference of the Atsushi system with the DNA / nucleoside protein of the virus can be avoided. In addition, membrane proteins that have an active site inside the membrane (nucleoside side), proteins that interact with other proteins or chemicals, etc., have a part of the membrane destroyed, and substrates or chemicals added from outside cannot be used. Can reach active sites and interaction sites Need to be. In such cases, EVE technology is better than using the virus itself.

Claims

請求の範囲 The scope of the claims
1 . 目的蛋白質が発現されたバキュロウィルスの発芽ウィルスを物理化学的 手法で処理することを含む、 該発芽ウィルスのヌクレオ力プシッドとウィルスェ ンべロープとを分離してウィルスエンベロープを回収する方法。 1. A method of recovering a virus envelope by separating a nucleoside of a budding virus and a virus envelope, comprising treating a baculovirus budding virus in which a target protein is expressed by a physicochemical technique.
2 . 物理化学的手法による処理が、 界面活性剤による処理または凍結融解に よる処理と密度勾配遠心による分離操作である、 請求項 1に記載の方法。  2. The method according to claim 1, wherein the treatment by a physicochemical method is a treatment with a surfactant or a treatment by freeze-thawing and a separation operation by density gradient centrifugation.
3 . 界面活性剤として tween20を使用する、 請求項 1又は 2に記載の方法。 3. The method according to claim 1, wherein tween20 is used as a surfactant.
4 . 目的蛋白質が膜蛋白質である、 請求項 1から 3の何れかに記載の方法。4. The method according to any one of claims 1 to 3, wherein the target protein is a membrane protein.
5 . 請求項 1から 4の何れかに記載の方法により得られる、 目的蛋白質が発 現されたウィルスエンベロープ。 5. A virus envelope in which a target protein is obtained, which is obtained by the method according to any one of claims 1 to 4.
6 . 請求項 1から 4の何れかに記載の方法により得られる目的蛋白質が発現 されたウィルスエンベロープを用いて、 該ウィルスエンベロープ上に発現されて いる目的蛋白質と被験物質との相互作用を測定することを含む、 化学物質のスク リ一ニング方法。  6. Using a virus envelope expressing the target protein obtained by the method according to any one of claims 1 to 4, measuring the interaction between the target protein expressed on the virus envelope and the test substance. Screening method for chemical substances, including:
7 . 請求項 1から 4の何れかに記載の方法により得られる目的蛋白質が発現 されたウィルスエンベロープを用いて、 該ウィルスエンベロープ上に発現されて いる目的蛋白質に対するポリクロ"ナル抗体又はモノクローナル抗体を作製する 方法。  7. A polyclonal antibody or a monoclonal antibody against the target protein expressed on the viral envelope is prepared using the viral envelope expressing the target protein obtained by the method according to any one of claims 1 to 4. how to.
8 . 請求項 Ίに記載の方法により得られるポリクローナル抗体又はモノク口 ——ナル抗体。  8. A polyclonal antibody or a monoclonal antibody obtained by the method according to claim Ί.
9 . 請求項 1から 4の何れかに記載の方法により得られる目的蛋白質が発現 されたウィルスエンベロープを溶解剤で処理し、 該目的蛋白質を可溶化および精 製する方法。  9. A method for solubilizing and purifying the target protein by treating the viral envelope expressing the target protein obtained by the method according to any one of claims 1 to 4 with a lysing agent.
PCT/JP2001/006109 2000-07-17 2001-07-16 Method of collecting viral envelope from germinating baculovirus WO2002006305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001271050A AU2001271050A1 (en) 2000-07-17 2001-07-16 Method of collecting viral envelope from germinating baculovirus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-215416 2000-07-17
JP2000215416A JP2002030098A (en) 2000-07-17 2000-07-17 Method for recovering virion envelope from budded virus of baculovirus

Publications (1)

Publication Number Publication Date
WO2002006305A1 true WO2002006305A1 (en) 2002-01-24

Family

ID=18710842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006109 WO2002006305A1 (en) 2000-07-17 2001-07-16 Method of collecting viral envelope from germinating baculovirus

Country Status (3)

Country Link
JP (1) JP2002030098A (en)
AU (1) AU2001271050A1 (en)
WO (1) WO2002006305A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069246A2 (en) 2004-12-22 2006-06-29 Ambrx, Inc. Compositions containing, methods involving, and uses of non-natural amino acids and polypeptides
WO2008030558A2 (en) 2006-09-08 2008-03-13 Ambrx, Inc. Modified human plasma polypeptide or fc scaffolds and their uses
WO2009067636A2 (en) 2007-11-20 2009-05-28 Ambrx, Inc. Modified insulin polypeptides and their uses
WO2010011735A2 (en) 2008-07-23 2010-01-28 Ambrx, Inc. Modified bovine g-csf polypeptides and their uses
WO2010037062A1 (en) 2008-09-26 2010-04-01 Ambrx, Inc. Non-natural amino acid replication-dependent microorganisms and vaccines
US7736872B2 (en) 2004-12-22 2010-06-15 Ambrx, Inc. Compositions of aminoacyl-TRNA synthetase and uses thereof
US7816320B2 (en) 2004-12-22 2010-10-19 Ambrx, Inc. Formulations of human growth hormone comprising a non-naturally encoded amino acid at position 35
EP2284191A2 (en) 2004-12-22 2011-02-16 Ambrx, Inc. Process for the preparation of hGH
EP2301573A1 (en) 2002-10-01 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Anti-cancer and anti-infectious disease compositions and methods for using same
US7947473B2 (en) 2004-12-22 2011-05-24 Ambrx, Inc. Methods for expression and purification of pegylated recombinant human growth hormone containing a non-naturally encoded keto amino acid
EP2327724A2 (en) 2004-02-02 2011-06-01 Ambrx, Inc. Modified human growth hormone polypeptides and their uses
US8012931B2 (en) 2007-03-30 2011-09-06 Ambrx, Inc. Modified FGF-21 polypeptides and their uses
US8093356B2 (en) 2005-06-03 2012-01-10 Ambrx, Inc. Pegylated human interferon polypeptides
US8114630B2 (en) 2007-05-02 2012-02-14 Ambrx, Inc. Modified interferon beta polypeptides and their uses
WO2012024452A2 (en) 2010-08-17 2012-02-23 Ambrx, Inc. Modified relaxin polypeptides and their uses
US8278418B2 (en) 2008-09-26 2012-10-02 Ambrx, Inc. Modified animal erythropoietin polypeptides and their uses
US8420792B2 (en) 2006-09-08 2013-04-16 Ambrx, Inc. Suppressor tRNA transcription in vertebrate cells
EP2805965A1 (en) 2009-12-21 2014-11-26 Ambrx, Inc. Modified porcine somatotropin polypeptides and their uses
EP2805964A1 (en) 2009-12-21 2014-11-26 Ambrx, Inc. Modified bovine somatotropin polypeptides and their uses
US9175083B2 (en) 2004-06-18 2015-11-03 Ambrx, Inc. Antigen-binding polypeptides and their uses
US9434778B2 (en) 2014-10-24 2016-09-06 Bristol-Myers Squibb Company Modified FGF-21 polypeptides comprising an internal deletion and uses thereof
US9488660B2 (en) 2005-11-16 2016-11-08 Ambrx, Inc. Methods and compositions comprising non-natural amino acids
EP3103880A1 (en) 2008-02-08 2016-12-14 Ambrx, Inc. Modified leptin polypeptides and their uses
US9567386B2 (en) 2010-08-17 2017-02-14 Ambrx, Inc. Therapeutic uses of modified relaxin polypeptides
US10266578B2 (en) 2017-02-08 2019-04-23 Bristol-Myers Squibb Company Modified relaxin polypeptides comprising a pharmacokinetic enhancer and uses thereof
US11273202B2 (en) 2010-09-23 2022-03-15 Elanco Us Inc. Formulations for bovine granulocyte colony stimulating factor and variants thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265785A2 (en) * 1986-10-16 1988-05-04 Microgenesys, Inc. Polypeptides derived from the envelope gene of human immunodeficiency virus in recombinant baculovirus infected insect cells
WO1994016681A1 (en) * 1993-01-29 1994-08-04 Societe D'exploitation De Produits Pour Les Industries Chimiques, S.E.P.P.I.C Recombinant living subunit vaccine composition and process for its preparation
WO1996004385A2 (en) * 1994-07-29 1996-02-15 Innogenetics N.V. Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use
WO1998021338A1 (en) * 1996-11-08 1998-05-22 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Synthesis and purification of hepatitis c virus-like particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761994B1 (en) * 1997-04-11 1999-06-18 Centre Nat Rech Scient PREPARATION OF MEMBRANE RECEPTORS FROM EXTRACELLULAR BACULOVIRUSES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265785A2 (en) * 1986-10-16 1988-05-04 Microgenesys, Inc. Polypeptides derived from the envelope gene of human immunodeficiency virus in recombinant baculovirus infected insect cells
WO1994016681A1 (en) * 1993-01-29 1994-08-04 Societe D'exploitation De Produits Pour Les Industries Chimiques, S.E.P.P.I.C Recombinant living subunit vaccine composition and process for its preparation
WO1996004385A2 (en) * 1994-07-29 1996-02-15 Innogenetics N.V. Purified hepatitis c virus envelope proteins for diagnostic and therapeutic use
WO1998021338A1 (en) * 1996-11-08 1998-05-22 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Synthesis and purification of hepatitis c virus-like particles

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2301573A1 (en) 2002-10-01 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Anti-cancer and anti-infectious disease compositions and methods for using same
US8119603B2 (en) 2004-02-02 2012-02-21 Ambrx, Inc. Modified human interferon polypeptides and their uses
US9260472B2 (en) 2004-02-02 2016-02-16 Ambrx, Inc. Modified human four helical bundle polypeptides and their uses
US8907064B2 (en) 2004-02-02 2014-12-09 Ambrx, Inc. Modified human four helical bundle polypeptides and their uses
US8906676B2 (en) 2004-02-02 2014-12-09 Ambrx, Inc. Modified human four helical bundle polypeptides and their uses
US8097702B2 (en) 2004-02-02 2012-01-17 Ambrx, Inc. Modified human interferon polypeptides with at least one non-naturally encoded amino acid and their uses
US8232371B2 (en) 2004-02-02 2012-07-31 Ambrx, Inc. Modified human interferon polypeptides and their uses
EP2327724A2 (en) 2004-02-02 2011-06-01 Ambrx, Inc. Modified human growth hormone polypeptides and their uses
US9175083B2 (en) 2004-06-18 2015-11-03 Ambrx, Inc. Antigen-binding polypeptides and their uses
EP2284191A2 (en) 2004-12-22 2011-02-16 Ambrx, Inc. Process for the preparation of hGH
US7959926B2 (en) 2004-12-22 2011-06-14 Ambrx, Inc. Methods for expression and purification of recombinant human growth hormone mutants
US7883866B2 (en) 2004-12-22 2011-02-08 Ambrx, Inc. Compositions of aminoacyl-tRNA synthetase and uses thereof
US7846689B2 (en) 2004-12-22 2010-12-07 Ambrx, Inc. Compositions of aminoacyl-tRNA synthetase and uses thereof
US7838265B2 (en) 2004-12-22 2010-11-23 Ambrx, Inc. Compositions of aminoacyl-tRNA synthetase and uses thereof
WO2006069246A2 (en) 2004-12-22 2006-06-29 Ambrx, Inc. Compositions containing, methods involving, and uses of non-natural amino acids and polypeptides
US7939496B2 (en) 2004-12-22 2011-05-10 Ambrx, Inc. Modified human growth horomone polypeptides and their uses
US7947473B2 (en) 2004-12-22 2011-05-24 Ambrx, Inc. Methods for expression and purification of pegylated recombinant human growth hormone containing a non-naturally encoded keto amino acid
US7829310B2 (en) 2004-12-22 2010-11-09 Ambrx, Inc. Compositions of aminoacyl-tRNA synthetase and uses thereof
US7858344B2 (en) 2004-12-22 2010-12-28 Ambrx, Inc. Compositions of aminoacyl-tRNA synthetase and uses thereof
US7816320B2 (en) 2004-12-22 2010-10-19 Ambrx, Inc. Formulations of human growth hormone comprising a non-naturally encoded amino acid at position 35
US8178108B2 (en) 2004-12-22 2012-05-15 Ambrx, Inc. Methods for expression and purification of recombinant human growth hormone
US8178494B2 (en) 2004-12-22 2012-05-15 Ambrx, Inc. Modified human growth hormone formulations with an increased serum half-life
US8080391B2 (en) 2004-12-22 2011-12-20 Ambrx, Inc. Process of producing non-naturally encoded amino acid containing high conjugated to a water soluble polymer
EP2399893A2 (en) 2004-12-22 2011-12-28 Ambrx, Inc. Compositions containing, methods involving, and uses of non-natural amino acids and polypeptides
US8163695B2 (en) 2004-12-22 2012-04-24 Ambrx Formulations of human growth hormone comprising a non-naturally encoded amino acid
US7736872B2 (en) 2004-12-22 2010-06-15 Ambrx, Inc. Compositions of aminoacyl-TRNA synthetase and uses thereof
US8143216B2 (en) 2004-12-22 2012-03-27 Ambrx, Inc. Modified human growth hormone
US8093356B2 (en) 2005-06-03 2012-01-10 Ambrx, Inc. Pegylated human interferon polypeptides
US9488660B2 (en) 2005-11-16 2016-11-08 Ambrx, Inc. Methods and compositions comprising non-natural amino acids
US8420792B2 (en) 2006-09-08 2013-04-16 Ambrx, Inc. Suppressor tRNA transcription in vertebrate cells
WO2008030558A2 (en) 2006-09-08 2008-03-13 Ambrx, Inc. Modified human plasma polypeptide or fc scaffolds and their uses
US8053560B2 (en) 2006-09-08 2011-11-08 Ambrx, Inc. Modified human plasma polypeptide or Fc scaffolds and their uses
US8022186B2 (en) 2006-09-08 2011-09-20 Ambrx, Inc. Modified human plasma polypeptide or Fc scaffolds and their uses
US8618257B2 (en) 2006-09-08 2013-12-31 Ambrx, Inc. Modified human plasma polypeptide or Fc scaffolds and their uses
US7919591B2 (en) 2006-09-08 2011-04-05 Ambrx, Inc. Modified human plasma polypeptide or Fc scaffolds and their uses
US8012931B2 (en) 2007-03-30 2011-09-06 Ambrx, Inc. Modified FGF-21 polypeptides and their uses
US8383365B2 (en) 2007-03-30 2013-02-26 Ambrx, Inc. Methods of making FGF-21 mutants comprising non-naturally encoded phenylalanine derivatives
US9975936B2 (en) 2007-03-30 2018-05-22 Ambrx, Inc. Nucleic acids encoding modified FGF-21 polypeptides comprising non-naturally occurring amino acids
US9517273B2 (en) 2007-03-30 2016-12-13 Ambrx, Inc. Methods of treatment using modified FGF-21 polypeptides comprising non-naturally occurring amino acids
US10377805B2 (en) 2007-03-30 2019-08-13 Ambrx, Inc. Modified FGF-21 polypeptides comprising non-naturally encoding amino acids and their uses
US10961291B2 (en) 2007-03-30 2021-03-30 Ambrx, Inc. Modified FGF-21 polypeptides and their uses
US9079971B2 (en) 2007-03-30 2015-07-14 Ambrx, Inc. Modified FGF-21 polypeptides comprising non-naturally occurring amino acids
US8114630B2 (en) 2007-05-02 2012-02-14 Ambrx, Inc. Modified interferon beta polypeptides and their uses
EP2930182A1 (en) 2007-11-20 2015-10-14 Ambrx, Inc. Modified insulin polypeptides and their uses
US8946148B2 (en) 2007-11-20 2015-02-03 Ambrx, Inc. Modified insulin polypeptides and their uses
WO2009067636A2 (en) 2007-11-20 2009-05-28 Ambrx, Inc. Modified insulin polypeptides and their uses
US9938333B2 (en) 2008-02-08 2018-04-10 Ambrx, Inc. Modified leptin polypeptides and their uses
EP3103880A1 (en) 2008-02-08 2016-12-14 Ambrx, Inc. Modified leptin polypeptides and their uses
EP3225248A1 (en) 2008-07-23 2017-10-04 Ambrx, Inc. Modified bovine g-csf polypeptides and their uses
WO2010011735A2 (en) 2008-07-23 2010-01-28 Ambrx, Inc. Modified bovine g-csf polypeptides and their uses
US10138283B2 (en) 2008-07-23 2018-11-27 Ambrx, Inc. Modified bovine G-CSF polypeptides and their uses
US8278418B2 (en) 2008-09-26 2012-10-02 Ambrx, Inc. Modified animal erythropoietin polypeptides and their uses
US9121024B2 (en) 2008-09-26 2015-09-01 Ambrx, Inc. Non-natural amino acid replication-dependent microorganisms and vaccines
US10428333B2 (en) 2008-09-26 2019-10-01 Ambrx Inc. Non-natural amino acid replication-dependent microorganisms and vaccines
WO2010037062A1 (en) 2008-09-26 2010-04-01 Ambrx, Inc. Non-natural amino acid replication-dependent microorganisms and vaccines
US9121025B2 (en) 2008-09-26 2015-09-01 Ambrx, Inc. Non-natural amino acid replication-dependent microorganisms and vaccines
EP3216800A1 (en) 2008-09-26 2017-09-13 Ambrx, Inc. Modified animal erythropoietin polypeptides and their uses
US8569233B2 (en) 2008-09-26 2013-10-29 Eli Lilly And Company Modified animal erythropoietin polypeptides and their uses
EP2805964A1 (en) 2009-12-21 2014-11-26 Ambrx, Inc. Modified bovine somatotropin polypeptides and their uses
EP2805965A1 (en) 2009-12-21 2014-11-26 Ambrx, Inc. Modified porcine somatotropin polypeptides and their uses
US9962450B2 (en) 2010-08-17 2018-05-08 Ambrx, Inc. Method of treating heart failure with modified relaxin polypeptides
WO2012024452A2 (en) 2010-08-17 2012-02-23 Ambrx, Inc. Modified relaxin polypeptides and their uses
US9567386B2 (en) 2010-08-17 2017-02-14 Ambrx, Inc. Therapeutic uses of modified relaxin polypeptides
US11786578B2 (en) 2010-08-17 2023-10-17 Ambrx, Inc. Modified relaxin polypeptides and their uses
US10253083B2 (en) 2010-08-17 2019-04-09 Ambrx, Inc. Therapeutic uses of modified relaxin polypeptides
US11439710B2 (en) 2010-08-17 2022-09-13 Ambrx, Inc. Nucleic acids encoding modified relaxin polypeptides
US11311605B2 (en) 2010-08-17 2022-04-26 Ambrx, Inc. Methods of treating heart failure and fibrotic disorders using modified relaxin polypeptides
US8735539B2 (en) 2010-08-17 2014-05-27 Ambrx, Inc. Relaxin polypeptides comprising non-naturally encoded amino acids
US9452222B2 (en) 2010-08-17 2016-09-27 Ambrx, Inc. Nucleic acids encoding modified relaxin polypeptides
US10702588B2 (en) 2010-08-17 2020-07-07 Ambrx, Inc. Modified relaxin polypeptides comprising a non-naturally encoded amino acid in the A chain
US10751391B2 (en) 2010-08-17 2020-08-25 Ambrx, Inc. Methods of treatment using modified relaxin polypeptides comprising a non-naturally encoded amino acid
EP4302783A2 (en) 2010-08-17 2024-01-10 Ambrx, Inc. Modified relaxin polypeptides and their uses
US11273202B2 (en) 2010-09-23 2022-03-15 Elanco Us Inc. Formulations for bovine granulocyte colony stimulating factor and variants thereof
US9631004B2 (en) 2014-10-24 2017-04-25 Bristol-Myers Squibb Company Modified FGF-21 polypeptides comprising an internal deletion and uses thereof
US11248031B2 (en) 2014-10-24 2022-02-15 Bristol-Myers Squibb Company Methods of treating diseases associated with fibrosis using modified FGF-21 polypeptides
US10377806B2 (en) 2014-10-24 2019-08-13 Bristol-Myers Squibb Company Methods of treating diseases associated with fibrosis using modified FGF-21 polypeptides and uses thereof
US10189883B2 (en) 2014-10-24 2019-01-29 Bristol-Myers Squibb Company Therapeutic uses of modified FGF-21 polypeptides
US9434778B2 (en) 2014-10-24 2016-09-06 Bristol-Myers Squibb Company Modified FGF-21 polypeptides comprising an internal deletion and uses thereof
US11185570B2 (en) 2017-02-08 2021-11-30 Bristol-Myers Squibb Company Method of treating cardiovascular disease and heart failure with modified relaxin polypeptides
US11364281B2 (en) 2017-02-08 2022-06-21 Bristol-Myers Squibb Company Modified relaxin polypeptides comprising a pharmacokinetic enhancer and pharmaceutical compositions thereof
US10266578B2 (en) 2017-02-08 2019-04-23 Bristol-Myers Squibb Company Modified relaxin polypeptides comprising a pharmacokinetic enhancer and uses thereof

Also Published As

Publication number Publication date
JP2002030098A (en) 2002-01-29
AU2001271050A1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
WO2002006305A1 (en) Method of collecting viral envelope from germinating baculovirus
CA2436281A1 (en) Chimeric molecules containing a module able to target specific cells and a module regulating the apoptogenic function of the permeability transition pore complex (ptpc)
EP0345242A2 (en) Expression of gag proteins from retroviruses in eucaryotic cells
JP2009183303A (en) Humanized antibody against icam-1, generation and use thereof
WO1999059636A1 (en) Vegf activity inhibitors
CN104316696A (en) Methods for the detection of JC polyoma virus
Rindisbacher et al. Production of Human Secretory Component with Dimeric IgA Binding Capacity Using Viral Expression Systems∗
JP3542784B2 (en) Anti-SEMPI antibody, production method and use thereof
US20080286275A1 (en) Antigen Binding Proteins Directed Against Scavenger Receptor B1 that Inhibit Hcv Replication
US20180016576A1 (en) Novel Therapeutic Agent for Septicemia, and a Method for Screening for Same
JP4545685B2 (en) Screening method for therapeutic substance for heart disease and pharmaceutical composition for treating cardiac disease
Song et al. Characterization of N-glycan structures and biofunction of anti-colorectal cancer monoclonal antibody CO17-1A produced in baculovirus-insect cell expression system
Azali et al. Application of Baculovirus Expression Vector system (BEV) for COVID-19 diagnostics and therapeutics: a review
JP4722048B2 (en) Vector expressing N-deacetylase / N-sulfotransferase 2
JP4596608B2 (en) Protein expression and purification using germinated baculovirus
WO2001021792A1 (en) Transporter genes oatp-b, c, d and e
WO2003083116A1 (en) Emthod of screening transporter inhibitor
WO2007037245A1 (en) Polypeptide having anti-angiogenic activity
US20050079539A1 (en) Novel gene encoding brain specific membrane protein
US7070978B2 (en) Method for expressing and purifying proteins using budded baculovirus
EP1981904B1 (en) Peptide domain required for interaction between the envelope of a virus pertaining to the herv-w interference group and an hasct receptor
CN107614527A (en) Anti-human film type ADAM28 antibody
JPH03503721A (en) Enzymatically active recombinant glucocerebrosidase
WO2002022777A2 (en) Cellular genes involved in oncogenesis, products of said genes and their diagnostic and therapeutic uses
US20050272029A1 (en) Hepatitis c viral-like particle purification

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase