WO2002001921A1 - Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung - Google Patents

Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung Download PDF

Info

Publication number
WO2002001921A1
WO2002001921A1 PCT/DE2001/002349 DE0102349W WO0201921A1 WO 2002001921 A1 WO2002001921 A1 WO 2002001921A1 DE 0102349 W DE0102349 W DE 0102349W WO 0201921 A1 WO0201921 A1 WO 0201921A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
intensity
pixels
leds
Prior art date
Application number
PCT/DE2001/002349
Other languages
English (en)
French (fr)
Inventor
Heinrich Alexander Eberl
Original Assignee
Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg filed Critical Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg
Priority to US10/312,785 priority Critical patent/US6909377B2/en
Priority to EP01984081A priority patent/EP1304019B1/de
Priority to DE50110162T priority patent/DE50110162D1/de
Publication of WO2002001921A1 publication Critical patent/WO2002001921A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Lighting device with light emitting diodes LED
  • lighting method and method for image recording with such an LED lighting device LED
  • the invention relates to a lighting device with light emitting diodes (LED) according to the preamble of claim 1.
  • an LED Compared to a light source in which the light is generated by a glowing body, for example a thin wire coil, an LED has a number of advantages, such as better efficiency, lower waste heat output, higher mechanical stability and a longer service life.
  • LEDs had comparatively low light outputs.
  • the development of powerful LEDs in the short-wave visible spectral range of light proved to be problematic. Therefore, the generation of comparatively powerful white light by additive color mixing of the light of at least three LEDs, which have a red, a green and a blue emission wavelength or because of a sufficiently wide visible LED emission spectrum of a single LED was not possible. For these reasons, LEDs have not been used for a long time for lighting purposes that require white light.
  • WO99 / 31560 discloses a large number of devices and methods in which LEDs are used as light sources.
  • LED lighting devices are disclosed, for example, in WO 97/48134, WO 98/40665 and WO 99/30537.
  • Devices are described in particular in WO 98/40665 and WO 99/30537, in which the light is generated by a large number of LED luminous pixels arranged on a flat carrier.
  • Each light pixel comprises three LEDs: an LED with an emission wavelength in the red, one in the green and one in the blue spectral range. Due to the controllable additive color mixing of the red, green and blue LED light, the LED lighting device can emit light of any desired color temperature.
  • the intensity and wavelength of the emitted LED light change over time.
  • the LED currents being kept constant, this leads to the light of the LED lighting device also having a changed intensity and coloring temperature.
  • the known LED lighting devices have the disadvantage that such a change in color temperature and intensity of the light of the LED lighting device must be accepted.
  • the reliability that the lighting device emits light of the desired color temperature and intensity is of crucial importance.
  • the invention is therefore based on the object of providing an illumination device with light-emitting diodes (LED) which can emit light from a large number of predetermined color temperature and intensity parameters, the color temperature and intensity parameters of the radiated light with high reliability should correspond to the specified color temperature and intensity parameters during the entire life of the device.
  • LED light-emitting diodes
  • the lighting device then has an LED carrier element which can be shaped both as a flat and as a curved surface.
  • a multiplicity of light-emitting luminous pixels are arranged on the LED carrier element, for example in a matrix. These luminous pixels each comprise a plurality of LEDs with emission wavelengths which are suitable for additive color mixing of the light emitted by the luminous pixel. In order to be able to display all colors of the visible light spectrum, it is necessary to combine three LEDs with emission wavelengths in the red, green and blue areas of the visible light spectrum.
  • a broadband emitting white light LED can be used.
  • the lighting device has a control device with which a color temperature parameter and an intensity parameter can be specified for the additively color-mixed light of each individual luminous pixel.
  • the control device assigns corresponding LED currents to these predetermined parameters and controls the LEDs of the luminous pixels with the associated LED currents.
  • the lighting device comprises control means which measure the color temperature and intensity of the light of at least one light pixel, compare the measured color temperature and intensity parameters with the corresponding predetermined parameters and, in the event of deviations of the measured parameters from the predetermined parameters, regulate the control device such that the measured parameters agree with the specified parameters.
  • control means comprise a semiconductor sensor unit which is suitable for measuring the respective red green and blue spectral components of the light of the light pixels.
  • the color temperature and intensity parameters of the emitted light can be determined from the ratio and the amount of the respective spectral measurement values.
  • the comparison and control unit assigned to the semiconductor sensor unit compares the measured with the specified color temperature and intensity parameters. If the parameters differ from one another, the comparison and control unit causes the control device of the LED carrier element to readjust the LED currents in such a way that there are no longer any differences between the measured and specified color temperature and brightness parameters.
  • the light guide On the one hand it is possible to couple the light guide to a single light pixel, which is then used as a reference light source, on the other hand a measurement of the emitted light of each individual light pixel is desirable.
  • a measurement of the emitted light of each individual light pixel is desirable.
  • the fiber in the area of the LED carrier element can be shaped and arranged so that light that is incident from the direction of the light pixels can couple into the light guide, while, for example, ambient and ambient light, the Coming from other directions hits the light guide, only couples to a very small extent into the light guide.
  • the LED carrier element For the purpose of easy handling, it is advantageous to arrange the LED carrier element and in a headlight housing.
  • an observation camera can be assigned to the headlight housing for imaging a scene illuminated by the headlight.
  • the observation camera is arranged either inside or outside the headlight housing and is firmly connected to the headlight housing.
  • CCD semiconductor camera
  • CMOS complementary metal-oxide-semiconductor
  • the control device has an operating terminal with a screen.
  • This screen allows the lighting device to be conveniently guided by the user and can also display the image of the illuminated scene recorded by the observation camera.
  • the LEDs of the light pixels must be controlled with the appropriate currents.
  • an individual filter element is required for each color gradient and intensity profile when using a conventional incandescent lamp headlight. When using the lighting device, such filter elements are superfluous.
  • the scene to be illuminated can be displayed on the screen of the control device using the observation camera.
  • the user uses this image to determine the desired lighting conditions for the scene to be illuminated.
  • the control device determines the associated color profile and intensity profile and controls the LEDs of the LED carrier element with the corresponding currents.
  • the image of the illuminated scene is then recorded with the observation camera, the control device evaluates it and compares it with the lighting conditions desired by the user. If deviations occur, for example, for reasons of special reflection properties of the illuminated scene, the control device adjusts the LED currents until the lighting conditions desired by the user are set.
  • Another advantageous working method is to use the lighting device according to the invention when recording images of a moving body with a camera.
  • the lighting device provides Illumination light is available for the body, which moves against a background that rests relative to the camera.
  • the color temperature of the illuminating light is changed during or between the recording of the individual images of the moving body with the camera.
  • the change in the color temperature of the illuminating light can be specified as a function of time.
  • the information about the elapsed movement time is coded in each image of the moving body on the basis of the color in which the moving body is shown.
  • the illuminating light In order to optimize this effect, it is necessary for the illuminating light to have all visible spectral colors during the recording time between a start time and an end time. It is advantageous to change the color temperature of the illuminating light step by step or continuously from the violet to the red region of the spectrum during the recording time, because in this way the movement time is coded by the known color sequence of the white light spectrum.
  • the reverse direction, from the red to the violet spectral range, also represents an advantageous possibility for changing the color temperature of the illuminating light for the reason mentioned.
  • the camera used digital image gnale delivers so that the subsequent overlay can be carried out with the help of a computer with appropriate software.
  • the time resolution in the representation of the movement of the body results from the quotient of the recording time by the number of possible color temperatures of the illuminating light.
  • the time resolution can be increased considerably by repeating the illumination of the body with a chronologically defined sequence of all color temperatures that can be generated at periodic intervals.
  • the theoretically achievable time resolution lies in the time constant that the lighting device requires to switch between two color temperatures.
  • the limiting factor will be the minimum image acquisition time that the camera requires in order to be able to "color-true" the body illuminated with light of the respective color temperature.
  • the recording time corresponds to half the periodicity time T / 2 in order to avoid the overlapping of the back and forth movement of the body during the display.
  • the body is suitably illuminated with light of identical color coding during a large number of successive back and forth movements of the duration T / 2. In this way, the movement of the body is imaged in a kind of stroboscopic operation of the lighting device.
  • Fig. 1 - a schematic representation of the lighting device
  • Fig. 2 - a first possible embodiment of the device of Fig. 1;
  • Fig. 4 - a longitudinal section through a possible embodiment of a headlight of the lighting device.
  • the LED carrier element 10 is designed as a flat or curved surface and has a large number of luminous pixels 11 on its surface. These luminous pixels 11 are arranged at a close distance and form a luminous surface on the LED carrier element 10.
  • the flat LED carrier element 10 can have any geometric shapes. Round or rectangular luminous surfaces are easiest to implement on correspondingly round or rectangular LED carrier elements 10.
  • Each light pixel 11 comprises at least three LEDs.
  • the first LED has a red, the second a green and the third a blue emission wavelength, whereby the emission wavelengths are suitable for additive color mixing of all color temperatures of the visible light and the emission bandwidths of the three LEDs cover the entire visible spectral range. If there are spectral gaps between the emission bandwidths of the three LEDs, the use of an additional white LED is necessary, the wide emission spectrum of which closes the gap between the colored LEDs.
  • the LEDs of the light pixels are supplied with electrical current by means of a control device 5.
  • the LED operation takes place with current pulses, so that the intensity of the emitted LED light can be influenced by modulating the pulse width. In this way, the mixing ratios of the three color components of the additively mixed LED light and thus the resulting color temperature of each individual light pixel 11 can be controlled.
  • the control device 5 assigns predetermined parameters for the color temperature and intensity of the luminous pixels to the corresponding LED currents and controls the LEDs with the assigned currents.
  • the control means 2 measure the color temperature and intensity of the emitted light of at least one light pixel 11 'of the LED carrier element 10, compare the measured parameters with the parameters for color temperature and intensity specified by the control device 5 and cause the control device 5 to readjust the LED currents until the measured parameters correspond to the specified parameters.
  • FIG. 2 shows a possible embodiment of the lighting device 1 shown schematically in FIG. 1.
  • a semiconductor sensor unit 20 measures the color temperature and intensity of the light of at least one light pixel 11 ′ of the LED carrier element 10, which by means of an optical fiber 25 leads from the LED carrier element 10 to the semiconductor sensor unit 20 is performed.
  • Both optical glass and plastic fibers can be used as the light guide 25.
  • the use of an integrated optical light guide detector system is also advantageous. It is a construction ent, in which the light guide and detector are manufactured on a common substrate using semiconductor thin-film technology. The use of such a component eliminates the complex optical coupling of a separate light guide to the semiconductor sensor unit when mounting the lighting device 1.
  • the semiconductor sensor unit 20 has three individual detectors, of which the first generates the signal of the red, the second the signal of the green and the third the signal of the blue LED light.
  • This measuring device can be implemented in a simple manner by using appropriate transmission filters in front of the respective individual detectors.
  • the comparison and control unit 21 compares the color temperature and intensity parameters measured by the semiconductor sensor unit 20 with the color temperature and intensity parameters specified by the control device 5. In the event of a deviation, the comparison and control unit 21 causes the control device 5 to readjust the LED currents until the measured parameters match the predefined ones.
  • the luminous surfaces formed by the luminous pixels 11 on the LED carrier element 10 it is possible to implement any color gradient and intensity profiles.
  • the Gaussian profile of a conventional light bulb can be simulated as an intensity profile.
  • the semiconductor sensor unit 20 and the comparison and control unit 21 ensure that the color temperature and intensity parameters of the emitted light of the luminous pixels 11 'are selected with high reliability. rend the entire life of the lighting device 1 correspond to the predetermined with the control device 5 color temperature and intensity parameters.
  • the embodiment of the lighting device 1 shown in FIG. 3 largely corresponds to the device shown in FIG. 2.
  • the same reference numerals are therefore used for the same components.
  • the LED carrier element 10 is arranged in a headlight housing 12.
  • An observation camera 27 is assigned to the headlight housing.
  • the observation camera 27 is connected to the control device 5 and displays a scene to be illuminated with the lighting device on the screen 52 of the control device 5.
  • the control device 5 has input means 51, for example a computer keyboard with a mouse. This enables a convenient operation of the lighting system 1 by a user.
  • the headlight housing 12 is easy to handle, it makes sense to design the observation camera 27 as a miniature CCD camera, so that it can be fastened easily inside the headlight housing 12.
  • the illustrated embodiment of the lighting device 1 offers the possibility that a user specifies the desired lighting conditions of the scene with the aid of the scene to be illuminated shown on the screen 52 via the input means 51.
  • the control device 5 determines the corresponding LED currents and controls the light pixels 11 of the LED carrier element 10 accordingly.
  • the now illuminated scene is in turn displayed on the screen 52 by means of the observation camera 27, whereupon the control device 5 uses a suitable software program to evaluate the differences between the lighting conditions desired by the user and those depicted by the observation camera 27.
  • the current control of the light pixels 11 can then be readjusted either manually by the user or automatically by a software program of the control device 5 until the desired lighting conditions are reached.
  • control device 5 can have interfaces that enable networking and central control of a large number of lighting devices 1.
  • FIG. 4 shows an advantageous arrangement of the light guide 25 and the LED support element 10 in a headlight housing 12.
  • the end section of the light guide 25 arranged in the headlight housing 12 extends essentially parallel to the LED support element 10 in a section 13 formed in the headlight housing 12 this throat-shaped section 13 points in the direction of the LED carrier element 10, so that a portion of the light of each light pixel 11 strikes the light guide, but no disturbing environment, which falls directly into the headlight housing 12, can couple into the light guide 25.
  • the area of the light guide 25 arranged in the throat-shaped section 13 is constructed in such a way that the light-guiding layer 26 has an interface with the air inside the headlight housing 12. This can be achieved, for example, by grinding a glass fiber along its direction of extension. This ensures that a sufficient proportion of the light of the light pixels 11 couples into the light guide 25 and for
  • Detector unit 20 arrives.

Abstract

Beleuchtungsvorrichtung (1) mit lichtemittierenden Dioden (LED) mit einem LED-Trägerelement (10), auf dem eine Vielzahl von Leuchtpixeln (11, 11') angeordnet sind, die Licht emittieren. Die Leuchtpixel (11') umfassen jeweils eine Mehrzahl von LEDs, die unterschiedliche, zur additiven Farbmischung des Lichts der Leuchtpixel (11') geeignete Emissionswellenlängen aufweisen. Dem LED-Trägerelement (10) ist eine Ansteuervorrichtung (5) zugeordnet, mit der sich dem additiv farbgemischten Licht jedes einzelnen Leuchtpixels (11') ein Farbtemperatur- und ein Intensitätsparameter vorgeben lassen. Die Ansteuervorrichtung (5) ordnet den Farbtemperatur- und Intensitätsparametern elektrische LED-Ströme zu und steuert die LEDs der Leuchtpixel (11') mit den zugeordneten LED-Strömen an. Regelungsmittel (2) messen die Farbtemperatur und Intensität des emittierten Lichtes mindestens eines Leuchtpixels (11'), vergleichen die gemessenen mit den vorgegebenen Farbtemperatur- und Intensitätsparametern des Leuchtpixels (11') und regeln bei Abweichungen der gemessenen von den vorgegebenen Farbtemperatur- und Intensitätsparametern die Leuchtpixels (11') die vorgegebenen Farbtemperatur- und Intensitätsparameter aufweist.

Description

Beleuchtungsvorrichtung mit lichtemittierenden Dioden (LED), Beleuchtungsverfahren und Verfahren zur Bildaufzeichnung mit derartiger LED-Beleuchtungsvorrichtung
Beschreibung
Die Erfindung betrifft eine Beleuchtungsvorrichtung mit lichtemit ierenden Dioden (LED) nach dem Oberbegriff des Anspruchs 1.
Im Vergleich zu einer Lichtquelle, bei der das Licht durch einen glühenden Körper beispielsweise eine dünne Drahtwendel erzeugt wird, hat eine LED eine Reihe von Vorteilen, wie einen besseren Wirkungsgrad, geringere Abwärmeleis- tung, höhere mechanischer Stabilität und längere Lebensdauer. Zu Beginn der technologischen Entwicklung wiesen LEDs allerdings vergleichsweise geringe Lichtleistungen auf. Insbesondere die Entwicklung leistungsstarker LEDs im kurzwelligen sichtbaren Spektralbereich des Lichtes erwies sich als problematisch. Daher war die Erzeugung vergleichsweise leistungsstarken Weißlichtes durch additive Farbmischung des Lichtes mindestens dreier LEDs, die eine rote, eine grüne und eine blaue Emissionswellenlänge aufweisen bzw. durch ein genügend breites sichtbares LED-Emissionsspektrum einer einzelnen LED nicht möglich. Aus diesen Gründen kamen LEDs für Beleuchtungszwecke, bei denen Weißlicht benötigt wird, lange Zeit nicht zum Einsatz.
Inzwischen ist es möglich, LEDs mit Emissionswellenlängen in allen Bereichen des sichtbaren Lichtspektrums mit Licht- leistungen herzustellen, die den Anforderungen einer Vielzahl konventioneller Glühwendel-Beleuchtungseinrichtungen gerecht werden. Der Einsatz eines LED-Beleuchtungseinrichtungen ist daher oftmals nur noch eine Preisfrage.
Die WO99/31560 offenbart eine große Zahl von Vorrichtungen und Verfahren, bei denen jeweils LEDs als Lichtquellen zum Einsatz kommen. LED-Beleuchtungsvorrichtungen sind zum Beispiel in der WO 97/48134, WO 98/40665 und der WO 99/30537 offenbart. Insbesondere in der WO 98/40665 und der WO 99/30537 werden Vorrichtungen beschrieben, bei denen das Licht durch eine Vielzahl auf einem flächigen Träger angeordneter LED-Leuchtpixel erzeugt wird. Jeder Leuchtpixel umfaßt drei LEDs: eine LED mit einer Emissionswellenlängen im roten, eine im grünen und eine im blauen Spektralbereich. Durch die steuerbare additive Farbmischung des roten, grünen und blauen LED-Lichts kann die LED-Beleuchtungsvorrichtung Licht jeder gewünschten Farbtemperatur abstrahlen.
Durch Degeneration des LED-Materials, insbesondere der licht-emittierenden Schichten, ändern sich jedoch mit der Zeit Intensität und Wellenlänge des emittierten LED-Lichtes. Dies führt trotz konstant gehaltenen LED-Strömen dazu, daß das Licht der LED-Beleuchtungseinrichtung ebenfalls veränderte Intensität und Färbtemperatur aufweist. Die bekannten LED-Beleuchtungsvorrichtungen weisen den Nachteil auf, daß eine derartige Änderung von Farbemperatur und Intensität des Lichtes der LED-Beleuchtungsvorrichtung hingenommen werden muß. Gerade in professionellen Anwendungsbereichen ist aber die Verläßlichkeit, daß die Beleuchtungsvorrichtung Licht der gewünschten Farbtemperatur und Intensität abstrahlt von entscheidender Bedeutung.
Der Erfindung liegt daher die Aufgabe zu Grunde, eine Beleuchtungsvorrichtung mit lichtemittierenden Dioden (LED) bereitzustellen, die Licht einer Vielzahl vorgegebener Farbtemperatur- und Intensitätsparameter abstrahlen kann, wobei die Farbtemperatur- und Intensitätsparameter des abgestrahlten Lichtes mit hoher Verläßlichkeit während der gesamten Lebensdauer der Vorrichtung den vorgegebenen Farbtemperatur- und Intensitätsparametern entsprechen sollen.
Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst .
Danach weist die Beleuchtungsvorrichtung ein LED-Trägerelement auf, das sowohl als plane als auch als gekrümmte Fläche ausgeformt werden kann. Auf dem LED-Trägerelement sind eine Vielzahl lichtemittierender Leuchtpixel beispielsweise matrixartig angeordnet. Diese Leuchtpixel umfassen jeweils eine Mehrzahl LEDs mit Emissionswellenlängen, die zur additiven Farbmischung des vom Leuchtpixel emittierten Lichtes geeignet sind. Um sämtliche Farbtöne des sichtbaren Lichtspektrums darstellen zu können, ist die Kombination dreier LEDs mit Emissionswellenlängen im roten, im grünen und im blauen Bereich des sichtbaren LichtSpektrums notwendig.
Für ein farbechtes Erscheinen beleuchteter Gegenstände ist es jedoch weiterhin notwendig, daß die spektralen Emissions- bandbreiten der rot, grün und blau emittierenden LED den gesamten sichtbaren Spektralbereich abdecken. Besteht eine spektrale Lücke zwischen den Emissionsbandbreiten zweier LEDs, so kann zwar ein Farbton, der in dieser spektralen Lücke liegt, durch die entsprechende Mischung roten, grünen und blauen Lichts generiert werden; bei der Beleuchtung eines Gegenstandes, der eben diesen Farbton aufweist, kommt es allerdings hinsichtlich des vom Gegenstand reflektierten Lichtes zwangsläufig zu Farbfehlern. Dieser Effekt liegt darin begründet, daß der beleuchtete Gegenstand für das Licht der verschiedenen Wellenlängen unterschiedliche Reflexionskoeffizienten aufweist, so daß sich in Reflexion durch das veränderte Mischungsverhältnis der unterschiedlichen Lichtanteile ein verfälschter Farbton resultiert. Um diesen Effekt zu kompensieren, kann beispielsweise in jedem Leucht- pixel zusätzlich zu den LEDs mit Emissionswellenlängen im roten, grünen und blauen Spektralbereich eine breitbandig emittierende Weißlicht-LED eingesetzt werden.
Weiterhin weist die Beleuchtungsvorrichtung eine Ansteuer- vorrichtung auf, mit der sich für das additiv farbgemischte Licht jedes einzelnen Leuchtpixels ein Färbtemperaturparame- ter und ein Intensitätsparameter vorgeben lassen. Die AnSteuervorrichtung ordnet diesen vorgegebenen Parametern entsprechende LED-Ströme zu und steuert die LEDs der Leuchtpixel mit den zugeordneten LED-Strömen an.
Die Beleuchtungsvorrichtung umfaßt Regelungsmittel, die die Farbtemperatur und Intensität des Lichtes mindestens eines Leuchtpixels messen, die gemessenen Farbtemperatur- und Intensitätsparameter mit den entsprechend vorgegebenen Parametern vergleichen und bei Abweichungen der gemessenen Parameter von den vorgegebenen Parametern die Ansteuervor- richtung derart regeln, daß die gemessenen Parameter mit den vorgegebenen Parametern übereinstimmen.
In einer vorteilhaften Ausführungsform umfassen die Regelungsmittel eine Halbleitersensoreinheit, die zur Messung der jeweiligen roten grünen und blauen Spektralanteile des Lichtes der Leuchtpixel geeignet ist. Aus dem Verhältnis und dem Betrag der jeweiligen spektralen Meßwerte lassen sich Färbtemperatur- und Intensitätsparameter des abgestrahlten Lichtes bestimmen. Die der Halbleitersensoreinheit zugeordnete Vergleichs- und Regeleinheit vergleicht die gemessenen mit den vorgegebenen Farbtemperatur- und Intensitätsparametern. Weichen die Parameter voneinander ab, so veranlaßt die Vergleichs- und Regeleinheit, daß die AnSteuervorrichtung des LED-Trägerelementes die LED-Ströme derart nachregelt, daß keine Unterschiede mehr zwischen gemessenen und vorgegebenen Farbtemperatur- und Helligkeitsparametern bestehen. Es ist weiterhin von Vorteil, die Regelungsmittel räumlich vom LED-Trägerelement zu beabstanden, damit beispielsweise die Abwärme des LED-Trägerelementes nicht zu einer Verfälschung der Meßwerte der Halbleitersensoreinheit führen. Bei einer derartigen Beabstandung muß das Licht des Leuchtpixels der entfernt angeordneten Halbleitersensoreinheit zugeführt werden. Dies erfolgt geeigneterweise mit Hilfe eines Lichtleiters, beispielsweise in Form einer optischen Glas- oder Kunststofffaser oder eines integriert optischen Lichtwellenleiters .
Einerseits ist es möglich, den Lichtleiter an einen einzelnen Leuchtpixel zu koppeln, der dann als Referenzlichtquelle benutzt wird, andererseits ist eine Messung des emittierten Lichtes jedes einzelnen Leuchtpixels wünschenswert. Zu diesem Zweck ist es von vorteilhaft, den Lichtleiter in einer solchen Ring- bzw. Schleifenform am LED-Trägerelement anzuordnen, daß Anteile des emittierten Lichtes jedes einzelnen Leuchtpixels in den Lichtleiter einkoppeln können.
Insbesondere bei Verwendung einer Glas- bzw. Plastikfaser als Lichtleiter kann die Faser im Bereich des LED-Trägerelementes so geformt und angeordnet werden, daß Licht, das aus Richtung der Leuchtpixel einfällt, in den Lichtleiter einkoppeln kann, während beispielsweise Fremd- und Umgebungslicht, das aus anderen Richtungen kommend auf den Lichtleiter trifft, nur zu einem sehr geringen Teil in den Lichtleiter einkoppelt.
Zur aktiven Steuerung der Farbtemperatur- und Intensitätsparameter jedes einzelnen Leuchtpixels ist es notwendig, aus dem Gemisch des Lichtes aller Leuchtpixel jeweils das Licht einzelner Leuchtpixel zu extrahieren. Dies geschieht am einfachsten, indem man die Lichtsignale der Leuchtpixel im Zeitmultiplex auswertet. Dazu steuert man die einzelnen LEDs der Leuchtpixel geeigneterweise mit LED-Strömen an, die im MHz-Bereich getaktet sind. Kalkuliert man beispielsweise pro Leuchtpixel zur aktiv geregelten Erzeugung einer Anzahl von Lichtpulsen, die ein ausreichendes Detektorsignal liefern, ein Zeitfenster von lOμs, so können innerhalb von 1ms 100 Leuchtpixel hintereinander aktiv geregelt angesteuert werden. Daraus resultiert eine Beleuchtungsfrequenz von 1kHz, so daß störende Schwebungseffekte beispielsweise bei der Aufnahme einer beleuchteten Szene mit einer Lauf- bildkamera erst bei entsprechend hohen Laufbildfrequenzen auftreten können.
Zum Zweck der einfachen Handhabbarkeit ist es von Vorteil, das LED-Trägerelement und in einem Scheinwerfergehäuse anzuordnen.
Weiterhin kann dem Scheinwerfergehäuse eine Beobachtungskamera zur Abbildung einer mit dem Scheinwerfer beleuchteten Szene zugeordnet sein. Die Beobachtungskamera ist entweder innerhalb oder außerhalb des Scheinwerfergehäuses angeordnet und fest mit dem Scheinwerfergehäuse verbunden.
Es ist von Vorteil, als Beobachtungskamera eine Halbleiter-Kamera (CCD, CMOS) einzusetzen. Diese kann sehr klein ausgebildet sein, was dessen platzsparende Anordnung innerhalb des Scheinwerfergehäuses ermöglicht.
In einer weiteren Ausführungsform weist die Ansteuerungsvor- richtung ein Bedienungsterminal mit einem Bildschirm auf. Dieser Bildschirm erlaubt eine bequeme Benutzerführung der Beleuchtungsvorrichtung und kann darüber hinaus das mittels der Beobachtungskamera aufgezeichnete Bild der beleuchteten Szene darstellen. Mit Hilfe der auf dem LED-Trägerelement angeordneten Leucht- pixel ist es bei allen Ausführungsformen der Beleuchtungs- vorrichtung möglich, mit Hilfe der Ansteuervorrichtung beliebige zweidimensionale Farbverlaufs- und Intensitätsprofile des von der Beleuchtungsvorrichtung emittierten Lichtes auf einfache Weise nachzubilden. Dazu müssen die LEDs der Leuchtpixel jeweils mit den entsprechenden Strömen angesteuert werden. Im Vergleich dazu ist bei Anwendung eines konventionellen Glühlampen-Scheinwerfers für jedes Farbverlaufs- und Intensitätsprofil ein individuelles Filterelement notwendig. Bei einem Einsatz der Beleuchtungsvorrichtung sind derartige Filterelemente überflüssig.
Bei einer Beleuchtungsvorrichtung mit Beobachtungskamera besteht zusätzlich die Möglichkeit, die Beleuchtung einer Szene aktiv zu kontrollieren und zu steuern. Dazu läßt sich die zu beleuchtende Szene mittels der Beobachtungskamera auf dem Bildschirm der Ansteuerungsvorrichtung darstellen. Der Nutzer legt dann anhand dieses Bildes die gewünschten Beleuchtungsbedingungen der zu beleuchtenden Szene fest. Daraufhin ermittelt die Ansteuervorrichtung das zugehörige Farbverlaufs- und Intensitätsprofil und steuert die LEDs des LED-Trägerelementes mit den entsprechenden Strömen an. Das Bild der beleuchteten Szene wird anschließend mit der Beobachtungskamera aufgezeichnet, die Ansteuerungsvorrichtung wertet es aus und vergleicht es mit den vom Nutzer gewünschten Beleuchtungsbedingungen. Treten dabei beispielsweise aus Gründen besonderer Reflexionseigenschaften der beleuchteten Szene Abweichungen auf, so regelt die Ansteuerungsvorrichtung die LED-Ströme nach, bis die vom Nutzer gewünschten Beleuchtungsbedingungen eingestellt sind.
Ein weiteres vorteilhaftes Arbeitsverfahren besteht in der Nutzung der erfindungsgemäßen Beleuchtungsvorrichtung bei der Aufzeichnung von Bildern eines bewegten Körpers mit einer Kamera. Die Beleuchtungsvorrichtung stellt dabei Beleuchtungslicht für den Körper zur Verfügung, der sich vor einem Hintergrund bewegt, der relativ zur Kamera ruht. Während oder zwischen der Aufzeichnung der einzelnen Bilder des bewegten Körpers mit der Kamera wird die Farbtemperatur des Beleuchtungslichtes verändert. Dabei ist die Änderung der Farbtemperatur des Beleuchtungslichtes als Funktion der Zeit vorgebbar. Dadurch ist in jedem Bild des bewegten Körpers die Information über die bereits abgelaufene Bewegungszeit anhand der Farbe codiert, in der der bewegte Körper abgebildet ist.
Je mehr Färbtemperaturen das Beleuchtungslicht während der Aufnahme eines einzelnen Bildes aufweist, desto farbloser, d.h. grau bzw. weiß, erscheint der Hintergrund, vor dem sich der bewegte Körper in den verschiedenen Farbtemperaturen an unterschiedlichen Bildpositionen deutlich abzeichnet.
Um diesen Effekt zu optimieren, ist es notwendig, daß das Beleuchtungslicht während der Aufzeichnungszeit zwischen einem StartZeitpunkt und einem Endzeitpunkt sämtliche sichtbaren Spektralfärben aufweist. Es ist vorteilhaft, die Farbtemperatur des Beleuchtungslichtes während der Aufzeichnungszeit schrittweise oder kontinuierlich vom violetten zum roten Bereich des Spektrums hin zu verändern, weil auf diese Weise die Bewegungszeit durch die bekannte Farbfolge des WeißlichtSpektrums codiert ist . Die umgekehrte Richtung, vom roten zum violetten Spektralbereich, stellt aus dem genannten Grund ebenfalls eine vorteilhafte Möglichkeit zur Änderung der Farbtemperatur des Beleuchtungslichtes dar.
Wird die Farbtemperatur zwischen der Aufnahme einzelner Bilder verändert, so ist eine nachträgliche Überlagerung der Einzelbilder notwendig, um den gleichen Darstellungseffekt zu erhalten. Für eine solche Bild-Nachbearbeitung ist es vorteilhaft, wenn die verwendete Kamera digitale Bildsi- gnale liefert, so daß die nachträgliche Überlagerung mit Hilfe eines Computers mit entsprechender Software durchgeführt werden kann.
Die Zeitauflösung bei der Darstellung der Bewegung des Körpers ergibt sich aus dem Quotienten der Aufzeichnungszeit durch die Zahl der möglichen Farbtemperaturen des Beleuchtungslichtes. Die Zeitauflösung läßt sich jedoch noch erheblich steigern, indem die Beleuchtung des Körpers mit einer zeitlich definierten Abfolge sämtlicher erzeugbarer Farbtemperaturen in periodischen Abständen wiederholt wird. Dadurch liegt die theoretisch erreichbare Zeitauflösung in der Zeitkonstante, die die Beleuchtungsvorrichtung benötigt, zwischen zwei Farbtemperaturen umzuschalten. Den begrenzenden Faktor wird in der Praxis allerdings die minimale Bildaufnahmezeit darstellen, die die Kamera benötigt, um den mit Licht der jeweiligen Farbtemperatur beleuchteten Körper "farbecht" abbilden zu können.
Bei einer gleichförmigen Bewegung des Körpers ist es vorteilhaft, die Farbtemperatur proportional mit der Bewegungszeit zu ändern.
Werden Bilder einer räumlich und zeitlich periodischen Körperbewegung mit einer Periodizitätszeit T aufgenommen, so ist es von Vorteil, wenn die Aufzeichnungszeit der halben Periodizitätszeit T/2 entspricht, um die Überlagerung der Hin- und Rückbewegung des Körpers bei der Darstellung zu vermeiden. Insbesondere bei sehr kleinen Periodizi- tätszeiten T beleuchtet man den Körper geeigneterweise während einer Vielzahl hintereinander erfolgender Hin- oder Rückbewegungen der Dauer T/2 mit Licht identischer Farbcodierung. Auf diese Weise wird die Bewegung des Körpers in einer Art Stroboskopbetrieb der Beleuchtungsvorrichtung abgebildet . Mehrere Ausführungsbeispiele der Beleuchtungsvorrichtung werden anhand der nachfolgenden Figuren beschrieben. Es zeigen:
Fig. 1 - eine schematische Darstellung der Beleuchtungsvorrichtung;
Fig. 2 - eine erste mögliche Ausführungsform der Vorrichtung aus Fig. 1;
Fig. 3 - eine weitere mögliche Ausführungsform der Beleuchtungsvorrichtung und
Fig. 4 - einen Längsschnitt durch einen mögliche Ausführungsform eines Scheinwerfers der Beleuchtungsvorrichtung.
In Fig. 1 ist die erfindungsgemäße Beleuchtungsvorrichtung 1 schematisch dargestellt. Das LED-Trägerelement 10 ist als plane oder gekrümmte Fläche ausgebildet und weist auf seiner Oberfläche eine Vielzahl von Leuchtpixeln 11 auf. Diese Leuchtpixel 11 sind in dichtem Abstand angeordnet und bilden eine auf dem LED-Trägerelement 10 eine Leuchtfläche aus. Das flächige LED-Trägerelement 10 kann beliebige geometrische Formen aufweisen. Runde bzw. rechteckige Leuchtflächen lassen sich am einfachsten auf entsprechend runden bzw. rechteckigen LED-Trägerelementen 10 realisieren.
Jeder Leuchtpixel 11 umfaßt mindestens drei LEDs. Die erste LED weist eine rote, die zweite eine grüne und die dritte eine blaue Emissionswellenlänge auf, wobei die Emissionswellenlängen zur additiven Farbmischung sämtlicher Farbtemperaturen des sichtbaren Lichtes geeignet sind und die Emissionsbandbreiten der drei LEDs den gesamten sichtbaren Spektralbereich abdecken. Wenn sich spektrale Lücken zwischen den Emissionsbandbreiten der drei LEDs ergeben, ist die Verwendung einer zusätzlichen weißen LED notwendig, deren breites Emissionsspektrum die Lücke zwischen den farbigen LEDs schließt.
Die LEDs der Leuchtpixel werden mittels einer Ansteuerungs- vorrichtung 5 mit elektrischem Strom versorgt . Der LED-Betrieb erfolgt mit Strompulsen, so daß durch eine Modulation der Pulsweite die Intensität des emittierten LED-Lichtes beeinflußt werden kann. Auf diese Weise lassen sich die Mischungsverhältnisse der drei Farbanteile des additiv gemischten LED-Lichtes und somit die resultierende Farbtemperatur jedes einzelnen Leuchtpixels 11 ansteuern. Vorgegebenen Parametern für Farbtemperatur und Intensität der Leuchtpixel ordnet die Ansteuerungsvorrichtung 5 die entsprechenden LED-Ströme zu und steuert die LEDs mit den zugeordneten Strömen an.
Die Regelungsmittel 2 messen Farbtemperatur und Intensität des emittierten Lichtes mindestens eines Leuchtpixels 11' des LED-Trägerelementes 10, vergleichen die gemessenen Parameter mit den durch die Ansteuervorrichtung 5 vorgegebenen Parametern für Farbtemperatur und Intensität und veranlassen die Ansteuerungsvorrichtung 5, die LED-Ströme nachzure- geln, bis die gemessenen Parameter den vorgegebenen Parametern entsprechen.
Fig. 2 zeigt eine mögliche Ausführungsform der schematisch in Fig. 1 dargestellten Beleuchtungsvorrichtung 1. Ein Halbleitersensoreinheit 20 mißt die Färbtemperatur und Intensität des Lichtes mindestens eines Leuchtpixels 11' des LED-Trägerelements 10, das mittels eines Lichtleiters 25 vom LED-Trägerelement 10 zur Halbleitersensoreinheit 20 geführt wird. Als Lichtleiter 25 können sowohl optische Glas- als auch Plastikfasern benutzt werden. Vorteilhaft ist auch der Einsatz eines integriert optischen Lichtleiter-Detektorsystems. Dabei handelt es sich um ein Bauele- ent, bei dem Lichtleiter und Detektor auf einem gemeinsamen Substrat in Halbleiter-Dünnschichttechnologie hergestellt werden. Durch die Verwendung eines solchen Bauteiles entfällt die aufwendige optische Kopplung eines separaten Lichtleiters an die Halbleitersensoreinheit bei der Montage der Beleuchtungsvorrichtung 1.
Es ist vorteilhaft, wenn die Halbleitersensoreinheit 20 drei Einzeldetektoren aufweist, von denen der erste das Signal des roten, der zweite das Signal des grünen und der dritte das Signal des blauen LED-Lichtes Lichtes erzeugt. Diese Meßvorrichtung läßt sich auf einfache Weise durch den Einsatz entsprechender Transmissionsfilter vor den jeweiligen Einzeldetektoren realisieren.
Die Vergleichs- und Regeleinheit 21 vergleicht die vom Halbleitersensoreinheit 20 gemessenen Farbtemperatur- und Intensitätsparameter mit den durch die Ansteuerungsvorrichtung 5 vorgegebenen Farbtemperatur- und Intensitätsparametern. Bei einem Abweichen veranlaßt die Vergleichs- und Regeleinheit 21 die Ansteuervorrichtung 5, die LED-Ströme nachzuregeln, bis die gemessenen Parameter mit den vorgegebenen übereinstimmen.
Mit den durch die Leuchtpixel 11 auf dem LED-Trägerelement 10 ausgebildeten Leuchtflächen ist es möglich, beliebige Farbverlaufs- und Intensitätsprofile zu realisieren. Als Intensitätsprofil kann zum Beispiel das Gauß-förmige Profil eines konventionellen Glühlampenscheinwerfers simuliert werden.
Durch die Halbleitersensoreinheit 20 und die Vergleichsund Regeleinheit 21 wird dabei gewährleistet, daß die Farbtemperatur- und Intensitätsparameter des abgestrahlten Lichtes der Leuchtpixel 11' mit hoher Verläßlichkeit wäh- rend der gesamten Lebensdauer der Beleuchtungsvorrichtung 1 den mit der Ansteuerungsvorrichtung 5 vorgegebenen Farbtemperatur- und Intensitätsparametern entsprechen.
Die in Fig. 3 dargestellte Ausführungsform der Beleuchtungs- vorrichtung 1 entspricht weitgehend der in Fig. 2 dargestellten Vorrichtung. Für gleiche Bauelemente werden daher gleiche Bezugszeichen verwendet.
Das LED-Trägerelement 10 ist in einem Scheinwerfergehäuse 12 angeordnet. Dem Scheinwerfergehäuse ist eine Beobachtungskamera 27 zugeordnet. Die Beobachtungskamera 27 ist mit der Ansteuerungsvorrichtung 5 verbunden und bildet eine mit der Beleuchtungseinrichtung zu beleuchtende Szene auf dem Bildschirm 52 der Ansteuerungsvorrichtung 5 ab. Außerdem weist die Ansteuerungsvorrichtung 5 Eingabemittel 51, beispielsweise eine Computertastatur mit einer Maus auf. Dadurch wird eine bequeme Bedienung der Beleuchtungsanlage 1 durch einen Nutzer ermöglicht.
Damit das Scheinwerfergehäuse 12 leicht zu handhaben ist, bietet es sich an, die Beobachtungskamera 27 als Miniatur- CCD-Kamera auszulegen, so daß sie problemlos im Inneren des Scheinwerfergehäuses 12 befestigt werden kann.
Die dargestellte Ausführungsform der Beleuchtungsvorrichtung 1 bietet die Möglichkeit, daß ein Benutzer mit Hilfe der auf dem Bildschirm 52 abgebildeten zu beleuchtenden Szene über die Eingabemittel 51 gewünschte Beleuchtungsbedingungen der Szene vorgibt . Die Ansteuerungsvorrichtung 5 ermittelt daraufhin die entsprechenden LED-Ströme und steuert die Leuchtpixel 11 des LED-Trägerelementes 10 entsprechend an. Die nun beleuchtete Szene wird wiederum mittels der Beobachtungskamera 27 auf dem Bildschirm 52 dargestellt, woraufhin die Ansteuerungsvorrichtung 5 durch eine geeignetes Softwareprogramm die Unterschiede zwischen den vom Nutzer gewünschten und den durch die Beobachtungskamera 27 abgebildeten Beleuchtungsbedingungen auswertet . Darauf in kann entweder manuell durch den Nutzer oder automatisch durch ein Softwareprogramm der Ansteuerungsvorrichtung 5 die Stromansteuerung der Leuchtpixel 11 nachgeregelt werden, bis die gewünschten Beleuchtungsbedingungen erreicht sind.
Bei Verwendung einer optischen Faser als Lichtleiter 25 ist es möglich, die Halbleitersensoreinheit 20 und die Vergleichs- und Regeleinheit 21 mit in das Gehäuse der Ansteuerungsvorrichtung 5 zu integrieren. Dadurch ergibt sich eine einzige kompakte Geräteeinheit, die lediglich über ein elektrisches Kabel und den Lichtleiter 25 mit dem Scheinwerfergehäuse 12 verbunden werden muß.
Weiterhin kann die Ansteuerungsvorrichtung 5 Schnittstellen aufweisen, die eine Vernetzung und zentrale Steuerung einer Vielzahl von Beleuchtungsvorrichtungen 1 ermöglicht.
Figur 4 zeigt eine vorteilhafte Anordnung von Lichtleiter 25 und LED-Trägerelement 10 in einem Scheinwerfergehäuse 12. Dabei verläuft der im Scheinwerfergehäuse 12 angeordnete Endabschnitt des Lichtleiters 25 in einem im Scheinwerfergehäuse 12 kehlförmig ausgebildeten Abschnitt 13 im wesentlichen parallel zum LED-Trägerelement 10. Die Öffnung dieses kehlförmig ausgebildeten Abschnittes 13 zeigt dabei in Richtung des LED-Trägerelementes 10, so daß ein Anteil des Lichtes jedes Leuchtpixels 11 auf den Lichtleiter trifft, aber kein störendes Umgebungslic t, das direkt in das Scheinwerfergehäuse 12 fällt, in den Lichtleiter 25 einkoppeln kann. Der im kehlförmig ausgebildeten Abschnitt 13 angeordnete Bereich des Lichtleiters 25 ist derart aufgebaut, daß die lichtführende Schicht 26 eine Grenzfläche zur Luft innerhalb des Scheinwerfergehäuses 12 aufweist. Dies läßt sich beispielsweise durch das Anschleifen einer Glasfaser längs ihrer Erstreckungsrichtung realisieren. Dadurch wird sichergestellt, daß ein ausreichender Anteil des Lichts der Leuchtpixel 11 in den Lichtleiter 25 einkoppelt und zur
Detektoreinheit 20 gelangt.
* * * * *
PCT/DE2001/002349 2000-06-27 2001-06-22 Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung WO2002001921A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/312,785 US6909377B2 (en) 2000-06-27 2001-06-22 Illumination device with light emitting diodes (LEDs), method of illumination and method for image recording with such an LED illumination device
EP01984081A EP1304019B1 (de) 2000-06-27 2001-06-22 Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung
DE50110162T DE50110162D1 (de) 2000-06-27 2001-06-22 Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10031303.5 2000-06-27
DE10031303A DE10031303A1 (de) 2000-06-27 2000-06-27 Beleuchtungsvorrichtung mit lichtemittierenden Dioden (LED), Beleuchtungsverfahren und Verfahren zur Bildaufzeichnung mit derartiger LED-Beleuchtungsvorrichtung

Publications (1)

Publication Number Publication Date
WO2002001921A1 true WO2002001921A1 (de) 2002-01-03

Family

ID=7646987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002349 WO2002001921A1 (de) 2000-06-27 2001-06-22 Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung

Country Status (4)

Country Link
US (1) US6909377B2 (de)
EP (1) EP1304019B1 (de)
DE (2) DE10031303A1 (de)
WO (1) WO2002001921A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2377280A (en) * 2001-04-04 2003-01-08 Tidal Photonics Inc Method and system for measuring, recording and controlling the illumination of a scene
WO2003088720A1 (en) * 2002-04-08 2003-10-23 Cunningham David W Apparatus for producing a beam of light having a controlled luminous flux spectrum
EP1371540A2 (de) 2002-06-12 2003-12-17 TECNOLOGIE MECCANICHE s.r.l. LED-Signalvorrichtung, insbesondere für Eisenbahnen
US7140742B2 (en) 2001-09-07 2006-11-28 Litepanels Llc Surface-mount semiconductor lighting apparatus
US7290893B2 (en) 2004-04-07 2007-11-06 Gekko Technology Limited Lighting apparatus
US7322705B2 (en) * 2002-05-24 2008-01-29 Olympus Corporation Illumination apparatus, and image capturing apparatus and projector apparatus using this illumination apparatus
EP1393029B1 (de) * 2001-05-08 2008-12-17 Koninklijke Philips Electronics N.V. System zum messen von chromatizitätskoordinaten
US7482567B2 (en) 2004-09-24 2009-01-27 Koninklijke Philips Electronics N.V. Optical feedback system with improved accuracy
DE102009040006A1 (de) 2009-09-03 2011-03-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Scheinwerferanordnung für Fahrzeuge und Verfahren zum Betreiben einer Scheinwerferanordnung für Fahrzeuge
EP2547953A2 (de) 2010-03-15 2013-01-23 Litepanels Ltd Fresnel-led-beleuchtungssystem mit aktiver kühlung
US9097957B2 (en) 2001-09-07 2015-08-04 Litepanels, Ltd Versatile lighting apparatus and associated kit

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806659B1 (en) * 1997-08-26 2004-10-19 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US20030133292A1 (en) * 1999-11-18 2003-07-17 Mueller George G. Methods and apparatus for generating and modulating white light illumination conditions
US20040052076A1 (en) 1997-08-26 2004-03-18 Mueller George G. Controlled lighting methods and apparatus
US7352339B2 (en) * 1997-08-26 2008-04-01 Philips Solid-State Lighting Solutions Diffuse illumination systems and methods
US6720745B2 (en) * 1997-08-26 2004-04-13 Color Kinetics, Incorporated Data delivery track
US7014336B1 (en) * 1999-11-18 2006-03-21 Color Kinetics Incorporated Systems and methods for generating and modulating illumination conditions
US7132804B2 (en) * 1997-12-17 2006-11-07 Color Kinetics Incorporated Data delivery track
AU7730800A (en) * 1999-09-29 2001-04-30 Color Kinetics Incorporated Systems and methods for calibrating light output by light-emitting diodes
PT1422975E (pt) * 2000-04-24 2010-07-09 Philips Solid State Lighting Produto ‚ base de leds
US7303300B2 (en) 2000-09-27 2007-12-04 Color Kinetics Incorporated Methods and systems for illuminating household products
US6781691B2 (en) 2001-02-02 2004-08-24 Tidal Photonics, Inc. Apparatus and methods relating to wavelength conditioning of illumination
AT412825B (de) * 2001-05-16 2005-07-25 Siemens Ag Oesterreich Verfahren zur regelung der lichtverhältnisse in einem von einer in ihrer farbtemperatur veränderbaren lichtquelle beleuchteten bereich
US7598684B2 (en) * 2001-05-30 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling devices in a networked lighting system
US7331681B2 (en) * 2001-09-07 2008-02-19 Litepanels Llc Lighting apparatus with adjustable lenses or filters
US7358929B2 (en) * 2001-09-17 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Tile lighting methods and systems
DE10239449B4 (de) * 2002-02-06 2013-10-24 Ulrich Kuipers Verfahren und Vorrichtung zur Realisierung von LED-Leuchten mit Farb- und Helligkeitseinstellung und dem dazugehörigen Bedienelement
JP2005038605A (ja) * 2002-02-12 2005-02-10 Daisei Denki Kk 照明器具
DE10224421B4 (de) * 2002-06-01 2006-03-16 Arne Fiedler Lichtwand
US7023543B2 (en) * 2002-08-01 2006-04-04 Cunningham David W Method for controlling the luminous flux spectrum of a lighting fixture
US7091874B2 (en) * 2003-04-18 2006-08-15 Smithson Bradley D Temperature compensated warning light
US7178941B2 (en) 2003-05-05 2007-02-20 Color Kinetics Incorporated Lighting methods and systems
FI115600B (fi) * 2003-06-27 2005-05-31 Planmeca Oy LED-operaatiovalaisin
US7476002B2 (en) * 2003-07-02 2009-01-13 S.C. Johnson & Son, Inc. Color changing light devices with active ingredient and sound emission for mood enhancement
US7604378B2 (en) * 2003-07-02 2009-10-20 S.C. Johnson & Son, Inc. Color changing outdoor lights with active ingredient and sound emission
DE10330003B4 (de) 2003-07-03 2007-03-08 Leica Microsystems Semiconductor Gmbh Vorrichtung, Verfahren und Computerprogramm zur Wafer-Inspektion
JP5197957B2 (ja) * 2003-07-23 2013-05-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 個別の光源を複数備えた照明装置の制御システム
CA2581668A1 (en) 2003-09-26 2005-04-07 Tidal Photonics, Inc Apparatus and methods relating to expanded dynamic range imaging endoscope systems
CA2581735A1 (en) 2003-09-26 2005-04-07 Tidal Photonics, Inc. Apparatus and methods relating to enhanced spectral measurement systems
US7667766B2 (en) 2003-12-18 2010-02-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Adjustable spectrum flash lighting for image acquisition
US7318651B2 (en) 2003-12-18 2008-01-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Flash module with quantum dot light conversion
EP1575338A1 (de) * 2004-03-09 2005-09-14 Piero Magnaghi Beleuchtungsvorrichtung mit regelbarer Farbtemperatur und Verfahren zur Änderung der Abgabetemperatur des Lichtes
US20050199784A1 (en) * 2004-03-11 2005-09-15 Rizal Jaffar Light to PWM converter
WO2005089309A2 (en) * 2004-03-15 2005-09-29 Color Kinetics Incorporated Power control methods and apparatus
EP1742797B1 (de) * 2004-05-04 2012-01-11 SYS Tec. S.R.L. Verfahren und maschine zum ausrichten von flexodruckplatten auf druckzylindern
DE102004022424A1 (de) * 2004-05-06 2005-12-01 Deutsche Thomson-Brandt Gmbh Schaltung und Ansteuerverfahren für eine Leuchtanzeige
US7333011B2 (en) * 2004-07-06 2008-02-19 Honeywell International Inc. LED-based luminaire utilizing optical feedback color and intensity control scheme
ES2445268T3 (es) * 2004-11-23 2014-02-28 Koninklijke Philips N.V. Aparato y método para controlar el color y la temperatura de color de la luz generada por una luminaria controlada digitalmente
US7522211B2 (en) 2005-02-10 2009-04-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Studio light
US7543956B2 (en) * 2005-02-28 2009-06-09 Philips Solid-State Lighting Solutions, Inc. Configurations and methods for embedding electronics or light emitters in manufactured materials
WO2006105649A1 (en) * 2005-04-06 2006-10-12 Tir Systems Ltd. White light luminaire with adjustable correlated colour temperature
PT1984667T (pt) * 2006-02-10 2018-01-03 Philips Lighting North America Corp Métodos e aparelho para fornecimento controlado de potência com fator de potência elevado utilizando uma única etapa de comutação por carga
ATE460825T1 (de) * 2006-06-09 2010-03-15 Koninkl Philips Electronics Nv Beleuchtungsvorrichtung
US20080260242A1 (en) * 2006-06-22 2008-10-23 Tidal Photonics Inc. Apparatus and methods for measuring and controlling illumination for imaging objects, performances and the like
US7855348B2 (en) * 2006-07-07 2010-12-21 Lockheed Martin Corporation Multiple illumination sources to level spectral response for machine vision camera
US20080062115A1 (en) * 2006-09-13 2008-03-13 Houston Brown System and method for predicting a failure of a backlight for an LCD display
DE102006059190B4 (de) * 2006-12-15 2009-09-10 Vistec Semiconductor Systems Gmbh Vorrichtung zur Wafer-Inspektion
US7946744B2 (en) * 2007-02-02 2011-05-24 Denso Corporation Projector and image pickup apparatus
WO2008104927A2 (en) * 2007-03-01 2008-09-04 Philips Intellectual Property & Standards Gmbh Computer-controlled lighting system
DE102007014871B4 (de) * 2007-03-26 2012-09-27 Schott Ag Beleuchtungseinrichtung, insbesondere für Fahrzeuge
KR100953169B1 (ko) 2007-10-24 2010-04-20 한국광기술원 다색 발광다이오드를 이용한 색온도 제어 방법 및 그의프로그램이 기록된 기록매체
US9066404B2 (en) * 2008-06-26 2015-06-23 Telelumen Llc Systems and methods for developing and distributing illumination data files
US8021021B2 (en) * 2008-06-26 2011-09-20 Telelumen, LLC Authoring, recording, and replication of lighting
US20130307419A1 (en) 2012-05-18 2013-11-21 Dmitri Simonian Lighting system with sensor feedback
US20110115407A1 (en) * 2009-11-13 2011-05-19 Polar Semiconductor, Inc. Simplified control of color temperature for general purpose lighting
US9681522B2 (en) 2012-05-06 2017-06-13 Lighting Science Group Corporation Adaptive light system and associated methods
JP5704855B2 (ja) * 2010-07-30 2015-04-22 キヤノン株式会社 発光装置、撮像装置、及び発光制御方法
WO2012046189A1 (en) * 2010-10-08 2012-04-12 Koninklijke Philips Electronics N.V. Illumination system, illumination method and lighting controller
DE102010043828A1 (de) * 2010-11-12 2012-05-16 Siemens Aktiengesellschaft LED-Lichtsignal
US8922570B2 (en) 2011-03-11 2014-12-30 Telelumen, LLC Luminaire system
US8901850B2 (en) 2012-05-06 2014-12-02 Lighting Science Group Corporation Adaptive anti-glare light system and associated methods
US9173269B2 (en) 2011-05-15 2015-10-27 Lighting Science Group Corporation Lighting system for accentuating regions of a layer and associated methods
WO2013169642A1 (en) * 2012-05-06 2013-11-14 Lighting Science Group Corporation Tunable light system having an adaptable light source and associated methods
US10687697B2 (en) * 2013-03-15 2020-06-23 Stryker Corporation Endoscopic light source and imaging system
CN104576625B (zh) * 2013-10-15 2018-04-20 四川新力光源股份有限公司 一种led光源性能补偿装置、器件及其应用
DE102013018120B4 (de) * 2013-11-29 2022-02-10 Cooper Crouse-Hinds Gmbh Verfahren zur Temperaturüberwachung einer Leuchte
DE102013020698A1 (de) * 2013-11-29 2015-06-03 Cooper Crouse-Hinds Gmbh Leuchte und Verfahren zur Temperaturbestimmung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917101A1 (de) * 1989-05-26 1990-11-29 Wolfgang Prof Dr Ing Rienecker Beleuchtungsvorrichtung
EP0516398A2 (de) * 1991-05-27 1992-12-02 Mitsubishi Chemical Corporation Methode und Apparat zur Steuerung des Emissionsspektrums einer Elektrolumineszensdiode
DE29607270U1 (de) * 1996-04-22 1996-07-18 Wang David Lichtsteuervorrichtung
WO1998049872A1 (en) * 1997-04-30 1998-11-05 Signal House Limited Traffic signals
EP0952387A2 (de) * 1998-04-24 1999-10-27 Hannes Dr. Schulze Horn Beleuchtungssystem mit Niederspannungs-Leuchten und Lampen
WO1999056303A1 (en) * 1997-01-10 1999-11-04 Hochstein Peter A Maintaining led luminous intensity
EP0966183A1 (de) * 1998-06-17 1999-12-22 Colas Lampe und Verfahren zum Betrieb einer solchen Lampe
EP1077444A2 (de) * 1999-08-11 2001-02-21 Agilent Technologies Inc System und Verfahren zur on-chip Kalibration von Lichtquellen für eine integrierte Anzeige
DE19942177A1 (de) * 1999-09-03 2001-03-22 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung
EP1113709A2 (de) * 1999-12-28 2001-07-04 Avix Inc. Beleuchtungssteuerung für LED Leuchte

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1233282A (en) 1985-05-28 1988-02-23 Brent W. Brown Solid state color display system and light emitting diode pixels therefor
DE3837313A1 (de) 1987-11-05 1989-05-24 Eric Cheng Eine punkt-matrix-led-anzeigeeinheit und eine grosse aus solchen einheiten zusammengesetzte led-anzeige-vorrichtung
US4887074A (en) * 1988-01-20 1989-12-12 Michael Simon Light-emitting diode display system
JP2578455Y2 (ja) * 1992-06-15 1998-08-13 松下電工株式会社 色温度可変照明装置
EP0811251A2 (de) 1995-12-21 1997-12-10 Koninklijke Philips Electronics N.V. Vielfarbige leuchtdiode, verfahren zu deren herstellung und vielfarbige anzeigevorrichtung mit einer anordnung solcher leuchtdioden
US5803579A (en) 1996-06-13 1998-09-08 Gentex Corporation Illuminator assembly incorporating light emitting diodes
AU3884497A (en) 1996-07-16 1998-02-09 Dialight Corporation Led signal lamp assembly with multi-color capabilities
US5752766A (en) 1997-03-11 1998-05-19 Bailey; James Tam Multi-color focusable LED stage light
US6211626B1 (en) * 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
AU1924199A (en) 1997-12-17 1999-07-05 Color Kinetics Incorporated Digitally controlled illumination methods and systems
US6016038A (en) 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
TW408497B (en) 1997-11-25 2000-10-11 Matsushita Electric Works Ltd LED illuminating apparatus
GB9726254D0 (en) 1997-12-11 1998-02-11 Moscickiego Led Lamp
AUPP536198A0 (en) * 1998-08-20 1998-09-10 Hybrid Electronics Australia Pty Ltd Colour-correction of light-emitting diode pixel modules
US6623151B2 (en) * 1999-08-04 2003-09-23 911Ep, Inc. LED double light bar and warning light signal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917101A1 (de) * 1989-05-26 1990-11-29 Wolfgang Prof Dr Ing Rienecker Beleuchtungsvorrichtung
EP0516398A2 (de) * 1991-05-27 1992-12-02 Mitsubishi Chemical Corporation Methode und Apparat zur Steuerung des Emissionsspektrums einer Elektrolumineszensdiode
DE29607270U1 (de) * 1996-04-22 1996-07-18 Wang David Lichtsteuervorrichtung
WO1999056303A1 (en) * 1997-01-10 1999-11-04 Hochstein Peter A Maintaining led luminous intensity
WO1998049872A1 (en) * 1997-04-30 1998-11-05 Signal House Limited Traffic signals
EP0952387A2 (de) * 1998-04-24 1999-10-27 Hannes Dr. Schulze Horn Beleuchtungssystem mit Niederspannungs-Leuchten und Lampen
EP0966183A1 (de) * 1998-06-17 1999-12-22 Colas Lampe und Verfahren zum Betrieb einer solchen Lampe
EP1077444A2 (de) * 1999-08-11 2001-02-21 Agilent Technologies Inc System und Verfahren zur on-chip Kalibration von Lichtquellen für eine integrierte Anzeige
DE19942177A1 (de) * 1999-09-03 2001-03-22 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung
EP1113709A2 (de) * 1999-12-28 2001-07-04 Avix Inc. Beleuchtungssteuerung für LED Leuchte

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2377280B (en) * 2001-04-04 2005-09-14 Tidal Photonics Inc Apparatus and methods for measuring and controlling illumination for imaging objects,performances and the like
GB2377280A (en) * 2001-04-04 2003-01-08 Tidal Photonics Inc Method and system for measuring, recording and controlling the illumination of a scene
EP1393029B1 (de) * 2001-05-08 2008-12-17 Koninklijke Philips Electronics N.V. System zum messen von chromatizitätskoordinaten
US7140742B2 (en) 2001-09-07 2006-11-28 Litepanels Llc Surface-mount semiconductor lighting apparatus
US7163302B2 (en) 2001-09-07 2007-01-16 Litepanels Llc Camera-mounted semiconductor lighting apparatus
US9097957B2 (en) 2001-09-07 2015-08-04 Litepanels, Ltd Versatile lighting apparatus and associated kit
WO2003088720A1 (en) * 2002-04-08 2003-10-23 Cunningham David W Apparatus for producing a beam of light having a controlled luminous flux spectrum
US6683423B2 (en) 2002-04-08 2004-01-27 David W. Cunningham Lighting apparatus for producing a beam of light having a controlled luminous flux spectrum
CN100440508C (zh) * 2002-04-08 2008-12-03 D·W·坎宁安 用于产生具有可控光通量光谱的光束的装置
US7322705B2 (en) * 2002-05-24 2008-01-29 Olympus Corporation Illumination apparatus, and image capturing apparatus and projector apparatus using this illumination apparatus
EP1371540A2 (de) 2002-06-12 2003-12-17 TECNOLOGIE MECCANICHE s.r.l. LED-Signalvorrichtung, insbesondere für Eisenbahnen
US7303308B2 (en) 2004-04-07 2007-12-04 Gekko Technology Limited Lighting apparatus
US7690801B2 (en) 2004-04-07 2010-04-06 Gekko Technology Limited Lighting apparatus
US7290893B2 (en) 2004-04-07 2007-11-06 Gekko Technology Limited Lighting apparatus
US7482567B2 (en) 2004-09-24 2009-01-27 Koninklijke Philips Electronics N.V. Optical feedback system with improved accuracy
DE102009040006A1 (de) 2009-09-03 2011-03-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Scheinwerferanordnung für Fahrzeuge und Verfahren zum Betreiben einer Scheinwerferanordnung für Fahrzeuge
EP2547953A2 (de) 2010-03-15 2013-01-23 Litepanels Ltd Fresnel-led-beleuchtungssystem mit aktiver kühlung

Also Published As

Publication number Publication date
EP1304019B1 (de) 2006-06-14
EP1304019A1 (de) 2003-04-23
DE50110162D1 (de) 2006-07-27
US20030107887A1 (en) 2003-06-12
DE10031303A1 (de) 2002-01-10
US6909377B2 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
EP1304019B1 (de) Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung
EP1528421B1 (de) Stereomikroskop mit einer Leuchtdioden-Beleuchtung
DE102008017481B4 (de) Vorrichtung und Verfahren zur optischen 3D-Vermessung und zur Farbmessung
EP2005799B1 (de) Farbtemperatur- und farbortsteuerung für eine leuchte
EP2288843B1 (de) Lese- oder spotleuchte
EP3298345B1 (de) Kamera und verfahren zur dreidimensionalen vermessung und farbvermessung eines dentalen objekts
DE3913455C2 (de)
DE2550891C3 (de) Vorrichtung für die additive Farbsynthese mittels digitaler Farbdescriptorenanzeige
DE10310595B4 (de) Messvorrichtung mit Bildverarbeitung, Beleuchtungssystem dafür, Verfahren zur Steuerung des Beleuchtungssystems, Steuerungsprogramm für das Beleuchtungssystem und Speichermedium mit dem darauf gespeicherten Programmen zur Steuerung des Beleuchtungssystems
DE10122313A1 (de) Verfahren und Vorrichtung zur berührungsfreien Untersuchung eines Gegenstandes, insbesondere hinsichtlich dessen Oberflächengestalt
EP2537598A1 (de) Vorrichtung und Verfahren zur optischen Sortierung von Schüttgut
DE102014115964A1 (de) Beleuchtungsvorrichtung
WO2001079861A1 (de) Verfahren und vorrichtung zur analyse von strömungen
DE3922422C2 (de) Abtastanordnung zum Lesen eines Farbbildes
DE10357584A1 (de) Verfahren und Vorrichtung zum Trennen unterschiedlicher Emissionswellenlängen in einem Scanmikroskop
DE102006009551B4 (de) Vorrichtung zum Erzeugen von Licht
DE112016007048T5 (de) Schmalband-Lichtquellen umfassende Beleuchtungsvorrichtung
DE10137043A1 (de) Vorrichtung zur Untersuchung von Wertdokumenten
DE102017103660B4 (de) Verfahren zum betrieb einer lichtquelle für eine kamera, lichtquelle, kamera
DE102014108044B4 (de) Lichtmikroskop mit einer rotierbaren Scheibe und Verfahren zum Mikroskopieren mit diesem
DE102013219930A1 (de) Beleuchtungsvorrichtung mit Messvorrichtung und Verfahren zum Betreiben dieser Beleuchtungsvorrichtung
EP1632806B1 (de) Farbschlierenvorrichtung und Farbschlierenverfahren
DE10008888A1 (de) Kombiinstrument
WO2018154007A1 (de) Beleuchtungseinrichtung und verfahren zum betreiben einer beleuchtungseinrichtung
AT512220A1 (de) Verfahren und eine aufnahmevorrichtung zur aufnahme von multispektralbildern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001984081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10312785

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001984081

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001984081

Country of ref document: EP