WO2002001696A1 - Device for powering an appliance - Google Patents

Device for powering an appliance Download PDF

Info

Publication number
WO2002001696A1
WO2002001696A1 PCT/FR2001/001883 FR0101883W WO0201696A1 WO 2002001696 A1 WO2002001696 A1 WO 2002001696A1 FR 0101883 W FR0101883 W FR 0101883W WO 0201696 A1 WO0201696 A1 WO 0201696A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
date
cut
voltage
power supply
Prior art date
Application number
PCT/FR2001/001883
Other languages
French (fr)
Inventor
Nicolas Berthou
Edouard Escobar
Maurice Cordier
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2002001696A1 publication Critical patent/WO2002001696A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to a power supply device for an electronic device.
  • a power supply device for an electronic device.
  • Such a device supplied by an external electrical network can be subjected to electrical supply cuts to the network harmful to its operation.
  • the device may include means for storing energy taken from the network. To perform this function, for example, storage batteries or capacitors.
  • the storage means replace the electrical network during the power cut to supply the device.
  • the electronic device may lose the progress of the programs it was carrying out and / or the data that 'he manipulated before exhaustion and restarting the device then requires an important time to restart the programs he was performing and / or acquire the lost data again.
  • the object of the invention is to increase the operating time of the appliance for given energy storage means as well as to reduce the restarting time of the appliance when the electrical supply by the network is again present. after the cut.
  • the invention makes it possible to reduce the capacities of the storage means and for example to replace a storage battery with a capacitor.
  • a storage battery makes it possible to store more energy per unit of volume than a capacitor, but it has the drawback of requiring periodic maintenance, in particular requiring the change of the battery at scheduled dates. If a storage battery is replaced by a capacitor, the invention therefore makes it possible to remove periodic maintenance from the device. More generally, the invention makes it possible to reduce the size of the storage means.
  • the invention relates to a device for supplying an electronic device powered by a supply of electrical energy, characterized in that it comprises means for detecting a cut in the power supply, energy storage means taken from the power supply, processing means supplied by the storage means, receiving a signal from the detection means and shaping operations in progress after reception of a signal representative of 'A power cut, so as to allow a restart of the device and operations in progress after exhaustion of the energy present in the storage means when the power is again present after the cut.
  • the invention makes it possible to manage an abnormal operating mode such as for example when micro-cuts appear on the electrical supply.
  • - Figure 2 shows in the form of a timing diagram different signals to better understand the operation of the block diagram
  • - Figure 3 shows an embodiment of the means for detecting a power cut.
  • the supply 1 of electrical energy sends energy to energy storage means 2.
  • energy storage means comprise for example an accumulator battery or advantageously one or more capacitors . In fact, capacitors are more reliable than accumulator batteries and do not require any particular maintenance.
  • the electrical energy supply 1 is connected to means 3 for detecting a cut in the energy supply 1.
  • the device also includes processing means 4 supplied with energy by the storage means 2.
  • the processing means 4 receive information from the detection means 3.
  • the processing means 4 are advantageously connected to storage means 5.
  • the processing means 4 can control connection means 6. These connection means 6 make it possible to connect or disconnect the power supply of secondary functions 7 to the device such as for example display means. When there is no interruption in the supply of electrical energy 1, the secondary functions 7 are connected to the storage means 2 and the processing means perform specific operations of the electronic device and not described here.
  • the detection means 3 When the detection means 3 detect a cut in the energy supply 1, they send information representative of the cut to the processing means 4. When this information is received, the processing means disconnect the supply from the secondary functions 7 and format the specific operations, for example by storing them in the storage means 5 which are advantageously a non-volatile memory such as for example a hard disk or an electrically programmable memory.
  • the storage means 5 which are advantageously a non-volatile memory such as for example a hard disk or an electrically programmable memory.
  • the electronic device can of course comprise several types of secondary functions, some supplied directly by the power supply 1 and others via the storage means 2 and connection means 6.
  • FIG. 2 shows three timing diagrams 2a, 2b and 2c. These three chronograms have the same time scale.
  • the first timing diagram 2a represents an example of evolution over time of the voltage of the electrical energy supply 1.
  • the supply voltage is at a value Vcc allowing to operate normally the electronic device.
  • a cut in the power supply 1 appears and the supply voltage drops following a slope to a low value which is prolonged.
  • the supply voltage rises, also following a slope until the value V C c is again reached.
  • the timing diagram 2b describes the output signal from the detection means 3. Firstly, this signal is in state 1, this state is representative of the absence of interruption in the supply 1 of electrical energy. Then at the moment when the voltage of the electric power supply 1 drops until reaching the voltage V 0 FF or advantageously shortly after, on the detection date To, the signal represented on the timing diagram 2b takes a zero value representative of a cut in the supply of electrical energy 1.
  • the date of detection T D occurs later than the moment when the supply voltage 1 of the device decreases when reaching the voltage VOFF- This time shift makes it possible to avoid any untimely detections of a power cut of very short duration, for example of the order of a few microseconds.
  • the signal represented on the timing diagram 2b remains in the zero state as long as the supply voltage does not rise to a value greater than the voltage VON-
  • the timing diagram 2c represents the power consumed by the electronic device during the interruption of the supply 1 of electrical energy. Initially the device operates normally and the power consumed is said to be nominal, it is noted PN- Then when the cut-off appears, that is to say that the voltage Vcc drops below the voltage V O FF, the power consumed advantageously remains equal to the power PN until the transparency date T ⁇ .
  • the transparency date T ⁇ occurs later than the detection date TD, thus ensuring a period during which the operation of the device is not altered.
  • the processing means 4 ensure, in addition to their normal functions for processing specific operations of the device, a time counting up to the date of transparency TT. When this is reached, the processing means format the specific operations in progress. For example, they store in the non-volatile memory 5 all the information necessary for the subsequent resumption of these operations.
  • the processing means 4 disconnect the secondary functions 7 of the apparatus, thereby reducing the power consumed up to a reduced power PR, less than the nominal power PN. Then the device consumes the energy contained in the storage means 2 by dissipating a power PR as long as the storage means 2 allow it.
  • the device stops and no longer consumes energy. It is understood that if the power cut 1 ends before the device has exhausted the energy contained in the storage means 2, the device will resume normal operation at power P before s' Stop.
  • FIG. 3 represents an exemplary embodiment of the means 3 for detecting a cut in the power supply 1.
  • the voltage of the supply 1 is connected to the detection means at point 10. This supply voltage first undergoes a filtering step represented in box 11. Next to box 12 are determined the detection thresholds V O N and VOFF- The signal from frame 12 is then filtered in frame 13 and then shaped in frame 14. At the outlet of frame 14, the frame 15 shown makes it possible to galvanically isolate the output signal from the detection means with respect to the means of processing 4. The frame 15 is followed by means 16 for shaping the signal representative of the interruption of the supply 1, signal supplied to the processing means 4.
  • the point 10 is connected to a ground 20 via two resistors 21 and 22, both forming a voltage divider.
  • Resistor 21 being connected to point 10 and resistor 22 to ground 20.
  • the common point of these two resistors is connected to ground 20 by means of a capacitor 23.
  • the common point of the two resistors 21 and 22 is also connected to the input of frame 12 by via a resistor 24.
  • the capacitor 23 and the resistor 22 both form a time constant making it possible to define the time TD.
  • the resistor 24 is connected to the inverting input of an operational amplifier 25.
  • the non-inverting input of the operational amplifier 25 is connected to a reference voltage 40, via d a resistor 26.
  • the output of the operational amplifier 25 is connected to the anode of a diode 27.
  • the cathode of this diode 27 is connected to the non-inverting input of the operational amplifier 25 via a resistor 28.
  • the electronic components grouped in frame 12 give an example of an embodiment of the comparison of the supply voltage 1 with the two voltages V O FF and V 0 N.
  • the supply voltage 1 has a value Vcc
  • the operational amplifier 25 is saturated and its output voltage is close to its negative supply voltage.
  • the diode 27 does not conduct and no current flows through the resistors 26 and 28.
  • the voltage of the non-inverting input of the operational amplifier 25 is equal to the reference voltage 40.
  • the output voltage of the operational amplifier 25 rapidly increases substantially to its positive supply voltage .
  • the potential of the reference voltage 40 is fixed in such a way that the rapid growth of the output voltage of the operational amplifier occurs when the supply voltage 1 decreases by taking the value VOFF-
  • the diode 27 becomes conductive and the resistors 26 and 28 then behave as a voltage divider between the strongly positive output voltage of the operational amplifier 25 and the reference voltage 40.
  • the potential of the input not reversing of the operational amplifier 25 goes up to form a new threshold defined as a function of VON- This threshold is that which must be exceeded by the potential of the inverting input of the operational amplifier 25 so that the output voltage of the operational amplifier 25 decreases again.
  • the values of resistors 26 and 28 are defined according to the desired VON value.
  • the output voltage of the operational amplifier 25 can be compared to binary information in the form of a voltage close to one of the two positive and negative supply voltages of the operational amplifier 25.
  • the electronic components grouped together in frame 25 make it possible to carry out detection of a power cut 1 with hysteresis, that is to say that the information relating to the start of the cut occurs for a supply voltage 1 equal to VOFF, that the information relating to the end of the cut-off occurs for a supply voltage 1 equal to V O N and finally that the values of V 0 N and V O FF are different.
  • the output of the operational amplifier 25 is connected to the frame 13 to ground 20 via a resistor 29 connected in series with a capacitor 30.
  • the common point of the resistor 28 and the capacitor 29 are connected to the non-inverting input of an operational amplifier 31 located in frame 14.
  • the inverting input of the operational amplifier 31 is connected to the common point of a resistor 32 and the cathode of a Zener diode 33.
  • the anode of the Zener diode is connected to earth 20.
  • Resistor 31 is also connected to a reference voltage.
  • the inverting input of the operational amplifier 30 thus remains at a stable voltage.
  • the output of the operational amplifier 30 is saturated either at its positive supply voltage or at its negative supply voltage. This makes it possible to format the detection signal.
  • the output of the operational amplifier 30 is connected to isolation means shown in frame 15. These isolation means comprise for example a light-emitting diode 34 whose radiation controls the base of a phototransistor 35.
  • the collector of the phototransistor 35 forms the output of the frame 15 which is connected to the shaping means, for example a non-cell 16.
  • the output of the non-cell 16 delivers the signal representative of the power cut 1 to the processing means 4.
  • the phototransistor emitter 35 is for example connected to a ground 36 different from ground 20.

Abstract

The invention concerns a device for powering an electronic appliance with electric power supply (1). The device comprises means for detecting (3) an interruption in the supply (1), means for storing (2) power tapped from the supply (1), processing means (4) powered by the storage means (2) receiving a signal derived from the detection means (3) and formatting current operations after receiving a signal representing an interruption in the supply (1), so as to enable the appliance to restart and current operations after exhaustion of the power present in the storage means (2) when the supply (1) is once more present after the interruption. The processing means (4) format the current operations after a transparency date (TT) intervening later than the date at which the supply voltage (1) takes on a reference value VOFF.

Description

DISPOSITIF D'ALIMENTATION D'UN APPAREIL ELECTRONIQUE POWER SUPPLY DEVICE FOR AN ELECTRONIC DEVICE
L'invention se rapporte à un dispositif d'alimentation d'un appareil électronique. Un tel appareil alimenté par un réseau électrique extérieur peut être soumis à des coupures d'alimentation électriques du réseau néfastes à son fonctionnement. Afin de sauvegarder son fonctionnement, l'appareil peut comporter des moyens de stockage d'énergie prélevée sur le réseau. Pour remplir cette fonction on utilise par exemple des batteries d'accumulateurs ou des condensateurs. Les moyens de stockage se substituent au réseau électrique durant la coupure pour alimenter l'appareil.The invention relates to a power supply device for an electronic device. Such a device supplied by an external electrical network can be subjected to electrical supply cuts to the network harmful to its operation. In order to save its operation, the device may include means for storing energy taken from the network. To perform this function, for example, storage batteries or capacitors. The storage means replace the electrical network during the power cut to supply the device.
Pour augmenter le temps de fonctionnement de l'appareil lorsqu'il n'est plus alimenté que par les moyens de stockage il est nécessaire d'en augmenter la capacité.To increase the operating time of the device when it is no longer supplied only by the storage means, it is necessary to increase its capacity.
Par ailleurs, lorsque la coupure du réseau d'alimentation se prolonge après épuisement de l'énergie contenue dans les moyens de stockage, l'appareil électronique peut perdre l'état d'avancement de programmes qu'il effectuait et/ou les données qu'il manipulait avant épuisement et le redémarrage de l'appareil nécessite alors un temps Important pour recommencer les programmes qu'il effectuait et/ou aquérir de nouveau les données perdues.Furthermore, when the power supply network cuts out after the energy contained in the storage means has been used up, the electronic device may lose the progress of the programs it was carrying out and / or the data that 'he manipulated before exhaustion and restarting the device then requires an important time to restart the programs he was performing and / or acquire the lost data again.
L'invention a pour but d'augmenter le temps de fonctionnement de l'appareil pour des moyens de stockage d'énergie donnés ainsi que de diminuer le temps de redémarrage de l'appareil lorsque l'alimentation électrique par le réseau est de nouveau présente après la coupure.The object of the invention is to increase the operating time of the appliance for given energy storage means as well as to reduce the restarting time of the appliance when the electrical supply by the network is again present. after the cut.
Dans certains domaines, comme par exemple l'aéronautique, des normes imposent de conserver un appareil électronique en fonctionnement pendant des durées de coupures d'alimentation prévues à l'avance, par exemple 50 millisecondes ou 200 millisecondes. Pour répondre à de telles normes l'invention permet de réduire les capacités des moyens de stockage et par exemple de remplacer une batterie d'accumulateur par un condensateur. En effet, une batterie d'accumulateurs permet de stocker plus d'énergie par unité de volume qu'un condensateur mais elle présente l'inconvénient de nécessiter un entretien périodique imposant notamment le changement de la batterie à des dates programmées. Si on remplace une batterie d'accumulateurs par un condensateur, l'invention permet donc de supprimer l'entretien périodique de l'appareil. Plus généralement l'invention permet de réduire la taille des moyens de stockage.In certain fields, such as aeronautics, standards impose to keep an electronic device in operation for durations of power cuts planned in advance, for example 50 milliseconds or 200 milliseconds. To meet such standards, the invention makes it possible to reduce the capacities of the storage means and for example to replace a storage battery with a capacitor. Indeed, a storage battery makes it possible to store more energy per unit of volume than a capacitor, but it has the drawback of requiring periodic maintenance, in particular requiring the change of the battery at scheduled dates. If a storage battery is replaced by a capacitor, the invention therefore makes it possible to remove periodic maintenance from the device. More generally, the invention makes it possible to reduce the size of the storage means.
Pour atteindre le but énoncé plus haut, l'invention a pour objet un dispositif d'alimentation d'un appareil électronique alimenté par une alimentation en énergie électrique, caractérisé en ce qu'il comporte des moyens de détection d'une coupure de l'alimentation, des moyens de stockage d'énergie prélevée sur l'alimentation, des moyens de traitement alimentés par les moyens de stockage, recevant un signal issu des moyens de détection et mettant en forme des opérations en cours après réception d'un signal représentatif d'une coupure de l'alimentation, de façon à permettre un redémarrage de l'appareil et d'opérations en cours après épuisement de l'énergie présente dans les moyens de stockage lorsque l'alimentation est de nouveau présente après la coupure.To achieve the aim stated above, the invention relates to a device for supplying an electronic device powered by a supply of electrical energy, characterized in that it comprises means for detecting a cut in the power supply, energy storage means taken from the power supply, processing means supplied by the storage means, receiving a signal from the detection means and shaping operations in progress after reception of a signal representative of 'A power cut, so as to allow a restart of the device and operations in progress after exhaustion of the energy present in the storage means when the power is again present after the cut.
L'invention permet de gérer un mode de fonctionnement anormal comme par exemple lorsque des micro-coupures apparaissent sur l'alimentation électrique.The invention makes it possible to manage an abnormal operating mode such as for example when micro-cuts appear on the electrical supply.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation illustré par le dessin joint dans lequel : - la figure 1 représente un schéma synoptique d'un mode de réalisation de l'invention ;The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment illustrated by the attached drawing in which: - Figure 1 shows a block diagram of an embodiment of the invention;
- la figure 2 représente sous forme de chronogramme différent signaux permettant de mieux comprendre le fonctionnement du schéma synoptique ; - la figure 3 représente un exemple de réalisation des moyens de détection d'une coupure d'alimentation.- Figure 2 shows in the form of a timing diagram different signals to better understand the operation of the block diagram; - Figure 3 shows an embodiment of the means for detecting a power cut.
A la figure 1, l'alimentation 1 en énergie électrique envoie de l'énergie vers des moyens de stockage de l'énergie 2. Ces moyens de stockage de l'énergie comportent par exemple une batterie d'accumulateur ou avantageusement un ou plusieurs condensateurs. En effet, les condensateurs sont plus fiables que les batteries d'accumulateurs et ne nécessitent pas de maintenance particulière. Par ailleurs l'alimentation 1 en énergie électrique est connecté à des moyens de détection 3 d'une coupure de l'alimentation 1 en énergie. Le dispositif comporte également des moyens de traitement 4 alimenté en énergie par les moyens de stockage 2. Les moyens de traitement 4 reçoivent une information des moyens de détection 3. Les moyens de traitement 4 sont avantageusement raccordés à des moyens de mémorisation 5. Par ailleurs les moyens de traitement 4 peuvent commander des moyens de connexion 6. Ces moyens de connexion 6 permettent de connecter ou de déconnecter l'alimentation en énergie de fonctions secondaires 7 au dispositif comme par exemple des moyens de visualisation. Lorsqu'il n'y a pas de coupure sur l'alimentation 1 en énergie électrique les fonctions secondaires 7 sont raccordés aux moyens de stockage 2 et les moyens de traitement effectuent des opérations spécifiques de l'appareil électronique et non décrite ici.In FIG. 1, the supply 1 of electrical energy sends energy to energy storage means 2. These energy storage means comprise for example an accumulator battery or advantageously one or more capacitors . In fact, capacitors are more reliable than accumulator batteries and do not require any particular maintenance. Furthermore, the electrical energy supply 1 is connected to means 3 for detecting a cut in the energy supply 1. The device also includes processing means 4 supplied with energy by the storage means 2. The processing means 4 receive information from the detection means 3. The processing means 4 are advantageously connected to storage means 5. Furthermore the processing means 4 can control connection means 6. These connection means 6 make it possible to connect or disconnect the power supply of secondary functions 7 to the device such as for example display means. When there is no interruption in the supply of electrical energy 1, the secondary functions 7 are connected to the storage means 2 and the processing means perform specific operations of the electronic device and not described here.
Lorsque les moyens de détection 3 détectent une coupure de l'alimentation 1 en énergie, ils envoient une information représentative de la coupure vers les moyens de traitement 4. Lorsque cette information est reçue, les moyens de traitement déconnectent l'alimentation des fonctions secondaires 7 et mettent en forme les opérations spécifiques par exemple en les mémorisant dans les moyens de mémorisation 5 qui sont avantageusement une mémoire non volatile comme par exemple un disque dur ou une mémoire programmable électriquement.When the detection means 3 detect a cut in the energy supply 1, they send information representative of the cut to the processing means 4. When this information is received, the processing means disconnect the supply from the secondary functions 7 and format the specific operations, for example by storing them in the storage means 5 which are advantageously a non-volatile memory such as for example a hard disk or an electrically programmable memory.
Il est également possible d'alimenter directement les fonctions secondaires 7 par l'alimentation 1 en énergie électrique sans passer par l'intermédiaire des moyens de stockage. Cette variante permet de se passer des moyens de connexion 6. En effet dès qu'une coupure survient, les fonctions secondaires ne sont plus alimentées en énergie électrique. En revanche, cette variante ne permet pas de temporiser la déconnexion des fonctions secondaires assurant ainsi une période de transparence qui sera décrite ultérieurement à l'aide du chronogramme 2c.It is also possible to directly supply the secondary functions 7 by the power supply 1 with electrical energy without passing through the storage means. This variant makes it possible to dispense with connection means 6. In fact, as soon as a power outage occurs, the secondary functions are no longer supplied with electrical energy. On the other hand, this variant does not make it possible to delay the disconnection of the secondary functions thus ensuring a period of transparency which will be described later using the timing diagram 2c.
L'appareil électronique peut bien entendu comporter plusieurs types de fonctions secondaires, certains alimentés directement par l'alimentation 1 en énergie et d'autres par l'intermédiaire des moyens de stockage 2 et des moyens de connexion 6.The electronic device can of course comprise several types of secondary functions, some supplied directly by the power supply 1 and others via the storage means 2 and connection means 6.
La figure 2 représente trois chronogrammes 2a, 2b et 2c. Ces trois chronogrammes ont la même échelle de temps. Le premier chronogramme 2a représente un exemple d'évolution dans le temps de la tension de l'alimentation 1 en énergie électrique. Dans un premier temps la tension d'alimentation est à une valeur Vcc permettant de faire fonctionner normalement l'appareil électronique. Ensuite une coupure de l'alimentation 1 en énergie apparaît et la tension d'alimentation chute en suivant une pente jusqu'à une valeur basse qui se prolonge. Par la suite à la fin de la coupure, la tension d'alimentation remonte en suivant également une pente jusqu'à atteindre de nouveau la valeur VCc-Figure 2 shows three timing diagrams 2a, 2b and 2c. These three chronograms have the same time scale. The first timing diagram 2a represents an example of evolution over time of the voltage of the electrical energy supply 1. At first the supply voltage is at a value Vcc allowing to operate normally the electronic device. Then a cut in the power supply 1 appears and the supply voltage drops following a slope to a low value which is prolonged. Subsequently at the end of the cut, the supply voltage rises, also following a slope until the value V C c is again reached.
Entre la valeur basse et la valeur VCc . de la tension, on a représenté sur le chronogramme 2a deux tensions, l'une VOFF et l'autre VON supérieures à VOFF- L'utilité de ces deux tensions V0N et VOFF sera décrite ultérieurement. Le chronogramme 2b, décrit le signal de sortie des moyens de détection 3. Dans un premier temps ce signal est à l'état 1 , cet état est représentatif de l'absence de coupure sur l'alimentation 1 en énergie électrique. Ensuite au moment ou la tension de l'alimentation 1 en énergie électrique chute jusqu'à atteindre la tension V0FF ou avantageusement peu après, à la date de détection To , le signal représenté sur le chronogramme 2b prend une valeur zéro représentative d'une coupure sur l'alimentation 1 en énergie électrique.Between the low value and the value V C c. of the voltage, there are shown on the timing diagram 2a two voltages, one V O FF and the other V O N greater than VOFF- The usefulness of these two voltages V 0 N and VOFF will be described later. The timing diagram 2b describes the output signal from the detection means 3. Firstly, this signal is in state 1, this state is representative of the absence of interruption in the supply 1 of electrical energy. Then at the moment when the voltage of the electric power supply 1 drops until reaching the voltage V 0 FF or advantageously shortly after, on the detection date To, the signal represented on the timing diagram 2b takes a zero value representative of a cut in the supply of electrical energy 1.
Avantageusement la date de détection TD intervient plus tard que le moment où la tension d'alimentation 1 de l'appareil décroît en atteignant la tension VOFF- Ce décalage dans le temps permet d'éviter toutes détections intempestives de coupure d'alimentation de très faible durée par exemple de l'ordre de quelques microsecondes.Advantageously, the date of detection T D occurs later than the moment when the supply voltage 1 of the device decreases when reaching the voltage VOFF- This time shift makes it possible to avoid any untimely detections of a power cut of very short duration, for example of the order of a few microseconds.
Le signal représenté sur le chronogramme 2b reste à l'état zéro tant que \a tension d'alimentation ne remonte pas à une vaieur supérieure à la tension VON-The signal represented on the timing diagram 2b remains in the zero state as long as the supply voltage does not rise to a value greater than the voltage VON-
Le chronogramme 2c représente la puissance consommée par l'appareil électronique durant la coupure de l'alimentation 1 en énergie électrique. Dans un premier temps l'appareil fonctionne normalement et la puissance consommée est dite nominale elle est noter PN- Ensuite lorsque la coupure apparaît c'est-à-dire que la tension Vcc descend en dessous de la tension VOFF, la puissance consommée reste avantageusement égale à la puissance PN jusqu'à la date de transparence Tτ. Avantageusement la date de transparence Tτ intervient plus tard que la date de détection TD assurant ainsi une période pendant laquelle le fonctionnement de l'appareil n'est pas altéré. Entre les dates TD et TT, les moyens de traitement 4 assurent, en plus de leurs fonctions normales de traitement des opérations spécifiques de l'appareil, un comptage de temps jusqu'à la date de transparence TT. Lorsque celle-ci est atteinte, les moyens de traitement mettent en forme les opérations spécifiques en cours. Par exemple ils stockent dans la mémoire non volatile 5 toutes informations nécessaires à la reprise ultérieure de ces opérations.The timing diagram 2c represents the power consumed by the electronic device during the interruption of the supply 1 of electrical energy. Initially the device operates normally and the power consumed is said to be nominal, it is noted PN- Then when the cut-off appears, that is to say that the voltage Vcc drops below the voltage V O FF, the power consumed advantageously remains equal to the power PN until the transparency date T τ . Advantageously, the transparency date T τ occurs later than the detection date TD, thus ensuring a period during which the operation of the device is not altered. Between the dates TD and TT, the processing means 4 ensure, in addition to their normal functions for processing specific operations of the device, a time counting up to the date of transparency TT. When this is reached, the processing means format the specific operations in progress. For example, they store in the non-volatile memory 5 all the information necessary for the subsequent resumption of these operations.
Egalement après la date TT, les moyens de traitement 4 déconnectent les fonctions secondaires 7 de l'appareil pour ainsi réduire la puissance consommée jusqu'à une puissance réduite PR, inférieure à la puissance nominale PN. Ensuite l'appareil consomme l'énergie contenue dans les moyens de stockage 2 en dissipant une puissance PR tant que les moyens de stockage 2 le permettent.Also after the date TT, the processing means 4 disconnect the secondary functions 7 of the apparatus, thereby reducing the power consumed up to a reduced power PR, less than the nominal power PN. Then the device consumes the energy contained in the storage means 2 by dissipating a power PR as long as the storage means 2 allow it.
Ensuite, si la coupure se prolonge, l'appareil s'arrête et ne consomme plus d'énergie. Il est bien entendu que si la coupure de l'alimentation 1 prend fin avant que l'appareil n'ait épuisé l'énergie contenue dans les moyens de stockage 2, l'appareil reprendra un fonctionnement normal à la puissance P avant de s'arrêter.Then, if the cut is prolonged, the device stops and no longer consumes energy. It is understood that if the power cut 1 ends before the device has exhausted the energy contained in the storage means 2, the device will resume normal operation at power P before s' Stop.
La figure 3 représente un exemple de réalisation des moyens de détection 3 d'une coupure de l'alimentation 1 en énergie. La tension de l'alimentation 1 est connectée aux moyens de détection au point 10. Cette tension d'alimentation subit d'abord une étape de filtrage représentée dans le cadre 11. Ensuite au cadre 12 sont déterminés les seuils de détection VON et VOFF- Le signal issu du cadre 12 est ensuite filtré au cadre 13 puis mis en forme au cadre 14. En sortie du cadre 14, le cadre 15 représenté permet d'isoler galvaniquement le signal de sortie des moyens de détection par rapport aux moyens de traitement 4. Le cadre 15 est suivi de moyens 16 de mise en forme du signal représentatif de la coupure de l'alimentation 1 , signal fourni aux moyens de traitement 4.FIG. 3 represents an exemplary embodiment of the means 3 for detecting a cut in the power supply 1. The voltage of the supply 1 is connected to the detection means at point 10. This supply voltage first undergoes a filtering step represented in box 11. Next to box 12 are determined the detection thresholds V O N and VOFF- The signal from frame 12 is then filtered in frame 13 and then shaped in frame 14. At the outlet of frame 14, the frame 15 shown makes it possible to galvanically isolate the output signal from the detection means with respect to the means of processing 4. The frame 15 is followed by means 16 for shaping the signal representative of the interruption of the supply 1, signal supplied to the processing means 4.
De façon plus précise, le point 10 est relié à une masse 20 par l'intermédiaire de deux résistances 21 et 22 formant toutes deux un diviseur de tension. La résistance 21 étant raccordé au point 10 et la résistance 22 à la masse 20. Le point commun de ces deux résistances est relié à la masse 20 par l'intermédiaire d'un condensateur 23. Le point commun des deux résistances 21 et 22 est également relié à l'entrée du cadre 12 par l'intermédiaire d'une résistance 24. Le condensateur 23 et la résistance 22 forment tous deux une constante de temps permettant de définir le temps TD. A l'entrée du cadre 12, la résistance 24 est reliée à l'entrée inverseuse d'un amplificateur opérationnel 25. L'entrée non inverseuse de l'amplificateur opérationnel 25 est reliée à une tension de référence 40, par l'intermédiaire d'une résistance 26. La sortie de l'amplificateur opérationnel 25 est relié à l'anode d'une diode 27. La cathode de cette diode 27 est reliée à l'entrée non inverseuse de l'amplificateur opérationnel 25 par l'intermédiaire d'une résistance 28. Les composants électroniques regroupés au cadre 12 donnent un exemple de réalisation de la comparaison de la tension d'alimentation 1 aux deux tensions VOFF et V0N. Lorsque la tension d'alimentation 1 a une valeur Vcc, l'amplificateur opérationnel 25 est saturé et sa tension de sortie est proche de sa tension d'alimentation négative. La diode 27 ne conduit pas et aucun courant ne circule dans les résistances 26 et 28. Ainsi la tension de l'entrée non inverseuse de l'amplificateur opérationnel 25 est égale à la tension de référence 40. Ensuite, lorsque la tension d'alimentation 1 décroît, et que le potentiel de l'entrée inverseuse décroît jusqu'à devenir inférieur au potentiel de l'entrée non inverseuse, alors la tension de sortie de l'amplificateur opérationnel 25 croit rapidement sensiblement jusqu'à sa tension d'alimentation positive.More specifically, the point 10 is connected to a ground 20 via two resistors 21 and 22, both forming a voltage divider. Resistor 21 being connected to point 10 and resistor 22 to ground 20. The common point of these two resistors is connected to ground 20 by means of a capacitor 23. The common point of the two resistors 21 and 22 is also connected to the input of frame 12 by via a resistor 24. The capacitor 23 and the resistor 22 both form a time constant making it possible to define the time TD. At the input of the frame 12, the resistor 24 is connected to the inverting input of an operational amplifier 25. The non-inverting input of the operational amplifier 25 is connected to a reference voltage 40, via d a resistor 26. The output of the operational amplifier 25 is connected to the anode of a diode 27. The cathode of this diode 27 is connected to the non-inverting input of the operational amplifier 25 via a resistor 28. The electronic components grouped in frame 12 give an example of an embodiment of the comparison of the supply voltage 1 with the two voltages V O FF and V 0 N. When the supply voltage 1 has a value Vcc, the operational amplifier 25 is saturated and its output voltage is close to its negative supply voltage. The diode 27 does not conduct and no current flows through the resistors 26 and 28. Thus the voltage of the non-inverting input of the operational amplifier 25 is equal to the reference voltage 40. Then, when the supply voltage 1 decreases, and as the potential of the inverting input decreases until it becomes lower than the potential of the non-inverting input, then the output voltage of the operational amplifier 25 rapidly increases substantially to its positive supply voltage .
Le potentiel de la tension de référence 40 est fixé de telle façon que la croissance rapide de la tension de sortie de l'amplificateur opérationnel se produise au moment ou la tension d'alimentation 1 décroît en prenant la valeur VOFF-The potential of the reference voltage 40 is fixed in such a way that the rapid growth of the output voltage of the operational amplifier occurs when the supply voltage 1 decreases by taking the value VOFF-
De ce fait, la diode 27 devient conductrice et les résistances 26 et 28 se comportent alors en diviseur de tension entre la tension de sortie fortement positive de l'amplificateur opérationnel 25 et la tension de référence 40. Ainsi le potentiel de l'entrée non inverseuse de l'amplificateur opérationnel 25 remonte pour former un nouveau seuil défini en fonction de VON- Ce seuil est celui que devra dépasser le potentiel de l'entrée inverseuse de l'amplificateur opérationnel 25 pour que la tension de sortie de l'amplificateur opérationnel 25 décroisse à nouveau. Les valeurs des résistances 26 et 28 sont définies en fonction de la valeur de VON recherchée.As a result, the diode 27 becomes conductive and the resistors 26 and 28 then behave as a voltage divider between the strongly positive output voltage of the operational amplifier 25 and the reference voltage 40. Thus the potential of the input not reversing of the operational amplifier 25 goes up to form a new threshold defined as a function of VON- This threshold is that which must be exceeded by the potential of the inverting input of the operational amplifier 25 so that the output voltage of the operational amplifier 25 decreases again. The values of resistors 26 and 28 are defined according to the desired VON value.
La tension de sortie de l'amplificateur opérationnel 25 peut s'apparenter à une information binaire sous forme d'une tension proche d'une des deux tensions d'alimentation positive et négative de l'amplificateur opérationnel 25.The output voltage of the operational amplifier 25 can be compared to binary information in the form of a voltage close to one of the two positive and negative supply voltages of the operational amplifier 25.
Les composants électroniques regroupés au cadre 25 permettent de réaliser une détection de coupure d'alimentation 1 avec hystérésis, c'est- à-dire que l'information relative au début de la coupure intervient pour une tension d'alimentation 1 égale à VOFF, que l'information relative à la fin de la coupure intervient pour une tension d'alimentation 1 égale à VON et enfin que les valeurs de V0N et VOFF sont différentes.The electronic components grouped together in frame 25 make it possible to carry out detection of a power cut 1 with hysteresis, that is to say that the information relating to the start of the cut occurs for a supply voltage 1 equal to VOFF, that the information relating to the end of the cut-off occurs for a supply voltage 1 equal to V O N and finally that the values of V 0 N and V O FF are different.
La sortie de l'amplificateur opérationnel 25 est reliée au cadre 13 à la masse 20 par l'intermédiaire d'une résistance 29 raccordé en série avec un condensateur 30. Le point commun de la résistance 28 et du condensateur 29 sont raccordé à l'entrée non inverseuse d'un amplificateur opérationnel 31 situé au cadre 14. L'entrée inverseuse de l'amplificateur opérationnel 31 est raccordée au point commun d'une résistance 32 et de la cathode d'une diode Zéner 33. L'anode de la diode Zéner est quant à elle raccordée à la masse 20.The output of the operational amplifier 25 is connected to the frame 13 to ground 20 via a resistor 29 connected in series with a capacitor 30. The common point of the resistor 28 and the capacitor 29 are connected to the non-inverting input of an operational amplifier 31 located in frame 14. The inverting input of the operational amplifier 31 is connected to the common point of a resistor 32 and the cathode of a Zener diode 33. The anode of the Zener diode is connected to earth 20.
La résistance 31 est par ailleurs raccordée à une tension de référence. L'entrée inverseuse de l'amplificateur opérationnel 30 reste ainsi à une tension stable. La sortie de l'amplificateur opérationnel 30 est saturée soit à sa tension d'alimentation positive soit à sa tension d'alimentation négative. Ce qui permet de mettre en forme le signal de détection. La sortie de l'amplificateur opérationnel 30 est raccordée à des moyens d'isolement représentés au cadre 15. Ces moyens d'isolement comportent par exemple une diode électroluminescente 34 dont le rayonnement commande la base d'un phototransistor 35. Le collecteur du phototransistor 35 forme la sortie du cadre 15 qui est raccordée aux moyens de mise en forme, par exemple une cellule non 16. La sortie de la cellule non 16 délivre le signal représentatif de la coupure d'alimentation 1 vers les moyens de traitement 4. L'émetteur du phototransistor 35 est par exemple raccordé à une masse 36 différente de la masse 20. Resistor 31 is also connected to a reference voltage. The inverting input of the operational amplifier 30 thus remains at a stable voltage. The output of the operational amplifier 30 is saturated either at its positive supply voltage or at its negative supply voltage. This makes it possible to format the detection signal. The output of the operational amplifier 30 is connected to isolation means shown in frame 15. These isolation means comprise for example a light-emitting diode 34 whose radiation controls the base of a phototransistor 35. The collector of the phototransistor 35 forms the output of the frame 15 which is connected to the shaping means, for example a non-cell 16. The output of the non-cell 16 delivers the signal representative of the power cut 1 to the processing means 4. The phototransistor emitter 35 is for example connected to a ground 36 different from ground 20.

Claims

REVENDICATIONS
1. Dispositif d'alimentation d'un appareil électronique alimenté par une alimentation (1 ) en énergie électrique, caractérisé en ce qu'il comporte des moyens de détection (3) d'une coupure de l'alimentation (1 ), des moyens de stockage (2) d'énergie prélevée sur l'alimentation (1), des moyens de traitement (4) alimentés par les moyens de stockage (2), recevant un signal issu des moyens de détection (3) et mettant en forme des opérations en cours après réception d'un signal représentatif d'une coupure de l'alimentation (1 ), de façon à permettre un redémarrage de l'appareil et d'opérations en cours après épuisement de l'énergie présente dans les moyens de stockage (2) lorsque l'alimentation (1 ) est de nouveau présente après la coupure et en ce que les moyens de traitement (4) mettent en forme les opérations en cours après une date de transparence (TT) intervenant plus tard que la date à laquelle la tension de l'alimentation (1) prend une valeur VOFF de référence.1. Device for supplying an electronic device supplied with a power supply (1) with electrical energy, characterized in that it comprises means (3) for detecting a power cut (1), means storage (2) of energy taken from the power supply (1), processing means (4) supplied by the storage means (2), receiving a signal from the detection means (3) and shaping operations in progress after reception of a signal representative of a power cut (1), so as to allow a restart of the apparatus and operations in progress after exhaustion of the energy present in the storage means (2) when the supply (1) is again present after the cut and in that the processing means (4) format the operations in progress after a transparency date (TT) occurring later than the date at wherein the supply voltage (1) takes a value V O FF r ference.
2. Dispositif selon la revendication 1 , caractérisé en ce que les moyens de stockage (2) comportent un ou plusieurs condensateurs.2. Device according to claim 1, characterized in that the storage means (2) comprise one or more capacitors.
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens de mémorisation (5) non volatiles dans lesquels les moyens de traitement (4) inscrivent, après réception du signal représentatif d'une coupure de l'alimentation (1), des paramètres relatifs aux opérations en cours, les paramètres permettant lors du redémarrage de l'appareil la poursuite des opérations en cours.3. Device according to one of the preceding claims, characterized in that it comprises non-volatile storage means (5) in which the processing means (4) write, after reception of the signal representative of a cut-off of the power supply (1), parameters relating to the operations in progress, the parameters allowing, when the device is restarted, the continuation of the operations in progress.
4. Dispositif selon la revendication 3, caractérisé en ce caractérisé en ce que les moyens de traitement (4) inscrivent les paramètres relatifs aux opérations en cours, après une date de transparence (TT) intervenant plus tard que la date à laquelle la tension de l'alimentation (1) prend une valeur VOFF de référence. 4. Device according to claim 3, characterized in that the processing means (4) enter the parameters relating to the operations in progress, after a transparency date (TT) occurring later than the date on which the voltage of the power supply (1) takes a reference VOFF value.
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens de connexion . (6) de l'alimentation (1) de fonctions secondaires (7) de l'appareil, en ce que les moyens de connexion (6) sont commandés par les moyens de traitement (4) et en ce que les moyens de connexion (6) déconnectent l'alimentation des fonctions secondaires (7) lorsqu'une coupure de l'alimentation (1 ) est détectée.5. Device according to one of the preceding claims, characterized in that it comprises connection means. (6) of the power supply (1) of secondary functions (7) of the device, in that the connection means (6) are controlled by the processing means (4) and in that the connection means ( 6) disconnect the power supply from the secondary functions (7) when a power failure (1) is detected.
6. Dispositif selon la revendication 5, caractérisé en ce que les moyens de connexion (6) déconnectent l'alimentation des fonctions secondaires (7) après une date de transparence (TT) intervenant plus tard que la date à laquelle la tension de l'alimentation (1) prend une valeur VOFF de référence.6. Device according to claim 5, characterized in that the connection means (6) disconnect the supply of the secondary functions (7) after a transparency date (TT) occurring later than the date on which the voltage of the power supply (1) takes a reference value V O FF.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de détection (3) délivrent aux moyens de traitement (4) un signal représentatif d'une coupure de l'alimentation à la date de détection (TD), intervenant plus tard que la date à laquelle la tension de l'alimentation (1) prend une valeur VOFF de référence.7. Device according to one of the preceding claims, characterized in that the detection means (3) deliver to the processing means (4) a signal representative of a power cut on the date of detection (TD), occurring later than the date on which the supply voltage (1) takes a reference value V O FF.
8. Dispositif selon l'une des revendications 2, 4 ou 6, caractérisé en ce que la date de transparence (TT) intervient plus tard que la date de détection (TD).8. Device according to one of claims 2, 4 or 6, characterized in that the transparency date (TT) occurs later than the detection date (T D ).
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de détection (3) détectent une coupure avec hystérésis. 9. Device according to one of the preceding claims, characterized in that the detection means (3) detect a cut with hysteresis.
PCT/FR2001/001883 2000-06-27 2001-06-15 Device for powering an appliance WO2002001696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0008255A FR2810810B1 (en) 2000-06-27 2000-06-27 POWER SUPPLY DEVICE FOR AN ELECTRONIC DEVICE
FR00/08255 2000-06-27

Publications (1)

Publication Number Publication Date
WO2002001696A1 true WO2002001696A1 (en) 2002-01-03

Family

ID=8851753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001883 WO2002001696A1 (en) 2000-06-27 2001-06-15 Device for powering an appliance

Country Status (2)

Country Link
FR (1) FR2810810B1 (en)
WO (1) WO2002001696A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238675A (en) * 1989-11-03 1991-06-05 Winbright Research Limited Uninterruptible power supply for an electronic computer
US5184025A (en) * 1988-11-14 1993-02-02 Elegant Design Solutions, Inc. Computer-controlled uninterruptible power supply
US5315161A (en) * 1990-09-27 1994-05-24 Ncr Corporation Power failure detection and shut down timer
WO1997021265A2 (en) * 1995-12-05 1997-06-12 Sikorsky Aircraft Corporation System and method for providing uninterrupted power to on-board electrical equipment
US5958054A (en) * 1997-01-17 1999-09-28 Dell U.S.A., L.P. System and method for emulating an uninterruptable power supply (UPS) using a portable computer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184025A (en) * 1988-11-14 1993-02-02 Elegant Design Solutions, Inc. Computer-controlled uninterruptible power supply
GB2238675A (en) * 1989-11-03 1991-06-05 Winbright Research Limited Uninterruptible power supply for an electronic computer
US5315161A (en) * 1990-09-27 1994-05-24 Ncr Corporation Power failure detection and shut down timer
WO1997021265A2 (en) * 1995-12-05 1997-06-12 Sikorsky Aircraft Corporation System and method for providing uninterrupted power to on-board electrical equipment
US5958054A (en) * 1997-01-17 1999-09-28 Dell U.S.A., L.P. System and method for emulating an uninterruptable power supply (UPS) using a portable computer

Also Published As

Publication number Publication date
FR2810810A1 (en) 2001-12-28
FR2810810B1 (en) 2002-10-25

Similar Documents

Publication Publication Date Title
EP0110775B1 (en) Low drop-out voltage regulator
CA2594826C (en) Method for the balanced charging of a lithium-ion or lithium-polymer battery
EP2846394B1 (en) Smart battery provided with a circuit for managing the supply voltage
CA2692300C (en) Method and system for managing electrical power supply outages on board an aircraft
FR2631168A1 (en) DEVICE FOR CHARGING BATTERIES
FR2535870A1 (en) ELECTRICAL POWER SUPPLY CIRCUIT OF A MICROCOMPUTER
FR2837583A1 (en) Supply system for preserving data on a mobile electronic card, comprises first and second integral batteries with means to switch in either as required when the main supply is absent
EP0057663A2 (en) Control device for stepping motor
FR2573257A1 (en) PROTECTION CIRCUIT AGAINST POWER SUPPLY BREAKS
EP3747217A1 (en) Operating method for a wirelessly communicating electronic device, and wirelessly communicating electronic device implementing said method
WO2016058738A1 (en) Method for estimating the state of health of a battery in a device supplying power to a system
WO2002001696A1 (en) Device for powering an appliance
FR2721474A1 (en) Frequency-based transistor control for fluorescent lamp starter
EP0009606B1 (en) Apparatus for controlling the charging of a battery
EP0080396B1 (en) Integrated circuit microprocessor-controlled telephone two wire/four wire transmission circuit, and line current safeguard powering
EP0899934A1 (en) Adapter circuit of the supply voltage
FR2474776A1 (en) Battery charger with automatic cut=out at full charge - monitors charging voltage to control supplied charging current using reference obtained from battery terminals
EP3747105B1 (en) Operating method for a wirelessly communicating electronic device, and wirelessly communicating electronic device implementing said method
FR2719947A1 (en) Automatic test routine for batteries used for standby power
FR2680595A1 (en) Segment control device for a liquid-crystal display, and corresponding control method
FR2852099A1 (en) Optoelectronic device for optical detection unit for liquid meter, has transmitter unit comprising resistor connected to voltage source, and capacitor connected to voltage pulse source and to resistor and anode of electroluminescent diode
EP0395590B1 (en) Electronic control device for at least one electrically driven receiver
CH708515A2 (en) smart battery provided with an electronic circuit of the supply voltage management.
JPS61116938A (en) Charging device for nickel-cadmium cell
FR2513044A1 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase