WO2002001639A2 - Substrate and module - Google Patents

Substrate and module Download PDF

Info

Publication number
WO2002001639A2
WO2002001639A2 PCT/DE2001/002373 DE0102373W WO0201639A2 WO 2002001639 A2 WO2002001639 A2 WO 2002001639A2 DE 0102373 W DE0102373 W DE 0102373W WO 0201639 A2 WO0201639 A2 WO 0201639A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
module
frequency
flip
chip
Prior art date
Application number
PCT/DE2001/002373
Other languages
German (de)
French (fr)
Other versions
WO2002001639A3 (en
Inventor
Patric Heide
Alexander Dabek
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10031658A external-priority patent/DE10031658A1/en
Priority claimed from DE10041770A external-priority patent/DE10041770A1/en
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2002001639A2 publication Critical patent/WO2002001639A2/en
Publication of WO2002001639A3 publication Critical patent/WO2002001639A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6688Mixed frequency adaptations, i.e. for operation at different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16251Connecting to an item not being a semiconductor or solid-state body, e.g. cap-to-substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1903Structure including wave guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits

Definitions

  • the invention relates to a substrate, a module using the substrate and a method for producing the module and an SMD component containing the module.
  • modules i. H. a modular component
  • high production technology requirements are placed, for example with regard to assembly or production under clean room conditions.
  • economic production is only possible to a limited extent.
  • SMD Surface Mounted Device
  • a high-frequency component has generally been based on an Al 2 0 3 ceramic substrate structured on one or two sides using thin-film technology.
  • Today's resolution of thin-film structured ceramics is in the range of a few ⁇ m, for thick-layer ceramics around 100 ⁇ m and for an etched thick layer around 5-10 ⁇ .
  • the so-called "LTCC" technology Low Temperature Cofired Ceramic
  • LTCC Low Temperature Cofired Ceramic
  • Multi-layer technology is also possible for the high frequency (HF) range up to approx. 2 GHz.
  • FC flip-chip
  • CSP chip-size packaging
  • WSP wafer scale packaging
  • An SMD automatic manufacturing machine is able to process FC / BGA ("Ball Grid Array") / CSP modules, for example for mobile telephones.
  • SMD assembly technology uses pad / pitch sizes of approx. 500 ⁇ mastered production technology; the placement accuracy is in the range of ⁇ 50 ⁇ m.
  • the pad sizes required in the maximum frequency range are in the range of 100 ⁇ m with an associated placement accuracy in the range of 5 ⁇ m. Mastering these techniques is, however, very complex and currently not yet possible in large-scale production.
  • a high-frequency module or a high-frequency substrate can also be installed in or on a housing. It is disadvantageous here that the assembly process is relatively complicated, that the standard housing that is generally used is not optimal, and that many external elements are necessary as a bias circuit.
  • the substrate has at least a first insulating layer, a high-frequency structural layer and a low-frequency structural layer.
  • the insulating layer is intended to electrically isolate the two structural layers from one another.
  • the high-frequency structure layer contains at least one high-frequency distribution network.
  • a voltage signal can be fed into the low-frequency structural position, in particular for the power supply.
  • Both the high-frequency structure layer and the low-frequency structure layer can contain active and passive electrical and / or electronic components, for example a resistor, a capacitor, a coil or else more complex elements such as Resonant circuits, waveguides or a microelectronic circuit.
  • a structure can also be used exclusively for electrical conduction, e.g. B. for connecting differently arranged vias.
  • This substrate has the advantage that high-frequency and low-frequency structures and electronic components can be integrated in a small space.
  • the substrate can simultaneously fulfill a housing function.
  • a second insulation layer is advantageously applied to the first insulation layer. Mechanical protection can thereby be improved and a further high-frequency or low-frequency structural layer can be integrated into the substrate.
  • At least one layer has at least one LTCC base material, because it provides a simple and gentle connection between the individual
  • Layers is given. It is particularly advantageous if all of them Layers consist of an LTCC base material.
  • the LTCC material comes e.g. B. Dupont "Green Tape", Heraeus KQ.
  • the high-frequency structural layer is attached to an outer surface of the substrate, because a simple and interference-free connection to an application module operated at high or high frequency, for example a frequency generator, an MMIC or a microwave antenna, can be produced in this way.
  • an application module operated at high or high frequency for example a frequency generator, an MMIC or a microwave antenna
  • the electromagnetic active connection can, for. B. by means of simple vias or waveguide.
  • the electromagnetic active connection can also be understood to mean that a high-frequency structure layer and a low-frequency structure layer are connected via a frequency generator which is fed by means of the low-frequency structure layer and which conducts the generated high-frequency signal into the high-frequency structure layer.
  • At least one flip-chip contact pad is present on the input side of a low-frequency structure layer.
  • all electrical contacts on the input side are in the form of flip-chip contact pads.
  • the flip-chip contact pads are provided for using the BGA method.
  • the substrate can be placed on the input side of a conventional SMD component.
  • the high-frequency structure layer also has flip-chip contact pads, in particular for accommodating application components. For use with maximum frequencies> 10 GHz, it is particularly advantageous if the contact pads are fine pitch contact pads.
  • the high frequency structure layer has at least one waveguide.
  • the use of a microstrip waveguide and / or a coplanar waveguide is particularly favorable.
  • Application modules can thus be attached to the high-frequency structure layer, for example by means of flip-chip technology, and at the same time can be supplied with the frequency signal by means of a waveguide.
  • a module which has the substrate described above and, on the outside of the substrate on the outside thereof, is equipped with at least one application module which is operatively connected to the high-frequency structural layer.
  • the active connection can, for example, be a direct electrical contact, e.g. be a flip-chip connection or an active connection based on a waveguide or
  • An application element can be, for example, an MMIC, a frequency generator, a microwave antenna or a microchip.
  • the application element is connected to the substrate, in particular the high-frequency structural layer, by means of flip-chip bonding, in particular by means of fine-pitch flip-chip bonding.
  • the at least one application module is in operative connection with the high-frequency structural layer by means of a waveguide.
  • the waveguide is a microstrip waveguide or a coplanar waveguide.
  • the use of an MMIC, a filter or an antenna as an application module is particularly advantageous.
  • the application module can be connected to the waveguide in particular by means of FC technology.
  • At least one application element is a frequency generator or a signal amplifier.
  • the insulation layers do not need to be suitable for high frequencies, but can be stable and simple, e.g. B. with a high layer thickness.
  • a frequency signal can be generated by the frequency generator, fed into the high-frequency structural position, and used by other application modules, eg. B. a transmitting antenna can be tapped.
  • a configuration can also be implemented, for example, in which a frequency signal is supplied from the outside, e.g. B. over the air, and then only amplified by an amplifier.
  • the substrate is particularly advantageous because it is not susceptible to interference and can be used in the maximum frequency range which is typically in the range from 10 GHz upwards.
  • the at least one application element is covered by a cover which, for example, is placed on the substrate.
  • the module is on the input side Can be set up by means of a flip-chip technology, in particular as a ball grid array (“BGA").
  • BGA ball grid array
  • a module is manufactured in such a way that at least one general application module, preferably all application modules, is bonded to the substrate by means of flip-chip technology. Finepitch flip-chip bonding is particularly advantageous in order to guarantee a high and maximum frequency connection that is not susceptible to interference.
  • the bonding can e.g. B. Thermocompression FC bonding, typically under pressure and a temperature of about 300 ° C. This process is sequential, i. H. that the application components are bonded piece by piece to the substrate.
  • FC soldering can be used.
  • the application components and the substrate have solder bumps, typically made of AuSn or PbSn).
  • the substrate is then first fitted with the application modules, the elements being fixed by means of an adhesive point. Then the module is placed in an oven, e.g. B. a reflow oven, heated so that the solder connection is made.
  • the soldering process has the advantage that the substrate and all application components are soldered simultaneously and a high throughput can thus be achieved.
  • the application modules are preferably supplied in “bare chip” form via wafers (eg made of GaAs, Si, ceramic) on blue tape. Alternatively, waffle pack, gel pack, surftape and tape & reel methods can also be used.
  • Module is bonded to an SMD component using flip-chip technology. It is particularly advantageous if this bonding can take place with standard methods, e.g. B. by means of BGA-FC bonding on an FR4 circuit board. Of course, several modules can also be applied to the SMD component. In addition, there may also be other components on the SMD component, e.g. B. a microprocessor.
  • This manufacturing process has the advantage that its high-frequency connection is established between the SMD component. Also, so many individual functions of different technology, e.g. B. modules made of Si, GaAs,
  • InP ceramics, LTCC, etc., can be combined into a functional and inexpensive component.
  • the module is applied to the SMD component by means of FC soldering. If the module has already been bonded to the substrate using FC soldering, please note that bumps with a higher melting point, e.g. B. from AuSn, are used as in the second soldering, z. B. using PbSn bumps.
  • the assembled modules can be further processed in the standard SMD manufacturing process as drop-in SMD modules.
  • a dosage form for the modules come e.g. B.
  • the SMD process can, for example, do the following: screen printing the circuit board (mostly standard circuit board made of FR4), SMD assembly of the SMD board with the modules and then reflow soldering.
  • the specified process flow in connection with the flexible module concept has the advantage that an automatable, integrated manufacturing process is created. Only the module itself is typically manufactured in a clean room, the rest, e.g. The SMD assembly, for example, takes place under a standard condition.
  • the assembly philosophy for module assembly and SMD assembly is largely the same, the main differences are in the positioning requirements. It is therefore also conceivable that the module assembly and the SMD assembly are carried out in one operation. This would further avoid costly and error-prone assembly processes.
  • the modules or components containing them such as SMD components are e.g. preferably applicable in the field of sensors (e.g. distance radar) or in communication technology (e.g. broadband wireless access, last mile)
  • sensors e.g. distance radar
  • communication technology e.g. broadband wireless access, last mile
  • FIG. 1 shows a module using a substrate
  • FIG. 2 shows another module
  • FIG. 3 shows a module
  • FIG. 4 shows an SMD printed circuit board equipped with modules
  • FIG. 5 shows a method for equipping a module
  • FIG. 6 shows a method for equipping an SMD component with modules.
  • Figure 7 shows a high-frequency device according to the prior art
  • FIG. 7 shows a sectional side view of a high-frequency component according to the prior art for an application up to approximately 2 GHz.
  • FIG. 1 shows a sectional view in side view of a module M using a substrate S.
  • a high-frequency structural layer 4 which is predominantly metallic, is applied to a first insulating layer 1 made of LTCC.
  • the function of the high-frequency structure layer 4 corresponds to that of a high-frequency network, which is therefore applied to an outer surface of the substrate S.
  • the high-frequency structure layer 4 includes several waveguides MW, z. B. micro or millimeter waveguide, each fine pitch FPK contact pads for receiving application modules AI, A2, A3 in FC technology.
  • a low-frequency structural layer 3 is applied, the contact pads FCK in standard flip-chip technology, for. B. with respect to the BGA method.
  • the low-frequency structure layer 3 has only conductor tracks, by means of which a voltage signal, typically a low-frequency voltage signal, fed in via the contact pads FCK can be passed on to an application module AI, A2, A3, e.g. B. a high voltage generator.
  • an application module AI A2, A3, e.g. B. a high voltage generator.
  • FIG. 2 shows a sectional view in side view of a module M using a substrate S.
  • the substrate S has two further insulating layers 2, 5 lying one above the other.
  • the insulation layers 1,2,5 consist of LTCC base materials (eg Dupont "Green Tape", Heraeus KQ) and are laminated together. Low-frequency structural layers 6.7 are attached between the insulating layers 1,2,5.
  • a low-frequency structure layer 6 has components B1, B2, the low-frequency structure layer 6 lying above, on the other hand, has no component, but serves to establish a connection between the plated-through holes D of the other structure layers.
  • components Bl, B2 z For example, a resistor, a capacitor, a coil or a more complex element such as an oscillating circuit, waveguide or a microelectronic circuit. This can e.g. They are used, for example, to control and / or monitor a voltage supply, or to process measured values.
  • the insulating layers 1, 2, 5 are designed as LTCC layers, because these are only present as solid ceramics after heating, and are relatively flexible beforehand.
  • structural layers can be applied to them in a simple manner, e.g. B. as a thin layer in screen printing technology.
  • the components B1, B2 of a structural layer 3, 6, 7 can also be applied in screen printing. This can be achieved, for example, by printing resistance pastes, etc.
  • Such principles of applying structures are known from thick or thin layer technology.
  • Both the high-frequency structure layer 4 and the low-frequency structure layers 3, 6, 7 can contain active and passive electrical and / or electronic components.
  • the different structural positions 3, 4, 6, 7. each perform different tasks, which may also lie in different frequency ranges.
  • a combination of low-frequency and high or ultra-high frequency functions in the substrate S has the advantage that a complete and compact unit is produced.
  • At least one outer structure layer 4 can operate in the high or maximum frequency range, while the structure layers 6, 7 located in the interior of the substrate S operate at low frequency or with direct current. If the inner structural layers 6,7 are also suitable for high frequencies, a coplanar and / or triplate structure is advantageous here. Waves, in particular microwaves and millimeter waves, can be guided via waveguides.
  • the structural layers 3, 4, 6, 7 are processed differently. From cost For this reason, it is preferable to precisely structure a high-frequency structure layer 4, for example using thin-film technology or etched thick-film technology, and to process the low-frequency structures 3, 6, 7 using a coarser structuring process, for example thick layer.
  • the module M has application modules AI, A2, A3 on the outside of the substrate S, connected to the high-frequency structure 4.
  • An application module serves as a high-frequency generator AI. It is connected via plated-through holes D to the FC contact pads FCK on the input side and, on the other hand, can conduct a generated high and maximum frequency signal through the high-frequency structural layer 4 acting as a network to the other application components A2, A3.
  • the high-frequency generator AI is connected to the high-frequency structure 4 by a waveguide MW, to which it is attached by means of fine pitch FC bumps FCB.
  • An application element A2 can of course also be connected to the high-frequency structure 4 by direct contact.
  • Typical application elements AI, A2, A3 are MMICs, discrete semiconductors, ceramic elements (filters etc.), transmitting and / or receiving antennas, high-frequency generators and amplifiers.
  • the module M also includes a cover 8, which consists of a frame and a cover.
  • a cover 8 which consists of a frame and a cover.
  • material z. B dielectric materials or metals in question. Metal has the advantage that there is no radiation. If the module M, however, contains application modules AI, A2, A3 which are radiating, for example antennas, a dielectric cover which is well penetrated by high-frequency or high-frequency technology is advantageous.
  • the FC contact pads FCK of the substrate S are arranged in such a way that they can be connected via a so-called BGA ("ball grid array").
  • BGA ball grid array
  • the substrate S or the module M can by further processing like a standard SMD attachment element ("Surface Mounted Device").
  • a BGA-LTTC module M When using a BGA-LTTC module M, it can also be advantageous if only the radio-frequency-related functions are accommodated in it. All other complex system functions can be accommodated on a base carrier holding module M (e.g. SMD-FR4 board). Such an arrangement has the advantage that a system in which such a BGA / LTTC module M is contained can be manufactured under standard conditions.
  • a base carrier holding module M e.g. SMD-FR4 board
  • the substrate S and the module M are particularly advantageous to use in high and ultra-high frequency technology, particularly in the field of sensors, e.g. B. distance radar and communication technology, e.g. B. Broadband wireless access. Use at maximum frequencies> 10 GHz, in particular greater than 20-30 GHz, is particularly advantageous.
  • a module M is placed in an oblique view.
  • Several application modules AI, ..., A4 are attached to the substrate S in FC technology and connected to one another by means of HF lines as part of the high-frequency structure 4.
  • An application module A3 is an antenna, so that this module M z. B. can be used as a radar, in particular as an FMCW radar.
  • FIG. 4 shows a sectional side view of two modules M, both of which are attached to a standard FR4 circuit board by means of standard flip-chip technology, which in turn are connected to an electrical or electronic system by means of standard SMD assembly is.
  • the two modules M can represent a transmitting and a receiving unit for a microwave radar.
  • FIG. 5 shows a manufacturing method for manufacturing a module M by equipping the substrate S with application modules AI, ..., A4.
  • a substrate S is prefabricated and z. B. stored in a magazine.
  • the substrate S is introduced into a production plant and equipped with the application modules AI, ..., A4 by means of batch processing. All application components AI, ..., A4 are preferably bonded to the substrate S by means of flip-chip technology. Because of the increased demands on connection technology in the highest frequency range> 10 GHz, especially from 30 GHz, there is a difference between application modules
  • the bonding can e.g. B. Thermocompression FC bonding, but FC soldering is preferred.
  • the application modules AI, ..., A4 and the substrate S have solder bumps, typically made of AuSn or PbSn.
  • the substrate S is then first equipped with the application modules AI, ..., A4 ("pick and place"), and then the popular module M in an oven, for. B. a reflow oven, heated so that the solder connection is made.
  • the soldering process has the advantage that the substrate S and all application modules AI, ..., A4 can be connected at the same time, and thus a high throughput can be achieved.
  • the application modules AI, ..., A4 are preferably fed in "bare chip” form over wafers (eg made of GaAs, Si, ceramic) on blue tape.
  • wafers eg made of GaAs, Si, ceramic
  • waffle pack, gel pack, surf tape and tape & reel methods can also be used.
  • the high frequency connections are typically carried out in a clean room. After the substrate S has been populated, the high-frequency module M is ready for further processing. It can now be stored outside the clean room, e.g. B. in another magazine. This manufacturing process can be used for all possible high and high frequency devices.
  • FIG. 6 shows a further production method in which at least one popular module M is processed further.
  • the module M is treated as a compact SMD application module and connected to an SMD component T with a standard SMD circuit board L.
  • the module M can of course also be bonded to another part of the SMD component T.
  • a bare FR4 SMD circuit board L is taken from a magazine and its wiring is applied by means of screen printing. Then the circuit board L is equipped with at least one popular module M, preferably by means of FC bonding, in particular FC soldering. It is particularly advantageous if this bonding takes place using standard methods, e.g. B. by means of BGA-FC bonding on an FR4 circuit board.
  • modules M happens z. B. by means of tape & reel, tray, Auer boat, surf tape etc.
  • other components typically standard SMD components, can also be applied to the SMD component T, typically using "tape & reel".
  • the connection between the modules M and the printed circuit board T is preferably made by means of reflow bonding.
  • the melting temperature T2 when soldering the standard SMD bumps e.g. from PbSn
  • the soldering temperature Tl when soldering the application modules AI, ..., A4 to the substrate S e.g. using AuSn as the material of the solder bumps.
  • modules M can also be mounted on the SMD board L be applied.
  • This manufacturing method has the advantage that a connection suitable for the highest frequency is established between the SMD component T. Also, so many individual functions of different technology, e.g. B. modules made of Si, GaAs, InP, ceramics, LTCC, etc., can be assembled into a functional and inexpensive component.
  • the method is not restricted to a specific type of module or SMD component.
  • By merging the module and SMD production it is possible to implement high and ultra-high frequency applications and low frequency applications on one component, and only to produce the necessary work steps under more stringent conditions (clean room).
  • the idea is applicable to reduce complex process steps (for high frequency applications etc.) to a minimum and to use standard process steps as extensively as possible.

Abstract

The invention relates to a substrate (S), comprising at least one first insulating layer (1), at least one high-frequency structural layer (4) that contains a high-frequency distributor network, at least one low-frequency structural layer (3) into which a voltage signal can be feed at the input side, the high-frequency structural layer (4) being separated from the low-frequency layer (3) by the insulating layer (1).

Description

Beschreibungdescription
Substrat und ModulSubstrate and module
Die Erfindung betrifft ein Substrat, ein Modul unter Verwendung des Substrats sowie eines Verfahren zur Herstellung des Moduls und eines das Modul beinhaltenden SMD-Bauteils .The invention relates to a substrate, a module using the substrate and a method for producing the module and an SMD component containing the module.
An viele Module, d. h. ein modular aufgebaute Bauelemente, werden hohe fertigungstechnologische Anforderungen gestellt, beispielsweise bezüglich einer Bestückung bzw. Fertigung unter Reinraumbedingungen. Beispielsweise für Höchstfrequenz- Module ist so eine wirtschaftliche Produktion nur eingeschränkt möglich. In diesem Fall existiert keine Möglichkeit zur großserien-tauglichen Fertigung eines Moduls für eine Applikationsfrequenz ab ca. 10 GHz, bei denen keine Standard- SMD( "Surface Mounted Device" ) -Fertigung mehr möglich ist.To many modules, i. H. a modular component, high production technology requirements are placed, for example with regard to assembly or production under clean room conditions. For example, for high-frequency modules, economic production is only possible to a limited extent. In this case, there is no possibility of mass-production of a module for an application frequency from approx. 10 GHz, for which standard SMD ("Surface Mounted Device") production is no longer possible.
Ein Höchstfrequenz-Baustein basiert bisher in der Regel auf einem in Dünnfilm-Technik ein- oder zweiseitig strukturiertem Al203-Keramiksubstrat . Die heutige Auflösung einer Dünnfilm- strukturierten Keramik liegt im Bereich weniger μm, bei Dickschichtkeramik bei ca. 100 μm und bei einer geätzten Dickschicht bei ca. 5-10 μ . Für eine niederfrequente Anwendung (z. B. in der Automobiltechnik zur Fertigung einer Leiterplatte für eine elektronische Motorsteuerung) wird die sogenannte "LTCC"-Technologie (Low Temperature Cofired Ceramic) eingesetzt. Eine Mehrlagentechnik ist auch für den Hochfrequenz (HF) -Bereich bis ca. 2 GHz möglich.Up to now, a high-frequency component has generally been based on an Al 2 0 3 ceramic substrate structured on one or two sides using thin-film technology. Today's resolution of thin-film structured ceramics is in the range of a few μm, for thick-layer ceramics around 100 μm and for an etched thick layer around 5-10 μ. The so-called "LTCC" technology (Low Temperature Cofired Ceramic) is used for a low-frequency application (for example in automotive technology for producing a printed circuit board for electronic motor control). Multi-layer technology is also possible for the high frequency (HF) range up to approx. 2 GHz.
In der Verbindungstechnologie sind beispielsweise Flip-Chip- (FC)-, Chip-Size Packaging (CSP) - und Wafer Scale Packaging (WSP) -Technologien zur Realisierung hoher Bestückungsdichten bekannt. Dabei ist ein SMD-Fertigungsautomat in der Lage, FC- /BGA ("Ball Grid Array" ) -/CSP-Bausteine, beispielsweise für mobile Telefone, zu verarbeiten. Dabei werden typischerweise in der SMD-Bestückungstechnik Pad-/Pitch-Größen von ca. 500 μ fertigungstechnisch beherrscht; die Bestückungsgenauigkeit liegt im Bereich von ± 50 μm. Beim Übergang zur Höchstfrequenz, typischerweise > 30 GHz und noch bis 100 GHz, ist zu beachten, dass hier deutliche höhere Anforderungen gelten und die im Höchstfrequenz-Bereich benötigten Padgrößen liegen im Bereich von 100 μm mit einer zugehörigen Platziergenauigkeit im Bereich von 5 μm. Die Beherrschung dieser Techniken ist allerdings sehr aufwendig und zur Zeit großserientechnisch noch nicht möglich.In connection technology, for example, flip-chip (FC), chip-size packaging (CSP) and wafer scale packaging (WSP) technologies for realizing high component densities are known. An SMD automatic manufacturing machine is able to process FC / BGA ("Ball Grid Array") / CSP modules, for example for mobile telephones. Typically, SMD assembly technology uses pad / pitch sizes of approx. 500 μ mastered production technology; the placement accuracy is in the range of ± 50 μm. When changing to the maximum frequency, typically> 30 GHz and up to 100 GHz, it should be noted that significantly higher requirements apply here and the pad sizes required in the maximum frequency range are in the range of 100 μm with an associated placement accuracy in the range of 5 μm. Mastering these techniques is, however, very complex and currently not yet possible in large-scale production.
Ein Hochfrequenz-Modul bzw. ein Hochfrequenz-Substrat kann auch in bzw. auf einem Gehäuse ein- bzw. aufgebaut werden. Dabei ist nachteilig, dass der Montageprozess relativ kompliziert ist, das in der Regel eingesetzte Standardgehäuse nicht optimal ist und dass viele externe Elemente als Bias- Beschaltung notwendig sind.A high-frequency module or a high-frequency substrate can also be installed in or on a housing. It is disadvantageous here that the assembly process is relatively complicated, that the standard housing that is generally used is not optimal, and that many external elements are necessary as a bias circuit.
Es ist die Aufgabe der vorliegenden Erfindung, eine Möglichkeit zum vereinfachten Aufbau eines Höchstfrequenz- Bauelementes bereitzustellen.It is the object of the present invention to provide a possibility for the simplified construction of a high-frequency component.
Diese Aufgabe wird mittels eines Substrats gemäß Patentanspruch 1 sowie eines Moduls gemäß Patentanspruch 11 gelöst.This object is achieved by means of a substrate according to patent claim 1 and a module according to patent claim 11.
Das Substrat weist mindestens eine erste Isolierlage, eine Hochfrequenz-Strukturlage sowie eine Niederfrequenz- Strukturlage auf .The substrate has at least a first insulating layer, a high-frequency structural layer and a low-frequency structural layer.
Die Isolierlage soll die beiden Strukturlagen elektrisch ge- geneinander isolieren. Die Hochfrequenz-Strukturlage beinhaltet mindestens ein Hochfrequenz-Verteilernetzwerk. In die Niederfrequenz-Strukturlage ist ein Spannungssignal einspeisbar, insbesondere zur Stromversorgung. Sowohl die Hochfrequenz-Strukturlage als auch die Niederfrequenz-Strukturlage können aktive und passive elektrische und/oder elektronische Bauelemente enthalten, beispielsweise einen Widerstand, einen Kondensator, eine Spule oder auch komplexere Elemente wie Schwingkreise, Wellenleiter oder eine mikroelektronische Schaltung. Es kann eine Struktur aber auch ausschließlich der elektrischen Leitung dienen, z. B. zur Verbindung unterschiedlich angeordneter Durchkontaktierungen.The insulating layer is intended to electrically isolate the two structural layers from one another. The high-frequency structure layer contains at least one high-frequency distribution network. A voltage signal can be fed into the low-frequency structural position, in particular for the power supply. Both the high-frequency structure layer and the low-frequency structure layer can contain active and passive electrical and / or electronic components, for example a resistor, a capacitor, a coil or else more complex elements such as Resonant circuits, waveguides or a microelectronic circuit. A structure can also be used exclusively for electrical conduction, e.g. B. for connecting differently arranged vias.
Dieses Substrat besitzt den Vorteil, dass Hochfrequenz- und Niederfrequenzstrukturen sowie elektronische Bauelemente auf engem Raum integriert werden können. Das Substrat kann gleichzeitig eine Gehäusefunktion erfüllen.This substrate has the advantage that high-frequency and low-frequency structures and electronic components can be integrated in a small space. The substrate can simultaneously fulfill a housing function.
Daraus ergibt sich der Vorteil einer Kostenreduzierung, indem mehrere Teilfunktionen in dem kompakten Substrat integriert werden können und damit kosten- und fehlerträchtige Bestü- ckungs- und Testprozesse entfallen können. Dabei ist es durchaus möglich, dass einzelne Komponenten des Substrats, beispielsweise ein eingesetztes Material teurer sein kann als bei einer Herstellung mehrerer Teilkomponenten.This results in the advantage of a cost reduction in that several subfunctions can be integrated in the compact substrate and thus assembly and test processes that are costly and error-prone can be omitted. It is entirely possible that individual components of the substrate, for example a material used, can be more expensive than in the production of several subcomponents.
Weiterhin entfallen mögliche Fehlerquellen, die sich aus ei- ner externen Verdrahtung herkömmlicher Bauelemente ergeben.Furthermore, possible sources of error, which result from external wiring of conventional components, are eliminated.
Vorteilhafterweise ist auf der ersten Isolierlage eine zweite Isolierlage aufgebracht. Dadurch kann ein mechanischer Schutz verbessert werden, und es kann eine weitere Hochfrequenz- o- der Niederfrequenz-Strukturlage in das Substrat integriert werden .A second insulation layer is advantageously applied to the first insulation layer. Mechanical protection can thereby be improved and a further high-frequency or low-frequency structural layer can be integrated into the substrate.
Zur Integration weiterer Funktionen ist es vorteilhaft, mehr als zwei Isolierlagen aufeinander zu stapeln, wobei zweckmä- ßigerweise zwischen jeder Isolierlage eine Strukturlage vorhanden ist.To integrate further functions, it is advantageous to stack more than two insulation layers on top of one another, with a structure layer expediently being present between each insulation layer.
Es ist günstig, wenn mindestens eine Lage mindestens ein LTCC-Grundmaterial aufweist, weil so eine Möglichkeit zur einfachen und schonenden Verbindung zwischen den einzelnenIt is advantageous if at least one layer has at least one LTCC base material, because it provides a simple and gentle connection between the individual
Lagen gegeben ist. Insbesondere vorteilhaft ist es, wenn alle Lagen aus einem LTCC-Grundmaterial bestehen. Als LTCC- Material kommt z. B. Dupont "Green Tape", Heraeus KQ .Layers is given. It is particularly advantageous if all of them Layers consist of an LTCC base material. The LTCC material comes e.g. B. Dupont "Green Tape", Heraeus KQ.
Es ist auch günstig, wenn die Hochfrequenz-Strukturlage an einer Außenfläche des Substrats angebracht ist, weil sich so eine einfache und störunanfällige Verbindung zu einem mit Hoch- bzw. Hochstfrequenz betriebenen Anwendungsbaustein, beispielsweise einem Frequenzgenerator, einem MMIC oder einer Mikrowellenantenne, herstellbar ist. Es ist aber auch möglich, eine elektromagnetische Wirkverbindung zwischen Hochfrequenz-Strukturl ge und einem und/oder mehreren Anwendungsbausteinen mittels eines die Isolierschicht durchdringenden Strahlungsfeldes herzustellen, beispielsweise mittels eines Wellenleiters.It is also favorable if the high-frequency structural layer is attached to an outer surface of the substrate, because a simple and interference-free connection to an application module operated at high or high frequency, for example a frequency generator, an MMIC or a microwave antenna, can be produced in this way. However, it is also possible to establish an effective electromagnetic connection between high-frequency structures and one and / or more application modules by means of a radiation field penetrating the insulating layer, for example by means of a waveguide.
Es kann auch günstig sein, wenn eine elektromagnetische Wirkverbindung zwischen zwei oder mehreren Strukturlagen vorhanden ist, beispielsweise zwischen zwei Niederfrequenz- Strukturlagen. Die elektromagnetische Wirkverbindung lässt sich z. B. mittels einfacher Durchkontaktierungen oder mittels Wellenleitung herstellen. Im weitesten Sinne kann unter der elektromagnetische Wirkverbindung auch verstanden werden, dass eine Hochfrequenz-Strukturlage und eine Niederfrequenz- Strukturlage über einen Frequenzgenerator verbunden sind, der mittels der Niederfrequenz-Strukturlage gespeist wird und der das erzeugte Hochfrequenzsignal in die Hochfrequenz- Strukturlage leitet.It can also be advantageous if there is an electromagnetic active connection between two or more structural layers, for example between two low-frequency structural layers. The electromagnetic active connection can, for. B. by means of simple vias or waveguide. In the broadest sense, the electromagnetic active connection can also be understood to mean that a high-frequency structure layer and a low-frequency structure layer are connected via a frequency generator which is fed by means of the low-frequency structure layer and which conducts the generated high-frequency signal into the high-frequency structure layer.
Es wird bevorzugt, wenn eingangsseitig an einer Niederfre- quenz-Strukturlage mindestens ein Flip-Chip-Kontaktpad vorhanden ist. Insbesondere ist es zur einfachen und sicheren Montage vorteilhaft, wenn alle eingangsseitigen elektrischen Kontakte in Form von Flip-Chip-Kontaktpads vorliegen. Dabei ist es besonders einfach, wenn die Flip-Chip-Kontaktpads zur Verwendung der BGA-Methode vorgesehen sind. Dadurch kann das Substrat eingangsseitig auf ein herkömmliches SMD-Bauteil aufgesetzt werden. Zur sicheren und schnellen Aufbringung ist es vorteilhaft, wenn auch die Hochfrequenz-Strukturläge Flip-Chip-Kontaktpads aufweist, insbesondere zur Aufnahme von Anwendungsbausteinen. Zur Verwendung mit Höchstfrequenzen > 10 GHz ist es besonders günstig, wenn die Kontaktpads Finepitch-Kontaktpads sind.It is preferred if at least one flip-chip contact pad is present on the input side of a low-frequency structure layer. In particular, for simple and safe installation, it is advantageous if all electrical contacts on the input side are in the form of flip-chip contact pads. It is particularly simple if the flip-chip contact pads are provided for using the BGA method. As a result, the substrate can be placed on the input side of a conventional SMD component. For safe and quick application, it is advantageous if the high-frequency structure layer also has flip-chip contact pads, in particular for accommodating application components. For use with maximum frequencies> 10 GHz, it is particularly advantageous if the contact pads are fine pitch contact pads.
Zur Verwendung von Hoch- und Hochstfrequenz- Anwendungsbausteinen ist es vorteilhaft, wenn die Hochfrequenz- Strukturlage mindestens einen Wellenleiter aufweist. Besonders günstig ist dabei die Verwendung eines Mikrostreifen- Wellenleiters und/oder eines koplanaren Wellenleiters. Anwendungsbausteine können so zum Beispiel mittels Flip-Chip- Technik an der Hochfrequenz-Strukturläge befestigt werden und gleichzeitig mittels eines Wellenleiters mit dem Frequenzsignal versorgt werden .To use high and high frequency application modules, it is advantageous if the high frequency structure layer has at least one waveguide. The use of a microstrip waveguide and / or a coplanar waveguide is particularly favorable. Application modules can thus be attached to the high-frequency structure layer, for example by means of flip-chip technology, and at the same time can be supplied with the frequency signal by means of a waveguide.
Erfindungsgemäß ist weiterhin ein Modul, welches das oben beschriebene Substrat aufweist, und bei eine Außenseite des Substrats an dessen Außenseite mit mindestens einem Anwen- dungsbaustein bestückt ist, der in Wirkverbindung mit der Hochfrequenz-Strukturlage in Wirkverbindung steht. Die Wirkverbindung kann beispielsweise ein direkter elektrischer Kontakt, z.B. eine Flip-Chip-Verbindung sein oder auch eine Wirkverbindung aus der Basis einer Wellenleitung oder eineAccording to the invention, there is also a module which has the substrate described above and, on the outside of the substrate on the outside thereof, is equipped with at least one application module which is operatively connected to the high-frequency structural layer. The active connection can, for example, be a direct electrical contact, e.g. be a flip-chip connection or an active connection based on a waveguide or
Kombination daraus. Ein Anwendungselement kann beispielsweise ein MMIC, ein Frequenzgenerator, eine Mikrowellenantenne oder ein Mikrochip sein.Combination of them. An application element can be, for example, an MMIC, a frequency generator, a microwave antenna or a microchip.
Es ist besonders vorteilhaft, wenn das Anwendungseiement mittels Flip-Chip-Bondens, insbesondere mittels Finepitch-Flip- Chip-Bondens mit dem Substrat, insbesondere der Hochfrequenz- Strukturlage, verbunden ist.It is particularly advantageous if the application element is connected to the substrate, in particular the high-frequency structural layer, by means of flip-chip bonding, in particular by means of fine-pitch flip-chip bonding.
Zur einfachen Herstellung und zum präzisen Betrieb, insbesondere von mikrowellen-gespeisten Bauteilen wie einem MMIC ist es vorteilhaft, wenn das mindestens eine Anwendungsbaustein mittels eines Wellenleiters mit der Hochfrequenz-Strukturlage in Wirkverbindung steht. Dabei wird es besonders bevorzugt, wenn der Wellenleiter ein Mikrostreifen-Wellenleiter oder ein Koplanar-Wellenleiter ist. Besonders vorteilhaft ist dabei die Verwendung eines MMIC, eines Filters oder einer Antenne als Anwendungsbaustein. Der Anwendungsbaustein kann insbesondere mittels FC-Technik mit dem Wellenleiter verbunden sein.For simple manufacture and precise operation, in particular of microwave-powered components such as an MMIC, it is advantageous if the at least one application module is in operative connection with the high-frequency structural layer by means of a waveguide. It is particularly preferred if the waveguide is a microstrip waveguide or a coplanar waveguide. The use of an MMIC, a filter or an antenna as an application module is particularly advantageous. The application module can be connected to the waveguide in particular by means of FC technology.
Zwar ist es möglich, eine Hochfrequenz-Zuleitung durch das Substrat zu führen, aber es ist günstig, wenn mindestens ein Anwendungselement ein Frequenzgenerator oder ein Signalverstärker ist. Dadurch brauchen die Isolierlagen nicht hochfrequenztauglich zu sein, sondern können stabil und einfach aufgebaut sein, z. B. mit hoher Schichtdicke. Durch den Fre- quenzgenerator kann ein Frequenzsignal erzeugt, in die Hochfrequenz-Strukturlage eingespeist und von anderen Anwendungsmodulen, z. B. einer Sendeantenne, abgegriffen werden. Es kann aber beispielsweise auch eine Konfiguration realisiert sein, bei der ein Frequenzsignal von außen zugeführt wird, z. B. über die Luft, und dann nur durch einen Verstärker verstärkt wird. Dies kann dadurch geschehen, dass ein Anwendungsbaustein eine Empfangsantenne ist, deren Signal verstärkt und dann weitergeleitet wird. Das Substrat ist besonders vorteilhaft, weil störunanfällig, einsetzbar im Höchstfrequenzbereich der typischerweise im Bereich von 10 GHz aufwärts liegt. Insbesondere vorteilhaft ist ein Anwendungsbereich zwischen 10 GHz und 200 GHz, speziell zwischen 20 GHz und 100 GHz.It is possible to lead a high-frequency feed line through the substrate, but it is advantageous if at least one application element is a frequency generator or a signal amplifier. As a result, the insulation layers do not need to be suitable for high frequencies, but can be stable and simple, e.g. B. with a high layer thickness. A frequency signal can be generated by the frequency generator, fed into the high-frequency structural position, and used by other application modules, eg. B. a transmitting antenna can be tapped. However, a configuration can also be implemented, for example, in which a frequency signal is supplied from the outside, e.g. B. over the air, and then only amplified by an amplifier. This can be done by an application module being a receiving antenna, the signal of which is amplified and then passed on. The substrate is particularly advantageous because it is not susceptible to interference and can be used in the maximum frequency range which is typically in the range from 10 GHz upwards. An application range between 10 GHz and 200 GHz, in particular between 20 GHz and 100 GHz, is particularly advantageous.
Zur Erhöhung der Lebensdauer eines Moduls ist es günstig, wenn das mindestens eine Anwendungseiement mittels eines Deckels abgedeckt ist, welcher beispielsweise auf dem Substrat aufsetzt .In order to increase the service life of a module, it is expedient if the at least one application element is covered by a cover which, for example, is placed on the substrate.
Zur einfachen und präzisen sowie störunanfälligen Befestigung des Moduls auf einem anderen Bauteil, insbesondere einem SMD- Bauteil, ist es vorteilhaft, wenn das Modul eingangsseitig •mittels einer Flip-Chip-Technik, insbesondere als Ball Grid Array ("BGA") aufsetzbar ist.For simple, precise and failure-prone attachment of the module to another component, in particular an SMD component, it is advantageous if the module is on the input side Can be set up by means of a flip-chip technology, in particular as a ball grid array ("BGA").
Insbesondere vorteilhaft ist es, wenn Elemente nur in Flip- Chip-Technik am Substrat befestigt werden, z. B. die Anwen- dungsbausteine in Fine-Pitch-Flip-Chip-Technik einerseits, und das Substrat an einem SMD-Bauteil in Standard-BGA-FC- Technik andererseits.It is particularly advantageous if elements are only attached to the substrate using flip-chip technology, for. B. the application modules in fine pitch flip chip technology on the one hand, and the substrate on an SMD component in standard BGA-FC technology on the other.
Erfindungsgemäß ist es auch, wenn ein Modul dergestalt hergestellt wird, dass mindestens ein allgemeiner Anwendungsbaustein, vorzugsweise alle Anwendungsbausteine, mittels Flip- Chip-Technik auf das Substrat gebondet wird. Insbesondere zur Gewährleistung einer störunanfälligen Hoch- und Höchstfre- quenz-Verbindung ist ein Finepitch-Flip-Chip-Bonden günstig.It is also in accordance with the invention if a module is manufactured in such a way that at least one general application module, preferably all application modules, is bonded to the substrate by means of flip-chip technology. Finepitch flip-chip bonding is particularly advantageous in order to guarantee a high and maximum frequency connection that is not susceptible to interference.
Das Bonden kann z. B. Thermokompressions-FC-Bonden sein, typischerweise unter Druck und einer Temperatur von ca. 300 °C. Dieser Prozess ist sequentiell, d. h. , dass die Anwendungs- bausteine Stück für Stück auf das Substrat gebondet werden. Alternativ kann FC-Löten verwendet werden. Dabei tragen die Anwendungsbausteine und das Substrat Lötbumps, typischerweise aus AuSn oder PbSn) . Das Substrat wird dann zunächst mit den Anwendungsbausteinen bestückt, wobei die Elemente mittels ei- nes Klebepunktes fixiert sind. Dann wird das Modul in einem Ofen, z. B. einem Reflow-Ofen, erhitzt, so dass die Lötverbindung hergestellt wird. Der Lötprozess weist den Vorteil auf, dass das Substrat und alle Anwendungsbausteine gleichzeitig gelötet werden und damit ein hoher Durchsatz erzielbar ist. Die Zuführung der Anwendungsbausteine geschieht bevorzugt in "bare chip"-Form über Wafer (z. B. aus GaAs, Si, Keramik) auf Blue Tape. Alternativ sind auch Wafflepack-, Gelpack-, Surftape- und Tape & Reel-Methoden einsetzbar.The bonding can e.g. B. Thermocompression FC bonding, typically under pressure and a temperature of about 300 ° C. This process is sequential, i. H. that the application components are bonded piece by piece to the substrate. Alternatively, FC soldering can be used. The application components and the substrate have solder bumps, typically made of AuSn or PbSn). The substrate is then first fitted with the application modules, the elements being fixed by means of an adhesive point. Then the module is placed in an oven, e.g. B. a reflow oven, heated so that the solder connection is made. The soldering process has the advantage that the substrate and all application components are soldered simultaneously and a high throughput can thus be achieved. The application modules are preferably supplied in “bare chip” form via wafers (eg made of GaAs, Si, ceramic) on blue tape. Alternatively, waffle pack, gel pack, surftape and tape & reel methods can also be used.
Es ist auch erfinderisch, mindestens ein zusammengesetztesIt is also inventive to have at least one compound
Modul mittels Flip-Chip-Technik auf ein SMD-Bauteil gebondet wird. Dabei ist es besonders vorteilhaft, wenn dieses Bonden mit Standard-Methoden stattfinden kann, z. B. mittels BGA-FC- Bondens auf eine FR4-Leiterplatte. Selbstverständlich können auch mehrere Module auf das SMD-Bauteil aufgebracht werden. Daneben können sich auch andere Bauelemente auf dem SMD- Bauteil befinden, z. B. ein Mikroprozessor.Module is bonded to an SMD component using flip-chip technology. It is particularly advantageous if this bonding can take place with standard methods, e.g. B. by means of BGA-FC bonding on an FR4 circuit board. Of course, several modules can also be applied to the SMD component. In addition, there may also be other components on the SMD component, e.g. B. a microprocessor.
Dieses Herstellungsverfahren weist den Vorteil auf, das seine höchstfrequenztaugliche Verbindung zwischen am SMD-Bauteil hergestellt wird. Auch können so viele Einzelfunktionen auch unterschiedlicher Technologie, z. B. Module aus Si, GaAs,This manufacturing process has the advantage that its high-frequency connection is established between the SMD component. Also, so many individual functions of different technology, e.g. B. modules made of Si, GaAs,
InP, Keramik, LTCC usw. , zu einem funktions- und kostengünstigen Bauteil zusammengefügt werden.InP, ceramics, LTCC, etc., can be combined into a functional and inexpensive component.
Zur Gewährleistung eines hohen Durchsatzes ist es günstig, wenn das Modul mittels FC-Lötens auf dem SMD-Bauteil aufgebracht wird. Falls schon das Modul mittels FC-Lötens auf das Substrat gebondet wurde, ist zu beachten, dass für das erste Löten Bumps mit höherem Schmelzpunkt, z. B. aus AuSn, verwendet werden als beim zweiten Löten, z. B. mittels PbSn-Bumps .To ensure high throughput, it is advantageous if the module is applied to the SMD component by means of FC soldering. If the module has already been bonded to the substrate using FC soldering, please note that bumps with a higher melting point, e.g. B. from AuSn, are used as in the second soldering, z. B. using PbSn bumps.
Beispielsweise können die bestückten Module im Standard SMD- Fertigungsprozess als drop-in-SMD-Bausteine weiterverarbeitet werden. Als Darreichungsform für die Module kommen z. B. in Betracht: Tape & Reel, Tray, Surftape und ggf. Auer Boat . Der SMD-Prozess kann zum Beispiel die Vorgänge: Siebdruck der Leiterplatte (meist Standard-Leiterplatte aus FR4) , SMD- Bestückung der SMD-Platine mit den Modulen und danach Reflow- Löten.For example, the assembled modules can be further processed in the standard SMD manufacturing process as drop-in SMD modules. As a dosage form for the modules come e.g. B. Consider: tape & reel, tray, surf tape and possibly Auer boat. The SMD process can, for example, do the following: screen printing the circuit board (mostly standard circuit board made of FR4), SMD assembly of the SMD board with the modules and then reflow soldering.
Der angegebene Prozessablauf in Verbindung mit dem flexiblen Modulkonzept weist den Vorteil auf, dass ein auto atisierba- rer, integrierter Fertigungsprozess entsteht. Nur das Modul selbst wird typischerweise in einem Reinraum gefertigt, der Rest, z. B. die SMD-Bestückung, erfolgt unter einer Standard- bedingung. Die Bestückungsphilosophie bei der Modulbestückung und der SMD-Bestückung ist weitgehend gleich, Unterschiede liegen vor allem in den Anforderungen an die Positionierung.. Es ist somit auch denkbar, dass die Modulbestückung und die SMD-Bestückung in einem Arbeitsgang durchgeführt werden. Dadurch würden kosten- und fehlerträchtige Bestückungsprozesse weiter vermieden.The specified process flow in connection with the flexible module concept has the advantage that an automatable, integrated manufacturing process is created. Only the module itself is typically manufactured in a clean room, the rest, e.g. The SMD assembly, for example, takes place under a standard condition. The assembly philosophy for module assembly and SMD assembly is largely the same, the main differences are in the positioning requirements. It is therefore also conceivable that the module assembly and the SMD assembly are carried out in one operation. This would further avoid costly and error-prone assembly processes.
Die Module oder diese beinhaltende Bauelemente wie SMD- Bauteile sind z.B. bevorzugt anwendbar im Bereich der Senso- rik (z. B. Distanzradar) oder in der Kommunikationstechnik (z.B. Broadband Wireless Access, Last Mile)The modules or components containing them such as SMD components are e.g. preferably applicable in the field of sensors (e.g. distance radar) or in communication technology (e.g. broadband wireless access, last mile)
In den folgenden Ausführungsbeispielen werden das Substrat und das Modul schematisch näher ausgeführt.In the following exemplary embodiments, the substrate and the module are explained in more detail schematically.
Figur 1 zeigt ein Modul unter Verwendung eines Substrats, Figur 2 zeigt ein weiteres Modul, Figur 3 zeigt ein Modul,FIG. 1 shows a module using a substrate, FIG. 2 shows another module, FIG. 3 shows a module,
Figur 4 zeigt eine mit Modulen bestückte SMD-Leiterplatte, Figur 5 zeigt ein Verfahren zur Bestückung eines Moduls, Figur 6 zeigt ein Verfahren zur Bestückung eines SMD-Bauteil mit Modulen.FIG. 4 shows an SMD printed circuit board equipped with modules, FIG. 5 shows a method for equipping a module, FIG. 6 shows a method for equipping an SMD component with modules.
Figur 7 zeigt einen Hochfrequenz-Baustein nach dem Stand der TechnikFigure 7 shows a high-frequency device according to the prior art
Figur 7 zeigt als Schnittdarstellung in Seitenansicht ein Hochfrequenz-Bauelement nach dem Stand der Technik für eine Anwendung bis ca. 2GHz .FIG. 7 shows a sectional side view of a high-frequency component according to the prior art for an application up to approximately 2 GHz.
Figur 1 zeigt als Schnittdarstellung in Seitenansicht ein Modul M unter Verwendung eines Substrats S.FIG. 1 shows a sectional view in side view of a module M using a substrate S.
Auf einer ersten Isolierlage 1 aus LTCC ist eine Hochfrequenz-Strukturlage 4 aufgebracht, die vorwiegend metallisch ist. Die Hochfrequenz-Strukturlage 4 entspricht in ihrer Funktion einem Hochfrequenz-Netzwerk, das also auf einer Au- ßenflache des Substrats S aufgebracht ist. Die Hochfrequenz- Strukturlage 4 beinhaltet mehrere Wellenleiter MW, z. B. Mik- ro- oder Millimeterwellenleiter, die jeweils Finepitch- Kontaktpads FPK zur Aufnahme von Anwendungsbausteinen AI, A2 , A3 in FC-Technik aufweisen.A high-frequency structural layer 4, which is predominantly metallic, is applied to a first insulating layer 1 made of LTCC. The function of the high-frequency structure layer 4 corresponds to that of a high-frequency network, which is therefore applied to an outer surface of the substrate S. The high-frequency structure layer 4 includes several waveguides MW, z. B. micro or millimeter waveguide, each fine pitch FPK contact pads for receiving application modules AI, A2, A3 in FC technology.
Auf der entgegengesetzten Seite der ersten Isolierlage 1 ist eine Niederfrequenz-Strukturlage 3 aufgebracht, die Kontaktpads FCK in Standard Flip-Chip-Technik, z. B. bezüglich der BGA-Methode, aufweist. Im einfachsten Fall weist die Niederfrequenz-Strukturlage 3 nur Leiterbahnen auf, mittels derer ein über die Kontaktpads FCK eingespeistes Spannungssignal, typischerweise ein Niederfrequenz-Spannungssignal, an einen Anwendungsbaustein AI, A2 , A3 weitergeleitet werden kann, z. B. einen Höchstspannungs-Generator . Dazu sind auch Durchkon- taktierungen D durch die erste Isolierlage 1 vorhanden.On the opposite side of the first insulating layer 1, a low-frequency structural layer 3 is applied, the contact pads FCK in standard flip-chip technology, for. B. with respect to the BGA method. In the simplest case, the low-frequency structure layer 3 has only conductor tracks, by means of which a voltage signal, typically a low-frequency voltage signal, fed in via the contact pads FCK can be passed on to an application module AI, A2, A3, e.g. B. a high voltage generator. For this purpose, there are also through-contacts D through the first insulating layer 1.
Figur 2 zeigt als Schnittdarstellung in Seitenansicht ein Modul M unter Verwendung eines Substrats S .FIG. 2 shows a sectional view in side view of a module M using a substrate S.
Das Substrat S weist außer der ersten Isolierlage 1 zwei weitere übereinanderliegende Isolierlagen 2,5 auf. Die Isolier- lagen 1,2,5 bestehen aus LTCC-Grundmaterialien (z. B. Dupont "Green Tape", Heraeus KQ) und sind miteinander laminiert. Zwischen den Isolierlagen 1,2,5 sind Niederfrequenz- Strukturlagen 6,7 angebracht.In addition to the first insulating layer 1, the substrate S has two further insulating layers 2, 5 lying one above the other. The insulation layers 1,2,5 consist of LTCC base materials (eg Dupont "Green Tape", Heraeus KQ) and are laminated together. Low-frequency structural layers 6.7 are attached between the insulating layers 1,2,5.
Eine Niederfrequenz-Strukturlage 6 weist Bauelemente Bl, B2 auf, die darüber liegende Niederfrequenz-Strukturlage 6 weist hingegen kein Bauelement auf, sondern dient dazu, eine Verbindung zwischen den Durchkontaktierungen D der anderen Strukturlagen herzustellen. Als Bauelemente Bl, B2 können z. B. beispielsweise ein Widerstand, ein Kondensator, eine Spule oder auch ein komplexeres Elemente wie ein Schwingkreis, Wellenleiter oder eine mikroelektronische Schaltung sein. Dies kann z. B. zur Steuerung und/oder Überwachung einer Spannungsversorgung dienen oder auch zur Aufarbeitung von Mess- werten. Es ist vorteilhaft, wenn die Isolierlagen 1,2,5 als LTCC- Lagen ausgeführt sind, weil diese erst nach einem Erhitzen als feste Keramik vorliegen, und vorher vergleichsweise flexibel sind. Zudem könne auf sie Strukturlagen in einfacher Weise aufgebracht werden, z. B. als Dünnschicht in Siebdrucktechnik. Dabei können z. B. auch die Bauelemente Bl, B2 einer Strukturlage 3,6,7 in Siebdruck aufgebracht werden. Dies lässt sich beispielsweise durch Aufdrucken von Widerstands- pasten etc. realisieren. Derartige Prinzipien der Aufbringung von Strukturen sind aus der Dick- bzw. Dünnschichttechnik bekannt .A low-frequency structure layer 6 has components B1, B2, the low-frequency structure layer 6 lying above, on the other hand, has no component, but serves to establish a connection between the plated-through holes D of the other structure layers. As components Bl, B2 z. For example, a resistor, a capacitor, a coil or a more complex element such as an oscillating circuit, waveguide or a microelectronic circuit. This can e.g. They are used, for example, to control and / or monitor a voltage supply, or to process measured values. It is advantageous if the insulating layers 1, 2, 5 are designed as LTCC layers, because these are only present as solid ceramics after heating, and are relatively flexible beforehand. In addition, structural layers can be applied to them in a simple manner, e.g. B. as a thin layer in screen printing technology. Here, for. B. the components B1, B2 of a structural layer 3, 6, 7 can also be applied in screen printing. This can be achieved, for example, by printing resistance pastes, etc. Such principles of applying structures are known from thick or thin layer technology.
Sowohl die Hochfrequenz-Strukturlage 4 als auch die Niederfrequenz-Strukturlagen 3,6,7 können aktive und passive elekt- rische und/oder elektronische Bauelemente enthalten.Both the high-frequency structure layer 4 and the low-frequency structure layers 3, 6, 7 can contain active and passive electrical and / or electronic components.
Somit werden durch die verschiedenen Strukturlagen 3 , 4, 6, 7. jeweils unterschiedliche Aufgaben erfüllt, welche zudem in unterschiedlichen Frequenzbereichen liegen können . Eine Vereinigung von Niederfrequenz- und Hoch- bzw. Hochst- frequenzfunktionen in dem Substrat S hat den Vorteil, dass eine komplette und kompakte Einheit hergestellt wird.Thus, the different structural positions 3, 4, 6, 7. each perform different tasks, which may also lie in different frequency ranges. A combination of low-frequency and high or ultra-high frequency functions in the substrate S has the advantage that a complete and compact unit is produced.
Allgemein wird es bevorzugt, wenn mindestens eine äußere Strukturlage 4 Hoch- bzw. Höchstfrequenzbereich arbeiten kann, während die eher im Inneren des Substrats S befindlichen Strukturlagen 6,7 niederfrequent bzw. mit Gleichstrom arbeiten. Falls auch die inneren Strukturlagen 6,7 hochfre- quenz-tauglich sind, bietet sich hier vorteilhafterweise eine koplanare und/oder triplate Struktur an. Über Wellenleiter können Wellen, insbesondere Mikrowellen und Millimeterwellen geführt werden.In general, it is preferred if at least one outer structure layer 4 can operate in the high or maximum frequency range, while the structure layers 6, 7 located in the interior of the substrate S operate at low frequency or with direct current. If the inner structural layers 6,7 are also suitable for high frequencies, a coplanar and / or triplate structure is advantageous here. Waves, in particular microwaves and millimeter waves, can be guided via waveguides.
Bei einer Aufteilung der Hochfrequenz- und Niederfrequenz- Funktionen auf innere und äußere, Bereiche des Substrats S liegenden Strukturen, ist es von Vorteil, wenn die Strukturlagen 3,4,6,7 unterschiedlich prozessiert werden. Aus Kosten- gründen kommt es vorzugsweise in Betracht, eine Hochfrequenz- Strukturlage 4 präzise zu strukturieren, beispielsweise mit Dünnfilmtechnik oder geätzter Dickschichttechnik, und die Niederfrequenz-Strukturen 3,6,7 mit einem gröberen Struktu- rierungsprozess, beispielsweise Dickschicht, zu bearbeiten.When the high-frequency and low-frequency functions are divided between inner and outer structures of the substrate S, it is advantageous if the structural layers 3, 4, 6, 7 are processed differently. From cost For this reason, it is preferable to precisely structure a high-frequency structure layer 4, for example using thin-film technology or etched thick-film technology, and to process the low-frequency structures 3, 6, 7 using a coarser structuring process, for example thick layer.
Das Modul M weist auf der Außenseite des Substrats S, mit der Hochfrequenz-Struktur 4 verbunden, Anwendungsbausteine AI, A2, A3 auf. Ein Anwendungsbaustein dient als Hochstfrequenz- Generator AI. Er ist über Durchkontaktierungen D mit den ein- gangsseitigen FC-Kontaktpads FCK verbunden und kann andererseits ein erzeugtes Hoch- und Höchstfrequenzsignal durch die als Netzwerk wirkende Hochfrequenz-Strukturläge 4 zu den anderen Anwendungsbausteinen A2 , A3 leiten.The module M has application modules AI, A2, A3 on the outside of the substrate S, connected to the high-frequency structure 4. An application module serves as a high-frequency generator AI. It is connected via plated-through holes D to the FC contact pads FCK on the input side and, on the other hand, can conduct a generated high and maximum frequency signal through the high-frequency structural layer 4 acting as a network to the other application components A2, A3.
Der Höchstfrequenz-Generator AI steht mit einem Wellenleiter MW, an dem er mittels Finepitch-FC-Bumps FCB befestigt ist, mit der Hochfrequenz-Struktur 4 in Verbindung. Selbstverständlich kann ein Anwendungseiement A2 auch durch direkten Kontakt mit der Hochfrequenz-Struktur 4 verbunden sein. Typische Anwendungseiemente AI, A2 , A3 sind MMICs, diskrete Halbleiter, Keramikelemente (Filter etc.), Sende-/ und/oder Empfangsantennen, Hochfrequenz-Generatoren und- Verstärker.The high-frequency generator AI is connected to the high-frequency structure 4 by a waveguide MW, to which it is attached by means of fine pitch FC bumps FCB. An application element A2 can of course also be connected to the high-frequency structure 4 by direct contact. Typical application elements AI, A2, A3 are MMICs, discrete semiconductors, ceramic elements (filters etc.), transmitting and / or receiving antennas, high-frequency generators and amplifiers.
Das Modul M beinhaltet weiterhin einen Deckel 8, welcher aus einem Rahmen und einer Abdeckung besteht. Als Material z. B. dielektrische Materialien oder Metalle in Frage. Metall besitzt den Vorteil, dass keine Abstrahlung stattfindet. Falls das Modul M allerdings Anwendungsbausteine AI, A2 , A3 ent- hält, welche strahlend sind, beispielsweise Antennen, ist eine dielektrische Abdeckung, die von Hoch- bzw. Hochstfre- quenz-Technik gut durchdringt wird, vorteilhaft sein.The module M also includes a cover 8, which consists of a frame and a cover. As material z. B. dielectric materials or metals in question. Metal has the advantage that there is no radiation. If the module M, however, contains application modules AI, A2, A3 which are radiating, for example antennas, a dielectric cover which is well penetrated by high-frequency or high-frequency technology is advantageous.
Auf der den Anwendungselementen A2 , A3, AI entgegengesetzten Seite sind die FC-Kontaktpads FCK des Substrats S so angeordnet, dass sie über ein sogenannte BGA (" Ball Grid Array") anschließbar sind. Das Substrat S bzw. das Modul M kann da- durch wie ein Standard-SMD-Aufsatzelement ("Surface Mounted Device") weiterverarbeitet werden.On the side opposite the application elements A2, A3, AI, the FC contact pads FCK of the substrate S are arranged in such a way that they can be connected via a so-called BGA ("ball grid array"). The substrate S or the module M can by further processing like a standard SMD attachment element ("Surface Mounted Device").
Bei Verwendung eines BGA-LTTC-Moduls M kann es auch vorteil- haft sein, wenn in diesem nur die hochfrequenz-nahen Funktionen untergebracht sind. Auf einem das Modul M haltenden Basisträger (z.B. SMD-FR4-Platine) können alle weiteren komplexen Systemfunktionen untergebracht werden. Eine solche Anordnung besitzt den Vorteil, dass ein System, in dem ein solches BGA/LTTC-Modul M enthalten ist, unter Standardbedingungen gefertigt werden kann.When using a BGA-LTTC module M, it can also be advantageous if only the radio-frequency-related functions are accommodated in it. All other complex system functions can be accommodated on a base carrier holding module M (e.g. SMD-FR4 board). Such an arrangement has the advantage that a system in which such a BGA / LTTC module M is contained can be manufactured under standard conditions.
Insbesondere vorteilhaft ist die Verwendung des Substrats S und des Moduls M in der Hoch- und Höchstfrequenz-Technik, insbesondere im Bereich der Sensorik, z. B. Distanzradar und der Kommunikationstechnik, z. B. Broad-Band-Wireless Access. Besonders vorteilhaft ist der Einsatz bei Höchstfrequenzen > 10 GHz, insbesondere größer als 20-30 GHz.It is particularly advantageous to use the substrate S and the module M in high and ultra-high frequency technology, particularly in the field of sensors, e.g. B. distance radar and communication technology, e.g. B. Broadband wireless access. Use at maximum frequencies> 10 GHz, in particular greater than 20-30 GHz, is particularly advantageous.
In Figur 3 wird in Schrägansicht auf ein Modul M gegeben. Auf dem Substrat S sind mehrere Anwendungsbausteine AI, ... , A4 in FC-Technik befestigt und untereinander mittels HF- Leitungen als Teil der Hochf equenz-Struktur 4 verbunden. Ein Anwendungsbaustein A3 ist eine Antenne, so dass dieses Modul M z. B. als Radar, insbesondere als FMCW-Radar, einsetzbar ist.In FIG. 3, a module M is placed in an oblique view. Several application modules AI, ..., A4 are attached to the substrate S in FC technology and connected to one another by means of HF lines as part of the high-frequency structure 4. An application module A3 is an antenna, so that this module M z. B. can be used as a radar, in particular as an FMCW radar.
Figur 4 zeigt als Schnittdarstellung in Seitenansicht zwei Module M, welche beide mittels Standard-Flip-Chip-Technik auf einer Standard-FR4-Leiterplatte angebracht sind, welche selbst wiederum mittels Standard-SMD-Bestückung mit einem e- lektrischen bzw. elektronischen System verbunden ist. Beispielsweise können die beiden Module M eine Sende- und eine Empfangseinheit für ein Mikrowellenradar darstellen.FIG. 4 shows a sectional side view of two modules M, both of which are attached to a standard FR4 circuit board by means of standard flip-chip technology, which in turn are connected to an electrical or electronic system by means of standard SMD assembly is. For example, the two modules M can represent a transmitting and a receiving unit for a microwave radar.
Figur 5 zeigt ein Herstellungsverfahren zur Herstellung eines Moduls M durch Bestückung des Substrats S mit Anwendungsbausteinen AI, ... , A4. Ein Substrat S wird vorgefertigt und z. B. in einem Magazin gelagert. Zur Bestückung wird das Substrat S in eine Ferti- gungsanlage eingeführt und mittels batch processing mit den Anwendungsmodulen AI,..., A4 bestückt. Vorzugsweise werden alle Anwendungsbausteine AI,..., A4 mittels Flip-Chip-Technik auf das Substrat S gebondet. Wegen der erhöhten Anforderungen an die Verbindungstechnik im Höchstfrequenzbereich > 10 GHz, speziell ab 30 GHz, wird zwischen AnwendungsbausteinenFIG. 5 shows a manufacturing method for manufacturing a module M by equipping the substrate S with application modules AI, ..., A4. A substrate S is prefabricated and z. B. stored in a magazine. For assembly, the substrate S is introduced into a production plant and equipped with the application modules AI, ..., A4 by means of batch processing. All application components AI, ..., A4 are preferably bonded to the substrate S by means of flip-chip technology. Because of the increased demands on connection technology in the highest frequency range> 10 GHz, especially from 30 GHz, there is a difference between application modules
AI,..., A4 und Substrat S ein Finepitch-Flip-Chip-Bonden bevorzugt. Dadurch fallen z. B. keine signifikanten parasitären Induktivitäten und Kapazitäten mehr an.AI, ..., A4 and substrate S a fine pitch flip chip bonding is preferred. As a result, z. B. no more significant parasitic inductances and capacitances.
Das Bonden kann z. B. Thermokompressions-FC-Bonden sein, bevorzugt wird allerdings das FC-Löten. Dabei tragen die Anwendungsbausteine AI,..., A4 und das Substrat S Lötbumps, typischerweise aus AuSn oder PbSn. Das Substrat S wird dann zunächst mit den Anwendungsbausteinen AI,..., A4 bestückt ("pick and place"), und dann das populierte Modul M in einem Ofen, z. B. einem Reflow-Ofen, erhitzt, so dass die Lötverbindung hergestellt wird. Der Lötprozess weist den Vorteil auf, dass das Substrat S und alle Anwendungsbausteine AI, ..., A4 gleichzeitig verbunden werden können, und damit ein hoher Durchsatz erzielbar ist. Die Zuführung der Anwendungsbausteine AI, ..., A4 geschieht bevorzugt in "bare chip"-Form über Wafer (z. B. aus GaAs, Si, Keramik) auf Blue Tape. Alternativ sind auch Wafflepack-, Gelpack-, Surftape- und Tape & Reel- Methoden einsetzbar.The bonding can e.g. B. Thermocompression FC bonding, but FC soldering is preferred. The application modules AI, ..., A4 and the substrate S have solder bumps, typically made of AuSn or PbSn. The substrate S is then first equipped with the application modules AI, ..., A4 ("pick and place"), and then the popular module M in an oven, for. B. a reflow oven, heated so that the solder connection is made. The soldering process has the advantage that the substrate S and all application modules AI, ..., A4 can be connected at the same time, and thus a high throughput can be achieved. The application modules AI, ..., A4 are preferably fed in "bare chip" form over wafers (eg made of GaAs, Si, ceramic) on blue tape. Alternatively, waffle pack, gel pack, surf tape and tape & reel methods can also be used.
Die Hochstfrequenz-Verbindungen werden typischerweise in einem Reinraum durchgeführt. Nach der Populierung des Substrats S ist das Hochstfrequenz-Modul M bereit zur Weiterverarbeitung. Es kann nun außerhalb des Reinraums gelagert werden, z. B. in einem weiteren Magazin. Dieses Herstellungsverfahren kann für alle möglichen Hoch- und Höchstfrequenz-Bausteine verwendet werden.The high frequency connections are typically carried out in a clean room. After the substrate S has been populated, the high-frequency module M is ready for further processing. It can now be stored outside the clean room, e.g. B. in another magazine. This manufacturing process can be used for all possible high and high frequency devices.
Figur 6 zeigt ein weiteres Herstellungsverfahren, bei dem mindestens ein populiertes Modul M weiterverarbeitet wird. Dabei wird das Modul M als kompakter SMD-Anwendungsbaustein behandelt und mit einer standardmäßigen SMD-Leiterplatte L zu einem SMD-Bauteil T verbunden. Das Modul M kann aber selbst- verständlich auch auf einen anderen Teil des SMD-Bauteil T gebondet werden.FIG. 6 shows a further production method in which at least one popular module M is processed further. The module M is treated as a compact SMD application module and connected to an SMD component T with a standard SMD circuit board L. The module M can of course also be bonded to another part of the SMD component T.
In diesem Anwendungsbeispiel wird eine unbestückte FR4-SMD- Leiterplatte L aus einem Magazin geholt, und es wird ihre Verdrahtung mittels Siebdruck aufgebracht. Dann wird die Leiterplatte L mit mindestens einem populierten Modul M bestückt, vorzugsweise mittels FC-Bondens, insbesondere FC- Lötens. Dabei ist es besonders vorteilhaft, wenn dieses Bonden mit Standard-Methoden stattfindet, z. B. mittels BGA-FC- Bondens auf eine FR4-Leiterplatte .In this application example, a bare FR4 SMD circuit board L is taken from a magazine and its wiring is applied by means of screen printing. Then the circuit board L is equipped with at least one popular module M, preferably by means of FC bonding, in particular FC soldering. It is particularly advantageous if this bonding takes place using standard methods, e.g. B. by means of BGA-FC bonding on an FR4 circuit board.
Eine Heranführung der Module M geschieht z. B. mittels Tape& Reel, tray, Auer Boat, surftape etc. Selbstverständlich könne auch andere Bausteine, typischerweise Standard-SMD-Bausteine auf das SMD-Bauteil T aufgebracht werden, typischerweise mittels "Tape & Reel".An introduction of the modules M happens z. B. by means of tape & reel, tray, Auer boat, surf tape etc. Of course, other components, typically standard SMD components, can also be applied to the SMD component T, typically using "tape & reel".
Die Verbindung zwischen den Modulen M und der Leiterplatte T geschieht vorzugsweise mittels Reflow-Bondens . Dabei sollte die Schmelztemperatur T2 bei Löten der Standard-SMD-Bumps (z. B. aus PbSn) niedriger sein als die Löttemperatur Tl beim Löten der Anwendungsbausteine AI,..., A4 auf das Substrat S (z. B. unter Verwendung von AuSn als Material der Lötbumps) .The connection between the modules M and the printed circuit board T is preferably made by means of reflow bonding. The melting temperature T2 when soldering the standard SMD bumps (e.g. from PbSn) should be lower than the soldering temperature Tl when soldering the application modules AI, ..., A4 to the substrate S (e.g. using AuSn as the material of the solder bumps).
Diese Methode setzt keinen Reinraum mehr voraus. Selbstverständlich können auch mehrere Module M auf die SMD-Platine L aufgebracht werden. Daneben können sich auch andere Bauelemente auf dem SMD-Bauteil befinden, z. B. ein Mikroprozessor.This method no longer requires a clean room. Of course, several modules M can also be mounted on the SMD board L be applied. In addition, there may also be other components on the SMD component, e.g. B. a microprocessor.
Dieses Herstellungsverfahren weist den Vorteil auf, das eine höchstfrequenztaugliche Verbindung zwischen am SMD-Bauteil T hergestellt wird. Auch können so viele Einzelfunktionen auch unterschiedlicher Technologie, z. B. Module aus Si, GaAs, InP, Keramik, LTCC usw. , zu einem funktions- und kostengünstigen Bauteil zusammengefügt werden.This manufacturing method has the advantage that a connection suitable for the highest frequency is established between the SMD component T. Also, so many individual functions of different technology, e.g. B. modules made of Si, GaAs, InP, ceramics, LTCC, etc., can be assembled into a functional and inexpensive component.
Das Verfahren ist nicht auf eine bestimmte Art der Module o- der SMD-Bauteile beschränkt. Durch Zusammenführen der Modul- und der SMD-Fertigung ist es möglich, Hoch- und HÖchstfrequenzanwendungen und Niederfrequenzanwendungen auf einem Bau- teil zu realisieren, und dabei nur die notwendigen Arbeitsschritte unter verschärften Bedingungen (Reinraum) herzustellen.The method is not restricted to a specific type of module or SMD component. By merging the module and SMD production, it is possible to implement high and ultra-high frequency applications and low frequency applications on one component, and only to produce the necessary work steps under more stringent conditions (clean room).
Allgemein ist dabei die Idee anwendbar, aufwendige Prozess- schritte (für HÖchstfrequenzanwendungen etc.) auf ein Mindestmaß zu reduzieren und Standard-Prozessschritte möglichst umfassend einzusetzen. In general, the idea is applicable to reduce complex process steps (for high frequency applications etc.) to a minimum and to use standard process steps as extensively as possible.

Claims

Patentansprüche claims
1. Substrat (S) , aufweisend1. substrate (S) having
- mindestens eine erste Isolierlage (1) , - mindestens eine Hochfrequenz-Strukturlage (4) , die ein Hochfrequenz-Verteilernetzwerk beinhaltet ,- at least one first insulating layer (1), - at least one high-frequency structural layer (4), which contains a high-frequency distribution network,
- mindestens eine Niederfrequenz-Strukturlage (3) , in die eingangsseitig ein Spannungssignal einspeisbar ist, wobei - die Hochfrequenz-Strukturlage (4) von der Niederfrequenz- Strukturlage (3) durch die Isolierlage (1) getrennt ist.- At least one low-frequency structural layer (3) into which a voltage signal can be fed on the input side, wherein - the high-frequency structural layer (4) is separated from the low-frequency structural layer (3) by the insulating layer (1).
2. Substrat (S) nach Anspruch 1, bei dem mindestens eine zweite Isolierlage (2) auf der ersten Iso- lierlage (1) aufliegt.2. The substrate (S) according to claim 1, wherein at least one second insulating layer (2) rests on the first insulating layer (1).
3. Substrat (S) nach Anspruch 2, bei dem mehr als zwei Isolierlagen (1,2,6,7,9) aufeinander gestapelt angebracht sind, wobei zwischen jeder Isolierlage (1,2,6,7,9) eine Strukturlage (3,4,5,10) vorhanden ist.3. The substrate (S) according to claim 2, in which more than two insulating layers (1, 2, 6, 7, 9) are stacked one on top of the other, a structural layer (1, 2, 6, 7, 9) between each insulating layer (1, 2, 6, 7, 9). 3,4,5,10) is present.
4. Substrat (S) nach einem der vorhergehenden Ansprüche, bei dem mindestens eine Isolierlage (1,2,6,7,9) mindestens ein LTCC-Grundmaterial aufweist.4. Substrate (S) according to one of the preceding claims, in which at least one insulating layer (1,2,6,7,9) has at least one LTCC base material.
5. Substrat (S) nach einem der vorhergehenden Ansprüche, bei dem die Hochfrequenz-Strukturlage (4) an einer Außenfläche des Substrats (S) angebracht ist.5. Substrate (S) according to one of the preceding claims, in which the high-frequency structural layer (4) is attached to an outer surface of the substrate (S).
6. Substrat (S) nach einem der vorhergehenden Ansprüche, bei dem die elektromagnetische Wirkverbindung zwischen mindestens zwei Strukturlagen (3,4,5,10) vorhanden ist, insbesondere mittels mindestens einer Durchkontaktierung (D) oder mittels mindestens einer Wellenleitung. 6. Substrate (S) according to one of the preceding claims, in which the electromagnetic operative connection is present between at least two structural layers (3, 4, 5, 10), in particular by means of at least one via (D) or by means of at least one waveguide.
7. Substrat (S) nach einem der vorhergehenden Ansprüche, welches eingangsseitig mindestens ein Flip-Chip-Kontaktpad (FCK) aufweist.7. Substrate (S) according to one of the preceding claims, which has at least one flip chip contact pad (FCK) on the input side.
8. Substrat (S) nach einem der vorhergehenden Ansprüche, welches mindestens ein mit der Hochfrequenz-Strukturlage (4) verbundenes Flip-Chip-Kontaktpad, insbesondere ein Finepitch- Flip-Chip-Kontaktpad (FPK) , aufweist.8. Substrate (S) according to one of the preceding claims, which has at least one with the high-frequency structure layer (4) connected flip-chip contact pad, in particular a fine pitch flip-chip contact pad (FPK).
9. Substrat (S) nach einem der vorhergehenden Ansprüche, bei dem die Hochfrequenz-Strukturlage (4) mindestens einen Wellenleiter, insbesondere einen Mikrostreifen-Wellenleiter und/oder einen koplanaren Wellenleiter, aufweist.9. The substrate (S) according to one of the preceding claims, in which the high-frequency structural layer (4) has at least one waveguide, in particular a microstrip waveguide and / or a coplanar waveguide.
10. Modul (M) , aufweisend ein Substrat (S) nach einem der vorhergehenden Ansprüche, das mit mindestens einem Anwendungselement (AI,..., A4) bestückt ist, welches mit der Hochfrequenz-Strukturlage (4) in Wirkverbindung steht.10. Module (M), comprising a substrate (S) according to one of the preceding claims, which is equipped with at least one application element (AI, ..., A4) which is in operative connection with the high-frequency structural layer (4).
11. Modul (M) nach Anspruch 10 bis 12, bei dem das mindestens eine Anwendungseiement (AI,..., A4) mit einem Wellenleiters, insbesondere einem Mikrostreifen-Wellenleiter oder einem Koplanar-Wellenleiter, der Hochfrequenz- Strukturlage (4) in Wirkverbindung steht.11. Module (M) according to claim 10 to 12, wherein the at least one application element (AI, ..., A4) with a waveguide, in particular a microstrip waveguide or a coplanar waveguide, the high-frequency structural layer (4) in Active connection is established.
12. Modul (M) nach einem der Ansprüche 10 oder 11, bei dem der mindestens eine Anwendungsbaustein (AI,..., A4) mittels Flip-Chip-Bondens, insbesondere Finepitch-Flip-Chip-Bondens, mit der Hochfrequenz-Strukturlage (4) verbunden ist.12. Module (M) according to one of claims 10 or 11, in which the at least one application module (AI, ..., A4) by means of flip-chip bonding, in particular fine-pitch flip-chip bonding, with the high-frequency structural position (4) is connected.
13. Modul (M) nach einem der Ansprüche 10 bis 12, bei dem mindestens ein Anwendungsbaustein (AI,..., A4) ein Frequenz- Generator oder ein Verstärker ist.13. Module (M) according to one of claims 10 to 12, in which at least one application module (AI, ..., A4) is a frequency generator or an amplifier.
14. Modul (M) , nach einem der Ansprüche 10 bis 13, bei dem das mindestens eine Anwendungsbaustein (AI,..., A4) von einem Deckel (8) abgedeckt ist. 14. Module (M), according to one of claims 10 to 13, in which the at least one application module (AI, ..., A4) is covered by a cover (8).
15. Modul (M) , nach einem der Ansprüche 10 bis 10, welches eingangsseitig mindestens ein Flip-Chip-Kontaktpad (FCK) aufweist.15. Module (M) according to one of claims 10 to 10, which has at least one flip-chip contact pad (FCK) on the input side.
16. Verfahren zur Herstellung eines Moduls (M) nach einem der Ansprüche 10 bis 15, bei dem mindestens ein Anwendungsbaustein (AI,..., A4) mittels Flip- Chip-Technik, insbesondere Finepitch-Flip-Chip-Technik, auf das Substrat (S) gebondet wird.16. A method for producing a module (M) according to one of claims 10 to 15, in which at least one application module (AI, ..., A4) by means of flip-chip technology, in particular fine-pitch flip-chip technology, on the Substrate (S) is bonded.
17. Verfahren nach Anspruch 16, bei dem das mindestens eine Anwendungsbaustein (AI,..., A4) mittels Flip-Chip-Lötens auf das Substrat (S) gebondet wird.17. The method according to claim 16, wherein the at least one application module (AI, ..., A4) is bonded to the substrate (S) by means of flip-chip soldering.
18. Verfahren nach einem der Ansprüche 16 oder 17, bei dem die Anwendungsbausteine (AI,..., A4) in "bare chip"-Form zugeführt werden.18. The method according to any one of claims 16 or 17, in which the application modules (AI, ..., A4) are supplied in "bare chip" form.
19. Verfahren zur Herstellung eines SMD-Bauteils (T) , bei dem unter Verwendung eines Verfahrens nach einem der Ansprüche 17 oder 18 mindestens ein Modul (M) mittels Flip-Chip-Technik, insbesondere unter Verwendung einer Ball-Grid-Array-Methode, auf das SMD-Bauteil (T) gebondet wird.19. A method for producing an SMD component (T), in which using a method according to one of claims 17 or 18, at least one module (M) using flip-chip technology, in particular using a ball grid array method , is bonded to the SMD component (T).
20. Verfahren nach Anspruch 19, bei dem das Modul (M) mittels Flip-Chip-Lötens auf das SMD-Bauteil (T) gebondet wird, wobei eine Löttemperatur (T2) niedriger ist als eine Löttemperatur (Tl) zum Bonden des mindestens ei- nen Anwendungselernentes (AI,..., A4) auf das Substrat (S) . 20. The method according to claim 19, in which the module (M) is bonded to the SMD component (T) by means of flip-chip soldering, a soldering temperature (T2) being lower than a soldering temperature (Tl) for bonding the at least one egg - Apply an application (AI, ..., A4) to the substrate (S).
PCT/DE2001/002373 2000-06-29 2001-06-27 Substrate and module WO2002001639A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10031658A DE10031658A1 (en) 2000-06-29 2000-06-29 Microwave module comprising substrate with HF and LF layers forming distribution network structures, includes intervening insulating layer
DE10031658.1 2000-06-29
DE10041770A DE10041770A1 (en) 2000-08-25 2000-08-25 Microwave module comprising substrate with HF and LF layers forming distribution network structures, includes intervening insulating layer
DE10041770.1 2000-08-25

Publications (2)

Publication Number Publication Date
WO2002001639A2 true WO2002001639A2 (en) 2002-01-03
WO2002001639A3 WO2002001639A3 (en) 2002-06-27

Family

ID=26006226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002373 WO2002001639A2 (en) 2000-06-29 2001-06-27 Substrate and module

Country Status (1)

Country Link
WO (1) WO2002001639A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414279A2 (en) 2002-10-23 2004-04-28 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus
EP1443561A2 (en) * 2003-01-30 2004-08-04 Endicott Interconnect Technologies, Inc. Stacked chip electronic package having laminate carrier and method of making same
EP1443811A2 (en) * 2003-01-30 2004-08-04 Endicott Interconnect Technologies, Inc. High speed circuit board and method for fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188280A (en) * 1989-04-28 1993-02-23 Hitachi Ltd. Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
EP0961321A2 (en) * 1998-05-29 1999-12-01 Kyocera Corporation High-frequency module
US6008534A (en) * 1998-01-14 1999-12-28 Lsi Logic Corporation Integrated circuit package having signal traces interposed between power and ground conductors in order to form stripline transmission lines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188280A (en) * 1989-04-28 1993-02-23 Hitachi Ltd. Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
US6008534A (en) * 1998-01-14 1999-12-28 Lsi Logic Corporation Integrated circuit package having signal traces interposed between power and ground conductors in order to form stripline transmission lines
EP0961321A2 (en) * 1998-05-29 1999-12-01 Kyocera Corporation High-frequency module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROWN R L ET AL: "THE INTEGRATION OF PASSIVE COMPONENTS INTO MCMS USING ADVANCED LOW-TEMPERATURE COFIRED CERAMICS" , INTERNATIONAL JOURNAL OF MICROCIRCUITS AND ELECTRONIC PACKAGING, INTERNATIONAL MICROELECTRONICS & PACKAGING SOCIETY, US, VOL. 16, NR. 4, PAGE(S) 328-337 XP000408872 ISSN: 1063-1674 das ganze Dokument *
DREVON ET AL: "Mixed LF/RF MCM" , ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, 1997. PROCEEDINGS., 47TH SAN JOSE, CA, USA 18-21 MAY 1997, NEW YORK, NY, USA,IEEE, US, PAGE(S) 497-501 XP010234087 ISBN: 0-7803-3857-X das ganze Dokument *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414279A2 (en) 2002-10-23 2004-04-28 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus
EP1443561A2 (en) * 2003-01-30 2004-08-04 Endicott Interconnect Technologies, Inc. Stacked chip electronic package having laminate carrier and method of making same
EP1443811A2 (en) * 2003-01-30 2004-08-04 Endicott Interconnect Technologies, Inc. High speed circuit board and method for fabrication
EP1443561A3 (en) * 2003-01-30 2008-01-02 Endicott Interconnect Technologies, Inc. Stacked chip electronic package having laminate carrier and method of making same
US7665207B2 (en) 2003-01-30 2010-02-23 Endicott Interconnect Technologies, Inc. Method of making a multi-chip electronic package having laminate carrier

Also Published As

Publication number Publication date
WO2002001639A3 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
DE69825199T2 (en) A high frequency integrated circuit antenna having an electromagnetically coupled feed circuit connected via a slot coupling hole and connected to the high frequency circuit
DE60026978T2 (en) MULTIPLE HOUSING WITH INTEGRATED RF CAPABILITIES
DE602004003191T2 (en) Multi-layer high-frequency device with planar antenna and manufacturing process
DE60202425T2 (en) High-frequency semiconductor device
EP1652232B1 (en) Multichip circuit module and method for the production thereof
DE102017223561A1 (en) High frequency device packages and methods of forming same
DE102004016399B4 (en) High frequency module and radio device
DE60218101T2 (en) High-frequency circuit module
DE69628253T2 (en) Ultra high frequency radio
DE112014006008T5 (en) Electronic component module
DE102010001407A1 (en) Integrated antennas at wafer level
WO2004063767A1 (en) Radar-transceiver for microwave and millimetre applications
DE3936322A1 (en) CERAMIC SUBSTRATE WITH METAL-FILLED THROUGH HOLES FOR HYBRID MICROCIRCUITS AND METHOD FOR THE PRODUCTION THEREOF
WO2006061310A1 (en) Single-chip radar for motor vehicle applications
DE10300956B3 (en) Device with high frequency connections in a substrate
DE10300958A1 (en) Encapsulated module
EP0376100A2 (en) Method and lead frame for mounting a semiconductor
DE10011005B4 (en) Multichip module and method for producing a multichip module
WO2002001639A2 (en) Substrate and module
DE102015109965B4 (en) Semiconductor package and method for its manufacture using embedded chip packaging technology
DE10041770A1 (en) Microwave module comprising substrate with HF and LF layers forming distribution network structures, includes intervening insulating layer
DE19931004C2 (en) Chip module, in particular BGA package, with an interconnect for stress-free solder connection to a circuit board
DE10031658A1 (en) Microwave module comprising substrate with HF and LF layers forming distribution network structures, includes intervening insulating layer
WO2002001631A2 (en) High-frequency component
DE19648308A1 (en) Radio communication module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP