WO2002000879A2 - Methods for producing modified glycoproteins - Google Patents

Methods for producing modified glycoproteins Download PDF

Info

Publication number
WO2002000879A2
WO2002000879A2 PCT/US2001/020553 US0120553W WO0200879A2 WO 2002000879 A2 WO2002000879 A2 WO 2002000879A2 US 0120553 W US0120553 W US 0120553W WO 0200879 A2 WO0200879 A2 WO 0200879A2
Authority
WO
WIPO (PCT)
Prior art keywords
host
enzymes
glycosylation
glcnac
enzyme
Prior art date
Application number
PCT/US2001/020553
Other languages
French (fr)
Other versions
WO2002000879A3 (en
Inventor
Tillman U. Gerngross
Original Assignee
Glycofi, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27395978&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002000879(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to NZ523476A priority Critical patent/NZ523476A/en
Priority to DE60114830T priority patent/DE60114830T2/en
Priority to CA002412701A priority patent/CA2412701A1/en
Priority to DK04025648T priority patent/DK1522590T3/en
Priority to AU7684201A priority patent/AU7684201A/en
Application filed by Glycofi, Inc. filed Critical Glycofi, Inc.
Priority to AT01954606T priority patent/ATE309385T1/en
Priority to KR1020027017911A priority patent/KR100787073B1/en
Priority to EP01954606A priority patent/EP1297172B1/en
Priority to MXPA03000105A priority patent/MXPA03000105A/en
Priority to JP2002506194A priority patent/JP2004501642A/en
Priority to AU2001276842A priority patent/AU2001276842B2/en
Publication of WO2002000879A2 publication Critical patent/WO2002000879A2/en
Publication of WO2002000879A3 publication Critical patent/WO2002000879A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01113Mannosyl-oligosaccharide 1,2-alpha-mannosidase (3.2.1.113), i.e. alpha-1,2-mannosidase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/04Fusion polypeptide containing a localisation/targetting motif containing an ER retention signal such as a C-terminal HDEL motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/05Fusion polypeptide containing a localisation/targetting motif containing a GOLGI retention signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)

Definitions

  • the present invention is directed to methods and compositions by which fungi or other eukaryotic microorganisms can be genetically modified to produce glycosylated proteins (glycoproteins) having patterns of glycosylation similar to glycoproteins produced by animal cells, especially human cells, which are useful as human or animal therapeutic agents.
  • glycosylated proteins glycoproteins
  • Glycosylation Pathways De novo synthesized proteins may undergo further processing in cells, known as post-translational modification.
  • sugar residues may be added enzymatically, a process known as glycosylation.
  • glycosylation The resulting proteins bearing covalently linked oligosaccharide side chains are known as glycosylated proteins or glycoproteins.
  • Bacteria typically do not glycosylate proteins; in cases where glycosylation does occur it usually occurs at nonspecific sites in the protein (Moens and Vanderleyden, Arch. Microbiol. 1997 168(3): 169- 175).
  • Eukaryotes commonly attach a specific oligosaccharide to the side chain of a protein asparagine residue, particularly an asparagine which occurs in the sequence Asn-Xaa-Ser/Thr/Cys (where Xaa represents any amino acid).
  • an N-glycan Following attachment of the saccharide moiety, known as an N-glycan, further modifications may occur in vivo. Typically these modifications occur via an ordered sequence of enzymatic reactions, known as a cascade.
  • Different organisms provide different glycosylation enzymes (glycosyltransferases and glycosidases) and different glycosyl substrates, so that the final composition of a sugar side chain may vary markedly depending upon the host.
  • microorganisms such as filamentous fungi and yeast
  • a complex N-glycan means a structure with typically two to six outer branches with a sialyllactosamine sequence linked to an inner core structure Man 3 Glc ⁇ Ac 2 .
  • a complex N- glycan has at least one branch, and preferably at least two, of alternating Glc ⁇ Ac and galactose (Gal) residues that terminate in oligosaccharides such as, for example: ⁇ eu ⁇ Ac-; ⁇ euAc 2-6Gal ⁇ Ac ⁇ l-; NeuAc ⁇ 2-3Gal ⁇ l- 3GalNAc ⁇ l-; NeuAc ⁇ 2-3/6Gal ⁇ l-4GlcNAc ⁇ l-; GlcNAc ⁇ l-4Gal ⁇ l- (mucins only); Fuc ⁇ l-2Gal ⁇ l -(blood group H).
  • Glc ⁇ Ac and galactose (Gal) residues that terminate in oligosaccharides such as, for example: ⁇ eu ⁇ Ac-; ⁇ euAc 2-6Gal ⁇ Ac ⁇ l-; NeuAc ⁇ 2-3Gal ⁇ l- 3GalNAc ⁇ l-; NeuAc ⁇ 2-3/6Gal ⁇ l
  • Sulfate esters can occur on galactose, GalNAc, and GlcNAc residues, and phosphate esters can occur on mannose residues.
  • NeuAc Neuro: neuraminic acid; Ac:acetyl
  • NeuGl N-glycolylneuraminic acid
  • Complex N- glycans may also have intrachain substitutions of bisecting Glc ⁇ Ac and core fucose (Fuc).
  • Human glycosylation begins with a sequential set of reactions in the endoplasmatic reticulum (ER) leading to a core oligosaccharide structure, which is transferred onto de novo synthesized proteins at the asparagine residue in the sequence Asn-Xaa-Ser/Thr (see Figure 1 A). Further processing by glucosidases and mannosidases occurs in the ER before the nascent glycoprotein is transferred to the early Golgi apparatus, where additional mannose residues are removed by Golgi-specific 1,2- mannosidases. Processing continues as the protein proceeds through the Golgi.
  • ER endoplasmatic reticulum
  • N-acetylglucosamine transferases GnT I, GnT II, GnT III, GnT IV GnT V GnT VI
  • mannosidase II fucosyltransferases add and remove specific sugar residues (see Figure IB).
  • ST galactosyl tranferases and sialyltransferases
  • the protein N-glycans of animal glycoproteins have bi-, tri-, or tetra-antennary structures, and may typically include galactose, fucose, and N-acetylglucosamine. Commonly the terminal residues of the N-glycans consist of sialic acid.
  • Figure IB A typical structure of a human N-glycan is shown in Figure IB.
  • N-glycans of animal glycoproteins typically include galactose, fucose, and terminal sialic acid. These sugars are not generally found on glycoproteins produced in yeast and filamentous fungi.
  • nucleotide sugar precursors e.g. UDP-N-acetylglucosamine, UDP- N-acetylgalactosamine, CMP-N-acetylneuraminic acid, UDP-galactose, GDP-fucose etc.
  • UDP-N-acetylglucosamine UDP- N-acetylgalactosamine
  • CMP-N-acetylneuraminic acid UDP-galactose
  • GDP-fucose etc.
  • Glycosyl transfer reactions typically yield a side product which is a nucleoside diphosphate or monophosphate. While monophosphates can be directly exported in exchange for nucleoside triphosphate sugars by an antiport mechanism, diphosphonucleosides (e.g. GDP) have to be cleaved by phosphatases (e.g. GDPase) to yield nucleoside monophosphates and inorganic phosphate prior to being exported.
  • phosphatases e.g. GDPase
  • UDP is known to be a potent inhibitor of glycosyltransferases and the removal of this glycosylation side product is important in order to prevent glycosyltransferase inhibition in the lumen of the Golgi (Khatara et al.,
  • Glycosyltransferases and mannosidases line the inner (luminal) surface of the ER and Golgi apparatus and thereby provide a catalytic surface that allows for the sequential processing of glycoproteins as they proceed through the ER and Golgi network.
  • the multiple compartments of the cis, medial, and trans Golgi and the trans Golgi Network (TGN), provide the different localities in which the ordered sequence of glycosylation reactions can take place.
  • glycoprotein proceeds from synthesis in the ER to full maturation in the late Golgi or TGN, it is sequentially exposed to different glycosidases, mannosidases and glycosyltransferases such that a specific N-glycan structure may be synthesized.
  • the enzymes typically include a catalytic domain, a stem region, a membrane spanning region and an ⁇ - terminal cytoplasmic tail. The latter three structural components are responsible for directing a glycosylation enzyme to the appropriate locus. Localization sequences from one organism may function in other organisms.
  • ⁇ -2,6- sialyltransferase ( ⁇ -2,6-ST) from rats, an enzyme known to localize in the rat trans Golgi, was shown to also localize a reporter gene (invertase) in the yeast Golgi (Schwientek, et al., 1995).
  • invertase invertase
  • yeast Golgi yeast Golgi
  • a full length GalT from humans was not even synthesized in yeast, despite demonstrably high transcription levels.
  • the transmembrane region of the same human GalT fused to an invertase reporter was able to direct localization to the yeast Golgi, albeit it at low production levels.
  • Schwientek and co-workers have shown that fusing 28 amino acids of a yeast mannosyltransferase (Mntl), a region containing an N-terminal cytoplasmic tail, a transmembrane region and eight amino acids of the stem region, to the catalytic domain of human GalT are sufficient for Golgi localization of an active GalT (Schwientek et al. 1995 J. Biol. Chem. 270(10):5483-5489).
  • Other galactosyltransferases appear to rely on interactions with enzymes resident in particular organelles since after removal of their transmembrane region they are still able to localize properly.
  • Improper localization of a glycosylation enzyme may prevent proper functioning of the enzyme in the pathway.
  • Aspergillus nidulans which has numerous ⁇ -l,2-mannosidases (Eades and Hintz, 2000 Gene 255(l):25-34), does not add GlcNAc to Man 5 GlcNAc 2 when transformed with the rabbit GnT I gene, despite a high overall level of GnT I activity (Kalsner et al., 1995).
  • GnT I although actively expressed, may be incorrectly localized such that the enzyme is not in contact with both of its substrates: the nascent N-glycan of the glycoprotein and UDP-Glc ⁇ Ac.
  • the host organism may not provide an adequate level of UDP- Glc ⁇ Ac in the Golgi.
  • glycoproteins are typically immunogenic in humans and show a reduced half-life in vivo after administration (Takeuchi, 1997).
  • Specific receptors in humans and animals can recognize terminal mannose residues and promote the rapid clearance of the protein from the bloodstream. Additional adverse effects may include changes in protein folding, solubility, susceptibility to proteases, trafficking, transport, compartmentalization, secretion, recognition by other proteins or factors, antigenicity, or allergenicity. Accordingly, it has been necessary to produce therapeutic glycoproteins in animal host systems, so that the pattern of glycosylation is identical or at least similar to that in humans or in the intended recipient species. In most cases a mammalian host system, such as mammalian cell culture, is used.
  • transgenic animals such as goats, sheep, mice and others (Dente Prog. Clin. Biol. 1989 Res. 300:85-98, Ruther et al., 1988 Cell 53(6):847- 856; Ware, J., et al. 1993 Thrombosis and Haemostasis 69(6): 1194-
  • Recombinant human proteins expressed in the above-mentioned host systems may still include non-human glycoforms (Raju et al., 2000 Annals Biochem. 283(2):123-132).
  • fraction of the N-glycans may lack terminal sialic acid, typically found in human glycoproteins.
  • Substantial efforts have been directed to developing processes to obtain glycoproteins that are as close as possible in structure to the human forms, or have other therapeutic advantages.
  • Glycoproteins having specific glycoforms may be especially useful, for example in the targeting of therapeutic proteins.
  • the addition of one or more sialic acid residues to a glycan side chain may increase the lifetime of a therapeutic glycoprotein in vivo after administration.
  • the mammalian host cells may be genetically engineered to increase the extent of terminal sialic acid in glycoproteins expressed in the cells.
  • sialic acid may be conjugated to the protein of interest in vitro prior to administration using a sialic acid transferase and an appropriate substrate.
  • changes in growth medium composition or the expression of enzymes involved in human glycosylation have been employed to produce glycoproteins more closely resembling the human forms (S. Weikert, et al., Nature Biotechnology, 1999, 17, 1116-1121; Werner, ⁇ oe, et al 1998 Arzneistoffforschung 48(8):870- 880; Weikert, Papac et al., 1999; Andersen and Goochee 1994 Cur. Opin.Biotechnol.5: 546-549; Yang and Butler 2000 Biotechnol.Bioengin.68(4): 370-380).
  • cultured human cells may be used.
  • the virus or other infectious agent may compromise the growth of the culture, while in other cases the agent may be a human pathogen rendering the therapeutic protein product unfit for its intended use.
  • many cell culture processes require the use of complex, temperature-sensitive, animal-derived growth media components, which may carry pathogens such as bovine spongiform encephalopathy (BSE) prions.
  • BSE bovine spongiform encephalopathy
  • pathogens are difficult to detect and/or difficult to remove or sterilize without compromising the growth medium.
  • use of animal cells to produce therapeutic proteins necessitates costly quality controls to assure product safety.
  • Transgenic animals may also be used for manufacturing high- volume therapeutic proteins such as human serum albumin, tissue plasminogen activator, monoclonal antibodies, hemoglobin, collagen, f ⁇ brinogen and others.
  • transgenic goats and other transgenic animals can be genetically engineered to produce therapeutic proteins at high concentrations in the milk
  • the process is costly since every batch has to undergo rigorous quality control.
  • Animals may host a variety of animal or human pathogens, including bacteria, viruses, fungi, and prions.
  • scrapies and bovine spongiform encephalopathy testing can take about a year to rule out infection.
  • the production of therapeutic compounds is thus preferably carried out in a well-controlled sterile environment, e.g. under Good Manufacturing Practice (GMP) conditions.
  • GMP Good Manufacturing Practice
  • transgenic animal technology relies on different animals and thus is inherently non-uniform.
  • external factors such as different food uptake, disease and lack of homogeneity within a herd, may effect glycosylation patterns of the final product. It is known in humans, for example, that different dietary habits result in differing glycosylation patterns.
  • Transgenic plants have been developed as a potential source to obtain proteins of therapeutic value.
  • high level expression of proteins in plants suffers from gene silencing, a mechanism by which the genes for highly expressed proteins are down-regulated in subsequent plant generations.
  • plants add xylose and/or ⁇ - 1,3 -linked fucose to protein N-glycans, resulting in glycoproteins that differ in structure from animals and are immunogenic in mammals (Altmann, Marz et al., 1995 Glycoconj. J. 12(2);150-155).
  • it is generally not practical to grow plants in a sterile or GMP environment and the recovery of proteins from plant tissues is more costly than the recovery from fermented microorganisms.
  • glycoprotein Production Using Eukarvotic Microorganisms The lack of a suitable expression system is thus a significant obstacle to the low-cost and safe production of recombinant human glycoproteins.
  • Production of glycoproteins via the fermentation of microorganisms would offer numerous advantages over the existing systems. For example, fermentation-based processes may offer (a) rapid production of high concentrations of protein; (b) the ability to use sterile, well-controlled production conditions (e.g.
  • GMP conditions the ability to use simple, chemically defined growth media; (d) ease of genetic manipulation; (e) the absence of contaminating human or animal pathogens; (f) the ability to express a wide variety of proteins, including those poorly expressed in cell culture owing to toxicity etc.; (g) ease of protein recovery (e.g. via secretion into the medium).
  • fermentation facilities are generally far less costly to construct than cell culture facilities.
  • bacteria including species such as Escherichia coli commonly used to produce recombinant proteins, do not glycosylate proteins in a specific manner like eukaryotes.
  • Various methylotrophic yeasts such as Pichia pastoris, Pichia methanolica, and Hansenula polymorpha, are particularly useful as eukaryotic expression systems, since they are able to grow to high cell densities and/or secrete large quantities of recombinant protein.
  • glycoproteins expressed in these eukaryotic microorganisms differ substantially in N-glycan structure from those in animals. This has prevented the use of yeast or filamentous fungi as hosts for the production of many useful glycoproteins.
  • glycosyltransferases have been separately cloned and expressed in S. cerevisiae (GalT, GnT I), Aspergillus nidulans (GnT I) and other fungi (Yoshida et al., 1999, Kalsner et al., 1995 Glycoconj. J. 12(3):360-370, Schwientek et al., 1995).
  • GalT, GnT I Aspergillus nidulans
  • fungi Yoshida et al., 1999, Kalsner et al., 1995 Glycoconj. J. 12(3):360-370, Schwientek et al., 1995.
  • N-glycans with human characteristics were not obtained.
  • Yeasts produce a variety of mannosyltransferases e.g. 1,3- mannosyltransferases (e.g. M ⁇ 1 in S. cerevisiae) (Graham and Emr, 1991 J. Cell. Biol. 114(2):207-218), 1,2-mannosyltransferases (e.g. KTR/KRE family from S. cerevisiae), 1,6-mannosyltransferases (OCH1 from 5 cerevisiae), mannosylphosphate transferases (M ⁇ 4 and MNN6 from S. cerevisiae) and additional enzymes that are involved in endogenous glycosylation reactions. Many of these genes have been deleted individually, giving rise to viable organisms having altered glycosylation profiles. Examples are shown in Table 1. Table 1. Examples of yeast strains having altered mannosylation
  • Japanese Patent Application Public No. 8-336387 discloses an OCH1 mutant strain of Pichia pastoris.
  • the OCH1 gene encodes 1,6-mannosyltransferase, which adds a mannose to the glycan structure Man 8 GlcNAc 2 to yield Man 9 GlcNAc 2 .
  • the Man 9 GlcNAc 2 structure is then a substrate for further mannosylation in vivo, leading to the hypermannosylated glycoproteins that are characteristic of yeasts and typically may have at least 30-40 mannose residue per N-glycan.
  • proteins glycosylated with Man 8 Glc ⁇ Ac are accumulated and hypermannosylation does not occur.
  • the structure Man 8 GlcNAc is not a substrate for animal glycosylation enzymes, such as human UDP-GlcNAc transferase I, and accordingly the method is not useful for producing proteins with human glycosylation patterns.
  • yeast Saccharomyces cerevisiae 1998 expressed ⁇ -l,2-mannosidase from Asperg ⁇ llus saitoi in the yeast Saccharomyces cerevisiae.
  • a signal peptide sequence (His-Asp-Glu-Leu) was engineered into the exogenous mannosidase to promote retention in the endoplasmic reticulum.
  • the yeast host was a mutant lacking three enzyme activities associated with hypermannosylation of proteins: l,6-mannosyltransferase (OCH7); 1,3- mannosyltransferase (MNNl); and mannosylphosphatetransferase (MNN4).
  • the N-glycans of the triple mutant host thus consisted of the structure Man 8 Glc ⁇ Ac 2 , rather than the high mannose forms found in wild-type S. cerevisiae.
  • the N-glycans of a model protein (carboxypeptidase Y) were trimmed to give a mixture consisting of 27 mole % Man 5 Glc ⁇ Ac 2 , 22 mole % Man 6 GlcNAc 2 , 22 mole % Man 7 GlcNAc 2 , 29 mole % Man 8 GlcNAc 2 . Trimming of the endogenous cell wall glycoproteins was less efficient, only 10 mole % of the N-glycans having the desired Man 5 Glc ⁇ Ac 2 structure.
  • strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce "human-like" glycoproteins.
  • the microorganism is engineered to express an exogenous c - 1 ,2-mannosidase enzyme having an optimal pH between 5.1 and 8.0, preferably between 5.9 and 7.5.
  • the exogenous enzyme is targeted to the endoplasmic reticulum or Golgi apparatus of the host organism, where it trims N-glycans such as Man 8 Glc ⁇ Ac 2 to yield Man 5 GlcNAc 2 .
  • the latter structure is useful because it is identical to a structure formed in mammals, especially humans; it is a substrate for further glycosylation reactions in vivo and/or in vitro that produce a finished N-glycan that is similar or identical to that formed in mammals, especially humans; and it is not a substrate for hypermannosylation reactions that occur in vivo in yeast and other microorganisms and that render a glycoprotein highly irnrnunogenic in animals.
  • the glycosylation pathway of an eukaryotic microorganism is modified by (a) constructing a D ⁇ A library including at least two genes encoding exogenous glycosylation enzymes; (b) transforming the microorganism with the library to produce a genetically mixed population expressing at least two distinct exogenous glycosylation enzymes; (c) selecting from the population a microorganism having the desired glycosylation phenotype.
  • the D ⁇ A library includes chimeric genes each encoding a protein localization sequence and a catalytic activity related to glycosylation. Organisms modified using the method are useful for producing glycoproteins having a glycosylation pattern similar or identical to mammals, especially humans.
  • the glycosylation pathway is modified to express a sugar nucleotide transporter enzyme.
  • a nucleotide diphosphatase enzyme is also expressed. The transporter and diphosphatase improve the efficiency of engineered glycosylation steps, by providing the appropriate substrates for the glycosylation enzymes in the appropriate compartments, reducing competitive product inhibition, and promoting the removal of nucleoside diphosphates.
  • Figure 1 A is a schematic diagram of typical fungal N-glycosylation pathway.
  • Figure IB is a schematic diagram of a typical human N-glycosylation pathway.
  • the methods and recombinant lower eukaryotic strains described herein are used to make "humanized glycoproteins".
  • the recombinant lower eukaryotes are made by engineering lower eukaryotes which do not express one or more enzymes involved in production of high mannose structures to express the enzymes required to produce human-like sugars.
  • a lower eukaryote is a unicellular or filamentous fungus.
  • a "humanized glycoprotein” refers to a protein having attached thereto N- glycans including less than four mannose residues, and the synthetic intermediates (which are also useful and can be manipulated further in vitro) having at least five mannose residues.
  • the glycoproteins produced in the recombinant lower eukaryotic strains contain at least 27 mole % of the Man5 intermediate. This is achieved by cloning in a better mannosidase, i.e., an enzyme selected to have optimal activity under the conditions present in the organisms at the site where proteins are glycosylated, or by targeting the enzyme to the organelle where activity is desired.
  • eukaryotic strains which do not express one or more enzymes involved in the production of high mannose structures are used. These strains can be engineered or one of the many such mutants already described in yeasts, including a hypermannosylation-minus (OCH1) mutant in Pichia pastoris. The strains can be engineered one enzyme at a time, or a library of genes encoding potentially useful enzymes can be created, and those strains having enzymes with optimal activities or producing the most "human-like" glycoproteins, selected.
  • N-glycan Man 5 Glc ⁇ Ac 2 are particularly useful since (a) lacking a high degree of mannosylation (e.g. greater than 8 mannoses per N-glycan, or especially 30-40 mannoses), they show reduced immunogenicity in humans; and (b) the N-glycan is a substrate for further glycosylation reactions to form an even more human-like glycoform, e.g. by the action of Glc ⁇ Ac transferase I to form Glc ⁇ AcMan 5 Glc ⁇ Ac 2 .
  • a high degree of mannosylation e.g. greater than 8 mannoses per N-glycan, or especially 30-40 mannoses
  • the N-glycan is a substrate for further glycosylation reactions to form an even more human-like glycoform, e.g. by the action of Glc ⁇ Ac transferase I to form Glc ⁇ AcMan 5 Glc ⁇ Ac 2 .
  • Man 5 GlcNAc 2 must be formed in vivo in a high yield, at least transiently, since all subsequent glycosylation reactions require Man 5 GlcNAc 2 or a derivative thereof. Accordingly, a yield is obtained of greater than 27 mole %, more preferably a yield of 50-100 mole %, glycoproteins in which a high proportion of N-glycans have Man 5 Glc ⁇ Ac2. It is then possible to perform further glycosylation reactions in vitro, using for example the method of U.S. Patent No. 5,834,251 to Maras and Contreras. In a preferred embodiment, at least one further glycosylation reaction is performed in vivo. In a highly preferred embodiment thereof, active forms of glycosylating enzymes are expressed in the endoplasmic reticulum and/or Golgi apparatus. Host Microorganisms
  • Yeast and filamentous fungi have both been successfully used for the production of recombinant proteins, both intracellular and secreted (Cereghino, J. L. and J. M. Cregg 2000 FEMS Microbiology Reviews 24(1): 45-66; Harkki, A., et al. 1989 Bio-Technology 7(6): 596; Berka, R. M., et al. 1992 Abstr.Papers Amer. Chem.Soc.203: 121-BIOT; Svetina, M., et al. 2000 J.Biotechnol. 76(2-3): 245-251.
  • the first step the transfer of the core oligosaccharide structure to the nascent protein, is highly conserved in all eukaryotes including yeast, fungi, plants and humans (compare Figures 1 A and IB).
  • Subsequent processing of the core oligosaccharide differs significantly in yeast and involves the addition of several mannose sugars.
  • This step is catalyzed by mannosyltransferases residing in the Golgi (e.g. OCH1, MNT1, MNNl, etc.), which sequentially add mannose sugars to the core oligosaccharide.
  • the resulting structure is undesirable for the production of humanoid proteins and it is thus desirable to reduce or eliminate mannosyl transferase activity.
  • Mutants of 5. cerevisiae, deficient in mannosyl transferase activity e.g. ochl or mnn9 mutants
  • Other oligosacharide processing enzymes, such as mannosylphophate transferase may also have to be eliminated depending on the host's particular endogenous glycosylation pattern.
  • After reducing undesired endogenous glycosylation reactions the formation of complex N- glycans has to be engineered into the host system. This requires the stable expression of several enzymes and sugar-nucleotide transporters. Moreover, one has to locate these enzymes in a fashion such that a sequential processing of the maturing glycosylation structure is ensured.
  • glycoproteins especially glycoproteins used therapeutically in humans.
  • Such therapeutic proteins are typically administered by injection, orally, pulmonary, or other means.
  • target glycoproteins include, without limitation: erythropoietin, cytokines such as interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , and granulocyte-CSF, coagulation factors such as factor VIII, factor IX, and human protein C, soluble IgE receptor -chain, IgG, IgM, urokinase, chymase, and urea trypsin inhibitor, IGF-binding protein, epidermal growth factor, growth hormone-releasing factor, annexin V fusion protein, angiostatin, vascular endothelial growth factor-2, myeloid progenitor inhibitory factor- 1, amd osteoprotegerin.
  • cytokines such as interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , and granulocyte-CSF
  • coagulation factors such as factor VIII, factor IX, and human protein C
  • soluble IgE receptor -chain IgG
  • the first step involves the selection or creation of a lower eukaryote that is able to produce a specific precursor structure of Man 5 GlcNAc 2 , which is able to accept in vivo GlcNAc by the action of a GlcNAc transferase I.
  • This step requires the formation of a particular isomeric structure of Man 5 GlcNAc 2 .
  • This structure has to be formed within the cell at a high yield (in excess of 30%) since all subsequent manipulations are contingent on the presence of this precursor.
  • Man 5 GlcNAc 2 structures are necessary for complex N-glycan formation, however, their presence is by no means sufficient, since Man 5 GlcNAc 2 may occur in different isomeric forms, which may or may not serve as a substrate for GlcNAc transferase I. Most glycosylation reactions are not complete and thus a particular protein generally contains a range of different carbohydrate structures (i.e. glycoforms) on its surface. The mere presence of trace amounts (less than 5%) of a particular structure like Man 5 GlcNAc 2 is of little practical relevance. It is the formation of a particular, GlcNAc transferase I accepting intermediate (Structure I) in high yield (above 30%), which is required. The formation of this intermediate is necessary and subsequently allows for the in vivo synthesis of complex N-glycans.
  • the method described herein may be used to engineer the glycosylation pattern of a wide range of lower eukaryotes (e.g. Hansenula polymorpha, Pichia stiptis, Pichia methanolica, Pichia sp, Kluyveromyces sp, Candida albicans, Aspergillus nidulans, Trichoderma reseei etc.).
  • Pichia pastoris is used to exemplify the required manipulation steps.
  • P.pastoris processes Man 9 GlcNAc 2 structures in the ER with a 1,2- ⁇ - mannosidase to yield Man 8 GlcNAc 2 .
  • Mannosyltransferases Through the action of several mannosyltransferases, this structure is then converted to hypermannosylated structures (Man >9 GlcNAc 2 ), also known as mannans.
  • Man >9 GlcNAc 2 also known as mannans.
  • P. pastoris is able to add non-terminal phosphate groups, through the action of mannosylphosphate transferases to the carbohydrate structure. This is contrary to the reactions found in mammalian cells, which involve the removal of mannose sugars as opposed to their addition. It is of particular importance to eliminate the ability of the fungus to hypermannosylate the existing Man 8 GlcNAc 2 structure. This can be achieved by either selecting for a fungus that does not hypermannosylate, or by genetically engineering such a fungus.
  • genes that are involved in this process have been identified in Pichia pastoris and by creating mutations in these genes one is able to reduce the production of "undesirable” glycoforms.
  • Such genes can be identified by homology to existing mannosyltransferases (e.g. OCH1, MNN4, MNN6, MNNl), found in other lower eukaryotes such as C. albicans, Pichia angusta or S. cerevisiae or by mutagenizing the host strain and selecting for a phenotype with reduced mannosylation.
  • PCR primers examples of which are shown in Table 2
  • genes or gene fragments encoding such enzymes as probes to identify homologues in DNA libraries of the target organism.
  • one may be able to complement particular phenotypes in related organisms. For example, in order to obtain the gene or genes encoding 1,6- mannosyltransferase activity in P. pastoris, one would carry out the following steps.
  • OCH1 mutants of S. cerevisiae are temperature sensitive and are slow growers at elevated temperatures.
  • Such mutants of S. cerevisiae may be found at http://genome- www.stanford.edu/Saccharomyces/ and are commercially available at http://www.resgen.com/products/YEASTD.php3. Mutants that display a normal growth phenotype at elevated temperature, after having been transformed with a P. pastoris DNA library, are likely to carry an OCH1 homologue of P. pastoris.
  • Such a library can be created by partially digesting chromosomal DNA of P. pastoris with a suitable restriction enzyme and after inactivating the restriction enzyme ligating the digested DNA into a suitable vector, which has been digested with a compatible restriction enzyme.
  • Suitable vectors are pRS314, a low copy (CEN6/ARS4) plasmid based on pBluescript containing the Trpl marker (Sikorski, R. S., and Hieter, P., 1989, Genetics 122, pg 19-27) or pFL44S, a high copy (2 ⁇ ) plasmid based on a modified pUC19 containing the URA3 marker (Bonneaud, N., et al., 1991, Yeast 7, pg. 609-615).
  • Such vectors are commonly used by academic researchers or similar vectors are available from a number of different vendors such as Invitrogen (Carlsbad, CA), Pharmacia (Piscataway, NJ), New England Biolabs (Beverly, MA). Examples are pYES/GS, 2 ⁇ origin of replication based yeast expression plasmid from Invitrogen, or Yep24 cloning vehicle from New England Biolabs. After ligation of the chromosomal DNA and the vector one may transform the DNA library into strain of S. cerevisiae with a specific mutation and select for the correction of the corresponding phenotype. After sub-cloning and sequencing the DNA fragment that is able to restore the wild-type phenotype, one may use this fragment to eliminate the activity of the gene product encoded by OCH1 in P. pastoris.
  • genomic sequence of a particular fungus of interest is known, one may identify such genes simply by searching publicly available DNA databases, which are available from several sources such as NCBI, Swissprot etc. For example by searching a given genomic sequence or data base with a known 1,6 mannosyltransferase gene (OCH1) from S. cerevisiae, one can able to identify genes of high homology in such a genome, which a high degree of certainty encodes a gene that has 1 ,6 mannosyltransferase activity. Homologues to several known mannosyltransferases from S.cerevisiae in P. pastoris have been identified using either one of these approaches.
  • OCH1 1,6 mannosyltransferase gene
  • genes have similar functions to genes involved in the mannosylation of proteins in S. cerevisiae and thus their deletion may be used to manipulate the glycosylation pattern in P. pastoris or any other fungus with similar glycosylation pathways.
  • the creation of gene knock-outsj once a given target gene sequence has been determined, is a well-established technique in the yeast and fungal molecular biology community, and can be carried out by anyone of ordinary skill in the art (R. Rothsteins, (1991) Methods in Enzymology, vol. 194, p. 281). In fact, the choice of a host organism may be influenced by the availability of good transformation and gene disruption techniques for such a host.
  • URA3 may be used as a marker to ensure the selection of a transformants that have integrated a construct.
  • flanking the URA3 marker with direct repeats one may first select for transformants that have integrated the construct and have thus disrupted the target gene. After isolation of the transformants, and their characterization, one may counter select in a second round for those that are resistant to 5'FOA. Colonies that able to survive on plates containing 5'FOA have lost the URA3 marker again through a crossover event involving the repeats mentioned earlier. This approach thus allows for the repeated use of the same marker and facilitates the disruption of multiple genes without requiring additional markers.
  • Eliminating specific mannosyltransferases such as 1,6 mannosyltransferase (OCH1), mannosylphosphate transferases (MNN4, MNN6, or genes complementing lb d mutants) in P. pastoris, allows for the creation of engineered strains of this organism which synthesize primarily Man 8 GlcNAc 2 and thus can be used to further modify the glycosylation pattern to more closely resemble more complex human glycoform structures.
  • a preferred embodiment of this method utilizes known DNA sequences, encoding known biochemical glycosylation activities to eliminate similar or identical biochemical functions in P. pastoris, such that the glycosylation structure of the resulting genetically altered P. pastoris strain is modified. Table 2.
  • M A or C
  • R A or G
  • a or T A or T
  • S C or G
  • a or G or T, B C or G or T,
  • N G or A or T or C.
  • Mannosidase into the Genetically Engineered Host
  • the process described herein enables one to obtain such a structure in high yield for the purpose of modifying it to yield complex N-glycans.
  • a successful scheme to obtain suitable Man 5 GlcNAc2 structures must involve two parallel approaches: (1) reducing endogenous mannosyltransferase activity and (2) removing 1,2- ⁇ - mannose by mannosidases to yield high levels of suitable Man 5 GlcNAc 2 structures. What distinguishes this method from the prior art is that it deals directly with those two issues. As the work of Chiba and coworkers demonstrates, one can reduce Man 8 GlcNAc 2 structures to a Man 5 GlcNAc 2 isomer in S.
  • a preferred process utilizes an - mannosidase in vivo, where the pH optimum of the mannosidase is within 1.4 pH units of the average pH optimum of other representative marker enzymes localized in the same organelle(s).
  • the pH optimum of the enzyme to be targeted to a specific organelle should be matched with the pH optimum of other enzymes found in the same organelle, such that the maximum activity per unit enzyme is obtained.
  • Table 3 summarizes the activity of mannosidases from various sources and their respective pH optima.
  • Table 4 summarizes their location.
  • Man 5 GlcNAc2 structure required to accept subsequent addition of GlcNAc by GnT I Any enzyme or combination of enzymes that has/have shown to generate a structure that can be converted to GlcNAcMan 5 GlcNAc 2 by GnT I in vitro would constitute an appropriate choice.
  • This knowledge may be obtained from the scientific literature or experimentally by determining that a potential mannosidase can convert Man 8 GlcNAc 2 -PA to Man 5 GlcNAc 2 -PA and then testing, if the obtained Man 5 GlcNAc 2 -PA structure can serve a substrate for GnT I and UDP-GlcNAc to give GlcNAcMan 5 GlcNAc 2 in vitro.
  • mannosidase IA from a human or murine source would be an appropriate choice.
  • the ⁇ -l,2-mannosidase enzyme should have optimal activity at a pH between 5.1 and 8.0. In a preferred embodiment, the enzyme has an optimal activity at a pH between 5.9 and 7.5. The optimal pH may be determined under in vitro assay conditions.
  • Preferred mannosidases include those listed in Table 3 having appropriate pH optima, e.g. Aspergillus nidulans, Homo sapiens IA(Golgi), Homo sapiens IB (Golgi), Lepidopteran insect cells (IPLB-SF21AE), Homo sapiens, mouse IB (Golgi), and Xanthomonas manihotis.
  • a single cloned mannosidase gene is expressed in the host organism.
  • the encoded mannosidases should all have pH optima within the preferred range of 5.1 to 8.0, or especially between 5.9 and 7.5.
  • mannosidase activity is targeted to the ER or cis Golgi, where the early reactions of glycosylation occur.
  • a second step of the process involves the sequential addition of sugars to the nascent carbohydrate structure by engineering the expression of glucosyltransferases into the Golgi apparatus.
  • This process first requires the functional expression of GnT I in the early or medial Golgi apparatus as well as ensuring the sufficient supply of UDP-GlcNAc. Integration Sites Since the ultimate goal of this genetic engineering effort is a robust protein production strain that is able to perform well in an industrial fermentation process, the integration of multiple genes into the fungal chromosome involves careful planing. The engineered strain will most likely have to be transformed with a range of different genes, and these genes will have to be transformed in a stable fashion to ensure that the desired activity is maintained throughout the fermentation process.
  • any combination of the following enzyme activities will have to be engineered into the fungal protein expression host: sialyltransferases, mannosidases, fucosyltransferases, galactosyltransferases, glucosyltransferases, GlcNAc transferases, ER and Golgi specific transporters (e.g. sym and antiport transporters for UDP-galactose and other precursors), other enzymes involved in the processing of oligosaccharides, and enzymes involved in the synthesis of activated oligosaccharide precursors such as UDP-galactose, CMP-N-acetylneuraminic acid.
  • sialyltransferases mannosidases
  • fucosyltransferases fucosyltransferases
  • galactosyltransferases galactosyltransferases
  • glucosyltransferases glucosyltransferases
  • Glycosyltransferases and mannosidases line the inner (luminal) surface of the ER and Golgi apparatus and thereby provide a "catalytic" surface that allows for the sequential processing of glycoproteins as they proceed through the ER and Golgi network.
  • the multiple compartments of the cis, medial, and trans Golgi and the trans-Golgi Network (TGN) provide the different localities in which the ordered sequence of glycosylation reactions can take place.
  • glycoprotein proceeds from synthesis in the ER to full maturation in the late Golgi or TGN, it is sequentially exposed to different glycosidases, mannosidases and glycosyltransferases such that a specific carbohydrate structure may be synthesized.
  • Much work has been dedicated to revealing the exact mechanism by which these enzymes are retained and anchored to their respective organelle.
  • the evolving picture is complex but evidence suggests that stem region, membrane spanning region and cytoplasmic tail individually or in concert direct enzymes to the membrane of individual organelles and thereby localize the associated catalytic domain to that locus.
  • Targeting sequences are well known and described in the scientific literature and public databases, as discussed in more detail below with respect to libraries for selection of targeting sequences and targeted enzymes.
  • a library including at least two genes encoding exogeneous glycosylation enzymes is transformed into the host organism, producing a genetically mixed population. Transformants having the desired glycosylation phenotypes are then selected from the mixed population.
  • the host organism is a yeast, especially P. pastoris, and the host glycosylation pathway is modified by the operative expression of one or more human or animal glycosylation enzymes, yielding protein N- glycans similar or identical to human glycoforms.
  • the D ⁇ A library includes genetic constructs encoding fusions of glycosylation enzymes with targeting sequences for various cellular loci involved in glycosylation especially the ER, cis Golgi, medial Golgi, or trans Golgi.
  • modifications to glycosylation which can be effected using method are: (1) engineering an eukaryotic microorganism to trim mannose residues from Man 8 Glc ⁇ Ac2 to yield Man 5 GlcNAc2 as a protein N- glycan; (2) engineering an eukaryotic microorganism to add an N-acetylglucosamine (Glc ⁇ Ac) residue to Man 5 Glc ⁇ Ac 2 by action of GlcNAc transferase I; (3) engineering an eukaryotic microorganism to functionally express an enzyme such as an N-acetylglucosamine transferase (GnT I, GnT II, GnT III, GnT IV, GnT V, GnT VI), mannosidase II, fucosyltransferase, galactosyl tranferase (GalT) or sialyltransferases (ST).
  • N-acetylglucosamine transferase GnT I
  • the host organism is transformed two or more times with D ⁇ A libraries including sequences encoding glycosylation activities. Selection of desired phenotypes may be performed after each round of transformation or alternatively after several transformations have occurred. Complex glycosylation pathways can be rapidly engineered in this manner.
  • each library construct includes at least two exogenous genes encoding glycosylation enzymes.
  • promoters include, for example, the AOX1, AOX2, DAS, and P40 promoters.
  • selectable marker such as a gene to impart drug resistance or to complement a host metabolic lesion. The presence of the marker is useful in the subsequent selection of transformants; for example, in yeast the URA3, HIS4, SUC2, G418, BLA, or SHBLE genes may be used.
  • the library may be assembled directly from existing or wild-type genes.
  • the D ⁇ A library is assembled from the fusion of two or more sub-libraries.
  • one useful sub-library includes D ⁇ A sequences encoding any combination of enzymes such as sialyltransferases, mannosidases, fucosyltransferases, galactosyltransferases, glucosyltransferases, and GlcNAc transferases.
  • the enzymes are of human origin, although other mammalian, animal, or fungal enzymes are also useful.
  • genes are truncated to give fragments encoding the catalytic domains of the enzymes.
  • the enzymes may then be redirected and expressed in other cellular loci.
  • the choice of such catalytic domains may be guided by the knowledge of the particular environment in which the catalytic domain is subsequently to be active. For example, if a particular glycosylation enzyme is to be active in the late Golgi, and all known enzymes of the host organism in the late Golgi have a certain pH optimum, then a catalytic domain is chosen which exhibits adequate activity at that pH.
  • Another useful sub-library includes DNA sequences encoding signal peptides that result in localization of a protein to a particular location within the ER, Golgi, or trans Golgi network. These signal sequences may be selected from the host organism as well as from other related or unrelated organisms.
  • Membrane-bound proteins of the ER or Golgi typically may include, for example, N-terminal sequences encoding a cytosolic tail (ct), a transmembrane domain (tmd), and a stem region (sr). The ct, tmd, and sr sequences are sufficient individually or in combination to anchor proteins to the inner (lumenal) membrane of the organelle.
  • a preferred embodiment of the sub-library of signal sequences includes ct, tmd, and/or sr sequences from these proteins.
  • Still other useful sources of signal sequences include retrieval signal peptides, e.g. the tetrapeptides HDEL or KDEL, which are typically found at the C-terminus of proteins that are transported retrograde into the ER or Golgi.
  • Still other sources of signal sequences include (a) type II membrane proteins, (b) the enzymes listed in Table 3, (c) membrane spanning nucleotide sugar transporters that are localized in the Golgi, and (d) sequences referenced in Table 5.
  • MNN1 S. 1,3- Golgi (trans) cerevisiae mannosyltransferase
  • signal sequences are selected which are appropriate for the enzymatic activity or activities which are to be engineered into the host.
  • signal sequences are selected which are appropriate for the enzymatic activity or activities which are to be engineered into the host.
  • a modified microorganism capable of terminal sialylation of nascent N-glycans a process which occurs in the late Golgi in humans, it is desirable to utilize a sub-library of signal sequences derived from late Golgi proteins.
  • the trimming of Man 8 Glc ⁇ Ac 2 by an ⁇ -l,2-mannosidase to give
  • Man 5 GlcNAc 2 is an early step in complex N-glycan formation in humans. It is therefore desirable to have this reaction occur in the ER or early Golgi of an engineered host microorganism. A sub-library encoding ER and early Golgi retention signals is used.
  • a DNA library is then constructed by the in-frame ligation of a sub-library including DNA encoding signal sequences with a sub-library including DNA encoding glycosylation enzymes or catalytically active fragments thereof.
  • the resulting library includes synthetic genes encoding fusion proteins.
  • signal sequences may be inserted within the open reading frame of an enzyme, provided the protein structure of individual folded domains is not disrupted.
  • a DNA library transformed into the host contains a large diversity of sequences, thereby increasing the probability that at least one transformant will exhibit the desired phenotype. Accordingly, prior to transformation, a DNA library or a constituent sub- library may be subjected to one or more rounds of gene shuffling, error prone PCR, or in vitro mutagenesis.
  • the DNA library is then transformed into the host organism.
  • yeast any convenient method of DNA transfer may be used, such as electroporation, the lithium chloride method, or the spheroplast method.
  • integration occurs via homologous recombination, using techniques known in the art.
  • DNA library elements are provided with flanking sequences homologous to sequences of the host organism. In this manner integration occurs at a defined site in the host genome, without disruption of desirable or essential genes.
  • library DNA is integrated into the site of an undesired gene in a host chromosome, effecting the disruption or deletion of the gene.
  • library DNA may be introduced into the host via a chromosome, plasmid, retroviral vector, or random integration into the host genome.
  • Recyclable marker genes such as ura3, which can be selected for or against, are especially suitable.
  • transformants displaying the desired glycosylation phenotype are selected. Selection may be performed in a single step or by a series of phenotypic enrichment and/or depletion steps using any of a variety of assays or detection methods. Phenotypic characterization may be carried out manually or using automated high-throughput screening equipment. Commonly a host microorganism displays protein N-glycans on the cell surface, where various glycoproteins are localized. Accordingly intact cells may be screened for a desired glycosylation phenotype by exposing the cells to a lectin or antibody that binds specifically to the desired N-glycan. A wide variety of oligosaccharide-specific lectins are available commercially (EY).
  • antibodies to specific human or animal N-glycans are available commercially or may be produced using standard techniques.
  • An appropriate lectin or antibody may be conjugated to a reporter molecule, such as a chromophore, fluorophore, radioisotope, or an enzyme having a chromogenic substrate (Guillen et al., 1998. Proc.
  • Screening may then be performed using analytical methods such as spectrophotometry, fluorimetry, fluorescence activated cell sorting, or scintillation counting.
  • analytical methods such as spectrophotometry, fluorimetry, fluorescence activated cell sorting, or scintillation counting.
  • Protein isolation may be carried out by techniques known in the art.
  • an enzyme such as endo- ⁇ -N-acetylglucosaminidase (Genzyme Co., Boston, MA) may be used to cleave the N-glycans from glycoproteins. Isolated proteins or N-glycans may then be analyzed by liquid chromatography (e.g.
  • U.S. Patent No. 5,595,900 teaches several methods by which cells with desired extracellular carbohydrate structures may be identified. Prior to selection of a desired transformant, it may be desirable to deplete the transformed population of cells having undesired phenotypes. For example, when the method is used to engineer a functional mannosidase activity into cells, the desired transformants will have lower levels of mannose in cellular glycoprotein. Exposing the transformed population to a lethal radioisotope of mannose in the medium depletes the population of transformants having the undesired phenotype, i.e. high levels of incorporated mannose.
  • cytotoxic lectin or antibody directed against an undesirable N-glycan, may be used to deplete a transformed population of undesired phenotypes.
  • the enzyme For a glycosyltransferase to function satisfactorily in the Golgi, it is necessary for the enzyme to be provided with a sufficient concentration of an appropriate nucleotide sugar, which is the high-energy donor of the sugar moiety added to a nascent glycoprotein.
  • nucleotide sugars to the appropriate compartments are provided by expressing an exogenous gene encoding a sugar nucleotide transporter in the host microorganism.
  • the choice of transporter enzyme is influenced by the nature of the exogenous glycosyltransferase being used.
  • a GlcNAc transferase may require a UDP-GlcNAc transporter
  • a fucosyltransferase may require a GDP- fucose transporter
  • a galactosyltransferase may require a UDP-galactose transporter
  • a sialyltransferase may require a CMP-sialic acid transporter.
  • the added transporter protein conveys a nucleotide sugar from the cytosol into the Golgi apparatus, where the nucleotide sugar may be reacted by the glycosyltransferase, e.g. to elongate an N-glycan.
  • the reaction liberates a nucleoside diphosphate or monophosphate, e.g. UDP, GDP, or
  • nucleoside diphosphate As accumulation of a nucleoside diphosphate inhibits the further activity of a glycosyltransferase, it is frequently also desirable to provide an expressed copy of a gene encoding a nucleotide diphosphatase.
  • the diphosphatase (specific for UDP or GDP as appropriate) hydrolyzes the diphosphonucleoside to yield a nucleoside monosphosphate and inorganic phosphate.
  • the nucleoside monophosphate does not inhibit the glycotransferase and in any case is exported from the Golgi by an endogenous cellular system.
  • Suitable transporter enzymes which are typically of mammalian origin, are described below. Examples The use of the above general method may be understood by reference to the following non-limiting examples. Examples of preferred embodiments are also summarized in Table 6.
  • Example 1 Engineering of P. pastoris with -l,2-Mannosidase to produce insulin.
  • An -l,2-mannosidase is required for the trimming of Man 8 GlcNAc 2 to yield Man 5 GlcNAc 2 , an essential intermediate for complex N-glycan formation.
  • An OCH1 mutant of P. pastoris is engineered to express secreted human interferon- ⁇ under the control of an aox promoter.
  • a D ⁇ A library is constructed by the in-frame ligation of the catalytic domain of human mannosidase IB (an ⁇ -l,2-mannosidase) with a sub-library including sequences encoding early Golgi localization peptides.
  • the D ⁇ A library is then transformed into the host organism, resulting in a genetically mixed population wherein individual transformants each express interferon- ⁇ as well as a synthetic mannosidase gene from the library. Individual transformant colonies are cultured and the production of interferon is induced by addition of methanol. Under these conditions, over 90% of the secreted protein includes interferon- ⁇ . Supernatants are purified to remove salts and low-molecular weight contaminants by C 18 silica reversed-phase chromatography.
  • Desired transformants expressing appropriately targeted, active ⁇ -l,2-mannosidase produce interferon- ⁇ including N-glycans of the structure Man 5 Glc ⁇ Ac 2 , which has a reduced molecular mass compared to the interferon of the parent strain.
  • the purified supernatants including interferon- ⁇ are analyzed by MALDI-TOF mass spectroscopy and colonies expressing the desired form of interferon- ⁇ are identified.
  • GlcNAc Transferase I activity is required for the maturation of complex N-glycans.
  • Man 5 Glc ⁇ Ac 2 may only be trimmed by mannosidase II, a necessary step in the formation of human glycoforms, after the addition of GlcNAc to the terminal ⁇ -1,3 mannose residue by GlcNAc Transferase I (Schachter, 1991 Glycobiology 1(5):453-461).
  • a library is prepared including DNA fragments encoding suitably targeted GlcNAc Transferase I genes.
  • the host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g.
  • an OCH1 mutant provides the substrate UDP-GlcNAc in the Golgi and/or ER, and provides N-glycans of the structure Man 5 Glc ⁇ Ac 2 in the Golgi and/or ER.
  • the transformants are screened for those having the highest concentration of terminal GlcNAc on the cell surface, or alternatively secrete the protein having the highest terminal GlcNAc content.
  • a visual method e.g. a staining procedure
  • a specific terminal GlcNAc binding antibody e.g. a specific terminal GlcNAc binding antibody
  • a lectin e.g. a lectin.
  • the desired transformants exhibit reduced binding of certain lectins specific for terminal mannose residues.
  • a human glycoform in a microorganism it is desirable in order to generate a human glycoform in a microorganism to remove the two remaining terminal mannoses from the structure GlcNAcMan 5 GlcNAc 2 by action of a mannosidase II.
  • a DNA library including sequences encoding cis and medial Golgi localization signals is fused in-frame to a library encoding mannosidase II catalytic domains.
  • the host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g. an OCH1 mutant) and provides N-glycans having the structure Glc ⁇ AcMan 5 Glc ⁇ Ac2 in the Golgi and/or ER.
  • the enzymes ⁇ 2,3 -sialyltransferase and ⁇ 2,6-sialyltransferase add terminal sialic acid to galactose residues in nascent human N-glycans, leading to mature glycoproteins. In human the reactions occur in the trans Golgi or TG ⁇ . Accordingly a D ⁇ A library is constructed by the in-frame fusion of sequences encoding sialyltransferase catalytic domains with sequences encoding trans Golgi or TG ⁇ localization signals.
  • the host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g.
  • Example 6 Method of engineering strains to express GDP-Fucose Transporter.
  • the rat liver Golgi membrane GDP-fucose transporter has been identified and purified by Puglielli, L. and C. B. Hirschberg 1999 J Biol. Chem. 274(50):35596-35600.
  • the corresponding gene can be identified using standard techniques, such as N-terminal sequencing and Southern blotting using a degenerate D ⁇ A probe.
  • the intact gene can is then be expressed in a host microorganism that also expresses a fucosyltransferase.
  • Example 7 Method of engineering strains to express UDP-Galactose Transporter
  • UDP-galactose (UDP-Gal) transporter has been cloned and shown to be active in S. cerevisiae. (Kainuma, M., et al. 1999 Glycobiology 9(2): 133-141).
  • a second human UDP-galactose transporter (hUGTl) has been cloned and functionally expressed in Chinese Hamster Ovary Cells. Aoki, K., et al. 1999 J.Biochem. 126(5): 940-950.
  • Segawa and coworkers have cloned a UDP-galactose transporter from Schizosaccharomyces pombe (Segawa, H., et al. 1999 Febs Letters 451(3): 295-298).
  • CMP-Sialic Acid Transporter Human CMP-sialic acid transporter (hCST) has been cloned and expressed in Lee 8 CHO cells by Aoki and coworkers (1999). Molecular cloning of the hamster CMP-sialic acid transporter has also been achieved (Eckhardt and Gerardy Schahn 1997 Eur. J. Biochem. 248(1): 187-192). The functional expression of the murine CMP-sialic acid transporter was achieved in Saccharomyces cerevisiae by Berninsone, P., et al. 1997 J
  • EBI European Bioinformatics Institute
  • bovine cDNA (partial), Narimatsu et al (1986) Proc. Natl. Acad. Sci. USA 83:4720-4724
  • human cDNA (partial) Uejima et al (1992) Cancer Res. 52:6158- 6163 29.
  • human cDNA (carcinoma) Appert et al (1986) Biochem. Biophys.
  • human gene (partial), Wang et al (1993) J. Biol. Chem. 268:4355- 4361 45. human gene (5 1 flank), Aasheim et al (1993) Eur. J. Biochem.
  • yeast expression systems can be obtained from sources such as the American Type Culture Collection, Rockville, MD. Vectors are commercially available from a variety of sources.

Abstract

Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways. This is achieved using a combination of engineering and/or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce 'human-like' glycoproteins.

Description

METHODS FOR PRODUCING MODIFIED GLYCOPROTEINS
Cross Reference To Related Applications
Priority is claimed to U.S. Provisional Application Serial No. 60/214,358, filed on June 28, 2000, U.S. Provisional Application Serial No. 60/215,638, filed on June 30, 2000, and U.S. Provisional Application Serial No. 60/279,997, filed on March 30, 2001.
FIELD OF THE INVENTION
The present invention is directed to methods and compositions by which fungi or other eukaryotic microorganisms can be genetically modified to produce glycosylated proteins (glycoproteins) having patterns of glycosylation similar to glycoproteins produced by animal cells, especially human cells, which are useful as human or animal therapeutic agents.
BACKGROUND OF THE INVENTION
Glycosylation Pathways De novo synthesized proteins may undergo further processing in cells, known as post-translational modification. In particular, sugar residues may be added enzymatically, a process known as glycosylation. The resulting proteins bearing covalently linked oligosaccharide side chains are known as glycosylated proteins or glycoproteins. Bacteria typically do not glycosylate proteins; in cases where glycosylation does occur it usually occurs at nonspecific sites in the protein (Moens and Vanderleyden, Arch. Microbiol. 1997 168(3): 169- 175).
Eukaryotes commonly attach a specific oligosaccharide to the side chain of a protein asparagine residue, particularly an asparagine which occurs in the sequence Asn-Xaa-Ser/Thr/Cys (where Xaa represents any amino acid). Following attachment of the saccharide moiety, known as an N-glycan, further modifications may occur in vivo. Typically these modifications occur via an ordered sequence of enzymatic reactions, known as a cascade. Different organisms provide different glycosylation enzymes (glycosyltransferases and glycosidases) and different glycosyl substrates, so that the final composition of a sugar side chain may vary markedly depending upon the host. For example, microorganisms such as filamentous fungi and yeast
(lower eukaryotes) typically add additional mannose and/or mannosylphosphate sugars. The resulting glycan is known as a "high- mannose" type or a mannan. By contrast, in animal cells, the nascent oligosaccharide side chain may be trimmed to remove several mannose residues and elongated with additional sugar residues that typically do not occur in the N-glycans of lower eukaryotes. See R.K. Bretthauer, et al. Biotechnology and Applied Biochemistry, 1999, 30, 193-200; W. Martinet, et al. Biotechnology Letters, 1998, 20, 1171-1177; S. Weikert, et al. Nature Biotechnology, 1999, 17, 1116-1121; M. Malissard, et al. Biochemical and Biophysical Research Communications, 2000, 267, 169-173; Jarvis, et al. 1998 Engineering N-glycosylation pathways in the baculovirus-insect cell system, Current Opinion in Biotechnology, 9:528-533; and M. Takeuchi, 1997 Trends in Glycoscience and Glycotechnology, 1997, 9, S29-S35. The N-glycans that are produced in humans and animals are commonly referred to as complex N-glycans. A complex N-glycan means a structure with typically two to six outer branches with a sialyllactosamine sequence linked to an inner core structure Man3GlcΝAc2. A complex N- glycan has at least one branch, and preferably at least two, of alternating GlcΝAc and galactose (Gal) residues that terminate in oligosaccharides such as, for example: ΝeuΝAc-; ΝeuAc 2-6GalΝAcαl-; NeuAcα2-3Galβl- 3GalNAcαl-; NeuAcα2-3/6Galβl-4GlcNAcβl-; GlcNAcαl-4Galβl- (mucins only); Fucαl-2Galβl -(blood group H). Sulfate esters can occur on galactose, GalNAc, and GlcNAc residues, and phosphate esters can occur on mannose residues. NeuAc (Neu: neuraminic acid; Ac:acetyl) can be O- acetylated or replaced by NeuGl (N-glycolylneuraminic acid). Complex N- glycans may also have intrachain substitutions of bisecting GlcΝAc and core fucose (Fuc). Human glycosylation begins with a sequential set of reactions in the endoplasmatic reticulum (ER) leading to a core oligosaccharide structure, which is transferred onto de novo synthesized proteins at the asparagine residue in the sequence Asn-Xaa-Ser/Thr (see Figure 1 A). Further processing by glucosidases and mannosidases occurs in the ER before the nascent glycoprotein is transferred to the early Golgi apparatus, where additional mannose residues are removed by Golgi-specific 1,2- mannosidases. Processing continues as the protein proceeds through the Golgi. In the medial Golgi a number of modifying enzymes including N-acetylglucosamine transferases (GnT I, GnT II, GnT III, GnT IV GnT V GnT VI), mannosidase II, fucosyltransferases add and remove specific sugar residues (see Figure IB). Finally in the trans Golgi, the N-glycans are acted on by galactosyl tranferases and sialyltransferases (ST) and the finished glycoprotein is released from the Golgi apparatus. The protein N-glycans of animal glycoproteins have bi-, tri-, or tetra-antennary structures, and may typically include galactose, fucose, and N-acetylglucosamine. Commonly the terminal residues of the N-glycans consist of sialic acid. A typical structure of a human N-glycan is shown in Figure IB.
Sugar Νucleotide Precursors The N-glycans of animal glycoproteins typically include galactose, fucose, and terminal sialic acid. These sugars are not generally found on glycoproteins produced in yeast and filamentous fungi. In humans, the full range of nucleotide sugar precursors (e.g. UDP-N-acetylglucosamine, UDP- N-acetylgalactosamine, CMP-N-acetylneuraminic acid, UDP-galactose, GDP-fucose etc.) are generally synthesized in the cytosol and transported into the Golgi, where they are attached to the core oligosaccharide by glycosyltransferases. (Sommers and Hirschberg, 1981 J Cell Biol. 91(2): A406-A406; Sommers and Hirschberg 1982 J. Biol.Chem.257(lS): 811-817; Perez and Hirschberg 1987 Methods in Enzymology 138: 709-715. Glycosyl transfer reactions typically yield a side product which is a nucleoside diphosphate or monophosphate. While monophosphates can be directly exported in exchange for nucleoside triphosphate sugars by an antiport mechanism, diphosphonucleosides (e.g. GDP) have to be cleaved by phosphatases (e.g. GDPase) to yield nucleoside monophosphates and inorganic phosphate prior to being exported. This reaction is important for efficient glycosylation; for example, GDPase from S. cerevisiae has been found to be necessary for mannosylation. However the GDPase has 90% reduced activity toward UDP (Berninsone et al., 1994 J. Biol. Chem. 269(1):207-21 lα). Lower eukaryotes typically lack UDP-specific diphosphatase activity in the Golgi since they do not utilize UDP-sugar precursors for Golgi-based glycoprotein synthesis. Schizosaccharomyces pombe, a yeast found to add galactose residues to cell wall polysaccharides (from UDP-galactose) has been found to have specific UDPase activity, indicating the requirement for such an enzyme (Berninsone et al., 1994). UDP is known to be a potent inhibitor of glycosyltransferases and the removal of this glycosylation side product is important in order to prevent glycosyltransferase inhibition in the lumen of the Golgi (Khatara et al.,
1974). See Berninsone, P., et al. 1995. J. Biol.Chem.270(24): 14564-14567; Beaudet, L., et al. 1998 Abe Transporters: Biochemical, Cellular, and Molecular Aspects. 292: 397-413.
Compartmentalization of Glycosylation Enzymes Glycosyltransferases and mannosidases line the inner (luminal) surface of the ER and Golgi apparatus and thereby provide a catalytic surface that allows for the sequential processing of glycoproteins as they proceed through the ER and Golgi network. The multiple compartments of the cis, medial, and trans Golgi and the trans Golgi Network (TGN), provide the different localities in which the ordered sequence of glycosylation reactions can take place. As a glycoprotein proceeds from synthesis in the ER to full maturation in the late Golgi or TGN, it is sequentially exposed to different glycosidases, mannosidases and glycosyltransferases such that a specific N-glycan structure may be synthesized. The enzymes typically include a catalytic domain, a stem region, a membrane spanning region and an Ν- terminal cytoplasmic tail. The latter three structural components are responsible for directing a glycosylation enzyme to the appropriate locus. Localization sequences from one organism may function in other organisms. For example the membrane spanning region of α-2,6- sialyltransferase (α-2,6-ST) from rats, an enzyme known to localize in the rat trans Golgi, was shown to also localize a reporter gene (invertase) in the yeast Golgi (Schwientek, et al., 1995). However, the very same membrane spanning region as part of a full-length of α-2,6-sialyltransferase was retained in the ER and not further transported to the Golgi of yeast (Krezdorn et al., 1994). A full length GalT from humans was not even synthesized in yeast, despite demonstrably high transcription levels. On the other hand the transmembrane region of the same human GalT fused to an invertase reporter was able to direct localization to the yeast Golgi, albeit it at low production levels. Schwientek and co-workers have shown that fusing 28 amino acids of a yeast mannosyltransferase (Mntl), a region containing an N-terminal cytoplasmic tail, a transmembrane region and eight amino acids of the stem region, to the catalytic domain of human GalT are sufficient for Golgi localization of an active GalT (Schwientek et al. 1995 J. Biol. Chem. 270(10):5483-5489). Other galactosyltransferases appear to rely on interactions with enzymes resident in particular organelles since after removal of their transmembrane region they are still able to localize properly.
Improper localization of a glycosylation enzyme may prevent proper functioning of the enzyme in the pathway. For example Aspergillus nidulans, which has numerous α-l,2-mannosidases (Eades and Hintz, 2000 Gene 255(l):25-34), does not add GlcNAc to Man5GlcNAc2 when transformed with the rabbit GnT I gene, despite a high overall level of GnT I activity (Kalsner et al., 1995). GnT I, although actively expressed, may be incorrectly localized such that the enzyme is not in contact with both of its substrates: the nascent N-glycan of the glycoprotein and UDP-GlcΝAc. Alternatively, the host organism may not provide an adequate level of UDP- GlcΝAc in the Golgi. Glycoproteins Used Therapeutically
A significant fraction of proteins isolated from humans or other animals are glycosylated. Among proteins used therapeutically, about 70% are glycosylated. If a therapeutic protein is produced in a microorganism host such as yeast, however, and is glycosylated utilizing the endogenous pathway, its therapeutic efficiency is typically greatly reduced. Such glycoproteins are typically immunogenic in humans and show a reduced half-life in vivo after administration (Takeuchi, 1997).
Specific receptors in humans and animals can recognize terminal mannose residues and promote the rapid clearance of the protein from the bloodstream. Additional adverse effects may include changes in protein folding, solubility, susceptibility to proteases, trafficking, transport, compartmentalization, secretion, recognition by other proteins or factors, antigenicity, or allergenicity. Accordingly, it has been necessary to produce therapeutic glycoproteins in animal host systems, so that the pattern of glycosylation is identical or at least similar to that in humans or in the intended recipient species. In most cases a mammalian host system, such as mammalian cell culture, is used.
Systems for Producing Therapeutic Glycoproteins In order to produce therapeutic proteins that have appropriate glycoforms and have satisfactory therapeutic effects, animal or plant-based expression systems have been used. The available systems include:
1. Chinese hamster ovary cells (CHO), mouse fibroblast cells and mouse myeloma cells (Arzneimittelforschung. 1998 Aug;48(8):870- 880);
2. transgenic animals such as goats, sheep, mice and others (Dente Prog. Clin. Biol. 1989 Res. 300:85-98, Ruther et al., 1988 Cell 53(6):847- 856; Ware, J., et al. 1993 Thrombosis and Haemostasis 69(6): 1194-
1194; Cole, E. S., et al. 1994 J.Cell.Biochem. 265-265); 3. plants (Arabidopsis thaliana, tobacco etc.) (Staub, et al. 2000 Nature
Biotechnology 18(3): 333-338) (McGarvey, P. B., et al. 1995 Bio- Technology 13(13): 1484-1487; Bardor, M., et al. 1999 Trends in Plant Science 4(9): 376-380); 4. insect cells (Spodopterafrugiperda Sf9, Sf21, Trichoplusia ni, etc. in combination with recombinant baculoviruses such as Autographa californica multiple nuclear polyhedrosis virus which infects lepidopteran cells) (Altaians et al., 1999 Glycoconj. J. 16(2): 109- 123).
Recombinant human proteins expressed in the above-mentioned host systems may still include non-human glycoforms (Raju et al., 2000 Annals Biochem. 283(2):123-132). In particular, fraction of the N-glycans may lack terminal sialic acid, typically found in human glycoproteins. Substantial efforts have been directed to developing processes to obtain glycoproteins that are as close as possible in structure to the human forms, or have other therapeutic advantages. Glycoproteins having specific glycoforms may be especially useful, for example in the targeting of therapeutic proteins. For example, the addition of one or more sialic acid residues to a glycan side chain may increase the lifetime of a therapeutic glycoprotein in vivo after administration. Accordingly, the mammalian host cells may be genetically engineered to increase the extent of terminal sialic acid in glycoproteins expressed in the cells. Alternatively sialic acid may be conjugated to the protein of interest in vitro prior to administration using a sialic acid transferase and an appropriate substrate. In addition, changes in growth medium composition or the expression of enzymes involved in human glycosylation have been employed to produce glycoproteins more closely resembling the human forms (S. Weikert, et al., Nature Biotechnology, 1999, 17, 1116-1121; Werner, Νoe, et al 1998 Arzneimittelforschung 48(8):870- 880; Weikert, Papac et al., 1999; Andersen and Goochee 1994 Cur. Opin.Biotechnol.5: 546-549; Yang and Butler 2000 Biotechnol.Bioengin.68(4): 370-380). Alternatively cultured human cells may be used.
However, all of the existing systems have significant drawbacks. Only certain therapeutic proteins are suitable for expression in animal or plant systems (e.g. those lacking in any cytotoxic effect or other effect adverse to growth). Animal and plant cell culture systems are usually very slow, frequently requiring over a week of growth under carefully controlled conditions to produce any useful quantity of the protein of interest. Protein yields nonetheless compare unfavorably with those from microbial fermentation processes. In addition cell culture systems typically require complex and expensive nutrients and cofactors, such as bovine fetal serum. Furthermore growth may be limited by programmed cell death (apoptosis). Moreover, animal cells (particularly mammalian cells) are highly susceptible to viral infection or contamination. In some cases the virus or other infectious agent may compromise the growth of the culture, while in other cases the agent may be a human pathogen rendering the therapeutic protein product unfit for its intended use. Furthermore many cell culture processes require the use of complex, temperature-sensitive, animal-derived growth media components, which may carry pathogens such as bovine spongiform encephalopathy (BSE) prions. Such pathogens are difficult to detect and/or difficult to remove or sterilize without compromising the growth medium. In any case, use of animal cells to produce therapeutic proteins necessitates costly quality controls to assure product safety. Transgenic animals may also be used for manufacturing high- volume therapeutic proteins such as human serum albumin, tissue plasminogen activator, monoclonal antibodies, hemoglobin, collagen, fϊbrinogen and others. While transgenic goats and other transgenic animals (mice, sheep, cows, etc.) can be genetically engineered to produce therapeutic proteins at high concentrations in the milk, the process is costly since every batch has to undergo rigorous quality control. Animals may host a variety of animal or human pathogens, including bacteria, viruses, fungi, and prions. In the case of scrapies and bovine spongiform encephalopathy, testing can take about a year to rule out infection. The production of therapeutic compounds is thus preferably carried out in a well-controlled sterile environment, e.g. under Good Manufacturing Practice (GMP) conditions. However, it is not generally feasible to maintain animals in such environments. Moreover, whereas cells grown in a fermenter are derived from one well characterized Master Cell Bank (MCB), transgenic animal technology relies on different animals and thus is inherently non-uniform. Furthermore external factors such as different food uptake, disease and lack of homogeneity within a herd, may effect glycosylation patterns of the final product. It is known in humans, for example, that different dietary habits result in differing glycosylation patterns.
Transgenic plants have been developed as a potential source to obtain proteins of therapeutic value. However, high level expression of proteins in plants suffers from gene silencing, a mechanism by which the genes for highly expressed proteins are down-regulated in subsequent plant generations. In addition, plants add xylose and/or α- 1,3 -linked fucose to protein N-glycans, resulting in glycoproteins that differ in structure from animals and are immunogenic in mammals (Altmann, Marz et al., 1995 Glycoconj. J. 12(2);150-155). Furthermore, it is generally not practical to grow plants in a sterile or GMP environment, and the recovery of proteins from plant tissues is more costly than the recovery from fermented microorganisms.
Glycoprotein Production Using Eukarvotic Microorganisms The lack of a suitable expression system is thus a significant obstacle to the low-cost and safe production of recombinant human glycoproteins. Production of glycoproteins via the fermentation of microorganisms would offer numerous advantages over the existing systems. For example, fermentation-based processes may offer (a) rapid production of high concentrations of protein; (b) the ability to use sterile, well-controlled production conditions (e.g. GMP conditions); (c) the ability to use simple, chemically defined growth media; (d) ease of genetic manipulation; (e) the absence of contaminating human or animal pathogens; (f) the ability to express a wide variety of proteins, including those poorly expressed in cell culture owing to toxicity etc.; (g) ease of protein recovery (e.g. via secretion into the medium). In addition, fermentation facilities are generally far less costly to construct than cell culture facilities. As noted above, however, bacteria, including species such as Escherichia coli commonly used to produce recombinant proteins, do not glycosylate proteins in a specific manner like eukaryotes. Various methylotrophic yeasts such as Pichia pastoris, Pichia methanolica, and Hansenula polymorpha, are particularly useful as eukaryotic expression systems, since they are able to grow to high cell densities and/or secrete large quantities of recombinant protein. However, as noted above, glycoproteins expressed in these eukaryotic microorganisms differ substantially in N-glycan structure from those in animals. This has prevented the use of yeast or filamentous fungi as hosts for the production of many useful glycoproteins.
Several efforts have been made to modify the glycosylation pathways of eukaryotic microorganisms to provide glycoproteins more suitable for use as mammalian therapeutic agents. For example, several glycosyltransferases have been separately cloned and expressed in S. cerevisiae (GalT, GnT I), Aspergillus nidulans (GnT I) and other fungi (Yoshida et al., 1999, Kalsner et al., 1995 Glycoconj. J. 12(3):360-370, Schwientek et al., 1995). However, N-glycans with human characteristics were not obtained.
Yeasts produce a variety of mannosyltransferases e.g. 1,3- mannosyltransferases (e.g. MΝΝ1 in S. cerevisiae) (Graham and Emr, 1991 J. Cell. Biol. 114(2):207-218), 1,2-mannosyltransferases (e.g. KTR/KRE family from S. cerevisiae), 1,6-mannosyltransferases (OCH1 from 5 cerevisiae), mannosylphosphate transferases (MΝΝ4 and MNN6 from S. cerevisiae) and additional enzymes that are involved in endogenous glycosylation reactions. Many of these genes have been deleted individually, giving rise to viable organisms having altered glycosylation profiles. Examples are shown in Table 1. Table 1. Examples of yeast strains having altered mannosylation
Strain iV-glycan (wild Mutation iV-glycan Reference type) (mutant)
S. pombe Man>9GlcNAc2 OCH1 Man8GlcNAc2 Yoko-o et al, 2001 FEBS Lett. 489(l):75-80
S. cerevisiae Man>9GlcNAc2 OCHl/MNNl Man8GlcNAc2 Nakanishi-Shindo et al,. 1993 J. Biol. Chem.
268(35):26338- 26345
S. cerevisiae Man>9GlcNAc2 OCHl/MNNl/ Man8GlcNAc2 Chiba et al, 1998
MNN4 J. Biol. Chem. 273,
26298-26304
In addition, Japanese Patent Application Public No. 8-336387 discloses an OCH1 mutant strain of Pichia pastoris. The OCH1 gene encodes 1,6-mannosyltransferase, which adds a mannose to the glycan structure Man8GlcNAc2 to yield Man9GlcNAc2. The Man9GlcNAc2 structure is then a substrate for further mannosylation in vivo, leading to the hypermannosylated glycoproteins that are characteristic of yeasts and typically may have at least 30-40 mannose residue per N-glycan. In the OCH1 mutant strain, proteins glycosylated with Man8GlcΝAc are accumulated and hypermannosylation does not occur. However, the structure Man8GlcNAc is not a substrate for animal glycosylation enzymes, such as human UDP-GlcNAc transferase I, and accordingly the method is not useful for producing proteins with human glycosylation patterns.
Martinet et al. (Biotechnol. Lett. 1998, 20(12), 1171-1177) reported the expression of α- 1 ,2-mannosidase from Trichoderma reesei in P. pastoris. Some mannose trimming from the N-glycans of a model protein was observed. However, the model protein had no N-glycans with the structure Man5GlcΝAc2, which would be necessary as an intermediate for the generation of complex N-glycans. Accordingly the method is not useful for producing proteins with human or animal glycosylation patterns. Similarly, Chiba et al. 1998 expressed α-l,2-mannosidase from Aspergϊllus saitoi in the yeast Saccharomyces cerevisiae. A signal peptide sequence (His-Asp-Glu-Leu) was engineered into the exogenous mannosidase to promote retention in the endoplasmic reticulum. In addition, the yeast host was a mutant lacking three enzyme activities associated with hypermannosylation of proteins: l,6-mannosyltransferase (OCH7); 1,3- mannosyltransferase (MNNl); and mannosylphosphatetransferase (MNN4). The N-glycans of the triple mutant host thus consisted of the structure Man8GlcΝAc2, rather than the high mannose forms found in wild-type S. cerevisiae. In the presence of the engineered mannosidase, the N-glycans of a model protein (carboxypeptidase Y) were trimmed to give a mixture consisting of 27 mole % Man5GlcΝAc2, 22 mole % Man6GlcNAc2, 22 mole % Man7GlcNAc2, 29 mole % Man8GlcNAc2. Trimming of the endogenous cell wall glycoproteins was less efficient, only 10 mole % of the N-glycans having the desired Man5GlcΝAc2 structure.
Since only the Man5GlcNAc2 glycans would be susceptible to further enzymatic conversion to human glycoforms, the method is not efficient for the production of proteins having human glycosylation patterns. In proteins having a single N-glycosylation site, at least 73 mole % would have an incorrect structure. In proteins having two or three N-glycosylation sites, respectively at least 93 or 98 mole % would have an incorrect structure. Such low efficiencies of coversion are unsatisfactory for the production of therapeutic agents, particularly as the separation of proteins having different glycoforms is typically costly and difficult. With the object of providing a more human-like glycoprotein derived from a fungal host, U.S. Patent No. 5,834,251 to Maras and Contreras discloses a method for producing a hybrid glycoprotein derived from Trichoderma reesei. A hybrid N-glycan has only mannose residues on the Manαl-6 arm of the core and one or two complex antennae on the Manαl-3 arm. While this structure has utility, the method has the disadvantage that numerous enzymatic steps must be performed in vitro, which is costly and time-consuming. Isolated enzymes are expensive to prepare and maintain, may need unusual and costly substrates (e.g. UDP-GlcNAc), and are prone to loss of activity and/or proteolysis under the conditions of use.
It is therefore an object of the present invention to provide a system and methods for humanizing glycosylation of recombinant glycoproteins expressed in Pichia pastoris and other lower eukaryotes such as Hansenula polymorpha, Pichia stiptis, Pichia methanolica, Pichia sp, Kluyveromyces sp, Candida albicans, Aspergillus nidulans, and Trichoderma reseei.
SUMMARY OF THE INVENTION
Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts.The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi such as Pichia pastoris, Hansenula polymorpha, Pichia stiptis, Pichia methanolica, Pichia sp., Kluyveromyces sp., Candida albicans, Aspergillus nidulans.anά Trichoderma reseei, axe modified to produce N-glycans such as Man5GlcΝAc2 or other structures along human glycosylation pathways. This is achieved using a combination of engineering and/or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce "human-like" glycoproteins.
In a first embodiment, the microorganism is engineered to express an exogenous c - 1 ,2-mannosidase enzyme having an optimal pH between 5.1 and 8.0, preferably between 5.9 and 7.5. In an alternative preferred embodiment, the exogenous enzyme is targeted to the endoplasmic reticulum or Golgi apparatus of the host organism, where it trims N-glycans such as Man8GlcΝAc2 to yield Man5GlcNAc2. The latter structure is useful because it is identical to a structure formed in mammals, especially humans; it is a substrate for further glycosylation reactions in vivo and/or in vitro that produce a finished N-glycan that is similar or identical to that formed in mammals, especially humans; and it is not a substrate for hypermannosylation reactions that occur in vivo in yeast and other microorganisms and that render a glycoprotein highly irnrnunogenic in animals. In a second embodiment, the glycosylation pathway of an eukaryotic microorganism is modified by (a) constructing a DΝA library including at least two genes encoding exogenous glycosylation enzymes; (b) transforming the microorganism with the library to produce a genetically mixed population expressing at least two distinct exogenous glycosylation enzymes; (c) selecting from the population a microorganism having the desired glycosylation phenotype. In a preferred embodiment, the DΝA library includes chimeric genes each encoding a protein localization sequence and a catalytic activity related to glycosylation. Organisms modified using the method are useful for producing glycoproteins having a glycosylation pattern similar or identical to mammals, especially humans. In a third embodiment, the glycosylation pathway is modified to express a sugar nucleotide transporter enzyme. In a preferred embodiment, a nucleotide diphosphatase enzyme is also expressed. The transporter and diphosphatase improve the efficiency of engineered glycosylation steps, by providing the appropriate substrates for the glycosylation enzymes in the appropriate compartments, reducing competitive product inhibition, and promoting the removal of nucleoside diphosphates.
DESCRIPTION OF THE FIGURES
Figure 1 A is a schematic diagram of typical fungal N-glycosylation pathway. Figure IB is a schematic diagram of a typical human N-glycosylation pathway.
DETAILED DESCRIPTION OF THE INVENTION
The methods and recombinant lower eukaryotic strains described herein are used to make "humanized glycoproteins". The recombinant lower eukaryotes are made by engineering lower eukaryotes which do not express one or more enzymes involved in production of high mannose structures to express the enzymes required to produce human-like sugars. As used herein, a lower eukaryote is a unicellular or filamentous fungus. As used herein, a "humanized glycoprotein" refers to a protein having attached thereto N- glycans including less than four mannose residues, and the synthetic intermediates (which are also useful and can be manipulated further in vitro) having at least five mannose residues. In a preferred embodiment, the glycoproteins produced in the recombinant lower eukaryotic strains contain at least 27 mole % of the Man5 intermediate. This is achieved by cloning in a better mannosidase, i.e., an enzyme selected to have optimal activity under the conditions present in the organisms at the site where proteins are glycosylated, or by targeting the enzyme to the organelle where activity is desired. In a preferred embodiment, eukaryotic strains which do not express one or more enzymes involved in the production of high mannose structures are used. These strains can be engineered or one of the many such mutants already described in yeasts, including a hypermannosylation-minus (OCH1) mutant in Pichia pastoris. The strains can be engineered one enzyme at a time, or a library of genes encoding potentially useful enzymes can be created, and those strains having enzymes with optimal activities or producing the most "human-like" glycoproteins, selected.
Lower eukaryotes that are able to produce glycoproteins having the attached N-glycan Man5GlcΝAc2 are particularly useful since (a) lacking a high degree of mannosylation (e.g. greater than 8 mannoses per N-glycan, or especially 30-40 mannoses), they show reduced immunogenicity in humans; and (b) the N-glycan is a substrate for further glycosylation reactions to form an even more human-like glycoform, e.g. by the action of GlcΝAc transferase I to form GlcΝAcMan5GlcΝAc2. Man5GlcNAc2 must be formed in vivo in a high yield, at least transiently, since all subsequent glycosylation reactions require Man5GlcNAc2 or a derivative thereof. Accordingly, a yield is obtained of greater than 27 mole %, more preferably a yield of 50-100 mole %, glycoproteins in which a high proportion of N-glycans have Man5GlcΝAc2. It is then possible to perform further glycosylation reactions in vitro, using for example the method of U.S. Patent No. 5,834,251 to Maras and Contreras. In a preferred embodiment, at least one further glycosylation reaction is performed in vivo. In a highly preferred embodiment thereof, active forms of glycosylating enzymes are expressed in the endoplasmic reticulum and/or Golgi apparatus. Host Microorganisms
Yeast and filamentous fungi have both been successfully used for the production of recombinant proteins, both intracellular and secreted (Cereghino, J. L. and J. M. Cregg 2000 FEMS Microbiology Reviews 24(1): 45-66; Harkki, A., et al. 1989 Bio-Technology 7(6): 596; Berka, R. M., et al. 1992 Abstr.Papers Amer. Chem.Soc.203: 121-BIOT; Svetina, M., et al. 2000 J.Biotechnol. 76(2-3): 245-251.
Although glycosylation in yeast and fungi is very different than in humans, some common elements are shared. The first step, the transfer of the core oligosaccharide structure to the nascent protein, is highly conserved in all eukaryotes including yeast, fungi, plants and humans (compare Figures 1 A and IB). Subsequent processing of the core oligosaccharide, however, differs significantly in yeast and involves the addition of several mannose sugars. This step is catalyzed by mannosyltransferases residing in the Golgi (e.g. OCH1, MNT1, MNNl, etc.), which sequentially add mannose sugars to the core oligosaccharide. The resulting structure is undesirable for the production of humanoid proteins and it is thus desirable to reduce or eliminate mannosyl transferase activity. Mutants of 5. cerevisiae, deficient in mannosyl transferase activity (e.g. ochl or mnn9 mutants) have shown to be non-lethal and display a reduced mannose content in the oligosacharide of yeast glycoproteins. Other oligosacharide processing enzymes, such as mannosylphophate transferase may also have to be eliminated depending on the host's particular endogenous glycosylation pattern. After reducing undesired endogenous glycosylation reactions the formation of complex N- glycans has to be engineered into the host system. This requires the stable expression of several enzymes and sugar-nucleotide transporters. Moreover, one has to locate these enzymes in a fashion such that a sequential processing of the maturing glycosylation structure is ensured.
Target Glycoproteins
The methods described herein are useful for producing glycoproteins, especially glycoproteins used therapeutically in humans. Such therapeutic proteins are typically administered by injection, orally, pulmonary, or other means.
Examples of suitable target glycoproteins include, without limitation: erythropoietin, cytokines such as interferon-α, interferon-β, interferon-γ, interferon-ω, and granulocyte-CSF, coagulation factors such as factor VIII, factor IX, and human protein C, soluble IgE receptor -chain, IgG, IgM, urokinase, chymase, and urea trypsin inhibitor, IGF-binding protein, epidermal growth factor, growth hormone-releasing factor, annexin V fusion protein, angiostatin, vascular endothelial growth factor-2, myeloid progenitor inhibitory factor- 1, amd osteoprotegerin.
Method for Producing Glycoproteins Comprising the N-glycan Man GlcΝAc2
The first step involves the selection or creation of a lower eukaryote that is able to produce a specific precursor structure of Man5GlcNAc2, which is able to accept in vivo GlcNAc by the action of a GlcNAc transferase I. This step requires the formation of a particular isomeric structure of Man5GlcNAc2. This structure has to be formed within the cell at a high yield (in excess of 30%) since all subsequent manipulations are contingent on the presence of this precursor. Man5GlcNAc2 structures are necessary for complex N-glycan formation, however, their presence is by no means sufficient, since Man5GlcNAc2 may occur in different isomeric forms, which may or may not serve as a substrate for GlcNAc transferase I. Most glycosylation reactions are not complete and thus a particular protein generally contains a range of different carbohydrate structures (i.e. glycoforms) on its surface. The mere presence of trace amounts (less than 5%) of a particular structure like Man5GlcNAc2 is of little practical relevance. It is the formation of a particular, GlcNAc transferase I accepting intermediate (Structure I) in high yield (above 30%), which is required. The formation of this intermediate is necessary and subsequently allows for the in vivo synthesis of complex N-glycans.
One can select such lower eukaryotes from nature or alternatively genetically engineer existing fungi or other lower eukaryotes to provide the structure in vivo. No lower eukaryote has been shown to provide such structures in vivo in excess of 1.8% of the total N-glycans (Maras et al., 1997), so a genetically engineered organism is preferred. Methods such as those described in U.S. Patent No. 5,595,900, may be used to identify the absence or presence of particular glycosyltransferases, mannosidases and sugar nucleotide transporters in a target organism of interest.
Inactivation of Fungal Glycosylation Enzymes such as 1.2- - mannosidase
The method described herein may be used to engineer the glycosylation pattern of a wide range of lower eukaryotes (e.g. Hansenula polymorpha, Pichia stiptis, Pichia methanolica, Pichia sp, Kluyveromyces sp, Candida albicans, Aspergillus nidulans, Trichoderma reseei etc.). Pichia pastoris is used to exemplify the required manipulation steps. Similar to other lower eukaryotes, P.pastoris processes Man9GlcNAc2 structures in the ER with a 1,2- α- mannosidase to yield Man8GlcNAc2. Through the action of several mannosyltransferases, this structure is then converted to hypermannosylated structures (Man>9GlcNAc2), also known as mannans. In addition, it has been found that P. pastoris is able to add non-terminal phosphate groups, through the action of mannosylphosphate transferases to the carbohydrate structure. This is contrary to the reactions found in mammalian cells, which involve the removal of mannose sugars as opposed to their addition. It is of particular importance to eliminate the ability of the fungus to hypermannosylate the existing Man8GlcNAc2 structure. This can be achieved by either selecting for a fungus that does not hypermannosylate, or by genetically engineering such a fungus.
Genes that are involved in this process have been identified in Pichia pastoris and by creating mutations in these genes one is able to reduce the production of "undesirable" glycoforms. Such genes can be identified by homology to existing mannosyltransferases (e.g. OCH1, MNN4, MNN6, MNNl), found in other lower eukaryotes such as C. albicans, Pichia angusta or S. cerevisiae or by mutagenizing the host strain and selecting for a phenotype with reduced mannosylation. Based on homologies amongst known mannosyltransferases and mannosylphosphate transferases, one may either design PCR primers, examples of which are shown in Table 2, or use genes or gene fragments encoding such enzymes as probes to identify homologues in DNA libraries of the target organism. Alternatively, one may be able to complement particular phenotypes in related organisms. For example, in order to obtain the gene or genes encoding 1,6- mannosyltransferase activity in P. pastoris, one would carry out the following steps. OCH1 mutants of S. cerevisiae are temperature sensitive and are slow growers at elevated temperatures. One can thus identify functional homologues of OCH1 in P. pastoris by complementing an OCH1 mutant of S. cerevisiae with a P. pastoris DNA or cDNA library. Such mutants of S. cerevisiae may be found at http://genome- www.stanford.edu/Saccharomyces/ and are commercially available at http://www.resgen.com/products/YEASTD.php3. Mutants that display a normal growth phenotype at elevated temperature, after having been transformed with a P. pastoris DNA library, are likely to carry an OCH1 homologue of P. pastoris. Such a library can be created by partially digesting chromosomal DNA of P. pastoris with a suitable restriction enzyme and after inactivating the restriction enzyme ligating the digested DNA into a suitable vector, which has been digested with a compatible restriction enzyme. Suitable vectors are pRS314, a low copy (CEN6/ARS4) plasmid based on pBluescript containing the Trpl marker (Sikorski, R. S., and Hieter, P., 1989, Genetics 122, pg 19-27) or pFL44S, a high copy (2μ) plasmid based on a modified pUC19 containing the URA3 marker (Bonneaud, N., et al., 1991, Yeast 7, pg. 609-615). Such vectors are commonly used by academic researchers or similar vectors are available from a number of different vendors such as Invitrogen (Carlsbad, CA), Pharmacia (Piscataway, NJ), New England Biolabs (Beverly, MA). Examples are pYES/GS, 2μ origin of replication based yeast expression plasmid from Invitrogen, or Yep24 cloning vehicle from New England Biolabs. After ligation of the chromosomal DNA and the vector one may transform the DNA library into strain of S. cerevisiae with a specific mutation and select for the correction of the corresponding phenotype. After sub-cloning and sequencing the DNA fragment that is able to restore the wild-type phenotype, one may use this fragment to eliminate the activity of the gene product encoded by OCH1 in P. pastoris.
Alternatively, if the entire genomic sequence of a particular fungus of interest is known, one may identify such genes simply by searching publicly available DNA databases, which are available from several sources such as NCBI, Swissprot etc. For example by searching a given genomic sequence or data base with a known 1,6 mannosyltransferase gene (OCH1) from S. cerevisiae, one can able to identify genes of high homology in such a genome, which a high degree of certainty encodes a gene that has 1 ,6 mannosyltransferase activity. Homologues to several known mannosyltransferases from S.cerevisiae in P. pastoris have been identified using either one of these approaches. These genes have similar functions to genes involved in the mannosylation of proteins in S. cerevisiae and thus their deletion may be used to manipulate the glycosylation pattern in P. pastoris or any other fungus with similar glycosylation pathways. The creation of gene knock-outsj once a given target gene sequence has been determined, is a well-established technique in the yeast and fungal molecular biology community, and can be carried out by anyone of ordinary skill in the art (R. Rothsteins, (1991) Methods in Enzymology, vol. 194, p. 281). In fact, the choice of a host organism may be influenced by the availability of good transformation and gene disruption techniques for such a host. If several mannosyltransferases have to be knocked out, the method developed by Alani and Kleckner allows for the repeated use of the URA3 markers to sequentially eliminate all undesirable endogenous mannosyltransferase activity. This technique has been refined by others but basically involves the use of two repeated DNA sequences, flanking a counter selectable marker. For example: URA3 may be used as a marker to ensure the selection of a transformants that have integrated a construct. By flanking the URA3 marker with direct repeats one may first select for transformants that have integrated the construct and have thus disrupted the target gene. After isolation of the transformants, and their characterization, one may counter select in a second round for those that are resistant to 5'FOA. Colonies that able to survive on plates containing 5'FOA have lost the URA3 marker again through a crossover event involving the repeats mentioned earlier. This approach thus allows for the repeated use of the same marker and facilitates the disruption of multiple genes without requiring additional markers.
Eliminating specific mannosyltransferases, such as 1,6 mannosyltransferase (OCH1), mannosylphosphate transferases (MNN4, MNN6, or genes complementing lb d mutants) in P. pastoris, allows for the creation of engineered strains of this organism which synthesize primarily Man8GlcNAc2 and thus can be used to further modify the glycosylation pattern to more closely resemble more complex human glycoform structures. A preferred embodiment of this method utilizes known DNA sequences, encoding known biochemical glycosylation activities to eliminate similar or identical biochemical functions in P. pastoris, such that the glycosylation structure of the resulting genetically altered P. pastoris strain is modified. Table 2.
Figure imgf000023_0001
Legend: M = A or C, R = A or G, = A or T, S = C or G,
Y = C or T, K = G or T, V = A or C or G, H = A or C or T, D =
A or G or T, B = C or G or T,
N = G or A or T or C.
Incorporation of a Mannosidase into the Genetically Engineered Host The process described herein enables one to obtain such a structure in high yield for the purpose of modifying it to yield complex N-glycans. A successful scheme to obtain suitable Man5GlcNAc2 structures must involve two parallel approaches: (1) reducing endogenous mannosyltransferase activity and (2) removing 1,2- α- mannose by mannosidases to yield high levels of suitable Man5GlcNAc2 structures. What distinguishes this method from the prior art is that it deals directly with those two issues. As the work of Chiba and coworkers demonstrates, one can reduce Man8GlcNAc2 structures to a Man5GlcNAc2 isomer in S. cerevisiae, by engineering the presence of a fungal mannosidase from A. saitoi into the ER. The shortcomings of their approach are twofold: (1) insufficient amounts of Man5GlcNAc2 are formed in the extra-cellular glycoprotein fraction (10%) and (2) it is not clear that the in vivo formed Man5GlcNAc2 structure in fact is able to accept GlcNAc by action of GlcNAc transferase I. If several glycosylation sites are present in a desired protein the probability (P) of obtaining such a protein in a correct form follows the relationship P=(F)n, where n equals the number of glycosylation sites, and F equals the fraction of desired glycoforms. A glycoprotein with three glycosylation sites would have a 0.1% chance of providing the appropriate precursors for complex and hybrid N-glycan processing on all of its glycosylation sites, which limits the commercial value of such an approach.
Most enzymes that are active in the ER and Golgi apparatus of S.cerevisiae have pH optima that are between 6.5 and 7.5 (see Table 3). All previous approaches to reduce mannosylation by the action of recombinant mannosidases have concentrated on enzymes that have a pH optimum around pH 5.0 (Martinet et al., 1998, and Chiba et al., 1998), even though the activity of these enzymes is reduced to less than 10% at pH 7.0 and thus most likely provide insufficient activity at their point of use, the ER and early Golgi of P. pastoris and S.cerevisiae. A preferred process utilizes an - mannosidase in vivo, where the pH optimum of the mannosidase is within 1.4 pH units of the average pH optimum of other representative marker enzymes localized in the same organelle(s). The pH optimum of the enzyme to be targeted to a specific organelle should be matched with the pH optimum of other enzymes found in the same organelle, such that the maximum activity per unit enzyme is obtained. Table 3 summarizes the activity of mannosidases from various sources and their respective pH optima. Table 4 summarizes their location.
Table 3. Mannosidases and their pH optimum.
Source Enzyme pH Reference optimum
Aspergillus saitoi 1 ,2- α- mannosidase 5.0 Ichishima et al, 1999
Biochem. J. 339(Pt 3):589-597
Trichoderma reesei 1,2- α- mannosidase 5.0 Maras et al., 2000 J.
Biotechnol. 77(2- 3):255-263
Penicillium citrinum 1,2-α-D-mannosidase 5.0 Yoshida et al, 1993 Biochem. J. 290(Pt 2):349-354
Aspergillus nidulans 1,2- α- mannosidase 6.0 Eades and Hintz, 2000
Homo sapiens 1 ,2- α- mannosidase 6.0 IA(Golgi)
Homo sapiens IB 1,2- α- mannosidase 6.0 (Golgi)
Lepidopteran insect Type I l,2-α-Man6- 6.0 Ren et al., 1995 cells mannosidase Biochem.
34(8):2489-2495
Homo sapiens - D-mannosidase 6.0 Chandrasekaran et al., 1984 Cancer Res. 44(9):4059-68
Xanthomonas 1,2,3- α- mannosidase 6.0 manϊhotis
Mouse IB (Golgi) 1,2- α- mannosidase 6.5 Schneikert and
Herscovics, 1994 Glycobiology. 4(4):445- 50
Bacillus sp. 1 ,2-α-D-mannosidase 7.0 Maruyama et al., (secreted) 1994 Carbohydrate Res. 251:89-98 When one attempts to trim high mannose structures to yield Man5GlcNAc2 in the ER or the Golgi apparatus of S.cerevisiae, one may choose any enzyme or combination of enzymes that (1) has/have a sufficiently close pH optimum (i.e. between pH 5.2 and pH 7.8), and (2) is/are known to generate, alone or in concert, the specific isomeric
Man5GlcNAc2 structure required to accept subsequent addition of GlcNAc by GnT I. Any enzyme or combination of enzymes that has/have shown to generate a structure that can be converted to GlcNAcMan5GlcNAc2 by GnT I in vitro would constitute an appropriate choice. This knowledge may be obtained from the scientific literature or experimentally by determining that a potential mannosidase can convert Man8GlcNAc2-PA to Man5GlcNAc2-PA and then testing, if the obtained Man5GlcNAc2-PA structure can serve a substrate for GnT I and UDP-GlcNAc to give GlcNAcMan5GlcNAc2 in vitro. For example, mannosidase IA from a human or murine source would be an appropriate choice.
1,2-Mannosidase Activity in the ER and Golgi
Previous approaches to reduce mannosylation by the action of cloned exogenous mannosidases have failed to yield glycoproteins having a sufficient fraction (e.g. >27 mole %) of N-glycans having the structure Man5GlcΝAc2 (Martinet et al., 1998, and Chiba et al., 1998). These enzymes should function efficiently in ER or Golgi apparatus to be effective in converting nascent glycoproteins. Whereas the two mannosidases utilized in the prior art (from A. saitoi and T reesei) have pH optima of 5.0, most enzymes that are active in the ER and Golgi apparatus of yeast (e.g. S. cerevisiae) have pH optima that are between 6.5 and 7.5 (see Table 3). Since the glycosylation of proteins is a highly evolved and efficient process, it can be concluded that the internal pH of the ER and the Golgi is also in the range of about 6-8. At pH 7.0, the activity of the mannosidases used in the prior art is reduced to less than 10%, which is insufficient for the efficient production of Man5GlcNAc2 in vivo. Table 4. Cellular location and pH optima of various glycosylation-related enzymes of S. cerevisiae.
Gene Activity Location PH Author(s) optimum
Ktrl α- 1,2 Golgi 7.0 Romero et al., 1997 mannosyltransferase Biochem. J. 321(Pt 2):289-295
Mnsl - 1,2- mannosidase ER 6.5
CWH41 glucosidase I ER 6.8 mannosyltransferase Golgi 7-8 Lehele and Tanner, 1974 Biochim. Biophys. Acta 350(l):225-235
Kre2 α- 1,2 Golgi 6.5-9.0 Romero et al., 1997 mannosyltransferase
The α-l,2-mannosidase enzyme should have optimal activity at a pH between 5.1 and 8.0. In a preferred embodiment, the enzyme has an optimal activity at a pH between 5.9 and 7.5. The optimal pH may be determined under in vitro assay conditions. Preferred mannosidases include those listed in Table 3 having appropriate pH optima, e.g. Aspergillus nidulans, Homo sapiens IA(Golgi), Homo sapiens IB (Golgi), Lepidopteran insect cells (IPLB-SF21AE), Homo sapiens, mouse IB (Golgi), and Xanthomonas manihotis. In a preferred embodiment, a single cloned mannosidase gene is expressed in the host organism. However, in some cases it may be desirable to express several different mannosidase genes, or several copies of one particular gene, in order to achieve adequate production of Man5GlcNAc2. In cases where multiple genes are used, the encoded mannosidases should all have pH optima within the preferred range of 5.1 to 8.0, or especially between 5.9 and 7.5. In an especially preferred embodiment mannosidase activity is targeted to the ER or cis Golgi, where the early reactions of glycosylation occur.
Formation of complex N-glycans
A second step of the process involves the sequential addition of sugars to the nascent carbohydrate structure by engineering the expression of glucosyltransferases into the Golgi apparatus. This process first requires the functional expression of GnT I in the early or medial Golgi apparatus as well as ensuring the sufficient supply of UDP-GlcNAc. Integration Sites Since the ultimate goal of this genetic engineering effort is a robust protein production strain that is able to perform well in an industrial fermentation process, the integration of multiple genes into the fungal chromosome involves careful planing. The engineered strain will most likely have to be transformed with a range of different genes, and these genes will have to be transformed in a stable fashion to ensure that the desired activity is maintained throughout the fermentation process. Any combination of the following enzyme activities will have to be engineered into the fungal protein expression host: sialyltransferases, mannosidases, fucosyltransferases, galactosyltransferases, glucosyltransferases, GlcNAc transferases, ER and Golgi specific transporters (e.g. sym and antiport transporters for UDP-galactose and other precursors), other enzymes involved in the processing of oligosaccharides, and enzymes involved in the synthesis of activated oligosaccharide precursors such as UDP-galactose, CMP-N-acetylneuraminic acid. At the same time a number of genes which encode enzymes known to be characteristic of non-human glycosylation reactions, will have to be deleted.
Targeting of glycosyltransferases to specific organelles: Glycosyltransferases and mannosidases line the inner (luminal) surface of the ER and Golgi apparatus and thereby provide a "catalytic" surface that allows for the sequential processing of glycoproteins as they proceed through the ER and Golgi network. In fact the multiple compartments of the cis, medial, and trans Golgi and the trans-Golgi Network (TGN), provide the different localities in which the ordered sequence of glycosylation reactions can take place. As a glycoprotein proceeds from synthesis in the ER to full maturation in the late Golgi or TGN, it is sequentially exposed to different glycosidases, mannosidases and glycosyltransferases such that a specific carbohydrate structure may be synthesized. Much work has been dedicated to revealing the exact mechanism by which these enzymes are retained and anchored to their respective organelle. The evolving picture is complex but evidence suggests that stem region, membrane spanning region and cytoplasmic tail individually or in concert direct enzymes to the membrane of individual organelles and thereby localize the associated catalytic domain to that locus.
Targeting sequences are well known and described in the scientific literature and public databases, as discussed in more detail below with respect to libraries for selection of targeting sequences and targeted enzymes. Method for Producing a Library to Produce Modified Glycosylation Pathways
A library including at least two genes encoding exogeneous glycosylation enzymes is transformed into the host organism, producing a genetically mixed population. Transformants having the desired glycosylation phenotypes are then selected from the mixed population. In a preferred embodiment, the host organism is a yeast, especially P. pastoris, and the host glycosylation pathway is modified by the operative expression of one or more human or animal glycosylation enzymes, yielding protein N- glycans similar or identical to human glycoforms. In an especially preferred embodiment, the DΝA library includes genetic constructs encoding fusions of glycosylation enzymes with targeting sequences for various cellular loci involved in glycosylation especially the ER, cis Golgi, medial Golgi, or trans Golgi.
Examples of modifications to glycosylation which can be effected using method are: (1) engineering an eukaryotic microorganism to trim mannose residues from Man8GlcΝAc2 to yield Man5GlcNAc2 as a protein N- glycan; (2) engineering an eukaryotic microorganism to add an N-acetylglucosamine (GlcΝAc) residue to Man5GlcΝAc2 by action of GlcNAc transferase I; (3) engineering an eukaryotic microorganism to functionally express an enzyme such as an N-acetylglucosamine transferase (GnT I, GnT II, GnT III, GnT IV, GnT V, GnT VI), mannosidase II, fucosyltransferase, galactosyl tranferase (GalT) or sialyltransferases (ST). By repeating the method, increasingly complex glycosylation pathways can be engineered into the target microorganism. In one preferred embodiment, the host organism is transformed two or more times with DΝA libraries including sequences encoding glycosylation activities. Selection of desired phenotypes may be performed after each round of transformation or alternatively after several transformations have occurred. Complex glycosylation pathways can be rapidly engineered in this manner.
DNA Libraries
It is necessary to assemble a DΝA library including at least two exogenous genes encoding glycosylation enzymes. In addition to the open reading frame sequences, it is generally preferable to provide each library construct with such promoters, transcription terminators, enhancers, ribosome binding sites, and other functional sequences as may be necessary to ensure effective transcription and translation of the genes upon transformation into the host organism. Where the host is Pichia pastoris, suitable promoters include, for example, the AOX1, AOX2, DAS, and P40 promoters. It is also preferable to provide each construct with at least one selectable marker, such as a gene to impart drug resistance or to complement a host metabolic lesion. The presence of the marker is useful in the subsequent selection of transformants; for example, in yeast the URA3, HIS4, SUC2, G418, BLA, or SHBLE genes may be used.
In some cases the library may be assembled directly from existing or wild-type genes. In a preferred embodiment however the DΝA library is assembled from the fusion of two or more sub-libraries. By the in-frame ligation of the sub-libraries, it is possible to create a large number of novel genetic constructs encoding useful targeted glycosylation activities. For example, one useful sub-library includes DΝA sequences encoding any combination of enzymes such as sialyltransferases, mannosidases, fucosyltransferases, galactosyltransferases, glucosyltransferases, and GlcNAc transferases. Preferably, the enzymes are of human origin, although other mammalian, animal, or fungal enzymes are also useful. In a preferred embodiment, genes are truncated to give fragments encoding the catalytic domains of the enzymes. By removing endogenous targeting sequences, the enzymes may then be redirected and expressed in other cellular loci. The choice of such catalytic domains may be guided by the knowledge of the particular environment in which the catalytic domain is subsequently to be active. For example, if a particular glycosylation enzyme is to be active in the late Golgi, and all known enzymes of the host organism in the late Golgi have a certain pH optimum, then a catalytic domain is chosen which exhibits adequate activity at that pH.
Another useful sub-library includes DNA sequences encoding signal peptides that result in localization of a protein to a particular location within the ER, Golgi, or trans Golgi network. These signal sequences may be selected from the host organism as well as from other related or unrelated organisms. Membrane-bound proteins of the ER or Golgi typically may include, for example, N-terminal sequences encoding a cytosolic tail (ct), a transmembrane domain (tmd), and a stem region (sr). The ct, tmd, and sr sequences are sufficient individually or in combination to anchor proteins to the inner (lumenal) membrane of the organelle. Accordingly, a preferred embodiment of the sub-library of signal sequences includes ct, tmd, and/or sr sequences from these proteins. In some cases it is desirable to provide the sub-library with varying lengths of sr sequence. This may be accomplished by PCR using primers that bind to the 5' end of the DNA encoding the cytosolic region and employing a series of opposing primers that bind to various parts of the stem region. Still other useful sources of signal sequences include retrieval signal peptides, e.g. the tetrapeptides HDEL or KDEL, which are typically found at the C-terminus of proteins that are transported retrograde into the ER or Golgi. Still other sources of signal sequences include (a) type II membrane proteins, (b) the enzymes listed in Table 3, (c) membrane spanning nucleotide sugar transporters that are localized in the Golgi, and (d) sequences referenced in Table 5.
Table 5. Sources of useful compartmental targeting sequences
Gene or Sequence Organism Function Location of Gene Product
Mnsl S. α- 1 ,2-mannosidase ER cerevisiae
OCH1 S. 1,6- Golgi (cis) cerevisiae mannosyltransferase
MNN2 S. 1,2- Golgi (medial) cerevisiae mannosyltransferase
MNN1 S. 1,3- Golgi (trans) cerevisiae mannosyltransferase
OCH1 P. pastoris 1,6- Golgi (cis) mannosyltransferase
2,6 ST H sapiens 2,6-sialyltransferase trans Golgi network
UDP-Gal T S. pombe UDP-Gal transporter Golgi
Mntl S. 1,2- Golgi (cis) cerevisiae mannosyltransferase
HDEL at C- S. retrieval signal ER terminus cerevisiae
In any case, it is highly preferred that signal sequences are selected which are appropriate for the enzymatic activity or activities which are to be engineered into the host. For example, in developing a modified microorganism capable of terminal sialylation of nascent N-glycans, a process which occurs in the late Golgi in humans, it is desirable to utilize a sub-library of signal sequences derived from late Golgi proteins. Similarly, the trimming of Man8GlcΝAc2 by an α-l,2-mannosidase to give
Man5GlcNAc2 is an early step in complex N-glycan formation in humans. It is therefore desirable to have this reaction occur in the ER or early Golgi of an engineered host microorganism. A sub-library encoding ER and early Golgi retention signals is used.
In a preferred embodiment, a DNA library is then constructed by the in-frame ligation of a sub-library including DNA encoding signal sequences with a sub-library including DNA encoding glycosylation enzymes or catalytically active fragments thereof. The resulting library includes synthetic genes encoding fusion proteins. In some cases it is desirable to provide a signal sequence at the N-terminus of a fusion protein, or in other cases at the C-terminus. In some cases signal sequences may be inserted within the open reading frame of an enzyme, provided the protein structure of individual folded domains is not disrupted.
The method is most effective when a DNA library transformed into the host contains a large diversity of sequences, thereby increasing the probability that at least one transformant will exhibit the desired phenotype. Accordingly, prior to transformation, a DNA library or a constituent sub- library may be subjected to one or more rounds of gene shuffling, error prone PCR, or in vitro mutagenesis.
Transformation
The DNA library is then transformed into the host organism. In yeast, any convenient method of DNA transfer may be used, such as electroporation, the lithium chloride method, or the spheroplast method. To produce a stable strain suitable for high-density fermentation, it is desirable to integrate the DNA library constructs into the host chromosome. In a preferred embodiment, integration occurs via homologous recombination, using techniques known in the art. For example, DNA library elements are provided with flanking sequences homologous to sequences of the host organism. In this manner integration occurs at a defined site in the host genome, without disruption of desirable or essential genes. In an especially preferred embodiment, library DNA is integrated into the site of an undesired gene in a host chromosome, effecting the disruption or deletion of the gene. For example, integration into the sites of the OCH1, MNN1, or MNN4 genes allows the expression of the desired library DNA while preventing the expression of enzymes involved in yeast hypermannosylation of glycoproteins. In other embodiments, library DNA may be introduced into the host via a chromosome, plasmid, retroviral vector, or random integration into the host genome. In any case, it is generally desirable to include with each library DNA construct at least one selectable marker gene to allow ready selection of host organisms that have been stably transformed. Recyclable marker genes such as ura3, which can be selected for or against, are especially suitable.
Selection Process After transformation of the host strain with the DNA library, transformants displaying the desired glycosylation phenotype are selected. Selection may be performed in a single step or by a series of phenotypic enrichment and/or depletion steps using any of a variety of assays or detection methods. Phenotypic characterization may be carried out manually or using automated high-throughput screening equipment. Commonly a host microorganism displays protein N-glycans on the cell surface, where various glycoproteins are localized. Accordingly intact cells may be screened for a desired glycosylation phenotype by exposing the cells to a lectin or antibody that binds specifically to the desired N-glycan. A wide variety of oligosaccharide-specific lectins are available commercially (EY
Laboratories, San Mateo, CA). Alternatively, antibodies to specific human or animal N-glycans are available commercially or may be produced using standard techniques. An appropriate lectin or antibody may be conjugated to a reporter molecule, such as a chromophore, fluorophore, radioisotope, or an enzyme having a chromogenic substrate (Guillen et al., 1998. Proc.
Natl.Acad. Sci. USA 95(14): 7888-7892). Screening may then be performed using analytical methods such as spectrophotometry, fluorimetry, fluorescence activated cell sorting, or scintillation counting. In other cases, it may be necessary to analyze isolated glycoproteins or N-glycans from transformed cells. Protein isolation may be carried out by techniques known in the art. In cases where an isolated N-glycan is required, an enzyme such as endo-β-N-acetylglucosaminidase (Genzyme Co., Boston, MA) may be used to cleave the N-glycans from glycoproteins. Isolated proteins or N-glycans may then be analyzed by liquid chromatography (e.g. HPLC), mass spectroscopy, or other suitable means. U.S. Patent No. 5,595,900 teaches several methods by which cells with desired extracellular carbohydrate structures may be identified. Prior to selection of a desired transformant, it may be desirable to deplete the transformed population of cells having undesired phenotypes. For example, when the method is used to engineer a functional mannosidase activity into cells, the desired transformants will have lower levels of mannose in cellular glycoprotein. Exposing the transformed population to a lethal radioisotope of mannose in the medium depletes the population of transformants having the undesired phenotype, i.e. high levels of incorporated mannose. Alternatively, a cytotoxic lectin or antibody, directed against an undesirable N-glycan, may be used to deplete a transformed population of undesired phenotypes. Methods for Providing Sugar Nucleotide Precursors to the Golgi Apparatus
For a glycosyltransferase to function satisfactorily in the Golgi, it is necessary for the enzyme to be provided with a sufficient concentration of an appropriate nucleotide sugar, which is the high-energy donor of the sugar moiety added to a nascent glycoprotein. These nucleotide sugars to the appropriate compartments are provided by expressing an exogenous gene encoding a sugar nucleotide transporter in the host microorganism. The choice of transporter enzyme is influenced by the nature of the exogenous glycosyltransferase being used. For example, a GlcNAc transferase may require a UDP-GlcNAc transporter, a fucosyltransferase may require a GDP- fucose transporter, a galactosyltransferase may require a UDP-galactose transporter, or a sialyltransferase may require a CMP-sialic acid transporter.
The added transporter protein conveys a nucleotide sugar from the cytosol into the Golgi apparatus, where the nucleotide sugar may be reacted by the glycosyltransferase, e.g. to elongate an N-glycan. The reaction liberates a nucleoside diphosphate or monophosphate, e.g. UDP, GDP, or
CMP. As accumulation of a nucleoside diphosphate inhibits the further activity of a glycosyltransferase, it is frequently also desirable to provide an expressed copy of a gene encoding a nucleotide diphosphatase. The diphosphatase (specific for UDP or GDP as appropriate) hydrolyzes the diphosphonucleoside to yield a nucleoside monosphosphate and inorganic phosphate. The nucleoside monophosphate does not inhibit the glycotransferase and in any case is exported from the Golgi by an endogenous cellular system. Suitable transporter enzymes, which are typically of mammalian origin, are described below. Examples The use of the above general method may be understood by reference to the following non-limiting examples. Examples of preferred embodiments are also summarized in Table 6.
Example 1: Engineering of P. pastoris with -l,2-Mannosidase to produce insulin.
An -l,2-mannosidase is required for the trimming of Man8GlcNAc2 to yield Man5GlcNAc2, an essential intermediate for complex N-glycan formation. An OCH1 mutant of P. pastoris is engineered to express secreted human interferon-α under the control of an aox promoter. A DΝA library is constructed by the in-frame ligation of the catalytic domain of human mannosidase IB (an α-l,2-mannosidase) with a sub-library including sequences encoding early Golgi localization peptides. The DΝA library is then transformed into the host organism, resulting in a genetically mixed population wherein individual transformants each express interferon-β as well as a synthetic mannosidase gene from the library. Individual transformant colonies are cultured and the production of interferon is induced by addition of methanol. Under these conditions, over 90% of the secreted protein includes interferon-β. Supernatants are purified to remove salts and low-molecular weight contaminants by C18 silica reversed-phase chromatography. Desired transformants expressing appropriately targeted, active α-l,2-mannosidase produce interferon-β including N-glycans of the structure Man5GlcΝAc2, which has a reduced molecular mass compared to the interferon of the parent strain. The purified supernatants including interferon-β are analyzed by MALDI-TOF mass spectroscopy and colonies expressing the desired form of interferon-β are identified.
Example 2: Engineering of Strain to express GlcNAc Transferase I
GlcNAc Transferase I activity is required for the maturation of complex N-glycans. Man5GlcΝAc2 may only be trimmed by mannosidase II, a necessary step in the formation of human glycoforms, after the addition of GlcNAc to the terminal α-1,3 mannose residue by GlcNAc Transferase I (Schachter, 1991 Glycobiology 1(5):453-461). Accordingly a library is prepared including DNA fragments encoding suitably targeted GlcNAc Transferase I genes. The host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g. an OCH1 mutant), provides the substrate UDP-GlcNAc in the Golgi and/or ER, and provides N-glycans of the structure Man5GlcΝAc2 in the Golgi and/or ER. After transformation of the host with the DNA library, the transformants are screened for those having the highest concentration of terminal GlcNAc on the cell surface, or alternatively secrete the protein having the highest terminal GlcNAc content. Such a screen is performed using a visual method (e.g. a staining procedure), a specific terminal GlcNAc binding antibody, or a lectin. Alternatively the desired transformants exhibit reduced binding of certain lectins specific for terminal mannose residues.
Example 3: Engineering of Strains with a Mannosidase II
In another example, it is desirable in order to generate a human glycoform in a microorganism to remove the two remaining terminal mannoses from the structure GlcNAcMan5GlcNAc2 by action of a mannosidase II. A DNA library including sequences encoding cis and medial Golgi localization signals is fused in-frame to a library encoding mannosidase II catalytic domains. The host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g. an OCH1 mutant) and provides N-glycans having the structure GlcΝAcMan5GlcΝAc2 in the Golgi and/or ER. After transformation, organisms having the desired glycosylation phenotype are selected. An in vitro assay is used in one method. The desired structure GlcNAcMan3GlcNAc2 (but not the undesired GlcNAcMan5GlcNAc2) is a substrate for the enzyme GlcNAc Transferase II. Accordingly, single colonies may be assayed using this enzyme in vitro in the presence of the substrate, UDP-GlcNAc. The release of UDP is determined either by HPLC or an enzymatic assay for UDP. Alternatively radioactively labeled UDP-GlcNAc is used.
The foregoing in vitro assays are conveniently performed on individual colonies using high-throughput screening equipment. Alternatively a lectin binding assay is used. In this case the reduced binding of lectins specific for terminal mannoses allows the selection of transformants having the desired phenotype. For example, Galantus nivalis lectin binds specifically to terminal α-1,3 -mannose, the concentration of which is reduced in the presence of operatively expressed mannosidase II activity. In one suitable method, G nivalis lectin attached to a solid agarose support (available from Sigma Chemical, St. Louis, MO) is used to deplete the transformed population of cells having high levels of terminal α- 1 ,3 - mannose. Example 4: Engineering of organisms to express Sialyltransferase
The enzymes α2,3 -sialyltransferase and α2,6-sialyltransferase add terminal sialic acid to galactose residues in nascent human N-glycans, leading to mature glycoproteins. In human the reactions occur in the trans Golgi or TGΝ. Accordingly a DΝA library is constructed by the in-frame fusion of sequences encoding sialyltransferase catalytic domains with sequences encoding trans Golgi or TGΝ localization signals. The host organism is a strain, e.g. a yeast, that is deficient in hypermannosylation (e.g. an OCH1 mutant), which provides N-glycans having terminal galactose residues in the trans Golgi or TGΝ, and provides a sufficient concentration of CMP-sialic acid in the trans Golgi or TGΝ. Following transformation, transformants having the desired phenotype are selected using a fluorescent antibody specific for N-glycans having a terminal sialic acid. Example 5: Method of engineering strains to express UDP-GlcNAc Transporter
The cDNA of human Golgi UDP-GlcNAc transporter has been cloned by Ishida and coworkers. (Isliida, N., et al. 1999 J Biochem.126(1): 68-77. Guillen and coworkers have cloned the canine kidney Golgi UDP- GlcNAc transporter by phenotypic correction of a Kluyveromyces lactis mutant deficient in Golgi UDP-GlcNAc transport. (Guillen, E., et al. 1998). Thus a mammalian Golgi UDP-GlcNAc transporter gene has all of the necessary information for the protein to be expressed and targeted functionally to the Golgi apparatus of yeast.
Example 6: Method of engineering strains to express GDP-Fucose Transporter.
The rat liver Golgi membrane GDP-fucose transporter has been identified and purified by Puglielli, L. and C. B. Hirschberg 1999 J Biol. Chem. 274(50):35596-35600. The corresponding gene can be identified using standard techniques, such as N-terminal sequencing and Southern blotting using a degenerate DΝA probe. The intact gene can is then be expressed in a host microorganism that also expresses a fucosyltransferase. Example 7: Method of engineering strains to express UDP-Galactose Transporter
Human UDP-galactose (UDP-Gal) transporter has been cloned and shown to be active in S. cerevisiae. (Kainuma, M., et al. 1999 Glycobiology 9(2): 133-141). A second human UDP-galactose transporter (hUGTl) has been cloned and functionally expressed in Chinese Hamster Ovary Cells. Aoki, K., et al. 1999 J.Biochem. 126(5): 940-950. Likewise Segawa and coworkers have cloned a UDP-galactose transporter from Schizosaccharomyces pombe (Segawa, H., et al. 1999 Febs Letters 451(3): 295-298).
CMP-Sialic Acid Transporter Human CMP-sialic acid transporter (hCST) has been cloned and expressed in Lee 8 CHO cells by Aoki and coworkers (1999). Molecular cloning of the hamster CMP-sialic acid transporter has also been achieved (Eckhardt and Gerardy Schahn 1997 Eur. J. Biochem. 248(1): 187-192). The functional expression of the murine CMP-sialic acid transporter was achieved in Saccharomyces cerevisiae by Berninsone, P., et al. 1997 J
Biol.Chem.272(19):12616-12619.
Table6. Examples of preferred embodiments of the methods for modifying glycosylation in a eukaroytic microorganism, e.g. Pichia pastoris
Figure imgf000040_0001
Figure imgf000041_0001
Table 7: DNA and Protein Sequence Resources
1. European Bioinformatics Institute (EBI) is a centre for research and services in bioinformatics: http://www.ebi.ac.uk/
2. Swissprot database: http://www.expasy.ch/spr 3. List of known glycosyltransferases and their origin. βl.2 (GnT D EC 2.4.1.101
4. human cDNA, Kumar et al (1990) Proc. Natl. Acad. Sci. USA 87:9948-9952
5. human gene, Hull et al (1991) Biochem. Biophys. Res. Commun. 176:608-615
6. mouse cDNA, Kumar et al (1992) Glycobiology 2:383-393
7. mouse gene, Pownall et al (1992) Genomics 12:699-704
8. murine gene (5' flanking, non-coding), Yang et al (1994) Glycobiology 5:703-712 9. rabbit cDNA, Sarkar et al (1991) Proc. Natl. Acad. Sci. USA 88:234-
238 10. rat cDNA, Fukada et al (1994) Biosci.Biotechnol.Biochem. 58:200-
201 1.2 (GnT ID EC 2.4.1.143 11. human gene, Tan et al (1995) Eur. J. Biochem. 231:317-328
12. rat cDNA, DAgostaro et al (1995) J. Biol. Chem. 270:15211-15221
13. βl,4 (GnT III) EC 2.4.1.144
14. human cDNA, Ihara et al (1993) J. Biochem.113:692-698
15. murine gene, Bhaumik et al (1995) Gene 164:295-300 16. rat cDNA, Nishikawa et al (1992) J. Biol. Chem. 267:18199-18204 βl.4 (GnT IV ) EC 2.4.1.145
17. human cDNA, Yoshida et al (1998) Glycoconjugate Journal 15:1115- 1123
18. bovine cDNA, Minowa et al., European Patent EP 0 905 232 βl,6 (GnT V) EC 2.4.1.155 19. human cDNA, Saito et al (1994) Biochem. Biophys. Res. Commun. 198:318-327
20. rat cDNA, Shoreibah et al (1993) J. Biol. Chem. 268:15381-15385 βl.4 Galactosyltransferase. EC 2.4.1.90 (LacNAc svnthetase^) EC 2.4.1.22 (lactose svnthetase
21. bovine cDNA, DAgostaro et al (1989) Eur. J. Biochem. 183:211-217
22. bovine cDNA (partial), Narimatsu et al (1986) Proc. Natl. Acad. Sci. USA 83:4720-4724
23. bovine cDNA (partial), Masibay & Qasba (1989) Proc. Natl. Acad. Sci. USA 86:5733-5377
24. bovine cDNA (5' end), Russo et al (1990) J. Biol. Chem. 265:3324
25. chicken cDNA (partial), Ghosh et al (1992) Biochem. Biophys. Res. Commun. 1215-1222
26. human cDNA, Masri et al (1988) Biochem. Biophys. Res. Commun. 157:657-663
27. human cDNA, (HeLa cells) Watzele & Berger (1990) Nucl. Acids Res. 18:7174
28. human cDNA, (partial) Uejima et al (1992) Cancer Res. 52:6158- 6163 29. human cDNA, (carcinoma) Appert et al (1986) Biochem. Biophys.
Res. Commun. 139:163-168
30. human gene, Mengle-Gaw et al (1991) Biochem. Biophys. Res. Commun. 176:1269-1276
31. murine cDNA, Nakazawa et al (1988) J. Biochem. 104:165-168 32. murine cDNA, Shaper et al (1988) J. Biol. Chem. 263:10420-10428
33. murine cDNA (novel), Uehara & Muramatsu unpublished
34. murine gene, Hollis et al (1989) Biochem. Biophys. Res. Commun. 162:1069-1075
35. rat protein (partial), Bendiak et al (1993) Eur. J. Biochem. 216:405- 417
2.3-Sialyltransferase. (ST3Gal ID (N-linked^) (Gal-1.3/4-GlcΝAc) EC 2.4.99.6 36. human cDNA, Kitagawa & Paulson (1993) Biochem. Biophys. Res. Commun. 194:375-382
37. rat cDNA, Wen et al (1992) J. Biol. Chem. 267:21011-21019 2.6-Sialyltransferase. (ST6Gal D EC 2.4.99.1 38. chicken, Kurosawa et al (1994) Eur. J. Biochem 219:375-381
39. human cDNA (partial), Lance et al (1989) Biochem. Biophys. Res. Commun. 164:225- 232
40. human cDNA, Grundmann et al (1990) Nucl. Acids Res. 18:667
41. human cDNA, Zettlmeisl et al (1992) Patent EPO475354-A/3 42. human cDNA, Stamenkovic et al (1990) J. Exp. Med. 172:641-643
(CD75)
43. human cDNA, Bast et al (1992) J. Cell Biol. 116:423-435
44. human gene (partial), Wang et al (1993) J. Biol. Chem. 268:4355- 4361 45. human gene (51 flank), Aasheim et al (1993) Eur. J. Biochem.
213:467-475
46. human gene (promoter), Aas-Eng et al (1995) Biochim. Biophys. Acta 1261:166-169
47. mouse cDNA, Hamamoto et al (1993) Bioorg. Med. Chem. 1:141- 145
48. rat cDNA, Weinstein et al (1987) J. Biol. Chem. 262:17735-17743
49. rat cDNA (transcript fragments), Wang et al (1991) Glycobiology 1:25-31, Wang et al (1990) J. Biol. Chem. 265:17849-17853
50. rat cDNA (5' end), OΗanlon et al (1989) J. Biol. Chem. 264:17389- 17394; Wang et al (1991) Glycobiology 1 :25-31
51. rat gene (promoter), Svensson et al (1990) J. Biol. Chem. 265:20863- 20688
52. rat mRNA (fragments), Wen et al (1992) J. Biol. Chem. 267:2512- 2518
Additional methods and reagents which can be used in the methods modifying the glycosylation are described in the literature, such as U.S. Patent No. 5,955,422, U.S. Patent No. 4,775,622, U.S. Patent No. 6,017,743, U.S. Patent No. 4,925,796, U.S. Patent No. 5,766,910, U.S. Patent No. 5,834,251, U.S. Patent No. 5,910,570, U.S. Patent No. 5,849,904, U.S. Patent No. 5,955,347, U.S. Patent No. 5,962,294, U.S. Patent No. 5,135,854, U.S. Patent No. 4,935,349, U.S. Patent No. 5,707,828, and U.S. Patent No. 5,047,335.
Appropriate yeast expression systems can be obtained from sources such as the American Type Culture Collection, Rockville, MD. Vectors are commercially available from a variety of sources.

Claims

I claim: 1. A method for producing glycoproteins having carbohydrate structures similar to those produced by human cells in a lower eukaryote comprising providing a unicellular or multicellular fungal host, which does not express one or more enzymes involved in production of high mannose structures, and introducing into the host one or more enzymes for production of a carbohydrate structure selected from the group consisting of Man5GlcNAc2, Man8GlcNAc2 and Man GlcNAc2, wherein the enzymes are selected to have optimal activity at the pH of the location in the host where the carbohydrate structure is produced or which are targeted to a subcellular location in the host where enzyme will have optimal activity to produce the carbohydrate structure.
2. The method of claim 1 wherein the host is deficient in the activity of one or more enzymes selected from the group consisting of mannosyltransferases and phosphomannosyltransferases.
3. The method of claim 2 wherein the host does not express an enzyme selected from the group consisting of 1,6 mannosyltransferase, 1,3 mannosyltransferase, and 1,2 mannosyltransferase.
4. The method of claim 1 wherein the host is selected from the group consisting of Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia opuntiae, Pichia thermotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, Pichia sp., Saccharomyces cerevisiae, Saccharomyces sp., Hansenula polymorpha, Kluyveromyces sp., Candida albicans, Aspergillus nidulans, and Trichoderma reesei.
5. The method of claim 2 wherein the host is an OCH1 mutant of P.pastoris.
6. The method of claim 1 comprising introducing into the host a nucleotide molecule encoding one or more mannosidases involved in the production of Man5GlcNAc2 from Man8GlcNAc2 or Man9GlcNAc2.
7 The method of claim 6 where the at least one mannosidase has a pH optimum within 1.4 pH units of the average pH optimum of other representative enzymes in the organelle in wliich the mannosidase is localized, or having optimal activity at a pH between 5.1 and 8.0.
8. The method of claim 7 wherein the mannosidase enzyme has optimal activity at a pH between 5.9 and 7.5.
9. The method of claim 8 wherein the mannosidase enzyme is an α- 1,2-mannosidase derived from mouse, human, Lepidoptera, Aspergillus nidulans, or Bacillus sp.
10. The method of claim 1 comprising providing a host that is able to form Man5GlcNAc2 structures, displaying GnT I activity and having UDP-Gn transporter activity.
11. The method of claim 1 comprising providing a host which has a UDP specific diphosphatase activity.
12. The method of claim 1 comprising introducing into the host one or more enzymes selected from the group consisting of mannosidases, glycosyltransferases and glycosidases, wherein the enzymes are targeted to the endoplasmic reticulum, the early, medial, late Golgi or the trans Golgi network.
13. The method of claim 12 wherein the mannosidase enzyme is predominantly localized in the Golgi apparatus or the endoplasmic reticulum.
14. The method of claim 12 wherein the enzymes are localized by forming a fusion protein between a catalytic domain of the enzyme and a chimeric localization region encoded by at least one genetic construct formed by the in-frame ligation of a DNA fragment encoding a cellular targeting signal peptide with a DNA fragment encoding a glycosylation enzyme or catalytically active fragment thereof
15. The method of claim 14 comprising providing a chimeric localization region from an enzyme selected from the group of mannosyltransferases, diphosphotases, proteases, GnT I, GnT II, GnT III, GnT IV, GnT V, GnT VI, GalT, FT, and ST.
16. The method of claim 14 providing a catalytic domain encoding a glycosidase or glycosyltransferase selected from the group consisting of GnT I, GnT II, GnT III, GnT IV, GnT V, GnT VI, GalT, Fucosyltransferase and ST, that has a pH optimum within 1.4 pH units of the average pH optimum of other representative enzymes in the organelle in which the enzyme is localized, or having optimal activity at a pH between 5.1 and 8.0.
17. The method of claim 1 comprising introducing into the host nucleotide molecules encoding one or more enzymes selected from the group of nucleoside sugar transporters consisting of UDP-GlcNAc transferase, UDP- galactosyltransferase, GDP-fucosyltransferase, CMP-sialyltransferase, UDP- GlcNAc transporter, UDP-galactose transporter, GDP-fucose transporter, CMP- sialic acid transporter, and nucleotide diphosphatases.
18. The method of claim 17 comprising genetically engineering the fungal strain to remove UDP or GDP by action of a diphosphatase.
19. The method of claim 1 wherein the glycoprotein includes N-glycans of which greater than 27 mole percent comprise fewer than six mannose residues.
20. The method of claim 1 wherein the glycoprotein comprises one or more sugars selected from the group consisting of galactose, sialic acid, and fucose.
21. The method of claim 1 wherein the glycoprotein comprises at least one oligosaccharide branch comprising the structure ΝeuΝAc-Gal-GlcΝAc-Man.
22. The method of claim 1 wherein the glycoprotein comprises N-glycans having fewer than four mannose residues.
23. The method of claim 1 wherein subsequent to isolation from the host, the glycoprotein is subjected to at least one further glycosylation or carboxylation reaction in vitro.
24. The method of claim 1 comprising the steps of
(a) providing a DΝA library comprising at least two genes encoding exogenous glycosylation enzymes;
(b) transforming the host with the library to produce a genetically mixed population expressing at least two distinct exogenous glycosylation enzymes; and
(c) selecting from the population a host producing the desired glycosylation phenotype.
25. The method of claim 24 wherein the host is transformed two or more times with the library prior to the selection of a desired glycosylation phenotype.
26. The method of claim 24 wherein the library comprises at least one wild-type gene encoding a glycosylation enzyme.
27. The method of claim 24 wherein the library comprises at least one synthetic gene encoding a glycosylation enzyme.
28. The method of claim 24 wherein the library comprises at least one gene previously subjected to a technique selected from the list: gene shuffling, in vitro mutagenesis, and error-prone polymerase chain reaction.
29. The method of claim 24 wherein the library comprises at least one genetic construct formed by the in-frame ligation of a DNA fragment encoding a cellular targeting signal peptide with a DNA fragment encoding a glycosylation enzyme or catalytically active fragment thereof.
30. The method of claim 29 wherein a DNA fragment encodes an activity selected from the group consisting of mannosidase, UDP-GlcNAc transferase, UDP-galactosyltransferase, and CMP-sialyltransferase and the cellular targeting signal peptide is predominantly localizes the enzyme in an organelle selected from the group consisting of endoplasmic reticulum, cis Golgi, medial Golgi, and trans Golgi.
31. The method of claim 24 wherein the selection comprises the step of analyzing a glycosylated protein or isolated N-glycan by one or more methods selected from the group consisting of mass spectroscopy, liquid chromatography, characterizing cells using a fluorescence activated cell sorter, spectrophotometer, fluorimeter, or scintillation counter, exposing host cells to a lectin or antibody having a specific affinity for a desired oligosaccharide moiety, and exposing cells to a cytotoxic or radioactive molecule selected from the group consisting of sugars, antibodies, and lectins.
32. The host produced by the method of any of claims 1-31.
33. The glycoprotein produced by the method of any of claims 1-31.
34. The library of claims 24-30.
PCT/US2001/020553 2000-06-28 2001-06-27 Methods for producing modified glycoproteins WO2002000879A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2001276842A AU2001276842B2 (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins
KR1020027017911A KR100787073B1 (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins
CA002412701A CA2412701A1 (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins
DK04025648T DK1522590T3 (en) 2000-06-28 2001-06-27 Process for Preparation of Modified Glycoproteins
AU7684201A AU7684201A (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins
NZ523476A NZ523476A (en) 2000-06-28 2001-06-27 Methods for humanizing glycosylation of recombinant glycoproteins expressed in lower eukaryotes
AT01954606T ATE309385T1 (en) 2000-06-28 2001-06-27 METHOD FOR PRODUCING MODIFIED GLYCOPROTEINS
DE60114830T DE60114830T2 (en) 2000-06-28 2001-06-27 PROCESS FOR PRODUCING MODIFIED GLYCOPROTEINS
EP01954606A EP1297172B1 (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins
MXPA03000105A MXPA03000105A (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins.
JP2002506194A JP2004501642A (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US21435800P 2000-06-28 2000-06-28
US60/214,358 2000-06-28
US21563800P 2000-06-30 2000-06-30
US60/215,638 2000-06-30
US27999701P 2001-03-30 2001-03-30
US60/279,997 2001-03-30

Publications (2)

Publication Number Publication Date
WO2002000879A2 true WO2002000879A2 (en) 2002-01-03
WO2002000879A3 WO2002000879A3 (en) 2002-09-06

Family

ID=27395978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020553 WO2002000879A2 (en) 2000-06-28 2001-06-27 Methods for producing modified glycoproteins

Country Status (15)

Country Link
US (13) US7029872B2 (en)
EP (5) EP2322644A1 (en)
JP (2) JP2004501642A (en)
KR (1) KR100787073B1 (en)
AT (2) ATE309385T1 (en)
AU (2) AU7684201A (en)
CA (1) CA2412701A1 (en)
CY (1) CY1109639T1 (en)
DE (2) DE60139720D1 (en)
DK (2) DK1297172T3 (en)
ES (2) ES2252261T3 (en)
MX (1) MXPA03000105A (en)
NZ (1) NZ523476A (en)
PT (1) PT1522590E (en)
WO (1) WO2002000879A2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091431A1 (en) * 2002-04-26 2003-11-06 Kirin Beer Kabushiki Kaisha Methylotroph producing mammalian type sugar chain
WO2004003205A1 (en) * 2002-06-29 2004-01-08 Korea Research Institute Of Bioscience And Biotechnology Hansenula polymorpha mutant strains with defect in outer chain biosynthesis and the production of recombinant glycoproteins using the same strains
WO2003078637A3 (en) * 2002-03-19 2004-03-11 Plant Res Int Bv Optimizing glycan processing in plants
WO2004028545A1 (en) * 2002-09-25 2004-04-08 Astrazeneca Ab A COMBINATION OF A LONG-ACTING β2-AGONIST AND A GLUCOCORTICOSTEROID IN THE TREATMENT OF FIBROTIC DISEASES
WO2004003194A3 (en) * 2002-06-26 2004-04-22 Flanders Interuniversity Inst Protein glycosylation modification in pichia pastoris
WO2004074499A2 (en) * 2003-02-20 2004-09-02 Gerngross Tillman U Combinatorial dna library for producing modified n-glycans in lower eukaryotes
WO2004074498A2 (en) * 2003-02-20 2004-09-02 Hamilton Stephen R Expression of class 2 mannosidase and class iii mannosidase in lower eukaryotic cells
WO2004074458A2 (en) * 2003-02-20 2004-09-02 Piotr Bobrowicz N-acetylglucosaminyltransferase iii expression in lower eukaryotes
WO2005090552A2 (en) * 2004-03-17 2005-09-29 Glycofi, Inc. Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast
WO2006014725A1 (en) * 2004-07-21 2006-02-09 Glycofi, Inc. IMMUNOGLOBULINS COMPRISING PREDOMINANTLY A GlcNAcMAN5GLCNAC2 GLYCOFORM
US6998267B1 (en) 1998-12-09 2006-02-14 The Dow Chemical Company Method for manufacturing glycoproteins having human-type glycosylation
WO2006026992A1 (en) * 2004-09-07 2006-03-16 Novozymes A/S Altered structure of n-glycans in a fungus
WO2006071856A2 (en) * 2004-12-23 2006-07-06 Glycofi, Inc. Immunoglobulins comprising predominantly a man5glcnac2 glycoform
JP2006518598A (en) * 2003-02-20 2006-08-17 スティーブン アール. ハミルトン, Endomannosidase in glycoprotein modification in eukaryotes
EP1706480A1 (en) * 2003-11-14 2006-10-04 Research Corporation Technologies, Inc Modification of protein glycosylation in methylotrophic yeast
EP1737969A2 (en) * 2004-04-15 2007-01-03 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
EP1747280A2 (en) * 2004-04-29 2007-01-31 Glycofi, Inc. Methods for reducing or eliminating alpha-mannosidase resistant glycans in the production of glycoproteins
WO2007087384A2 (en) 2006-01-23 2007-08-02 Amgen Inc. Methods for modulating mannose content of recombinant proteins
WO2007130638A2 (en) 2006-05-05 2007-11-15 Glycofi, Inc Production of sialylated n-glycans in lower eukaryotes
US7326681B2 (en) 2000-06-28 2008-02-05 Glycofi, Inc. Methods for producing modified glycoproteins
EP1937305A1 (en) * 2005-09-09 2008-07-02 Glycofi, Inc. Immunoglobulin comprising predominantly a man7glcnac2, man8glcnac2 glycoform
WO2008095797A1 (en) 2007-02-02 2008-08-14 Glycode Genetically modified yeasts for the production of homogeneous glycoproteins
EP2028275A3 (en) * 2000-06-30 2009-05-06 VIB vzw Protein glycosylation modification in pichia pastoris
EP1861504B1 (en) * 2005-03-07 2009-12-16 Plant Research International B.V. Glycoengineering in mushrooms
WO2010036898A1 (en) 2008-09-25 2010-04-01 Glycosyn, Inc. Compositions and methods for engineering probiotic yeast
US7781647B2 (en) 1999-10-26 2010-08-24 Stichting Dienst Landbouwkundig Onderzoek Mammalian-type glycosylation in transgenic plants expressing mammalian β1,4-galactosyltransferase
US7795002B2 (en) 2000-06-28 2010-09-14 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
EP2270008A1 (en) 2005-05-20 2011-01-05 Novartis AG 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinases inhibitors
US7867730B2 (en) 2004-01-30 2011-01-11 Korea Research Institute Of Biosciences And Biotechnology, Inc. Hansenula polymorpha gene coding for α 1,6-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene
WO2010138502A3 (en) * 2009-05-26 2011-02-24 Momenta Pharmaceuticals, Inc. Production of glycoproteins
US7897842B2 (en) 2002-03-19 2011-03-01 Plant Research International B.V. GnTIII expression in plants
EP2359685A1 (en) 2001-12-27 2011-08-24 GlycoFi, Inc. Methods to engineer mammalian-type carbohydrate structures
US8106169B2 (en) 2002-11-27 2012-01-31 Phyton Holdings, Llc Plant production of immunoglobulins with reduced fucosylation
WO2012013823A2 (en) 2010-07-30 2012-02-02 Glycode A yeast artificial chromosome carrying the mammalian glycosylation pathway
US8187858B2 (en) 2005-10-27 2012-05-29 Korea Research Institute Of Bioscience And Biotechnology Hansenula polymorpha gene coding for dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene
WO2012127045A1 (en) 2011-03-23 2012-09-27 Glycode A yeast recombinant cell capable of producing gdp-fucose
US8309795B2 (en) 2001-01-19 2012-11-13 Phyton Holdings, Llc Method for secretory production of glycoprotein having human-type sugar chain using plant cell
WO2012175874A1 (en) 2011-06-22 2012-12-27 Lfb Biotechnologies Use of a high-adcc anti-cd20 antibody for treating waldenström's macroglobulemia
WO2013013193A1 (en) 2011-07-20 2013-01-24 Zepteon, Incorporated Polypeptide separation methods
US8367374B2 (en) 2003-01-22 2013-02-05 Roche Glycart Ag Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function
EP2617732A1 (en) 2012-01-19 2013-07-24 Vib Vzw Tools and methods for expression of membrane proteins
AU2012227297B2 (en) * 2003-02-20 2013-11-14 Glycofi, Inc. Combinatorial DNA Library for Producing Modified N-Glycans in Lower Eukaryotes
WO2014096672A1 (en) 2012-12-17 2014-06-26 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Use of monoclonal antibodies for the treatment of inflammation and bacterial infections
US8815580B2 (en) 2008-08-08 2014-08-26 Vib Vzw Cells producing glycoproteins having altered glycosylation patterns and method and use thereof
US8829276B2 (en) 2007-04-17 2014-09-09 Stichting Dienst Landbouwkundig Onderzoek Mammalian-type glycosylation in plants by expression of non-mammalian glycosyltransferases
EP2780462A1 (en) * 2011-10-31 2014-09-24 Merck Sharp & Dohme Corp. Engineered pichia strains with improved fermentation yield and n-glycosylation quality
WO2015032899A1 (en) 2013-09-05 2015-03-12 Vib Vzw Cells producing fc containing molecules having altered glycosylation patterns and methods and use thereof
WO2015107307A1 (en) 2014-01-17 2015-07-23 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Immunoglobulin against the anthrax toxin
US9170249B2 (en) 2011-03-12 2015-10-27 Momenta Pharmaceuticals, Inc. N-acetylhexosamine-containing N-glycans in glycoprotein products
WO2017006052A2 (en) 2015-07-06 2017-01-12 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Use of modified fc fragments in immunotherapy
US9695244B2 (en) 2012-06-01 2017-07-04 Momenta Pharmaceuticals, Inc. Methods related to denosumab
US9758553B2 (en) 2008-05-30 2017-09-12 Merck Sharp & Dohme Corp. Yeast strain for the production of proteins with terminal alpha-1,3-linked galactose
US9921210B2 (en) 2010-04-07 2018-03-20 Momenta Pharmaceuticals, Inc. High mannose glycans
EP3524626A1 (en) 2007-03-22 2019-08-14 Biogen MA Inc. Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof
US10450361B2 (en) 2013-03-15 2019-10-22 Momenta Pharmaceuticals, Inc. Methods related to CTLA4-Fc fusion proteins
US10464996B2 (en) 2013-05-13 2019-11-05 Momenta Pharmaceuticals, Inc. Methods for the treatment of neurodegeneration
US11293012B2 (en) 2015-07-09 2022-04-05 Vib Vzw Cells producing glycoproteins having altered N- and O-glycosylation patterns and methods and use thereof
US11390855B2 (en) 2008-12-19 2022-07-19 Chr. Hansen HMO GmbH Synthesis of fucosylated compounds
CN115386009A (en) * 2022-04-26 2022-11-25 江苏靶标生物医药研究所有限公司 Construction method and application of annexin V and angiogenesis inhibitor fusion protein
US11661456B2 (en) 2013-10-16 2023-05-30 Momenta Pharmaceuticals, Inc. Sialylated glycoproteins

Families Citing this family (409)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545553A (en) * 1994-09-26 1996-08-13 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
DK1283265T3 (en) * 2000-05-17 2009-11-09 Mitsubishi Tanabe Pharma Corp Process for producing protein with reduction of mannose phosphate in the sugar chain and glycoprotein prepared thereby
US20060034828A1 (en) * 2000-06-28 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a GlcNAcMAN5GLCNAC2 glycoform
US20060034830A1 (en) * 2000-06-28 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a GalGlcNAcMan5GLcNAc2 glycoform
US20060029604A1 (en) * 2000-06-28 2006-02-09 Gerngross Tillman U Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform
US20060024304A1 (en) * 2000-06-28 2006-02-02 Gerngross Tillman U Immunoglobulins comprising predominantly a Man5GlcNAc2 glycoform
US8697394B2 (en) 2000-06-28 2014-04-15 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
WO2002051438A2 (en) 2000-12-22 2002-07-04 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Use of repulsive guidance molecule (rgm) and its modulators
TWI324181B (en) 2001-04-16 2010-05-01 Martek Biosciences Corp Product and process for transformation of thraustochytriales microorganisms
US7265084B2 (en) * 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
US7795210B2 (en) 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
ES2606840T3 (en) * 2001-10-10 2017-03-28 Ratiopharm Gmbh Remodeling and glycoconjugation of granulocyte colony stimulating factor (G-CSF)
US7297511B2 (en) * 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7265085B2 (en) * 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
DK2279755T3 (en) 2001-10-10 2014-05-26 Ratiopharm Gmbh Remodeling and glycoconjugation of fibroblast growth factor (FGF)
US8008252B2 (en) * 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US7439043B2 (en) * 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US7157277B2 (en) * 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
US7473680B2 (en) * 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
US20060034829A1 (en) * 2001-12-27 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a MAN3GLCNAC2 glycoform
US20060024292A1 (en) * 2001-12-27 2006-02-02 Gerngross Tillman U Immunoglobulins comprising predominantly a Gal2GlcNAc2Man3GlcNAc2 glycoform
US6964784B2 (en) * 2002-03-07 2005-11-15 Optigenex, Inc. Method of preparation and composition of a water soluble extract of the bioactive component of the plant species uncaria for enhancing immune, anti-inflammatory, anti-tumor and dna repair processes of warm blooded animals
MXPA04012496A (en) 2002-06-21 2005-09-12 Novo Nordisk Healthcare Ag Pegylated factor vii glycoforms.
RU2407796C2 (en) * 2003-01-22 2010-12-27 Гликарт Биотекнолоджи АГ FUSION DESIGNS AND THEIR APPLICATION FOR PRODUCING ANTIBODIES WITH HIGH BINDING AFFINITY OF Fc-RECEPTOR AND EFFECTOR FUNCTION
DE10303974A1 (en) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid β (1-42) oligomers, process for their preparation and their use
CA2519092C (en) 2003-03-14 2014-08-05 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
WO2006127896A2 (en) 2005-05-25 2006-11-30 Neose Technologies, Inc. Glycopegylated factor ix
US20070026485A1 (en) 2003-04-09 2007-02-01 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
EP1613261A4 (en) * 2003-04-09 2011-01-26 Novo Nordisk As Intracellular formation of peptide conjugates
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
BRPI0410164A (en) 2003-05-09 2006-05-16 Neose Technologies Inc compositions and methods for preparing human growth hormone glycosylation mutants
WO2005012484A2 (en) 2003-07-25 2005-02-10 Neose Technologies, Inc. Antibody-toxin conjugates
WO2005042753A1 (en) * 2003-10-28 2005-05-12 Chesapeake Perl, Inc. Production of human glycosylated proteins in transgenic insects
US9357755B2 (en) * 2003-10-28 2016-06-07 The University Of Wyoming Production of human glycosylated proteins in silk worm
US20050100965A1 (en) 2003-11-12 2005-05-12 Tariq Ghayur IL-18 binding proteins
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
ES2445948T3 (en) * 2003-11-24 2014-03-06 Ratiopharm Gmbh Glycopegylated Erythropoietin
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US20060040856A1 (en) 2003-12-03 2006-02-23 Neose Technologies, Inc. Glycopegylated factor IX
US7956032B2 (en) * 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
US20080318850A1 (en) * 2003-12-03 2008-12-25 Neose Technologies, Inc. Glycopegylated Factor Ix
ES2528739T3 (en) * 2003-12-24 2015-02-12 Glycofi, Inc. Methods to eliminate mannosyl phosphorylation of glucans in glycoprotein production
ES2560657T3 (en) 2004-01-08 2016-02-22 Ratiopharm Gmbh O-linked glycosylation of G-CSF peptides
US20050265988A1 (en) * 2004-03-18 2005-12-01 Byung-Kwon Choi Glycosylated glucocerebrosidase expression in fungal hosts
JP5752582B2 (en) * 2004-04-29 2015-07-22 グライコフィ, インコーポレイテッド Methods for reducing or eliminating alpha-mannosidase resistant glycans in the production of glycoproteins
CA2565414A1 (en) * 2004-05-04 2005-11-24 Novo Nordisk Health Care Ag O-linked glycoforms of polypeptides and method to manufacture them
WO2006010143A2 (en) 2004-07-13 2006-01-26 Neose Technologies, Inc. Branched peg remodeling and glycosylation of glucagon-like peptide-1 [glp-1]
EP1799249A2 (en) 2004-09-10 2007-06-27 Neose Technologies, Inc. Glycopegylated interferon alpha
WO2006035057A1 (en) * 2004-09-29 2006-04-06 Novo Nordisk Health Care Ag Modified proteins
DK2586456T3 (en) 2004-10-29 2016-03-21 Ratiopharm Gmbh Conversion and glycopegylation of fibroblast growth factor (FGF)
JP4951527B2 (en) 2005-01-10 2012-06-13 バイオジェネリックス アーゲー GlycoPEGylated granulocyte colony stimulating factor
US20060246544A1 (en) * 2005-03-30 2006-11-02 Neose Technologies,Inc. Manufacturing process for the production of peptides grown in insect cell lines
US20070154992A1 (en) * 2005-04-08 2007-07-05 Neose Technologies, Inc. Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
EP1888098A2 (en) 2005-05-25 2008-02-20 Neose Technologies, Inc. Glycopegylated erythropoietin formulations
NZ596992A (en) * 2005-06-30 2013-07-26 Abbott Lab Il-12/p40 binding proteins
WO2007024715A2 (en) 2005-08-19 2007-03-01 Abbott Laboratories Dual variable domain immunoglobin and uses thereof
EP2500358A3 (en) 2005-08-19 2012-10-17 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
BRPI0614839A2 (en) * 2005-08-19 2009-05-19 Neose Technologies Inc glycopeguiled factor vii and factor viia
US7612181B2 (en) * 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
US20070105755A1 (en) * 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
US20090215992A1 (en) * 2005-08-19 2009-08-27 Chengbin Wu Dual variable domain immunoglobulin and uses thereof
JP2009507040A (en) * 2005-09-02 2009-02-19 グライコフィ, インコーポレイテッド Immunoglobulin containing mainly GLCNACMAN3GLCNAC2 glycoform
JP2009509970A (en) * 2005-09-22 2009-03-12 プロサイ インコーポレイテッド Glycosylated polypeptides produced in yeast mutants and methods of use thereof
CN101277974A (en) 2005-09-30 2008-10-01 阿伯特有限及两合公司 Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use
US20090048440A1 (en) 2005-11-03 2009-02-19 Neose Technologies, Inc. Nucleotide Sugar Purification Using Membranes
AU2006316838B2 (en) 2005-11-15 2012-04-12 Glycofi, Inc Production of glycoproteins with reduced O-glycosylation
EP1954718B1 (en) 2005-11-30 2014-09-03 AbbVie Inc. Anti-a globulomer antibodies, antigen-binding moieties thereof, corresponding hybridomas, nucleic acids, vectors, host cells, methods of producing said antibodies, compositions comprising said antibodies, uses of said antibodies and methods of using said antibodies
PT1976877E (en) 2005-11-30 2014-04-29 Abbvie Inc Monoclonal antibodies against amyloid beta protein and uses thereof
US20090060921A1 (en) * 2006-01-17 2009-03-05 Biolex Therapeutics, Inc. Glycan-optimized anti-cd20 antibodies
BRPI0707290A2 (en) * 2006-01-17 2011-08-16 Biolex Therapeutics Inc compositions and methods for humanization and optimization of n-glycans in plants
US20090181041A1 (en) * 2006-01-23 2009-07-16 Jan Holgersson Production of proteins carrying oligomannose or human-like glycans in yeast and methods of use thereof
EP2781524A1 (en) * 2006-01-26 2014-09-24 Recopharma AB Compositions and methods for inhibiting viral adhesion
WO2007123801A1 (en) * 2006-04-05 2007-11-01 Genencor International, Inc. Filamentous fungi having reduced udp-galactofuranose content
BRPI0710482A2 (en) * 2006-04-21 2011-08-16 Wyeth Corp methods for selecting high throughput cell lines
US7851438B2 (en) * 2006-05-19 2010-12-14 GlycoFi, Incorporated Erythropoietin compositions
CA2651456A1 (en) * 2006-05-19 2007-11-29 Glycofi, Inc. Recombinant vectors
ES2368267T3 (en) * 2006-05-24 2011-11-15 Universite De Provence (Aix-Marseille 1) PREPARATION AND USE OF THE CODING GENETIC SEQUENCES OF CHEMICAL GLUCOSILTRANSPHERASES WITH OPTIMIZED GLUCOSILATION ACTIVITY.
AR078117A1 (en) 2006-06-20 2011-10-19 Protech Pharma S A A RECOMBINANT MUTEIN OF THE GLICOSILATED HUMAN ALPHA INTERFERON, A CODIFYING GENE FOR SUCH MUTEIN, A METHOD OF PRODUCTION OF SUCH GENE, A METHOD FOR OBTAINING A EUCARIOTE CELL MANUFACTURING THIS MUTEINE, A METHOD FOR A MUTE DIFFERENT PROCEDURE
WO2008011633A2 (en) 2006-07-21 2008-01-24 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US7879799B2 (en) * 2006-08-10 2011-02-01 Institute For Systems Biology Methods for characterizing glycoproteins and generating antibodies for same
CA2914170C (en) 2006-09-08 2018-10-30 Abbvie Bahamas Ltd. Interleukin-13 binding proteins
US8969532B2 (en) 2006-10-03 2015-03-03 Novo Nordisk A/S Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography
WO2008063776A2 (en) * 2006-10-12 2008-05-29 Genentech, Inc. Antibodies to lymphotoxin-alpha
EP1916259A1 (en) 2006-10-26 2008-04-30 Institut National De La Sante Et De La Recherche Medicale (Inserm) Anti-glycoprotein VI SCFV fragment for treatment of thrombosis
US20080207487A1 (en) * 2006-11-02 2008-08-28 Neose Technologies, Inc. Manufacturing process for the production of polypeptides expressed in insect cell-lines
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
WO2008079849A2 (en) * 2006-12-22 2008-07-03 Genentech, Inc. Antibodies to insulin-like growth factor receptor
ES2545775T3 (en) 2007-02-05 2015-09-15 Apellis Pharmaceuticals, Inc. Compstatin analogues for use in the treatment of inflammatory conditions of the respiratory system
US20100311767A1 (en) 2007-02-27 2010-12-09 Abbott Gmbh & Co. Kg Method for the treatment of amyloidoses
SG187521A1 (en) 2007-03-07 2013-02-28 Glycofi Inc Production of glycoproteins with modified fucosylation
PL3199180T3 (en) 2007-03-08 2022-08-08 Humanigen, Inc. Epha3 antibodies for the treatment of solid tumors
CN104480140B (en) 2007-04-03 2019-12-31 奥克西雷恩英国有限公司 Glycosylation of molecules
CA2682897C (en) 2007-04-03 2016-11-22 Biogenerix Ag Methods of treatment using glycopegylated g-csf
US20080256056A1 (en) * 2007-04-10 2008-10-16 Yahoo! Inc. System for building a data structure representing a network of users and advertisers
EP2068925A4 (en) 2007-05-07 2011-08-31 Medimmune Llc Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
ES2558689T3 (en) 2007-05-14 2016-02-08 Medimmune, Llc Methods to reduce eosinophil levels
US20090053167A1 (en) * 2007-05-14 2009-02-26 Neose Technologies, Inc. C-, S- and N-glycosylation of peptides
PE20090329A1 (en) * 2007-05-30 2009-03-27 Abbott Lab HUMANIZED ANTIBODIES AGAINST GLOBULOMER AB (20-42) AND ITS USES
US20090232801A1 (en) * 2007-05-30 2009-09-17 Abbot Laboratories Humanized Antibodies Which Bind To AB (1-42) Globulomer And Uses Thereof
MX2009013259A (en) 2007-06-12 2010-01-25 Novo Nordisk As Improved process for the production of nucleotide sugars.
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
US8637435B2 (en) * 2007-11-16 2014-01-28 Merck Sharp & Dohme Corp. Eukaryotic cell display systems
EP2235198B1 (en) 2007-12-19 2018-08-29 GlycoFi, Inc. Yeast strains for protein production
DK2240595T4 (en) * 2008-01-03 2019-10-07 Cornell Res Foundation Inc Glycosylated protein expression in prokaryotes
US20100311122A1 (en) * 2008-02-20 2010-12-09 Glycofi, Inc Vectors and yeast strains for protein production
PL2257311T3 (en) 2008-02-27 2014-09-30 Novo Nordisk As Conjugated factor viii molecules
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
WO2009111183A1 (en) 2008-03-03 2009-09-11 Glycofi, Inc. Surface display of recombinant proteins in lower eukaryotes
AU2009223054A1 (en) * 2008-03-11 2009-09-17 Genentech, Inc. Antibodies with enhanced ADCC function
NZ588554A (en) 2008-04-29 2013-03-28 Abbott Lab Dual variable domain immunoglobulins and uses thereof
EP2383292A1 (en) 2008-05-02 2011-11-02 Novartis AG Improved fibronectin-based binding molecules and uses thereof
SG188142A1 (en) 2008-05-09 2013-03-28 Abbott Gmbh & Co Kg Antibodies to receptor of advanced glycation end products (rage) and uses thereof
CN102112494A (en) 2008-06-03 2011-06-29 雅培制药有限公司 Dual variable domain immunoglobulins and uses thereof
AR072001A1 (en) 2008-06-03 2010-07-28 Abbott Lab IMMUNOGLOBULIN WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
TW201014602A (en) 2008-07-08 2010-04-16 Abbott Lab Prostaglandin E2 binding proteins and uses thereof
WO2010006060A2 (en) 2008-07-08 2010-01-14 Abbott Laboratories Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
US8067339B2 (en) 2008-07-09 2011-11-29 Merck Sharp & Dohme Corp. Surface display of whole antibodies in eukaryotes
MX2011001706A (en) 2008-08-12 2011-03-24 Glycofi Inc Improved vectors and yeast strains for protein production: ca2+ atpase overexpression.
JP5652206B2 (en) 2008-10-01 2015-01-14 旭硝子株式会社 Host, transformant and method for producing the same, and method for producing O-glycoside type sugar chain-containing heterologous protein
JP5933975B2 (en) 2008-11-12 2016-06-15 メディミューン,エルエルシー Antibody preparation
RU2011127198A (en) * 2008-12-04 2013-01-10 Эбботт Лэборетриз IMMUNOGLOBULINS WITH DOUBLE VARIABLE DOMAINS AND THEIR APPLICATION
US9103821B2 (en) 2008-12-19 2015-08-11 Momenta Pharmaceuticals, Inc. Methods related to modified glycans
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
US20110165063A1 (en) * 2009-01-29 2011-07-07 Abbott Laboratories Il-1 binding proteins
CA2749966A1 (en) * 2009-01-29 2010-08-05 Abbott Laboratories Il-1 binding proteins
US8030026B2 (en) 2009-02-24 2011-10-04 Abbott Laboratories Antibodies to troponin I and methods of use thereof
US20120003695A1 (en) 2009-02-25 2012-01-05 Davidson Robert C Metabolic engineering of a galactose assimilation pathway in the glycoengineered yeast pichia pastoris
JP5836807B2 (en) 2009-03-05 2015-12-24 アッヴィ・インコーポレイテッド IL-17 binding protein
CN102405237A (en) 2009-03-06 2012-04-04 卡罗拜奥斯制药公司 Treatment of leukemias and chronic myeloproliferative diseases with antibodies to epha3
US8283162B2 (en) 2009-03-10 2012-10-09 Abbott Laboratories Antibodies relating to PIVKAII and uses thereof
AU2010225930B2 (en) 2009-03-16 2017-01-12 Dsm Ip Assets B.V. Protein production in microorganisms of the phylum Labyrinthulomycota
NZ600915A (en) * 2009-03-16 2013-09-27 Cephalon Australia Pty Ltd Humanised antibodies with anti-tumour activity
EP2424894A1 (en) 2009-04-27 2012-03-07 Novartis AG Composition and methods of use for therapeutic antibodies specific for the il-12 receptore betal subunit
CA2993053A1 (en) 2009-04-27 2010-11-04 Novartis Ag Antagonistic activin receptor iib (actriib) antibodies for increasing muscle growth
US8815242B2 (en) * 2009-05-27 2014-08-26 Synageva Biopharma Corp. Avian derived antibodies
WO2011011495A1 (en) * 2009-07-24 2011-01-27 Merck Sharp & Dohme Corp. Recombinant ectodomain expression of herpes simplex virus glycoproteins in yeast
CN105131112A (en) 2009-08-29 2015-12-09 Abbvie公司 Therapeutic dll4 binding proteins
EP2473524A4 (en) 2009-09-01 2013-05-22 Abbott Lab Dual variable domain immunoglobulins and uses thereof
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
US9598682B2 (en) 2009-09-29 2017-03-21 Vib Vzw Hydrolysis of mannose-1-phospho-6-mannose linkage to phospho-6-mannose
JP2013508292A (en) 2009-10-14 2013-03-07 カロバイオス ファーマシューティカルズ インコーポレイティッド Antibodies against EphA3
EP2488658A4 (en) 2009-10-15 2013-06-19 Abbvie Inc Dual variable domain immunoglobulins and uses thereof
EP2488657B1 (en) 2009-10-16 2016-07-06 Merck Sharp & Dohme Corp. Method for producing proteins in pichia pastoris that lack detectable cross binding activity to antibodies against host cell antigens
UY32979A (en) * 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
CN102725396A (en) 2009-10-30 2012-10-10 默沙东公司 Method for producing therapeutic proteins in pichia pastoris lacking dipeptidyl aminopeptidase activity
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011053545A1 (en) * 2009-10-30 2011-05-05 Merck Sharp & Dohme Corp. Granulocyte-colony stimulating factor produced in glycoengineered pichia pastoris
JP2013509180A (en) 2009-10-30 2013-03-14 メルク・シャープ・エンド・ドーム・コーポレイション Method for producing a recombinant protein having improved secretion efficiency
WO2011053707A1 (en) 2009-10-31 2011-05-05 Abbott Laboratories Antibodies to receptor for advanced glycation end products (rage) and uses thereof
WO2011051466A1 (en) 2009-11-02 2011-05-05 Novartis Ag Anti-idiotypic fibronectin-based binding molecules and uses thereof
US8932588B2 (en) 2009-11-05 2015-01-13 Teva Pharmaceuticals Australia Pty. Ltd. Treatment of cancer involving mutated KRAS or BRAF genes
EP2501805B1 (en) 2009-11-19 2019-02-20 Oxyrane UK Limited Yeast strains producing mammalian-like complex n-glycans
EP2507267B1 (en) 2009-12-02 2016-09-14 Acceleron Pharma, Inc. Compositions and methods for increasing serum half-life of fc fusion proteins
MX2012006560A (en) 2009-12-08 2012-10-05 Abbott Gmbh & Co Kg Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration.
TW201130511A (en) 2009-12-22 2011-09-16 Novartis Ag Soluble proteins for use as therapeutics
IN2012DN06277A (en) * 2009-12-28 2015-09-25 Dsm Ip Assets Bv
CN103068984B (en) * 2009-12-28 2017-12-01 Dsm Ip资产公司 The production of hemagglutinin neuraminidase albumen in microalgae
ES2651313T3 (en) * 2009-12-28 2018-01-25 Dsm Ip Assets B.V. Recombinant traustoquids growing in xylose, and compositions, methods of preparation and uses thereof
WO2011092233A1 (en) 2010-01-29 2011-08-04 Novartis Ag Yeast mating to produce high-affinity combinations of fibronectin-based binders
MX2012009802A (en) 2010-02-24 2012-09-12 Merck Sharp & Dohme Method for increasing n-glycosylation site occupancy on therapeutic glycoproteins produced in pichia pastoris.
MY160628A (en) 2010-03-02 2017-03-15 Abbvie Inc Therapeutic DLL4 Binding Proteins
JP2013523182A (en) 2010-04-15 2013-06-17 アボット・ラボラトリーズ Amyloid beta-binding protein
JP6066900B2 (en) 2010-04-26 2017-01-25 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of cysteinyl tRNA synthetase
AU2011248614B2 (en) 2010-04-27 2017-02-16 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl tRNA synthetases
CA2797271C (en) 2010-04-28 2021-05-25 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
WO2011139854A2 (en) 2010-04-29 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of asparaginyl trna synthetases
EP2563383B1 (en) 2010-04-29 2017-03-01 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases
US9034321B2 (en) 2010-05-03 2015-05-19 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-tRNA synthetases
CN103140233B (en) 2010-05-03 2017-04-05 Atyr 医药公司 Treatment, diagnosis and the discovery of antibody compositions related to the protein fragments of methionyl-tRNA synthetase
CA2797277C (en) 2010-05-03 2021-02-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases
CN102985103A (en) 2010-05-04 2013-03-20 Atyr医药公司 Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-tRNA synthetase complex
PE20130205A1 (en) 2010-05-14 2013-03-24 Abbvie Inc IL-1 BINDING PROTEINS
JP6396656B2 (en) 2010-05-14 2018-09-26 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of phenylalanyl βtRNA synthetase
CN103096913B (en) 2010-05-27 2017-07-18 Atyr 医药公司 Treatment, diagnosis and the innovation of antibody compositions related to the protein fragments of glutaminyl tRNA synzyme is found
BR112012030179A8 (en) 2010-05-27 2023-03-14 Merck Sharp & Dohme FC CONTAINING POLYPEPTIDE
AU2011261486B2 (en) 2010-06-01 2017-02-23 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of lysyl-tRNA synthetases
WO2012006500A2 (en) 2010-07-08 2012-01-12 Abbott Laboratories Monoclonal antibodies against hepatitis c virus core protein
UY33492A (en) 2010-07-09 2012-01-31 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
JP6116479B2 (en) 2010-07-12 2017-04-19 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of glycyl-tRNA synthetase
US9120862B2 (en) 2010-07-26 2015-09-01 Abbott Laboratories Antibodies relating to PIVKA-II and uses thereof
EP3252072A3 (en) 2010-08-03 2018-03-14 AbbVie Inc. Dual variable domain immunoglobulins and uses thereof
US20130177555A1 (en) 2010-08-13 2013-07-11 Medimmune Limited Monomeric Polypeptides Comprising Variant FC Regions And Methods Of Use
EP2603524A1 (en) 2010-08-14 2013-06-19 AbbVie Inc. Amyloid-beta binding proteins
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
EP2606067B1 (en) 2010-08-19 2018-02-21 Zoetis Belgium S.A. Anti-ngf antibodies and their use
WO2012027611A2 (en) 2010-08-25 2012-03-01 Atyr Pharma, Inc. INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF TYROSYL-tRNA SYNTHETASES
KR20130139884A (en) 2010-08-26 2013-12-23 애브비 인코포레이티드 Dual variable domain immunoglobulins and uses thereof
WO2012042386A2 (en) 2010-09-29 2012-04-05 Oxyrane Uk Limited Mannosidases capable of uncapping mannose-1-phospho-6-mannose linkages and demannosylating phosphorylated n-glycans and methods of facilitating mammalian cellular uptake of glycoproteins
KR101979220B1 (en) 2010-09-29 2019-05-16 옥시레인 유케이 리미티드 De-mannosylation of phosphorylated n-glycans
CN103154037A (en) 2010-10-05 2013-06-12 诺瓦提斯公司 Anti-IL 12 Rbeta 1 antibodies and their use in treating autoimmune and inflammatory disorders
CN103534392A (en) 2010-12-01 2014-01-22 默沙东公司 Surface, anchored FC-bait antibody display system
US9458240B2 (en) 2010-12-10 2016-10-04 Novartis Pharma Ag Anti-BAFFR antibody formulations
SG191312A1 (en) 2010-12-21 2013-07-31 Abbvie Inc Il-1 -alpha and -beta bispecific dual variable domain immunoglobulins and their use
US20120275996A1 (en) 2010-12-21 2012-11-01 Abbott Laboratories IL-1 Binding Proteins
RU2620065C2 (en) 2011-02-08 2017-05-22 МЕДИММЬЮН, ЭлЭлСи Antibodies for specific binding of staphylococcus aureus alpha-toxin and methods of application
CA2827732A1 (en) 2011-02-25 2012-08-30 Merck Sharp & Dohme Corp. Yeast strain for the production of proteins with modified o-glycosylation
WO2012149197A2 (en) 2011-04-27 2012-11-01 Abbott Laboratories Methods for controlling the galactosylation profile of recombinantly-expressed proteins
US9346883B2 (en) 2011-05-13 2016-05-24 Institut National De La Sante Et De La Recherche Medicale (Inserm) Antibodies against HER3
KR20140028013A (en) 2011-05-25 2014-03-07 머크 샤프 앤드 돔 코포레이션 Method for preparing fc-containing polypeptides having improved properties
AU2012269929A1 (en) 2011-06-16 2013-12-12 Novartis Ag Soluble proteins for use as therapeutics
JP6120833B2 (en) 2011-06-22 2017-04-26 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル)Inserm(Institut National Dela Sante Et De La Recherche Medicale) Anti-Axl antibody and use thereof
US9249228B2 (en) 2011-06-22 2016-02-02 Oribase Pharma Anti-Axl antibodies and uses thereof
EP2726099B1 (en) 2011-07-01 2018-07-25 Novartis AG Method for treating metabolic disorders
WO2013009521A2 (en) 2011-07-13 2013-01-17 Abbvie Inc. Methods and compositions for treating asthma using anti-il-13 antibodies
JP5800160B2 (en) * 2011-10-03 2015-10-28 国立研究開発法人産業技術総合研究所 Complex sugar chain hydrolase
CA2853357A1 (en) 2011-10-24 2013-05-02 Abbvie Inc. Immunobinders directed against tnf
UY34411A (en) 2011-10-24 2013-05-31 Abbvie Inc IMMUNO LINKERS AGAINST SCLEROSTINE
KR102037541B1 (en) 2011-10-28 2019-10-29 테바 파마슈티컬즈 오스트레일리아 피티와이 엘티디 Polypeptide constructs and uses thereof
AU2012329091A1 (en) 2011-10-28 2014-05-01 Merck Sharp & Dohme Corp. Engineered lower eukaryotic host strains for recombinant protein expression
CN103906533A (en) 2011-11-07 2014-07-02 米迪缪尼有限公司 Multispecific and multivalent binding proteins and uses thereof
KR101457514B1 (en) 2011-11-21 2014-11-03 한국생명공학연구원 Sialyltransferase of Halocynthia rorentzi and a method for synthesis of sialoglycoconjugates using it
CN104114183A (en) 2011-12-20 2014-10-22 印第安纳大学研究及科技有限公司 CTP-based insulin analogs for treatment of diabetes
CN104159920A (en) 2011-12-30 2014-11-19 艾伯维公司 Dual specific binding proteins directed against il-13 and/or il-17
RS57603B1 (en) 2012-01-27 2018-11-30 Abbvie Deutschland Composition and method for diagnosis and treatment of diseases associated with neurite degeneration
WO2013123432A2 (en) 2012-02-16 2013-08-22 Atyr Pharma, Inc. Histidyl-trna synthetases for treating autoimmune and inflammatory diseases
JP6194324B2 (en) 2012-03-15 2017-09-06 オキシレイン ユーケー リミテッド Methods and materials for the treatment of Pompe disease
WO2013158279A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Protein purification methods to reduce acidic species
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
WO2013169609A1 (en) 2012-05-11 2013-11-14 Merck Sharp & Dohme Corp. Surface anchored light chain bait antibody display system
EP2852610B1 (en) 2012-05-23 2018-07-11 Glykos Finland Oy Production of fucosylated glycoproteins
WO2013184871A1 (en) 2012-06-06 2013-12-12 Zoetis Llc Caninized anti-ngf antibodies and methods thereof
US9216219B2 (en) 2012-06-12 2015-12-22 Novartis Ag Anti-BAFFR antibody formulation
WO2014004549A2 (en) 2012-06-27 2014-01-03 Amgen Inc. Anti-mesothelin binding proteins
WO2014011955A2 (en) 2012-07-12 2014-01-16 Abbvie, Inc. Il-1 binding proteins
EA201590237A1 (en) 2012-07-18 2015-05-29 Гликотоп Гмбх NEW METHODS OF ANTIBODY TREATMENT AGAINST HER2 WITH LOW FUZOZYLATION
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
JOP20200308A1 (en) 2012-09-07 2017-06-16 Novartis Ag IL-18 binding molecules
US20150275222A1 (en) 2012-10-22 2015-10-01 Bo Jiang Crz1 mutant fungal cells
PT2912162T (en) 2012-10-23 2018-02-15 Research Corporation Tech Inc Pichia pastoris strains for producing predominantly homogeneous glycan structure
EP2911681A1 (en) 2012-10-26 2015-09-02 Institut National de la Santé et de la Recherche Médicale (INSERM) Lyve-1 antagonists for preventing or treating a pathological condition associated with lymphangiogenesis
KR20180008921A (en) 2012-11-01 2018-01-24 애브비 인코포레이티드 Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the preparation of immunoconjugates and uses thereof
EP2925345B1 (en) 2012-12-03 2018-09-05 Merck Sharp & Dohme Corp. Method for making o-glycosylated carboxy terminal portion (ctp) peptide-based insulin and insulin analogues
US9764006B2 (en) 2012-12-10 2017-09-19 The General Hospital Corporation Bivalent IL-2 fusion toxins
WO2014090948A1 (en) 2012-12-13 2014-06-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Serpin spn4a and biologically active derivatives thereof for use in the treatment of cancer
CN105228650B (en) 2012-12-18 2018-11-16 美国洛克菲勒大学 Anti-CD 4 antibodies for the HIV glycan modification prevented and treated
WO2014100542A1 (en) 2012-12-21 2014-06-26 Abbvie, Inc. High-throughput antibody humanization
US9458244B2 (en) 2012-12-28 2016-10-04 Abbvie Inc. Single chain multivalent binding protein compositions and methods
EP2938637A2 (en) 2012-12-28 2015-11-04 AbbVie Inc. Multivalent binding protein compositions
CA2898415A1 (en) 2013-01-16 2014-07-24 Inserm (Institut National De La Sante Et De La Recherche Medicale) A soluble fibroblast growth factor receptor 3 (fgr3) polypeptide for use in the prevention or treatment of skeletal growth retardation disorders
EP2948177A1 (en) 2013-01-22 2015-12-02 AbbVie Inc. Methods for optimizing domain stability of binding proteins
CA2897682C (en) 2013-02-08 2023-03-14 Novartis Ag Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders
WO2014126921A1 (en) 2013-02-12 2014-08-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies that neutralize norovirus
ES2755181T3 (en) 2013-02-13 2020-04-21 Lab Francais Du Fractionnement Highly galactosylated anti-TNF-alpha antibodies and uses thereof
WO2014138188A1 (en) 2013-03-07 2014-09-12 The General Hospital Corporation Human ctla4 mutants and use thereof
EP2830651A4 (en) 2013-03-12 2015-09-02 Abbvie Inc Human antibodies that bind human tnf-alpha and methods of preparing the same
CN105473604B (en) 2013-03-13 2021-01-22 美国政府(由卫生和人类服务部的部长所代表) Pre-fusion RSV F proteins and uses thereof
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
BR112015023355A8 (en) 2013-03-14 2018-01-30 Abbott Lab hcv ns3 recombinant antigens and mutants thereof for enhanced antibody detection.
MX2015012825A (en) 2013-03-14 2016-06-10 Abbott Lab Hcv core lipid binding domain monoclonal antibodies.
CA2906421C (en) 2013-03-14 2022-08-16 George J. Dawson Hcv antigen-antibody combination assay and methods and compositions for use therein
JP6538645B2 (en) 2013-03-14 2019-07-03 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation Insulin-incretin complex
WO2014151878A2 (en) 2013-03-14 2014-09-25 Abbvie Inc. Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides
CN105324396A (en) 2013-03-15 2016-02-10 艾伯维公司 Dual specific binding proteins directed against il-1 beta and il-17
US9587235B2 (en) 2013-03-15 2017-03-07 Atyr Pharma, Inc. Histidyl-tRNA synthetase-Fc conjugates
CN105229030A (en) 2013-04-22 2016-01-06 葛莱高托普有限公司 Treat by the anti-cancer of the anti-EGFR-antibodies with low fucosylation
US11117975B2 (en) 2013-04-29 2021-09-14 Teva Pharmaceuticals Australia Pty Ltd Anti-CD38 antibodies and fusions to attenuated interferon alpha-2B
PT2992013T (en) 2013-04-29 2020-03-05 Teva Pharmaceuticals Australia Pty Ltd Anti-cd38 antibodies and fusions to attenuated interferon alpha-2b
US10000556B2 (en) 2013-05-09 2018-06-19 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Single-domain VHH antibodies directed to norovirus GI.1 and GII.4 and their use
SG10201801063TA (en) 2013-08-14 2018-04-27 Novartis Ag Methods of treating sporadic inclusion body myositis
WO2015044379A1 (en) 2013-09-27 2015-04-02 INSERM (Institut National de la Santé et de la Recherche Médicale) A dyrk1a polypeptide for use in preventing or treating metabolic disorders
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
CN113667012A (en) 2013-10-02 2021-11-19 免疫医疗有限责任公司 Neutralizing anti-influenza a antibodies and uses thereof
WO2015051293A2 (en) 2013-10-04 2015-04-09 Abbvie, Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
WO2015066550A1 (en) 2013-10-31 2015-05-07 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
WO2015067986A1 (en) 2013-11-07 2015-05-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Neuregulin allosteric anti-her3 antibody
US20150139988A1 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
EP3495482B1 (en) 2014-01-21 2020-09-02 Synplogen Co., Ltd. Method for preparing dna unit composition, and method for creating concatenated dna
KR20220025946A (en) 2014-03-21 2022-03-03 애브비 인코포레이티드 Anti-egfr antibodies and antibody drug conjugates
TW201622746A (en) 2014-04-24 2016-07-01 諾華公司 Methods of improving or accelerating physical recovery after surgery for hip fracture
UA119352C2 (en) 2014-05-01 2019-06-10 Тева Фармасьютикалз Острейліа Пті Лтд Combination of lenalidomide or pomalidomide and cd38 antibody-attenuated interferon-alpha constructs, and the use thereof
US20170291939A1 (en) 2014-06-25 2017-10-12 Novartis Ag Antibodies specific for il-17a fused to hyaluronan binding peptide tags
JP6837434B2 (en) 2014-07-15 2021-03-03 メディミューン,エルエルシー Neutralization of anti-influenza antibody and its use
US10513724B2 (en) 2014-07-21 2019-12-24 Glykos Finland Oy Production of glycoproteins with mammalian-like N-glycans in filamentous fungi
JO3663B1 (en) 2014-08-19 2020-08-27 Merck Sharp & Dohme Anti-lag3 antibodies and antigen-binding fragments
AP2017009765A0 (en) 2014-08-19 2017-02-28 Merck Sharp & Dohme Anti-tigit antibodies
ES2822994T3 (en) 2014-09-24 2021-05-05 Univ Indiana Res & Tech Corp Incretin-insulin conjugates
RU2021125449A (en) 2014-10-01 2021-09-16 Медиммьюн Лимитед ANTIBODIES TO TICAGRELOR AND METHODS OF APPLICATION
EA037749B1 (en) 2014-10-29 2021-05-18 Тева Фармасьютикалз Острэйлиа Пти Лтд INTERFERON 2b VARIANTS
WO2016069889A1 (en) 2014-10-31 2016-05-06 Resolve Therapeutics, Llc Therapeutic nuclease-transferrin fusions and methods
EP3217807A4 (en) 2014-11-11 2018-09-12 Clara Foods Co. Methods and compositions for egg white protein production
US10072070B2 (en) 2014-12-05 2018-09-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Potent anti-influenza A neuraminidase subtype N1 antibody
WO2016091891A1 (en) 2014-12-09 2016-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies against axl
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
WO2016135041A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
WO2016160976A2 (en) 2015-03-30 2016-10-06 Abbvie Inc. Monovalent tnf binding proteins
EP3091033A1 (en) 2015-05-06 2016-11-09 Gamamabs Pharma Anti-human-her3 antibodies and uses thereof
MY189692A (en) 2015-05-07 2022-02-26 Memorial Sloan Kettering Cancer Center Anti-ox40 antibodies and methods of use thereof
WO2016188911A1 (en) 2015-05-22 2016-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies fragments inhibiting both the cath-d catalytic activity and its binding to the lrp1 receptor
JP6518917B2 (en) 2015-05-29 2019-05-29 アッヴィ・インコーポレイテッド Anti-CD40 antibody and use thereof
PT3303384T (en) 2015-06-01 2021-10-14 Medimmune Llc Neutralizing anti-influenza binding molecules and uses thereof
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
JP2018535655A (en) 2015-09-29 2018-12-06 アムジエン・インコーポレーテツド ASGR inhibitor
EP3363461A4 (en) 2015-10-12 2019-05-15 Aprogen Kic Inc. Anti-cd43 antibody and use thereof for cancer treatment
JO3555B1 (en) 2015-10-29 2020-07-05 Merck Sharp & Dohme Antibody neutralizing human respiratory syncytial virus
US11045547B2 (en) 2015-12-16 2021-06-29 Merck Sharp & Dohme Corp. Anti-LAG3 antibodies and antigen-binding fragments
BR112018015259A2 (en) * 2016-01-27 2018-12-18 Medimmune Llc Methods for preparing antibodies with a defined glycosylation standard
CU24613B1 (en) 2016-02-06 2022-07-08 Epimab Biotherapeutics Inc FABS TANDEM IMMUNOGLOBULIN BINDING PROTEINS (FIT-IG) BSPECIFIC BINDING TO CMET AND EGFR
SG11201805941WA (en) 2016-02-17 2018-09-27 Novartis Ag Tgfbeta 2 antibodies
KR102438140B1 (en) 2016-03-22 2022-08-31 엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔 Humanized anti-claudin-1 antibodies and uses thereof
JP2019526529A (en) 2016-06-08 2019-09-19 アッヴィ・インコーポレイテッド Anti-B7-H3 antibody and antibody drug conjugate
BR112018075630A2 (en) 2016-06-08 2019-03-19 Abbvie Inc. anti-cd98 antibodies and antibody drug conjugates
CN109641962A (en) 2016-06-08 2019-04-16 艾伯维公司 Anti- B7-H3 antibody and antibody drug conjugates
CN109562190A (en) 2016-06-08 2019-04-02 艾伯维公司 Anti-egfr antibodies drug conjugates
WO2017214335A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-b7-h3 antibodies and antibody drug conjugates
CN116173232A (en) 2016-06-08 2023-05-30 艾伯维公司 anti-CD 98 antibodies and antibody drug conjugates
RU2018147224A (en) 2016-06-08 2020-07-14 Эббви Инк. CONJUGATES OF ANTIBODY TO EGFR AND DRUG
AU2017277422A1 (en) 2016-06-08 2019-01-03 Abbvie Inc. Anti-EGFR antibody drug conjugates
JP2019522643A (en) 2016-06-08 2019-08-15 アッヴィ・インコーポレイテッド Anti-CD98 antibodies and antibody drug conjugates
EP3478830B1 (en) 2016-07-01 2024-04-10 Resolve Therapeutics, LLC Optimized binuclease fusions and methods
JP7241677B2 (en) 2016-07-19 2023-03-17 テバ・ファーマシューティカルズ・オーストラリア・ピーティワイ・リミテッド Anti-CD47 combination therapy
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
JP7219207B2 (en) 2016-07-29 2023-02-07 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Antibodies targeting tumor-associated macrophages and uses thereof
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
WO2018026969A2 (en) 2016-08-03 2018-02-08 Achaogen, Inc. Plazomicin antibodies and methods of use
BR112019002579A2 (en) 2016-08-16 2019-05-21 Epimab Biotherapeutics, Inc. monovalent, asymmetric and tandem fab bispecific antibodies
JP7174691B2 (en) 2016-08-23 2022-11-17 メディミューン リミテッド Anti-VEGF-A and anti-ANG2 antibodies and uses thereof
KR102538827B1 (en) 2016-08-23 2023-05-31 메디뮨 리미티드 Anti-VEF-A Antibodies and Uses Thereof
US20190270821A1 (en) 2016-09-13 2019-09-05 Humanigen, Inc. Epha3 antibodies for the treatment of pulmonary fibrosis
JOP20190055A1 (en) 2016-09-26 2019-03-24 Merck Sharp & Dohme Anti-cd27 antibodies
JP2019535306A (en) 2016-10-25 2019-12-12 インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラリシェルシェ メディカル) Monoclonal antibody binding to CD160 transmembrane isoform
US10899842B2 (en) 2016-11-23 2021-01-26 Immunoah Therapeutics, Inc. 4-1BB binding proteins and uses thereof
BR112019011582A2 (en) 2016-12-07 2019-10-22 Agenus Inc. antibodies and their methods of use
EP3579872A1 (en) 2017-02-10 2019-12-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of cancers associated with activation of the mapk pathway
JP2020510432A (en) 2017-03-02 2020-04-09 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Antibodies with specificity for NECTIN-4 and uses thereof
WO2018170332A1 (en) * 2017-03-15 2018-09-20 Nutech Ventures Extracellular vesicles and methods of using
KR102628323B1 (en) 2017-03-24 2024-01-22 노바르티스 아게 How to prevent and treat heart disease
TWI796329B (en) 2017-04-07 2023-03-21 美商默沙東有限責任公司 Anti-ilt4 antibodies and antigen-binding fragments
KR20190140454A (en) 2017-04-13 2019-12-19 아두로 바이오테크 홀딩스, 유럽 비.브이. Anti-SIRP alpha antibody
CA3064697A1 (en) 2017-04-19 2018-10-25 Bluefin Biomedicine, Inc. Anti-vtcn1 antibodies and antibody drug conjugates
CA3064333A1 (en) 2017-05-29 2018-12-06 Gamamabs Pharma Cancer-associated immunosuppression inhibitor
UY37758A (en) 2017-06-12 2019-01-31 Novartis Ag METHOD OF MANUFACTURING OF BIESPECTIFIC ANTIBODIES, BISPECTIFIC ANTIBODIES AND THERAPEUTIC USE OF SUCH ANTIBODIES
GB201710838D0 (en) 2017-07-05 2017-08-16 Ucl Business Plc Bispecific antibodies
US11898187B2 (en) 2017-08-15 2024-02-13 Northwestern University Protein glycosylation sites by rapid expression and characterization of N-glycosyltransferases
CA3073537A1 (en) 2017-08-22 2019-02-28 Sanabio, Llc Soluble interferon receptors and uses thereof
EP3672990A1 (en) 2017-08-25 2020-07-01 Five Prime Therapeutics, Inc. B7-h4 antibodies and methods of use thereof
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019148412A1 (en) 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies
MX2020008730A (en) 2018-02-21 2020-12-07 Five Prime Therapeutics Inc B7-h4 antibody dosing regimens.
CA3091174A1 (en) 2018-02-21 2019-08-29 Five Prime Therapeutics, Inc. B7-h4 antibody formulations
SG11202008105RA (en) 2018-03-02 2020-09-29 Five Prime Therapeutics Inc B7-h4 antibodies and methods of use thereof
EP3765499A1 (en) 2018-03-12 2021-01-20 Zoetis Services LLC Anti-ngf antibodies and methods thereof
US11530432B2 (en) 2018-03-19 2022-12-20 Northwestern University Compositions and methods for rapid in vitro synthesis of bioconjugate vaccines in vitro via production and N-glycosylation of protein carriers in detoxified prokaryotic cell lysates
US11725224B2 (en) 2018-04-16 2023-08-15 Northwestern University Methods for co-activating in vitro non-standard amino acid (nsAA) incorporation and glycosylation in crude cell lysates
WO2020041483A1 (en) * 2018-08-21 2020-02-27 Clara Foods Co. Modification of protein glycosylation in microorganisms
TW202019480A (en) 2018-09-13 2020-06-01 美國德州系統大學評議委員會 Novel lilrb4 antibodies and uses thereof
US20220073638A1 (en) 2018-09-19 2022-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy
US11130802B2 (en) 2018-10-10 2021-09-28 Tilos Therapeutics, Inc. Anti-lap antibody variants
CN113166242A (en) 2018-10-15 2021-07-23 戊瑞治疗有限公司 Combination therapy for cancer
US20220025058A1 (en) 2018-11-06 2022-01-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of acute myeloid leukemia by eradicating leukemic stem cells
US20220064260A1 (en) 2018-12-14 2022-03-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Isolated mhc-derived human peptides and uses thereof for stimulating and activating the suppressive function of cd8+cd45rclow tregs
KR20210113261A (en) 2019-01-04 2021-09-15 리졸브 테라퓨틱스, 엘엘씨 Treatment of Sjogren's Disease Using Nuclease Fusion Proteins
WO2020148207A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies binding to hla-a2
JP2022538733A (en) 2019-05-20 2022-09-06 インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラ リシェルシェ メディカル) Novel anti-CD25 antibody
UY38747A (en) 2019-06-12 2021-01-29 Novartis Ag NATRIURETIC 1 PEPTIDE RECEPTOR ANTIBODIES AND METHODS OF USE
KR20220034848A (en) 2019-07-11 2022-03-18 클라라 푸드즈 컴퍼니 Protein composition and edible products thereof
EP3999540A1 (en) 2019-07-16 2022-05-25 Institut National de la Santé et de la Recherche Médicale (INSERM) Antibodies having specificity for cd38 and uses thereof
US10927360B1 (en) 2019-08-07 2021-02-23 Clara Foods Co. Compositions comprising digestive enzymes
WO2021067526A1 (en) 2019-10-02 2021-04-08 Alexion Pharmaceuticals, Inc. Complement inhibitors for treating drug-induced complement-mediated response
WO2021064184A1 (en) 2019-10-04 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
WO2021116119A1 (en) 2019-12-09 2021-06-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
US20230091231A1 (en) 2020-01-21 2023-03-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Utilization of plant protein homologues in culture media
AU2021215936A1 (en) 2020-02-05 2022-08-25 Larimar Therapeutics, Inc. TAT peptide binding proteins and uses thereof
EP4132971A1 (en) 2020-04-09 2023-02-15 Merck Sharp & Dohme LLC Affinity matured anti-lap antibodies and uses thereof
EP4143227A2 (en) 2020-04-30 2023-03-08 Sairopa B.V. Anti-cd103 antibodies
WO2021228956A1 (en) 2020-05-12 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
CR20220646A (en) 2020-05-17 2023-10-23 Astrazeneca Uk Ltd Sars-cov-2 antibodies and methods of selecting and using the same
US11702467B2 (en) 2020-06-25 2023-07-18 Merck Sharp & Dohme Llc High affinity antibodies targeting tau phosphorylated at serine 413
CA3165342A1 (en) 2020-06-29 2022-01-06 James Arthur Posada Treatment of sjogren's syndrome with nuclease fusion proteins
US20230323299A1 (en) 2020-08-03 2023-10-12 Inserm (Institut National De La Santé Et De La Recherch Médicale) Population of treg cells functionally committed to exert a regulatory activity and their use for adoptive therapy
JP2023537078A (en) 2020-08-10 2023-08-30 アストラゼネカ・ユーケイ・リミテッド SARS-CoV-2 Antibodies for Treating and Preventing COVID-19
US20240002521A1 (en) 2020-11-20 2024-01-04 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd25 antibodies
WO2022106665A1 (en) 2020-11-20 2022-05-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-cd25 antibodies
WO2022130182A1 (en) 2020-12-14 2022-06-23 Novartis Ag Reversal binding agents for anti-natriuretic peptide receptor 1 (npr1) antibodies and uses thereof
KR20230129481A (en) 2021-01-08 2023-09-08 베이징 한미 파마슈티컬 컴퍼니 리미티드 Antibodies and antigen-binding fragments that specifically bind to CD47
CN116710482A (en) 2021-01-08 2023-09-05 北京韩美药品有限公司 Antibodies and antigen binding fragments thereof that specifically bind 4-1BB
WO2022148414A1 (en) 2021-01-08 2022-07-14 北京韩美药品有限公司 Antibody specifically binding with pd-l1 and antigen-binding fragment of antibody
WO2022153212A1 (en) 2021-01-13 2022-07-21 Axon Neuroscience Se Antibodies neutralizing sars-cov-2
UY39610A (en) 2021-01-20 2022-08-31 Abbvie Inc ANTI-EGFR ANTIBODY-DRUG CONJUGATES
EP4313317A1 (en) 2021-03-23 2024-02-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the diagnosis and treatment of t cell-lymphomas
EP4320153A1 (en) 2021-04-09 2024-02-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of anaplastic large cell lymphoma
CA3219360A1 (en) 2021-06-22 2022-12-29 Novartis Ag Bispecific antibodies for use in treatment of hidradenitis suppurativa
TW202342095A (en) 2021-11-05 2023-11-01 英商阿斯特捷利康英國股份有限公司 Composition for treatment and prevention of covid-19
EP4186529A1 (en) 2021-11-25 2023-05-31 Veraxa Biotech GmbH Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion
WO2023094525A1 (en) 2021-11-25 2023-06-01 Veraxa Biotech Gmbh Improved antibody-payload conjugates (apcs) prepared by site-specific conjugation utilizing genetic code expansion
WO2023110937A1 (en) 2021-12-14 2023-06-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Depletion of nk cells for the treatment of adverse post-ischemic cardiac remodeling
WO2023144303A1 (en) 2022-01-31 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd38 as a biomarker and biotarget in t-cell lymphomas
WO2023187657A1 (en) 2022-03-30 2023-10-05 Novartis Ag Methods of treating disorders using anti-natriuretic peptide receptor 1 (npr1) antibodies
WO2023198648A1 (en) 2022-04-11 2023-10-19 Institut National de la Santé et de la Recherche Médicale Methods for the diagnosis and treatment of t-cell malignancies
WO2023198874A1 (en) 2022-04-15 2023-10-19 Institut National de la Santé et de la Recherche Médicale Methods for the diagnosis and treatment of t cell-lymphomas
WO2023209177A1 (en) 2022-04-29 2023-11-02 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of using the same
WO2023222886A1 (en) 2022-05-20 2023-11-23 Depth Charge Ltd Antibody-cytokine fusion proteins
WO2024003310A1 (en) 2022-06-30 2024-01-04 Institut National de la Santé et de la Recherche Médicale Methods for the diagnosis and treatment of acute lymphoblastic leukemia
WO2024017998A1 (en) 2022-07-21 2024-01-25 Technische Universität Dresden M-csf for use in the prophylaxis and/or treatment of viral infections in states of immunosuppression
EP4309666A1 (en) 2022-07-21 2024-01-24 Technische Universität Dresden M-csf for use in the prophylaxis and/or treatment of viral infections in states of immunosuppression
WO2024018046A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Garp as a biomarker and biotarget in t-cell malignancies
WO2024023283A1 (en) 2022-07-29 2024-02-01 Institut National de la Santé et de la Recherche Médicale Lrrc33 as a biomarker and biotarget in cutaneous t-cell lymphomas
WO2024052503A1 (en) 2022-09-08 2024-03-14 Institut National de la Santé et de la Recherche Médicale Antibodies having specificity to ltbp2 and uses thereof
CN115590017B (en) * 2022-11-04 2023-09-12 中国农业大学 Method for improving oocyte freezing effect by reducing mitochondrial temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021038A1 (en) * 1994-12-30 1996-07-11 Alko Group Ltd. Methods of modifying carbohydrate moieties
WO2001014522A1 (en) * 1999-08-19 2001-03-01 Kirin Beer Kabushiki Kaisha Novel yeast variants and process for producing glycoprotein containing mammalian type sugar chain

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513854A (en) * 1894-01-30 Clevis
US4166329A (en) * 1978-10-10 1979-09-04 Herbig Charles A Adjustable arch support for shoes
US4414329A (en) 1980-01-15 1983-11-08 Phillips Petroleum Company Biochemical conversions by yeast fermentation at high cell densities
NZ199722A (en) 1981-02-25 1985-12-13 Genentech Inc Dna transfer vector for expression of exogenous polypeptide in yeast;transformed yeast strain
US4617274A (en) 1981-10-29 1986-10-14 Phillips Petroleum Company Biochemical conversions by yeast fermentation at high cell densities
US4775622A (en) 1982-03-08 1988-10-04 Genentech, Inc. Expression, processing and secretion of heterologous protein by yeast
KR850004274A (en) 1983-12-13 1985-07-11 원본미기재 Method for preparing erythropoietin
US4655231A (en) * 1984-01-09 1987-04-07 Advanced Tobacco Products, Inc. Snuff and preparation thereof
US4885242A (en) 1984-10-30 1989-12-05 Phillips Petroleum Company Genes from pichia histidine pathway and uses thereof
US4837148A (en) 1984-10-30 1989-06-06 Phillips Petroleum Company Autonomous replication sequences for yeast strains of the genus pichia
US4855231A (en) 1984-10-30 1989-08-08 Phillips Petroleum Company Regulatory region for heterologous gene expression in yeast
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US4808537A (en) 1984-10-30 1989-02-28 Phillips Petroleum Company Methanol inducible genes obtained from pichia and methods of use
US4818700A (en) 1985-10-25 1989-04-04 Phillips Petroleum Company Pichia pastoris argininosuccinate lyase gene and uses thereof
US5032516A (en) 1985-10-25 1991-07-16 Phillips Petroleum Company Pichia pastoris alcohol oxidase II regulatory region
US4882279A (en) 1985-10-25 1989-11-21 Phillips Petroleum Company Site selective genomic modification of yeast of the genus pichia
US5166329A (en) 1985-10-25 1992-11-24 Phillips Petroleum Company DNA encoding the alcohol oxidase 2 gene of yeast of the genus Pichia
US4935349A (en) 1986-01-17 1990-06-19 Zymogenetics, Inc. Expression of higher eucaryotic genes in aspergillus
US5837518A (en) * 1986-01-31 1998-11-17 Genetics Institute, Inc. Thrombolytic proteins
US4812405A (en) 1986-02-18 1989-03-14 Phillips Petroleum Company Double auxotrophic mutants of Pichia pastoris and methods for preparation
US5272066A (en) 1986-03-07 1993-12-21 Massachusetts Institute Of Technology Synthetic method for enhancing glycoprotein stability
US4925796A (en) 1986-03-07 1990-05-15 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
US4857467A (en) 1986-07-23 1989-08-15 Phillips Petroleum Company Carbon and energy source markers for transformation of strains of the genes Pichia
US5002876A (en) 1986-09-22 1991-03-26 Phillips Petroleum Company Yeast production of human tumor necrosis factor
US4683293A (en) 1986-10-20 1987-07-28 Phillips Petroleum Company Purification of pichia produced lipophilic proteins
US4929555A (en) 1987-10-19 1990-05-29 Phillips Petroleum Company Pichia transformation
US5135854A (en) 1987-10-29 1992-08-04 Zymogenetics, Inc. Methods of regulating protein glycosylation
US4816700A (en) * 1987-12-16 1989-03-28 Intel Corporation Two-phase non-overlapping clock generator
US5004688A (en) 1988-04-15 1991-04-02 Phillips Petroleum Company Purification of hepatitis proteins
US5047335A (en) 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US5122465A (en) 1989-06-12 1992-06-16 Phillips Petroleum Company Strains of pichia pastoris created by interlocus recombination
US5032519A (en) 1989-10-24 1991-07-16 The Regents Of The Univ. Of California Method for producing secretable glycosyltransferases and other Golgi processing enzymes
US5324663A (en) 1990-02-14 1994-06-28 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
US5595900A (en) 1990-02-14 1997-01-21 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
DE4028800A1 (en) 1990-09-11 1992-03-12 Behringwerke Ag GENETIC SIALYLATION OF GLYCOPROTEINS
CA2058820C (en) 1991-04-25 2003-07-15 Kotikanyad Sreekrishna Expression cassettes and vectors for the secretion of human serum albumin in pichia pastoris cells
US5962294A (en) 1992-03-09 1999-10-05 The Regents Of The University Of California Compositions and methods for the identification and synthesis of sialyltransferases
US5602003A (en) 1992-06-29 1997-02-11 University Of Georgia Research Foundation N-acetylglucosaminyltransferase V gene
EP0698103A1 (en) 1993-05-14 1996-02-28 PHARMACIA & UPJOHN COMPANY CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE
US5484590A (en) 1993-09-09 1996-01-16 La Jolla Cancer Research Foundation Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β-1,6-N-acetylglucosaminyltransferase gene family
US6300113B1 (en) 1995-11-21 2001-10-09 New England Biolabs Inc. Isolation and composition of novel glycosidases
US5683899A (en) 1994-02-03 1997-11-04 University Of Hawaii Methods and compositions for combinatorial-based discovery of new multimeric molecules
US6069235A (en) 1994-02-23 2000-05-30 Monsanto Company Method for carbohydrate engineering of glycoproteins
US6204431B1 (en) 1994-03-09 2001-03-20 Abbott Laboratories Transgenic non-human mammals expressing heterologous glycosyltransferase DNA sequences produce oligosaccharides and glycoproteins in their milk
CZ292061B6 (en) * 1994-03-17 2003-07-16 Merck Patent Gmbh Single-chain fragments of antibodies and anti-epidermal growth factor receptor antibodies, process of their preparation, and pharmaceutical preparation in which they are comprised
AU2575395A (en) 1994-06-13 1996-01-05 Banyu Pharmaceutical Co., Ltd. Gene coding for glycosyltransferase and use thereof
US5545553A (en) 1994-09-26 1996-08-13 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
US6096743A (en) * 1994-09-27 2000-08-01 Yamanouchi Pharmaceuticals Co., Ltd. 1,2,3,4-tetrahydroquinoxalinedione derivative
DE4439759C1 (en) * 1994-11-07 1996-02-01 Siemens Ag Photodiode array for X=ray computer tomography
US5849904A (en) 1994-12-22 1998-12-15 Boehringer Mannheim Gmbh Isolated nucleic acid molecules which hybridize to polysialyl transferases
JP2810635B2 (en) 1995-04-03 1998-10-15 理化学研究所 New sugar chain synthase
JPH08336387A (en) 1995-06-12 1996-12-24 Green Cross Corp:The Sugar chain-extended protein derived from pichia yeast and dna of the protein
CZ89098A3 (en) * 1995-09-29 1998-09-16 Glycim Oy SYNTHETIC POLYLACTOSAMINES CONTAINING UP TO MULTIVALENT sLEX AND METHODS OF THEIR USE
JP3348336B2 (en) * 1995-10-26 2002-11-20 株式会社豊田中央研究所 Adsorption heat pump
US5910570A (en) 1995-11-13 1999-06-08 Pharmacia & Upjohn Company Cloned DNA encoding a UDP-GalNAc: polypeptide N-acetylgalactosaminy-ltransferase
EP0874900B1 (en) 1996-08-02 2007-10-03 The Austin Research Institute Improved nucleic acids encoding a chimeric glycosyltransferase
US6338955B2 (en) 1996-12-12 2002-01-15 Kirin Beer Kabushiki Kaisha β1-4 N-acetylglucosaminyltransferase and gene encoding
US5945314A (en) 1997-03-31 1999-08-31 Abbott Laboratories Process for synthesizing oligosaccharides
US20040191256A1 (en) 1997-06-24 2004-09-30 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
US7029870B1 (en) 1997-07-03 2006-04-18 Human Genome Sciences, Inc. Gabaa receptor epsilon subunits
HUP0003418A2 (en) * 1997-09-05 2001-02-28 Glycim Oy Synthetic divalent slex containing polylactosamines and methods for use
JPH11103158A (en) 1997-09-26 1999-04-13 Olympus Optical Co Ltd Flip-chip mounting to printed wiring board and mounting structure
US7244601B2 (en) 1997-12-15 2007-07-17 National Research Council Of Canada Fusion proteins for use in enzymatic synthesis of oligosaccharides
JPH11221079A (en) 1998-02-04 1999-08-17 Kyowa Hakko Kogyo Co Ltd Transglycosidase and dna encoding the same enzyme
WO1999040208A1 (en) 1998-02-05 1999-08-12 The General Hospital Corporation In vivo construction of dna libraries
DK1071700T3 (en) 1998-04-20 2010-06-07 Glycart Biotechnology Ag Glycosylation modification of antibodies to enhance antibody-dependent cellular cytotoxicity
US6324663B1 (en) * 1998-10-22 2001-11-27 Vlsi Technology, Inc. System and method to test internal PCI agents
US6870565B1 (en) 1998-11-24 2005-03-22 Micron Technology, Inc. Semiconductor imaging sensor array devices with dual-port digital readout
ATE475714T1 (en) * 1998-12-09 2010-08-15 Phyton Holdings Llc METHOD FOR PRODUCING GLYCOPROTEIN WITH HUMAN GLYCOSYLATION IMAGE
ES2420835T3 (en) 1999-04-09 2013-08-27 Kyowa Hakko Kirin Co., Ltd. Procedure to control the activity of immunofunctional molecules
WO2001025406A1 (en) 1999-10-01 2001-04-12 University Of Victoria Innovation & Development Corporation Mannosidases and methods for using same
JP2003514541A (en) 1999-11-19 2003-04-22 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド 18 human secreted proteins
AU2001241541A1 (en) 2000-02-17 2001-08-27 Millennium Predictive Medicine, Inc. Novel genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of human prostate cancer
US6410246B1 (en) 2000-06-23 2002-06-25 Genetastix Corporation Highly diverse library of yeast expression vectors
US20060029604A1 (en) 2000-06-28 2006-02-09 Gerngross Tillman U Immunoglobulins comprising predominantly a GlcNAc2Man3GlcNAc2 glycoform
US7795002B2 (en) 2000-06-28 2010-09-14 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
US20060024304A1 (en) 2000-06-28 2006-02-02 Gerngross Tillman U Immunoglobulins comprising predominantly a Man5GlcNAc2 glycoform
US7863020B2 (en) 2000-06-28 2011-01-04 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
US7598055B2 (en) 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
US8697394B2 (en) 2000-06-28 2014-04-15 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
EP2322644A1 (en) 2000-06-28 2011-05-18 GlycoFi, Inc. Methods for producing modified glycoproteins
US20060257399A1 (en) 2000-06-28 2006-11-16 Glycofi, Inc. Immunoglobulins comprising predominantly a Man5GIcNAc2 glycoform
US20060034830A1 (en) 2000-06-28 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a GalGlcNAcMan5GLcNAc2 glycoform
US7449308B2 (en) 2000-06-28 2008-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US7625756B2 (en) 2000-06-28 2009-12-01 GycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
US20060034828A1 (en) 2000-06-28 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a GlcNAcMAN5GLCNAC2 glycoform
JP4092194B2 (en) * 2000-06-30 2008-05-28 フランダース インターユニバーシティ インスティテュート フォア バイオテクノロジー (ヴィーアイビー) Protein sugar chain modification in Pichia pastoris
US7064191B2 (en) 2000-10-06 2006-06-20 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
JP4655388B2 (en) 2001-03-05 2011-03-23 富士レビオ株式会社 Protein production method
AU2002305903A1 (en) 2001-05-25 2002-12-09 Incyte Genomics Inc. Carbohydrate-associated proteins
NZ592087A (en) 2001-08-03 2012-11-30 Roche Glycart Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
GB0120311D0 (en) * 2001-08-21 2001-10-17 Immunoporation Ltd Treating cells
WO2003025148A2 (en) 2001-09-19 2003-03-27 Nuvelo, Inc. Novel nucleic acids and polypeptides
JP2005532253A (en) 2001-10-25 2005-10-27 ジェネンテック・インコーポレーテッド Glycoprotein composition
US20060024292A1 (en) 2001-12-27 2006-02-02 Gerngross Tillman U Immunoglobulins comprising predominantly a Gal2GlcNAc2Man3GlcNAc2 glycoform
US20060034829A1 (en) 2001-12-27 2006-02-16 Gerngross Tillman U Immunoglobulins comprising predominantly a MAN3GLCNAC2 glycoform
ES2402527T3 (en) 2001-12-27 2013-05-06 Glycofi, Inc. Procedures for obtaining mammalian carbohydrate structures by genetic engineering
US7332299B2 (en) 2003-02-20 2008-02-19 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
US7514253B2 (en) 2003-05-16 2009-04-07 Glycofi, Inc. URA5 gene and methods for stable genetic integration in yeast
EP1633312A4 (en) * 2003-06-16 2012-09-26 Medimmune Llc Influenza hemagglutinin and neuraminidase variants
ES2528739T3 (en) 2003-12-24 2015-02-12 Glycofi, Inc. Methods to eliminate mannosyl phosphorylation of glucans in glycoprotein production
JP2007525146A (en) 2003-12-30 2007-09-06 ガムリンク エー/エス Chewing gum containing a biodegradable polymer and promoting degradability
WO2005090552A2 (en) 2004-03-17 2005-09-29 Glycofi, Inc. Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast
US20050265988A1 (en) 2004-03-18 2005-12-01 Byung-Kwon Choi Glycosylated glucocerebrosidase expression in fungal hosts
CN101084233B (en) 2004-04-29 2012-08-15 格利科菲公司 Methods for reducing or eliminating alpha-mannosidase resistant glycans for the production of glycoproteins
US7849651B2 (en) * 2005-05-31 2010-12-14 Kubota Matsushitadenko Exterior Works, Ltd. Wall materials bracket and insulating wall structure
JP2009507040A (en) 2005-09-02 2009-02-19 グライコフィ, インコーポレイテッド Immunoglobulin containing mainly GLCNACMAN3GLCNAC2 glycoform
AU2006316838B2 (en) * 2005-11-15 2012-04-12 Glycofi, Inc Production of glycoproteins with reduced O-glycosylation
US20080274162A1 (en) * 2007-05-04 2008-11-06 Jeffrey Nessa Method, composition, and delivery mode for treatment of prostatitis and other urogenital infections using a probiotic rectal suppository
TW201028431A (en) * 2008-10-31 2010-08-01 Lonza Ag Novel tools for the production of glycosylated proteins in host cells
JP2011039027A (en) * 2009-07-14 2011-02-24 Pacific Ind Co Ltd Metallic resin cover, method for producing the same, and door handle for vehicle
US9439972B2 (en) * 2012-09-10 2016-09-13 Ad Lunam Labs, Inc. Antifungal serum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021038A1 (en) * 1994-12-30 1996-07-11 Alko Group Ltd. Methods of modifying carbohydrate moieties
WO2001014522A1 (en) * 1999-08-19 2001-03-01 Kirin Beer Kabushiki Kaisha Novel yeast variants and process for producing glycoprotein containing mammalian type sugar chain

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHIBA YASUNORI ET AL: "Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 41, 9 October 1998 (1998-10-09), pages 26298-26304, XP002202331 ISSN: 0021-9258 *
KALSNER INGE ET AL: "Insertion into Aspergillus nidulans of functional UDP-GlcNAc: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyl-transferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans." GLYCOCONJUGATE JOURNAL, vol. 12, no. 3, 1995, pages 360-370, XP001073956 ISSN: 0282-0080 *
MARTINET W ET AL: "MODIFICATION OF THE PROTEIN GLYCOSYLATION PATHWAY IN THE METHYLOTROPHIC YEAST PICHIA PASTORIS" BIOTECHNOLOGY LETTERS, KEW, SURREY, GB, vol. 20, no. 12, December 1998 (1998-12), pages 1171-1177, XP001006335 ISSN: 0141-5492 *
NAKAYAMA K-I ET AL: "OCH1 ENCODES A NOVEL MEMBRANE BOUND MANNOSYLTRANSFERASE OUTER CHAIN ELONGATION OF ASPARAGINE-LINKED OLIGOSACCHARIDES" EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 11, no. 7, 1992, pages 2511-2519, XP002202332 ISSN: 0261-4189 *
NIKAWA J-I ET AL: "Structural and functional conservation of human and yeast HCP1 genes which can suppress the growth defect of the Saccharomyces cerevisiae ire15 mutant" GENE, ELSEVIER BIOMEDICAL PRESS. AMSTERDAM, NL, vol. 171, no. 1, 24 May 1996 (1996-05-24), pages 107-111, XP004042777 ISSN: 0378-1119 *
See also references of EP1297172A2 *
WIGGINS CHRISTINE A R ET AL: "Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 95, no. 14, 7 July 1998 (1998-07-07), pages 7945-7950, XP002202333 July 7, 1998 ISSN: 0027-8424 *

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241909B2 (en) 1998-12-09 2012-08-14 Phyton Holdings, Llc Method for manufacturing glycoproteins having human-type glycosylation
US6998267B1 (en) 1998-12-09 2006-02-14 The Dow Chemical Company Method for manufacturing glycoproteins having human-type glycosylation
US8853370B2 (en) 1998-12-09 2014-10-07 Phyton Holdings, Llc Plant-produced glycoprotein comprising human-type sugar chain
US7388081B2 (en) 1998-12-09 2008-06-17 Dfb Biotech, Inc. Method for manufacturing glycoproteins having human-type glycosylation
US8907163B2 (en) 1999-10-26 2014-12-09 Stichting Dienst Landbouwkundig Onderzoek Transgenic plants expressing galactosyltransferase and sialyl transferase
US8193415B2 (en) 1999-10-26 2012-06-05 Stichting Dienst Landbouwkundig Onderzock Plant expressing mammalian β1,4-galactosyltransferase and β1,3-glucuronyltransferase
US7781647B2 (en) 1999-10-26 2010-08-24 Stichting Dienst Landbouwkundig Onderzoek Mammalian-type glycosylation in transgenic plants expressing mammalian β1,4-galactosyltransferase
US7449308B2 (en) 2000-06-28 2008-11-11 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US7795002B2 (en) 2000-06-28 2010-09-14 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
US7598055B2 (en) 2000-06-28 2009-10-06 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
US7326681B2 (en) 2000-06-28 2008-02-05 Glycofi, Inc. Methods for producing modified glycoproteins
US8815544B2 (en) 2000-06-28 2014-08-26 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
US7625756B2 (en) 2000-06-28 2009-12-01 GycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
US7863020B2 (en) 2000-06-28 2011-01-04 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
US8354268B2 (en) 2000-06-30 2013-01-15 Vib, Vzw Protein glycosylation modification in methylotrophic yeast
US8663971B2 (en) 2000-06-30 2014-03-04 Vib, Vzw Protein glycosylation modification in methylotrophic yeast
EP2267135A3 (en) * 2000-06-30 2011-09-14 Vib Vzw Protein glycosylation modification in pichia pastoris
US9359628B2 (en) 2000-06-30 2016-06-07 Vib, Vzw Protein glycosylation modification in methylotrophic yeast
EP2028275A3 (en) * 2000-06-30 2009-05-06 VIB vzw Protein glycosylation modification in pichia pastoris
US8735656B2 (en) 2001-01-19 2014-05-27 Phyton Holdings, Llc Method of expressing galactosyltransferase and inhibiting xylosyltransferase or fucosyltransferase in a transgenic plant cell for secretory production of glycoproteins having human-type sugar chains
US8309795B2 (en) 2001-01-19 2012-11-13 Phyton Holdings, Llc Method for secretory production of glycoprotein having human-type sugar chain using plant cell
US8932825B2 (en) 2001-12-27 2015-01-13 Glycofi Inc. Method to engineer mammalian-type carbohydrate structures
EP2359685A1 (en) 2001-12-27 2011-08-24 GlycoFi, Inc. Methods to engineer mammalian-type carbohydrate structures
US7601891B2 (en) 2002-03-19 2009-10-13 Plant Research International B.V. Optimizing glycan processing plants
US9255277B2 (en) 2002-03-19 2016-02-09 Stichting Dienst Landbouwkundig Onderzoek GNTIII expression in plants
EP2339004A1 (en) * 2002-03-19 2011-06-29 Stichting Dienst Landbouwkundig Onderzoek Optimizing glycan processing in plants
US7897842B2 (en) 2002-03-19 2011-03-01 Plant Research International B.V. GnTIII expression in plants
US8927810B2 (en) 2002-03-19 2015-01-06 Stichting Dienst Landbouwkundig Onderzoek Optimizing glycan processing in plants
US8058508B2 (en) 2002-03-19 2011-11-15 Stichting Dienst Landbouwkundig Onderzoek Optimizing glycan processing in plants
US8492613B2 (en) 2002-03-19 2013-07-23 Stichting Dienst Landbouwkundig Onderzoek GNTIII expression in plants
WO2003078637A3 (en) * 2002-03-19 2004-03-11 Plant Res Int Bv Optimizing glycan processing in plants
WO2003091431A1 (en) * 2002-04-26 2003-11-06 Kirin Beer Kabushiki Kaisha Methylotroph producing mammalian type sugar chain
US7972809B2 (en) 2002-04-26 2011-07-05 National Institute Of Advanced Industrial Science & Technology Methylotrophic yeast producing mammalian type sugar chain
AU2003238051B2 (en) * 2002-06-26 2008-03-13 Research Corporation Technologies, Inc. Protein glycosylation modification in pichia pastoris
EP2302047A1 (en) * 2002-06-26 2011-03-30 Research Corporation Technologies, Inc. Protein glycosylation modification in Pichia pastoris
KR101047167B1 (en) * 2002-06-26 2011-07-07 브이아이비, 브이제트더블유 Protein Glycosylation Modifications in Pchia Pastoris
US7252933B2 (en) 2002-06-26 2007-08-07 Flanders Interuniversity Institute For Biotechnology Protein glycosylation modification in methylotrophic yeast
US8883445B2 (en) 2002-06-26 2014-11-11 Research Corporation Technologies, Inc. Protein glycosylation modification in methylotrophic yeast
WO2004003194A3 (en) * 2002-06-26 2004-04-22 Flanders Interuniversity Inst Protein glycosylation modification in pichia pastoris
WO2004003205A1 (en) * 2002-06-29 2004-01-08 Korea Research Institute Of Bioscience And Biotechnology Hansenula polymorpha mutant strains with defect in outer chain biosynthesis and the production of recombinant glycoproteins using the same strains
WO2004028545A1 (en) * 2002-09-25 2004-04-08 Astrazeneca Ab A COMBINATION OF A LONG-ACTING β2-AGONIST AND A GLUCOCORTICOSTEROID IN THE TREATMENT OF FIBROTIC DISEASES
US8106169B2 (en) 2002-11-27 2012-01-31 Phyton Holdings, Llc Plant production of immunoglobulins with reduced fucosylation
US8859234B2 (en) 2003-01-22 2014-10-14 Roche Glycart Ag Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function
JP2013233151A (en) * 2003-01-22 2013-11-21 Glycart Biotechnology Ag Fusion construct and use of same to produce antibody with increased fc receptor binding affinity and effector function
US8367374B2 (en) 2003-01-22 2013-02-05 Roche Glycart Ag Fusion constructs and use of same to produce antibodies with increased Fc receptor binding affinity and effector function
AU2004213859B2 (en) * 2003-02-20 2010-01-07 Glycofi, Inc. N-acetylglucosaminyltransferase III expression in lower eukaryotes
JP2006518601A (en) * 2003-02-20 2006-08-17 ティルマン ユー. ガーングロス, Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
EP2083084A1 (en) 2003-02-20 2009-07-29 Glycofi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP2080809A1 (en) 2003-02-20 2009-07-22 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
WO2004074499A2 (en) * 2003-02-20 2004-09-02 Gerngross Tillman U Combinatorial dna library for producing modified n-glycans in lower eukaryotes
WO2004074498A2 (en) * 2003-02-20 2004-09-02 Hamilton Stephen R Expression of class 2 mannosidase and class iii mannosidase in lower eukaryotic cells
EP1599595B2 (en) 2003-02-20 2013-08-21 GlycoFi, Inc. N -acetylglucosaminyltransferase iii expression in lower eukaryotes
AU2004213869B2 (en) * 2003-02-20 2010-03-04 Glycofi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
AU2012227297B2 (en) * 2003-02-20 2013-11-14 Glycofi, Inc. Combinatorial DNA Library for Producing Modified N-Glycans in Lower Eukaryotes
AU2004213868B2 (en) * 2003-02-20 2010-05-20 Glycofi, Inc. Production of modified glycoproteins having multiple antennary structures
EP2196540A2 (en) 2003-02-20 2010-06-16 Glycofi, Inc. Combinatorial DNA library for producing modified N-Glycans in lower eukaryotes
US7332299B2 (en) 2003-02-20 2008-02-19 Glycofi, Inc. Endomannosidases in the modification of glycoproteins in eukaryotes
JP2010187693A (en) * 2003-02-20 2010-09-02 Glycofi Inc Endomannosidase in modification of glycoprotein in eukaryote
US8999671B2 (en) 2003-02-20 2015-04-07 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
EP2196540A3 (en) * 2003-02-20 2010-09-22 GlycoFi, Inc. Combinatorial DNA library for producing modified N-Glycans in lower eukaryotes
JP2010207235A (en) * 2003-02-20 2010-09-24 Glycofi Inc Combinatorial dna library for producing modified n-glycan in lower eukaryote
WO2004074458A2 (en) * 2003-02-20 2004-09-02 Piotr Bobrowicz N-acetylglucosaminyltransferase iii expression in lower eukaryotes
WO2004074461A2 (en) * 2003-02-20 2004-09-02 Piotr Bobrowicz Production of modified glycoproteins having multiple antennary structures
WO2004074458A3 (en) * 2003-02-20 2004-12-29 Piotr Bobrowicz N-acetylglucosaminyltransferase iii expression in lower eukaryotes
JP2011019521A (en) * 2003-02-20 2011-02-03 Glycofi Inc N-acetylglucosaminyltransferase iii expression in lower eukaryote
WO2004074499A3 (en) * 2003-02-20 2005-01-27 Tillman U Gerngross Combinatorial dna library for producing modified n-glycans in lower eukaryotes
US8298811B2 (en) 2003-02-20 2012-10-30 Glycofi, Inc. Expression of Class 2 mannosidase and Class III mannosidase in lower eukaryotic cells
US8299228B2 (en) 2003-02-20 2012-10-30 Glycofi, Inc. Expression of Class 2 mannosidase and Class III mannosidase in lower eukaryotic cells
WO2004074461A3 (en) * 2003-02-20 2005-03-17 Piotr Bobrowicz Production of modified glycoproteins having multiple antennary structures
EP2316963A1 (en) 2003-02-20 2011-05-04 GlycoFi, Inc. Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
EP2333095A1 (en) 2003-02-20 2011-06-15 GlycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP2333096A2 (en) 2003-02-20 2011-06-15 GlycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
US8268609B2 (en) 2003-02-20 2012-09-18 Glycofi, Inc. Production of sialylated N-glycans in lower eukaryotes
WO2004074498A3 (en) * 2003-02-20 2005-06-23 Stephen R Hamilton Expression of class 2 mannosidase and class iii mannosidase in lower eukaryotic cells
JP2006518597A (en) * 2003-02-20 2006-08-17 ピオトル ボブロウィッツ, N-acetylglucosaminyltransferase III expression in lower eukaryotes
EP2088201A1 (en) 2003-02-20 2009-08-12 Glycofi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
EP1599595A2 (en) 2003-02-20 2005-11-30 Piotr Bobrowicz N -acetylglucosaminyltransferase iii expression in lower eukaryotes
JP2006518598A (en) * 2003-02-20 2006-08-17 スティーブン アール. ハミルトン, Endomannosidase in glycoprotein modification in eukaryotes
AU2010201036B2 (en) * 2003-02-20 2011-12-01 Glycofi, Inc. Production of Modified Glycoproteins Having Multiple Antennary Structures
JP4787737B2 (en) * 2003-02-20 2011-10-05 グライコフィ, インコーポレイテッド Endomannosidase in glycoprotein modification in eukaryotes
EP2333096A3 (en) * 2003-02-20 2011-10-05 GlycoFi, Inc. Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells
JP2007511223A (en) * 2003-11-14 2007-05-10 リサーチ・コーポレーション・テクノロジーズ・インコーポレーテッド Modification of protein glycosylation in methylotrophic yeast
AU2004291886B2 (en) * 2003-11-14 2009-04-30 Research Corporation Technologies, Inc. Modification of protein glycosylation in methylotrophic yeast
EP1706480A1 (en) * 2003-11-14 2006-10-04 Research Corporation Technologies, Inc Modification of protein glycosylation in methylotrophic yeast
US8058053B2 (en) 2003-11-14 2011-11-15 Vib, Vzw Modification of protein glycosylation in methylotrophic yeast
US7507573B2 (en) 2003-11-14 2009-03-24 Vib, Vzw Modification of protein glycosylation in methylotrophic yeast
EP1706480A4 (en) * 2003-11-14 2007-06-13 Res Corp Technologies Inc Modification of protein glycosylation in methylotrophic yeast
JP4794455B2 (en) * 2003-11-14 2011-10-19 リサーチ コーポレイション テクノロジーズ,インコーポレイテッド Modification of protein glycosylation in methylotrophic yeast
US7867730B2 (en) 2004-01-30 2011-01-11 Korea Research Institute Of Biosciences And Biotechnology, Inc. Hansenula polymorpha gene coding for α 1,6-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene
WO2005090552A3 (en) * 2004-03-17 2006-01-26 Glycofi Inc Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast
WO2005090552A2 (en) * 2004-03-17 2005-09-29 Glycofi, Inc. Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast
EP2365089A1 (en) 2004-03-17 2011-09-14 GlycoFi, Inc. Method of engineering a cytidine monophosphate-sialic acid synthetic pathway in fungi and yeast
EP1737969A2 (en) * 2004-04-15 2007-01-03 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
EP1737969A4 (en) * 2004-04-15 2011-09-28 Glycofi Inc Production of galactosylated glycoproteins in lower eukaryotes
EP1747280A4 (en) * 2004-04-29 2011-11-09 Glycofi Inc Methods for reducing or eliminating alpha-mannosidase resistant glycans in the production of glycoproteins
EP1747280A2 (en) * 2004-04-29 2007-01-31 Glycofi, Inc. Methods for reducing or eliminating alpha-mannosidase resistant glycans in the production of glycoproteins
WO2006014725A1 (en) * 2004-07-21 2006-02-09 Glycofi, Inc. IMMUNOGLOBULINS COMPRISING PREDOMINANTLY A GlcNAcMAN5GLCNAC2 GLYCOFORM
WO2006026992A1 (en) * 2004-09-07 2006-03-16 Novozymes A/S Altered structure of n-glycans in a fungus
WO2006071856A2 (en) * 2004-12-23 2006-07-06 Glycofi, Inc. Immunoglobulins comprising predominantly a man5glcnac2 glycoform
WO2006071856A3 (en) * 2004-12-23 2006-10-05 Glycofi Inc Immunoglobulins comprising predominantly a man5glcnac2 glycoform
EP1861504B1 (en) * 2005-03-07 2009-12-16 Plant Research International B.V. Glycoengineering in mushrooms
EP2292617A1 (en) 2005-05-20 2011-03-09 Novartis AG 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinase inhibitors
EP2270008A1 (en) 2005-05-20 2011-01-05 Novartis AG 1,3-dihydro-imidazo[4,5-c]quinolin-2-ones as lipid kinase and/or pi3 kinases inhibitors
EP1937305A1 (en) * 2005-09-09 2008-07-02 Glycofi, Inc. Immunoglobulin comprising predominantly a man7glcnac2, man8glcnac2 glycoform
EP1937305A4 (en) * 2005-09-09 2008-10-08 Glycofi Inc Immunoglobulin comprising predominantly a man7glcnac2, man8glcnac2 glycoform
US8685671B2 (en) 2005-10-27 2014-04-01 Korea Research Institute Of Bioscience And Biotechnology Process for producing recombinant glycoproteins by culturing a Hansenula polymorpha mutant strain
US8187858B2 (en) 2005-10-27 2012-05-29 Korea Research Institute Of Bioscience And Biotechnology Hansenula polymorpha gene coding for dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene
EA016153B1 (en) * 2006-01-23 2012-02-28 Эмджен Инк. Methods for modulating mannose content of recombinant proteins
US8354105B2 (en) 2006-01-23 2013-01-15 Amgen Inc. Methods for modulating mannose content of recombinant proteins
WO2007087384A3 (en) * 2006-01-23 2007-10-18 Amgen Inc Methods for modulating mannose content of recombinant proteins
US10829551B2 (en) 2006-01-23 2020-11-10 Amgen Inc. Methods for modulating mannose content of recombinant proteins
WO2007087384A2 (en) 2006-01-23 2007-08-02 Amgen Inc. Methods for modulating mannose content of recombinant proteins
US9359435B2 (en) 2006-01-23 2016-06-07 Amgen Inc. Methods for modulating mannose content of recombinant proteins
WO2007130638A2 (en) 2006-05-05 2007-11-15 Glycofi, Inc Production of sialylated n-glycans in lower eukaryotes
WO2008095797A1 (en) 2007-02-02 2008-08-14 Glycode Genetically modified yeasts for the production of homogeneous glycoproteins
EP3524626A1 (en) 2007-03-22 2019-08-14 Biogen MA Inc. Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof
US8829276B2 (en) 2007-04-17 2014-09-09 Stichting Dienst Landbouwkundig Onderzoek Mammalian-type glycosylation in plants by expression of non-mammalian glycosyltransferases
US9745594B2 (en) 2007-04-17 2017-08-29 Stichting Dienst Landbouwkundig Onderzoek Mammalian-type glycosylation in plants by expression of a zebrafish glycosyltransferase
US9758553B2 (en) 2008-05-30 2017-09-12 Merck Sharp & Dohme Corp. Yeast strain for the production of proteins with terminal alpha-1,3-linked galactose
US8815580B2 (en) 2008-08-08 2014-08-26 Vib Vzw Cells producing glycoproteins having altered glycosylation patterns and method and use thereof
WO2010036898A1 (en) 2008-09-25 2010-04-01 Glycosyn, Inc. Compositions and methods for engineering probiotic yeast
US11390855B2 (en) 2008-12-19 2022-07-19 Chr. Hansen HMO GmbH Synthesis of fucosylated compounds
WO2010138502A3 (en) * 2009-05-26 2011-02-24 Momenta Pharmaceuticals, Inc. Production of glycoproteins
US9921210B2 (en) 2010-04-07 2018-03-20 Momenta Pharmaceuticals, Inc. High mannose glycans
WO2012013823A2 (en) 2010-07-30 2012-02-02 Glycode A yeast artificial chromosome carrying the mammalian glycosylation pathway
US9890410B2 (en) 2011-03-12 2018-02-13 Momenta Pharmaceuticals, Inc. N-acetylhexosamine-containing N-glycans in glycoprotein products
US9170249B2 (en) 2011-03-12 2015-10-27 Momenta Pharmaceuticals, Inc. N-acetylhexosamine-containing N-glycans in glycoprotein products
WO2012127045A1 (en) 2011-03-23 2012-09-27 Glycode A yeast recombinant cell capable of producing gdp-fucose
WO2012175874A1 (en) 2011-06-22 2012-12-27 Lfb Biotechnologies Use of a high-adcc anti-cd20 antibody for treating waldenström's macroglobulemia
WO2013013193A1 (en) 2011-07-20 2013-01-24 Zepteon, Incorporated Polypeptide separation methods
EP2780462A1 (en) * 2011-10-31 2014-09-24 Merck Sharp & Dohme Corp. Engineered pichia strains with improved fermentation yield and n-glycosylation quality
EP2780462A4 (en) * 2011-10-31 2015-04-29 Merck Sharp & Dohme Engineered pichia strains with improved fermentation yield and n-glycosylation quality
US11479791B2 (en) 2012-01-19 2022-10-25 Vib Vzw Tools and methods for expression of membrane proteins
EP2617732A1 (en) 2012-01-19 2013-07-24 Vib Vzw Tools and methods for expression of membrane proteins
US9890217B2 (en) 2012-01-19 2018-02-13 Vib Vzw Tools and methods for expression of membrane proteins
WO2013107905A1 (en) 2012-01-19 2013-07-25 Vib Vzw Tools and methods for expression of membrane proteins
US9695244B2 (en) 2012-06-01 2017-07-04 Momenta Pharmaceuticals, Inc. Methods related to denosumab
WO2014096672A1 (en) 2012-12-17 2014-06-26 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Use of monoclonal antibodies for the treatment of inflammation and bacterial infections
EP3514175A1 (en) 2012-12-17 2019-07-24 Laboratoire Français du Fractionnement et des Biotechnologies Use of monoclonal antibodies for the treatment of inflammation and bacterial infections
US10450361B2 (en) 2013-03-15 2019-10-22 Momenta Pharmaceuticals, Inc. Methods related to CTLA4-Fc fusion proteins
US11352415B2 (en) 2013-05-13 2022-06-07 Momenta Pharmaceuticals, Inc. Methods for the treatment of neurodegeneration
US10464996B2 (en) 2013-05-13 2019-11-05 Momenta Pharmaceuticals, Inc. Methods for the treatment of neurodegeneration
WO2015032899A1 (en) 2013-09-05 2015-03-12 Vib Vzw Cells producing fc containing molecules having altered glycosylation patterns and methods and use thereof
US10202590B2 (en) 2013-09-05 2019-02-12 Vib Vzw Cells producing Fc-containing molecules having altered glycosylation patterns and methods and use thereof
US11421209B2 (en) 2013-09-05 2022-08-23 Vib Vzw Cells producing Fc containing molecules having altered glycosylation patterns and methods and use thereof
US11661456B2 (en) 2013-10-16 2023-05-30 Momenta Pharmaceuticals, Inc. Sialylated glycoproteins
WO2015107307A1 (en) 2014-01-17 2015-07-23 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Immunoglobulin against the anthrax toxin
WO2017006052A2 (en) 2015-07-06 2017-01-12 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Use of modified fc fragments in immunotherapy
US11293012B2 (en) 2015-07-09 2022-04-05 Vib Vzw Cells producing glycoproteins having altered N- and O-glycosylation patterns and methods and use thereof
CN115386009A (en) * 2022-04-26 2022-11-25 江苏靶标生物医药研究所有限公司 Construction method and application of annexin V and angiogenesis inhibitor fusion protein
CN115386009B (en) * 2022-04-26 2023-12-01 江苏靶标生物医药研究所有限公司 Construction method and application of annexin V and angiogenesis inhibitor fusion protein

Also Published As

Publication number Publication date
DK1522590T3 (en) 2009-12-21
PT1522590E (en) 2009-10-26
US20110020870A1 (en) 2011-01-27
EP2339013A1 (en) 2011-06-29
EP2119793A1 (en) 2009-11-18
DE60114830D1 (en) 2005-12-15
US20080274498A1 (en) 2008-11-06
US7629163B2 (en) 2009-12-08
JP2011167194A (en) 2011-09-01
US20100021991A1 (en) 2010-01-28
EP1522590A1 (en) 2005-04-13
DE60139720D1 (en) 2009-10-08
NZ523476A (en) 2004-04-30
US7326681B2 (en) 2008-02-05
US7981660B2 (en) 2011-07-19
US20140234902A1 (en) 2014-08-21
US20160068880A1 (en) 2016-03-10
EP1297172B1 (en) 2005-11-09
US20020137134A1 (en) 2002-09-26
ES2330330T3 (en) 2009-12-09
CA2412701A1 (en) 2002-01-03
ATE440959T1 (en) 2009-09-15
JP2004501642A (en) 2004-01-22
US20130295604A1 (en) 2013-11-07
US7029872B2 (en) 2006-04-18
US20060177898A1 (en) 2006-08-10
CY1109639T1 (en) 2014-08-13
MXPA03000105A (en) 2004-09-13
WO2002000879A3 (en) 2002-09-06
US20120322100A1 (en) 2012-12-20
US8211691B2 (en) 2012-07-03
KR100787073B1 (en) 2007-12-21
US20070105127A1 (en) 2007-05-10
EP2322644A1 (en) 2011-05-18
EP1522590B1 (en) 2009-08-26
KR20030031503A (en) 2003-04-21
AU7684201A (en) 2002-01-08
US20060078963A1 (en) 2006-04-13
US20070178551A1 (en) 2007-08-02
ATE309385T1 (en) 2005-11-15
ES2252261T3 (en) 2006-05-16
EP2339013B1 (en) 2014-07-02
EP1297172A2 (en) 2003-04-02
US20060148035A1 (en) 2006-07-06
DK1297172T3 (en) 2006-02-13
AU2001276842B2 (en) 2007-04-26
US7923430B2 (en) 2011-04-12
DE60114830T2 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
EP1297172B1 (en) Methods for producing modified glycoproteins
AU2001276842A2 (en) Methods for producing modified glycoproteins
AU2001276842A1 (en) Methods for producing modified glycoproteins
US8067551B2 (en) Combinatorial DNA library for producing modified N-glycans in lower eukaryotes
US8999671B2 (en) Production of sialylated N-glycans in lower eukaryotes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2412701

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001276842

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 506194

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027017911

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 523476

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/000105

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001954606

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001954606

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027017911

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 523476

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 523476

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2001954606

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001276842

Country of ref document: AU