WO2001098438A1 - Carburant solide et melange combustible le contenant - Google Patents

Carburant solide et melange combustible le contenant Download PDF

Info

Publication number
WO2001098438A1
WO2001098438A1 PCT/FR2001/001905 FR0101905W WO0198438A1 WO 2001098438 A1 WO2001098438 A1 WO 2001098438A1 FR 0101905 W FR0101905 W FR 0101905W WO 0198438 A1 WO0198438 A1 WO 0198438A1
Authority
WO
WIPO (PCT)
Prior art keywords
flour
fuel
constituent
solid fuel
fuel according
Prior art date
Application number
PCT/FR2001/001905
Other languages
English (en)
Inventor
Guillaume Pourtout
Original Assignee
Guillaume Pourtout
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8851430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001098438(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Guillaume Pourtout filed Critical Guillaume Pourtout
Priority to AU2001269188A priority Critical patent/AU2001269188B2/en
Priority to US10/297,623 priority patent/US7201781B2/en
Priority to DE60134978T priority patent/DE60134978D1/de
Priority to AU6918801A priority patent/AU6918801A/xx
Priority to EP01947522A priority patent/EP1292657B9/fr
Publication of WO2001098438A1 publication Critical patent/WO2001098438A1/fr
Priority to US11/449,608 priority patent/US7727292B2/en
Priority to US11/687,096 priority patent/US8080069B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Definitions

  • Solid fuel and combustible mixture containing it Solid fuel and combustible mixture containing it.
  • the invention relates to a solid fuel and a combustible mixture containing it.
  • the fuels most used today for producing energy, and in particular for use for internal combustion engines, are fuels from the oil or gas industry.
  • cereal grains produce dust which, in contact with air, is highly explosive.
  • This high explosiveness of cereal grain dust in silos has been explained by their average particle size which is less than about 75 ⁇ m.
  • these cereal grain dusts are suspended in a large quantity of air in the presence of gases from the fermentation of the cereal grains, the mixture of cereal grain dust, air and fermentation gas becomes explosive.
  • the invention aims to provide a fuel which is an alternative to fuels from the oil, gas, nuclear or solar industry, the transport or storage of which poses no difficulty, the use of which produces no toxic discharge and which is readily available and renewable.
  • the invention provides a solid fuel mainly containing at least one constituent, which mainly contains at least one compound selected from the group consisting of starch, lactose, cellulose, and their derivatives and at least 15% by weight of carbohydrates relative to the total weight of the constituent (s), the constituent (s) ) being in the form of a powder with an average diameter and a median diameter of particles greater than or equal to 150 ⁇ m, preferably between 150 and 500 ⁇ m.
  • At least about 70% by volume of said powder consists of particles having a diameter greater than or equal to 150 ⁇ m.
  • a particularly preferred solid fuel of the invention is a fuel in which the said at least one constituent is (are) selected from the group consisting of cereal flour, cotton flour, soy flour, potato flour, cassava or tapioca flour, dehydrated chocolate powder, dehydrated milk powder and mixtures thereof.
  • the cereal is preferably wheat, rye, rice, corn, barley, sorghum, millet, millet, oats, bran, meslin, triticale, buckwheat or mixtures thereof.
  • said at least one constituent is cotton flour. In another preferred embodiment of the invention, said at least one constituent is soy flour.
  • Another flour which is particularly suitable as a fuel for the invention is potato flour.
  • Still another flour suitable as a fuel for the invention is tapioca.
  • the solid fuel of the invention can consist of dehydrated chocolate powder.
  • the solid fuel of the invention consists of dehydrated milk powder.
  • the solid fuel of the invention consists of a mixture of two or more of said at least one constituent.
  • the invention also provides a combustible mixture composed of the fuel of the invention, suspended in air, at a concentration of approximately 200 mg of fuel per liter of air.
  • FIG. 2 represents an enlarged section of the part denoted II in FIG. 1, modified to operate with the fuel of the invention
  • FIG. 3 shows the grain size curve, measured with a LS Coulter laser particle size analyzer, of a commercial dehydrated chocolate powder used in Example 1,
  • FIG. 3bis represents the particle size curve of FIG. 3 in the form of numerical values
  • FIG. 4 shows the particle size curve, measured with a LS Coulter laser particle size analyzer, of a commercial dehydrated milk powder used in Example 2,
  • FIG. 4bis represents the particle size curve of FIG. 4 in the form of numerical values
  • FIG. 5 shows the particle size curve, measured with a LS laser granulometer from Coulter, of a white middlings fraction of a wheat flour used in Example 3,
  • FIG. 5bis represents the particle size curve of FIG. 5 in the form of numerical values
  • FIG. 6 shows the grain size curve, measured with a Coulter LS laser particle size analyzer, of a re-molding fraction bis used in Example 4,
  • FIG. 6bis represents the particle size curve of FIG. 6, in the form of numerical values
  • FIG. 7 shows the particle size curve, measured with a Coulter LS laser particle size analyzer, of a re-molding fraction bis used in Example 5, and - Figure 7bis represents the particle size curve of Figure 7, in the form of values digital.
  • the high explosiveness of cereal grain dust has always been considered to be the result of three factors: - the particle size of the dust whose average particle diameter is less than about 75 ⁇ m,
  • cereal flour having an average diameter and a median diameter of the particles greater than or equal to 150 ⁇ m, preferably between 150 and 500 ⁇ m can be used as solid fuel to make operate, in particular, internal combustion engines and, thus, can replace petroleum or gas products.
  • the piston / valve device has the particularity of increasing the turbulence in the combustion chamber almost proportional to the speed of rotation of the engine.
  • this combustion speed is 20 m / s, it is a combustion by deflagration, while 'the combustion speed of agrifood flours can reach, as for it, 2000 m / s, that is that is, detonation combustion which characterizes explosives.
  • any product appearing a priori suitable to constitute a good fuel and / or combustible must present other physical and thermodynamic characteristics which are: the capacity to be compressed or compression rate, while having a temperature of auto-ignition acceptable, Minimum Ignition Energy, enthalpy, volatility, resistance to frost, among others.
  • the compression ratio is very quickly limited by the self-ignition of the intimate air / fuel mixture.
  • This intimate air / fuel mixture is admitted into the cylinder, then compressed by the piston.
  • the temperature at the end of the compression phase of the air / petrol mixture is approximately 194 ° C.
  • everything is done to avoid self-ignition by compression.
  • a compression-ignition engine or diesel engine only air is admitted to the cylinder and then compressed by the piston at a rate at least twice as high as in the spark-ignition engine.
  • the fuel is injected into the combustion chamber at the end of compression. This results in auto-ignition of the diesel fuel in contact with the air brought to a temperature of about 500 ° C.
  • the product candidate as a fuel and / or fuel must have an auto-ignition temperature above 194 ° C for use in a spark-ignition engine and lower at 500 ° C, in the case of a compression ignition engine.
  • the Minimum Ignition Temperature for clouds of food flour has been determined; in the invention, experimentally in a "Godbert-Greenwaid” oven and it was then discovered that the minimum ignition temperatures are between 350 ° and 500 ° C.
  • Minimum Ignition Energy is the lowest amount of energy to apply to a fuel to ignite it when mixed with air. It is often characterized by the spark energy of a capacitive discharge.
  • liquid hydrocarbons such as petrol, diesel and kerosene have a Specific Calorific Power or enthalpy of approximately 43 MJ / Kg.
  • agrifood flours have a Specific Calorific Power only of around 15 MJ / Kg. Again, this thermodynamic property of agrifood flours suggests that agrifood flours are not suitable as fuel and / or fuel for a heat engine.
  • the calorific value of the displacement of 1 liter of thundering mixture for a thundering mixture consisting of air / gasoline is 760 calories whereas we have now discovered that the calorific value of the displacement of 1 liter of thundering mixture consisting of air / flour is 703 calories.
  • the stoichiometric ratio is 15 J grams of air for 1 gram of gasoline and 6.5 grams of air for 1 gram of flour, a stoichiometric ratio equivalent to methanol.
  • these agrifood flours naturally containing about 15% by weight of water, everything suggests that they crystallize at a temperature below 0 ° C. Due to this crystallization, they would therefore lose their fluidity and form one or more compact and inseparable blocks.
  • agrifood flours tested at - 20 ° C have a resistance to frost that some liquid fuels do not have such as domestic fuels and petrol, whose freezing points are - 9 ° C and ⁇ 18 ° C respectively.
  • the value of an internal combustion engine fuel also depends on its volatility.
  • the volatility of a fuel is characterized by its density.
  • agrifood flours are powdery solid products which do not transform into a gaseous phase for their combustion, agrifood flours are not subject to the well-known and harmful phenomenon of "vaporlock" of liquid fuels, which is one of their advantages. .
  • agrifood flours mean that a person skilled in the art of fuels and fuels discards them.
  • agrifood flours are, unlike liquid hydrocarbons, miscible with water. This means flours naturally contain water, up to a proportion of 15% by weight of their total masses.
  • water increases the viscosity of agrifood flours and therefore decreases the fluidity and volatility of the particles, which can range depending on the degree of hydration, up to a pasty amalgam (lumps) and even a very liquid consistency capable of cause the engine to stop.
  • the particles present in the powder constituted by the agrifood flours exhibit a strong cohesion which leads to an agglomeration and bonding / adhesion phenomenon to the walls of the container containing them.
  • the choice of an agrifood powder having a particle size that is to say an average diameter and a median diameter greater than or equal to 150 ⁇ m, preferably between 150 and 500 ⁇ m, makes it possible to control the burning rate: by increasing the size of the powder particles in the food industry, the surface in contact with the oxygen in the air which is the oxidizer is reduced. This results in a reduction in the rate of oxidation.
  • the ash rate that is to say the content of minerals such as potassium, magnesium, calcium, phosphorus and sodium, agrifood powders constituting the fuel and / or the fuel of the invention also plays the role of an antetoneton, like tetraethyl lead formerly added to petrol and currently replaced by benzene and potassium.
  • this particular particle size solves the problem linked to their natural water content and to the strong cohesion between the particles.
  • the quantity of water absorbed and the speed of absorption by the particles of the agrifood powders of the invention decreases with the particle size.
  • the flours do not require for their storage more precautions than the liquid fuels themselves sensitive to water, because of their great stability.
  • the mean and median diameters of the solid fuels of the invention were measured by the laser particle size measurement method of COULTER, on a Coulter LS device.
  • the average diameter is the diameter calculated by the software of the device and is representative of the diameter that the particles, whose size is measured, have on average.
  • the diameter corresponds to the particle size at which 50% by volume of the particles constituting the sample whose size is measured is a smaller size and 50% by volume of the particles constituting the sample and whose size is measured is a size higher.
  • the particle size distribution of the powder constituting the fuel of the invention is also an important criterion.
  • the particle size distribution of the size of the particles constituting the state of the invention is narrow, that is to say that the fuel contains as little as possible different particle size populations. This means that in the fuel of the invention, more than 70% by volume of the particles constituting the powder must have a particle diameter greater than or equal to approximately 150 ⁇ m.
  • flour here means flour produced industrially and currently used for example in the baking industry. This flour can be used directly, without further processing or treatment as fuel.
  • composition of cereal flours varies depending on the cereal and its growing conditions. It also depends on the method used for grinding and the levels of additives that may be added.
  • Cereal flours currently on the market mainly contain starch, that is to say a content of more than 70% starch, water, proteins and a very low proportion of fatty substances.
  • the cereal flours used and usable as a fuel according to the invention mainly contain starch and at least 15% by weight of carbohydrates.
  • these flours have an average particle diameter of which the average diameter and the median diameter are greater than or equal to 150 ⁇ m, preferably between 150 and 500 ⁇ m.
  • Particularly preferred flours are those of which more than 70% by volume of the particles have a diameter greater than or equal to 150 ⁇ m.
  • the cereal flours used and tested in the invention are the flours of wheat, rye, rice, corn, barley, sorghum, millet, millet, oats, bran, meslin, triticale, or buckwheat.
  • Some of these industrial flours currently on the market may have an average diameter and a median particle diameter of less than 150 ⁇ m. Consequently, the invention has an additional advantage linked to the cost of production of the flours usable as fuel of the invention.
  • the process for manufacturing the flours of the invention is therefore shorter and therefore more economical.
  • Cassava flour is commonly known as tapioca.
  • dehydrated chocolate powder as well as dehydrated milk, which mainly contain lactose or a lactose derivative and at least 15% by weight of carbohydrates and whose average diameter and median particle diameter greater than or equal to 150 ⁇ m, preferably between 150 and 500 ⁇ m, could also be used.
  • the invention is based on the surprising discovery that powders of natural products and of current consumption, whose mean diameter and median diameter of the particles are greater than or equal to 150 ⁇ m, preferably between 150 and 500 ⁇ m and which mainly contain at least one compound selected from the group consisting of starch, a starch derivative, cellulose, a cellulose derivative, lactose, a lactose derivative or mixtures thereof and at least 15% by weight of carbohydrates, were an excellent solid fuel.
  • the fuel of the invention may consist of a single powder, for example, cotton flour alone, but it may also be a mixture of two or more different powders, for example cotton flour plus soy flour or cotton flour plus dehydrated milk powder.
  • a mixture of at least two flours having mean diameters and median diameters of different particles will be used since the combustion of the smallest particles of flour will initiate the combustion of larger particles.
  • mixtures of several types of powders of different particle size and calorific value make it possible to obtain the desired thermodynamics and, moreover, to reduce the price of fuel by mixing an inexpensive powder and a more expensive flour as is the case for potato flour and dehydrated chocolate powder.
  • the fuel of the invention can be used alone or as a mixture with other fuels.
  • the fuel of the invention is not an additive to another fuel. It is indeed a fuel in itself.
  • This fuel consisting of cereal, cotton, soy, potato or dehydrated chocolate flour or dehydrated milk powder, does not produce any harmful rejection on combustion.
  • wheat flour consists on average of 73.5% by weight of starch, 14.8% by weight of water, 10.8% by weight of proteins and 0.8 % by weight of fatty substance.
  • the fuel of the invention is to be used in suspension in air to produce a combustible mixture.
  • the preferred proportion of the fuel of the invention in one liter of air is about 200 mg of fuel of the invention in one liter of air.
  • the calorific value of a liter of the fuel mixture of the invention when the fuel is wheat flour, is 703 calories.
  • the calorific value of a liter of air and gasoline mixture is 760 calories.
  • the energy power of the fuel mixture of the invention is slightly lower (by 8%) than that of petrol, it is nevertheless perfectly suitable.
  • the discharges produced during the combustion of the fuel mixture of the invention do not contain lead, benzene, sulfur, hydrocarbons, carbon monoxide and a negligible quantity of nitrogen oxides or solid particles.
  • the fuel of the invention can be used without major modification of current internal combustion engines. Due to its calorific value, in current vehicles, it will be necessary to replace one liter of petrol with approximately 1.3 liters of fuel according to the invention.
  • the fuel of the invention has many advantages. It is economically more advantageous than petroleum products and liquefied gases, it is available in abundance, it is an indefinitely renewable source of energy. It is biodegradable, neutral for the greenhouse effect and easily storable.
  • composition of combustion rejections from agrifood flours includes CO, like liquid hydrocarbons
  • combustion of powders from agrifood products as defined in the invention only restores the CO, absorbed during the growth of plants from which they come, unlike fossil products which massively move carbon reserves from the soil to atmospheric carbon dioxide.
  • the combustion of the fuel of the invention is therefore neutral with respect to the greenhouse effect.
  • the handling of the fuels of the invention does not present any danger to human beings.
  • the fuel of the invention being made up of particles whose mean diameter and median diameter are greater than or equal to 150 ⁇ m, there is no risk of explosion of this fuel, in the event of a violent impact.
  • the fuel of the invention also poses no danger either for the respiratory tract or if swallowed, in the case of edible products.
  • Another advantage of the invention is that one can choose the perfume released during its combustion, by mixing the different powders described here.
  • this lawn mower is equipped with a fuel tank denoted A, located above the carburetor which supplies, by gravity, gasoline, the carburetor.
  • the motor of the lawn mower operates at constant speed and the cutting blade of the lawn, denoted 6 in FIG. 1, is in direct contact with the motor of the mower. Thus, each revolution of the motor corresponds to one revolution of the cutting blade 6.
  • FIG. 2 is an enlarged view of the part denoted II in FIG. 1.
  • the air filter of the commercial lawn mower is removed and replaced by a bent tube, denoted 1 in FIG. 2, in a rigid material such as metal or PNC.
  • This bent tube 1 is connected to one of these ends, by a connector noted 5 in FIG. 2 made of a flexible material, at the air inlet of the carburetor 7.
  • the other end of the bent tube 1 is connected to the tank denoted 2 in FIG. 2 containing the fuel powder of the invention, denoted 3 in FIG. 2.
  • This tank 2 is open at its upper end to allow a permanent air intake and is provided with a perforated plate, denoted 8 in FIG. 2, at its lower end, to allow the passage of fuel 3.
  • the size and the number of the perforations of the perforated plate 8 are calibrated to allow the passage of the desired fuel weight / air volume ratio.
  • the tank 2 is also provided with an air passage denoted 9 in FIG. 2 allowing the air supply to the engine of the lawn mower.
  • This air passage 9 can be, as shown in FIG. 2, a central air passage located on the perforated plate 8.
  • the perforated plate 8 can also be located on the side of the perforated plate 8. It can just as easily be an air passage located in any other place but which will allow the air supply of engine to the lawn mower. Thus, depending on the desired fuel weight / air volume ratio and the desired fuel flow rate, the diameter and / or the number of perforations will be varied.
  • the tank 2 is located above the carburetor 7 to supply it by gravity and air intake.
  • the air / fuel mixture is made, at the point where the air and the flour meet, that is to say under the perforated plate 8. It is also necessary to induce a vibration of the tank 2, to introduce the desired quantity of the fuel of the invention, at the desired flow rate.
  • this vibration is created by placing a weight on the end of the grass cutting blade 6 shown in FIG. 1. This weight unbalances the cutting blade 6 and thus induces, at each cutting blade revolution 6 which corresponds to a motor revolution, a vibration of the tank 2.
  • This chocolate powder has a particle size distribution as shown in the form of a curve in FIG. 3 and in the form of numerical values in FIG. 3a.
  • FIGS. 3 and 3bis therefore show the values found for each of these two measurements.
  • the first measurement test is noted 6015-2. $ 01 and appears in solid line and the second test of measurement is noted 6015-2. $ 02 and appears in dotted lines.
  • the average particle diameter of the commercial dehydrated chocolate powder is 281.2 ⁇ m for the first measurement and 357J ⁇ m for the second measurement.
  • the median diameter is in the case of the first test of 290.4 ⁇ m and is in the case of the second test of 370.3 ⁇ m.
  • the mean diameter and the median diameter of this powder are very close, which indicates a narrow particle size distribution, as can be seen in FIG. 3.
  • the lawn mower operated with this fuel without any problem, until the dehydrated chocolate powder contained in the tank 2 was exhausted.
  • Example 1 The same test as in Example 1 was carried out, but using commercial dehydrated milk powder, the particle size of which was measured as in Example 1.
  • the average diameter of the dehydrated milk particles is 254.4 ⁇ m for the first measurement and 251.5 ⁇ m for the second measurement.
  • the median diameter is 279J ⁇ m for the first measurement and 272.9 ⁇ m for the second measurement.
  • the white mash fraction of a wheat flour is one of the fractions normally rejected after the crushing and packing of the wheat grains, in the process of making wheat flour for food use.
  • Sassage is an operation intended to purify the semolina from the grinding of the grain.
  • the median diameter is 222.7 ⁇ m for the first measurement and 223.4 ⁇ m for the second measurement.
  • the same test as in Examples 1, 2 and 3 above was carried out but with a re-molding fraction bis of a wheat flour.
  • the milling fraction bis of a wheat flour is also one of the fractions normally rejected after the crushing and packing of the wheat grains in the process of making a wheat flour for food use.
  • the first measure is denoted 00. $ 01 and is shown in solid lines in FIG. 6.
  • the second measure is denoted 00. $ 02 and is represented in dotted lines in FIG. 6.
  • the average diameter of this re-molding fraction bis is 277.9 ⁇ m for the first measurement and 273.4 ⁇ m for the second measurement.
  • the median diameter is 355J ⁇ m for the first measurement and 349.0 ⁇ m for the second measurement.
  • the bis re-molding fraction used in this example comprises more than 70% by volume of particles having a diameter greater than 150 ⁇ m.
  • the average diameter of this re-molding fraction bis is 190.2 ⁇ m for the first measurement and 192.2 ⁇ m for the second measurement.
  • the median diameter of the particles in this re-molding fraction bis is 205.6 ⁇ m for the first measurement and 206.0 ⁇ m for the second measurement. More than 70% by volume of the particles of this re-molding fraction bis have a diameter greater than 150 ⁇ m.
  • the fuels and the fuel mixture of the invention can be used to operate internal combustion engines such as spark ignition engines, compression ignition engines, gas turbines, turbojet engines, ramjet engines, pulsoreactors, i.e. engines not only of automobiles but also in the field of aeronautics. They can also be used in external combustion engines such as steam turbines, piston steam engines, and engines operating according to the Stirling cycle and stationary engines such as generator sets or pumps.
  • internal combustion engines such as spark ignition engines, compression ignition engines, gas turbines, turbojet engines, ramjet engines, pulsoreactors, i.e. engines not only of automobiles but also in the field of aeronautics.
  • external combustion engines such as steam turbines, piston steam engines, and engines operating according to the Stirling cycle and stationary engines such as generator sets or pumps.
  • the fuel and the fuel mixture of the invention may be used to operate boilers, for example central heating or to operate ovens in all types of industry.
  • the fuel and the fuel as defined in the invention can be used in substitution for liquid, solid or gaseous energy sources, such as petrol, diesel, kerosene, fuel oil, pulverized coal, hard coal, butane, propane, ethanol, methanol, etc.
  • liquid, solid or gaseous energy sources such as petrol, diesel, kerosene, fuel oil, pulverized coal, hard coal, butane, propane, ethanol, methanol, etc.

Abstract

L'invention concerne un carburant solide ainsi qu'un mélange combustible le contenant. Le carburant solide selon l'invention contient majoritairement au moins un constituant qui contient lui-même, d'une part, majoritairement au moins un composé sélectionné dans le groupe consistant en l'amidon, le lactose, la cellulose et leurs dérivés et, d'autre part, au moins 15 % en poids par rapport au poids total du(des) constituant(s) de glucides. Le carburant solide et le mélange combustible de l'invention peuvent être utilisés en remplacement de tout carburant et combustible actuellement utilisés, tels que l'essence et le charbon pulvérisé.

Description

Carburant solide et mélange combustible le contenant.
L'invention concerne un carburant solide et un mélange combustible le contenant. Les carburants les plus utilisés à l'heure actuelle pour produire de l'énergie, et en particulier pour une utilisation pour des moteurs à combustion interne, sont des carburants issus de l'industrie pétrolière ou gazière.
Cependant les ressources mondiales en produits pétroliers et gaziers s'épuisent et cela entraîne des problèmes d'approvisionnement et de coûts. De plus, l'utilisation de ces sources de carburants pose de nombreux problèmes de pollution environnementale.
Pour pallier ce problème, on a proposé l'emploi de pots catalytiques et de filtres à particules ajoutant au coût de fabrication du véhicule ou autre équipement fonctionnant avec ce type de carburant. On a alors proposé d'utiliser l'énergie nucléaire ou l'énergie solaire.
Cependant, cela pose des problèmes de pollution et de sécurité environnementales et leur utilisation dans les véhicules à moteur en particulier, les automobiles et les avions, se heurte à des problèmes de stockage, de transport et donc de coûts. Par ailleurs, le risque d'explosion des poussières de grains de céréales dans les silos à grains est connu depuis de nombreuses années.
En effet, les grains de céréales produisent des poussières qui, au contact de l'air, sont fortement explosives. Cette forte explosivité des poussières de grains de céréales dans les silos a été expliquée par leur taille moyenne de particules qui est inférieure à environ 75 μm. Ainsi, lorsque ces poussières de grains de céréales sont mises en suspension dans une grande quantité d'air en présence de gaz issus de la fermentation des grains de céréales, le mélange poussières de grains de céréales, air et gaz de fermentation devient explosif.
L'invention a pour but de fournir un carburant qui est une alternative aux carburants issus de l'industrie pétrolière, gazière, nucléaire ou solaire, dont le transport ou le stockage ne pose aucune difficulté, dont l'utilisation ne produit aucun rejet toxique et qui est facilement disponible et renouvelable.
A cet effet, l'invention propose un carburant solide contenant majoritairement au moins un constituant, qui contient principalement au moins un composé sélectionné dans le groupe consistant en l'amidon, le lactose, la cellulose, et leurs dérivés et au moins 15 % en poids de glucides par rapport au poids total du(des) constituant(s), le (les) constituant(s) étant sous la forme d'une poudre d'un diamètre moyen et d'un diamètre médian de particules supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm.
De préférence, au moins environ 70 % en volume de ladite poudre est constitué de particules ayant un diamètre supérieur ou égal à 150 μm.
Selon un premier mode de réalisation du carburant de l'invention, celui-ci est composé en totalité dudit (desdits) au moins un constituant. Un carburant solide particulièrement préféré de l'invention est un carburant dans lequel le(s)dit(s) au moins un constituant est(sont) sélectionné(s) dans le groupe consistant en une farine de céréales, la farine de coton, la farine de soja, la farine de pomme de terre, la farine de manioc ou tapioca, le chocolat déshydraté en poudre, le lait déshydraté en poudre et leurs mélanges. Lorsque ledit au moins un constituant est une farine de céréales, la céréale est de préférence le blé, le seigle, le riz, le maïs, l'orge, le sorgho, le mil, le millet, l'avoine, le son, le méteil, le triticale, le sarrasin ou leurs mélanges.
Dans un mode de réalisation préféré de l'invention, ledit au moins constituant est la farine de coton. Dans un autre mode de réalisation préféré de l'invention, ledit au moins un constituant est la farine de soja.
Une autre farine particulièrement appropriée en tant que carburant de l'invention est la farine de pomme de terre.
Toujours une autre farine appropriée en tant que carburant de l'invention est le tapioca.
Egalement, le carburant solide de l'invention peut être constitué de chocolat déshydraté en poudre.
Selon encore un autre mode de réalisation de l'invention, le carburant solide de l'invention est constitué de lait en poudre déshydraté. De manière tout particulièrement préférée, le carburant solide de l'invention est constitué d'un mélange de deux ou plus desdits au moins un constituant.
L'invention propose également un mélange combustible composé du carburant de l'invention, en suspension dans l'air, à une concentration d'environ 200 mg de carburant par litre d'air. L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre qui est faite en référence aux figures annexées dans lesquelles : - La figure 1 représente schematiquement une vue de côté d'une tondeuse à gazon du commerce,
- la figure 2 représente une coupe agrandie de la partie notée II en figure 1, modifiée pour fonctionner avec le carburant de l'invention,
- la figure 3 montre la courbe granulométrique, mesurée avec un granulomètre laser LS de Coulter, d'une poudre de chocolat déshydraté du commerce utilisée à l'exemple 1 ,
- La figure 3bis représente la courbe granulométrique de la figure 3 sous forme de valeurs numériques,
- la figure 4 montre la courbe granulométrique, mesurée avec un granulomètre laser LS de Coulter, d'une poudre de lait déshydratée du commerce utilisée à l'exemple 2,
- la figure 4bis représente la courbe granulométrique de la figure 4 sous forme de valeurs numériques,
- la figure 5 montre la courbe granulométrique, mesurée avec un granulomètre laser LS de Coulter, d'une fraction de remoulage blancs d'une farine de blé utilisée à l'exemple 3,
- la figure 5bis représente la courbe granulométrique de la figure 5 sous forme de valeurs numériques,
- la figure 6 montre la courbe granulométrique, mesurée avec un granulomètre laser LS de Coulter, d'une fraction de remoulage bis utilisée à l'exemple 4,
- la figure 6bis représente la courbe granulométrique de la figure 6, sous forme de valeurs numériques,
- la figure 7 montre la courbe granulométrique, mesurée avec un granulomètre laser LS de Coulter, d'une fraction de remoulage bis utilisée à l'exemple 5, et - la figure 7bis représente la courbe granulométrique de la figure 7, sous forme de valeurs numériques.
La forte explosivité des poussières de grains de céréales a toujours été considérée comme le résultat de trois facteurs : - la taille des particules des poussières dont le diamètre moyen de particules est inférieur à environ 75 μm,
- la présence de gaz provenant de la fermentation des grains eux-mêmes, et
- la présence d'un grand volume d'air dans lequel les particules de poussières se mettent en suspension.
Cependant, ce phénomène d'explosivité n'a jamais été ni reporté ni étudié pour les farines obtenues industriellement par mouture des grains de céréales eux- mêmes.
Or on a maintenant découvert de façon surprenante que de la farine de céréales ayant un diamètre moyen et un diamètre médian des particules supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm, peut être utilisée en tant que carburant solide pour faire fonctionner, en particulier, des moteurs à combustion interne et, ainsi, peut remplacer les produits pétroliers ou gaziers.
Cela est particulièrement surprenant et va à encontre d'un préjugé de l'art antérieur.
En effet, le fait que lés poussières de graines de céréales présentent une explosivité élevée n'a jamais été considéré comme en faisant pour autant de bons carburants, au contraire.
Cela est dû tout d'abord au fait qu'en l'absence de turbulence, c'est-à-dire en régime laminaire, à richesse 1, c'est-à-dire à un rapport stœchiométrique carburant : air égal à 1: 1, et à pression atmosphérique, la vitesse de propagation de flamme des hydrocarbures est d'environ 0,4 m/s alors que celle des farines agroalimentaires est d'environ 30 m/s.
Or, dans un moteur le dispositif piston/soupape présente la particularité d'augmenter la turbulence ' dans la chambre de combustion presque proportionnellement à la vitesse de rotation du moteur.
Il en résulte une augmentation de la vitesse de combustion.
Pour les hydrocarbures, cette vitesse de combustion est de 20 m/s, c'est une combustion par déflagration, alors ' que la vitesse de combustion des farines agroalimentaires peut atteindre, quant à elle, 2 000 m/s, c'est-à-dire une combustion par détonation qui caractérise les explosifs.
Or, dans un moteur, la propagation d'une onde explosive entraîne la formation et la propagation d'ondes de choc qui se propagent dans les gaz brûlés ou non encore brûlés. D'une part ces ondes de choc, qui se perçoivent par un fort cliquetis, tambourinage ou cognement, ont pour conséquence de réduire la puissance du moteur et d'en accélérer l'usure. D'autre part, quant elles sont diffractées ou réfléchies, de très hautes températures peuvent apparaître. Ainsi, au regard de leurs grandes vitesses de combustion en régime turbulent, tout laisse à penser que les farines agroalimentaires sont inappropriées pour un emploi en tant que carburant ou combustible, en particulier dans les moteurs à combustion interne.
De plus, tout produit apparaissant a priori approprié pour constituer un bon carburant et/ou combustible doit présenter d'autres caractéristiques physiques et thermodynamiques qui sont : la capacité à être comprimé ou taux de compression, tout en ayant une température d'auto-inflammation acceptable, l'Energie Minimale d'Inflammation, l'enthalpie, la volatilité, la tenue au gel, entre autres.
En effet, il y a intérêt à augmenter la compression pour augmenter le rendement thermique d'un moteur et, dans tous les types de moteurs, il y a une phase de compression qui porte l'air ou le mélange air/carburant à haute température avant la phase d'allumage/combustion. Or, lorsque l'on comprime un gaz, sa température augmente.
Ainsi, dans un moteur à allumage commandé, le taux de compression est très vite limité par l'auto-inflammation du mélange intime air/carburant. Ce mélange intime air/carburant est admis dans le cylindre, puis comprimé par le piston. La température en fin de phase de compression du mélange air/essence est d'environ 194°C. Dans ce type de moteur, tout est mis en œuvre pour éviter l'auto- inflammation par compression. A contrario, dans un moteur à allumage par compression ou moteur Diesel, seul l'air est admis dans le cylindre puis comprimé par le piston à un taux au moins deux fois plus élevé que dans le moteur à allumage commandé. Le carburant est injecté dans la chambre de combustion en fin de compression. Il en résulte une auto-inflammation du gazole au contact de l'air porté à une température d'environ 500°C.
Par conséquent, dans le cas d'un moteur à allumage par compression, à l'inverse du cas d'un moteur à allumage commandé, on provoque une auto- inflammation par compression. Ainsi, pour pouvoir se substituer à l'essence ou au gazole , le produit candidat en tant que carburant et/ou combustible doit avoir une température d'auto-inflammation supérieure à 194°C pour une utilisation dans un moteur à allumage commandé et inférieure à 500°C, dans le cas d'un moteur à allumage par compression.
Or, rien, dans l'art antérieur, n'indique que les farines agroalimentaires sont susceptibles de remplir cette double exigence, ni même une seule.
Cependant, la Température Minimale d'Inflammation des nuages de farines alimentaires a été déterminée; dans l'invention, de manière expérimentale dans un four "Godbert-Greenwaid" et on a alors découvert que les Températures Minimales d'Inflammation sont comprises entre 350° et 500°C.
Donc les farines agroalimentaires peuvent se substituer à l'essence non seulement peuvent se substituer à l'essence, mais qui plus est, peuvent supporter des températures et donc des taux de compression plus élevés, ce qui contribue à augmenter le rendement du moteur à allumage commandé.
Quant au moteur à allumage par compression, là aussi elles peuvent se substituer avantageusement au gazole.
L'Energie Minimale d'inflammation est la quantité la plus faible d'énergie à appliquer à un combustible pour l'enflammer lorsqu'il est en mélange avec l'air. Elle est souvent caractérisée par l'énergie de l'étincelle d'une décharge capacitive.
Or, rien dans l'art antérieur ne suggère ou ne divulgue que l'énergie minimale d'inflammation des farines agroalimentaires soit comparable à celle des gaz.
On a maintenant découvert que l'Energie Minimale d'Inflammation la plus faible des farines agroalimentaires est de l'ordre du millijoule, c'est-à-dire voisine de celle des gaz. Cette Energie Minimale d'Inflammation des farines agroalimentaires a été déterminée de manière expérimentale dans un inflammateur
"Hartmann".
Par ailleurs, les hydrocarbures liquides tels que l'essence, le gazole et le kérosène ont un Pouvoir Calorifique Spécifique ou enthalpie d'environ 43 MJ/Kg. Alors que les farines agroalimentaires ont un Pouvoir Calorifique Spécifique seulement d'environ 15 MJ/Kg. Là encore, cette propriété thermodynamique des farines agroalimentaires laisse à penser que les farines agroalimentaires ne sont pas appropriées en tant que carburant et/ou combustible pour un moteur thermique.
Or, il n'en est rien. En effet, le pouvoir calorifique de la cylindrée de 1 litre de mélange tonnant pour un mélange tonnant constitué d'air/essence est de 760 calories alors que l'on a maintenant découvert que le pouvoir calorifique de la cylindrée de 1 litre de mélange tonnant constitué d'air/farine est de 703 calories.
En comparaison à l'essence, il est brûlé plus de deux fois plus de farine pour le même volume d'air. Le rapport stœchiométrique est de 15J grammes d'air pour 1 gramme d'essence et de 6,5 grammes d'air pour 1 gramme de farine, soit un rapport stœchiométrique équivalent au méthanol.
D'autre part, le système motorisé de base étant très peu modifié, le rapport des consommations pour le calcul d'équivalence répond au simple rapport des pouvoirs calorifiques :
1 litre d'essence = 43 MJ x 0,7 (densité de l'essence) = 30 MJ
1 litre de farine = 15 MJ x 0,5 (densité de la farine agroalimentaire) = 22,5 MJ
Par conséquent, 1,3 litre de farine est équivalent à 1 litre d'essence.
Quant à la tenue au gel des farines agroalimentaires, ces farines agroalimentaires contenant naturellement environ 15 % en poids d'eau, tout laisse à penser qu'elles se cristallisent à une température inférieure à 0°C. Du fait de cette cristallisation, elles perdraient donc leur fluidité et formeraient un ou des blocs compacts et indissociables.
Or, tel n'est pas le cas car les farines agroalimentaires (testées à - 20°C) ont une tenue au gel que n'ont pas certains combustibles liquides tels que les fuels domestiques et l'essence, dont les points de congélation sont respectivement de - 9°C et ~ 18°C.
De plus, elles conservent leur fluidité à cette température.
La valeur d'un combustible pour moteur à combustion interne dépend également de sa volatilité.
La volatilité d'un combustible est caractérisée par sa densité.
Or, si les essences ont une densité de 0,7 et les gazoles et kérosènes de 0,8, la densité des farines agroalimentaires est de 1,5. Là encore, cette caractéristique physique des farines alimentaires ne plaide pas en faveur de leur emploi e tant que carburant et/ou combustible.
Mais, les farines agroalimentaires étant des produits solides pulvérulents ne se transformant pas en une phase gazeuse pour leur combustion, les farines agroalimentaires ne sont pas sujettes au phénomène bien connu et préjudiciable du "vaporlock" des carburants liquides, ce qui est un de leurs avantages.
D'autres caractéristiques physiques des farines agroalimentaires font que l'homme du métier des carburants et des combustibles les écarte.
En effet, les farines agroalimentaires sont, contrairement aux hydrocarbures liquides, miscibles avec l'eau. Ce qui signifie les farines contiennent naturellement de l'eau, et ce jusqu'à une proportion de 15 % en poids de leurs masses totales.
Cette teneur élevée en eau abaisse leur Pouvoir Calorifique et leur vitesse de combustion, tout en augmentant leur Energie Minimale d'Inflammation nécessaire.
D'autre part, l'eau augmente la viscosité des farines agroalimentaires et donc diminue la fluidité et la volatilité des particules pouvant aller selon de degré d'hydratation, jusqu'à un amalgame pâteux (grumeaux) et même une consistance très liquide susceptible de provoquer l'arrêt du moteur.
Par ailleurs, les particules présentes dans la poudre que constitue les farines agroalimentaires présentent une forte cohésion qui conduit à un phénomène d'agglomération et de collage/adhésion aux parois du récipient les contenant.
Ainsi, les plus grandes difficultés sont à prévoir pour l'écoulement des farines agroalimentaires du réservoir contenant le carburant jusqu'au point de mélange entre ce carburant et l'air.
Là encore, cette caractéristique physique ne plaide pas en faveur de l'usage des farines agroalimentaires entant que carburant et/ou combustible.
Or, tous ces préjugés de l'art antérieur et les problèmes cités ci-dessus ont été résolus par l'invention, qui est basée sur le principe du choix des granulométries des poudres agroalimentaires constituant le carburant et/ou le combustible de l'invention. En effet, le choix d'une poudre agroalimentaire ayant une taille des particules, c'est-à-dire un diamètre moyen et un diamètre médian supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm, permet de contrôler la vitesse de combustion : en augmentant la taille des particules de poudres agroalimentaires, on diminue la surface en contact avec l'oxygène de l'air qui est le comburant. Il en résulte une réduction de la vitesse d'oxydation.
D'autre part, le taux de cendres, c'est-à-dire la teneur en minéraux tels que le potassium, le magnésium, le calcium, le phosphore et le sodium, des poudres agroalimentaires constituant le carburant et/ou le combustible de l'invention, joue également le rôle d'antidétonant, à l'image du plomb tétraéthyle anciennement ajouté à l'essence et actuellement remplacé par le benzène et le potassium.
De la même façon, le choix de cette granulométrie particulière résout le problème lié à leur teneur en eau naturelle et à la forte cohésion entre les particules.
En effet, la quantité d'eau absorbée et la vitesse d'absorption par les particules des poudres agroalimentaires de l'invention diminue avec la granulométrie des particules.
Or, les farines ne requièrent pas pour leur stockage plus de précautions que les carburants liquides eux-mêmes sensibles à l'eau, en raison de leur grande stabilité.
Quant au problème de la cohésion entre les particules qui conduit au phénomène d'agglomération, la génération d'une vibration telle que décrite dans la suite permet de surmonter ce piOblème. Les diamètres moyens et médians des carburants solides de l'invention ont été mesurés par la méthode de mesure de granulométrie laser de COULTER, sur un appareil Coulter LS.
Le diamètre moyen est le diamètre calculé par le logiciel de l'appareil et est représentatif du diamètre que les particules, dont la taille est mesurée, ont en moyenne.
Le diamètre correspond à la taille de particules à laquelle 50 % en volume des particules constituant l'échantillon dont la taille est mesurée, est une taille inférieure et 50 % en volume des particules constituant l'échantillon et dont la taille est mesurée est une taille supérieure. Plus le diamètre moyen et le diamètre médian sont proches, plus la poudre, dont la taille des particules est mesurée, est homogène c'est-à-dire est monopopulée.
En effet, la distribution granulométrique de la poudre constituant le carburant de l'invention est également un critère important. De préférence, la répartition granulométrique de la taille des particules constituant l'état de l'invention est étroite c'est-à-dire que le carburant contient le moins possible de populations granulométriques différentes. Cela signifie que dans le carburant de l'invention, plus de 70 % en volume des particules constituant la poudre doivent avoir un diamètre des particules supérieur ou égal à environ 150 μm.
Le terme "farine" signifie ici la farine produite industriellement et utilisée à l'heure actuelle par exemple dans l'industrie de la boulangerie. Cette farine est utilisable directement, sans autre transformation ou traitement en tant que carburant.
Elle peut être utilisée par exemple, pour le fonctionnement des moteurs à combustion interne, que ce soit à allumage commandé ou diesel, pour le fonctionnement de turbines, de chaudières, par exemple pour le chauffage central et également pour le fonctionnement des fours industriels. La composition des farines de céréales varie en fonction de la céréale et de ses conditions de culture. Elle dépend également de la méthode utilisée pour le broyage et des taux d'additifs éventuellement ajoutés.
Les farines de céréales actuellement sur le marché contiennent majoritairement de l'amidon, c'est-à-dire une teneur supérieure à 70 % d'amidon, de l'eau, des protéines et une très faible proportion de corps gras.
Ainsi, les farines de céréales utilisées et utilisables en tant que carburant selon l'invention contiennent majoritairement de l'amidon et au moins 15 % en poids de glucides.
De plus, ces farines ont un diamètre moyen de particules dont le diamètre moyen et le diamètre médian sont supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm.
Les farines particulièrement préférées sont celles dont plus de 70 % en volume des particules ont un diamètre supérieur ou égal à 150 μm.
Les farines de céréales utilisées et testées dans l'invention sont les farines de blé, de seigle, de riz, de maïs, d'orge, de sorgho, de mil, de millet, d'avoine, de son, de méteil, de triticale, ou de sarrasin.
Certaines de ces farines industrielles actuellement commercialisées peuvent avoir un diamètre moyen et un diamètre médian de particules inférieurs à 150 μm. Dès lors, l'invention présente un avantage supplémentaire lié au coût de production des farines utilisable en tant que carburant de l'invention.
En effet, pour produire des farines ayant un diamètre moyen et un diamètre médian de particules supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm, le procédé de broyage et de tamisage des grains pour obtenir la farine industrielle classique peut être stoppé plus tôt.
Le procédé de fabrication des farines de l'invention est donc moins long et par conséquent plus économique.
De plus, on pourra utiliser des fractions obtenues lors de la fabrication des farines qui auraient normalement été rejetées parce que n'ayant pas une taille moyenne de particules appropriée pour une utilisation dans l'industrie alimentaire.
On a également découvert que de manière surprenante d'autres produits pulvérulents et industriels utilisés couramment pouvaient être utilisés en tant que carburants à condition qu'ils contiennent majoritairement de l'amidon ou de la cellulose ou un de leurs dérivés et au moins 15 % en poids de glucides et que le diamètre moyen et le diamètre médian des particules de poudre de ces produits sont supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm.
Il s'agit des farines de coton, de soja, de pomme de terre et de manioc. La farine de manioc est communément appelée tapioca. De manière tout aussi surprenante, on a de plus découvert que de la poudre de chocolat déshydraté ainsi que de lait déshydraté, qui contiennent majoritairement du lactose ou un dérivé de lactose et au moins 15 % en poids de glucides et dont le diamètre moyen et le diamètre médian des particules sont supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm, pouvaient également être utilisées.
Ainsi, l'invention est basée sur la découverte surprenante que des poudres de produits naturels et de consommation courante, dont le diamètre moyen et le diamètre médian des particules sont supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm et qui contiennent majoritairement au moins un composé sélectionné dans le groupe consistant en l'amidon, un dérivé d'amidon, la cellulose, un dérivé de cellulose, le lactose, un dérivé de lactose ou leurs mélanges et au moins 15 % en poids de glucides, constituaient un excellent carburant solide.
Le carburant de l'invention peut être constitué d'une poudre unique, par exemple, de la farine de coton seule, mais il peut être également un mélange de deux ou plus de poudres différentes, par exemple de la farine de coton plus de la farine de soja ou bien de la farine de coton plus du lait déshydraté en poudre.
De préférence, on utilisera un mélange d'au moins deux farines ayant des diamètres moyens et des diamètres médians de particules différents car la combustion des plus petites particules de farine amorcera la combustion de particules plus grosses.
En outre, des mélanges de plusieurs types de poudres de granulométrie et de pouvoir calorifique différents permettent d'obtenir la thermodynamique recherchée et, de plus, de réduire le prix du carburant par mélange d'une poudre peu coûteuse et d'une farine plus coûteuse comme c'est le cas pour la farine de pommes de terre et le chocolat déshydraté en poudre.
Le carburant de l'invention peut être utilisé seul ou en mélange avec d'autres carburants.
Cependant, le carburant de l'invention n'est pas un additif à un autre carburant. Il est bel et bien un carburant en lui-même.
Ce carburant étant constitué de farines de céréales, de coton, de soja, de pommes de terre ou de chocolat déshydraté ou de lait déshydraté en poudre ne produit aucun rejet nocif lors de sa combustion.
A titre d'exemple, la farine de blé est constituée en moyenne de 73,5 % en poids d'amidon, de 14,8 % en poids d'eau, de 10,8 % en poids de protéines et de 0,8 % en poids de corps gras.
La combustion de l'amidon contenu dans la farine de blé en présence d'air, c'est-à-dire essentiellement d'oxygène et d'azote, produit en tant que rejets dans l'atmosphère du CO,, de l'eau et de l'azote. La combustion des protéines produit quant à elle comme rejets de l'eau, du CO,, du SO,, de l'azote et des traces de SO3, de NH3 et de NOx.
On voit alors que la combustion d'une farine de blé produira majoritairement de l'eau et de l'azote et environ 18 % de CO2 qui sont des produits non toxiques. Les quantités produites de SO3, de NH3 et de NO. sont négligeables lors de la combustion d'une telle farine.
Le carburant de l'invention est à utiliser en suspension dans de l'air pour produire un mélange combustible. La proportion préférée du carburant de l'invention dans un litre d'air est d'environ 200 mg de carburant de l'invention dans un litre d'air. Le pouvoir calorifique d'un litre du mélange combustible de l'invention, lorsque le carburant est de la farine de blé, est de 703 calories. A titre de comparaison, le pouvoir calorifique d'un litre de mélange d'air et d'essence est de 760 calories. Ainsi, bien que le pouvoir énergétique du mélange combustible de l'invention soit légèrement inférieur (de 8 %) à celui de l'essence, il est néanmoins parfaitement approprié.
Les rejets produits lors de la combustion du mélange combustible de l'invention ne contiennent ni plomb, ni benzène, ni soufre, ni hydrocarbures, ni monoxyde de carbone et une quantité négligeable d'oxydes d'azote ou de particules solides.
Le carburant de l'invention peut être utilisé sans modification majeure des moteurs à combustion interne actuels. De par son pouvoir calorifique on devra, dans les véhicules actuels, remplacer un litre d'essence par environ 1,3 1 de carburant selon l'invention.
On voit de ce qui précède, que le carburant de l'invention comporte de nombreux avantages. Il est économiquement plus avantageux que les produits pétroliers et les gaz liquéfiés, il est disponible en abondance, c'est une source d'énergie indéfiniment renouvelable. Il est biodégradable, neutre pour l'effet de serre et facilement stockable.
En effet, bien que la composition des rejets de combustion des farines agroalimentaires inclue le CO, comme les hydrocarbures liquides, la combustion des poudres de produits agroalimentaires tels que définis dans l'invention ne fait que restituer le CO, absorbé lors de la pousse des végétaux dont elles sont issues, contrairement aux produits d'origine fossile qui déplacent massivement les réserves carboniques du sol vers le gaz carbonique atmosphérique. La combustion du carburant de l'invention est donc neutre vis-à-vis de l'effet de serre.
De plus, la manipulation des carburants de l'invention ne présente aucun danger pour l'être humain. En effet, le carburant de l'invention étant constitué de particules dont le diamètre moyen et le diamètre médian sont supérieurs ou égaux à 150 μm, il n'y a aucun risque d'explosion de ce carburant, en cas de choc violent.
Le carburant de l'invention ne présente également aucun danger ni pour les voies respiratoires ni en cas d'ingestion, s'agissant de produits comestibles. Un autre avantage de l'invention est qu'on peut choisir le parfum dégagé lors de sa combustion, en mélangeant les différentes poudres décrites ici.
Pour mieux faire comprendre l'objet de l'invention, on va en décrire maintenant à titre d'exemples purement illustratifs et non limitatifs plusieurs modes de mise en œuvre.
EXEMPLES
Les essais de mise en œuvre de carburant de l'invention ont été effectués sur une tondeuse à gazon du commerce fonctionnant à l'origine à l'essence, telle que représentée en figure 1.
Comme on le voit en figure 1, cette tondeuse à gazon est équipée d'un réservoir à essence noté A, situé au-dessus du carburateur qui alimente, par gravité, en essence, le carburateur. Le moteur de la tondeuse à gazon fonctionne à régime constant et la lame de coupe du gazon, notée 6 en figure 1, est en prise directe avec le moteur de la tondeuse. Ainsi, à chaque tour du moteur correspond un tour de la lame de coupe 6.
Pour fonctionner avec le carburant de l'invention, peu de modifications ont été effectuées. Seuls le réservoir de carburant et la partie admission du carburant au carburateur de cette tondeuse à gazon ont été modifiés.
Ces modifications sont représentées en figure 2 qui est une vue agrandie de la partie notée II en figure 1. Comme représenté en figure 2, dans laquelle le carburateur non modifié de la tondeuse à gazon du commerce est noté 7, le filtre à air de la tondeuse à gazon du commerce est enlevé et remplacé par un tube coudé, noté 1 en figure 2, en un matériau rigide tel que du métal ou du PNC.
Ce tube coudé 1 est relié à une de ces extrémités, par un raccord noté 5 en figure 2 en un matériau souple, à l'entrée d'air du carburateur 7.
L'autre extrémité du tube coudé 1 est relié au réservoir noté 2 en figure 2 contenant le carburant en poudre de l'invention, noté 3 en figure 2.
Ce réservoir 2 est ouvert à son extrémité supérieure pour permettre une entrée d'air en permanence et est muni d'une plaque perforée, notée 8 en figure 2, à son extrémité inférieure, pour permettre le passage du carburant 3. La taille et le nombre des perforations de la plaque perforée 8 sont calibrés pour permettre le passage du rapport voulu poids de carburant/volume d'air.
Le réservoir 2 est également muni d'un passage d'air noté 9 en figure 2 permettant l'alimentation en air du moteur de la tondeuse à gazon. Ce passage d'air 9 peut être, comme représenté en figure 2, un passage d'air central situé sur la plaque perforée 8.
Il pourra également être situé sur le côté de la plaque perforée 8. Il pourra tout aussi bien être un passage d'air situé à tout autre endroit mais qui permettra l'alimentation en air de moteur de la tondeuse à gazon. Ainsi, selon le rapport voulu poids de carburant/volume d'air et le débit voulu du carburant, on fera varier le diamètre et/ou le nombre des perforations.
Le réservoir 2 est situé au-dessus du carburateur 7 pour l'alimenter par gravité et aspiration d'air. Le mélange air/carburant se fait, au point de rencontre de l'air et de la farine après, c'est-à-dire sous la plaque perforée 8. II est également nécessaire d'induire une vibration du réservoir 2, pour introduire la quantité voulue du carburant de l'invention, au débit voulu.
Cela peut être réalisé par tout moyen approprié connu de l'homme de l'art.
Cependant dans les tests de mise en œuvre réalisés ici, cette vibration est créée en plaçant un poids sur l'extrémité de la lame de coupe de gazon 6 représentée en figure 1. Ce poids déséquilibre la lame de coupe 6 et induit ainsi, à chaque tour de lame de coupe 6 qui correspond à un tour de moteur, une vibration du réservoir 2.
EXEMPLE 1
De la poudre de chocolat déshydratée du commerce a été utilisée en tant que carburant de la tondeuse à gazon modifiée comme indiqué ci-dessus.
Cette poudre de chocolat a une répartition granulométrique telle que représentée sous la forme d'une courbe en figure 3 et sous la forme de valeurs numériques en figure 3bis.
Deux mesures de granulométrie successives ont été effectuées sur cette poudre et les figures 3 et 3bis font donc apparaître les valeurs trouvées pour chacune de ces deux mesures. Dans la figure 3, le premier essai de mesure est noté 6015-2. $ 01 et apparaît en trait plein et le second essai de mesure est notée 6015-2. $ 02 et apparaît en trait pointillé.
Le diamètre moyen des particules de la poudre de chocolat déshydratée du commerce est de 281,2 μm pour la première mesure et de 357J μm pour la seconde mesure.
Le diamètre médian est dans le cas du premier essai de 290,4 μm et est dans le cas du second essai de 370,3 μm.
Comme on le voit, le diamètre moyen et le diamètre médian de cette poudre sont très proches, ce qui indique une répartition granulométrique étroite, comme on le voit en figure 3.
Dans les deux essais de mesure, plus de 70 % en volume des particules de la poudre de chocolat ont des diamètres supérieurs à 150 μm.
La tondeuse à gazon a fonctionné avec ce carburant sans aucun problème, jusqu'à épuisement du chocolat déshydraté en poudre contenu dans le réservoir 2.
EXEMPLE 2
Le même essai qu'à l'exemple 1 a été réalisé mais en utilisant de la poudre de lait déshydraté du commerce dont la granulométrie a été mesurée comme à l'exemple 1.
Dans ce cas également deux mesures de granulométrie ont été effectuées sur la poudre de lait déshydraté.
Les résultats sont montrés en figure 4 sous forme de courbe et en figure 4bis sous forme de valeurs numériques. La première mesure a été notée 6015-1. $ 01 et est représentée en trait plein en figure 4 et la seconde mesure a été notée 6015-1. $ 02 et est représentée en trait pointillé sur la figure 4.
Le diamètre moyen des particules de lait déshydraté est pour la première mesure de 254,4 μm et, pour la seconde mesure de 251 ,5 μm. Le diamètre médian est de 279J μm pour la première mesure et de 272,9 μm pour la seconde mesure.
Là encore, plus de 70 % en volume des particules de cette poudre de lait ont un diamètre supérieur à 150 μm. De la même façon qu'à l'exemple 1, la tondeuse à gazon a fonctionné, jusqu'à épuisement de la poudre de lait déshydraté contenue dans le réservoir 2.
EXEMPLE 3
Le même essai qu'aux exemples 1 et 2 a été effectué mais avec la fraction de remoulage blancs d'une farine de blé.
La fraction de remoulage blancs d'une farine de blé est une des fractions normalement rejetées après le broyage et le sassage des grains de blé, dans le procédé de la fabrication des farines de blé à usage alimentaire.
Le sassage est une opération ayant pour but de purifier les semoules provenant du broyage du grain.
Deux mesures de granulométrie ont été effectuées sur cette fraction de remoulage blancs. Les résultats des mesures de granulométrie effectuées cette fraction de remoulage blancs sont montrés en figure 5 sous forme de courbe et en figure 5bis sous forme de valeurs numériques. La première mesure est notée 00. $ 05 et est représentée en trait plein sur la figure 5 et la seconde est notée 00. $ 06 et est représentée en traits pointillés sur la figure 5. Le diamètre moyen de cette fraction de remoulage blancs est de 217,3 μm pour la première mesure et de 218,7 μm pour la seconde mesure.
Le diamètre médian est de 222,7 μm pour la première mesure et de 223,4 μm pour la seconde mesure.
Pour cette fraction de remoulage blancs plus de 70 % en volume des particules ont un diamètre supérieur à 150 μm.
De la même façon, la tondeuse a fonctionné jusqu'à épuisement de la farine contenue dans le réservoir 2.
EXEMPLE 4
Le même essai qu'aux exemples 1, 2 et 3 ci-dessus a été effectué mais avec une fraction de remoulage bis d'une farine de blé. La fraction de remoulage bis d'une farine de blé est également une des fractions normalement rejetées après le broyage et le sassage des grains de blé dans le procédé de fabrication d'une farine de blé à usage alimentaire.
Les résultats des mesures de granulométrie effectués sur cette fraction de remoulage bis sont montrés en figure 6 sous forme de courbe et ensuite 6bis sous forme de valeurs numériques.
Deux mesures de granulométrie ont été effectuées sur cette fraction de remoulage bis. La première mesure est notée 00. $ 01 et est représentée en trait plein sur la figure 6. La seconde mesure est notée 00. $ 02 et est représentée en traits pointillés sur la figure 6.
Le diamètre moyen de cette fraction de remoulage bis est de 277,9 μm pour la première mesure et de 273,4 μm pour la seconde mesure.
Le diamètre médian est de 355J μm pour la première mesure et de 349,0 μm pour la seconde mesure. La fraction de remoulage bis utilisée à cet exemple comprend plus de 70 % en volume de particules ayant un diamètre supérieur à 150 μm.
De la même façon qu'aux exemples précédents, la tondeuse à gazon a fonctionné jusqu'à épuisement de la farine contenue dans le réservoir 2.
EXEMPLE 5
Le même essai qu'aux exemples 1 à 4 ci-dessus a été effectué mais avec une autre fraction de remoulage bis d'une farine de blé.
Les résultats des mesures de granulométrie effectuées sur cette fraction de remoulage bis comme montré en figure 7 sous forme de courbe et en figure 7bis sous forme de valeurs numériques.
Deux mesures de granulométrie ont été effectuées sur cette fraction de remoulage bis. La première mesure est notée 00. $ 03 et est représentée en trait plein sur la figure 7. La seconde mesure est notée 00. $ 04 et est représentée en traits pointillés sur la figure 7;*
Le diamètre moyen de cette fraction de remoulage bis est de 190,2 μm pour la première mesure et de 192,2 μm pour la seconde mesure.
Le diamètre médian des particules de cette fraction de remoulage bis est de 205,6 μm pour la première mesure et de 206,0 μm pour la seconde mesure. Plus de 70 % en volume des particules de cette fraction de remoulage bis ont un diamètre supérieur à 150 μm.
De la même façon qu'aux exemples 1 à 4, la tondeuse à gazon a fonctionné jusqu'à épuisement de la farine contenue dans le réservoir 2.
Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemples purement illustratifs et non limitatifs.
Ainsi, les carburants et le mélange combustible de l'invention peuvent être utilisés pour faire fonctionner les moteurs à combustion interne tels que les moteurs à allumage commandé, les moteurs à allumage par compression, les turbines à gaz, les turboréacteurs, les statoréacteurs, les pulsoréacteurs, c'est-à-dire les moteurs non seulement d'automobiles mais également dans le domaine de l'aéronautique. Ils peuvent être également utiliser dans les moteurs à combustion externe tels que les turbines à vapeur, les machines à vapeur à piston, et les moteurs fonctionnant selon le cycle de Stirling et les moteurs fixes tels que les groupes électro-générateurs ou les pompes.
De même le carburant et le mélange combustible de l'invention pourront être utilisés pour faire fonctionner des chaudières par exemple de chauffage central ou faire fonctionner des fours dans tous types d'industrie.
C'est dire que l'invention comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont effectuées selon l'esprit et l'étendue de l'invention qui est définie par les revendications suivantes. En résumé, le carburant et le combustible tels que définis de l'invention peuvent être utilisés en substitution des sources d'énergies liquides, solides ou gazeuses, telles que l'essence, le gazole, le kérosène, la mazout, le charbon pulvérisé, la houille, le butane, le propane, l'éthanol, le méthanol, etc.

Claims

REVENDICATIONS
1, Carburant solide caractérisé en ce que : il contient majoritairement au moins un constituant, contenant : a) majoritairement au moins un composé sélectionné dans le groupe consistant en l'amidon, le lactose, la cellulose et leurs dérivés, b) au moins 15 % en poids par rapport au poids total du(des) constituant(s) de glucides, et en ce que : il est sous la forme d'une poudre dont le diamètre moyen et le diamètre médian des particules sont supérieurs ou égaux à 150 μm, de préférence compris entre 150 et 500 μm.
2. Carburant selon la revendication 1, caractérisé en ce que plus de 70 % en volume de ladite poudre est constitué de particules ayant un diamètre supérieur ou égal à 150 μm.
3. Carburant solide selon la revendication 1 ou 2, caractérisé en ce que le composant en totalité dudit (desdits) au moins un constituant.
4. Carburant solide selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit au moins un constituant est sélectionné dans le groupe consistant en une farine de céréales, une farine de coton, une farine de soja, une farine de pomme de terre, une farine de manioc, une poudre de chocolat déshydraté, une poudre de lait déshydraté, et leurs mélanges.
5. Carburant solide selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit au moins un constituant est sélectionné dans le groupe consistant en la farine de blé, la farine de seigle, la farine de maïs, la farine d'orge, la farine de sorgho, la farine de mil, la farine de millet, la farine d'avoine, la farine de son, la farine de sarrasin, la farine de méteil, la farine de triticale, la farine de riz et leurs mélanges.
6. Carburant solide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit au moins un constituant est la farine de coton.
7. Carburant solide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit au moins un constituant est la farine de soja.
8. Carburant solide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit au moins un constituant est la farine de pomme de terre.
9. Carburant solide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit au moins un constituant est la farine de manioc.
10. Carburant solide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit au moins un constituant est du chocolat déshydraté en poudre.
11. Carburant solide selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit au moins un constituant est du lait déshydraté en poudre.
12. Carburant solide selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est constitué d'un mélange de deux ou plus desdits au moins un constituant.
13. Mélange combustible caractérisé en ce qu'il est composé du carburant selon l'une quelconque des revendications précédentes, en suspension dans l'air, à une concentration d'environ 200 mg de carburant par litre d'air.
PCT/FR2001/001905 2000-06-20 2001-06-19 Carburant solide et melange combustible le contenant WO2001098438A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2001269188A AU2001269188B2 (en) 2000-06-20 2001-06-19 Solid fuel and fuel mixture containing same
US10/297,623 US7201781B2 (en) 2000-06-20 2001-06-19 Carbohydrate-based fuel mixture and method for operating an internal combustion engine using a carbohydrate-based solid fuel
DE60134978T DE60134978D1 (de) 2000-06-20 2001-06-19 Verwendung von festbrennstoff in motoren, kesseln und öfen
AU6918801A AU6918801A (en) 2000-06-20 2001-06-19 Solid fuel and fuel mixture containing same
EP01947522A EP1292657B9 (fr) 2000-06-20 2001-06-19 Utilisation d'un carburant solide dans des moteurs, des chaudieres ou des fours
US11/449,608 US7727292B2 (en) 2000-06-20 2006-06-09 Method for operating an internal combustion engine utilizing a carbohydrate-based fuel mixture
US11/687,096 US8080069B2 (en) 2000-06-20 2007-03-16 Solid fuel and fuel mixture containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0007833A FR2810335B1 (fr) 2000-06-20 2000-06-20 Carburant solide et melange combustible le contenant
FR00/07833 2000-06-20

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10297623 A-371-Of-International 2001-06-19
US11/449,608 Division US7727292B2 (en) 2000-06-20 2006-06-09 Method for operating an internal combustion engine utilizing a carbohydrate-based fuel mixture
US11/687,096 Continuation-In-Part US8080069B2 (en) 2000-06-20 2007-03-16 Solid fuel and fuel mixture containing same

Publications (1)

Publication Number Publication Date
WO2001098438A1 true WO2001098438A1 (fr) 2001-12-27

Family

ID=8851430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001905 WO2001098438A1 (fr) 2000-06-20 2001-06-19 Carburant solide et melange combustible le contenant

Country Status (9)

Country Link
US (2) US7201781B2 (fr)
EP (1) EP1292657B9 (fr)
CN (1) CN1224682C (fr)
AT (1) ATE402244T1 (fr)
AU (2) AU2001269188B2 (fr)
DE (1) DE60134978D1 (fr)
ES (1) ES2311017T3 (fr)
FR (1) FR2810335B1 (fr)
WO (1) WO2001098438A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108177A1 (fr) 2012-01-18 2013-07-25 Centre De Cooperation Internationale En Recherche Agronomique Pour Le Developpement (Cirad) Carburant solide sous forme d'une poudre comprenant un constituant lignocellulosique
CN111234896A (zh) * 2020-03-11 2020-06-05 蒋天泽 一种基于废弃秸秆的生物质燃料及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080069B2 (en) * 2000-06-20 2011-12-20 Guillaume Pourtout Solid fuel and fuel mixture containing same
SE528657C2 (sv) * 2004-06-16 2007-01-16 Biovelop Internat Bv Användning av en blandning bestående av stärkelse och spannmålsskal som biobränsle
US7282071B2 (en) 2006-01-31 2007-10-16 Lenlo Chem, Inc. Starch as a fuel or fuel component
US7375214B2 (en) * 2005-02-22 2008-05-20 Lenlo Chem, Inc. Hydrophobic starch having near-neutral dry product pH
WO2006091580A2 (fr) * 2005-02-22 2006-08-31 Lenlo Chem, Inc. Compositions a base d'amidon hydrophobes et utilisations en tant que combustible
WO2008063549A2 (fr) * 2006-11-17 2008-05-29 Summerhill Biomass Systems, Inc. Combustibles en poudre, leurs dispersions, et dispositifs de combustion y relatifs
US20090223612A1 (en) * 2007-11-16 2009-09-10 Mcknight James K Powdered fuels and powdered fuel dispersions
US7784435B1 (en) 2008-08-22 2010-08-31 Deflagration Energy, L.L.C. Particulate deflagration combustion engine
US20110048294A1 (en) * 2008-08-22 2011-03-03 Donald Keith Fritts Particulate Deflagration Enhanced Firebox
US20100064952A1 (en) * 2008-09-03 2010-03-18 Lawrence George Brown Method and Means for Using Commom Dusts as Fuel for and Engine
JP5218153B2 (ja) 2009-02-26 2013-06-26 株式会社日立プラントテクノロジー 微生物検出装置、検出方法、及びそれに用いられる試料容器
US20140259882A1 (en) * 2013-03-15 2014-09-18 General Electric Company Mixture and apparatus for blending non-aqueous slurries
CN104250571A (zh) * 2013-06-30 2014-12-31 许成荫 一种燃料成型工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981003336A1 (fr) * 1980-05-13 1981-11-26 Ebe Energibraensle Ab Procede de preparation d'un combustible

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3517M (fr) * 1962-12-07 1965-09-06 Hoffmann La Roche Médicament a base de compositions vitaminées.
US3397097A (en) * 1966-07-12 1968-08-13 Du Pont Thickened aqueous inorganic oxidizer salt blasting compositions containing gas bubbles and a crystal habit modifier and method of preparation
US4028468A (en) * 1975-10-01 1977-06-07 The Quaker Oats Company Oat groat fractionation process
US4312890A (en) * 1978-12-05 1982-01-26 Coors Food Products Company Preparation of a cocoa substitute from yeast
US4326854A (en) * 1979-03-09 1982-04-27 Tanner John D Synthetic firelog
US5789012A (en) * 1986-01-31 1998-08-04 Slimak; Kara M. Products from sweet potatoes, cassava, edible aroids, amaranth, yams, lotus, potatoes and other roots, seeds and fruit
CH683223A5 (fr) * 1991-10-25 1994-02-15 Nestle Sa Procédé de préparation d'un lait acidifié.
US6048557A (en) * 1996-03-26 2000-04-11 Dsm N.V. PUFA coated solid carrier particles for foodstuff
US6506223B2 (en) * 1997-12-05 2003-01-14 Waste Technology Transfer, Inc. Pelletizing and briquetting of combustible organic-waste materials using binders produced by liquefaction of biomass
US6159715A (en) * 1998-05-14 2000-12-12 Cargill, Inc. Method for processing oilseed material
US6720312B2 (en) * 2001-03-16 2004-04-13 Heartland Health Solutions, Llc Method for controlling the membrane structure of a starch granule

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981003336A1 (fr) * 1980-05-13 1981-11-26 Ebe Energibraensle Ab Procede de preparation d'un combustible

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CARDILLO P ET AL: "Dust explosions in the food industry.", INDUSTRIA CONSERVE 73 (2) 135-144 1998 STAZIONE SPERIMENTALE PER I COMBUSTIBILI, VIALE A. DE GASPERI 3, 20097 SAN DONATO MILANESE, ITALY, XP000983094 *
IMAI E ET AL: "Effect of physical properties of food particles on the degree of graininess perceived in the mouth.", JOURNAL OF TEXTURE STUDIES 30 (1) 59-88 1999 SAITAMA STUDY CENTER, THE UNIV. OF THE AIR, 682-2 NISHIKI-CHO, OMIYA CITY, SAITAMA 331-0851, JAPAN, XP000981428 *
IWUOHA C I ET AL: "Density and viscosity of cold flour pastes of cassava (Manihot esculenta Grantz), sweet potato (Ipomoea batatas L. Lam) and white yam (Dioscorea rotundata Poir) tubers as affected by concentration and particle size.", CARBOHYDRATE POLYMERS 37 (1) 97-101 1998, XP004141138 *
WASMUND R ET AL: "Brennwerte und Heizwerte fester Produkte der Lebensmittelindustrie und ihre Bedeutung für das Einschätzen der Gefahr von Staubexplosionen.", ZUCKERINDUSTRIE 1978 FACHBEREICH LEBENSMITTELTECH. BIOTECH. DER TU BERLIN, SEESTRASSE 13, D-1000 BERLIN 65, vol. 103, no. 10, pages 856 - 860, XP000981410 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108177A1 (fr) 2012-01-18 2013-07-25 Centre De Cooperation Internationale En Recherche Agronomique Pour Le Developpement (Cirad) Carburant solide sous forme d'une poudre comprenant un constituant lignocellulosique
CN111234896A (zh) * 2020-03-11 2020-06-05 蒋天泽 一种基于废弃秸秆的生物质燃料及其制备方法

Also Published As

Publication number Publication date
US20070094923A1 (en) 2007-05-03
AU6918801A (en) 2002-01-02
ES2311017T3 (es) 2009-02-01
FR2810335B1 (fr) 2006-09-22
US7201781B2 (en) 2007-04-10
CN1441836A (zh) 2003-09-10
CN1224682C (zh) 2005-10-26
US20030145515A1 (en) 2003-08-07
EP1292657A1 (fr) 2003-03-19
AU2001269188B2 (en) 2005-09-22
US7727292B2 (en) 2010-06-01
EP1292657B1 (fr) 2008-07-23
ATE402244T1 (de) 2008-08-15
DE60134978D1 (de) 2008-09-04
FR2810335A1 (fr) 2001-12-21
EP1292657B9 (fr) 2009-02-25

Similar Documents

Publication Publication Date Title
EP1292657B9 (fr) Utilisation d'un carburant solide dans des moteurs, des chaudieres ou des fours
Crookes et al. Systematic assessment of combustion characteristics of biofuels and emulsions with water for use as diesel engine fuels
Qi et al. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends
Sathish et al. Combustion analysis using third generation biofuels in diesel engine
JPH10504054A (ja) ディーゼル燃料組成物
Roy et al. Effect of emulsified fuel based on dual blend of Castor-Jatropha biodiesel on CI engine performance and emissions
FR2985735A1 (fr) Carburant solide sous forme d'une poudre comprenant un constituant lignocellulosique
Alexandru et al. Evaluation of performance and emissions characteristics of methanol blend (gasohol) in a naturally aspirated spark ignition engine
Lobo et al. The effect of zinc oxide on operation of compression ignition engine with EGR fueled with waste cooking oil biodiesel
Churchill et al. Performance and emission analysis of Indian Jujube Seed oil as bio-diesel
Wirawan et al. Gasoline engine performance, emissions, vibration and noise with methanol-gasoline fuel blends
Suryawanshi et al. Overview of EGR, injection timing and pressure on emissions and performance of CI engine with pongamia methyl ester
Nair et al. Effect of addition of bio-additive clove oil to ternary fuel blends (diesel-biodiesel-ethanol) on compression ignition engine
Sharma et al. Experimental investigation of effect of CI-engine fuelled with camphor-oil diesel blend with additive of DTE (Diethyl-Ether)
US8080069B2 (en) Solid fuel and fuel mixture containing same
Jassim et al. Environmental Impact of Mixing Biofuel with Gasoline in Spark Ignition Engine
FR2765238A1 (fr) Nouveaux carburants constitues de gaz liquefies pour moteurs a combustion interne
WO2009083668A2 (fr) Utilisation de compositions de gaz liquefies
Churchill et al. Performance and emission analysis of date seed oil as bio-diesel
Jeyangel et al. Experimental Analysis of Performance, Combustion and Emission Characteristics of Single Cylinder Diesel Engine using Diesel-Turpentine Blend
Churchill et al. Emission Analysis of Sapodilla seed oil as bio-diesel
Yadav et al. Effect of Waste Cooking oil Biodiesel on Agricultural Diesel Engine
WO2023247901A1 (fr) Carburant pour moteur a base de methanol contenant un additif d'amelioration de la combustion
Bidir et al. Energy Reports
WO2024069096A1 (fr) Composition de carburant ou de combustible a base d'ammoniac comprenant un additif nitrate d'alkyle particulier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10297623

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01264/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001947522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001269188

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018125123

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001947522

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001269188

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2001947522

Country of ref document: EP