WO2001089066A1 - Small power generating device and water faucet device - Google Patents

Small power generating device and water faucet device Download PDF

Info

Publication number
WO2001089066A1
WO2001089066A1 PCT/JP2001/004079 JP0104079W WO0189066A1 WO 2001089066 A1 WO2001089066 A1 WO 2001089066A1 JP 0104079 W JP0104079 W JP 0104079W WO 0189066 A1 WO0189066 A1 WO 0189066A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow rate
stator
fluid
small power
Prior art date
Application number
PCT/JP2001/004079
Other languages
French (fr)
Japanese (ja)
Inventor
Yukinobu Yumita
Original Assignee
Kabushiki Kaisha Sankyo Seiki Seisakusho
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Sankyo Seiki Seisakusho, Toto Ltd. filed Critical Kabushiki Kaisha Sankyo Seiki Seisakusho
Priority to EP01930184A priority Critical patent/EP1306962B1/en
Priority to AU56766/01A priority patent/AU5676601A/en
Priority to US10/276,265 priority patent/US6876100B2/en
Priority to DE60141208T priority patent/DE60141208D1/en
Publication of WO2001089066A1 publication Critical patent/WO2001089066A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines

Definitions

  • the present invention relates to a small power generation device using hydraulic power generated by a flow of water passing through a faucet, and a faucet device provided with the small power generation device.
  • a rotating body integrally fixed to the rotating shaft of the water wheel is provided.
  • the outer peripheral surface of the rotating body is a magnetized rotor magnet, and the rotor magnet is arranged to face the stator poles with the wall of the non-magnetic member interposed therebetween.
  • a single-layer stator coil is provided so as to link with the magnetic flux passing through the stator pole.
  • the rerotor magnet rotates relative to the stator pole when the above-described water turbine rotates by receiving the hydraulic power of flowing water. For this reason, the flow of the magnetic flux flowing through the rotor and the stator poles changes. As a result, the flow of the magnetic flux flows through the stator coil.
  • a current flows in a direction that prevents changes, and this current is rectified and stored in a storage battery.
  • the magnetic flux flows between the rotor and the stator poles of the power generation device.
  • This magnetic flux serves as resistance when the water turbine is rotated by the hydraulic power of flowing water. That is, the magnetic flux generated between the mouth and the stator pole becomes the detent torque, and the operation of the turbine is braked when the turbine starts and rotates. Therefore, the turbine does not rotate unless it receives a certain flow rate and pressure. Therefore, if the flow rate is low or the water pressure received by the turbine is low, the turbine will not rotate and will not generate power. If the magnetic force of the rotor magnet is low, the detent torque is reduced and the water turbine itself rotates, but the induced voltage generated when the rotor rotates is also reduced, and the power generation amount is greatly reduced.
  • the small power generator of the present invention includes a water turbine that is provided in a fluid passage and rotates with the passage of a predetermined amount of fluid, and a rotating body that is connected to the water wheel and rotates together with the water wheel.
  • a stepper motor having a plurality of layers of stator portions, a rotor portion opposed to the stator portion, and electric power is generated by rotating the rotor portion relative to the stator portion with the passage of fluid.
  • each layer acts so as to cancel the detent torque between the stator portion and the rotor, so that the detent torque can be reduced. As a result, it becomes possible to rotate the water turbine at a low flow rate and a low water pressure.
  • a plurality of layers are set so that detent torque generated between the stator section and the rotor section cancels each other. For example, skew each layer (deliberately shift the poles of each layer by rotating in the circumferential direction), or set non-magnetic members between each layer to actively reduce the detent torque. As a result, the above-described operation becomes more effective.
  • a small power generation device includes a water turbine that is disposed in a fluid passage and rotates with the passage of a predetermined amount of fluid, and a rotating body that is connected to the water wheel and rotates together with the water turbine includes a plurality of coil units.
  • the water turbine can be rotated at a low flow rate and a low water pressure.
  • the relationship between the number of poles magnetized in the rotor and the number of coils in the stator is reduced to 2-3, 4-3 or 4-6. Is set. Therefore, the detent torque between the stator and the rotor can be further reduced.
  • an injection member having an injection hole for forming a part of a fluid passage and narrowing a flow rate to be injected to a blade portion of a water turbine. I have.
  • the water pressure can be increased to some extent by the injection hole, and the water turbine can be rotated more smoothly to generate power.
  • the diameter of the injection hole should be increased, and the water pressure should be increased accordingly. It is also possible to generate power without. With this setting, the risk of damage to the injection member due to high water pressure is reduced.
  • the faucet device of the present invention has at least two modes, a water saving mode in which the flow rate flowing out to the fluid passage is smaller than usual by controlling the degree of opening of the valve, and a normal mode in which the flow rate is normal.
  • the small power generator according to claim 6 or 9 is disposed in the fluid passage. As described above, the small power generator according to claim 6 or claim 9 disposed in the fluid passage has a reduced detent torque, so that power can be generated at a low flow rate and a low water pressure.
  • the water wheel If the water pressure of the fluid supplied to the water is set lower, the risk of damage to components due to high water pressure in the normal mode can be reduced, and sufficient power can be generated even in the water saving mode Becomes
  • the flow rate in the water saving mode is set to 2.0 liters to 3.0 liters. As a result, it is possible to save water sufficiently and at the same time, to make it possible to generate electricity with this low water flow.
  • FIG. 1 is a longitudinal sectional view of a two-layer stepping motor type compact power generator according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the small power generator of FIG. 1 as viewed in the direction of arrow II in FIG.
  • FIG. 3 is a bottom view of FIG. 2 as viewed from the direction of arrow III.
  • FIG. 4 is a schematic diagram showing the relationship between a member (nozzle ring) for spraying the water turbine with the fluid passage being narrowed to increase the water pressure and the water turbine.
  • FIG. 5 is a longitudinal sectional view of a brushless motor type small power generator according to a second embodiment of the present invention.
  • FIG. 6 is a side view of the small power generator of FIG. 5 as viewed from the direction of arrow VI in FIG.
  • FIG. 7 (a) shows a front sectional view of a faucet device using the small power generator of the present invention
  • FIG. 7 (b) shows a side sectional view thereof.
  • FIG. 1 is viewed in the direction of arrow II in FIG.
  • FIG. 3 is a bottom view of FIG. 2 as viewed in the direction of arrow III.
  • FIG. 4 is a schematic diagram showing a relationship between a member (nozzle ring) for spraying the water turbine with the fluid passage being narrowed to increase the water pressure and the water turbine.
  • the small power generator using the two-layer stepping motor system according to the first embodiment includes a casing 1, a nozzle ring 2 provided in the casing 1, and a nozzle ring 2 provided in the casing 1.
  • the casing 1 includes a main body 11 and an inflow channel 12 and an outflow channel 13 protruding outside the main body 11.
  • the main body 11 includes a power generation unit mounting unit 11a for mounting a power generation unit including the rotating body 4 and the stator unit 6 described above.
  • the power generation unit mounting portion 1 la is composed of an open end face portion formed on the right side of the main body portion 11 in FIG.
  • the lid member 9 is in contact with the portion 11 d (see an enlarged view in FIG. 1), the lid member 9 is covered so as to be sandwiched between the above-described power generation portion mounting portion 11 a.
  • the cup-shaped member 5 is pressed against the power-generating-unit mounting portion 11a while crushing the O-ring 8 in the groove 11b, and the lid member 9 is further covered thereon.
  • the cup-shaped member 5 is positioned on the inner peripheral portion of the stator 6 by bringing the outer peripheral end of the flange 52 of the cup-shaped member 5 into contact with the inner peripheral portion of the convex lid. You. Then, as shown in FIG. 2, the four screws 10 are inserted into the screw holes formed at the four corners of the lid member 9 and screwed, so that the lid member 9 is attached to the main body 11 of the casing 1. Fixed. As a result, the power generation unit mounting portion 11 a serving as the open end surface of the casing 1 is closed by the cup-shaped member 5.
  • the cup-shaped member 5 is formed of a non-magnetic stainless steel member, and has a flange 52, a cylindrical portion 51, and a bottom 53 formed by drawing.
  • a bearing 15 that receives one end of a shaft 7 that supports the water wheel 3 and the rotating body 4 so as to freely rotate is fitted into the bottom 53.
  • the cup-shaped member 5 serves to isolate the stator portion 6 of the stepping motor from the fluid passing through the casing 1 and to prevent the fluid from flowing out of the casing 1.
  • the inflow channel 12, the outflow channel 13 and the connecting channel 14 connecting these components formed in the casing 1 are one of the fluid passages of a faucet device (see FIG. 7) composed of a faucet, a valve, and the like.
  • connection channel 14 The fluid that has entered the inflow channel 12 from the fluid source passes through the connection channel 14 and is discharged from the outflow channel 13.
  • the fluid imparts a turning force to the water wheel 3 during this passage.
  • a detailed description of this section will be described later.
  • the connection path 14 the other end of the shaft 7 that supports rotation of the water wheel 3 and the rotating body 4 described later is rotatably arranged.
  • This axis 7 The end is rotatably fitted into a bearing hole 14a formed in the connecting path 14 of the casing 1, the other end passes through the open end face described above, and the tip is disposed in the cup-shaped member 5. It is rotatably fitted in a bearing 15.
  • the shaft 7 is cooperatively held by the casing 1 and the cup-shaped member 5.
  • the connecting passage 14 of the casing 1 is formed as a part of the fluid passage of the faucet device described above, and the fluid flowing therethrough is throttled to be discharged to the blade portion 31 of the turbine 3 (see FIG. 4).
  • the nozzle ring 2 as the injection member is press-fitted.
  • the nozzle ring 2 has a substantially cylindrical ring portion 21 and a flange portion 22 formed by bending one open end of the ring portion 21 in the outer circumferential direction. Then, as shown in FIG. 4, the ring portion 21 narrows the inflow passage of the fluid that has entered the inflow passage 12 and serves as an injection hole for injecting into the blade portion 31 of the water turbine 3 disposed inside.
  • Two nozzles 23 are provided at approximately 180 degrees symmetrical positions.
  • the water wheel 3 provided inside the nozzle ring 2 which is a part of the fluid passage rotates with a predetermined flow rate of fluid.
  • the water turbine 3 includes a cylindrical ring portion 32, and a blade portion 31 having an outer peripheral end portion connected to one end surface of the ring portion 32 and a center portion thereof fixed through the shaft 7 described above. .
  • the blade portion 31 is curved in an arc shape so as to easily receive the pressure of the fluid from the nozzle 23. For this reason, the water turbine 3 enters the inflow passage 12, and the fluid whose pressure has been increased by the two nozzles 23 and whose pressure has been increased vigorously flows to the blade portion 31, so that the hydraulic power rotates around the shaft 7 as a rotation center. Has become.
  • the fluid that has hit the blade portion 31 moves from the connection path 14 to the outflow path 13 through the open portion of the water wheel 3 and the inner peripheral portion of the ring portion 32.
  • the rotating body 4 is formed integrally with the water turbine 3 via the connecting shaft 35, and is arranged coaxially with the water turbine 3. That is, the above-described water turbine 3, the connecting shaft 35, and the rotating body 4 are arranged so as to be connected in the direction in which the shaft 7 extends. Therefore, when the water wheel 3 is rotated by hydraulic power, the rotating body 4 rotates integrally with the water wheel 3 around the shaft 7 as a rotation center.
  • the connecting shaft 35 and the rotating body 4 are formed with four communication holes 4a communicating with each other in the direction in which the shaft 7 extends, at regular intervals in the circumferential direction. These communication holes 4a are provided for smoothing the rotation of the shaft 7 with respect to the bearing 15 by flowing fluid also to the right side of the rotating body 4 in FIG.
  • the rotating body 4 that is connected to the water wheel 3 and rotates together with the water wheel 3 is a rotor part of a stepping motor, is formed of a rotor magnet Mg, and has eight poles magnetized on its outer peripheral surface.
  • the outer peripheral surface of the stepping motor 5 is arranged to pass through the cylindrical portion 51 of the cup-shaped member 5 and face the spreader portion 6 of the stepping motor.
  • the stator section 6 is composed of two layers 6a and 6b which are arranged so as to overlap in the axial direction.
  • Each of the layers 6a and 6b includes an outer yoke (disposed outside in an overlapped state) 61, outer pole teeth 61a formed integrally with the outer yoke 61, and an inner yoke (in an overlapping state).
  • 62 an inner pole tooth 62a formed integrally with the inner yoke 62, and a coil 63 wound around a coil pobin.
  • the winding start portion and the winding end portion of the coil 63 are connected to terminals 64, respectively.
  • the stator portion 6 configured as described above is fitted into an outer portion of the cylindrical portion 51 of the cup-shaped member 5. Therefore, a magnetic flux flows between the pole teeth 61 a and 62 a of the stator section 6 and the magnetized section of the rotating body 4.
  • a change occurs in the flow of the magnetic flux, and an induced voltage is generated in the coil 63 in a direction to prevent the change in the flow.
  • This induced voltage is taken out from the terminal 64.
  • the induced voltage extracted in such a manner is converted into direct current by a circuit, rectified through a predetermined circuit (not shown), and charged into the battery. A specific flow rate for rotating the water turbine 3 will be described below.
  • the rotational force received by the water turbine 3 is set by the flow rate and the water pressure of the fluid.
  • the fluid that has entered the above-described inflow passage 12 is squeezed to some extent by the nozzle 23 and is vigorously applied to the blade portion 31 of the water turbine 3, whereby the water turbine 3 receives rotational force from the fluid.
  • the water turbine 3 rotates if the flow rate itself is sufficient.
  • the fluid passage is narrowed to increase the water pressure. If the water pressure is excessively increased, the blade portion 31 of the water turbine 3, the nozzle ring 2, and other fluid flow paths may be damaged. Occurs. Conversely, if the water pressure is too low, the flow rate will be insufficient and satisfactory power generation will not be possible. Therefore, it is necessary to appropriately set the water pressure depending on the material and thickness of the water turbine 3 and the nozzle ring 2. Further, in addition to the shape of the blade portion 31 of the turbine 3 and the total weight of the turbine 3 (including the weight of the rotating body 4), the detent torque generated between the rotating body 4 and the stator section 6 increases.
  • the main part of the present invention is to reduce the detent torque part.
  • the stator portion 6 has a two-layer structure and is skewed (shifting each layer in the circumferential direction), for example, by shifting the above-described pole tooth position in the circumferential direction, and The detent torque generated between the magnetized portion of FIG. 4 and the magnetized portion is canceled each other. As a result, detent torque is reduced. For this reason, the detent torque force between the rotating body 4 and the stator portion 6 when rotating the water wheel 3 does not provide so strong braking, and the water wheel 3 can rotate smoothly with the rotating body 4 with a small amount of flow and water pressure.
  • the stator section 6 of the stepping motor has a two-layer structure and the shape and thickness of the blade section 31 are set to predetermined dimensions.
  • the minimum starting current amount at which the generator starts rotating is 1.2 to
  • the amount of power generation is small, and considering the voltage required to store it in the power storage unit (not shown), At least 5V is required.
  • power generation is possible at a flow rate slightly less than 2.0 liters. A power that is at least 2.0 liters / minute is required to actually generate power.
  • the flow rate of 2.0 liters Z is the minimum flow rate used for hand washing.
  • the flow rate of 2.0 to 3.0 liters Z is set as the water saving mode, and the flow rate exceeding 3.0 liters is set as the normal mode.
  • FIG. 5 shows a vertical cross-sectional view of a small power generator according to the second embodiment of the present invention.
  • the brushless motor type small power generation device of the second embodiment has almost the same configuration as that of the first embodiment, and includes a casing 1 and a casing 1.
  • the nozzle ring 2 provided, a water wheel 3 rotatably arranged on the inner peripheral side of the nozzle ring 2, a rotating body 4 that rotates integrally with the water wheel 3, and an outer peripheral side of the rotating body 4. It includes a cup-shaped member 105 made of stainless steel, and a stator portion 106 of a brushless motor disposed outside the cup-shaped member 105.
  • the main body section 111 of the casing 1 includes a power generation section mounting section 11 la for mounting a power generation section composed of the rotating body 4 and the stator section 106 described above.
  • the power generation part mounting part 111a is composed of a concave part 111c having a hole in the center part formed on the right side of FIG. 5 of the main body part 111 and its outer peripheral part, and the outer peripheral part has a circumferential part.
  • a groove 1 1 1 b is formed.
  • the O-ring 8 is embedded in the groove 1 1 1b. Further, the O-ring 8 is pressed against a flange 1 52 formed on the outermost peripheral portion of the cup-shaped member 105 so as to be sealed in the groove 111 b.
  • I sandwich it with a The dish-shaped member 90 is covered. That is, the cup-shaped member 105 is pressed against the O-ring 8 while pressing the O-ring 8 within the groove 11 lb, and the dish-shaped member 90 is put on the O-ring 8 from above. Become. Then, as shown in FIG. 6, four screws 10 are inserted into the screw holes formed at the four corners of the dish-shaped member 90, and the screws are tightened. It is fixed to the main body 1 1 1.
  • the power generation unit mounting portion 111 a serving as the open end surface of the casing 1 is closed by the cup-shaped member 105.
  • the cup-shaped member 105 is formed of a non-magnetic stainless steel member, and is formed of a flange portion 152 by drawing, an outer cylindrical portion 1 55 continuous with the flange portion 152, and an outer cylindrical portion 155.
  • An inner tubular portion 151 arranged inside, a connecting surface portion 156 connecting the two tubular portions 151, 155, and a bottom portion 153 are formed. Then, the cup-shaped member 105 configured as described above is fitted into the recessed portion 111c of the power generation unit mounting portion 111a, and the casing 1 and the dish-shaped member 90 are connected as described above.
  • a bearing 15 that receives one end of a shaft 7 that supports the water wheel 3 and the rotating body 4 in a rotating manner is fitted into the bottom portion 153.
  • This cup-shaped member 105 serves to isolate the stator portion 106 of the brushless motor from the fluid passing through the casing 1 and to prevent the fluid from flowing out of the casing 1.
  • the connecting path 14 of the casing 1 serves as an injection member for forming a part of the fluid path of the faucet device described above, and also as an injection member for restricting the flow rate of the passing fluid and injecting it to the blade portion 31 of the water turbine 3.
  • Nozzle ring 2 is fitted by press fitting. The configuration of the nozzle ring 2 is similar to that of the first embodiment.
  • the rotating body 4 which is connected to the water wheel 3 and rotates together with the water wheel 3 is a rotor part of a brushless motor, is composed of a rotor magnet Mg, and has a two-pole magnetized outer peripheral surface.
  • the outer peripheral surface of the brushless motor is opposed to the stator portion 106 of the brushless motor through the inner cylindrical portion 151 of the cup-shaped member 105. Therefore, when the rotating body 4 rotates together with the water wheel 3, the rotating body 4 rotates relatively to the stator portion 106. As shown in FIG.
  • the stator section 106 is composed of three coil sections 106a, 106b, and 106c that are equally arranged in the circumferential direction.
  • Each of the kosole sections 106a, 106b, and 106c includes a stator core 161 and a coil 163 wound around the stator core 161.
  • the winding start portion and the winding end portion of the coil 163 are connected to the terminal 164, respectively.
  • the stator portion 106 configured as described above is fitted into a portion between the inner tubular portion 151 and the outer tubular portion 155 of the cup-shaped member 105.
  • a magnetic flux flows between the inner facing surface 161 a of each yoke member 161 serving as a pole of the stator portion 106 and the magnetized portion of the rotating body 4.
  • a change occurs in the flow of the magnetic flux, and an induced voltage is generated in the coil 163 in a direction to prevent the change in the flow.
  • This induced voltage is extracted from terminal 164.
  • the induced voltage extracted in such a manner is converted into direct current by a circuit. That is, the AC voltage induced by the power generation unit whose output coil is three-phase Y-connected is rectified and converted to DC through a three-phase bridge circuit (not shown) consisting of six diodes and one smoothing capacitor.
  • the battery is charged.
  • the stator section 106 is composed of three coil sections 106a, 106b, and 106c as described above, and has three poles.
  • the rotating body 4 disposed opposite to the stator section 106 is two-pole magnetized as described above. That is, in the present embodiment, a brushless motor system is used, and the relationship between the number of poles magnetized on the rotating body (rotor section) 4 and the number of coil sections (number of poles) of the stator section 106 is 2-3. It is. Therefore, unlike the conventional single-layer stepping motor system, the detent torque generated between the stator unit 106 and the rotating body 4 is not large.
  • the detent torque between the rotating body 4 and the stator portion 106 when rotating the turbine 3 does not provide a very strong brake, and the turbine 3 can rotate smoothly with the rotating body 4 with a small amount of flow and water pressure.
  • the relationship between the number of poles magnetized on the rotating body (rotor section) 4 and the number of coils (poles) of the stator section 106 is, for example, 4 ⁇ 3, which is not 2-3 as in this embodiment.
  • One 3 or 4-6 may be used.
  • 2.0 to 3.0 liters of the inflow path 1 It is acceptable to rotate the water wheel 3 using the fluid flowing into 2.
  • the detent torque is strong and the brake is used as a brake.
  • the turbine 3 does not rotate smoothly unless the flow rate exceeds 3 liters Z.
  • the small power generator of each embodiment described above can generate power using a small flow rate of 2.0 to 3.0 liters Z.
  • the flow rate of the faucet device to which the small power generation device of each of the above-described embodiments is attached is reduced by controlling the degree of opening of the valve so that the flow rate to the fluid passage is reduced.
  • At least two modes, water saving mode and normal mode with normal flow rate, may be used, and the flow rate in water saving mode may be set to the above-mentioned 2.0 to 3.0 liters. By doing so, it is possible to generate power even in the water saving mode, and it is possible to obtain efficient power generation output in the normal mode.
  • the detent torque can be reduced as compared with the conventional single-layer stepping motor system, this is used to increase the hole diameter of the nozzle 23, for example.
  • the water pressure to the turbine 3 may be reduced to further reduce the risk of breakage of the nozzle ring 2 and the turbine 3 due to the water pressure.
  • the minimum flow rate at which the water turbine 3 can rotate slightly increases by the amount of increase in the hole diameter of the nozzle 23 and the decrease in water pressure, but if the flow rate is, for example, about 2.5 liters per minute, It can be said that the performance is sufficiently high as compared with the conventional one.
  • FIGS. 7A and 7B are cross-sectional views of a faucet device using the small power generation device of the present invention.
  • the faucet device 1000 has a water outlet and a human body detection sensor 1001 for detecting a human hand at its tip.
  • a solenoid valve 1003 for opening and closing the fluid passage 1004, a small power generator 1005 shown in FIG. 1 or FIG. 5, and opening and closing of the above-described solenoid valve 1003 are controlled.
  • a DC conversion circuit (not shown) for converting the induced voltage generated by the small power generating device 1005 into DC
  • a rectifier circuit not shown
  • a power storage unit for storing the rectified current. (Not shown) and the like.
  • the signal is output to the human body detection sensor 1001 and the signal power controller 1002.
  • the controller 1002 outputs an open signal to the solenoid valve 1003, and the solenoid valve 1003 opens to discharge water.
  • Water flows through the fluid passage 1004 in the faucet 100000 and reaches the small power generator 1005.
  • the small power generator 1005 as described above, the water that has entered the inflow passage is raised by a nozzle or the like to raise the water pressure and hits the blades of the water turbine, and receives a rotational force from the water to generate an induced voltage. I do.
  • This induced voltage is converted to DC by a DC conversion circuit (not shown), rectified through a rectifier circuit (not shown), and stored in a power storage unit (not shown).
  • the current stored in the power storage unit (not shown) is supplied to the controller 1002.
  • the human body detection sensor 1101 detects it, outputs a signal to the controller 1002, and closes the solenoid valve 1003.
  • the operation of the faucet device 1000 is not limited to the above-described operation.
  • the water may be automatically stopped.
  • the small power generator according to the present invention is configured such that a rotating body connected to a water turbine rotated by passage of a fluid is used as a rotor part opposed to a stator part of a stepping motor having a stator part having a plurality of layers. I have. Therefore, each layer acts to cancel the detent torque between the stator portion and the rotor, and the detent torque can be reduced. As a result, the water turbine can be rotated at a low flow rate and a low water pressure.
  • a small-sized power generator in which a rotating body connected to a water wheel that rotates by passage of a fluid is opposed to a stator part of a brushless motor provided with a stator part having a plurality of coils.
  • the mouth part is arranged. Therefore, it is possible to reduce the detent torque. As a result, it becomes possible to rotate the water turbine at a low flow rate and a low water pressure.
  • the faucet device of the present invention has at least two modes of the water saving mode and the normal mode by controlling the degree of opening of the valve, and the above-mentioned small power generator is disposed in the fluid passage.
  • the faucet device of the present invention can generate electric power at a low flow rate and a low water pressure by arranging the small power generation device in which the detent torque is reduced in the fluid passage. Therefore, if the water pressure of the fluid supplied to the water turbine is set lower, the risk of damage to members due to high water pressure in the normal mode can be reduced, and sufficient power generation can be performed even in the water saving mode. It becomes possible to do.

Abstract

A small power generating device and a water faucet device, comprising a turbine (3) disposed in a fluid path and rotated as a specified flow rate of fluid passes therethrough, wherein a rotating body (4) connected to and rotated together with the turbine (3) is formed in a rotor part disposed opposedly to the stator part (6) of a stepping motor having the stator part (6) formed of a plurality of layers (6a, 6b), and the rotor part is rotated relative to the stator part (6) as the fluid passes therethrough so as to generate a power.

Description

明 細 書 小型発電装置及び水栓装置 技術分野  Description Small power generation equipment and faucet equipment Technical field
本発明は、蛇口を通過する水の流れによって発生する水力を利用した小型発 電装置及びこの小型発電装置が配設された水栓装置に関する。 技術背景  The present invention relates to a small power generation device using hydraulic power generated by a flow of water passing through a faucet, and a faucet device provided with the small power generation device. Technology background
従来より、蛇口の下側に手を差し出すことによってこれをセンサ一が感知し、 このセンサー感知をもとに蛇口から水を流す自動水栓装置が広く知られている。 また、近年においては、このような自動水栓装置の流体流路に小型発電装置を 配設し、この小型発電装置で得られた電力を蓄電しておき、上述のセンサー等 の回路の消費電力を補う装置等も提案されている(実開平 2— 65775号参 照)。 上述の小型発電装置の構成を簡単に述べると以下のようになる。流水の通路 となる流体通路に水車が配設され、流水の水力を受けてこの水車が回転する。 水車の回転軸には一体的に固定された回転体が設けられている。この回転体 の外周面は、着磁されたロータマグネットとなっており、このロータマグネットが 非磁性部材の壁を隔ててステータ極に対向配置されている。また、このス亍一タ 極を通過する磁束と鎖交するように 1層のステータコイルが設けられている。そ して、上述の水車が流水の水力を受けて回転することによリロータマグネットが ス亍ータ極に対して相対回転する。このため、ロータとステータ極に流れる磁束 の流れに変化が生じる。この結果、上記ス亍ータコイルにはこの磁束の流れの 変化を妨げる方向に電流が流れ、この電流は整流された後、蓄電池に蓄えら れる。 2. Description of the Related Art Conventionally, there has been widely known an automatic faucet device in which a sensor senses this by putting a hand under a faucet and the water flows from the faucet based on the sensor detection. In recent years, a small power generator has been disposed in the fluid flow path of such an automatic faucet device, and the power obtained by this small power generator has been stored, and the power consumption of the above-described circuits such as sensors has been reduced. A device that supplements the above has also been proposed (see Japanese Utility Model Application Laid-open No. 2-77575). The configuration of the above-mentioned small power generator is briefly described as follows. A water turbine is provided in a fluid passage serving as a flowing water passage, and the turbine is rotated by the hydraulic power of the flowing water. A rotating body integrally fixed to the rotating shaft of the water wheel is provided. The outer peripheral surface of the rotating body is a magnetized rotor magnet, and the rotor magnet is arranged to face the stator poles with the wall of the non-magnetic member interposed therebetween. Also, a single-layer stator coil is provided so as to link with the magnetic flux passing through the stator pole. The rerotor magnet rotates relative to the stator pole when the above-described water turbine rotates by receiving the hydraulic power of flowing water. For this reason, the flow of the magnetic flux flowing through the rotor and the stator poles changes. As a result, the flow of the magnetic flux flows through the stator coil. A current flows in a direction that prevents changes, and this current is rectified and stored in a storage battery.
上述したように、発電装置のロータとステータ極との間には磁束が流れている。 この磁束は、流水の水力により水車を回転させる際の抵抗となる。すなわち、口 一タとス亍一タ極間に発生している磁束がディテントトルクとなり、水車の起動時 及び回転時に水車の動作にブレーキをかけることとなる。したがって、水車はあ る一定以上の流量および水圧を受けなければ回転しない。そのため、流量が少 なかったり水車の受ける流水の水圧が低いと、水車は回転せず発電もなされな し、。なお、ロータマグネットの磁力を低いものとすると、ディテントトルクが低減さ れ水車自体は回転することとなるが、ロータ回転時に発生する誘起電圧も低く なり発電量が非常に低下してしまう。このため、所望の発電量を得るためには、 ロータマグネットの磁力はある程度強くし、かつ水車を回転させるための流体の 流量及び水圧をある程度確保する必要がある。 このような事情から、従来より広く使用されている自動水栓装置用の小型発 電装置では、具体的には、流量を 3. 0リットルノ分以下とすると、上述のディテ ントトルクが抵抗となり水車がスムーズに回転できない。水車を回転させるには、 流量を 3リツ卜ル 分より大きくする必要がある。 なお、近年、環境面の整備やその他種々の問題から節水が叫ばれて久しい。 このような状況にあるため、上述の自動水栓装置においても 1回に流す水量を できるだけ少なく抑えたいという課題を有している。加えて、使用者の節水に対 する問題意識が向上した現在の状況下においては、流量と共に吐出される流 水の水圧も低く抑えたし、。水圧を低くすることにより、見た目上、節水中であると いうイメージを与えたいからである。 発明の開示 As described above, the magnetic flux flows between the rotor and the stator poles of the power generation device. This magnetic flux serves as resistance when the water turbine is rotated by the hydraulic power of flowing water. That is, the magnetic flux generated between the mouth and the stator pole becomes the detent torque, and the operation of the turbine is braked when the turbine starts and rotates. Therefore, the turbine does not rotate unless it receives a certain flow rate and pressure. Therefore, if the flow rate is low or the water pressure received by the turbine is low, the turbine will not rotate and will not generate power. If the magnetic force of the rotor magnet is low, the detent torque is reduced and the water turbine itself rotates, but the induced voltage generated when the rotor rotates is also reduced, and the power generation amount is greatly reduced. For this reason, in order to obtain a desired power generation amount, it is necessary to increase the magnetic force of the rotor magnet to some extent and to secure a certain flow rate and water pressure of the fluid for rotating the turbine. Under such circumstances, in the case of a small power generator for an automatic faucet device that has been widely used in the past, specifically, when the flow rate is set to 3.0 liters or less, the above-described detent torque becomes a resistance and the water turbine Cannot rotate smoothly. To rotate the turbine, the flow rate must be greater than 3 liters. In recent years, it has been a long time since water conservation was called out due to environmental issues and various other problems. Under such circumstances, there is a problem in the above-mentioned automatic faucet apparatus that it is desired to reduce the amount of water flowing at one time as much as possible. In addition, under the current situation where users' awareness of water-saving issues has increased, the water pressure of the discharged water as well as the flow rate has been kept low. By lowering the water pressure, we want to give the image of apparently water saving. Disclosure of the invention
本発明の目的は、少量の水量であっても水車が回転し、十分な電力量の発 電をすることが可能な小型発電装置及び水栓装置を提供することにある。 本発明の小型発電装置は、上記のような課題に鑑み、流体通路に配設され 所定流量の流体通過に伴って回転する水車を備えると共に、この水車に連結さ れ水車と共に回転する回転体を、複数層からなるステータ部を備えたステツピン グモータのステータ部に対向配置されたロータ部とし、このロータ部を流体の通 過に伴ってステータ部に対して相対回転させることにより電力を発生させている。 このように発電用のステッピングモータのステータ部を複数層で構成したため、 各層がステータ部とロータ間のディテン卜トルクを打ち消すように作用し、ディ亍 ン卜トルクを低減することが可能となる。その結果、水車を低流量及び低水圧で 回転させることが可能となる。 また、他の発明は、上述の小型発電装置に加えて、ステータ部とロータ部との 間に発生するディテントトルクを、複数層の各層が互いに打ち消すように設定さ れている。例えば、各層をスキュー (周方向へ回転させて意識的に各層の極を ずらすこと)したり、各層間に非磁性部材を介在させる等して、積極的にディテン トトルクを低減するように設定することにより、上述の作用がさらに効果的なも のとなる。  SUMMARY OF THE INVENTION An object of the present invention is to provide a small power generator and a water faucet device capable of rotating a water turbine even with a small amount of water and generating a sufficient amount of power. In view of the above problems, the small power generator of the present invention includes a water turbine that is provided in a fluid passage and rotates with the passage of a predetermined amount of fluid, and a rotating body that is connected to the water wheel and rotates together with the water wheel. A stepper motor having a plurality of layers of stator portions, a rotor portion opposed to the stator portion, and electric power is generated by rotating the rotor portion relative to the stator portion with the passage of fluid. I have. Since the stator portion of the stepping motor for power generation is composed of a plurality of layers as described above, each layer acts so as to cancel the detent torque between the stator portion and the rotor, so that the detent torque can be reduced. As a result, it becomes possible to rotate the water turbine at a low flow rate and a low water pressure. According to another aspect of the present invention, in addition to the above-described small power generator, a plurality of layers are set so that detent torque generated between the stator section and the rotor section cancels each other. For example, skew each layer (deliberately shift the poles of each layer by rotating in the circumferential direction), or set non-magnetic members between each layer to actively reduce the detent torque. As a result, the above-described operation becomes more effective.
また、他の発明の小型発電装置は、流体通路に配設され所定流量の流体通 過に伴って回転する水車を備えると共に、この水車に連結され水車と共に回転 する回転体を、複数のコイル部を有するス亍ータ部を備えたブラシレスモータの ステ一タ部に対向配置されたロータ部とし、このロータ部を流体の通過に伴って ステータ部に対して相対回転させることにより電力を発生させている。このよう に水車に連結された回転体をブラシレスモータのステータ部に対向配置された ロータ部としたため、従来の 1層式のステッピングモータ方式の発電装置に比べ、 ディテントトルクを低減することが可能となる。その結果、水車を低流量及び低 水圧で回転させることが可能となる。 また、他の発明は、上述の小型発電装置に加えて、ロータ部に着磁された極 数とステ一タ部のコイル部数との関係を、 2— 3、 4— 3もしくは 4— 6に設定して いる。そのため、ス亍ータ部とロータ部間のディテン卜トルクをさらに低減すること が可能となる。 また、他の発明は、上述の各小型発電装置に加えて、流体通路の一部となる と共に通過する流量を絞って水車の羽根部分に射出するための射出孔を備え た射出部材を備えている。そのため、少ない流量であっても射出孔によってある 程度水圧を高めることができるため、水車をより滑らかに回転させ発電を可能と することができる。また、上述の各小型発電装置はディテントトルクを低減したこ とにより低流量及び低水圧で発電が可能となっているため、射出孔の径を大き めとし、これによつて水圧をそれ程高めることなく発電することも可能となる。こ のように設定する場合は、高水圧によって射出部材が損傷する危険性が低減 される。 In addition, a small power generation device according to another invention includes a water turbine that is disposed in a fluid passage and rotates with the passage of a predetermined amount of fluid, and a rotating body that is connected to the water wheel and rotates together with the water turbine includes a plurality of coil units. A rotor portion opposed to a stator portion of a brushless motor provided with a stator portion having a rotor portion, and generating electric power by rotating the rotor portion relative to the stator portion along with passage of fluid. ing. like this Since the rotating body connected to the water turbine is a rotor part opposed to the stator part of the brushless motor, the detent torque can be reduced compared to the conventional single-layer stepping motor type power generator. As a result, the water turbine can be rotated at a low flow rate and a low water pressure. Further, in another invention, in addition to the above-described small power generator, the relationship between the number of poles magnetized in the rotor and the number of coils in the stator is reduced to 2-3, 4-3 or 4-6. Is set. Therefore, the detent torque between the stator and the rotor can be further reduced. According to another aspect of the present invention, there is provided, in addition to the above-described small power generators, an injection member having an injection hole for forming a part of a fluid passage and narrowing a flow rate to be injected to a blade portion of a water turbine. I have. Therefore, even if the flow rate is small, the water pressure can be increased to some extent by the injection hole, and the water turbine can be rotated more smoothly to generate power. In addition, since each of the above-mentioned small power generators can generate power at low flow rate and low water pressure by reducing the detent torque, the diameter of the injection hole should be increased, and the water pressure should be increased accordingly. It is also possible to generate power without. With this setting, the risk of damage to the injection member due to high water pressure is reduced.
また、本発明の水栓装置は、バルブの開放程度を制御することにより、流体 通路へ流出させる流量を通常より少なくした節水モードと、流量を通常とする通 常モードの少なくとも 2モードを備えると共に、上記請求項 6または請求項 9記載 の小型発電装置を流体通路へ配設している。上述したように、流体通路へ配設 された上記請求項 6または請求項 9記載の小型発電装置はディテントトルクが 低減されているため、低流量及び低水圧で発電が可能である。そのため、水車 へ供給される流体の水圧を低めに設定すれば、通常モード時において高水圧 により部材が損傷する危険性を低減することができ、かつ節水モードにおいて も十分に発電ができるようにすることが可能となる。 また、他の発明は、上述の水栓装置に加えて、節水モード時における流量を、 2. 0リットル 分〜 3. 0リットルノ分としている。そのため、十分に節水が可能 となると共に、この低水量によって発電を可能とすること力《できる。 図面の簡単な説明 In addition, the faucet device of the present invention has at least two modes, a water saving mode in which the flow rate flowing out to the fluid passage is smaller than usual by controlling the degree of opening of the valve, and a normal mode in which the flow rate is normal. The small power generator according to claim 6 or 9 is disposed in the fluid passage. As described above, the small power generator according to claim 6 or claim 9 disposed in the fluid passage has a reduced detent torque, so that power can be generated at a low flow rate and a low water pressure. Therefore, the water wheel If the water pressure of the fluid supplied to the water is set lower, the risk of damage to components due to high water pressure in the normal mode can be reduced, and sufficient power can be generated even in the water saving mode Becomes In another invention, in addition to the faucet device described above, the flow rate in the water saving mode is set to 2.0 liters to 3.0 liters. As a result, it is possible to save water sufficiently and at the same time, to make it possible to generate electricity with this low water flow. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施の形態の 2層式のステッピングモータ方式の小型 発電装置の縦断面図を示している。  FIG. 1 is a longitudinal sectional view of a two-layer stepping motor type compact power generator according to a first embodiment of the present invention.
図 2は図 1の小型発電装置を図 1の矢示 II方向から見た側面図である。  FIG. 2 is a side view of the small power generator of FIG. 1 as viewed in the direction of arrow II in FIG.
図 3は図 2を矢示 III方向から見た底面図である。  FIG. 3 is a bottom view of FIG. 2 as viewed from the direction of arrow III.
図 4は流体通路を絞って水圧を高めた状態で水車に吹き付けるための部材 (ノズルリング)と水車との関係を示した模式図である。  FIG. 4 is a schematic diagram showing the relationship between a member (nozzle ring) for spraying the water turbine with the fluid passage being narrowed to increase the water pressure and the water turbine.
図 5は本発明の第 2の実施の形態のブラシレスモータ方式の小型発電装置の 縦断面図を示している。  FIG. 5 is a longitudinal sectional view of a brushless motor type small power generator according to a second embodiment of the present invention.
図 6は図 5の小型発電装置を図 5の矢示 VI方向から見た側面図である。  FIG. 6 is a side view of the small power generator of FIG. 5 as viewed from the direction of arrow VI in FIG.
図 7 (a)は本発明の小型発電装置を用いた水栓装置の正面断面図を示し、図 7 (b)はその側面断面図を示している。 発明を実施するための最良の形態 以下、本発明の小型発電装置及び水栓装置の各実施の形態を、図面を用い て詳細に説明する。 まず、本発明の第 1の実施の形態となる 2層式のステッピングモータ方式を利 用した小型発電装置について、図 1から図 4を用いて説明する。図 1は、本発明 の第 1の実施の形態となる 2層式のステッピングモータ方式の小型発電装置の 縦断面図を示している。また、図 2は、図 1の小型発電装置を図 1の矢示 II方向 から見た側面図である。また、図 3は、図 2を矢示 III方向から見た底面図である。 また、図 4は、流体通路を絞って水圧を高めた状態で水車に吹き付けるための 部材 (ノズルリング)と水車との関係を示した模式図である。 図 1に示すように、第 1の実施の形態の 2層式のステッピングモータ方式を利 用した小型発電装置は、ケーシング 1と、ケーシング 1内に配設されたノズルリ ング 2と、ノズルリング 2の内周側に回転自在に配置された水車 3と、水車 3と一 体的に回転する回転体 4と、回転体 4の外周側に配置されたステンレス製の力 ップ状部材 5と、このカップ状部材 5のさらに外側に配置されたステッピングモー タのステータ部 6とを備えている。 図 1及び図 2に示すように、ケーシング 1は、本体部 1 1と、この本体部 1 1の外 側に突出している流入路 1 2と流出路 1 3とを備えている。本体部 1 1は、上述の 回転体 4及びス亍ータ部 6とで構成される発電部を取り付けるための発電部取 付部 1 1 aを備えている。発電部取付部 1 l aは、本体部 1 1の図 1における右側 に形成された解放端面部分及びその外周部分から構成され、その外周部分に は円周状の溝 1 1 bが形成されている。そして、溝 1 1 b内には、 Oリング 8が埋め 込まれている。 さらに、この Oリング 8を溝 1 l b内に封入するように、上述のカップ状部材 5の 鍔部 52が押し当てられ、この鍔部 52の外周端部を本体部 1 1に形成された凸 部 1 1 dに当接させた状態 (図 1中の拡大図参照)で、上述の発電部取付部 1 1 a とで挟み込むように蓋部材 9が被せられる。すなわち、発電部取付部 1 1 aには、 Oリング 8を溝 1 1 b内で押しつぶしながらカップ状部材 5が押し当てられ、さらに その上から蓋部材 9が被せられることとなる。なお、このようにカップ状部材 5の 鍔部 52の外周端部を凸部 l i dの内周部に当接させることにより、カップ状部材 5はス亍ータ部 6の内周部分に位置決めされる。そして、図 2に示すように、蓋 部材 9の 4隅に形成されたネジ孔に 4本のネジ 1 0をはめ込んでネジ締めするこ とにより、蓋部材 9はケーシング 1の本体部 1 1に固定される。これにより、ケ一 シング 1の解放端面となる発電部取付部 1 1 aは、カップ状部材 5によって閉じら れることとなる。 カップ状部材 5は、非磁性のステンレス製部材で形成されており、絞り加工に よって鍔部 52と筒状部 51と底部 53とが形成されたものとなっている。そして、 底部 53には、水車 3及び回転体 4を支承する軸 7の一端を回転自在に受ける 軸受け 1 5が嵌め込まれている。このカップ状部材 5は、ケ一シング 1内を通過 する流体からステッピングモータのステータ部 6を隔離すると共に、ケ一シング 1 外への流体の流出を防止するためのものとなっている。 なお、このケーシング 1に形成された流入路 1 2、流出路 1 3及びこれらを連結 する連結路 1 4は、蛇口やバルブ等から構成される水栓装置(図 7参照)の流体 通路の一部に配設されるものとなっており、流体源から流入路 1 2へ入り込んで きた流体が連結路 1 4を通過して流出路 1 3から吐出されるようになっている。な お、流体は、この通過の際に水車 3に回転力を与えるようになつている。この部 位における詳細な説明は後述する。連結路 1 4内には、後述する水車 3及び回 転体 4の回転を支承する軸 7の他端が回転自在に配置される。この軸 7は、一 端がケ一シング 1の連結路 1 4内に形成された軸受け用の穴 1 4aに回転可能に はめ込まれ、他端側が上述の解放端面を通過しその先端がカップ状部材 5内 に配置された軸受け 1 5内に回転可能にはめ込まれている。これにより、軸 7は、 ケーシング 1とカップ状部材 5とにより協働して保持される。 そして、ケーシング 1の連結路 1 4内には、上述の水栓装置の流体通路の一 部となると共に通過する流体の流量を絞って水車 3の羽根部分 31 (図 4参照) へ射出するための射出部材としてのノズルリング 2が圧入によりはめ込まれて いる。ノズルリング 2は、略筒状のリング部 21と、このリング部 21の一方の解 放端を外周方向に折曲することにより形成した鍔部 22とを有している。そして、 リング部 21には、図 4に示すように、流入路 1 2に入り込んできた流体の流入通 路を絞って、内側に配置される水車 3の羽根部分 31に射出する射出孔としての 2つのノズル 23が約 1 80度対称位置に設けられている。 流体通路の一部となるノズルリング 2の内側に配設された水車 3は、所定流 量の流体通過に伴って回転するものとなっている。水車 3は、円筒状のリング部 32と、このリング部 32の一側端面に外周先端部分が接続されると共にその中 心部分が上述の軸 7に揷通固定された羽根部分 31とからなる。なお、羽根部 分 31は、ノズル 23からの流体の圧力を受けやすいように円弧状に湾曲してい る。このため、水車 3は、流入路 1 2に入り込み 2つのノズル 23で絞られて圧力 を高められた流体が羽根部分 31に勢い良ぐ つかり、その水力で軸 7を回転 中心として回転するようになっている。なお、羽根部分 31にぶつけられた流体 は、水車 3の開放部分、リング部 32の内周部分を経て、連結路 1 4から流出路 1 3へ移動する。 回転体 4は、水車 3と連結軸部 35を介して一体的に形成されており、水車 3と 同軸上に配置されている。すなわち、上述の水車 3、連結軸部 35及び回転体 4 は、軸 7の伸びる方向に連結された状態で配置されている。このため、回転体 4 は水車 3が水力によって回転すると、水車 3と一体的に軸 7を回転中心として回 転する。なお、連結軸部 35及び回転体 4には、軸 7が伸びる方向に連通された 4つの連通孔 4aが周方向に等間隔で形成されている。これらの連通孔 4aは、 回転体 4の図 1における右側にも流体を流し込むことによって軸 7の軸受け 15 に対する回転をスムーズにさせるためのものとなっている。 このように水車 3に連結され水車 3と共に回転する回転体 4は、ステッピングモ ータのロータ部となっており、ロータマグネット Mgで構成されその外周面には 8 極着磁がなされている。そして、この外周面が、カップ状部材 5の筒状部 51を 通してステッピングモータのス亍一タ部 6に対向配置されている。このため、回 転体 4は、水車 3と共に回転する場合、ス亍ータ部 6に対して相対回転するよう になっている。 ステータ部 6は、軸方向に重ねて配置された 2つの層 6a, 6bで構成されてい る。各層 6a, 6bは、それぞれ外ヨーク(重ねた状態において外側に配置されて いる) 61と、この外ヨーク 61に一体的に形成された外極歯 61 aと、内ヨーク(重 ねた状態において内側に配置されている) 62と、この内ヨーク 62に一体的に形 成された内極歯 62aと、コイルポビンに卷回されたコイル 63とを備えている。コ ィル 63の巻き始め部分及び巻き終わり部分は、それぞれ端子 64に接続され ている。 このように構成されたステータ部 6は、カップ状部材 5の筒状部 51の外側部分 にはめ込まれている。このため、このス亍ータ部 6の各極歯 61 a, 62aと、回転 体 4の着磁部との間には磁束が流れている。上述したように水車 3と共に回転 体 4が回転すると、この磁束の流れに変化が生じ、この流れの変化を防止する 方向にコイル 63に誘起電圧が発生する。この誘起電圧は、端子 64から取り出 される。このような形で取り出された誘起電圧は、回路により直流に変換され、 所定の回路(図示省略)を通して整流され電池に充電される。 なお、水車 3を回転させるための具体的な流量に関して以下に述べる。水車 3 が受ける回転力は、流体の流量及び水圧によって設定される。すなわち、上述 した流入路 1 2に入り込んできた流体をノズル 23によってある程度絞り込んで 水車 3の羽根部分 31に勢い良く当てることにより、水車 3は流体から回転力を 受けることとなる。当然ながら、ノズル 23によって流体通路を絞ることによリ水 圧を高める構成としなくても、流量自体が十分であれば水車 3は回転する。しか しながら、このようにノズル 23で水圧を高めた状態で水車 3の羽根部分 31に流 体をぶつける方が、より少ない流量で水車 3を回転させることが可能となる。 なお、本実施の形態では、流体通路を絞り水圧を高める構成となっている力 水圧を高めすぎると水車 3の羽根部分 31やノズルリング 2やその他の流体の 流路が破損してしまう恐れも生じる。また、逆に水圧が低すぎると流量が不十分 となり満足な発電を行えない。そのため、この水圧に関しては水車 3やノズルリ ング 2の材質や厚み等との関係で適宜設定する必要がある。 また、水車 3の羽根部分 31の形状や水車 3の総重量(回転体 4の重量も含 む)に加えて、回転体 4とステータ部 6との間に発生するディテントトルク力 上 述の回転力に対向する抵抗となるが、本発明の主要な部分はディテントトルク 部分を低減することにある。本実施の形態では、ステータ部 6を 2層構造とし、ス キュー (周方向に各層をずらすこと)することにより、例えば周方向において上 述の極歯位置をずらして、ロータ部となる回転体 4の着磁部分との間に発生す るディテントトルクを、互いに打ち消すようにしている。これにより、ディテントトル クが低減される。このため、水車 3を回転させる際の回転体 4とステータ部 6間 のディテントトルク力 それ程強力なブレーキとならず、水車 3は回転体 4と共に 少量の流量及び水圧でスムーズに回転可能となる。 FIG. 7 (a) shows a front sectional view of a faucet device using the small power generator of the present invention, and FIG. 7 (b) shows a side sectional view thereof. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a small power generation device and a faucet device of the present invention will be described in detail with reference to the drawings. First, a small-sized power generator using a two-layer stepping motor system according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a two-layered stepping motor type small power generation device according to a first embodiment of the present invention. FIG. 2 is a side view of the small power generator of FIG. 1 as viewed in the direction of arrow II in FIG. FIG. 3 is a bottom view of FIG. 2 as viewed in the direction of arrow III. FIG. 4 is a schematic diagram showing a relationship between a member (nozzle ring) for spraying the water turbine with the fluid passage being narrowed to increase the water pressure and the water turbine. As shown in FIG. 1, the small power generator using the two-layer stepping motor system according to the first embodiment includes a casing 1, a nozzle ring 2 provided in the casing 1, and a nozzle ring 2 provided in the casing 1. A water wheel 3 rotatably arranged on the inner peripheral side of the water wheel, a rotating body 4 rotating integrally with the water wheel 3, and a stainless steel cap-shaped member 5 arranged on the outer peripheral side of the rotating body 4. And a stator portion 6 of a stepping motor disposed further outside of the cup-shaped member 5. As shown in FIGS. 1 and 2, the casing 1 includes a main body 11 and an inflow channel 12 and an outflow channel 13 protruding outside the main body 11. The main body 11 includes a power generation unit mounting unit 11a for mounting a power generation unit including the rotating body 4 and the stator unit 6 described above. The power generation unit mounting portion 1 la is composed of an open end face portion formed on the right side of the main body portion 11 in FIG. 1 and an outer peripheral portion thereof, and a circumferential groove 11 b is formed on the outer peripheral portion. . The O-ring 8 is embedded in the groove 11b. Further, the flange 52 of the cup-shaped member 5 is pressed so as to seal the O-ring 8 in the groove 1 lb, and the outer peripheral end of the flange 52 is formed in the convex portion formed on the main body 11. In a state where the lid member 9 is in contact with the portion 11 d (see an enlarged view in FIG. 1), the lid member 9 is covered so as to be sandwiched between the above-described power generation portion mounting portion 11 a. That is, the cup-shaped member 5 is pressed against the power-generating-unit mounting portion 11a while crushing the O-ring 8 in the groove 11b, and the lid member 9 is further covered thereon. The cup-shaped member 5 is positioned on the inner peripheral portion of the stator 6 by bringing the outer peripheral end of the flange 52 of the cup-shaped member 5 into contact with the inner peripheral portion of the convex lid. You. Then, as shown in FIG. 2, the four screws 10 are inserted into the screw holes formed at the four corners of the lid member 9 and screwed, so that the lid member 9 is attached to the main body 11 of the casing 1. Fixed. As a result, the power generation unit mounting portion 11 a serving as the open end surface of the casing 1 is closed by the cup-shaped member 5. The cup-shaped member 5 is formed of a non-magnetic stainless steel member, and has a flange 52, a cylindrical portion 51, and a bottom 53 formed by drawing. A bearing 15 that receives one end of a shaft 7 that supports the water wheel 3 and the rotating body 4 so as to freely rotate is fitted into the bottom 53. The cup-shaped member 5 serves to isolate the stator portion 6 of the stepping motor from the fluid passing through the casing 1 and to prevent the fluid from flowing out of the casing 1. The inflow channel 12, the outflow channel 13 and the connecting channel 14 connecting these components formed in the casing 1 are one of the fluid passages of a faucet device (see FIG. 7) composed of a faucet, a valve, and the like. The fluid that has entered the inflow channel 12 from the fluid source passes through the connection channel 14 and is discharged from the outflow channel 13. The fluid imparts a turning force to the water wheel 3 during this passage. A detailed description of this section will be described later. In the connection path 14, the other end of the shaft 7 that supports rotation of the water wheel 3 and the rotating body 4 described later is rotatably arranged. This axis 7 The end is rotatably fitted into a bearing hole 14a formed in the connecting path 14 of the casing 1, the other end passes through the open end face described above, and the tip is disposed in the cup-shaped member 5. It is rotatably fitted in a bearing 15. Thus, the shaft 7 is cooperatively held by the casing 1 and the cup-shaped member 5. The connecting passage 14 of the casing 1 is formed as a part of the fluid passage of the faucet device described above, and the fluid flowing therethrough is throttled to be discharged to the blade portion 31 of the turbine 3 (see FIG. 4). The nozzle ring 2 as the injection member is press-fitted. The nozzle ring 2 has a substantially cylindrical ring portion 21 and a flange portion 22 formed by bending one open end of the ring portion 21 in the outer circumferential direction. Then, as shown in FIG. 4, the ring portion 21 narrows the inflow passage of the fluid that has entered the inflow passage 12 and serves as an injection hole for injecting into the blade portion 31 of the water turbine 3 disposed inside. Two nozzles 23 are provided at approximately 180 degrees symmetrical positions. The water wheel 3 provided inside the nozzle ring 2 which is a part of the fluid passage rotates with a predetermined flow rate of fluid. The water turbine 3 includes a cylindrical ring portion 32, and a blade portion 31 having an outer peripheral end portion connected to one end surface of the ring portion 32 and a center portion thereof fixed through the shaft 7 described above. . The blade portion 31 is curved in an arc shape so as to easily receive the pressure of the fluid from the nozzle 23. For this reason, the water turbine 3 enters the inflow passage 12, and the fluid whose pressure has been increased by the two nozzles 23 and whose pressure has been increased vigorously flows to the blade portion 31, so that the hydraulic power rotates around the shaft 7 as a rotation center. Has become. The fluid that has hit the blade portion 31 moves from the connection path 14 to the outflow path 13 through the open portion of the water wheel 3 and the inner peripheral portion of the ring portion 32. The rotating body 4 is formed integrally with the water turbine 3 via the connecting shaft 35, and is arranged coaxially with the water turbine 3. That is, the above-described water turbine 3, the connecting shaft 35, and the rotating body 4 are arranged so as to be connected in the direction in which the shaft 7 extends. Therefore, when the water wheel 3 is rotated by hydraulic power, the rotating body 4 rotates integrally with the water wheel 3 around the shaft 7 as a rotation center. The connecting shaft 35 and the rotating body 4 are formed with four communication holes 4a communicating with each other in the direction in which the shaft 7 extends, at regular intervals in the circumferential direction. These communication holes 4a are provided for smoothing the rotation of the shaft 7 with respect to the bearing 15 by flowing fluid also to the right side of the rotating body 4 in FIG. The rotating body 4 that is connected to the water wheel 3 and rotates together with the water wheel 3 is a rotor part of a stepping motor, is formed of a rotor magnet Mg, and has eight poles magnetized on its outer peripheral surface. The outer peripheral surface of the stepping motor 5 is arranged to pass through the cylindrical portion 51 of the cup-shaped member 5 and face the spreader portion 6 of the stepping motor. Therefore, when the rotating body 4 rotates together with the water wheel 3, the rotating body 4 rotates relatively to the stator section 6. The stator section 6 is composed of two layers 6a and 6b which are arranged so as to overlap in the axial direction. Each of the layers 6a and 6b includes an outer yoke (disposed outside in an overlapped state) 61, outer pole teeth 61a formed integrally with the outer yoke 61, and an inner yoke (in an overlapping state). 62, an inner pole tooth 62a formed integrally with the inner yoke 62, and a coil 63 wound around a coil pobin. The winding start portion and the winding end portion of the coil 63 are connected to terminals 64, respectively. The stator portion 6 configured as described above is fitted into an outer portion of the cylindrical portion 51 of the cup-shaped member 5. Therefore, a magnetic flux flows between the pole teeth 61 a and 62 a of the stator section 6 and the magnetized section of the rotating body 4. When the rotating body 4 rotates together with the water wheel 3 as described above, a change occurs in the flow of the magnetic flux, and an induced voltage is generated in the coil 63 in a direction to prevent the change in the flow. This induced voltage is taken out from the terminal 64. The induced voltage extracted in such a manner is converted into direct current by a circuit, rectified through a predetermined circuit (not shown), and charged into the battery. A specific flow rate for rotating the water turbine 3 will be described below. The rotational force received by the water turbine 3 is set by the flow rate and the water pressure of the fluid. In other words, the fluid that has entered the above-described inflow passage 12 is squeezed to some extent by the nozzle 23 and is vigorously applied to the blade portion 31 of the water turbine 3, whereby the water turbine 3 receives rotational force from the fluid. Of course, even if the hydraulic pressure is not increased by narrowing the fluid passage by the nozzle 23, the water turbine 3 rotates if the flow rate itself is sufficient. However, it is possible to rotate the turbine 3 with a smaller flow rate by hitting the fluid against the blade portion 31 of the turbine 3 with the water pressure increased by the nozzle 23 as described above. In the present embodiment, the fluid passage is narrowed to increase the water pressure.If the water pressure is excessively increased, the blade portion 31 of the water turbine 3, the nozzle ring 2, and other fluid flow paths may be damaged. Occurs. Conversely, if the water pressure is too low, the flow rate will be insufficient and satisfactory power generation will not be possible. Therefore, it is necessary to appropriately set the water pressure depending on the material and thickness of the water turbine 3 and the nozzle ring 2. Further, in addition to the shape of the blade portion 31 of the turbine 3 and the total weight of the turbine 3 (including the weight of the rotating body 4), the detent torque generated between the rotating body 4 and the stator section 6 increases. Although the above-mentioned resistance is opposed to the rotational force, the main part of the present invention is to reduce the detent torque part. In the present embodiment, the stator portion 6 has a two-layer structure and is skewed (shifting each layer in the circumferential direction), for example, by shifting the above-described pole tooth position in the circumferential direction, and The detent torque generated between the magnetized portion of FIG. 4 and the magnetized portion is canceled each other. As a result, detent torque is reduced. For this reason, the detent torque force between the rotating body 4 and the stator portion 6 when rotating the water wheel 3 does not provide so strong braking, and the water wheel 3 can rotate smoothly with the rotating body 4 with a small amount of flow and water pressure.
なお、本実施の形態では、このようにステッピングモータのス亍ータ部 6を 2層 構造とし、かつ羽根部分 31の形状及び厚みを所定寸法に設定することにより、 In the present embodiment, the stator section 6 of the stepping motor has a two-layer structure and the shape and thickness of the blade section 31 are set to predetermined dimensions.
2. 0〜3. 0リットル Z分で流入路 1 2に流れ込んでくる流体を利用して、水車 3 を回転させることが可能となる。 It is possible to rotate the water turbine 3 by using the fluid flowing into the inflow channel 12 in the range of 2.0 to 3.0 liters Z.
また、本実施の形態では、発電機が回転し始める最小起動電流量は 1 . 2〜 Also, in the present embodiment, the minimum starting current amount at which the generator starts rotating is 1.2 to
1 . 5リットル Z分程度に設定しているが、その発電量はわずかであり、さらに、 図示されない蓄電部に蓄えるために必要な電圧は、 AC力、ら DCに変換すること を考慮すると、少なくとも 5V以上は必要となる。本実施の形態では、 2. 0リット ル 分より少し少ない流量で発電は可能ではある力 実際に確実に発電させる には、 2. 0リットル/分以上の流量が必要となる。 Although it is set to about 1.5 liters Z minutes, the amount of power generation is small, and considering the voltage required to store it in the power storage unit (not shown), At least 5V is required. In this embodiment, power generation is possible at a flow rate slightly less than 2.0 liters. A power that is at least 2.0 liters / minute is required to actually generate power.
一方、実使用面において、 2. 0リットル Z分という流量は手洗い用として使 用する最小流量である。以上のことにより、本実施の形態では、 2. 0〜3. 0リ ッ卜ル Z分の流量を節水モードとして、 3. 0リットル 分を超える流量を通常モ ードとして設定した。  On the other hand, in actual use, the flow rate of 2.0 liters Z is the minimum flow rate used for hand washing. As described above, in this embodiment, the flow rate of 2.0 to 3.0 liters Z is set as the water saving mode, and the flow rate exceeding 3.0 liters is set as the normal mode.
なお、ス亍ータ部 6を 1層構造とし、他の部分の上述の実施の形態と同様とする と、ディテントトルクが上述の実施の形態より強くブレーキとして作用してしまう。 具体的には、 3リットル Z分を超える流量でないと水車 3が回転しない。 次に、本発明の第 2の実施の形態となるブラシレスモータ方式を利用した小型 発電装置について、図 5から図 6を用いて説明する。なお、この第 2の実施の形 態の説明においては、上述の第 1の実施の形態と同様の構成については、説 明を省略すると共に同一構成部分については上述の第 1の実施の形態と同符 号を用いるものとする。図 5は、本発明の第 2の実施の形態の小型発電装置の 縦断面図を示している。また、図 6は、図 5の小型発電装置を図 5の矢示 VI方向 から見た側面図である。 図 5に示すように、第 2の実施の形態のブラシレスモータ方式の小型発電装 置は、ほぼ第 1の実施の形態と同様の構成を有しており、ケーシング 1と、ケー シング 1内に配設されたノズルリング 2と、ノズルリング 2の内周側に回転自在 に配置された水車 3と、水車 3と一体的に回転する回転体 4と、回転体 4の外周 側に配置されたステンレス製のカップ状部材 1 05と、このカップ状部材 1 05のさ らに外側に配置されたブラシレスモータのス亍ータ部 1 06とを備えている。 ケ一シング 1の本体部 1 1 1は、上述の回転体 4及びステータ部 1 06で構成さ れる発電部を取り付けるための発電部取付部 1 1 l aを備えている。発電部取付 部 1 1 1 aは、本体部 1 1 1の図 5における右側に形成された中心部に穴を有する 凹部 1 1 1 cとその外周部分から構成され、その外周部分には円周状の溝 1 1 1 b が形成されている。そして、溝 1 1 1 b内には、 Oリング 8が埋め込まれている。 さらに、この Oリング 8を溝 1 1 1 b内に封入するように、上述のカップ状部材 1 0 5の最外周部分に形成された鍔部 1 52力お押し当てられ、この鍔部 1 52の外周 端部を本体部 1 1 1に形成された凸部(図示省略 =構造は上述の第 1の実施の 形態と同様)に当接させた状態で、上述の発電部取付部 1 1 1 aとで挟み込むよ うに皿状部材 90が被せられる。すなわち、発電部取付部 1 1 1 aには、 Oリング 8 を溝 1 1 l b内で押しっぷしながらカップ状部材 1 05が押し当てられ、さらにその 上から皿状部材 90が被せられることとなる。そして、図 6に示すように、皿状部 材 90の 4隅に形成されたネジ孔に 4本のネジ 1 0をはめ込んでネジ締めするこ とにより、皿状部材 90はケ一シング 1の本体部 1 1 1に固定される。これにより、 ケーシング 1の解放端面となる発電部取付部 1 1 1 aは、カップ状部材 1 05によ つて閉じられることとなる。 カップ状部材 1 05は、非磁性のステンレス製部材で形成されており、絞り加工 によって鍔部 1 52と、鍔部 1 52に連続する外側筒状部 1 55と、この外側筒状 部 155の内側に配置された内側筒状部 1 51と、両筒状部 1 51, 1 55を連結す る連結面部 1 56と、底部 1 53とが形成されたものとなっている。そして、このよ うに構成されたカップ状部材 1 05は、上述した発電部取付部 1 1 1 aの凹部 1 1 1 c内にはめ込まれ、上述したようにケ一シング 1と皿状部材 90とに挟まれて固 定される。底部 1 53には、水車 3及び回転体 4を支承する軸 7の一端を回転自 在に受ける軸受け 1 5が嵌め込まれている。このカップ状部材 1 05は、ケ一シン グ 1内を通過する流体からブラシレスモータのステータ部 1 06を隔離すると共に、 ケ一シング 1外への流体の流出を防止するためのものとなっている。 そして、ケーシング 1の連結路 1 4内には、上述の水栓装置の流体通路の一 部となると共に通過する流体の流量を絞って水車 3の羽根部分 31へ射出する ための射出部材としてのノズルリング 2が圧入によりはめ込まれている。このノ ズルリング 2の構成は、上述した第 1の実施の形態と同様である。また、このノ ズルリング 2の内側に配置された水車 3及び水車 3に一体的に形成された回転 体 4の構成も、上述した第 1の実施の形態と同様である。 水車 3に連結され水車 3と共に回転する回転体 4は、ブラシレスモータのロー タ部となっており、ロータマグネット Mgで構成されその外周面には 2極着磁がな されている。そして、この外周面が、カップ状部材 1 05の内側筒状部 1 51を通し てブラシレスモータのステ一タ部 1 06に対向配置されている。このため、回転体 4は、水車 3と共に回転する場合、ステータ部 1 06に対して相対回転するように なっている。 ステータ部 1 06は、図 6に示すように、周方向に等分配置された 3つのコイル 部 1 06a, 1 06b, 1 06cで構成されてし、る。各コィゾレ部 1 06a, 1 06b, 1 06c は、それぞれステータコア 1 61と、このステ一タコア 1 61に巻回されたコイル 1 6 3とを備えている。コイル 1 63の巻き始め部分及び巻き終わり部分は、それぞ れ端子 1 64に接続されている。 このように構成されたステータ部 1 06は、カップ状部材 1 05の内側筒状部 1 5 1と外側筒状部 1 55との間の部位にはめ込まれている。このため、このス亍ー タ部 1 06の極となる各ヨーク部材 1 61の内側対向面 1 61 aと、回転体 4の着磁 部との間には磁束が流れている。上述したように水車 3と共に回転体 4が回転 すると、この磁束の流れに変化が生じ、この流れの変化を防止する方向にコィ ル 1 63に誘起電圧が発生する。この誘起電圧は、端子 1 64から取り出される。 このような形で取り出された誘起電圧は、回路により直流に変換される。それ は、出力コイルが 3相の Y結線とされた発電部によって誘起された交流電圧は、 6個のダイオードと 1個の平滑コンデンサからなる 3相ブリッジ回路 (図示省略) を通して整流され直流に変換され電池に充電される。 なお、ス亍ータ部 1 06は、上述したように 3つのコイル部 1 06a, 1 06b, 1 06 cから構成され 3極を有するものとなっている。一方、このステ一タ部 1 06に対 向配置された回転体 4は、上述したように 2極着磁となっている。すなわち、本 実施の形態は、ブラシレスモータ方式となっており、回転体(ロータ部) 4に着磁 された極数とステータ部 1 06のコイル部数 (極数)との関係が、 2— 3となってい る。そのため、従来の 1層式のステッピングモータ方式のように、ステータ部 10 6と回転体 4との間に発生するディテントトルクが大きくなし、。このため、水車 3を 回転させる際の回転体 4とステータ部 1 06間のディテン卜トルクが、それ程強力 なブレーキとならず、水車 3は回転体 4と共に少量の流量及び水圧でスムーズ に回転可能となる。 なお、回転体(ロータ部) 4に着磁された極数とス亍ータ部 1 06のコイル部数 (極数)との関係は、この実施の形態のように 2— 3でなぐたとえば 4一 3や 4— 6としてもよい。このように発電装置の主要部をブラシレスモータ方式で構成し た第 2の実施の形態においても、上述した第 1の実施の形態と同様、 2. 0〜3. 0リットル Z分で流入路 1 2に流れ込んでくる流体を利用して、水車 3を回転させ ることが可肯 gとなる。 なお、発電装置の構造を、ステッピングモータ方式とし、かつステータ部を 1層 構造 (先述した第 1の実施の形態はステータ部が 2層構造)とすると、上述した ようにディテントトルクが強くブレーキとして作用してしまう。具体的には、 3リット ル Z分を超える流量でないと水車 3がスムーズに回転しなし、。上述したように、 発電装置の主要部の構成を、ブラシレスモータ方式とすることで、少量の水でも 発電を可能とすることができる。 上述した各実施の形態の小型発電装置は、 2. 0〜3. 0リットル Z分と少量の 流量を利用して発電をすることが可能となる。加えて、 3. 0リットル 分を超え る流量となった場合でも当然ながら発電でき、しかもディテントトルクの影響を受 けずにスムーズに回転体 4が回転するため、同回転数当たりの発電出力は従 来のものに比して高いものとなる。 このような効果を有しているため、上述した各実施の形態の小型発電装置を 取り付けた水栓装置を、バルブの開放程度を制御することにより、流体通路へ 流出させる流量を通常より少なくした節水モードと、流量を通常とする通常モー ドの少なくとも 2モード仕様とし、節水モード時の流量を上述の 2· 0〜3· 0リット ル Ζ分としても良し、。このようにすれば、節水モード時においても発電が可能と なり、かつ通常モード時においては効率の良い発電出力を得られることができ る。 また、上述したように各実施の形態では、従来の 1層構造のステッピングモー タ方式に比べ、ディテントトルクを低減することが可能であるため、これを利用し、 例えばノズル 23の穴径を広げて水車 3への水圧を低減し、ノズルリング 2およ び水車 3の水圧による破損の危険性をさらに低減するようにしても良い。その場 合、ノズル 23の穴径を広げ水圧を低下させた分、水車 3が回転可能な最低流 量が若干上昇してしまうが、その流量が例えば 2. 5リットル Ζ分程度であれば、 従来のものに比して十分高性能といえる。 次に、上述した本発明の小型発電装置を用いた水栓装置の実施例について 説明する。 If the stator section 6 has a one-layer structure and is the same as the above-described embodiment in the other portions, the detent torque acts as a brake stronger than in the above-described embodiment. Specifically, the turbine 3 does not rotate unless the flow rate exceeds 3 liters Z. Next, a small power generator using a brushless motor system according to a second embodiment of the present invention will be described with reference to FIGS. In the description of the second embodiment, the description of the same configuration as that of the first embodiment will be omitted, and the same components will be the same as those of the first embodiment. The same sign shall be used. FIG. 5 shows a vertical cross-sectional view of a small power generator according to the second embodiment of the present invention. FIG. 6 is a side view of the small power generator shown in FIG. 5 as viewed in a direction indicated by an arrow VI in FIG. As shown in FIG. 5, the brushless motor type small power generation device of the second embodiment has almost the same configuration as that of the first embodiment, and includes a casing 1 and a casing 1. The nozzle ring 2 provided, a water wheel 3 rotatably arranged on the inner peripheral side of the nozzle ring 2, a rotating body 4 that rotates integrally with the water wheel 3, and an outer peripheral side of the rotating body 4. It includes a cup-shaped member 105 made of stainless steel, and a stator portion 106 of a brushless motor disposed outside the cup-shaped member 105. The main body section 111 of the casing 1 includes a power generation section mounting section 11 la for mounting a power generation section composed of the rotating body 4 and the stator section 106 described above. The power generation part mounting part 111a is composed of a concave part 111c having a hole in the center part formed on the right side of FIG. 5 of the main body part 111 and its outer peripheral part, and the outer peripheral part has a circumferential part. A groove 1 1 1 b is formed. The O-ring 8 is embedded in the groove 1 1 1b. Further, the O-ring 8 is pressed against a flange 1 52 formed on the outermost peripheral portion of the cup-shaped member 105 so as to be sealed in the groove 111 b. The outer peripheral end of the power generation unit mounting portion 1 11 1 abuts on a convex portion formed on the main body portion 11 1 (not shown = the structure is the same as in the first embodiment). I sandwich it with a The dish-shaped member 90 is covered. That is, the cup-shaped member 105 is pressed against the O-ring 8 while pressing the O-ring 8 within the groove 11 lb, and the dish-shaped member 90 is put on the O-ring 8 from above. Become. Then, as shown in FIG. 6, four screws 10 are inserted into the screw holes formed at the four corners of the dish-shaped member 90, and the screws are tightened. It is fixed to the main body 1 1 1. As a result, the power generation unit mounting portion 111 a serving as the open end surface of the casing 1 is closed by the cup-shaped member 105. The cup-shaped member 105 is formed of a non-magnetic stainless steel member, and is formed of a flange portion 152 by drawing, an outer cylindrical portion 1 55 continuous with the flange portion 152, and an outer cylindrical portion 155. An inner tubular portion 151 arranged inside, a connecting surface portion 156 connecting the two tubular portions 151, 155, and a bottom portion 153 are formed. Then, the cup-shaped member 105 configured as described above is fitted into the recessed portion 111c of the power generation unit mounting portion 111a, and the casing 1 and the dish-shaped member 90 are connected as described above. It is fixed by being sandwiched between. A bearing 15 that receives one end of a shaft 7 that supports the water wheel 3 and the rotating body 4 in a rotating manner is fitted into the bottom portion 153. This cup-shaped member 105 serves to isolate the stator portion 106 of the brushless motor from the fluid passing through the casing 1 and to prevent the fluid from flowing out of the casing 1. I have. The connecting path 14 of the casing 1 serves as an injection member for forming a part of the fluid path of the faucet device described above, and also as an injection member for restricting the flow rate of the passing fluid and injecting it to the blade portion 31 of the water turbine 3. Nozzle ring 2 is fitted by press fitting. The configuration of the nozzle ring 2 is similar to that of the first embodiment. In addition, the configuration of the water wheel 3 disposed inside the nozzle ring 2 and the rotating body 4 integrally formed with the water wheel 3 are also the same as those in the above-described first embodiment. The rotating body 4 which is connected to the water wheel 3 and rotates together with the water wheel 3 is a rotor part of a brushless motor, is composed of a rotor magnet Mg, and has a two-pole magnetized outer peripheral surface. The outer peripheral surface of the brushless motor is opposed to the stator portion 106 of the brushless motor through the inner cylindrical portion 151 of the cup-shaped member 105. Therefore, when the rotating body 4 rotates together with the water wheel 3, the rotating body 4 rotates relatively to the stator portion 106. As shown in FIG. 6, the stator section 106 is composed of three coil sections 106a, 106b, and 106c that are equally arranged in the circumferential direction. Each of the kosole sections 106a, 106b, and 106c includes a stator core 161 and a coil 163 wound around the stator core 161. The winding start portion and the winding end portion of the coil 163 are connected to the terminal 164, respectively. The stator portion 106 configured as described above is fitted into a portion between the inner tubular portion 151 and the outer tubular portion 155 of the cup-shaped member 105. For this reason, a magnetic flux flows between the inner facing surface 161 a of each yoke member 161 serving as a pole of the stator portion 106 and the magnetized portion of the rotating body 4. When the rotating body 4 rotates together with the water wheel 3 as described above, a change occurs in the flow of the magnetic flux, and an induced voltage is generated in the coil 163 in a direction to prevent the change in the flow. This induced voltage is extracted from terminal 164. The induced voltage extracted in such a manner is converted into direct current by a circuit. That is, the AC voltage induced by the power generation unit whose output coil is three-phase Y-connected is rectified and converted to DC through a three-phase bridge circuit (not shown) consisting of six diodes and one smoothing capacitor. The battery is charged. The stator section 106 is composed of three coil sections 106a, 106b, and 106c as described above, and has three poles. On the other hand, the rotating body 4 disposed opposite to the stator section 106 is two-pole magnetized as described above. That is, in the present embodiment, a brushless motor system is used, and the relationship between the number of poles magnetized on the rotating body (rotor section) 4 and the number of coil sections (number of poles) of the stator section 106 is 2-3. It is. Therefore, unlike the conventional single-layer stepping motor system, the detent torque generated between the stator unit 106 and the rotating body 4 is not large. For this reason, the detent torque between the rotating body 4 and the stator portion 106 when rotating the turbine 3 does not provide a very strong brake, and the turbine 3 can rotate smoothly with the rotating body 4 with a small amount of flow and water pressure. Becomes Note that the relationship between the number of poles magnetized on the rotating body (rotor section) 4 and the number of coils (poles) of the stator section 106 is, for example, 4−3, which is not 2-3 as in this embodiment. One 3 or 4-6 may be used. Thus, in the second embodiment in which the main part of the power generation device is configured by the brushless motor system, as in the first embodiment, 2.0 to 3.0 liters of the inflow path 1 It is acceptable to rotate the water wheel 3 using the fluid flowing into 2. Assuming that the structure of the power generating device is a stepping motor system and the stator portion has a single-layer structure (the first embodiment described above has a two-layer stator portion), as described above, the detent torque is strong and the brake is used as a brake. Works. Specifically, the turbine 3 does not rotate smoothly unless the flow rate exceeds 3 liters Z. As described above, by using a brushless motor system for the configuration of the main part of the power generation device, it is possible to generate power even with a small amount of water. The small power generator of each embodiment described above can generate power using a small flow rate of 2.0 to 3.0 liters Z. In addition, even if the flow rate exceeds 3.0 liters, it is possible to generate power naturally, and the rotating body 4 rotates smoothly without being affected by the detent torque. It will be higher than conventional ones. Due to such an effect, the flow rate of the faucet device to which the small power generation device of each of the above-described embodiments is attached is reduced by controlling the degree of opening of the valve so that the flow rate to the fluid passage is reduced. At least two modes, water saving mode and normal mode with normal flow rate, may be used, and the flow rate in water saving mode may be set to the above-mentioned 2.0 to 3.0 liters. By doing so, it is possible to generate power even in the water saving mode, and it is possible to obtain efficient power generation output in the normal mode. In addition, as described above, in each embodiment, since the detent torque can be reduced as compared with the conventional single-layer stepping motor system, this is used to increase the hole diameter of the nozzle 23, for example. Thus, the water pressure to the turbine 3 may be reduced to further reduce the risk of breakage of the nozzle ring 2 and the turbine 3 due to the water pressure. In this case, the minimum flow rate at which the water turbine 3 can rotate slightly increases by the amount of increase in the hole diameter of the nozzle 23 and the decrease in water pressure, but if the flow rate is, for example, about 2.5 liters per minute, It can be said that the performance is sufficiently high as compared with the conventional one. Next, an embodiment of a faucet device using the above-described small power generation device of the present invention will be described.
図 7 (a)、 (b)は、本発明の小型発電装置を用いた水栓装置の断面図である。 図 7 (a)、(b)において、水栓装置 1 000は、その先端に吐水口と人体の手を 検出する人体検出センサー 1 001が設けられている。水栓装置 1 000内には、 流体通路 1 004の開閉を行う電磁弁 1 003と、図 1または図 5に示す小型発電 装置 1 005と、上記した電磁弁 1 003 の開閉を制御し、また、上記小型発電装 置 1 005で発生させた誘起電圧を直流に変換する直流変換回路 (図示省略)や この直流を整流する整流回路 (図示省略)および整流された電流を蓄電する蓄 電部(図示省略)等を有するコントローラ 1 002とカ《概略構成されている。 FIGS. 7A and 7B are cross-sectional views of a faucet device using the small power generation device of the present invention. 7 ( a ) and 7 (b), the faucet device 1000 has a water outlet and a human body detection sensor 1001 for detecting a human hand at its tip. In the faucet device 1000, a solenoid valve 1003 for opening and closing the fluid passage 1004, a small power generator 1005 shown in FIG. 1 or FIG. 5, and opening and closing of the above-described solenoid valve 1003 are controlled. A DC conversion circuit (not shown) for converting the induced voltage generated by the small power generating device 1005 into DC, a rectifier circuit (not shown) for rectifying this DC, and a power storage unit (for storing the rectified current). (Not shown) and the like.
次に、水栓装置 1 000の動作を説明する。  Next, the operation of the faucet device 1000 will be described.
人体の手を人体検出センサー 1 001により検出すると、人体検出センサ一 1 0 01力、ら信号力コントローラ 1 002に出力される。コントローラ 1 002は、電磁弁 1 003に開信号を出力し、電磁弁 1 003が開き吐水する。水は、水栓装置 1 00 0内の流体通路 1 004内を流れ、小型発電装置 1 005に到達する。小型発電 装置 1 005内では、上述したように、流入路に入り込んできた水をノズル等によ リ水圧を高くし水車の羽根部分に当て、水から回転力を受けることにより、誘起 電圧が発生する。  When a hand of the human body is detected by the human body detection sensor 1001, the signal is output to the human body detection sensor 1001 and the signal power controller 1002. The controller 1002 outputs an open signal to the solenoid valve 1003, and the solenoid valve 1003 opens to discharge water. Water flows through the fluid passage 1004 in the faucet 100000 and reaches the small power generator 1005. In the small power generator 1005, as described above, the water that has entered the inflow passage is raised by a nozzle or the like to raise the water pressure and hits the blades of the water turbine, and receives a rotational force from the water to generate an induced voltage. I do.
この誘起電圧は、直流変換回路(図示省略)により直流に変換され、さらに 整流回路 (図示省略)を通して整流されて蓄電部(図示省略)に蓄電される。  This induced voltage is converted to DC by a DC conversion circuit (not shown), rectified through a rectifier circuit (not shown), and stored in a power storage unit (not shown).
そして、蓄電部(図示省略)に蓄電された電流はコントローラ 1 002に通電さ れる。  Then, the current stored in the power storage unit (not shown) is supplied to the controller 1002.
一 、人体の手を検出しなくなると、人体検出センサ一 1 001がそれを検知 し、その信号をコントローラ 1 002に出力し、電磁弁 1 003を閉じる。  On the other hand, when the hand of the human body is no longer detected, the human body detection sensor 1101 detects it, outputs a signal to the controller 1002, and closes the solenoid valve 1003.
なお、水栓装置 1 000の動作については、上記したものに限定されることな く、例えば、所定の時間だけ水を流した後、自動的に水を止めるようにしてもよ い。 本発明の小型発電装置は、流体の通過によって回転する水車に連結された 回転体を、複数層からなるステ一タ部を備えたステッピングモータのス亍一タ部 に対向配置されたロータ部としている。そのため、各層がス亍ータ部とロータ間 のディテントトルクを打ち消すように作用し、ディテントトルクを低減することが可 能となる。その結果、水車を低流量及び低水圧で回転させることが可能となる。 また、他の発明の小型発電装置は、流体の通過によって回転する水車に連 結された回転体を、複数のコイル部を有するステータ部を備えたブラシレスモ一 タのス亍ータ部に対向配置された口一タ部としている。そのため、ディテントトル クを低減することが可能となる。その結果、水車を低流量及び低水圧で回転さ せることが可能となる。 また、本発明の水栓装置は、バルブの開放程度を制御することにより、節水モ ードと通常モードの少なくとも 2モードを備え、かつ上述の小型発電装置を流体 通路へ配設している。このように、本発明の水栓装置は、ディテントトルクが低 減された小型発電装置を流体通路へ配設することによリ低流量及び低水圧で 発電が可能なものとなる。そのため、水車へ供給される流体の水圧を低めに設 定すれば、通常モード時において高水圧により部材が損傷する危険性を低減 することができ、かつ節水モードにおいても十分に発電ができるようにすること が可能となる。 The operation of the faucet device 1000 is not limited to the above-described operation. For example, after the water is allowed to flow for a predetermined time, the water may be automatically stopped. The small power generator according to the present invention is configured such that a rotating body connected to a water turbine rotated by passage of a fluid is used as a rotor part opposed to a stator part of a stepping motor having a stator part having a plurality of layers. I have. Therefore, each layer acts to cancel the detent torque between the stator portion and the rotor, and the detent torque can be reduced. As a result, the water turbine can be rotated at a low flow rate and a low water pressure. In another aspect of the present invention, there is provided a small-sized power generator in which a rotating body connected to a water wheel that rotates by passage of a fluid is opposed to a stator part of a brushless motor provided with a stator part having a plurality of coils. The mouth part is arranged. Therefore, it is possible to reduce the detent torque. As a result, it becomes possible to rotate the water turbine at a low flow rate and a low water pressure. Further, the faucet device of the present invention has at least two modes of the water saving mode and the normal mode by controlling the degree of opening of the valve, and the above-mentioned small power generator is disposed in the fluid passage. As described above, the faucet device of the present invention can generate electric power at a low flow rate and a low water pressure by arranging the small power generation device in which the detent torque is reduced in the fluid passage. Therefore, if the water pressure of the fluid supplied to the water turbine is set lower, the risk of damage to members due to high water pressure in the normal mode can be reduced, and sufficient power generation can be performed even in the water saving mode. It becomes possible to do.

Claims

請求の範囲 The scope of the claims
1. 流体通路に配設され所定流量の流体通過に伴って回転する水車を備 えると共に、この水車に連結され水車と共に回転する回転体を、複数層からな るステ一タ部を備えたステッピングモータの上記ス亍ータ部に対向配置された口 ータ部とし、このロータ部を上記流体の通過に伴って上記ステ一タ部に対して相 対回転させることにより電力を発生させることを特徴とする小型発電装置。 1. A water turbine that is disposed in a fluid passage and rotates with the passage of a predetermined amount of fluid, and a rotating body that is connected to the turbine and rotates together with the water turbine is provided with a stepper having a multi-layer stator section. The motor is a motor portion opposed to the stator portion, and generates electric power by rotating the rotor portion relative to the stator portion as the fluid passes. Characteristic small power generator.
2. 前記ス亍ータ部と前記ロータ部との間に発生するディテントトルクを、前 記複数層の各層が互いに打ち消すように設定されたことを特徴とする請求項 1 記載の小型発電装置。 2. The small power generator according to claim 1, wherein the detent torque generated between the stator section and the rotor section is set so that the plurality of layers cancel each other.
3. 流体通路に配設され所定流量の流体通過に伴って回転する水車を備 えると共に、この水車に連結され水車と共に回転する回転体を、複数のコイル 部を有するステータ部を備えたブラシレスモータの上記ステ一タ部に対向配置さ れたロータ部とし、このロータ部を上記流体の通過に伴って上記ス亍ータ部に対 して相対回転させることにより電力を発生させることを特徴とする小型発電装 3. A brushless motor having a water turbine disposed in the fluid passage and rotating with the passage of a predetermined amount of fluid, and a rotating body connected to the water wheel and rotating together with the water turbine, comprising a stator having a plurality of coils. A rotor portion opposed to the stator portion, and generating electric power by rotating the rotor portion relative to the stator portion along with passage of the fluid. Small power generation equipment
4. 前記ロータ部に着磁された極数と前記ス亍ータ部のコイル部数との関 係を、 2— 3、 4— 3もしくは 4一 6に設定したことを特徴とする請求項 3記載の小 4. The relationship between the number of poles magnetized in the rotor section and the number of coil sections in the stator section is set to 2-3, 4-3 or 416. Stated small
5. 前記流体通路の一部となると共に通過する流量を絞って前記水車の 羽根部分に射出するための射出孔を備えた射出部材を備えたことを特徴とする 請求項 1記載の小型発電装置。 5. The small power generator according to claim 1, further comprising an injection member having an injection hole for forming a part of the fluid passage and for narrowing a flow rate to be passed to the blade of the water turbine for injection. .
6. バルブの開放程度を制御することにより、流体通路へ流出させる流量 を通常より少なくした節水モードと、流量を通常とする通常モードの少なくとも 2 モードを備えると共に、上記請求項 1記載の小型発電装置を上記流体通路へ 配設したことを特徴とする水栓装置。 6. The small power generation system according to claim 1, which has at least two modes: a water saving mode in which the flow rate flowing out to the fluid passage is made smaller than usual by controlling the degree of opening of the valve, and a normal mode in which the flow rate is normal. A faucet device wherein the device is disposed in the fluid passage.
7. 前記節水モード時における流量を、 2. 0リットル 分〜 3. 0リットル/ 分としたことを特徴とする請求項 6記載の水栓装置。 7. The water faucet device according to claim 6, wherein a flow rate in the water saving mode is 2.0 liters to 3.0 liters / minute.
8. 前記流体通路の一部となると共に通過する流量を絞って前記水車の 羽根部分に射出するための射出孔を備えた射出部材を備えたことを特徴とする 請求項 3記載の小型発電装置。 8. The small power generator according to claim 3, further comprising an injection member having an injection hole for forming a part of the fluid passage and for narrowing a flow rate to be passed to the blade portion of the water turbine for injection. .
9. バルブの開放程度を制御することにより、流体通路へ流出させる流量 を通常より少なくした節水モードと、流量を通常とする通常モードの少なくとも 2 モードを備えると共に、上記請求項 3記載の小型発電装置を上記流体通路へ 配設したことを特徴とする水栓装置。 9. At least two modes, a water saving mode in which the flow rate flowing into the fluid passage is made smaller than usual by controlling the degree of opening of the valve and a normal mode in which the flow rate is normal, and the small power generation system according to claim 3 above. A faucet device wherein the device is disposed in the fluid passage.
10. 前記節水モード時における流量を、 2. 0リットル/分〜 3. 0リットル Z 分としたことを特徴とする請求項 9記載の水栓装置。 10. The faucet device according to claim 9, wherein a flow rate in the water saving mode is set to 2.0 liters / minute to 3.0 liters Z minutes.
PCT/JP2001/004079 2000-05-17 2001-05-16 Small power generating device and water faucet device WO2001089066A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01930184A EP1306962B1 (en) 2000-05-17 2001-05-16 Small power generating device and water faucet device
AU56766/01A AU5676601A (en) 2000-05-17 2001-05-16 Small power generating device and water faucet device
US10/276,265 US6876100B2 (en) 2000-05-17 2001-05-16 Small power generating device and water faucet device
DE60141208T DE60141208D1 (en) 2000-05-17 2001-05-16 SMALL ENERGY PRODUCTION APPARATUS AND WATER APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000144546 2000-05-17
JP2000-144546 2000-05-17

Publications (1)

Publication Number Publication Date
WO2001089066A1 true WO2001089066A1 (en) 2001-11-22

Family

ID=18651190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004079 WO2001089066A1 (en) 2000-05-17 2001-05-16 Small power generating device and water faucet device

Country Status (6)

Country Link
US (1) US6876100B2 (en)
EP (1) EP1306962B1 (en)
CN (1) CN1293694C (en)
AU (1) AU5676601A (en)
DE (1) DE60141208D1 (en)
WO (1) WO2001089066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863781A (en) * 2015-05-29 2015-08-26 杭州电子科技大学 Low-speed large-torque water hydraulic motor with bionic non-smooth surface texture

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138259B2 (en) * 2001-02-09 2008-08-27 日本電産サンキョー株式会社 Small hydroelectric generator
US7005758B2 (en) * 2003-05-19 2006-02-28 Sankyo Seiki Mfg. Co., Ltd. Hydraulic power generating device
DE102004046088A1 (en) * 2004-09-23 2006-04-06 G.E. Products Co., Ltd. Hydrodynamic generator especially for hot water boiler has armature driver rotating with blades of turbine so that armature on same axis co-rotates synchronously so that magnetic coils induce electricity and produce current
US20060108808A1 (en) * 2004-11-22 2006-05-25 Chen Mervyn A System and method for generating electricity using well pressures
EP1917435A4 (en) * 2005-08-01 2013-02-20 Chief R Davis Sewer line power generating system
WO2007036943A2 (en) * 2005-09-30 2007-04-05 Hydro-Industries Tynat Ltd. Pipeline deployed hydroelectric generator
JP4751746B2 (en) * 2006-03-27 2011-08-17 日本電産サンキョー株式会社 Hydroelectric power generation apparatus and manufacturing method thereof
US20080217923A1 (en) * 2007-03-06 2008-09-11 Jen-Yen Yen Hydraulic powered electric generator device
US20080283786A1 (en) * 2007-05-18 2008-11-20 Snodgrass David L Infrared retrofit faucet controller
US20090102193A1 (en) * 2007-10-22 2009-04-23 Murphy Liam C Fluid-driven electric generator for operatively connecting to a conduct carrying a fluid
IL186962A0 (en) * 2007-10-28 2008-02-09 Dan Milner Pest deterrent system
US8376100B2 (en) * 2008-04-17 2013-02-19 Levant Power Corporation Regenerative shock absorber
US8839920B2 (en) 2008-04-17 2014-09-23 Levant Power Corporation Hydraulic energy transfer
US8392030B2 (en) * 2008-04-17 2013-03-05 Levant Power Corporation System and method for control for regenerative energy generators
US20100308587A1 (en) * 2009-06-06 2010-12-09 Tu Seng-Da Mini-turbine driven by fluid power for electricity generation
US8698333B2 (en) * 2009-09-23 2014-04-15 Zurn Industries, Llc Flush valve hydrogenerator
JP4656612B1 (en) * 2009-09-29 2011-03-23 Toto株式会社 Faucet hydroelectric generator
WO2012032821A1 (en) * 2010-09-08 2012-03-15 Toto株式会社 Faucet device
WO2011159874A2 (en) 2010-06-16 2011-12-22 Levant Power Corporation Integrated energy generating damper
US8403520B2 (en) * 2010-11-15 2013-03-26 Industrial Technology Research Institute Fire nozzle quick-assembly light
CN103459730B (en) * 2011-03-15 2016-04-06 仕龙阀门公司 Automatic faucet
US9695579B2 (en) 2011-03-15 2017-07-04 Sloan Valve Company Automatic faucets
DE102013100078A1 (en) 2012-02-24 2013-08-29 WIMTEC Elektronische Steuerungs- und Meßgeräte GmbH Sanitary fitting for e.g. washstand, has two generators that are designed as thermal generator, solar cell, photo diode, turbine, piezoelectric energy harvester, radio frequency energy harvester or sound energy harvester
CN204199385U (en) 2012-03-07 2015-03-11 莫恩股份有限公司 E-health appliance fitments
WO2014152482A2 (en) 2013-03-15 2014-09-25 Levant Power Corporation Multi-path fluid diverter valve
EP2968709B1 (en) 2013-03-15 2019-10-02 ClearMotion, Inc. Active vehicle suspension improvements
EP2972139A4 (en) 2013-03-15 2016-10-12 Mueller Int Llc Systems for measuring properties of water in a water distribution system
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
EP3825156A1 (en) 2013-04-23 2021-05-26 ClearMotion, Inc. Active suspension with structural actuator
JP6315228B2 (en) * 2013-05-29 2018-04-25 カシオ計算機株式会社 Projection device, support plate, and projection method of projection device
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve
US11041839B2 (en) 2015-06-05 2021-06-22 Mueller International, Llc Distribution system monitoring
CN105179140B (en) * 2015-09-07 2017-08-04 香港理工大学 Inline enclosed hydroelectric generator
CN105626357B (en) * 2016-03-15 2018-08-07 陕西科技大学 A kind of energy-saving generating plant being installed on water pipe
CN106089548A (en) * 2016-04-21 2016-11-09 杜建波 A kind of decompressor of recyclable fluid energy
US10514172B2 (en) * 2018-01-15 2019-12-24 Advanced Conservation Technology Distribution, Inc. Fluid distribution system
WO2019152914A1 (en) * 2018-02-02 2019-08-08 Kah Iii Carl L C Adapter element with integrated water turbine generator
US10819186B2 (en) * 2018-03-01 2020-10-27 Edna Rose Conness Hydroelectric charging assembly
US10443561B1 (en) * 2018-05-15 2019-10-15 Shun-Ming Yang Hydroelectric power generation device for operation with water flow of sanitary piping
KR102179514B1 (en) * 2018-06-27 2020-11-17 명성테크놀로지 주식회사 Rotary type 3 way valve
US10934992B2 (en) * 2019-02-18 2021-03-02 Toto Ltd. Hydraulic generator, spouting apparatus, and method for manufacturing hydraulic generator
US11624447B2 (en) * 2019-05-13 2023-04-11 Boston Dynamics, Inc. Rotary valve assembly
US11725366B2 (en) 2020-07-16 2023-08-15 Mueller International, Llc Remote-operated flushing system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886207A (en) * 1988-09-14 1989-12-12 Lee Chang H Automatic mixing faucet
JPH0398445A (en) * 1989-09-12 1991-04-24 Sankyo Seiki Mfg Co Ltd Rotary electric machine
JPH04231A (en) * 1990-04-16 1992-01-06 Nippondenso Co Ltd Generator
JPH048869A (en) * 1990-04-25 1992-01-13 Nippondenso Co Ltd Impulse hydraulic turbine
JPH06165468A (en) * 1992-11-20 1994-06-10 Mitsubishi Materials Corp Stepping motor and driving method thereof
JP3003308U (en) * 1994-04-18 1994-10-18 富士電気化学株式会社 Bearing support structure for rotating electrical machines
JPH09273646A (en) * 1996-04-05 1997-10-21 S I S:Kk Water saving device
JPH1026243A (en) * 1996-07-06 1998-01-27 Inax Corp Automatic water faucet
JPH11152772A (en) * 1997-11-20 1999-06-08 Inax Corp Single lever faucet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276482A (en) * 1977-06-03 1981-06-30 Otis Engineering Corporation Line flow electric power generator
US4511806A (en) * 1984-05-22 1985-04-16 Air Ltd. Pressure drop power generation
US4740711A (en) * 1985-11-29 1988-04-26 Fuji Electric Co., Ltd. Pipeline built-in electric power generating set
US4731545A (en) * 1986-03-14 1988-03-15 Desai & Lerner Portable self-contained power conversion unit
JP2513745B2 (en) 1987-12-15 1996-07-03 株式会社日立製作所 Elevator basket floor
CA1323906C (en) 1988-09-27 1993-11-02 Ferdinand F. Hochstrasser Water fitting, particularly for sanitary domestic installations
DE3905759C1 (en) * 1989-02-24 1990-03-29 Cosmos Entwicklungs- Und Forschungsanstalt, Vaduz, Li
JP2932674B2 (en) * 1990-10-31 1999-08-09 ソニー株式会社 Manufacturing method of stepping motor
DE4124154C2 (en) * 1991-07-20 1995-11-02 Oeko Patent Finanz Ag Sanitary fitting
DE4425294C2 (en) * 1994-07-18 1997-03-06 Cosmos Entwicklung Forsch Liquid-driven turbine combined with a generator
US5659205A (en) * 1996-01-11 1997-08-19 Ebara International Corporation Hydraulic turbine power generator incorporating axial thrust equalization means
US6512305B1 (en) * 1999-05-26 2003-01-28 Active Power, Inc. Method and apparatus having a turbine working in different modes for providing an uninterruptible supply of electric power to a critical load
US6441508B1 (en) * 2000-12-12 2002-08-27 Ebara International Corporation Dual type multiple stage, hydraulic turbine power generator including reaction type turbine with adjustable blades

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886207A (en) * 1988-09-14 1989-12-12 Lee Chang H Automatic mixing faucet
JPH0398445A (en) * 1989-09-12 1991-04-24 Sankyo Seiki Mfg Co Ltd Rotary electric machine
JPH04231A (en) * 1990-04-16 1992-01-06 Nippondenso Co Ltd Generator
JPH048869A (en) * 1990-04-25 1992-01-13 Nippondenso Co Ltd Impulse hydraulic turbine
JPH06165468A (en) * 1992-11-20 1994-06-10 Mitsubishi Materials Corp Stepping motor and driving method thereof
JP3003308U (en) * 1994-04-18 1994-10-18 富士電気化学株式会社 Bearing support structure for rotating electrical machines
JPH09273646A (en) * 1996-04-05 1997-10-21 S I S:Kk Water saving device
JPH1026243A (en) * 1996-07-06 1998-01-27 Inax Corp Automatic water faucet
JPH11152772A (en) * 1997-11-20 1999-06-08 Inax Corp Single lever faucet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863781A (en) * 2015-05-29 2015-08-26 杭州电子科技大学 Low-speed large-torque water hydraulic motor with bionic non-smooth surface texture

Also Published As

Publication number Publication date
EP1306962A1 (en) 2003-05-02
AU5676601A (en) 2001-11-26
US6876100B2 (en) 2005-04-05
CN1429423A (en) 2003-07-09
US20030164612A1 (en) 2003-09-04
CN1293694C (en) 2007-01-03
DE60141208D1 (en) 2010-03-18
EP1306962B1 (en) 2010-01-27
EP1306962A4 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
WO2001089066A1 (en) Small power generating device and water faucet device
JP2002081363A (en) Small-sized hydraulic power generating device
TW200905073A (en) Faucet generator
JP4259995B2 (en) Small hydroelectric generator
JP2004076637A (en) Water supply and discharge generator and water supply and discharge generation system
JP2008050850A (en) Generator for water faucet
JP2002044922A (en) Small generator and faucet
JP4785108B2 (en) Hydroelectric generator
JP2008054472A (en) Generator for faucet
JP2009024703A (en) Generator for faucet
JP2006343118A (en) Flowmeter
CN2663936Y (en) Self power generating type intelligent water meter
JPH03531Y2 (en)
JP2002089429A (en) Small-sized hydraulic power generating equipment
JP4134252B1 (en) Faucet generator
JP4535753B2 (en) Power generation system
JP4394852B2 (en) Hydroelectric generator
JP2008050849A (en) Generator for water faucet
JP2012225341A (en) Hydraulic power generator
JP4404534B2 (en) Hydroelectric generator for faucets
JP2008054427A (en) Generator for faucet
CN205986569U (en) Closed stack magnetic circuit switch reluctance dc motor
JP2008050852A (en) Water faucet fitting
CN206708527U (en) A kind of electronics water leakage preventing valve
KR100323829B1 (en) Flushing apparatus having self-generating function

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10276265

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001930184

Country of ref document: EP

Ref document number: 018095305

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001930184

Country of ref document: EP