WO2001082375A2 - Improved pillar connections for semiconductor chips and method of manufacture - Google Patents

Improved pillar connections for semiconductor chips and method of manufacture Download PDF

Info

Publication number
WO2001082375A2
WO2001082375A2 PCT/US2001/013595 US0113595W WO0182375A2 WO 2001082375 A2 WO2001082375 A2 WO 2001082375A2 US 0113595 W US0113595 W US 0113595W WO 0182375 A2 WO0182375 A2 WO 0182375A2
Authority
WO
WIPO (PCT)
Prior art keywords
solder
pillar
layer
microns
elongated
Prior art date
Application number
PCT/US2001/013595
Other languages
French (fr)
Other versions
WO2001082375A3 (en
Inventor
Francisca Tung
Original Assignee
Focus Interconnect Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focus Interconnect Technology Corporation filed Critical Focus Interconnect Technology Corporation
Priority to AU2001259194A priority Critical patent/AU2001259194A1/en
Publication of WO2001082375A2 publication Critical patent/WO2001082375A2/en
Publication of WO2001082375A3 publication Critical patent/WO2001082375A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05666Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05671Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13116Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • Tin lead based solders is the preferred interconnect material of choice for flip chip bonding of silicon integrated circuits.
  • Lead has three stable isotopes which are formed as the end products of natural radioactive decay chains. These stable isotopes, however, usually contain a small amount of residual ⁇ particle radioactivity. As the dimensions of electronic devices in silicon integrated circuits become smaller, the distances between the lead-based solder and the devices are also reduced so that the ⁇ particle emission from the solder can cause such devices to malfunction.
  • One way to reduce the effect of ⁇ particle emission from solder is to provide a passivation layer covering the electronic devices on silicon. Some materials used for the passivation layer are more effective than others for preserving the integrity of the electronic devices from the ⁇ particles. Furthermore, the residual ⁇ particle emission from the solder radiate from essentially point sources in the solder, so that the intensity of ⁇ particle emission experienced by the electronic devices decreases rapidly with the distances separating the devices from the solder. Shown below is a table setting forth five different materials serving as the medium separating electronic devices from the solder.
  • the effective thickness of the air medium separating the electronic devices and the solder should be at least 10.83 cm, which is unacceptable for most applications.
  • the best barrier layer substance in terms of minimum absorption length for absorption of ⁇ particles from the solder is silicon dioxide, followed by polyimide. Where silicon dioxide or another solid material is used as the passivation layer, only part of the medium separating the electronic devices from the solder is occupied by the material, with the remaining part occupied by air or another material not as effective in absorbing ⁇ particles.
  • the electronic devices and the solder be separated by at least 0.0055 cm or 55 microns.
  • the separation is preferably at least 84 microns.
  • solder bumps for connecting flip chips to substrates.
  • the use of lead-based solder bumps is disadvantageous also because it may be difficult to achieve a fine pitch between adjacent interconnects without bridging which causes electrical shorting.
  • the solder bump is formed by electroplating, and where the photoresist is not thicker than 60 microns, the bump size in the horizontal plane of a 100 micron high solder ball will be around 120 microns, and the plated solder bump is in the shape of a mushroom.
  • the electronic devices may still be adversely affected by ⁇ particle emission by the solder used to attach the copper posts to the substrate.
  • the space between the semiconductor flip chip and the substrate is usually filled with an underfill material to provide support and stability to the interconnect structure.
  • the process of providing the underfill material is by injection that requires a certain minimum separation between the semiconductor chip and the substrate. For most injection processes, the minimum separation is about 75 microns. Therefore, using the interconnect structure proposed by Love et al.
  • an elongated pillar may be advantageously used for connecting a semiconductor chip to a substrate, where the pillar comprises two elongated portions, one portion including a metal material that does not include lead, such as a material including copper, higher reflow temperature solder or gold, and another portion including solder or other wettable material.
  • the portion including the non-lead metal material is in contact with the semiconductor chip and has a length not less than about 50 microns.
  • the total length of the pillar is not less than about 55 microns.
  • the length of the pillar is not less than about 84 microns, with the length of the portion of the pillar including copper not less than about 55 microns.
  • the separation between the solder in the pillar or any other solder used in the interconnect on the one hand and electronic devices on the semiconductor chip on the other hand can be made to exceed 55 microns or even 84 microns so that adverse effects caused by ⁇ particle emission from the solder on the electronic devices on the semiconductor chip will be reduced. This is especially the case where silicon dioxide or polyimide is used as the passivation layer.
  • all portions of the interconnect can be of made of solder material containing lead in elongated pillar shape. Where the length of the pillar exceeds 75 microns, adequate separation is provided between the semiconductor chip and the substrate for the injection of the underfill material. Furthermore, by providing elongated pillars of adequate length and suitable cross-sectional dimensions connecting the semiconductor chip to the substrate, the stress induced in the connection between the semiconductor chip and the pillar due to warpage is much reduced, which also reduces the chances of chip failure caused by shear stress on account of the warpage.
  • the elongated pillar may be formed by first depositing a layer of metal for plating purposes and followed by forming a layer of photosensitive material on the chip and exposing to radiation the layer of photosensitive material at predetermined areas. Portions of the layer that are exposed to radiation are removed to form through holes in the layer. Portions of the holes are filled with a material containing a metal to form an elongated column in contact with the chip. The metal material is different from top layer metal (and preferably does not include lead.) Portions of the holes are then filled with a material containing any wettable metal to form an elongated column of metal in contact with the bottom portion material, thereby forming a composite pillar, a portion of which includes the metal material and another portion of which includes a_wettable metal.
  • the photosensitive layer and deposited layer of metal for plating purposes are then removed to form the elongated pillars.
  • the pillars may or may not be reflowed prior to being connected to the substrate.
  • the filling of the holes of the photosensitive material layer with copper, gold, non lead or solder is done by electroplating.
  • the thickness of the photosensitive layer and the depth of the holes therein are such that they are adequate to form the pillars of sufficient height, such as the ones described above.
  • the metal material is different from solder and preferably does not include lead.
  • this may be achieved by forming a layer of copper oxide on the sidewall surface of such portion of at least one of the pillars.
  • the copper oxide will also reduce wetting of the sidewall surface during solder reflow, thereby facilitating control of the height of the solder portion of the at least one pillar during solder reflow.
  • Another aspect of the invention is directed to a flip chip interconnect system for use with a semiconductor chip.
  • Two elongated portions may be employed: a first portion including solder, non lead solder or a wettable material including nickel and gold, and a second portion containing a material with higher reflow temperature than that of the first portion, said second portion in contact with the semiconductor chip.
  • the second portion may or may not contain lead.
  • Yet another aspect of the invention is directed to a flip chip interconnect system for use with a semiconductor chip, comprising an elongated portion in contact with semiconductor chip and a ball-shaped portion, said elongated portion including copper, or a solder metal with higher reflow temperature than the ball-shaped portion, said ball shaped portion include a solder material.
  • the elongated portion may or may not contain lead.
  • Fig 1 A is a cross-sectional view of a flip chip connected to a substrate using the elongated pillars of this invention to illustrate the invention.
  • Fig. IB is an exploded view of a portion IB of the system of Fig. 1A showing in more detail the interconnection between the elongated pillar, the silicon die and the substrate.
  • Figs. 2A-2G are cross-sectional views of a portion of a semiconductor die and various layers associated with the die at various stages of fabrication to illustrate a process for making the elongated pillars attached to the die and the attachment of such pillars to a substrate to illustrate an embodiment of the invention.
  • Fig. 3 A is a perspective view of a flip chip with elongated pillars on one side of the chip to illustrate an embodiment of the invention.
  • Fig. 3B is a cross-sectional view of a portion 3B of the chip of Fig. 3A to illustrate the embodiment of the invention.
  • Fig. 3C is a cross-sectional view of a portion of the flip chip and the substrate after the flip chip has been attached to the substrate and the underfill material injected to illustrate an embodiment of the invention.
  • Fig. 4A is a cross-sectional view of a flip chip connected to a substrate where both the flip chip and the substrate are warped to illustrate the shear stress in the chip.
  • Fig. 4B is a top view of the flip chip of Fig. 4A.
  • Figs. 5 A and 5B are graphical illustrations of shear stress distribution for a 20 mm die where the die is connected to a substrate using elongated pillars of this invention of 100 microns in height and bump diameter of 60 and 100 microns, and at a bump pitch of 100/120/160/225 microns to illustrate the invention.
  • Fig. 6 A and 6B are graphical illustrations of the shear stress in the semiconductor die similar to that shown in Figs. 5A and 5B except that the height of the elongated pillar is 125 microns instead of 100 microns.
  • Fig. 1 A is a cross-sectional view of a semiconductor die in the form of a flip chip 12 connected to a substrate 14 by means of elongated pillars 16 to illustrate an embodiment of the invention.
  • the space between the die 12 and substrate 14 is filled with an underfill material 18 such as one known to those of skill in the art to provide support and stability to the die and interconnect structure formed by the elongated pillars 16.
  • Fig. IB is an exploded view of a portion IB of the system of Fig. 1A showing in more detail an elongated pillar connecting a portion of the silicon die to the substrate.
  • pillar 16 comprises two parts: an upper elongated portion 16a comprising copper of height HI and a second elongated portion of height H2 comprising a lead-based solder.
  • the junction between the two portions 16a, 16b is at 16c.
  • the bottom part of portion 16b is enlarged compared to its upper part and has a substantially conical shape where the bottom part of the solder portion of 16b is the result of a reflow process as described below to make physical and electrical contact with the copper contact layer 22 on top of substrate 14.
  • portion 16a is in attached to a copper contact 24 on the silicon die 12.
  • circuits on the silicon die 12 are electrically connected through pillar 16 to a copper contact 22 on the substrate 14.
  • the space between the semiconductor die 12 and substrate 14 is filled with an underfill material 18.
  • circuits (not shown) on the silicon die 12 are spaced apart from the solder portion 16b by the length or height of portion 16a containing copper.
  • the surface of the silicon die 12 facing the substrate is coated with a passivation layer (not shown) made of a suitable material such as silicon dioxide or polyimide. Therefore, if the length or height HI of portion 16a exceeds the effective thickness shown in the table above, then the circuits on die 12 will not be significantly adversely affected by the ⁇ particle emission from solder 16b.
  • the height HI of the portion 16a is not less than 55 microns, where silicon dioxide is used as the passivation layer, and more preferably, more than 84 microns where polyimide is used as the passivation layer.
  • the total height H of pillar 16 between die 12 and the substrate 14 is at least 75 microns, such as in the range of about 80 -100 microns. For reasons discussed below, a larger value for H would reduce the shear stress experienced by the silicon die and the connection between the die 12 and pillar 16.
  • the total height H of the pillar it may be preferable for the total height H of the pillar to be at least 100 microns, and more preferably 120 microns or more, such as 125 microns. It may be preferable for the ratio HI to H2 to be about 3 to 1.
  • Figs. 2A-2G are cross-sectional views of a semiconductor die and the various layers associated therewith to illustrate the process for making the elongated pillar interconnect shown in Figs. 1A, IB and of process for connecting the pillar to a substrate to illustrate the invention.
  • a photosensitive layer 32 is formed on the die 12. To simplify the drawing, only portions of the die and of the various layers are shown in Figs. 2A-2G. Various designated areas of the photosensitive layer are exposed to radiation, and the portions that are exposed to radiation are then removed to yield layer 32' with a pattern of through holes 34 therein as shown in Fig. 2B, where the through holes reach all the way to die 12. Portions of the through holes 34 are filled with a material including copper, such as by placing the entire structure in a copper bath. An electric current is passed there through to perform electroplating of the copper material to fill at least a portion of each hole 34 as shown in Fig. 2C. As shown in Fig.
  • the portions 16b' containing solder are then heated in a manner known to those skilled in the art to reflow the solder 16b' to form the solder portions 16b and pillars 16 as shown in Figs. IB and 2G.
  • An underfill material 18 is then injected to fill the space between die 12 and substrate 14. Contacts 24 on die 12 are, therefore, physically and electrically connected and attached to contacts 22 on . the substrate 14. The resulting structure is illustrated in Fig. 2G.
  • an underbump metalization layer (typically composed of a material including Titanium (Ti), titanium-tungsten (TiW), or chromium (Cr) and copper function as an adhesion layer during the above-described process.
  • This layer also serves as the conducting, metal contact for the copper portions of the pillars for the above-described electroplating process.
  • the spacing or pitch P between adjacent elongated pillars 16 is as illustrated in Fig. 1A and 2E, Using the process described above, fine pitch of not more than 100 microns is achievable; preferably, the pitch or spacing between adjacent pillars is in the range of about 80 to about 100 microns. Since solder forms a portion of the pillar, no extra process of placing solder on the substrate is required, and the connection between the pillar and the substrate can be simply formed by reflowing the solder portion of the pillar. Furthermore, through this process, no mushroom solder bump is formed so that finer pitch can be achieved.
  • the solder composition is flexible and can be 63/37 or 5/95 SnPb ratio, or a non-lead solder.
  • the copper material and solder material used in the above-described electroplating processes may simply be copper metal and solder.
  • Fig. 3 A is a perspective view of a flip chip with elongated pillars on one side of the chip to illustrate an embodiment of the invention.
  • Fig. 3B is a cross-sectional view of a portion 3B of the chip of Fig. 3A to illustrate the embodiment of the invention.
  • Fig. 3C is a cross-sectional view of a portion of the flip chip and the substrate after the flip chip has been attached to the substrate and the underfill material injected to illustrate an embodiment of the invention, as indicated by arrow 100.
  • FIG. 4A is a cross-sectional view of a flip chip connected to a substrate where both the flip chip and the substrate are warped to illustrate the shear stress in the chip.
  • Fig. 4B is a top view of the flip chip of Fig. 4 A.
  • the silicon die 12' and substrate 14' may become warped for a number of reasons, such as due to thermal effects. Warpage is calculated as Y displacement from center 12a' to the corner 12b' of the die as shown in Fig. 4A.
  • Figs. 5A and 5B are graphical plots illustrating shear stress distribution in a die of size 20 mm, where elongated pillars of 100 microns in length and diameters of 60 and 100 microns and at bump pitches of 100,120, 160, 225 microns.
  • pitch is represented as P
  • diameter is represented by D.
  • the peak shear stress at the edge of the die is less than the shear strength of copper so that the elongated pillars of this invention should not fail with the given geometry illustrated, or similar geometries, due to shear stress.
  • Figs. 6A and 6B illustrate similar data to those shown in Figs.
  • FIG. 5A and 5B but where the pillar height or length is 120 microns instead of 100 microns.
  • a comparison of Figs. 6A and 6B to those of Figs. 5 A and 5B will illustrate that the longer the pillars, the less will be the shear stress experienced at the edge of the die and the interconnects connected to the die.
  • a layer 50 shown in Fig. IB of either organic or metal material may be used to cover the copper portion 16a. This will reduce reliability problems.
  • the material used may be Entek or palladium, and may be formed by simply dipping the entire structure (i.e. die 12 and pillar 16) into a bath of such material, where the material will only adhere to the copper portion 16a.
  • the sidewall surface of the copper portion 16a may become wetted by solder.
  • the solder portion may change in height or even collapse so that the reflow and comiection process is more difficult to control.
  • the sidewall surface of the copper portion 16a of pillar 16 is oxidized, thereby forming a layer of copper oxide on the sidewall surface. This reduces the chances that the sidewall surface of portion 16a will become wetted by solder during reflow.
  • the layer of copper oxide can be formed by placing the pillars and the die, such as the components shown in Fig.
  • the portion 16b may take the shape of an elongated column.
  • This column may be reflowed to form a ball-shape (shown in dotted lines 16b" in Fig. IB) prior to being placed in contact with the substrate system. Then the ball-shaped material is reflowed to form the shape shown in Fig. IB.
  • portion 16a may contain copper or a solder material with such higher reflow temperature. Where ⁇ particle emission is not a concern, portion 16a may also contain lead.
  • portion 16b may contain a solder material with or without lead. It may also comprise a wettable material that includes nickel and gold. Any one of such features may be advantageously combined with the above described features.

Abstract

A flip chip interconnect system comprises an elongated pillar comprising two elongated portions, a first portion including solder with or without lead and a second portion including copper or gold or other material having higher reflow temperature than the first portion. The second portion is to be connected to the semiconductor chip and has a length preferably of more than 55 microns to reduce the effect of α particles from the solder from affecting electronic devices on the chip. The total length of the pillar is preferably in the range of 80 to 120 microns.

Description

IMPROVED PILLAR CONNECTIONS FOR SEMICONDUCTOR CHIPS AND METHOD OF MANUFACTURE
BACKGROUND OF THE INVENTION
This invention relates in general to interconnections for semiconductor devices and, in particular, to pillar-shaped connections from a semiconductor chip to a substrate and method for making the connections. Tin lead based solders is the preferred interconnect material of choice for flip chip bonding of silicon integrated circuits. As dimensions of the electronic devices on the silicon integrated circuits are continually reduced, α particle emissions by lead can cause significant problems. Lead has three stable isotopes which are formed as the end products of natural radioactive decay chains. These stable isotopes, however, usually contain a small amount of residual α particle radioactivity. As the dimensions of electronic devices in silicon integrated circuits become smaller, the distances between the lead-based solder and the devices are also reduced so that the α particle emission from the solder can cause such devices to malfunction.
One way to reduce the effect of α particle emission from solder is to provide a passivation layer covering the electronic devices on silicon. Some materials used for the passivation layer are more effective than others for preserving the integrity of the electronic devices from the α particles. Furthermore, the residual α particle emission from the solder radiate from essentially point sources in the solder, so that the intensity of α particle emission experienced by the electronic devices decreases rapidly with the distances separating the devices from the solder. Shown below is a table setting forth five different materials serving as the medium separating electronic devices from the solder.
Figure imgf000003_0001
As can be seen from the table above, if air is the only medium that separates the electronic devices from the solder, then in order for the electronic devices not be significantly affected by the α particle emission from the solder, the effective thickness of the air medium separating the electronic devices and the solder should be at least 10.83 cm, which is unacceptable for most applications. From the above table, it will be noted that the best barrier layer substance in terms of minimum absorption length for absorption of α particles from the solder is silicon dioxide, followed by polyimide. Where silicon dioxide or another solid material is used as the passivation layer, only part of the medium separating the electronic devices from the solder is occupied by the material, with the remaining part occupied by air or another material not as effective in absorbing α particles. It will be noted from the table, however, that even where silicon dioxide is used as a compound for the passivation layer covering the electronic devices on silicon, it is preferable that the electronic devices and the solder be separated by at least 0.0055 cm or 55 microns. For polyimide passivation layers, the separation is preferably at least 84 microns.
Conventional interconnect methods employ lead-based solders for connecting flip chips to substrates. Aside from the α particle emission problem described above, as the structural dimensions of electronic devices get smaller, the use of lead-based solder bumps is disadvantageous also because it may be difficult to achieve a fine pitch between adjacent interconnects without bridging which causes electrical shorting. When the solder bump is formed by electroplating, and where the photoresist is not thicker than 60 microns, the bump size in the horizontal plane of a 100 micron high solder ball will be around 120 microns, and the plated solder bump is in the shape of a mushroom. Therefore, if the pitch or distance between adjacent interconnects using solder bumps of such height is reduced to below 150 microns in either the array or peripheral format, bump bridging can easily occur. It is, therefore, desirable to provide an improved interconnect system to achieve finer pitch with minimum probability of bump bridging and where α particle emission will not significantly affect the functions of electronic devices on the semiconductor chips.
In the document entitled "Wire Interconnect Technology, A New High- Reliability Tight-Pitch Interconnect Technology," by Love et al., from Fujitsu Computer Packaging Technologies, Inc. an all copper interconnect post is proposed. Instead of using lead based solder, the flip chip is connected to a substrate by means of an all copper post which is about 45 or 50 microns in length. While such copper- based interconnects may be able to achieve a finer pitch between adjacent interconnects, such proposed solution still does not avoid the problem of the α particle emission described above. As shown in Fig. 1 of the article by Love et al., solder is used to attach the copper posts to the substrate. Since the height of the copper post or pillars is not more than 50 microns in height, even where silicon dioxide is used as the passivation layer covering the electronic devices on the flip chips, the electronic devices may still be adversely affected by α particle emission by the solder used to attach the copper posts to the substrate. Furthermore, as known to those skilled in the art, the space between the semiconductor flip chip and the substrate is usually filled with an underfill material to provide support and stability to the interconnect structure. Typically, the process of providing the underfill material is by injection that requires a certain minimum separation between the semiconductor chip and the substrate. For most injection processes, the minimum separation is about 75 microns. Therefore, using the interconnect structure proposed by Love et al. in the article, there appears to be inadequate separation between the semiconductor chip and the substrate for injecting the underfill material. The process employed by Love et. al appears to limit the height of the copper post achievable to not more than 50 microns. None of the above-described interconnect systems is entirely satisfactory. It is, therefore, desirable to provide an improved interconnect system in which the above-described difficulties are not present.
SUMMARY OF THE INVENTION This invention is based on the observation that an elongated pillar may be advantageously used for connecting a semiconductor chip to a substrate, where the pillar comprises two elongated portions, one portion including a metal material that does not include lead, such as a material including copper, higher reflow temperature solder or gold, and another portion including solder or other wettable material. The portion including the non-lead metal material is in contact with the semiconductor chip and has a length not less than about 50 microns. Preferably, the total length of the pillar is not less than about 55 microns. Ixi a more preferred embodiment, the length of the pillar is not less than about 84 microns, with the length of the portion of the pillar including copper not less than about 55 microns. Using the elongated pillar of this invention, the separation between the solder in the pillar or any other solder used in the interconnect on the one hand and electronic devices on the semiconductor chip on the other hand can be made to exceed 55 microns or even 84 microns so that adverse effects caused by α particle emission from the solder on the electronic devices on the semiconductor chip will be reduced. This is especially the case where silicon dioxide or polyimide is used as the passivation layer.
In the case where alpha particle is not a concern, all portions of the interconnect can be of made of solder material containing lead in elongated pillar shape. Where the length of the pillar exceeds 75 microns, adequate separation is provided between the semiconductor chip and the substrate for the injection of the underfill material. Furthermore, by providing elongated pillars of adequate length and suitable cross-sectional dimensions connecting the semiconductor chip to the substrate, the stress induced in the connection between the semiconductor chip and the pillar due to warpage is much reduced, which also reduces the chances of chip failure caused by shear stress on account of the warpage.
The elongated pillar may be formed by first depositing a layer of metal for plating purposes and followed by forming a layer of photosensitive material on the chip and exposing to radiation the layer of photosensitive material at predetermined areas. Portions of the layer that are exposed to radiation are removed to form through holes in the layer. Portions of the holes are filled with a material containing a metal to form an elongated column in contact with the chip. The metal material is different from top layer metal (and preferably does not include lead.) Portions of the holes are then filled with a material containing any wettable metal to form an elongated column of metal in contact with the bottom portion material, thereby forming a composite pillar, a portion of which includes the metal material and another portion of which includes a_wettable metal. The photosensitive layer and deposited layer of metal for plating purposes are then removed to form the elongated pillars. After the pillars have been formed, the pillars may or may not be reflowed prior to being connected to the substrate. Preferably, the filling of the holes of the photosensitive material layer with copper, gold, non lead or solder is done by electroplating. Also preferably the thickness of the photosensitive layer and the depth of the holes therein are such that they are adequate to form the pillars of sufficient height, such as the ones described above.
To enhance the reliability of the portions of the pillars including the metal material, it may be desirable to provide a layer of material covering such portions; the metal material is different from solder and preferably does not include lead. Where such portions include copper, this may be achieved by forming a layer of copper oxide on the sidewall surface of such portion of at least one of the pillars. The copper oxide will also reduce wetting of the sidewall surface during solder reflow, thereby facilitating control of the height of the solder portion of the at least one pillar during solder reflow.
Another aspect of the invention is directed to a flip chip interconnect system for use with a semiconductor chip. Two elongated portions may be employed: a first portion including solder, non lead solder or a wettable material including nickel and gold, and a second portion containing a material with higher reflow temperature than that of the first portion, said second portion in contact with the semiconductor chip. The second portion may or may not contain lead.
Yet another aspect of the invention is directed to a flip chip interconnect system for use with a semiconductor chip, comprising an elongated portion in contact with semiconductor chip and a ball-shaped portion, said elongated portion including copper, or a solder metal with higher reflow temperature than the ball-shaped portion, said ball shaped portion include a solder material. The elongated portion may or may not contain lead.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig 1 A is a cross-sectional view of a flip chip connected to a substrate using the elongated pillars of this invention to illustrate the invention.
Fig. IB is an exploded view of a portion IB of the system of Fig. 1A showing in more detail the interconnection between the elongated pillar, the silicon die and the substrate.
Figs. 2A-2G are cross-sectional views of a portion of a semiconductor die and various layers associated with the die at various stages of fabrication to illustrate a process for making the elongated pillars attached to the die and the attachment of such pillars to a substrate to illustrate an embodiment of the invention.
Fig. 3 A is a perspective view of a flip chip with elongated pillars on one side of the chip to illustrate an embodiment of the invention.
Fig. 3B is a cross-sectional view of a portion 3B of the chip of Fig. 3A to illustrate the embodiment of the invention. Fig. 3C is a cross-sectional view of a portion of the flip chip and the substrate after the flip chip has been attached to the substrate and the underfill material injected to illustrate an embodiment of the invention.
Fig. 4A is a cross-sectional view of a flip chip connected to a substrate where both the flip chip and the substrate are warped to illustrate the shear stress in the chip. Fig. 4B is a top view of the flip chip of Fig. 4A.
Figs. 5 A and 5B are graphical illustrations of shear stress distribution for a 20 mm die where the die is connected to a substrate using elongated pillars of this invention of 100 microns in height and bump diameter of 60 and 100 microns, and at a bump pitch of 100/120/160/225 microns to illustrate the invention. Fig. 6 A and 6B are graphical illustrations of the shear stress in the semiconductor die similar to that shown in Figs. 5A and 5B except that the height of the elongated pillar is 125 microns instead of 100 microns.
For simplicity in description, identical components are identified by the same numerals. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Fig. 1 A is a cross-sectional view of a semiconductor die in the form of a flip chip 12 connected to a substrate 14 by means of elongated pillars 16 to illustrate an embodiment of the invention. As shown in Fig. 1A, the space between the die 12 and substrate 14 is filled with an underfill material 18 such as one known to those of skill in the art to provide support and stability to the die and interconnect structure formed by the elongated pillars 16.
Fig. IB is an exploded view of a portion IB of the system of Fig. 1A showing in more detail an elongated pillar connecting a portion of the silicon die to the substrate. As shown in Fig. IB, pillar 16 comprises two parts: an upper elongated portion 16a comprising copper of height HI and a second elongated portion of height H2 comprising a lead-based solder. The junction between the two portions 16a, 16b is at 16c. The bottom part of portion 16b is enlarged compared to its upper part and has a substantially conical shape where the bottom part of the solder portion of 16b is the result of a reflow process as described below to make physical and electrical contact with the copper contact layer 22 on top of substrate 14. The upper end of portion 16a is in attached to a copper contact 24 on the silicon die 12. In this manner, circuits on the silicon die 12 are electrically connected through pillar 16 to a copper contact 22 on the substrate 14. As shown in Figs. 1A and IB, the space between the semiconductor die 12 and substrate 14 is filled with an underfill material 18.
As shown in Fig. IB, circuits (not shown) on the silicon die 12 are spaced apart from the solder portion 16b by the length or height of portion 16a containing copper. The surface of the silicon die 12 facing the substrate is coated with a passivation layer (not shown) made of a suitable material such as silicon dioxide or polyimide. Therefore, if the length or height HI of portion 16a exceeds the effective thickness shown in the table above, then the circuits on die 12 will not be significantly adversely affected by the α particle emission from solder 16b. In the preferred embodiment, the height HI of the portion 16a is not less than 55 microns, where silicon dioxide is used as the passivation layer, and more preferably, more than 84 microns where polyimide is used as the passivation layer. To permit many injection processes to be used for injecting the underfill material 18, the total height H of pillar 16 between die 12 and the substrate 14 is at least 75 microns, such as in the range of about 80 -100 microns. For reasons discussed below, a larger value for H would reduce the shear stress experienced by the silicon die and the connection between the die 12 and pillar 16. Thus, it may be preferable for the total height H of the pillar to be at least 100 microns, and more preferably 120 microns or more, such as 125 microns. It may be preferable for the ratio HI to H2 to be about 3 to 1.
Figs. 2A-2G are cross-sectional views of a semiconductor die and the various layers associated therewith to illustrate the process for making the elongated pillar interconnect shown in Figs. 1A, IB and of process for connecting the pillar to a substrate to illustrate the invention.
As shown in Fig. 2A, a photosensitive layer 32 is formed on the die 12. To simplify the drawing, only portions of the die and of the various layers are shown in Figs. 2A-2G. Various designated areas of the photosensitive layer are exposed to radiation, and the portions that are exposed to radiation are then removed to yield layer 32' with a pattern of through holes 34 therein as shown in Fig. 2B, where the through holes reach all the way to die 12. Portions of the through holes 34 are filled with a material including copper, such as by placing the entire structure in a copper bath. An electric current is passed there through to perform electroplating of the copper material to fill at least a portion of each hole 34 as shown in Fig. 2C. As shown in Fig. 2C, copper material 16a fills a portion of each of holes 34. The entire structure is then transferred to a bath of material containing solder and electroplating is again employed to fill portions of holes 34, resulting in the structure shown in Fig. 2D, where a solder material 16b' fills portions of the holes 34. The photosensitive remaining layer 32' is then removed to form the structure of Fig. 2E. As shown in Fig. 2E, two elongated pillars 16' are then formed, each comprising a copper portion 16a and a solder portion 16b'. To connect the pillars to the substrate, portions 16b' are placed in contact with the copper contacts 22 on the substrate 14 as shown in Fig. 2F. The portions 16b' containing solder are then heated in a manner known to those skilled in the art to reflow the solder 16b' to form the solder portions 16b and pillars 16 as shown in Figs. IB and 2G. An underfill material 18 is then injected to fill the space between die 12 and substrate 14. Contacts 24 on die 12 are, therefore, physically and electrically connected and attached to contacts 22 on. the substrate 14. The resulting structure is illustrated in Fig. 2G.
To provide a metal contact between the pillars and the semiconductor die, an underbump metalization layer (typically composed of a material including Titanium (Ti), titanium-tungsten (TiW), or chromium (Cr) and copper function as an adhesion layer during the above-described process. This layer also serves as the conducting, metal contact for the copper portions of the pillars for the above-described electroplating process. After the photosensitive layer 32' has been removed, all portions of this underbump metalization layer, except for the portions underneath the pillars are removed. For simplicity, this layer has been omitted from the figures.
The spacing or pitch P between adjacent elongated pillars 16 is as illustrated in Fig. 1A and 2E, Using the process described above, fine pitch of not more than 100 microns is achievable; preferably, the pitch or spacing between adjacent pillars is in the range of about 80 to about 100 microns. Since solder forms a portion of the pillar, no extra process of placing solder on the substrate is required, and the connection between the pillar and the substrate can be simply formed by reflowing the solder portion of the pillar. Furthermore, through this process, no mushroom solder bump is formed so that finer pitch can be achieved. The solder composition is flexible and can be 63/37 or 5/95 SnPb ratio, or a non-lead solder. The copper material and solder material used in the above-described electroplating processes may simply be copper metal and solder.
Fig. 3 A is a perspective view of a flip chip with elongated pillars on one side of the chip to illustrate an embodiment of the invention. Fig. 3B is a cross-sectional view of a portion 3B of the chip of Fig. 3A to illustrate the embodiment of the invention. Fig. 3C is a cross-sectional view of a portion of the flip chip and the substrate after the flip chip has been attached to the substrate and the underfill material injected to illustrate an embodiment of the invention, as indicated by arrow 100.
Another advantage of the elongated pillar interconnects of this invention is that it reduces shear stress experienced by warped silicon dies and the connection between the dies and the interconnects. This is illustrated in Figs. 4A, 4B. Fig. 4A is a cross-sectional view of a flip chip connected to a substrate where both the flip chip and the substrate are warped to illustrate the shear stress in the chip. Fig. 4B is a top view of the flip chip of Fig. 4 A. As shown in Fig. 4 A, the silicon die 12' and substrate 14' may become warped for a number of reasons, such as due to thermal effects. Warpage is calculated as Y displacement from center 12a' to the corner 12b' of the die as shown in Fig. 4A. Figs. 5A and 5B are graphical plots illustrating shear stress distribution in a die of size 20 mm, where elongated pillars of 100 microns in length and diameters of 60 and 100 microns and at bump pitches of 100,120, 160, 225 microns. In the graphical plot, pitch is represented as P and diameter is represented by D. As shown in Figs. 5A and 5B, the peak shear stress at the edge of the die is less than the shear strength of copper so that the elongated pillars of this invention should not fail with the given geometry illustrated, or similar geometries, due to shear stress. Figs. 6A and 6B illustrate similar data to those shown in Figs. 5A and 5B but where the pillar height or length is 120 microns instead of 100 microns. A comparison of Figs. 6A and 6B to those of Figs. 5 A and 5B will illustrate that the longer the pillars, the less will be the shear stress experienced at the edge of the die and the interconnects connected to the die.
A layer 50 shown in Fig. IB of either organic or metal material may be used to cover the copper portion 16a. This will reduce reliability problems. The material used may be Entek or palladium, and may be formed by simply dipping the entire structure (i.e. die 12 and pillar 16) into a bath of such material, where the material will only adhere to the copper portion 16a.
It is found that during reflow of the solder as described above in order to connect the die to the substrate, the sidewall surface of the copper portion 16a may become wetted by solder. When this happens, the solder portion may change in height or even collapse so that the reflow and comiection process is more difficult to control. Preferably, the sidewall surface of the copper portion 16a of pillar 16 is oxidized, thereby forming a layer of copper oxide on the sidewall surface. This reduces the chances that the sidewall surface of portion 16a will become wetted by solder during reflow. The layer of copper oxide can be formed by placing the pillars and the die, such as the components shown in Fig. 2E, in an oven heated to a temperature in the range of about 90 to 120 degrees Celsius, such as about 100 degrees Celsius, exposed to an environment that contains oxygen, such as air, for a time period in the range of about 15 to 60 minutes, such as about 30 minutes. While the embodiments have been described above using copper as the non-lead metal material to form the portion(s) of the pillar(s) in contact with the semiconductor chip, it will be understood that metals other than copper such as gold, Sn/Ag, and Sn Cu can be used as well; such and other variations are within the scope of the invention. As shown in Fig. IB, the bottom part of portion 16b is enlarged as a result of a reflow process of the solder. Thus, initially the portion 16b may take the shape of an elongated column. This column may be reflowed to form a ball-shape (shown in dotted lines 16b" in Fig. IB) prior to being placed in contact with the substrate system. Then the ball-shaped material is reflowed to form the shape shown in Fig. IB.
Still other variations are possible. Thus, as long as the material in the portion 16a has a higher reflow temperature than portion 16b, the above described process is possible and can be advantageously used. Thus portion 16a may contain copper or a solder material with such higher reflow temperature. Where α particle emission is not a concern, portion 16a may also contain lead. Portion 16b may contain a solder material with or without lead. It may also comprise a wettable material that includes nickel and gold. Any one of such features may be advantageously combined with the above described features. While the invention has been described above by reference to various embodiments, it will be understood that changes and modifications may be made without departing from the scope of the invention, which is to be defined only by the appended claims and their equivalents.

Claims

WHAT IS CLAIMED IS:
1. An elongated pillar connecting a semiconductor chip to a substrate, said pillar comprising at least two elongated portions, a first portion including a metal material that does not contain lead, and a second portion including solder, said first portion in contact with the semiconductor chip and having a length not less than about 50 microns.
2. The pillar of claim 1, wherein the length of the pillar is not less than about 55 microns.
3. The pillar of claim 1, wherein the length of the pillar is more than about 100 microns.
4. The pillar of claim 1, further comprising a layer of material covering the first portion.
5. The pillar of claim 4, said layer of material including an oxide of a metal in the first portion.
6. The pillar of claim 1 , the first portion including copper.
7. The pillar of claim 6, further comprising a layer of copper oxide covering the first portion.
8. A semiconductor device comprising:
a semiconductor chip; and a plurality of pillars connected to the chip, each of said pillars comprising at least two elongated portions, a first portion including a metal material not including lead, and a second portion including solder, said first portion in contact with the semiconductor chip and having a length not less than about 50 microns.
- 9. The device of claim 8, wherein the lengths of the pillars are not less than about 55 microns.
10. The device of claim 8, wherein the lengths of the pillars are more than about 100 microns.
11. The pillar of claim 8, further comprising a layer of material covering the first portion of at least one pillar of the plurality of pillars.
12. The device of claim 11, said layer of material including an oxide of a metal in the first portion.
13. The device of claim 8, the first portion of at least one pillar of the plurality of pillars including copper.
14. The device of claim 13, further comprising a layer of copper oxide covering the first portion of the at least one pillar of the plurality of pillars.
15. A method for making electrical connections to a semiconductor chip, comprising: forming a layer of photosensitive material over the chip; exposing the layer to radiation at predetermined areas and removing portions of the layer that are exposed to radiation to form through holes in the layer, thereby exposing areas of the chip through the holes; filling portions of the holes with a metal to form an elongated column of metal material, so that the metal material is in contact with the chip; filling portions of the holes with solder to form an elongated column of solder, so that the solder is in contact with the metal material; and removing the layer.
16. The method of claim 15, wherein the filling is performed by a process that includes electroplating.
17. The method of claim 16, wherein the forming forms a layer of photosensitive material that is not less than about 50 microns in depth, and the filling with the metal material is performed so that the elongated column of metal material is not less than about 50 microns in length.
18. The method of claim 15, wherein the forming forms a layer of photosensitive material that is not less than about 50 microns in depth, and the filling with the metal material and solder is performed so that the total length of the elongated column of metal material and of the column of solder is not less than about 55 microns in length.
19. The method of claim 15, wherein the forming forms a layer of photosensitive material that is not less than about 50 microns in depth, and the filling with the metal material and solder is performed so that the total length of the elongated column of metal material and of the column of solder is not less than about 100 microns in length.
20. The method of claim 15, further comprising placing the solder in contact with a substrate and applying heat to the solder to reflow the solder.
21. The method of claim 20, further comprising reflowing the column of solder to form a ball shape body prior to placing it in contact with the substrate.
22. The method of claim 15, further comprising forming a layer of material on a side surface of the metal material.
23. A method for making electrical connections to a semiconductor chip, comprising: forming a plurality of pillars connected to a semiconductor chip, each of said pillars comprising at least two elongated portions, a first portion including a metal material, and a second portion including solder, said metal material different from the material in the second portion, said first portion in contact with the semiconductor chip; and
providing a layer of material on a side surface of the first portion of at least one of the plurality of pillars.
24. The method of claim 23, wherein said forming forms an elongated portion and a ball-shaped portion including a solder material, said elongated portion containing a material with a higher reflow temperature than the material of the ball-shaped portion.
25. The method of claim 24, said providing including heating the metal material in an environment that contains oxygen to an elevated temperature to oxidize the metal material
26. A flip chip interconnect system for use with a semiconductor chip, comprising two elongated portions, a first portion including solder, non- lead solder or a wettable material including nickel and gold, and a second portion containing a material with higher reflow temperature than that of the first portion, said second portion in contact with the_semiconductor chip,.
27. The system of claim 26, said second portion including copper, gold or a solder metal.
28. A flip chip interconnect system for use with a semiconductor chip, comprising an elongated portion in contact with semiconductor chip and a ball- shaped portion, said elongated portion including copper, or a solder metal with higher reflow temperature than the ball-shaped portion, said ball shaped portion include a solder material.
29. The system of claim 28, wherein said ball shaped portion includes no lead.
PCT/US2001/013595 2000-04-27 2001-04-26 Improved pillar connections for semiconductor chips and method of manufacture WO2001082375A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001259194A AU2001259194A1 (en) 2000-04-27 2001-04-26 Improved pillar connections for semiconductor chips and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/564,382 2000-04-27
US09/564,382 US6578754B1 (en) 2000-04-27 2000-04-27 Pillar connections for semiconductor chips and method of manufacture

Publications (2)

Publication Number Publication Date
WO2001082375A2 true WO2001082375A2 (en) 2001-11-01
WO2001082375A3 WO2001082375A3 (en) 2002-04-04

Family

ID=24254234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/013595 WO2001082375A2 (en) 2000-04-27 2001-04-26 Improved pillar connections for semiconductor chips and method of manufacture

Country Status (4)

Country Link
US (2) US6578754B1 (en)
AU (1) AU2001259194A1 (en)
TW (1) TW510031B (en)
WO (1) WO2001082375A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239514A2 (en) * 2001-03-05 2002-09-11 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
WO2005034237A1 (en) * 2003-10-09 2005-04-14 Advanpack Solutions Pte Ltd Pillar bumps for high power chip interconnection
CN103887276A (en) * 2014-04-04 2014-06-25 华进半导体封装先导技术研发中心有限公司 Salient point structure for preventing salient point lateral etching and forming method

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826827B1 (en) * 1994-12-29 2004-12-07 Tessera, Inc. Forming conductive posts by selective removal of conductive material
US6642136B1 (en) * 2001-09-17 2003-11-04 Megic Corporation Method of making a low fabrication cost, high performance, high reliability chip scale package
US6965165B2 (en) * 1998-12-21 2005-11-15 Mou-Shiung Lin Top layers of metal for high performance IC's
US7381642B2 (en) * 2004-09-23 2008-06-03 Megica Corporation Top layers of metal for integrated circuits
US6303423B1 (en) * 1998-12-21 2001-10-16 Megic Corporation Method for forming high performance system-on-chip using post passivation process
US6936531B2 (en) * 1998-12-21 2005-08-30 Megic Corporation Process of fabricating a chip structure
US7416971B2 (en) * 2004-09-23 2008-08-26 Megica Corporation Top layers of metal for integrated circuits
US6495442B1 (en) * 2000-10-18 2002-12-17 Magic Corporation Post passivation interconnection schemes on top of the IC chips
US8021976B2 (en) * 2002-10-15 2011-09-20 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
US7405149B1 (en) * 1998-12-21 2008-07-29 Megica Corporation Post passivation method for semiconductor chip or wafer
US6520402B2 (en) * 2000-05-22 2003-02-18 The Regents Of The University Of California High-speed direct writing with metallic microspheres
US7271489B2 (en) * 2003-10-15 2007-09-18 Megica Corporation Post passivation interconnection schemes on top of the IC chips
US6800169B2 (en) * 2001-01-08 2004-10-05 Fujitsu Limited Method for joining conductive structures and an electrical conductive article
US6884313B2 (en) * 2001-01-08 2005-04-26 Fujitsu Limited Method and system for joining and an ultra-high density interconnect
US6815324B2 (en) * 2001-02-15 2004-11-09 Megic Corporation Reliable metal bumps on top of I/O pads after removal of test probe marks
US8158508B2 (en) * 2001-03-05 2012-04-17 Megica Corporation Structure and manufacturing method of a chip scale package
TWI313507B (en) * 2002-10-25 2009-08-11 Megica Corporatio Method for assembling chips
US6869515B2 (en) 2001-03-30 2005-03-22 Uri Cohen Enhanced electrochemical deposition (ECD) filling of high aspect ratio openings
US6732913B2 (en) * 2001-04-26 2004-05-11 Advanpack Solutions Pte Ltd. Method for forming a wafer level chip scale package, and package formed thereby
US7099293B2 (en) * 2002-05-01 2006-08-29 Stmicroelectronics, Inc. Buffer-less de-skewing for symbol combination in a CDMA demodulator
JP4015490B2 (en) * 2001-09-26 2007-11-28 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
US6798073B2 (en) 2001-12-13 2004-09-28 Megic Corporation Chip structure and process for forming the same
US7932603B2 (en) * 2001-12-13 2011-04-26 Megica Corporation Chip structure and process for forming the same
TWI245402B (en) * 2002-01-07 2005-12-11 Megic Corp Rod soldering structure and manufacturing process thereof
US6661102B1 (en) * 2002-01-18 2003-12-09 Advance Micro Devices, Inc. Semiconductor packaging apparatus for controlling die attach fillet height to reduce die shear stress
US20040007779A1 (en) * 2002-07-15 2004-01-15 Diane Arbuthnot Wafer-level method for fine-pitch, high aspect ratio chip interconnect
US6802945B2 (en) * 2003-01-06 2004-10-12 Megic Corporation Method of metal sputtering for integrated circuit metal routing
US7342318B2 (en) * 2003-01-21 2008-03-11 Siliconware Precision Industries Co., Ltd. Semiconductor package free of substrate and fabrication method thereof
US20050194665A1 (en) * 2003-01-21 2005-09-08 Huang Chien P. Semiconductor package free of substrate and fabrication method thereof
US20050184368A1 (en) * 2003-01-21 2005-08-25 Huang Chien P. Semiconductor package free of substrate and fabrication method thereof
US7271493B2 (en) 2003-01-21 2007-09-18 Siliconware Precision Industries Co., Ltd. Semiconductor package free of substrate and fabrication method thereof
TWI241000B (en) * 2003-01-21 2005-10-01 Siliconware Precision Industries Co Ltd Semiconductor package and fabricating method thereof
US7423340B2 (en) * 2003-01-21 2008-09-09 Siliconware Precision Industries Co., Ltd. Semiconductor package free of substrate and fabrication method thereof
JP2006518944A (en) * 2003-02-25 2006-08-17 テッセラ,インコーポレイテッド Ball grid array with bumps
US20050026416A1 (en) * 2003-07-31 2005-02-03 International Business Machines Corporation Encapsulated pin structure for improved reliability of wafer
US7462936B2 (en) * 2003-10-06 2008-12-09 Tessera, Inc. Formation of circuitry with modification of feature height
US8641913B2 (en) * 2003-10-06 2014-02-04 Tessera, Inc. Fine pitch microcontacts and method for forming thereof
US7495179B2 (en) * 2003-10-06 2009-02-24 Tessera, Inc. Components with posts and pads
US6884661B1 (en) 2003-11-04 2005-04-26 Rf Micro Devices, Inc. Method of fabricating posts over integrated heat sink metallization to enable flip chip packaging of GaAs devices
US8574959B2 (en) 2003-11-10 2013-11-05 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US8026128B2 (en) 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
WO2005048311A2 (en) 2003-11-10 2005-05-26 Chippac, Inc. Bump-on-lead flip chip interconnection
US8216930B2 (en) 2006-12-14 2012-07-10 Stats Chippac, Ltd. Solder joint flip chip interconnection having relief structure
US9029196B2 (en) * 2003-11-10 2015-05-12 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
USRE47600E1 (en) 2003-11-10 2019-09-10 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
US8350384B2 (en) * 2009-11-24 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
US8129841B2 (en) 2006-12-14 2012-03-06 Stats Chippac, Ltd. Solder joint flip chip interconnection
US7394161B2 (en) * 2003-12-08 2008-07-01 Megica Corporation Chip structure with pads having bumps or wirebonded wires formed thereover or used to be tested thereto
US20050168231A1 (en) * 2003-12-24 2005-08-04 Young-Gon Kim Methods and structures for electronic probing arrays
US7176043B2 (en) * 2003-12-30 2007-02-13 Tessera, Inc. Microelectronic packages and methods therefor
US7709968B2 (en) * 2003-12-30 2010-05-04 Tessera, Inc. Micro pin grid array with pin motion isolation
US8207604B2 (en) * 2003-12-30 2012-06-26 Tessera, Inc. Microelectronic package comprising offset conductive posts on compliant layer
US7230302B2 (en) 2004-01-29 2007-06-12 Enpirion, Inc. Laterally diffused metal oxide semiconductor device and method of forming the same
WO2005093816A1 (en) * 2004-03-05 2005-10-06 Infineon Technologies Ag Semiconductor device for radio frequency applications and method for making the same
US7453157B2 (en) * 2004-06-25 2008-11-18 Tessera, Inc. Microelectronic packages and methods therefor
US7465654B2 (en) * 2004-07-09 2008-12-16 Megica Corporation Structure of gold bumps and gold conductors on one IC die and methods of manufacturing the structures
US8022544B2 (en) * 2004-07-09 2011-09-20 Megica Corporation Chip structure
US8067837B2 (en) * 2004-09-20 2011-11-29 Megica Corporation Metallization structure over passivation layer for IC chip
US7355282B2 (en) * 2004-09-09 2008-04-08 Megica Corporation Post passivation interconnection process and structures
US8008775B2 (en) 2004-09-09 2011-08-30 Megica Corporation Post passivation interconnection structures
US7423346B2 (en) * 2004-09-09 2008-09-09 Megica Corporation Post passivation interconnection process and structures
JP2006100385A (en) 2004-09-28 2006-04-13 Rohm Co Ltd Semiconductor device
US11842972B2 (en) 2004-09-28 2023-12-12 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US7521805B2 (en) * 2004-10-12 2009-04-21 Megica Corp. Post passivation interconnection schemes on top of the IC chips
JP5592055B2 (en) 2004-11-03 2014-09-17 テッセラ,インコーポレイテッド Improved stacking packaging
US7135766B1 (en) 2004-11-30 2006-11-14 Rf Micro Devices, Inc. Integrated power devices and signal isolation structure
US7523852B2 (en) * 2004-12-05 2009-04-28 International Business Machines Corporation Solder interconnect structure and method using injection molded solder
US8294279B2 (en) 2005-01-25 2012-10-23 Megica Corporation Chip package with dam bar restricting flow of underfill
US7323406B2 (en) * 2005-01-27 2008-01-29 Chartered Semiconductor Manufacturing Ltd. Elevated bond-pad structure for high-density flip-clip packaging and a method of fabricating the structures
US7939934B2 (en) * 2005-03-16 2011-05-10 Tessera, Inc. Microelectronic packages and methods therefor
JP2008535225A (en) 2005-03-25 2008-08-28 スタッツ チップパック リミテッド Flip chip wiring having a narrow wiring portion on a substrate
US8841779B2 (en) 2005-03-25 2014-09-23 Stats Chippac, Ltd. Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate
US8384189B2 (en) * 2005-03-29 2013-02-26 Megica Corporation High performance system-on-chip using post passivation process
US20060223313A1 (en) * 2005-04-01 2006-10-05 Agency For Science, Technology And Research Copper interconnect post for connecting a semiconductor chip to a substrate and method of fabricating the same
US7687925B2 (en) 2005-09-07 2010-03-30 Infineon Technologies Ag Alignment marks for polarized light lithography and method for use thereof
WO2007031298A1 (en) * 2005-09-14 2007-03-22 Htc Beteiligungs Gmbh Flip-chip module and method for the production thereof
US7667473B1 (en) * 2005-09-28 2010-02-23 Xilinx, Inc Flip-chip package having thermal expansion posts
US7630210B2 (en) * 2005-11-29 2009-12-08 Amphenol Corporation Lead(Pb)-free electronic component attachment
US8067267B2 (en) * 2005-12-23 2011-11-29 Tessera, Inc. Microelectronic assemblies having very fine pitch stacking
US8058101B2 (en) * 2005-12-23 2011-11-15 Tessera, Inc. Microelectronic packages and methods therefor
KR100790978B1 (en) * 2006-01-24 2008-01-02 삼성전자주식회사 A joining method at low temperature, anda mounting method of semiconductor package using the joining method
DE102006006561B4 (en) * 2006-02-13 2009-03-05 Htc Beteiligungs Gmbh Flip-chip module and method for exchanging a semiconductor chip of a flip-chip module
US7494924B2 (en) * 2006-03-06 2009-02-24 Freescale Semiconductor, Inc. Method for forming reinforced interconnects on a substrate
US7732253B1 (en) 2006-08-14 2010-06-08 Rf Micro Devices, Inc. Flip-chip assembly with improved interconnect
US7545029B2 (en) * 2006-08-18 2009-06-09 Tessera, Inc. Stack microelectronic assemblies
TWI370515B (en) * 2006-09-29 2012-08-11 Megica Corp Circuit component
US7510401B2 (en) * 2006-10-12 2009-03-31 Tessera, Inc. Microelectronic component with foam-metal posts
TWI378540B (en) * 2006-10-14 2012-12-01 Advanpack Solutions Pte Ltd Chip and manufacturing method thereof
US7719121B2 (en) * 2006-10-17 2010-05-18 Tessera, Inc. Microelectronic packages and methods therefor
US20080150101A1 (en) * 2006-12-20 2008-06-26 Tessera, Inc. Microelectronic packages having improved input/output connections and methods therefor
TWI343084B (en) * 2006-12-28 2011-06-01 Siliconware Precision Industries Co Ltd Semiconductor device having conductive bumps and fabrication methodthereof
US7683483B2 (en) * 2007-02-05 2010-03-23 Freescale Semiconductor, Inc. Electronic device with connection bumps
US20090014852A1 (en) * 2007-07-11 2009-01-15 Hsin-Hui Lee Flip-Chip Packaging with Stud Bumps
EP2637202A3 (en) * 2007-09-28 2014-03-12 Tessera, Inc. Flip chip interconnection with etched posts on a microelectronic element joined to etched posts on a substrate by a fusible metal and corresponding manufacturing method
US20090108443A1 (en) * 2007-10-30 2009-04-30 Monolithic Power Systems, Inc. Flip-Chip Interconnect Structure
SG152101A1 (en) * 2007-11-06 2009-05-29 Agency Science Tech & Res An interconnect structure and a method of fabricating the same
DE102009012643A1 (en) 2008-03-10 2009-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Connecting structure for connecting electronic component i.e. semiconductor chip, and/or substrate carrier on organic printed circuit board, has contact elements at which material of component or carrier is removed for forming free area
US20100044860A1 (en) * 2008-08-21 2010-02-25 Tessera Interconnect Materials, Inc. Microelectronic substrate or element having conductive pads and metal posts joined thereto using bond layer
US9524945B2 (en) 2010-05-18 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with L-shaped non-metal sidewall protection structure
US7569935B1 (en) * 2008-11-12 2009-08-04 Powertech Technology Inc. Pillar-to-pillar flip-chip assembly
US8536458B1 (en) 2009-03-30 2013-09-17 Amkor Technology, Inc. Fine pitch copper pillar package and method
US9035459B2 (en) 2009-04-10 2015-05-19 International Business Machines Corporation Structures for improving current carrying capability of interconnects and methods of fabricating the same
KR20120045005A (en) * 2009-07-02 2012-05-08 플립칩 인터내셔날, 엘.엘.씨 Methods and structures for a vertical pillar interconnect
US9627254B2 (en) 2009-07-02 2017-04-18 Flipchip International, Llc Method for building vertical pillar interconnect
US8841766B2 (en) 2009-07-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
US8377816B2 (en) * 2009-07-30 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming electrical connections
US8324738B2 (en) 2009-09-01 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned protection layer for copper post structure
US8569897B2 (en) * 2009-09-14 2013-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer for preventing UBM layer from chemical attack and oxidation
TWI445147B (en) * 2009-10-14 2014-07-11 Advanced Semiconductor Eng Semiconductor device
TW201113962A (en) * 2009-10-14 2011-04-16 Advanced Semiconductor Eng Chip having metal pillar structure
US8609526B2 (en) * 2009-10-20 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Preventing UBM oxidation in bump formation processes
US9607936B2 (en) * 2009-10-29 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Copper bump joint structures with improved crack resistance
US9024431B2 (en) 2009-10-29 2015-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor die contact structure and method
US8847387B2 (en) * 2009-10-29 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Robust joint structure for flip-chip bonding
US8659155B2 (en) * 2009-11-05 2014-02-25 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming copper pillar bumps
US8569887B2 (en) * 2009-11-05 2013-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Post passivation interconnect with oxidation prevention layer
US8610270B2 (en) 2010-02-09 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and semiconductor assembly with lead-free solder
US8304919B2 (en) * 2010-03-26 2012-11-06 Stats Chippac Ltd. Integrated circuit system with stress redistribution layer and method of manufacture thereof
US8193639B2 (en) * 2010-03-30 2012-06-05 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy metal design for packaging structures
US8367467B2 (en) 2010-04-21 2013-02-05 Stats Chippac, Ltd. Semiconductor method of forming bump on substrate to prevent ELK ILD delamination during reflow process
US8492891B2 (en) 2010-04-22 2013-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with electrolytic metal sidewall protection
US8441124B2 (en) 2010-04-29 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
US9142533B2 (en) * 2010-05-20 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate interconnections having different sizes
US9018758B2 (en) 2010-06-02 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall spacer and metal top cap
US8922004B2 (en) 2010-06-11 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Copper bump structures having sidewall protection layers
US20120009777A1 (en) 2010-07-07 2012-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. UBM Etching Methods
US8232193B2 (en) 2010-07-08 2012-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming Cu pillar capped by barrier layer
US8330272B2 (en) 2010-07-08 2012-12-11 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
US9159708B2 (en) 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US8482111B2 (en) 2010-07-19 2013-07-09 Tessera, Inc. Stackable molded microelectronic packages
US8580607B2 (en) 2010-07-27 2013-11-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
US8546254B2 (en) 2010-08-19 2013-10-01 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming copper pillar bumps using patterned anodes
TWI478303B (en) 2010-09-27 2015-03-21 Advanced Semiconductor Eng Chip having metal pillar and package having the same
TWI451546B (en) 2010-10-29 2014-09-01 Advanced Semiconductor Eng Stacked semiconductor package, semiconductor package thereof and method for making a semiconductor package
KR101075241B1 (en) 2010-11-15 2011-11-01 테세라, 인코포레이티드 Microelectronic package with terminals on dielectric mass
US8492892B2 (en) 2010-12-08 2013-07-23 International Business Machines Corporation Solder bump connections
US8853558B2 (en) 2010-12-10 2014-10-07 Tessera, Inc. Interconnect structure
US20120146206A1 (en) 2010-12-13 2012-06-14 Tessera Research Llc Pin attachment
US9137903B2 (en) 2010-12-21 2015-09-15 Tessera, Inc. Semiconductor chip assembly and method for making same
US9093332B2 (en) 2011-02-08 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Elongated bump structure for semiconductor devices
US8492893B1 (en) 2011-03-16 2013-07-23 Amkor Technology, Inc. Semiconductor device capable of preventing dielectric layer from cracking
US8304881B1 (en) 2011-04-21 2012-11-06 Tessera, Inc. Flip-chip, face-up and face-down wirebond combination package
US9252094B2 (en) 2011-04-30 2016-02-02 Stats Chippac, Ltd. Semiconductor device and method of forming an interconnect structure with conductive material recessed within conductive ring over surface of conductive pillar
US8618659B2 (en) 2011-05-03 2013-12-31 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
KR101128063B1 (en) 2011-05-03 2012-04-23 테세라, 인코포레이티드 Package-on-package assembly with wire bonds to encapsulation surface
US20120280755A1 (en) * 2011-05-04 2012-11-08 Triquint Semiconductor, Inc. Flip-chip power amplifier and impedance matching network
US8610285B2 (en) 2011-05-30 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC packaging structures and methods with a metal pillar
US8664760B2 (en) 2011-05-30 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Connector design for packaging integrated circuits
US8496159B2 (en) 2011-06-06 2013-07-30 International Business Machines Corporation Injection molded solder process for forming solder bumps on substrates
US8508054B2 (en) * 2011-06-16 2013-08-13 Broadcom Corporation Enhanced bump pitch scaling
US8716858B2 (en) 2011-06-24 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structure with barrier layer on post-passivation interconnect
US8872318B2 (en) 2011-08-24 2014-10-28 Tessera, Inc. Through interposer wire bond using low CTE interposer with coarse slot apertures
US8598691B2 (en) * 2011-09-09 2013-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacturing and packaging thereof
US8581400B2 (en) 2011-10-13 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Post-passivation interconnect structure
US8404520B1 (en) 2011-10-17 2013-03-26 Invensas Corporation Package-on-package assembly with wire bond vias
US9824923B2 (en) 2011-10-17 2017-11-21 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming conductive pillar having an expanded base
US9786622B2 (en) * 2011-10-20 2017-10-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package
US9978656B2 (en) * 2011-11-22 2018-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming fine-pitch copper bump structures
US9613914B2 (en) 2011-12-07 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Post-passivation interconnect structure
US9385076B2 (en) 2011-12-07 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with bump structure on an interconncet structure
US20130147040A1 (en) 2011-12-09 2013-06-13 Robert Bosch Gmbh Mems chip scale package
US8946757B2 (en) 2012-02-17 2015-02-03 Invensas Corporation Heat spreading substrate with embedded interconnects
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US8372741B1 (en) 2012-02-24 2013-02-12 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9425136B2 (en) 2012-04-17 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Conical-shaped or tier-shaped pillar connections
US9646923B2 (en) * 2012-04-17 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices
US9299674B2 (en) 2012-04-18 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace interconnect
US8803333B2 (en) 2012-05-18 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional chip stack and method of forming the same
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9190348B2 (en) 2012-05-30 2015-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Scheme for connector site spacing and resulting structures
US9472521B2 (en) 2012-05-30 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Scheme for connector site spacing and resulting structures
US8981559B2 (en) 2012-06-25 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package devices and methods of packaging semiconductor dies
US8884443B2 (en) 2012-07-05 2014-11-11 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
US20140021603A1 (en) 2012-07-23 2014-01-23 Rf Micro Devices, Inc. Using an interconnect bump to traverse through a passivation layer of a semiconductor die
US9391008B2 (en) 2012-07-31 2016-07-12 Invensas Corporation Reconstituted wafer-level package DRAM
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US9111817B2 (en) 2012-09-18 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structure and method of forming same
US8866311B2 (en) 2012-09-21 2014-10-21 Advanced Semiconductor Engineering, Inc. Semiconductor package substrates having pillars and related methods
US8686568B2 (en) 2012-09-27 2014-04-01 Advanced Semiconductor Engineering, Inc. Semiconductor package substrates having layered circuit segments, and related methods
US8975738B2 (en) 2012-11-12 2015-03-10 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
CN103855158B (en) 2012-11-30 2017-01-04 英力股份有限公司 Including coupled redistribution layer and the semiconductor device of metal column
JP6143104B2 (en) 2012-12-05 2017-06-07 株式会社村田製作所 Bumped electronic component and method for manufacturing bumped electronic component
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US9136254B2 (en) 2013-02-01 2015-09-15 Invensas Corporation Microelectronic package having wire bond vias and stiffening layer
US9023691B2 (en) 2013-07-15 2015-05-05 Invensas Corporation Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
US9034696B2 (en) 2013-07-15 2015-05-19 Invensas Corporation Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
US8883563B1 (en) 2013-07-15 2014-11-11 Invensas Corporation Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US9167710B2 (en) 2013-08-07 2015-10-20 Invensas Corporation Embedded packaging with preformed vias
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US20150076714A1 (en) 2013-09-16 2015-03-19 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US20150122661A1 (en) * 2013-11-05 2015-05-07 Rohm And Haas Electronic Materials Llc Plating bath and method
US9087815B2 (en) 2013-11-12 2015-07-21 Invensas Corporation Off substrate kinking of bond wire
US9082753B2 (en) 2013-11-12 2015-07-14 Invensas Corporation Severing bond wire by kinking and twisting
US9379074B2 (en) 2013-11-22 2016-06-28 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9263394B2 (en) 2013-11-22 2016-02-16 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9793877B2 (en) 2013-12-17 2017-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Encapsulated bulk acoustic wave (BAW) resonator device
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9214454B2 (en) 2014-03-31 2015-12-15 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US10541152B2 (en) 2014-07-31 2020-01-21 Skyworks Solutions, Inc. Transient liquid phase material bonding and sealing structures and methods of forming same
TWI661494B (en) 2014-07-31 2019-06-01 美商西凱渥資訊處理科技公司 Multilayered transient liquid phase bonding
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9502372B1 (en) 2015-04-30 2016-11-22 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US9633971B2 (en) 2015-07-10 2017-04-25 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US10006136B2 (en) 2015-08-06 2018-06-26 Dow Global Technologies Llc Method of electroplating photoresist defined features from copper electroplating baths containing reaction products of imidazole compounds, bisepoxides and halobenzyl compounds
US10100421B2 (en) 2015-08-06 2018-10-16 Dow Global Technologies Llc Method of electroplating photoresist defined features from copper electroplating baths containing reaction products of imidazole and bisepoxide compounds
US9932684B2 (en) 2015-08-06 2018-04-03 Rohm And Haas Electronic Materials Llc Method of electroplating photoresist defined features from copper electroplating baths containing reaction products of alpha amino acids and bisepoxides
TWI608132B (en) 2015-08-06 2017-12-11 羅門哈斯電子材料有限公司 Method of electroplating photoresist defined features from copper electroplating baths containing reaction products of pyridyl alkylamines and bisepoxides
WO2017039581A1 (en) * 2015-08-28 2017-03-09 Intel IP Corporation Microelectronic packages with high integration microelectronic dice stack
US9754911B2 (en) 2015-10-05 2017-09-05 Globalfoundries Inc. IC structure with angled interconnect elements
US9490222B1 (en) 2015-10-12 2016-11-08 Invensas Corporation Wire bond wires for interference shielding
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US10043779B2 (en) 2015-11-17 2018-08-07 Invensas Corporation Packaged microelectronic device for a package-on-package device
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10325828B2 (en) * 2016-03-30 2019-06-18 Qorvo Us, Inc. Electronics package with improved thermal performance
US10643965B2 (en) * 2016-05-25 2020-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method of forming a joint assembly
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10439587B2 (en) 2016-12-02 2019-10-08 Skyworks Solutions, Inc. Methods of manufacturing electronic devices formed in a cavity
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437139A (en) * 1990-06-01 1992-02-07 Nippondenso Co Ltd Formation of metal protruding electrode
US5773897A (en) * 1997-02-21 1998-06-30 Raytheon Company Flip chip monolithic microwave integrated circuit with mushroom-shaped, solder-capped, plated metal bumps
US5807766A (en) * 1995-09-21 1998-09-15 Mcbride; Donald G. Process for attaching a silicon chip to a circuit board using a block of encapsulated wires and the block of wires manufactured by the process
EP0889512A2 (en) * 1997-07-02 1999-01-07 Delco Electronics Corporation Method for controlling solder bump shape and stand-off height

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412642A (en) * 1982-03-15 1983-11-01 Western Electric Co., Inc. Cast solder leads for leadless semiconductor circuits
US4705205A (en) * 1983-06-30 1987-11-10 Raychem Corporation Chip carrier mounting device
JPS6187396A (en) * 1984-10-05 1986-05-02 株式会社日立製作所 Manufacture of electronic circuit device
US5130779A (en) 1990-06-19 1992-07-14 International Business Machines Corporation Solder mass having conductive encapsulating arrangement
US5075965A (en) * 1990-11-05 1991-12-31 International Business Machines Low temperature controlled collapse chip attach process
US5334804A (en) 1992-11-17 1994-08-02 Fujitsu Limited Wire interconnect structures for connecting an integrated circuit to a substrate
US5790377A (en) 1996-09-12 1998-08-04 Packard Hughes Interconnect Company Integral copper column with solder bump flip chip
US6025649A (en) * 1997-07-22 2000-02-15 International Business Machines Corporation Pb-In-Sn tall C-4 for fatigue enhancement
US6015505A (en) * 1997-10-30 2000-01-18 International Business Machines Corporation Process improvements for titanium-tungsten etching in the presence of electroplated C4's
US6369451B2 (en) * 1998-01-13 2002-04-09 Paul T. Lin Solder balls and columns with stratified underfills on substrate for flip chip joining
US6105851A (en) * 1998-08-07 2000-08-22 Unisys Corp Method of casting I/O columns on an electronic component with a high yield

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437139A (en) * 1990-06-01 1992-02-07 Nippondenso Co Ltd Formation of metal protruding electrode
US5807766A (en) * 1995-09-21 1998-09-15 Mcbride; Donald G. Process for attaching a silicon chip to a circuit board using a block of encapsulated wires and the block of wires manufactured by the process
US5773897A (en) * 1997-02-21 1998-06-30 Raytheon Company Flip chip monolithic microwave integrated circuit with mushroom-shaped, solder-capped, plated metal bumps
EP0889512A2 (en) * 1997-07-02 1999-01-07 Delco Electronics Corporation Method for controlling solder bump shape and stand-off height

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 221 (E-1205), 22 May 1992 (1992-05-22) -& JP 04 037139 A (NIPPONDENSO CO LTD), 7 February 1992 (1992-02-07) *
YAMADA H ET AL: "A fine pitch and high aspect ratio bump fabrication process for flip-chip interconnection" , ELECTRONIC MANUFACTURING TECHNOLOGY SYMPOSIUM, 1995, PROCEEDINGS OF 1995 JAPAN INTERNATIONAL, 18TH IEEE/CPMT INTERNATIONAL OMIYA, JAPAN 4-6 DEC. 1995, NEW YORK, NY, USA,IEEE, US, PAGE(S) 121-124 XP010195564 ISBN: 0-7803-3622-4 the whole document *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239514A2 (en) * 2001-03-05 2002-09-11 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
EP1239514A3 (en) * 2001-03-05 2003-06-18 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
US6818545B2 (en) 2001-03-05 2004-11-16 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
WO2005034237A1 (en) * 2003-10-09 2005-04-14 Advanpack Solutions Pte Ltd Pillar bumps for high power chip interconnection
CN103887276A (en) * 2014-04-04 2014-06-25 华进半导体封装先导技术研发中心有限公司 Salient point structure for preventing salient point lateral etching and forming method
CN103887276B (en) * 2014-04-04 2016-06-01 华进半导体封装先导技术研发中心有限公司 Prevent bump structure and the forming method of convex some side direction etching

Also Published As

Publication number Publication date
WO2001082375A3 (en) 2002-04-04
US6681982B2 (en) 2004-01-27
US6578754B1 (en) 2003-06-17
TW510031B (en) 2002-11-11
AU2001259194A1 (en) 2001-11-07
US20020179689A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
US6592019B2 (en) Pillar connections for semiconductor chips and method of manufacture
WO2001082375A2 (en) Improved pillar connections for semiconductor chips and method of manufacture
US7271483B2 (en) Bump structure of semiconductor package and method for fabricating the same
US7314817B2 (en) Microelectronic device interconnects
US9269683B2 (en) Integrated circuit chip with pyramid or cone-shaped conductive pads for flexible C4 connections and a method of forming the integrated circuit chip
US8723318B2 (en) Microelectronic packages with dual or multiple-etched flip-chip connectors
US8492263B2 (en) Protected solder ball joints in wafer level chip-scale packaging
US8101866B2 (en) Packaging substrate with conductive structure
US7358174B2 (en) Methods of forming solder bumps on exposed metal pads
US7125745B2 (en) Multi-chip package substrate for flip-chip and wire bonding
US7952207B2 (en) Flip-chip assembly with organic chip carrier having mushroom-plated solder resist opening
US20060201997A1 (en) Fine pad pitch organic circuit board with plating solder and method for fabricating the same
EP2637202A2 (en) Flip chip interconnection with etched posts on a microelectronic element joined to etched posts on a substrate by a fusible metal and corresponding manufacturing method
KR100659527B1 (en) Semiconductor chip having three dimension type ubm for flip chip bonding and mounting structure thereof
KR20030067590A (en) Semiconductor element and a producing method for the same, and a semiconductor device and a producing method for the same
US8779300B2 (en) Packaging substrate with conductive structure
US6179200B1 (en) Method for forming solder bumps of improved height and devices formed
EP2075834A1 (en) Solder bumps for flip chip bonding with higher density
JP3700598B2 (en) Semiconductor chip, semiconductor device, circuit board, and electronic equipment
TWI336516B (en) Surface structure of package substrate and method for manufacturing the same
JP3626659B2 (en) Semiconductor device, mounting structure thereof, and mounting method thereof
KR101887306B1 (en) Device for bump-on-trace chip packaging and methods of forming the same
US20100015762A1 (en) Solder Interconnect
US6282100B1 (en) Low cost ball grid array package
US20040256737A1 (en) [flip-chip package substrate and flip-chip bonding process thereof]

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP