Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberWO2001077164 A2
Publication typeApplication
Application numberPCT/EP2001/003969
Publication date18 Oct 2001
Filing date6 Apr 2001
Priority date6 Apr 2000
Also published asDE60126593D1, DE60126593T2, EP1268857A2, EP1268861A2, EP1272670A2, EP1274865A2, EP1274865B1, EP1274866A2, EP1278893A2, EP1360319A2, EP1370685A2, EP2014776A2, EP2014776A3, US7195870, US20030082609, US20030148326, US20030148327, US20030162194, US20040067491, US20040076956, US20050282157, WO2001076451A2, WO2001076451A3, WO2001076451A9, WO2001077164A3, WO2001077164A8, WO2001077375A2, WO2001077375A3, WO2001077375A8, WO2001077376A2, WO2001077376A3, WO2001077376A8, WO2001077377A2, WO2001077377A3, WO2001077377A8, WO2001077378A2, WO2001077378A3, WO2001081622A2, WO2001081622A3, WO2001081622A8, WO2001092565A2, WO2001092565A3, WO2001092565A8
Publication numberPCT/2001/3969, PCT/EP/1/003969, PCT/EP/1/03969, PCT/EP/2001/003969, PCT/EP/2001/03969, PCT/EP1/003969, PCT/EP1/03969, PCT/EP1003969, PCT/EP103969, PCT/EP2001/003969, PCT/EP2001/03969, PCT/EP2001003969, PCT/EP200103969, WO 0177164 A2, WO 0177164A2, WO 2001/077164 A2, WO 2001077164 A2, WO 2001077164A2, WO-A2-0177164, WO-A2-2001077164, WO0177164 A2, WO0177164A2, WO2001/077164A2, WO2001077164 A2, WO2001077164A2
InventorsAlexander Olek, Christian Piepenbrock, Kurt Berlin
ApplicantEpigenomics Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: Patentscope, Espacenet
Diagnosis of diseases associated with apoptosis by means of assessing the methylation status of genes associated with apoptosis
WO 2001077164 A2
Abstract
The present invention relates to the chemically modified genomic sequences of genes associated with apoptosis, to oligonucleotides and/or PNA-oligomers for detecting the cytosine methylation state of genes associated with apoptosis which are directed against the sequence, as well as to a method for ascertaining genetic and/or epigenetic parameters of genes associated with apoptosis.
Description  (OCR text may contain errors)


  



   Diagnosis of Diseases Associated with apoptosis
Field of the Invention
The levels of observation that have been well studied by the methodological developments of recent years in molecular biology, are the genes themselves, the translation of these genes into
RNA, and the resulting proteins. The question of which gene is switched on at which point in the course of the development of an individual, and how the activation and inhibition of specific genes in specific cells and tissues are controlled is   correlatable    to the degree and character of the methylation of the genes or of the genome. In this respect, pathogenic conditions may manifest themselves in a changed methylation pattern of individual genes or of the genome.



  The present invention relates to nucleic acids, oligonucleotides, PNA-oligomers and to a method for the diagnosis and/or therapy of diseases which have a connection with the genetic and/or epigenetic parameters of genes associated with apoptosis and, in particular, with the methylation status thereof.



   Prior Art
During embryogenesis, tissue turnover or metamorphosis, multi cellular eukaryotic organisms retain the ability to eliminate unwanted cells. This form of programmed cell death is termed 'apoptosis'. Apoptosis takes place in response to a variety of stimuli that trigger biochemical pathways that result in a characteristic set of processes leading to cell death.



  The stimuli that trigger apoptosis can include the levels of essential growth factors, treatment with glucocorticoids, irradiation, and activation of certain receptors. These trigger a variety of biochemical pathways. The'classical'pathway comprises of a ligand-receptor interaction which triggers the activation of a protease. This leads to the release of cytochrome C from mitochondria. This in turn activates a series of proteases, whose actions culminate in the destruction of cellular structures.



  For example, a common pathway involves activation of caspase-8 by oligomerization at an activated surface receptor. Caspase-8 cleaves Bid, which triggers release of cytochrome c from mitochondria. The cytochrome c causes Apaf-1 to oligomerize with caspase-9. The activated caspase-9 cleaves procaspase-3, whose two subunits then form the active protease. This cleaves various targets that lead to cell death. Cell death by apoptosis is characterised by processes in which the cell becomes more compact, blebbing occurs at the membranes, chromatin becomes condensed, and DNA is fragmented.



  The correct control of apoptosis is probably essential to all higher organisms. For example, in the model organism C. Elegans 131 of the 1090 cells die at defined points of the lifecycle of the organism. In vertebrates, the importance of apoptosis has been proved using knockout mouse models. In humans, apoptosis pathways have been implicated in a variety of diseases including neurodegenerative diseases, ageing and cancer : -HIV infection ; Badley et.   al."Mechanisms    of HIV-associated lymphocyte apoptosis"
Blood, Vol. 96 ; 2951-2964 (2000).



  -Bloom Syndrome ; Bischof et. al.'Selective cleavage of BLM, the Bloom syndrome pro tein, during apoptotic cell death.'J Biol Chem 2001 Jan 11.



  -Cardiomyopathy ; Narula et. al."Apoptosis in heart failure : release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy"Proc Natl Acad Sci U
S A. ; 96 : 8144-8149 (1999).



  -Familial Alzheimer ; Simian et. al.   Presenilin-1    P264L Knock-In Mutation : Differential
Effects on AB Production, Amyloid Deposition, and   Neuronal    Vulnerability The Journal of    Neuroscience,    20 (23) : 8717-8726 (1999).



  -Aging ; Schindowski et. al.'Age-related changes of apoptotic cell death in human lympho cytes.'Neurobiol Aging 2000 Sep-Oct ; 21 (5) : 661-70.



  -Herpes simplex virus infection ;   Perng    et.   al."Virus-Induced    Neuronal Apoptosis Blocked by the Herpes Simplex Virus Latency-Associated Transcript"Science 287 : 1500-1503  (2000). 



  -Renal ischemia ; Yuexian et. al."Downregulation of the calpain inhibitor protein cal pastatin by caspases during renal ischemia-reperfusion"Am. J. Physiol. 279 : 509-517.



  -Amyotrophic lateral sclerosis ; Li et. al."Functional Role of Caspase-1 and Caspase-3 in an
ALS Transgenic Mouse Model"Science 288 (5464) ; 335-339 (2000).



  -Breast cancer ; Sierra et.   al.'Bcl-2    with loss of apoptosis allows accumulation of genetic alterations : a pathway to metastatic progression in human breast cancer.'Int J Cancer. 2000
Mar 20 ; 89 (2) :   142-7.   



  The complexities of the pathways leading to apoptosis allow for many mechanisms by which it can be diverted. In addition to genomic mutations, the epigenetic control of genes has been implicated in disruptions to apoptosis pathways. The epigenetic parameter that has been best characterised, DNA methylation, has been implicated as a key factor in the resistance of tumors to chemotherapy. It has been shown (Soengas et al"Inactivation of the apoptosis effector   Apaf-1    in malignant melanoma"Nature 409 ; 207-211 ; 2001) that in malignant melanomas disruptions in the apoptosis pathway could be attributed to silencing of the   Apaf-1    gene.



  The identification of methylation of apoptosis genes as a factor in tumor malignancy opens up the possibility of creating alternative methods of treatment. Methylation based therapies could have considerable advantages over current methods of treatment such as chemotherapy, surgery and radiotherapy. They may even, as demonstrated by Soengas et al, provide a means of treating tumors resistant to conventional therapies. In addition to the development of methylation specific therapies, experiments with Min mice have shown that inhibition of DNA methylation can suppress tumor initiation (Laird et.   al.'Suppression    of intestinal neoplasia by
DNA   hypomethylation'Cell    81 ; 197-205 1995).

   Furthermore, DNA methylation analysis may provide novel means for tumor diagnosis as suggested by Rosas et. al.'Promoter hypermethylation patterns of   pl6, 06-methylguanine-DNA-methyltransferase,    and death-associated protein kinase in tumors and saliva of head and neck cancer patients.'Cancer Res 2001 Feb 1 ; 61 (3) : 939-42.



  5-methylcytosine is the most frequent covalent base modification in the DNA of eukaryotic cells. It plays a role, for example, in the regulation of the transcription, in genetic imprinting, and in tumorigenesis. Therefore, the identification of 5-methylcytosine as a component of genetic information is of considerable interest. However, 5-methylcytosine positions cannot be identified by sequencing since 5-methylcytosine has the same base pairing behavior as cytosine. Moreover, the epigenetic information carried by 5-methylcytosine is completely lost during PCR amplification.



  A relatively new and currently the most frequently used method for analyzing DNA for 5methylcytosine is based upon the specific reaction of bisulfite with cytosine which, upon subsequent alkaline hydrolysis, is converted to uracil which corresponds to thymidine in its base pairing behavior. However, 5-methylcytosine remains modified under these conditions.



  Consequently, the original DNA is converted in such a manner that methylcytosine, which originally could not be distinguished from cytosine by its hybridization behavior, can now be detected as the only remaining cytosine using"normal"molecular biological techniques, for example, by amplification and hybridization or sequencing. All of these techniques are based on base pairing which can now be fully exploited. In terms of sensitivity, the prior art is defined by a method which encloses the DNA to be analyzed in an agarose matrix, thus preventing the diffusion and renaturation of the DNA (bisulfite only reacts with single-stranded
DNA), and which replaces all precipitation and purification steps with fast dialysis (Olek A,
Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis.

   Nucleic Acids Res. 1996 Dec   15 ;    24 (24) : 5064-6). Using this method, it is possible to analyze individual cells, which illustrates the potential of the method. However, currently only individual regions of a length of up to approximately 3000 base pairs are analyzed, a global analysis of cells for thousands of possible methylation events is not possible. However, this method cannot reliably analyze very small fragments from small sample quantities either. These are lost through the matrix in spite of the diffusion protection.



  An overview of the further known methods of detecting 5-methylcytosine may be gathered from the following review article : Rein, T., DePamphilis, M. L., Zorbas, H., Nucleic Acids
Res.   1998,    26, 2255.



  To date, barring few exceptions (e. g., Zeschnigk M, Lich C, Buiting K,   Doerfler    W,
Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet. 1997 
Mar-Apr ;   5    (2) : 94-8) the bisulfite technique is only used in research. Always, however, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment and either completely sequenced (Olek A, Walter J. The pre-implantation ontogeny of the   Hl9    methylation imprint. Nat Genet. 1997 Nov ; 17 (3) : 275-6) or individual cytosine positions are detected by a primer extension reaction (Gonzalgo ML, Jones PA.

   Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997 Jun 15 ; 25 (12) : 2529-31, WO 95/00669) or by enzymatic digestion (Xiong Z, Laird PW. COBRA : a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997 Jun 15 ; 25 (12) : 2532-4). In addition, detection by hybridization has also been described (Olek et al., WO 99/28498).



  Further publications dealing with the use of the bisulfite technique for methylation detection in individual genes are : Grigg G, Clark S. Sequencing 5-methylcytosine residues in genomic
DNA. Bioessays. 1994 Jun ; 16 (6) : 431-6,   431    ; Zeschnigk M, Schmitz B, Dittrich B, Buiting K,
Horsthemke B, Doerfler W. Imprinted segments in the human genome : different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997 Mar ; 6 (3) : 387-95 ; Feil R, Charlton J, Bird AP,
Walter J, Reik W. Methylation analysis on individual chromosomes : improved protocol for bisulphite genomic sequencing. Nucleic Acids Res. 1994 Feb   25 ;    22 (4) : 695-6 ; Martin V,
Ribieras S, Song-Wang X, Rio MC, Dante R.

   Genomic sequencing indicates a correlation between DNA hypomethylation in the 5'region of the pS2 gene and its expression in human breast cancer cell lines. Gene. 1995 May 19 ; 157 (1-2) : 261-4 ; WO 97/46705, WO 95/15373 and WO 97/45560.



  An overview of the Prior Art in oligomer array manufacturing can be gathered from a special edition of Nature Genetics (Nature Genetics Supplement, Volume 21, January 1999), published in January 1999, and from the literature cited therein.



  Fluorescently labeled probes are often used for the scanning of immobilized DNA arrays. The simple attachment of Cy3 and Cy5 dyes to the 5'-OH of the specific probe are particularly suitable for fluorescence labels. The detection of the fluorescence of the hybridized probes may be carried out, for example via a   confocal    microscope. Cy3 and Cy5 dyes, besides many others, are commercially available. 



  Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-TOF) is a very efficient development for the analysis of biomolecules (Karas M,   Hillenkamp    F. Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal   Chem.   



  1988 Oct   15 ;    60 (20) : 2299-301). An analyte is embedded in a light-absorbing matrix. The matrix is evaporated by a short laser pulse thus transporting the analyte molecule into the vapor phase in an unfragmented manner. The analyte is ionized by collisions with matrix molecules.



  An applied voltage accelerates the ions into a field-free flight tube. Due to their different masses, the ions are accelerated at different rates. Smaller ions reach the detector sooner than bigger ones.



  MALDI-TOF spectrometry is excellently suited to the analysis of peptides and proteins. The analysis of nucleic acids is somewhat more difficult (Gut I G, Beck S. DNA and Matrix Assisted Laser Desorption Ionization Mass Spectrometry. Current Innovations and Future
Trends. 1995,   1 ;    147-57). The sensitivity to nucleic acids is approximately 100 times worse than to peptides and decreases disproportionally with increasing fragment size. For nucleic acids having a multiply negatively charged backbone, the ionization process via the matrix is considerably less efficient. In MALDI-TOF spectrometry, the selection of the matrix plays an eminently important role. For the desorption of peptides, several very efficient matrixes have been found which produce a very fine crystallization.

   There are now several responsive matrixes for DNA, however, the difference in sensitivity has not been reduced. The difference in sensitivity can be reduced by chemically modifying the DNA in such a manner that it becomes more similar to a peptide. Phosphorothioate nucleic acids in which the usual phosphates of the backbone are substituted with thiophosphates can be converted into a chargeneutral DNA using simple alkylation chemistry (Gut IG, Beck S. A procedure for selective
DNA alkylation and detection by mass spectrometry. Nucleic Acids Res. 1995 Apr 25 ; 23 (8) : 1367-73). The coupling of a charge tag to this modified DNA results in an increase in sensitivity to the same level as that found for peptides.

   A further advantage of charge tagging is the increased stability of the analysis against impurities which make the detection of unmodified substrates considerably more difficult. 



  Genomic DNA is obtained from DNA of cell, tissue or other test samples using standard methods. This standard methodology is found in references such as Fritsch and Maniatis eds.,
Molecular Cloning : A Laboratory Manual, 1989.



   Description
The object of the present invention is to provide the chemically modified DNA of genes associated with apoptosis, as well as oligonucleotides and/or PNA-oligomers for detecting cytosine methylations, as well as a method which is particularly suitable for the diagnosis and/or therapy of genetic and epigenetic parameters of genes associated with apoptosis. The present invention is based on the discovery that genetic and epigenetic parameters and, in particular, the cytosine methylation pattern of genes associated with apoptosis are particularly suitable for the diagnosis and/or therapy of diseases associated with apoptosis.



  This objective is achieved according to the present invention using a nucleic acid containing a sequence of at least 18 bases in length of the chemically pretreated DNA of genes associated with apoptosis according to one of Seq. ID No.   l    through Seq. ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto. In the table, after the listed gene designations, the respective data bank numbers (accession numbers) are specified which define the appertaining gene sequences as unique. GenBank was used as the underlying data bank, which is located at the National Institute of Health, internet address www.   ncbi.    nlm. nih. gov.



  The chemically modified nucleic acid could heretofore not be connected with the ascertainment of genetic and epigenetic parameters.



  The object of the present invention is further achieved by an oligonucleotide or oligomer for detecting the cytosine methylation state in chemically pretreated DNA, containing at least one base sequence having a length of at least 13 nucleotides which hybridizes to   a    chemically pretreated DNA of genes associated with apoptosis according to Seq. ID No.   l    through Seq.



   ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated
 DNA of genes according to table 1 and sequences complementary thereto. The oligomer probes according to the present invention constitute important and effective tools which, for the first time, make it possible to ascertain the genetic and epigenetic parameters of genes associated with apoptosis. The base sequence of the oligomers preferably contains at least one
CpG dinucleotide. The probes may also exist in the form of a PNA (peptide nucleic acid) which has particularly preferred pairing properties.

   Particularly preferred are oligonucleotides according to the present invention in which the cytosine of the CpG dinucleotide is the   5th-    9th nucleotide from the 5'-end of the 13-mer ; in the case of PNA-oligomers, it is preferred for the cytosine of the CpG dinucleotide to be the 4th-6th nucleotide from the 5'-end of the 9mer.



  The oligomers according to the present invention are normally used in so called"sets"which contain at least one oligomer for each of the CpG dinucleotides of the sequences of Seq. ID
No.   l    through Seq. ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto. Preferred is a set which contains at least one oligomer for each of the CpG dinucleotides from one of Seq. ID No.   l    through Seq. ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.



  Moreover, the present invention makes available a set of at least two oligonucleotides which can be used as so-called"primer oligonucleotides"for amplifying DNA sequences of one of
Seq. ID No.   l    through Seq. ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto, or segments thereof.



  In the case of the sets of oligonucleotides according to the present invention, it is preferred that at least one oligonucleotide is bound to a solid phase.



  The present invention moreover relates to a set of at least 10 n (oligonucleotides   and/or    PNAoligomers) used for detecting the cytosine methylation state in chemically pretreated genomic
DNA (Seq. ID No.   l    through Seq. ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto). These probes enable diagnosis and/or therapy of genetic and epigenetic parameters of genes associated with apoptosis. The set of oligomers may also be used for detecting single nucleotide polymorphisms (SNPs) in the chemically pretreated DNA of genes associated with apoptosis according to one of Seq. ID No.   l    through Seq.

   ID No. 78 and sequences complementary thereto   and/or    a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto.



  According to the present invention, it is preferred that an arrangement of different oligonucleotides and/or PNA-oligomers (a so-called"array") made available by the present invention is present in a manner that it is likewise bound to a solid phase. This array of different oligonucleotide-and/or PNA-oligomer sequences can be characterized in that it is arranged on the solid phase in the form of a rectangular or hexagonal lattice. The solid phase surface is preferably composed of silicon, glass, polystyrene, aluminum, steel, iron, copper, nickel, silver, or gold. However, nitrocellulose as well as plastics such as nylon which can exist in the form of pellets or also as resin matrices are possible as well.



  Therefore, a further subject matter of the present invention is a method for manufacturing an array fixed to a carrier material for analysis in connection with diseases associated with apoptosis in which method at least one oligomer according to the present invention is coupled to a solid phase. Methods for manufacturing such arrays are known, for example, from US
Patent 5, 744, 305 by means of solid-phase chemistry and photolabile protecting groups.



  A further subject matter of the present invention relates to a DNA chip for the analysis of diseases associated with apoptosis which contains at least one nucleic acid according to the present invention. DNA chips are known, for example, for US Patent 5, 837, 832.



  Moreover, a subject matter of the present invention is a kit which may be composed, for example, of a bisulfite-containing reagent, a set of primer oligonucleotides containing at least two oligonucleotides whose sequences in each case correspond or are complementary to an 18 base long segment of the base sequences specified in the appendix (Seq. ID No.   l    through Seq.



  ID No. 78 and sequences complementary thereto and/or a sequence of a chemically pretreated
DNA of genes according to table 1 and sequences complementary thereto), oligonucleotides   and/or    PNA-oligomers as well as instructions for carrying out and evaluating the described method. However, a kit along the lines of the present invention can also contain only part of the aforementioned components. 



  The present invention also makes available a method for ascertaining genetic and/or epigenetic parameters of genes associated with the cycle cell by analyzing cytosine methylations and single nucleotide polymorphisms, including the following steps :
In the first step of the method, a genomic DNA sample is chemically treated in such a manner that cytosine bases which are   unmethylated    at the 5'-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior. This will be understood as'chemical pretreatment'hereinafter.



  The genomic DNA to be analyzed is preferably obtained form usual sources of DNA such as cells or cell components, for example, cell lines, biopsies, blood, sputum, stool, urine, cerebral-spinal fluid, tissue embedded in paraffin such as tissue from eyes, intestine, kidney, brain, heart, prostate, lung, breast or liver, histologic object slides, or combinations thereof.



  The above described treatment of genomic DNA is preferably carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.



  Fragments of the chemically pretreated DNA are amplified, using sets of primer oligonucleotides according to the present invention, and a, preferably heat-stable polymerase. Because of statistical and practical considerations, preferably more than ten different fragments having a length of 100-2000 base pairs are amplified. The amplification of several DNA segments can be carried out simultaneously in one and the same reaction vessel. Usually, the amplification is carried out by means of a polymerase chain reaction (PCR).



  In a preferred embodiment of the method, the set of primer oligonucleotides includes at least two olignonucleotides whose sequences are each reverse complementary or identical to an at least 18 base-pair long segment of the base sequences specified in the appendix (Seq. ID No.   l    through Seq.   ID No.    78 and sequences complementary thereto and/or a sequence of a   chemi-    cally pretreated DNA of genes according to table 1 and sequences complementary thereto).



  The primer oligonucleotides are preferably characterized in that they do not contain any CpG dinucleotides. 



  According to the present invention, it is preferred that at least one primer oligonucleotide is bonded to a solid phase during amplification. The different oligonucleotide and/or PNAoligomer sequences can be arranged on a plane solid phase in the form of a rectangular or hexagonal lattice, the solid phase surface preferably being composed of silicon, glass, polystyrene, aluminum, steel, iron, copper, nickel, silver, or gold, it being possible for other materials such as nitrocellulose or plastics to be used as well.



  The fragments obtained by means of the amplification can carry a directly or indirectly detectable label. Preferred are labels in the form of fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer, it being preferred that the fragments that are produced have a single positive or negative net charge for better detectability in the mass spectrometer. The detection may be carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).



  The amplificates obtained in the second step of the method are subsequently hybridized to an array or a set of oligonucleotides   and/or    PNA probes. In this context, the hybridization takes place in the manner described in the following. The set of probes used during the hybridization is preferably composed of at least 10 oligonucleotides or PNA-oligomers. In the process, the amplificates serve as probes which hybridize to oligonucleotides previously bonded to a solid phase. The non-hybridized fragments are subsequently removed. Said oligonucleotides contain at least one base sequence having a length of 13 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG dinucleotide.

   The cytosine of the CpG dinucleotide is the 5th to 9th nucleotide from the 5'-end of the 13-mer. One oligonucleotide exists for each
CpG dinucleotide. Said PNA-oligomers contain at least one base sequence having a length of 9 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the appendix, the segment containing at least one CpG dinucleotide. The cytosine of the CpG dinucleotide is the 4th to 6th nucleotide seen from the 5'-end of the 9-mer. One oligonucleotide exists for each CpG dinucleotide.



  In the fourth step of the method, the non-hybridized amplificates are removed. 



  In the final step of the method, the hybridized amplificates are detected. In this context, it is preferred that labels attached to the amplificates are identifiable at each position of the solid phase at which an oligonucleotide sequence is located.



  According to the present invention, it is preferred that the labels of the amplificates are fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer. The mass spectrometer is preferred for the detection of the amplificates, fragments of the amplificates or of probes which are complementary to the amplificates, it being possible for the detection to be carried out and visualized by means of matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).



  The produced fragments may have a single positive or negative net charge for better detectability in the mass spectrometer. The aforementioned method is preferably used for ascertaining genetic and/or epigenetic parameters of genes associated with apoptosis.



  The oligomers according to the present invention or arrays thereof as well as a kit according to the present invention are intended to be used for the diagnosis and/or therapy of diseases associated with apoptosis by analyzing methylation patterns of genes associated with apoptosis. According to the present invention, the method is preferably used for the diagnosis and/or therapy of important genetic   and/or    epigenetic parameters within genes associated with apoptosis.



  The method according to the present invention is used, for example, for the diagnosis and/or therapy of HIV infection, Bloom syndrome, cardiopathy, aging, neurodegenerative disorders,
Herpes simplex virus infection, renal ischemia, amyotrophic lateral sclerosis, solid tumors and cancers.



  The nucleic acids according to the present invention of Seq. ID No.   l    through Seq. ID No. 78 and sequences complementary thereto   and/or    a sequence of a chemically pretreated DNA of genes according to table 1 and sequences complementary thereto can be used for the diagnosis
   and/or    therapy of genetic   and/or    epigenetic parameters of genes associated with apoptosis. 



  The present invention moreover relates to a method for manufacturing a diagnostic agent and/or therapeutic agent for the diagnosis   and/or    therapy of diseases associated with apoptosis by analyzing methylation patterns of genes associated with apoptosis, the diagnostic agent   and/or    therapeutic agent being characterized in that at least one nucleic acid according to the present invention is used for manufacturing it, possibly together with suitable additives and auxiliary agents.



  A further subject matter of the present invention relates to a diagnostic agent and/or therapeutic agent for diseases associated with apoptosis by analyzing methylation patterns of genes associated with apoptosis, the diagnostic agent and/or therapeutic agent containing at least one nucleic acid according to the present invention, possibly together with suitable additives and auxiliary agents.



  The present invention moreover relates to the diagnosis and/or prognosis of events which are disadvantageous to patients or individuals in which important genetic and/or epigenetic parameters within genes associated with apoptosis said parameters obtained by means of the present invention may be compared to another set of genetic and/or epigenetic parameters, the differences serving as the basis for a diagnosis and/or prognosis of events which are disadvantageous to patients or individuals.



  In the context of the present invention the term"hybridization"is to be understood as a bond of an oligonucleotide to a completely complementary sequence along the lines of the Watson
Crick base pairings in the sample DNA, forming a duplex structure. To be understood by "stringent hybridization conditions"are those conditions in which a hybridization is carried out at   60 C    in 2. 5 x SSC buffer, followed by several washing steps at   37 C    in a low buffer concentration, and remains stable.



  The term"functional variants"denotes all DNA sequences which are complementary to a
DNA sequence, and which hybridize to the reference sequence under stringent conditions and have an activity similar to the corresponding polypeptide according to the present invention. 



  In the context of the present invention,"genetic parameters"are mutations and polymorphisms of genes associated with apoptosis and sequences further required for their regulation.



  To be designated as mutations are, in particular, insertions, deletions, point mutations, inversions and polymorphisms and, particularly preferred, SNPs (single nucleotide polymorphisms).



  In the context of the present invention,"epigenetic   parameters"are,    in particular, cytosine methylations and further chemical modifications of DNA bases of genes associated with apoptosis and sequences further required for their regulation. Further epigenetic parameters include, for example, the   acetylation    of histones which, however, cannot be directly analyzed using the described method but which, in turn, correlates with the DNA methylation.



  In the following, the present invention will be explained in greater detail on the basis of the sequences and examples with reference to the accompanying figure without being limited thereto.



  Figure 1
Figure 1 shows the hybridisation of fluorescent labelled amplificates to a surface bound olignonucleotide. Sample I being from healthy tissue and sample II being from pilocytic astrocytoma (tumor) tissue. Flourescence at a spot shows hybridisation of the amplificate to the olignonucleotide. Hybridisation to a CG olignonucleotide denotes methylation at the cytosine position being analysed, hybridisation to a TG olignonucleotide denotes no methylation at the cytosine position being analysed.



  Sequence ID Nos.   1    to 74
Sequences having odd sequence numbers (e. g., Seq. ID No. 1, 3, 5,...) exhibit in each case sequences of the chemically pretreated genomic DNAs of different genes associated with apoptosis. Sequences having even sequence numbers (e. g., Seq. ID No. 2, 4, 6,...) exhibit in each case the sequences of the chemically pretreated genomic DNAs of genes associated with apoptosis which are complementary to the   preceeding    sequences (e. g., the complementary sequence to Seq. ID No.   l    is Seq. ID No. 2, the complementary sequence to Seq. ID No. 3 is
Seq. ID No. 4, etc.) 
Sequence ID Nos. 75 to 78
Sequence ID Nos. 75 to 78 show the sequences of oligonucleotides used in Example 1.



  The following example relates to a fragment of a gene associated with apoptosis, in this case, death-associated protein 1   (DAPK1)    in which a specific CG-position is analyzed for its methylation status.



  Example   l    : Methylation analysis in the gene DAPK1 associated with apoptosis.



  The following example relates to a fragment of the gene   DAPK1    in which a specific CGposition is to be analyzed for methylation.



  In the first step, a genomic sequence is treated using bisulfite (hydrogen sulfite, disulfite) in such a manner that all cytosines which are not methylated at the 5-position of the base are modified in such a manner that a different base is substituted with regard to the base pairing behavior while the cytosines methylated at the 5-position remain unchanged.



  If bisulfite solution is used for the reaction, then an addition takes place at the non-methylated cytosine bases. Moreover, a denaturating reagent or solvent as well as a radical interceptor must be present. A subsequent alkaline hydrolysis then gives rise to the conversion of nonmethylated cytosine nucleobases to uracil. The chemically converted DNA (sequence ID Nos.



  73 and 74) is then used for the detection of methylated cytosines. In the second method step, the treated DNA sample is diluted with water or an aqueous solution. Preferably, the DNA is subsequently   desulfonated      (10-30    min,   90-100  C)    at an alkaline pH value. In the third step of the method, the DNA sample is amplified in a polymerase chain reaction, preferably using a heat-resistant DNA polymerase. In the present case, cytosines of the gene   DAPK1    are analyzed. To this end, a defined fragment having a length of 465 bp is amplified with the specific primer oligonucleotides ATTAATATTATGTAAAGTGA (Sequence ID No. 75) and
CTTACAACCATTCACCCACA (Sequence ID No. 76).

   This amplificate serves as a sample which hybridizes to an oligonucleotide previously bonded to a solid phase, forming a duplex structure, for example GTTATATCGTGGAGGATA (Sequence ID No. 77), the cytosine to be detected being located at position 135 of the amplificate. The detection of the hybridization product is based on Cy3 and Cy5 flourescently labeled primer oligonucleotides which have been used for the amplification. A hybridization reaction of the amplified DNA with the oli gonucleotide takes place only if a methylated cytosine was present at this location in the bisulfite-treated DNA. Thus, the methylation status of the specific cytosine to be analyzed is inferred from the hybridization product.



  In order to verify the methylation status of the position, a sample of the amplificate is further hybridized to another oligonucleotide previously bonded to a solid phase. Said olignonucleotide is identical to the oligonucleotide previously used to analyze the methylation status of the sample, with the exception of the position in question. At the position to be analysed said oligonucleotide comprises a thymine base as opposed to a cytosine base i. e
GTTATATTGTGGAGGATA (Sequence ID No. 78). Therefore, the hybridisation reaction only takes place if an   unmethylated    cytosine was present at the position to be analysed. The procedure was carried out on cell samples from 2 patients, sample I being from normal healthy tissue and sample II being from a pilocytic astrocytoma tumor sample.



  From the results (see Figure 1) it can be seen that the sample I contained a mixture of both methylated and   unmethylated    cells at position of the amplificate whereas sample   II    contained only methylated cells at position   135    of the amplificate.



  Example 2 : Diagnosis of diseases associated with apoptosis
In order to relate the methylation patterns to one of the diseases associated with apoptosis, it is initially required to analyze the DNA methylation patterns of a group of diseased and of a group of healthy patients. These analyses are carried out, for example, analogously to Example 1. The results obtained in this manner are stored in a database and the CpG dinucleotides which are methylated differently between the two groups are identified. This can be carried out by determining individual CpG methylation rates as can be done, for example, in a relatively imprecise manner, by sequencing or else, in a very precise manner, by a methylationsensitive"primer extension reaction".

   It is also possible for the entire methylation status to be analyzed simultaneously, and for the patterns to be compared, for example, by clustering analyses which can be carried out, for example, by a computer.



  Subsequently, it is possible to allocate the examined patients to a specific therapy group and to treat these patients selectively with an individualized therapy. 



  Example 2 can be carried out, for example, for the following diseases :
HIV infection, Bloom syndrome, cardiopathy, aging, neurodegenerative disorders, Herpes simplex virus infection, renal ischemia, amyotrophic lateral sclerosis, solid tumors and cancers.
EMI17.1     


<tb>



  Gene <SEP> Database <SEP> entry <SEP> No. <SEP> (GenBank, <SEP> internet <SEP> ad
<tb>  <SEP> dress <SEP> www. <SEP> ncbi. <SEP> nlm. <SEP> nih. <SEP> gov)
<tb> TNFRSF6 <SEP> (NM¯000043),
<tb> TNFRSF6 <SEP> (NM¯000043),
<tb> TNFRSF6 <SEP> (NM¯000043),
<tb> BCL2 <SEP> (NM¯000633),
<tb> BCL2L1 <SEP> (NM¯001191),
<tb> BCL2L2 <SEP> (NM¯004050),
<tb> BNIP3 <SEP> (NM¯004052),
<tb> CASP3 <SEP> (NM¯004346),
<tb> CASP7 <SEP> (NM¯001227),
<tb> PDCD1 <SEP> (NM¯005018),
<tb> SFRP5 <SEP> (NM¯003015),
<tb> STK17A <SEP> (NM¯004760),
<tb> REQ <SEP> (NM¯006268)
<tb>

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
WO1999028498A2 *27 Nov 199810 Jun 1999Epigenomics GmbhMethod for producing complex dna methylation fingerprints
WO1999029898A2 *4 Dec 199817 Jun 1999MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.Method for identifying nucleic acids by means of matrix-assisted laser desorption/ionisation mass spectrometry
WO2001068911A2 *15 Mar 200120 Sep 2001Epigenomics AgDiagnosis of diseases associated with the cell cycle
WO2001068912A2 *15 Mar 200120 Sep 2001Epigenomics AgDiagnosis of diseases associated with tumor suppressor genes and oncogenes
WO2001077376A2 *6 Apr 200118 Oct 2001Epigenomics AgDiagnosis of diseases associated with metastasis
US5744305 *6 Jun 199528 Apr 1998Affymetrix, Inc.Arrays of materials attached to a substrate
Non-Patent Citations
Reference
1 *ALLAN LA ET AL.: "The p21WAFi1/CIP1 promoter is methylated in Rat- cells: stable restoration of p53-dependent p21WAF1/CIP1 expression after transfection of a genomic clone containing the p21WAF1/CIP1 gene." MOLECULAR AND CELLULAR BIOLOGY, vol. 20, no. 4, February 2000 (2000-02), pages 1291-1298, XP001026537
2 *DATABASE EMBL [Online] EBI; 11 December 1993 (1993-12-11) DEISS LP ET AL.: "DAP-kinase" retrieved from HTTP://WWW.EBI.AC.UK/CGI-BIN/EMBLFETCH Database accession no. X76104 XP002187216 -& DEISS LP ET AL: "Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death." GENES & DEVELOPMENT, vol. 9, 1995, pages 15-30, XP002102392
3 *DATABASE GENBANK [Online] NCBI; 6 March 1995 (1995-03-06) ITHO N ET AL: "Human Fas antigen (fas) mRNA, complete cds" retrieved from HTTP://WWW.NCBI.NLM.NIH.GOV/ Database accession no. M67454 XP002187215 & ITHO N ET AL.: "The polypetide encoded by the cDNA for human cell surface antigen FAS can mediate apoptosis." CELL, vol. 66, no. 2, 1991, pages 233-243,
4 *KATZENELLENBOGEN RA ET AL.: "Hypermethylation of the DAP-Kinase CpG island is a common alteration in B-cell malignancies." NEOPLASIA, vol. 93, no. 12, June 1999 (1999-06), pages 4347-4353, XP002187214
5 *SALVATORE P ET AL.: "High resolution analysis of the galectin-1 gene promoter region in expressing and nonexpressing tissues." FEBS LETTERS, vol. 421, no. 2, 1998, pages 152-158, XP004261737
6 *UEKI T ET AL.: "Hypermethylation of multiple genes in pancreatic adenocarcinoma." CANCER RESAERCH, vol. 60, no. 7, 1 April 2000 (2000-04-01), pages 1835-1839, XP001026187
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US71958706 Apr 200127 Mar 2007Epigenomics AgDiagnosis of diseases associated with gene regulation
US738180813 Jun 20023 Jun 2008Epigenomics AgMethod and nucleic acids for the differentiation of prostate tumors
Classifications
International ClassificationG01N33/53, G01N37/00, A61K48/00, C12M1/00, C07K14/82, B01J19/00, A61P13/12, A61P35/00, C12N15/09, C07K14/46, C12Q1/68, A61P7/04, A61P11/06, G01N33/483, A61P29/00, A61K31/711, C12Q1/48, C07K14/47, G01N27/62, G01N33/566, A61P9/10
Cooperative ClassificationC12Q2600/154, C12Q2600/156, C07K14/4703, C12Q1/6886, C12Q1/6883, C07K14/82
European ClassificationC07K14/82, C12Q1/68M6, C12Q1/68M6B, C07K14/47A1A
Legal Events
DateCodeEventDescription
18 Oct 2001ALDesignated countries for regional patents
Kind code of ref document: A2
Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
18 Oct 2001AKDesignated states
Kind code of ref document: A2
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
12 Dec 2001121Ep: the epo has been informed by wipo that ep was designated in this application
10 Jan 2002DFPERequest for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
21 Mar 2002ALDesignated countries for regional patents
Kind code of ref document: C1
Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
21 Mar 2002AKDesignated states
Kind code of ref document: C1
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
21 Mar 2002CR1Correction of entry in section i
Free format text: PAT. BUL. 42/2001 UNDER "PUBLISHED", ADD "SEQUENCE LISTING PART OF DESCRIPTION PUBLISHED SEPARATELYIN ELECTRONIC FORM AND AVAILABLE UPON REQUEST FROM THE INTERNATIONAL BUREAU."
21 Mar 2002CFPCorrected version of a pamphlet front page
20 Jun 2002ALDesignated countries for regional patents
Kind code of ref document: A3
Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
20 Jun 2002AKDesignated states
Kind code of ref document: A3
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
25 Sep 2002WWEWipo information: entry into national phase
Ref document number: 2001953936
Country of ref document: EP
4 Oct 2002ENPEntry into the national phase in:
Ref country code: JP
Ref document number: 2001 575634
Kind code of ref document: A
Format of ref document f/p: F
24 Oct 2002WWEWipo information: entry into national phase
Ref document number: 2001276330
Country of ref document: AU
15 Jan 2003WWPWipo information: published in national office
Ref document number: 2001953936
Country of ref document: EP
14 Apr 2003WWEWipo information: entry into national phase
Ref document number: 10240452
Country of ref document: US
14 Feb 2007WWGWipo information: grant in national office
Ref document number: 2001953936
Country of ref document: EP