WO2001076347A2 - Novel triphenylmethane dyes for water-based compositions - Google Patents

Novel triphenylmethane dyes for water-based compositions Download PDF

Info

Publication number
WO2001076347A2
WO2001076347A2 PCT/US2001/010937 US0110937W WO0176347A2 WO 2001076347 A2 WO2001076347 A2 WO 2001076347A2 US 0110937 W US0110937 W US 0110937W WO 0176347 A2 WO0176347 A2 WO 0176347A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
dye
solution
water
Prior art date
Application number
PCT/US2001/010937
Other languages
French (fr)
Other versions
WO2001076347A3 (en
Inventor
Ashleigh Simms Harrison
Gary Ellis
Original Assignee
Basf Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Corporation filed Critical Basf Corporation
Priority to AU2001251296A priority Critical patent/AU2001251296A1/en
Publication of WO2001076347A2 publication Critical patent/WO2001076347A2/en
Publication of WO2001076347A3 publication Critical patent/WO2001076347A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • C09B67/0063Preparation of organic pigments of organic pigments with only macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/02Dyestuff salts, e.g. salts of acid dyes with basic dyes
    • C09B69/06Dyestuff salts, e.g. salts of acid dyes with basic dyes of cationic dyes with organic acids or with inorganic complex acids

Definitions

  • Colorant compositions prepared by the process of the present invention have greatly increased hydrophilicity and compatibility with aqueous ink vehicles, as well as increased dispersibility in aqueous inks. While not wishing to be bound by theory, it is believed that the superior properties of the pigment compositions prepared as described herein in water-based applications are due to the inclusion of the polymer within the pigment particles.
  • SURFYNOL® 104 (0.2 grams) was added to a mixture of 500 ml of water and 115 grams of 85% phosphoric acid in a beaker. The resulting mixture was heated to 50 °C. To the dilute acid solution was added 61 grams of the finely ground ( ⁇ 20 mesh) tris - (para dodecyl) homologue of Solvent Blue 23:
  • the mixture was heated to 100 °C as rapidly as possible, while stirring vigorously, and was held at temperature for 30 minutes until all of the dye had been dissolved and was converted to the phosphate salt. Once all of the material was in solution, 6.1 grams of a previously prepared solution containing 43 % of the styrene-acrylic acid polymer SCX-686TM (S.C. Johnson, Racine, WI) in aqueous ammonia, was added. 2000 ml of cold (25 °C) water was added to the mixture and the pH adjusted to 9.0 with 28%o aqua ammonia. The mixture was then filtered and washed with, three liters of warm ( « 35 - 40 °C) water. The washed filtercake was then dried at 75 °C for 24 hours.
  • the pigment dispersion was prepared by combining 23 parts of the triphenylmethane dye/pigment, 48 parts of the grinding vehicle, 28 parts of water, and 1 part of defoamer (Air Products SURFYNOL® 420TM).
  • the pigment was predispersed in a high speed disperser (Cowles type) for ten minutes and then transferred to a one-liter shaker mill containing 500 grams of 4 mm stainless steel shot. The mill was secured to a standard paint shaker (Red Devil Equipment Company) and shaken at 750 cycles per minute for twenty-five minutes. The mill was allowed to cool for ten minutes and then the twenty-five minute shake was then repeated resulting in the pigment dispersion.

Abstract

Novel pigment compositions comprising pigmentary salts and polymers are provided. Pigmentary salts of triphenylmethane dyes are co-precipitated with polyfunctional polymeric acids to form pigment compositions having greatly increased hydrophilicity, dispersability and compatibility with water/polymeric dye vehicles. Processes for forming these pigment compositions are also provided.

Description

NOVEL TRIPHENYLMETHANE DYES FOR WATER-BASED COMPOSITIONS
FIELD OF THE INVENTION
The present invention relates to organic colorant compositions useful for imparting color. Particularly, the present invention relates to methods for preparing a novel class of triarylmethane dyes and to the dyes prepared.
BACKGROUND OF THE INVENTION There is currently a growing market for water-based inks in the flexographic printing industry, primarily for package and container printing. There is, moreover, a trend toward the use of water-based inks for all types of printing.
Almost all water-based inks and coatings require a basic pH of about 7 to about 12 for dyes of the inks and coatings to be soluble in an aqueous composition. However, at basic pH, the coloristic properties of most dyes are greatly diminished. For example, blue or purple triphenylmethane dyes with ionizable sulfonic acid groups have been utilized for making water-based inks and coatings. The most commonly used dye of this type is Pigment Blue 61:
Figure imgf000002_0001
Pigment Blue 61 is a medium shade blue (λmax = 600 nm) which has a very high light absorption per unit of weight and is well suited for use in solvent or oil based inks. However, this pigment is sensitive to changes in pH and, at pH values greater than 9, the resulting salt is reddish-brown instead of blue and is coloristically weak when compared to the blue, acid form of the pigment. Accordingly, because almost all water-based inks and coatings are formulated using polymeric resins that require a pH range of about 7 to about 12 to remain solubilized or emulsified, these ink compositions are often unsuitable for use with triphenylmethane pigments such as Pigment Blue 61.
Among commonly used triphenylmethane pigments are the salts of the phenylpararosanilines (PPR's). The sulfate of triphenylpararosaniline (TPPR) is a pigment used in oil-based printing inks and can be prepared by the pigment flushing process. U.S. Patent No. 4,944,806 discloses two methods of preparation for the salts (sulfate, chloride, nitrate, and phosphate) of the TPPR molecule. The first method involves dissolving the TPPR in an organic solvent, then mixing the solution with a dilute aqueous solution of the acid and a surfactant using a high shear, turbulent mixer, and isolating the product by filtration. The resulting pigment filtercake is converted to a flushed paste ink by vacuum flushing. The second method disclosed involves crushing the solid TPPR and then grinding it to pigmentary size by the use of a high energy media mill, such as an Attritor, in the presence of dilute aqueous acid and a surfactant. The ground pigmentary salt is then isolated by filtration and converted to a flush paste ink by vacuum flushing.
It would thus be desirable to provide colorant compositions that remain solubilized in water-based ink and coating systems. It would be further desirable if the colorant compositions would also remain coloristically strong when solubilized in water-based ink and coating systems.
United States Patent No. 3,671,553 issued to Papenfuss et. al., is directed to the dyestuffs of the monosulfonic acids of the triphenylmethanes. The patent discloses how to make a "color base sulfate" which is used as an intermediate in the production of the monosulfonated molecule. The 3,671,553 patent does not teach nor suggest a pigmentary form of the "color base sulfate" molecule and in fact specifically teaches that the color base sulfate remain in solution to aid in the preparation of the sulfonic acid form and is not isolated in a solid or pigmentary form.
United States Patent No. 3,439,004 pertains to the triarylmethane dyes and discloses how to make a "dye product" stating that these "dye products" also make excellent pigments. However, this patent is directed specifically at the rriaminotriarylurethane compounds which have at least one cyclohexyl sustituent attached to the amino group. It discloses that the dye products, although water- insoluble, have improved solubility in ethyl alcohol and are appropriate for alcohol and polyglycol based inks and coatings.
United States Patent 4,321,207 discloses a broad range of triphenylmethane dyes referring to the dyes in their "solid form". However, it does not disclose the use of the dye solids as a pigment and specifically does not refer to the use of the dye solids as a pigment for use in water-based inks or water-based coatings.
United States Patent No. 3,671,553, issued to Papenfuss et al., is directed to the dyestuffs of monosulfonic acids of the triphenylmethanes. This patent discloses how to make a "color base sulfate" that is used as an intermediate in the production of the monosulfonated molecule. The 3,671,553 patent specifically teaches that the color base sulfate remains in solution to aid in the preparation of the sulfonic acid form and is not isolated in a solid or pigmentary form.
United States Patent No. 3,439,004 pertains to triarylmethane dyes and discloses how to make a "dye product" stating that these "dye products" also make excellent pigments. This patent, however, is directed specifically at triaminotriarylurethane compounds having at least one cyclohexyl substituent attached to the amino group. It also does not disclose the use of these dyes in water- based ink systems or water-based coatings.
Japanese Patent No. JP 9217019 discloses a method for producing an aqueous pigment dispersion comprising dispersing coarsely ground pigment with an acrylic resin alkali salt in an aqueous solution, this method, the pigment is never solubilized in the aqueous solution but instead the resin is associated with the pigment surface and serves as a dispersent for the pigment.
SUMMARY OF THE INVENTION
The present invention provides novel colorant compositions useful in water- based ink and coating systems. The novel colorant compositions include pigmentary salts and water soluble or dispersible polymers in which the polymer is present as inclusions in the pigment particles. The term "polymer" as used herein also refers to oligomers and resins. The pigmentary salt may be obtained from saltable colorant dyes suitable for inks and coatings. Preferably the pigmentary salt is formed from a triarylmethane dye, especially triphenylmethane or one of its derivatives. The polymer can be any water soluble or dispersible polymer or resin that aids in solubilizing or dispersing the pigmentary salt in aqueous compositions. Preferably the polymer or resin has acid functionality. The present invention also provides a process for producing the novel colorant composition. The method includes converting a free unsalted dye to the corresponding pigmentary salt by dissolving the dye in aqueous acid at elevated temperatures, adding the water-soluble or water-dispersible polymer or resin, and then co-precipitating the pigmentary salt with the polymer. The precipitated particles contain mixtures of the resin and the pigment. Colorant compositions thus prepared have greatly increased hydrophilicity, dispersibility, and compatibility with aqueous polymeric ink vehicles.
DETAILED DESCRIPTION
The present invention provides novel colorant compositions that include a pigmentary salt and a water soluble or dispersible polymer or polymeric or oligomeric resin in which the polymer is present as inclusions in the pigment particles. A process for making the novel pigment compositions is also provided. The process includes steps of converting a dye to a pigmentary salt and co-precipitating the salt with a water soluble or dispersible polymer.
In one embodiment, the novel colorant composition of the present invention comprise the salt of a dye, preferably the salt of a triphenylmethane dye having the general formula:
Figure imgf000005_0001
wherein Ri, R2, R3, R4j and R5 each independently is H, substituted or unsubstituted alkyl group or phenyl or substituted phenyl. The alkyl group will preferably have 1 to 12 carbon atoms. Preferably, the substituted phenyl has the general formula:
Figure imgf000006_0001
wherein Xi, X2, X3, X-i, and X5 each independently is any substituent, preferably H, F, Cl, Br, I, CH3CH O-, CH3O-, NO2, or substituted or unsubstituted alkyl including - CH3 and -CH2CH3.
In a preferred embodiment, the triphenylmethane dye had a formula selected from the formulas II, III, and IN:
Figure imgf000006_0002
Figure imgf000006_0003
Figure imgf000007_0001
wherein Ri, R , R3, j, and R5 each independently is H, any substituted or unsubstituted alkyl, phenyl or substituted phenyl and XrXis each independently is any substituent. Preferably, the alkyl has 1 to 12 carbons. Preferably X1-X15 each independently is H, F, Cl, Br, I, CH3O-, CH3CH2O-, and NO2, and any branched or linear alkyl including -CH3 and -CH2CH3.
The novel colorant composition of the present invention also includes a water soluble or dispersible polymer. Preferably, the polymer is anionic and, more preferably, has acid functionality. Polymers with acid functionality are well known in the art and are commonly used as binders in water-based inks and coatings. In a preferred embodiment, the polymer has acid functionality that includes carboxylic acid groups. In a most preferred embodiment, the polymers are poly(styrene-acrylic acid) copolymers. Preferably, the poly(styrene-acrylic acid) has a styrene to acrylic acid monomer mole ratio of from about 4:1 to about 1:4. More preferably, the monomer mole ratio is from about 2:1 to about 1:2. It will be appreciated that the poly(styrene-acrylic acid) polymer may include other comonomers along with styrene and acrylic acid.
The present invention also provides a process for making the novel colorant compositions. Initially, a triarylmethane dye is converted to pigmentary salts in aqueous acid, resulting in a solution in which the dye is solubilized as the pigmentary salt. A polymer is then dispersed in the pigment salt solution and a pigment-polymer composition is formed by coprecipitating pigmentary salt and polymer from solution. h one embodiment, a triarylmethane dye is converted to a pigmentary salt by heating the dye in an aqueous acid solution, h a first step of this process, at least one solid dye is finally ground. Preferably, the dye is finely ground to about less than or equal to 20 mesh. The dye used is preferably a triphenylmethane dye having the general formula of structure I as previously defined.
In a preferred embodiment, the dye is suspended in an aqueous acid solution, in which the aqueous acid is present in a molar excess of at least 2:1 over the dye or dyes. The acid can be any aqueous acid such as, but not limited to, phosphoric acid, sulfuric acid, HBr, HC1, HF, HI, and R-CO H, where R is selected from lower molecular weight alkyl (Ci to C5) or phenyl moieties. Preferably, the aqueous acid is phosphoric acid, sulfuric acid, acetic acid, propionic acid, or acrylic acid, as these acids may produce the best coloristic properties of the pigment composition. The concentration of the aqueous acid can be from about 5% by weight to 99% by weight, and preferably from about 5% to 50% by weight. If the acid is sulfuric acid, the concentration is 5% to 95% by weight. Dissolution of the dye in neat or concentrated sulfuric acid may result in sulfonation of the dye.
The dyes may be converted to the pigmentary salts by heating the dye suspension in the aqueous acid. In a preferred embodiment, the dye suspension is heated to a temperature of at least or greater than about 100 °C with constant stirring. As the solution is heated, the dye may form a sticky coating at the surface. This can be prevented by either increasing the rate of stirring or agitation, and/or heating the solution rapidly. While the dye may be slightly soluble in an aqueous solution, salting the dye increases the solubility. The dye solution should be kept at elevated temperature until all the dye is solubilized as the pigmentary salt.
Next, the polymer is dissolved or dispersed in the solution of the pigmentary salt. The polymer may be added as an aqueous solution, as a finely divided powder, or as small pellets; preferably the polymer is added as an aqueous solution. The amount of polymer added is typically from about 2% to about 25% by weight of the pigmentary salt. Preferably the amount of polymer is from about 5% to about 10% by weight of the pigmentary salt. The polymer may be any water soluble or dispersible polymer, oligomer or resin. Preferably, the polymer will be anionic, more preferably it will be a polymer having acid functionality and most preferred, it will comprise multiple carboxylic acid groups, a preferred embodiment, a poly(styrene-acrylic acid) copolymer is used. Preferably, the copolymer will have a styrene to acrylic acid monomer mole ratio of from about 4:1 to about 1:4. More preferably, the monomer mole ratio will be from about 2:1 to about 1:2. Additional comonomers may also be present in the poly(styrene-acrylic acid) polymer. In a preferred embodiment, the aqueous polymer solution contains an organic amine such as, but not limited to, methylamine, dimethylamine, trimethylamine, mono-, di-, or tri-ethyl amine. More preferably, the organic amine is volatile such that it will evaporate during formation of the colorant, composition and, if any amine does remain, during the printing or coating process.
In a preferred embodiment, the aqueous polymer solution contains an organic amine such as, but not limited to, methylamine, dimethylamine, trimethylamine, mono-, di- or tri-ethylamine. More preferably, the organic amine is volatile such that it will evaporate during formation of the colorant composition and, if any amine does remain, during the printing or coating process.
After dispersion of the polymer in the pigmentary salt solution, the temperature of the resulting mixture is cooled to less than about 60 °C. For example, the temperature may be adjusted by addition of cold water or ice, placing the vessel containing the mixture on ice or in cold water, or using a heat exchanger. The colorant composition of the present invention is then obtained by co- precipitating out the pigmentary salts and the polymer. Coprecipitation of the pigmentary salts and the polymer results in a relatively homogenous composition in which the polymer is at least partially present as inclusions in the pigment particles. In one embodiment, the pH of the cooled mixture is increased such that the pigmentary salt and polymer will coprecipitate. Preferably, the pH is adjusted to about pH 3 to about pH 11 by the addition of base, preferably aqueous ammonia. More preferably, the pH will be adjusted to between about pH 4.0 to about pH 6.0. As the pH of the mixture is raised to neutral or basic pH, the colorant composition is formed as a coprecipitate. The resulting slurry is then filtered and washed with an aqueous solution, preferably water, to obtain the solid pigmentary composition. The colorant composition may be used immediately as a filtercake or dried and used as a dry, easily-dispersible pigment.
Colorant compositions prepared by the process of the present invention have greatly increased hydrophilicity and compatibility with aqueous ink vehicles, as well as increased dispersibility in aqueous inks. While not wishing to be bound by theory, it is believed that the superior properties of the pigment compositions prepared as described herein in water-based applications are due to the inclusion of the polymer within the pigment particles.
The foregoing and other aspects of the invention may be better understood in com ection with the following examples, which are presented for purposes of illustration and not by way of limitation. All the parts and percentages are by weight unless stated otherwise. EXAMPLE 1
SURFYNOL® 104 (0.2 grams; a pigment wetting agent available from Air Products, Inc., Allentown, PA) was added to a mixture of 500 ml of water and 115 grams of 85% phosphoric acid in a beaker. The resulting solution was heated to 50 °C. To the dilute acid solution was added 61 grams of a finely ground (<20 mesh) triphenylpararosaniline (80-98%), with 2-20% diphenylpararosaniline and trace amounts of monopararosaniline. The mixture was heated to 100 °C as rapidly as possible, while stirring vigorously, and was held at temperature for 30 minutes until all of the dye had been dissolved and was converted to the phosphate salt. Once all of the material was in solution, 6.1 grams of a previously prepared solution containing 43% of the styrene-acrylic acid polymer SCX-686™ (S.C. Johnson, Racine, WI) in aqueous ammonia was added. 2000 ml of cold (25 °C) water was added to the mixture and the pH was adjusted to 5.0 with 28% aqua ammonia. The mixture was then filtered and washed with three liters of warm (« 35 - 40 °C) water. The washed filtercake was then dried at 75 °C for 24 hours. The recovered yield was 59 grams. EXAMPLE 2
SURFYNOL® 104 (0.2 grams) was added to a mixture of 500 ml of water and 101.5 grams of 96.5% sulfuric acid in a beaker. The resulting solution was heated to 50 °C. To the dilute acid solution was added 61 grams of finely ground (<20 mesh) triphenylpararosaniline (80-98%), with 2-20% diphenylpararosaniline and trace amounts of monopararosaniline. The mixture was heated to 100 °C as rapidly as possible, while stirring vigorously, and was held at temperature for 30 minutes until all of the dye had been dissolved and was converted to the sulfate salt. Once all of the material was in solution, 6.1 grams of a previously prepared solution containing 43% of the styrene-acrylic acid polymer SCX-686™ (S.C. Johnson, Racine, WI) in aqueous ammonia, was added. 2000 ml of cold (25 °C) water was added to the mixture and the pH was adjusted to 5.0 with 28% aqua ammonia. The mixture was then filtered and washed with three liters of warm (« 35 - 40 °C) water. The washed filtercake was then dried at 75 °C for 24 hours.
EXAMPLE 3 SURFYNOL® 104 (0.2 grams) was added to a mixture of 500 ml of water and 180.9 grams of 99.5% acetic acid. The resulting solution was heated to 50 °C. To the dilute acid solution was added 61 grams of finely ground (<20 mesh) triphenylpararosaniline (80-98%), with 2-20% diphenylpararosaniline and trace amounts of monopararosaniline. The mixture was heated to 100 °C as rapidly as possible, while stirring vigorously, and was held at temperature for 30 minutes until all of the dye had been dissolved and was converted to the acetate salt. Once all of the material was in solution, 6.1 grams of a previously prepared solution containing 43% of the styrene-acrylic acid polymer SCX-686™ (S.C. Johnson, Racine, WI) in aqueous ammonia, was added. 2000 ml of cold (25 °C) water was added to the mixture and the pH was adjusted to 5.0 with 28% aqua ammonia. The mixture was then filtered and washed with three liters of warm (∞ 35 - 40 °C) water. The washed filtercake was then dried at 75 °C for 24 hours. EXAMPLE 4
SURFYNOL® 104 (0.2 grams) was added to a mixture of 500 ml of water and 115 grams of 85% phosphoric acid in a beaker. The resulting mixture was heated to 50 °C. To the dilute acid solution was added 61 grams of the finely ground (<20 mesh) tris - (para dodecyl) homologue of Solvent Blue 23:
Figure imgf000012_0001
The mixture was heated to 100 °C as rapidly as possible, while stirring vigorously, and was held at temperature for 30 minutes until all of the dye had been dissolved and was converted to the phosphate salt. Once all of the material was in solution, 6.1 grams of a previously prepared solution containing 43% of the styrene-acrylic acid polymer SCX-686™ (S.C. Johnson, Racine, WI) in aqueous ammonia, was added. 2000 ml of cold (25 °C) water was added to the mixture and the pH was adjusted to 9.0 with 28% aqua ammonia. The mixture was then filtered and washed with three liters of warm (« 35 - 40 °C) water. The washed filtercake was then dried at 75 °C for 24 hours. The pigment produced was a very greenish shade of blue.
EXAMPLE 5 SURFYNOL® 104 (0.2 grams) was added to a mixture of 500 ml of water and 115 grams of 85% phosphoric acid in a beaker. The resulting solution was heated to 50 °C. To the dilute acid solution was added 61 grams of finely ground (<20 mesh) N-methyl homologue of Solvent Blue 23:
Figure imgf000013_0001
The mixture was heated to 100 °C as rapidly as possible, while stirring vigorously, and was held at temperature for 30 minutes until all of the dye had been dissolved and was converted to the phosphate salt. Once all of the material was in solution, 6.1 grams of a previously prepared solution containing 43 % of the styrene-acrylic acid polymer SCX-686™ (S.C. Johnson, Racine, WI) in aqueous ammonia, was added. 2000 ml of cold (25 °C) water was added to the mixture and the pH adjusted to 9.0 with 28%o aqua ammonia. The mixture was then filtered and washed with, three liters of warm (« 35 - 40 °C) water. The washed filtercake was then dried at 75 °C for 24 hours.
EXAMPLE 6 A resin solution suitable as a grinding or dispersing vehicle was prepared by adding to a vessel 43 parts of water, 14 parts of 28% aqueous ammonia, and 43 parts of the styrene acrylic acid copolymer SCX-686™ (S.C. Johnson), and then stirring, using a high speed disperser, until the resin was fully dissolved, usually ten to twenty minutes.
The pigment dispersion was prepared by combining 23 parts of the triphenylmethane dye/pigment, 48 parts of the grinding vehicle, 28 parts of water, and 1 part of defoamer (Air Products SURFYNOL® 420™). The pigment was predispersed in a high speed disperser (Cowles type) for ten minutes and then transferred to a one-liter shaker mill containing 500 grams of 4 mm stainless steel shot. The mill was secured to a standard paint shaker (Red Devil Equipment Company) and shaken at 750 cycles per minute for twenty-five minutes. The mill was allowed to cool for ten minutes and then the twenty-five minute shake was then repeated resulting in the pigment dispersion.
The final ink was prepared by mixing 42 parts of the pigment dispersion, 21 parts of SCX-2160™ (S.C. Johnson), 36.7 parts of water, and 0.3 parts of SURFYNOL® 420™ (Air Products). The mixture was stirred for ten minutes to insure that it was well blended.
This ink may be used "as is" or may be further reduced with a white ink base to print pastel tones.
EXAMPLE 7
A mixture of 50 parts of JONCRYL® (S.C. Johnson) 99 acrylic solution polymer, 34.8 parts of water, 0.2 parts of defoamer (SURFYNOL® 420™ Air
Products), and 15 parts pigment was prepared. The pigment was dispersed using a high speed disperser until the mixture appeared smooth. It was then transferred to a cooled media mill (Drais horizontal mill) and ground for 30 minutes. A final filtration through a 20 mesh screen to separate the grinding media fielded an ink ready for use.
The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying claims, that various changes, modifications and variations can be made without departing from the spirit and scope of the invention as defined in the following claims.

Claims

We claim:
1. A composition comprising pigment particles comprising at least one salt of a dye and inclusions of an water-dispersible or water-soluble polymer.
2. The composition of Claim 1, wherein the dye is a triphenylmethane dye.
3. The composition of Claim 2, wherein the triphenylmethane dye comprises triphenylpararosaniline.
4. The composition of Claim 1, wherein the polymer is an acid-functional polymer.
5. The composition of Claim 4, wherein the acid-functional polymer is a poly(styrene-acrylic acid) copolymer.
6. The composition of Claim 5, wherein the poly(styrene-acrylic acid) copolymer comprises styrene and acrylic monomer units in a mole ratio of from about 1:4 to about 4:1.
7. A process of preparing a composition, comprising the steps of: a) providing an aqueous solution comprising at least one triphenylmethane dye and at least one aqueous acid; b) heating the solution; c) dispersing or dissolving an anionic polymer; and d) coprecipitating out the dye and the polymer.
8. The process of Claim 7, wherein the triphenylmethane dye comprises triphenylpararosaniline.
9. The process of Claim 7, wherein the aqueous acid is selected from the group consisting of phosphoric acid, sulfuric acid, acetic acid, propionic acid, acrylic acid, HBr, HCl, HF, HI, RCO H, wherein R is a lower molecular weight alkyl having from one carbon to about five carbons and R'CO2H, wherein R' is a phenyl.
10. The process of Claim 7, wherein the aqueous acid is selected from the group consisting of phosphoric acid, sulfuric acid, acetic acid, propionic acid and acrylic acid.
11. The process of Claim 7, wherein the solution is heated to a temperature of at least 100 °C.
12. The process of Claim 7, wherein the anionic polymer is an acid functional polymer.
13. The process of Claim 12, wherein the acid functional polymer is a poly(styrene-acrylic acid) copolymer.
14. The process of Claim 13, wherein the poly(styrene-acrylic acid) copolymer comprises styrene and acrylic monomer units in a mole ratio of from about 1:4 to about 4:1.
15. The process of Claim 7, further comprising cooling the heated solution.
16. The process of Claim 15, wherein the heated solution is cooled to less than about 60 °C.
17. The process of Claim 7, wherein the dye and polymer are coprecipitated out by increasing the pH.
18. The process of Claim 17, wherein the pH of the solution is increased to from about pH 3 to about pH 11.
19. The process of Claim 17, wherein the pH of the solution is increased to from about pH 4.0 to about pH 6.0.
20. The process of Claim 17, wherein the pH is increased by the addition of aqueous ammonia.
21. A pigment composition prepared according to the process of Claim 7.
PCT/US2001/010937 2000-04-08 2001-04-04 Novel triphenylmethane dyes for water-based compositions WO2001076347A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001251296A AU2001251296A1 (en) 2000-04-08 2001-04-04 Novel triphenylmethane dyes for water-based compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/545,418 2000-04-08
US09/545,418 US6653390B1 (en) 2000-04-08 2000-04-08 Triphenylmethane dyes for water-based compositions

Publications (2)

Publication Number Publication Date
WO2001076347A2 true WO2001076347A2 (en) 2001-10-18
WO2001076347A3 WO2001076347A3 (en) 2002-03-07

Family

ID=24176149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/010937 WO2001076347A2 (en) 2000-04-08 2001-04-04 Novel triphenylmethane dyes for water-based compositions

Country Status (3)

Country Link
US (2) US6653390B1 (en)
AU (1) AU2001251296A1 (en)
WO (1) WO2001076347A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272823A (en) * 2004-02-27 2005-10-06 Canon Inc Colorant material and water dispersion using the same, ink, ink tank, recording unit, recording apparatus and recording method using the same
EP3360930A1 (en) * 2014-07-04 2018-08-15 FUJIFILM Corporation Novel compound, coloring composition for dyeing or textile, ink jet ink, method of printing on fabric, and dyed or printed fabric

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1769912A1 (en) * 1968-08-03 1970-12-23 Hoechst Ag Process for the conversion of dyes from the series of arylpararosaniline sulfonic acids into pigments of coloristic value
DE2018168A1 (en) * 1970-04-16 1971-11-11 Farbwerke Hoechst AG, vormals Meister Lucius & Brüning, 6000 Frankfurt Pigment preparations and processes for their production
DE2354274A1 (en) * 1973-10-30 1975-10-23 Hoechst Ag PIGMENT PREPARATIONS, METHODS FOR THEIR MANUFACTURING AND THEIR USE
GB2096618A (en) * 1981-04-15 1982-10-20 Ciba Geigy Ag Preparation of organic pigment dispersions
EP0176059A2 (en) * 1984-09-27 1986-04-02 BASF Aktiengesellschaft Process for the manufacture of laking products with improved application properties
US4944806A (en) * 1987-12-28 1990-07-31 Basf Corporation Rigmentary salt of a triphenylmethane compound and process for making same
EP0502200A1 (en) * 1990-08-30 1992-09-09 Fujicopian Co., Ltd. Printer ink composition and printing medium prepared therefrom

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439004A (en) 1965-04-26 1969-04-15 Sherwin Williams Co Preparation of triaryl methane dyes
US3671553A (en) 1969-04-18 1972-06-20 Hoechst Ag Process for the preparation of very pure monosulfonic acids of triphenyl-methane dyestuffs
US3925094A (en) 1970-04-16 1975-12-09 Hoechst Ag Dyestuff preparations and process for their manufacture
DE2018169B2 (en) 1970-04-16 1974-04-25 Farbwerke Hoechst Ag, Vormals Meister Lucius & Bruening, 6000 Frankfurt Dye preparations and processes for their production and printing inks
GB1371095A (en) 1970-06-09 1974-10-23 Agfa Gevaert Surface treatment of polyester material
FR2094135A1 (en) 1970-06-09 1972-02-04 Agfa Gevaert Nv Photographic casting compsn - contg a triphenylmethane dye - to improve bonding to polyester film
GB1452478A (en) * 1972-11-22 1976-10-13 Agfa Gevaert Process for homogeneously dispersing polymer particles in aqueous medium
US4061464A (en) 1973-12-15 1977-12-06 Hoechst Aktiengesellschaft Process for the preparation of dyestuff compositions
DE2545649A1 (en) 1975-10-11 1977-04-21 Hoechst Ag PROCESS FOR THE PREPARATION OF PURPLE COLORS OF THE TRIPHENYLMETHANE SERIES
US4032357A (en) 1976-03-03 1977-06-28 The Sherwin-Williams Company Easy dispersing alkali blue powder and process for manufacture
DE2757815A1 (en) 1977-12-23 1979-06-28 Sherwin Williams Co Easily dispersed alkali blue powder - prepd. by coprecipitating alkali blue and anionic dispersant, and adding hydrophobic phase
DE2914299C3 (en) 1979-04-09 1982-03-25 Hoechst Ag, 6000 Frankfurt Pigment preparations, processes for their production and their use
DE3045679A1 (en) 1979-04-09 1982-07-08 Hoechst Ag, 6000 Frankfurt Easily ground aryl-pararosaniline-sulphonic acid pigment compsn. - contains resin of reaction prod. of maleic anhydride addn. prod. and poly:hydroxy cpd.
US4321207A (en) 1980-06-30 1982-03-23 American Cyanamid Company Process for preparing triarylmethane dyes
US4469519A (en) 1982-11-12 1984-09-04 Basf Wyandotte Corporation Soft textured high strength Alkali Blue pigment
DE3405285C2 (en) 1984-02-15 1997-07-10 Basf Corp Process for the preparation of easily dispersible, strongly colored, powdery alkali blue pigments
JPH09217019A (en) 1996-02-13 1997-08-19 Dainippon Ink & Chem Inc Production of pigment composition and aqueous coloring solution containing pigment composition produced by the method
US6232392B1 (en) * 1998-06-24 2001-05-15 Ppg Industries Ohio, Inc. Temporary water-washable coating for spray booths and vehicles during assembly
US6410619B2 (en) 1999-11-22 2002-06-25 Bayer Corporation Method for conditioning organic pigments

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1769912A1 (en) * 1968-08-03 1970-12-23 Hoechst Ag Process for the conversion of dyes from the series of arylpararosaniline sulfonic acids into pigments of coloristic value
DE2018168A1 (en) * 1970-04-16 1971-11-11 Farbwerke Hoechst AG, vormals Meister Lucius & Brüning, 6000 Frankfurt Pigment preparations and processes for their production
DE2354274A1 (en) * 1973-10-30 1975-10-23 Hoechst Ag PIGMENT PREPARATIONS, METHODS FOR THEIR MANUFACTURING AND THEIR USE
GB2096618A (en) * 1981-04-15 1982-10-20 Ciba Geigy Ag Preparation of organic pigment dispersions
EP0176059A2 (en) * 1984-09-27 1986-04-02 BASF Aktiengesellschaft Process for the manufacture of laking products with improved application properties
US4944806A (en) * 1987-12-28 1990-07-31 Basf Corporation Rigmentary salt of a triphenylmethane compound and process for making same
EP0502200A1 (en) * 1990-08-30 1992-09-09 Fujicopian Co., Ltd. Printer ink composition and printing medium prepared therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 199743 Derwent Publications Ltd., London, GB; Class A60, AN 1997-466294 XP002178993 "Manufacture of pigment compositions for e.g. aqueous coatings - by mixing crude pigment and alkali salt of a carboxyl group containing acrylic resin, dispersing the mixture, adding an acid and alkali to re-neutralise" & JP 09 217019 A (DAINIPPON INK & CHEM INC), 19 August 1997 (1997-08-19) cited in the application *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272823A (en) * 2004-02-27 2005-10-06 Canon Inc Colorant material and water dispersion using the same, ink, ink tank, recording unit, recording apparatus and recording method using the same
EP3360930A1 (en) * 2014-07-04 2018-08-15 FUJIFILM Corporation Novel compound, coloring composition for dyeing or textile, ink jet ink, method of printing on fabric, and dyed or printed fabric

Also Published As

Publication number Publication date
WO2001076347A3 (en) 2002-03-07
AU2001251296A1 (en) 2001-10-23
US20030221587A1 (en) 2003-12-04
US6653390B1 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US6936097B2 (en) Modified organic colorants and dispersions, and methods for their preparation
EP0638615B1 (en) Process for the production of copper phthalocyanine pigment and its use
US6942724B2 (en) Modified organic colorants and dispersions, and methods for their preparation
JPH1025440A (en) Ink jet full-color recorded image
JP2008303393A (en) Nanosized particles of monoazo lake pigment
EP0921163B1 (en) Pigment composition and aqueous pigment dispersion prepared therefrom
JPH10506938A (en) Ink jet ink and method for producing the same
US20070169665A1 (en) Use of a pigment composition comprising mixed crystals based on ci pigment yellow 74
JP3337234B2 (en) New pigment preparations based on dioxazine compounds
JP4622016B2 (en) Pigment dispersant, pigment composition and pigment dispersion
JPH0337587B2 (en)
JPH111660A (en) Pigment composition
US6267807B1 (en) Method for grinding colorants
DE60030916T2 (en) Composite pigments, paint compositions and image recording materials
EP2206751B1 (en) Coloring composition, method for production thereof, and coloring method
US6653390B1 (en) Triphenylmethane dyes for water-based compositions
EP0221466A2 (en) Copper phthalocyanine pigments
EP1300449A1 (en) Pigment compositions comprising triphenylmethane dyes and polymers
JP3882358B2 (en) Pigment composition and aqueous pigment dispersion using the same
US5575843A (en) Process for improving color value of a pigment
JPH02102272A (en) Production of pigment
JPS5836024B2 (en) Easily dispersible solid pigment composition
JP4396210B2 (en) Pigment dispersant, pigment composition, and pigment dispersion
JP2003253146A (en) Pigment for ink jet and pigment dispersion for ink jet obtained using the same
KR100497113B1 (en) Process for preparing a stable copper phthalocyanine pigment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP