WO2001072501A1 - Method and device for producing components from light-curable materials - Google Patents

Method and device for producing components from light-curable materials Download PDF

Info

Publication number
WO2001072501A1
WO2001072501A1 PCT/DE2001/001185 DE0101185W WO0172501A1 WO 2001072501 A1 WO2001072501 A1 WO 2001072501A1 DE 0101185 W DE0101185 W DE 0101185W WO 0172501 A1 WO0172501 A1 WO 0172501A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
light
platform
mask
component platform
Prior art date
Application number
PCT/DE2001/001185
Other languages
German (de)
French (fr)
Inventor
Holger Fricke
Holger LÖFFLER
Original Assignee
Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. filed Critical Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V.
Publication of WO2001072501A1 publication Critical patent/WO2001072501A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to a method and a device for producing components and component prototypes from light-cured materials, according to the preamble of claims 1 and 8
  • rapid prototyping Such methods are known, inter alia, under the term rapid prototyping. This term encompasses a large number of different methods in which components and component prototypes are produced quickly. These methods allow a three-dimensional component or component prototypes to be built up directly.
  • rapid prototyping method methods are known in which the Component contours or the component structures are produced by light curing a liquid plastic.A liquid photopolymer resin is cured with a focused laser beam.To do this, a component platform is wetted with the liquid photopolymer resin and a UV laser beam is directed at it. The resin is cured in the areas that the result in later component The surrounding unexposed resin remains unaffected by this and does not cure.
  • component a b lowered and a further layer height of the resin is applied and the hardening process proceeds identically for this new layer.
  • the component constructed in this way is fully hardened in a UV oven.
  • Another variant of the process described above is that the individual plastic layers are not hardened with one focused laser beam, but with the aid of diffuse light, which exposes the plastic layers to be hardened through a mask.
  • the mask corresponds to the shape of the desired contour of the component to be built up.
  • the process is relatively complicated, since after each exposure of the layer to be produced, the layer has to be hardened and polymerized must be treated accordingly, since the remaining areas are still filled with liquid monomer, so that the entire process of such a component production is relatively complex.
  • the build-up rates of the described methods are relatively low
  • the object of the present invention is to further develop the generic method and device for carrying out this method in such a way that the effort for producing a component or component prototype is minimal
  • the essential feature of the method according to the invention is that the construction process of the component prototype takes place continuously.A component platform is moved continuously, the light-hardenable material not being applied to the component platform to build up the component in layers and cured, but rather the component platform is liquid or in it material that is flowable in powder form is only exposed in the areas that correspond to the current cut through the component to be assembled.
  • the selective exposure of the component platform or the component to be assembled can be achieved by appropriately assigning a device, which can advantageously be designed in the form of a mask Realization of the component platform It is guaranteed that by changing the mask, ie by controlling the mask in such a way that the distance between the component platform and the light source, the structure of the component is exactly reproduced by light curing
  • FIGS. 1 and 2 The invention is illustrated using an exemplary embodiment and is explained in more detail in FIGS. 1 and 2
  • the apparatus for the continuous production of components and component prototypes shown schematically in FIG. 1 has a container 1 filled with a liquid or photo-hardenable plastic in powder form, a component platform 2 and a light source 3 between the light source 3 and the component platform 2 located in the container 1 there is a mask 4.
  • the component platform 2 is illuminated by a diffuse light coming from the light source 3.
  • the bottom 5 of the container 1 is translucent.
  • the light arriving through the base 5 on the component platform 2 starts the polymerization of the plastic in the bath 1 6
  • the plastic 6 is initially deposited on the component platform 2 or in later construction progress on the structure of the component just formed 7. Due to the continuous movement of the component platform 2 upwards, fresh monomer flows continuously from the side of the component platform 2, which, as soon as it is exposed to crosslinking.
  • the light arriving from the light source 3 only reaches the areas of the building platform 2 which make up the later component 7. This is done in the illustration according to FIG. 1 using a mask technique using the mask 4 shown.
  • Another possibility for controlling the light flow is digital processing technology (DLP )
  • DLP digital processing technology
  • Another embodiment is the design of the container bottom 5 as a mask
  • FIG. 2 shows a component 8 and an associated mask 4.
  • the component 8 to be produced is uniformly irradiated with UV light through the container base 5 from the z direction. Irradiation is continuous.
  • the mask 4 is arranged on the container bottom 5 or between the light source and the bath 1.
  • the mask 4 can be controlled in the x, y plane; through them the UV light shines before it can reach material 6.
  • the mask 4 can be in the local area, i.e. Realize at least two states with certain values of x, y. In state A, the mask absorbs / reflects the UV light more than in state B. It is an advantage if the mask can also realize intermediate states of A + B.
  • Grayscale C ranges you can eg thereby realize by switching between states A and B in a rapid chronological order.
  • a mask 4 can be controlled with the aid of a computer program.
  • the program realizes the geometry of the component 8 to be manufactured and calculates a section 9 of the component 8 in the x, y plane for a given value in the z direction. This value depends on the construction time and depends on the distance between the component platform 2 and the bathroom floor 5, which increases with the construction time.
  • the mask 4 is controlled as follows. If a local area of the section 9 contains material, then in state B is realized in the corresponding local area of mask 4. If a local area of cut 9 contains no material, state A is realized in the corresponding local area of mask 4. If a local area of cut 9 is only partially hardened, the corresponding area is cured An intermediate state C is realized in the local area of the mask 4
  • the method according to the invention which is carried out by the device shown in FIG. 1, permits high process speeds which are several hundred times faster than the known process speeds the component platform moves in the range of 1 mm / sec, and the speed in the area of the mask change at 1 00 / sec. This can be achieved in that the material can be exposed continuously and the layers can be built up continuously by the continuous movement of the component platform
  • the continuous construction of the component creates a surface that has no perceptible transitions.
  • the surface of the component manufactured in this way is smooth.
  • the mask technology is decisive for the surface quality of a component manufactured in this way. If an LC display is used as a mask, it is possible to implement well over 100 masks per second, which means that the surface appears almost absolutely smooth

Abstract

The invention relates to a method for producing components and component prototypes from light-curable materials. According to said method, the material is cured using light and the component is constructed on a component platform as the material is exposed to light. The material (6) is continuously supplied to the component platform (2) and hence, the component to be constructed (7). The exposure of the material (6) to light and the curing thereof takes place continuously, the component platform (2) being continuously transported in a material container (1) and suitable devices ensuring that the areas of the component (7) or the component platform (2) that produce the future structure of the component are exposed to the light continuously.

Description

Verfahren und Vorrichtung zur Herstellung von Bauteilen aus lichtaushartbaren Werkstoffen Method and device for the production of components from light-cured materials
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Bauteilen und Bauteilprototypen aus lichtaushartbaren Werkstoffen, gemäß dem Oberbegriff der Ansprüche 1 und 8The invention relates to a method and a device for producing components and component prototypes from light-cured materials, according to the preamble of claims 1 and 8
Derartige Verfahren sind u a unter dem Begriff Rapid Prototyping bekannt Dieser Begriff umfaßt eine Vielzahl unterschiedlicher Verfahren, bei denen Bauteile und Bauteilprototypen schnell hergestellt werden Diese Verfahren erlauben einen direkten Aufbau eines dreidimensionalen Bauteiles oder Bauteilprototypen Bei dem Rapid Prototyping-Verfahren sind Verfahren bekannt, bei denen die Bauteilkonturen bzw die Bauteilstrukturen hergestellt werden, indem Licht einen flussigen Kunststoff aushärtet Dabei wird ein flussiges Photopolymerharz mit einem fokussiertem Laserstrahl ausgehartet Dazu wird eine Bauteilplattform mit dem flussigen Photopolymerharz benetzt und darauf ein UV- Laserstrahl gerichtet Das Harz wird dadurch in den Bereichen ausgehartet, die das spätere Bauteil ergeben Das umgebende nichtbelichtete Harz bleibt hiervon unberührt und härtet nicht aus Nach der vollständigen Belichtung des hier interessierenden Bereiches und somit nach der Aushärtung des Harzes wird die Bauteil abgesenkt und eine weitere Schichthohe des Harzes wird aufgetragen und der Aushartervorgang verlauft identisch für diese neue Schicht Abschließend erfolgt ein vollständiges Ausharten des so aufgebauten Bauteiles in einem UV-Ofen Eine andere Variante des oben beschriebenen Verfahrens ist, dass die Aushärtung der einzelnen Kunststoffschichtchen nicht mit einem fokussiertem Laserstrahl erfolgt, sondern mit Hilfe von diffusem Licht, das durch eine Maske hindurch die auszuhärtenden Kunststoffschichten belichtet Die Maske entspricht der Form der erwünschten Kontur des aufzubauenden Bauteiles Das Verfahren ist relativ kompliziert, da nach jedem Belichten der zu erzeugenden Schicht diese nach Aushärtung und Auspolymeπsierung entsprechend behandelt werden muß, da die übrigen Bereiche noch durch flussiges Monomer ausgefüllt sind, sodass der gesamte Prozess einer derartigen Bauteilherstellung relativ aufwendig ist Insofern sind die Aufbauraten der beschriebenen Verfahren relativ gering Aufgabe der vorliegenden Erfindung ist es, das gattungsgemaße Verfahren und Vorrichtung zur Durchfuhrung dieses Verfahrens so weiterzubilden, dass der Aufwand zur Herstellung eines Bauteils oder Bauteilprototypen minimal istSuch methods are known, inter alia, under the term rapid prototyping. This term encompasses a large number of different methods in which components and component prototypes are produced quickly. These methods allow a three-dimensional component or component prototypes to be built up directly. In the rapid prototyping method, methods are known in which the Component contours or the component structures are produced by light curing a liquid plastic.A liquid photopolymer resin is cured with a focused laser beam.To do this, a component platform is wetted with the liquid photopolymer resin and a UV laser beam is directed at it.The resin is cured in the areas that the result in later component The surrounding unexposed resin remains unaffected by this and does not cure. After the area of interest has been fully exposed and thus after the resin has cured, component a b lowered and a further layer height of the resin is applied and the hardening process proceeds identically for this new layer. Finally, the component constructed in this way is fully hardened in a UV oven. Another variant of the process described above is that the individual plastic layers are not hardened with one focused laser beam, but with the aid of diffuse light, which exposes the plastic layers to be hardened through a mask. The mask corresponds to the shape of the desired contour of the component to be built up. The process is relatively complicated, since after each exposure of the layer to be produced, the layer has to be hardened and polymerized must be treated accordingly, since the remaining areas are still filled with liquid monomer, so that the entire process of such a component production is relatively complex. In this respect, the build-up rates of the described methods are relatively low The object of the present invention is to further develop the generic method and device for carrying out this method in such a way that the effort for producing a component or component prototype is minimal
Diese Aufgabe wird durch die in den Ansprüchen 1 und 8 angegebene Erfindung gelostThis object is achieved by the invention specified in claims 1 and 8
Das wesentliche Merkmal des erfindungsgemaßen Verfahrens ist, dass der Aufbauprozeß des Bauteilprototypen kontinuierlich erfolgt Dabei wird eine Bauteilplattform kontinuierlich bewegt, wobei der lichtaushartbare Werkstoff nicht auf die Bauteilplattform zum Aufbau des Bauteiles schichtweise aufgetragen und ausgehartet wird, sondern die Bauteilplattform ist durch diesen in flussiger oder in fließfahiger Pulverform befindlichen Werkstoff umgeben Sie wird lediglich in den Bereichen belichtet, die dem momentanem Schnitt durch das aufzubauende Bauteil entsprechen Die selektive Belichtung der Bauteilplattform bzw des aufzubauenden Bauteiles ist durch eine entsprechende Zuordnung einer Vorrichtung, die vorteilhafterweise in Form einer Maske ausgebildet werden kann, zu der Bauteilplattform realisiert Es ist gewahrleistet, dass durch die nderung der Maske, d h durch die Steuerung der Maske derart, dass der aufgrund des sich kontinuierlich ändernden Abstandes zwischen der Bauteilplattform und der Lichtquelle die Struktur des Bauteiles durch Lichthartung genau nachgebildet wirdThe essential feature of the method according to the invention is that the construction process of the component prototype takes place continuously.A component platform is moved continuously, the light-hardenable material not being applied to the component platform to build up the component in layers and cured, but rather the component platform is liquid or in it material that is flowable in powder form is only exposed in the areas that correspond to the current cut through the component to be assembled. The selective exposure of the component platform or the component to be assembled can be achieved by appropriately assigning a device, which can advantageously be designed in the form of a mask Realization of the component platform It is guaranteed that by changing the mask, ie by controlling the mask in such a way that the distance between the component platform and the light source, the structure of the component is exactly reproduced by light curing
Die Erfindung wird anhand eines Ausfuhrungsbeispieles dargestellt und in dem Figuren 1 und 2 naher erläutert Es zeigenThe invention is illustrated using an exemplary embodiment and is explained in more detail in FIGS. 1 and 2
- Fig 1 eine Vorrichtung zur kontinuierlichen Herstellung von Bauteilen und Bauteilprototypen1 shows a device for the continuous production of components and component prototypes
- Fig 2 ein Beispiel einer Maskenberechnung2 shows an example of a mask calculation
Die in Fig 1 schematisch dargestellte Vorrichtung zur kontinuierlichen Herstellung von Bauteilen und Bauteilprototypen weist ein mit einem flussigen oder in Pulverτorm vorliegenden photoaushartbarem Kunststoff gefülltes Behalter 1 ein eine Bauteilplattform 2 und eine Lichtquelle 3 auf Zwischen der Lichtquelle 3 und der sich im Behalter 1 befindlichen Bauteilplattform 2 befindet sich eine Maske 4 Die Bauteilplattform 2 wird durch ein diffuses Licht, das aus der Lichtquelle 3 kommt, belichtet Der Boden 5 des Behalters 1 ist lichtdurchlässig Das durch den Boden 5 an der Bauteilplattform 2 ankommende Licht startet die Polymerisation des im Bad 1 befindlichen Kunststoffes 6 Der Kunststoff 6 lagert sich zunächst an der Bauteilplattform 2 ab bzw im spateren Baufortschritt an der gerade zuvor gebildeten Struktur des Bauteiles 7 Durch die kontinuierliche Bewegung der Bauteilplattform 2 nach oben fließt von der Seite der Bauteilplattform 2 standig frisches Monomer nach, das, sobald es belichtet wird, anfangt zu vernetzen Es bildet sich dadurch mit steigendem Vernetzungsgrad ein Gradient vom Behalterboden 5 nach oben bis zu αem Ort, an dem die Vernetzungsreaktion stoppt Die Vernetzungsreaktion wird so gesteuert, dass eine Verfestigung erst in einem gewissen Abstand vom Behälterboden 5 eintritt, damit eine Anhaftung des Bauteils 7 am Behälterboden 5 ausbleibt. Dies kann dadurch erreicht werden, dass der Behälterboden 5 gekühlt wird, wodurch der Kunststoff 6 dort eine geringere Reaktivität aufweist.The apparatus for the continuous production of components and component prototypes shown schematically in FIG. 1 has a container 1 filled with a liquid or photo-hardenable plastic in powder form, a component platform 2 and a light source 3 between the light source 3 and the component platform 2 located in the container 1 there is a mask 4. The component platform 2 is illuminated by a diffuse light coming from the light source 3. The bottom 5 of the container 1 is translucent. The light arriving through the base 5 on the component platform 2 starts the polymerization of the plastic in the bath 1 6 The plastic 6 is initially deposited on the component platform 2 or in later construction progress on the structure of the component just formed 7. Due to the continuous movement of the component platform 2 upwards, fresh monomer flows continuously from the side of the component platform 2, which, as soon as it is exposed to crosslinking. As a result, as the degree of crosslinking increases, a gradient forms from the container bottom 5 up to the point at which the crosslinking reaction stops. The crosslinking reaction is controlled in such a way that solidification only occurs at a certain distance from the container bottom 5, so that there is no adhesion of the component 7 to the container base 5. This can be achieved in that the container bottom 5 is cooled, as a result of which the plastic 6 has a lower reactivity there.
Das von der Lichtquelle 3 ankommende Licht erreicht nur die Bereiche der Bauplattform 2, die das spatere Bauteil 7 ergeben Dies geschieht in der Darstellung nach Fig 1 über eine Maskentechnik mittels der dargestellten Maske 4 Eine andere Möglichkeit der Steuerung des Lichtflußes ist Digital Processing Technologie (DLP) Eine weitere Ausführungsform ist, die Ausbildung des Behälterbodens 5 als MaskeThe light arriving from the light source 3 only reaches the areas of the building platform 2 which make up the later component 7. This is done in the illustration according to FIG. 1 using a mask technique using the mask 4 shown. Another possibility for controlling the light flow is digital processing technology (DLP ) Another embodiment is the design of the container bottom 5 as a mask
In Fig 2 ist ein Bauteil 8 und eine zugehörige Maske 4 dargestellt Das herzustellende Bauteil 8 wird durch den Behälterboden 5 aus der z-Richtung gleichmäßig mit UV-Licht bestrahlt. Die Bestrahlung erfolgt kontinuierlich. Am Behälterboden 5 oder zwischen der Lichtquelle und dem Bad 1 ist die Maske 4 angeordnet. Die Maske 4 ist steuerbar in der x, y-Ebene; durch sie strahlt das UV-Licht, bevor sie den Werkstoff 6 erreichen kann. Die Maske 4 kann im lokalen Bereich, d.h. mit bestimmten Werten von x, y mindestens zwei Zustände realisieren Im Zustand A absorbiert/reflektiert die Maske das UV-Licht stärker als im Zustand B Es ist ein Vorteil, wenn die Maske auch Zwischenzustande von A + B realisieren kann Diese Zwischenzustände werden im Weiteren als Graustufen C bereichnet Sie lassen sich z.B. dadurch realisieren, indem in rascher zeitlicher Abfolge zwischen den Zuständen A und B gewechselt wird. Eine solche Maske 4 kann mit Hilfe eines Computerprogramms gesteuert werden Dabei realisiert das Programm die Geometrie des zu fertigenden Bauteiles 8 und berechnet einen Schnitt 9 des Bauteiles 8 in der x, y-Ebene zu einem gegebenen Wert in z-Richtung. Dieser Wert ist von der Bauzeit abhängig und richtet sich nach dem mit der Bauzeit wachsendem Abstand der Bauteilplattform 2 zum Badboden 5. Entsprechend der Information dieses Schnittes 9 wird die Maske 4 wie folgt gesteuert Sollte ein lokaler Bereich des Schnittes 9 Material enthalten, so wird in dem entsprechenden lokalen Bereich der Maske 4 der Zustand B realisiert Sollte ein lokaler Bereich des Schnittes 9 kein Material enthalten wird in dem entsprechenden lokalen Bereich der Maske 4 der Zustand A realisiert Sollte ein lokaler Bereich des Schnittes 9 nur teilweise ausgehärtet werden, wird in dem entsprechenden lokalen Bereich der Maske 4 ein Zwischenzustand C realisiertFIG. 2 shows a component 8 and an associated mask 4. The component 8 to be produced is uniformly irradiated with UV light through the container base 5 from the z direction. Irradiation is continuous. The mask 4 is arranged on the container bottom 5 or between the light source and the bath 1. The mask 4 can be controlled in the x, y plane; through them the UV light shines before it can reach material 6. The mask 4 can be in the local area, i.e. Realize at least two states with certain values of x, y. In state A, the mask absorbs / reflects the UV light more than in state B. It is an advantage if the mask can also realize intermediate states of A + B. These intermediate states are referred to below as Grayscale C ranges you can eg thereby realize by switching between states A and B in a rapid chronological order. Such a mask 4 can be controlled with the aid of a computer program. The program realizes the geometry of the component 8 to be manufactured and calculates a section 9 of the component 8 in the x, y plane for a given value in the z direction. This value depends on the construction time and depends on the distance between the component platform 2 and the bathroom floor 5, which increases with the construction time. According to the information in this section 9, the mask 4 is controlled as follows. If a local area of the section 9 contains material, then in state B is realized in the corresponding local area of mask 4. If a local area of cut 9 contains no material, state A is realized in the corresponding local area of mask 4. If a local area of cut 9 is only partially hardened, the corresponding area is cured An intermediate state C is realized in the local area of the mask 4
Das erfindungsgemäße Verfahren, die durch die in Fig. 1 dargestellte Vorrichtung durchgeführt wird, erlaubt hohe Prozessgeschwindigkeiten, die mehrere hundert Mal schneller sind als die bekannten Prozeßgeschwindigkeiten Die Verfahrgeschwindigkeit der Bauteilplattform bewegt sich im Bereich 1 mm/sec , und die Geschwindigkeit im Bereich der Maskenanderung bei 1 00/sec Dies ist dadurch erreichbar, dass das Material kontinuierlich belichtet werden kann und die Schichten durch die kontinuierliche Bewegung der Bauteilplattform kontinuierlich aufgebaut werden könnenThe method according to the invention, which is carried out by the device shown in FIG. 1, permits high process speeds which are several hundred times faster than the known process speeds the component platform moves in the range of 1 mm / sec, and the speed in the area of the mask change at 1 00 / sec. This can be achieved in that the material can be exposed continuously and the layers can be built up continuously by the continuous movement of the component platform
Durch den kontinuierlichen Aufbau des Bauteiles entsteht eine Oberflache die keine wahrnehmbaren Übergänge aufweist. Die Oberfläche des so hergestellten Bauteiles ist glatt Für die Oberflachengute eines so hergestellten Bauteiles ist die Maskentechnologie maßgebend Wird als Maske ein LC-Display eingesetzt, so ist es möglich, weit über 100 Masken pro sec zu realisieren, d h dass die Oberflache beinahe absolut glatt erscheint The continuous construction of the component creates a surface that has no perceptible transitions. The surface of the component manufactured in this way is smooth. The mask technology is decisive for the surface quality of a component manufactured in this way. If an LC display is used as a mask, it is possible to implement well over 100 masks per second, which means that the surface appears almost absolutely smooth

Claims

Patentansprücheclaims
Verfahren zur Herstellung von Bauteilen und Bauteilprototypen aus lichtaushartbaren Werkstoffen, bei dem der Werkstoff durch Licht ausgehartet wird und wobei die ausgehartete Struktur der spateren Bauteilstruktur entspricht und wobei das Bauteil auf einer Bauteilplattform durch Belichtung des Werkstoffs mit Licht aufgebaut wird, dadurch gekennzeichnet, dass der Werkstoff (6) der Bauteilplattform (2) und damit dem aufzubauenden Bauteil (7) kontinuierlich zugeführt wird, und dass die Belichtung und Aushärtung des Werkstoffes (6) kontinuierlich erfolgt, wobei die Bauteilplattform (2) in einem Werkstoffbehalter (1 ) kontinuierlich verfahrt und durch geeignete Vorrichtungen gewährleistet ist, dass die Bereiche des Bauteiles (7) bzw der Bauteilplattform (2), die die spatere Bauteilstruktur ergeben, kontinuierlich belichtet werdenProcess for the production of components and component prototypes from light-cured materials, in which the material is cured by light and where the cured structure corresponds to the later component structure and the component is built on a component platform by exposure of the material to light, characterized in that the material (6) the component platform (2) and thus the component (7) to be assembled is fed continuously, and that the exposure and curing of the material (6) takes place continuously, the component platform (2) moving and passing through in a material container (1) Suitable devices ensure that the areas of the component (7) or the component platform (2) that result in the later component structure are continuously exposed
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Bauteilplattform (2) kontinuierlich in einem mit lichtaushartbarem Werkstoff (6) gefülltem Behalter (1 ) verfahrt und dass zwischen der Bauteilplattform (2) und einer Lichtquelle (3) eine Maske (4) angeordnet ist, die die Belichtung der auszuhärtenden Bereiche des auf der Bauteilplattform (2) aufzubauenden Bauteiles (7) durch die kontinuierliche Veränderung der Maske (4) und Anpassung an die Bauteilplattformbewegung erreicht wirdMethod according to claim 1, characterized in that the component platform (2) moves continuously in a container (1) filled with light-hardenable material (6) and that a mask (4) is arranged between the component platform (2) and a light source (3) , the exposure of the areas to be hardened of the component (7) to be built up on the component platform (2) is achieved by continuously changing the mask (4) and adapting to the component platform movement
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet dass der verwendete Werkstoff ein lichtaushartbares Photopolymer ist Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der lichtaushärtbare Werkstoff (6) fließfahig istA method according to claim 1 or 2, characterized in that the material used is a light-curable photopolymer Method according to one of claims 1 to 3, characterized in that the light-curable material (6) is flowable
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Werkstoff (6) in flüssiger Form vorliegt.A method according to claim 4, characterized in that the material (6) is in liquid form.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Werkstoff (6) pulverförmig ist.A method according to claim 4, characterized in that the material (6) is in powder form.
Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Werkstoff (6) ein Pulver aus Metall, Nichtmetall, Keramik, Cermet oder Kunststoff bzw Mischungen davon istA method according to claim 6, characterized in that the material (6) is a powder made of metal, non-metal, ceramic, cermet or plastic or mixtures thereof
Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Bauteilplattform (2) in einem Werkstoffbehalter (1 ) angeordnet und kontinuierlich in diesem bewegbar ist, und dass eine Lichtquelle (3), die die Bauteilplattform (2) belichtet, vorhanden ist, und dass zwischen der Lichtquelle (3) und der Bauteilplattform (2) eine entsprechend der Bewegung der Bauteilplattform (2) und der Struktur des herzustellenden Bauteiles (7) gesteuerte Maske (4) angeordnet ist, wobei die Steuerung der Maske (4) gewährleistet, dass lediglich die Teile der Bauteilplattform (2) und des darauf aufbauenden Bauteiles (7) belichtet werden, die der Struktur des fertigen Bauteiles (7) entsprechen.Device for carrying out the method according to one of claims 1 to 7, characterized in that the component platform (2) is arranged in a material container (1) and is continuously movable therein, and that a light source (3) which the component platform (2) exposed, is present, and that between the light source (3) and the component platform (2) is arranged a mask (4) controlled according to the movement of the component platform (2) and the structure of the component to be manufactured (7), the control of the mask (4) ensures that only the parts of the component platform (2) and the component (7) based thereon are exposed which correspond to the structure of the finished component (7).
Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Maske (4) durch ein LC-Display gebildet ist.Apparatus according to claim 8, characterized in that the mask (4) is formed by an LC display.
Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Maske (4) und/oder die Bewegung der Bauteilplattform (2) durch einen Computer gesteuert wird.Apparatus according to claim 8 or 9, characterized in that the mask (4) and / or the movement of the component platform (2) is controlled by a computer.
Vorrichtung nach einem der Ansprüche 8 bis 1 0, dadurch gekennzeichnet, dass der Boden (5) des Werkstoffbehälters (1 ) lichtdurchlässig ist Vorrichtung nach Anspruch 1 1 , dadurch gekennzeichnet, dass der Werkstoffbehalter (1 ) von unten belichtet wird und dass die Bauteilplattform (2) kontinuierlich nach oben verfahrt Device according to one of claims 8 to 1 0, characterized in that the bottom (5) of the material container (1) is translucent Device according to claim 1 1, characterized in that the material container (1) is exposed from below and that the component platform (2) moves continuously upwards
PCT/DE2001/001185 2000-03-28 2001-03-28 Method and device for producing components from light-curable materials WO2001072501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10015408.5 2000-03-28
DE10015408A DE10015408A1 (en) 2000-03-28 2000-03-28 Producing components from light-curable materials, e.g. for rapid prototyping, involves continuous material supply and support platform movement

Publications (1)

Publication Number Publication Date
WO2001072501A1 true WO2001072501A1 (en) 2001-10-04

Family

ID=7636710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001185 WO2001072501A1 (en) 2000-03-28 2001-03-28 Method and device for producing components from light-curable materials

Country Status (2)

Country Link
DE (1) DE10015408A1 (en)
WO (1) WO2001072501A1 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055533A1 (en) * 2006-11-10 2008-05-15 Envisiontec Gmbh Continuous, generative method and apparatus for the production of a three-dimensional object
US8126580B2 (en) 2006-04-26 2012-02-28 Envisiontec Gmbh Device and method for producing a three-dimensional object by means of mask exposure
USRE43955E1 (en) 2004-05-10 2013-02-05 Envisiontec Gmbh Process for the production of a three-dimensional object with resolution improvement by pixel-shift
US8658076B2 (en) 2007-10-26 2014-02-25 Envisiontec Gmbh Process and freeform fabrication system for producing a three-dimensional object
US8815143B2 (en) 2006-04-28 2014-08-26 Envisiontec Gmbh Method for producing a three-dimensional object by means of mask exposure
US8845316B2 (en) 2007-07-04 2014-09-30 Envisiontec Gmbh Process and device for producing a three-dimensional object
US8862260B2 (en) 2004-05-10 2014-10-14 Envisiontec Gmbh Process for the production of a three-dimensional object with resolution improvement by “pixel shift”
US9205601B2 (en) 2013-02-12 2015-12-08 Carbon3D, Inc. Continuous liquid interphase printing
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
US9453142B2 (en) 2014-06-23 2016-09-27 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US9486944B2 (en) 2009-10-19 2016-11-08 Global Filtration Systems Resin solidification substrate and assembly
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
EP3068610A4 (en) * 2013-11-14 2017-03-01 Structo Pte. Ltd Additive manufacturing device and method
US9975295B2 (en) 2014-08-12 2018-05-22 Carbon, Inc. Acceleration of stereolithography
US10155345B2 (en) 2015-02-05 2018-12-18 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
WO2018234426A1 (en) 2017-06-21 2018-12-27 Sirona Dental Systems Gmbh Container for use in stereolithographic systems
US10232605B2 (en) 2014-03-21 2019-03-19 Carbon, Inc. Method for three-dimensional fabrication with gas injection through carrier
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
US10391711B2 (en) 2015-03-05 2019-08-27 Carbon, Inc. Fabrication of three dimensional objects with multiple operating modes
US10471699B2 (en) 2014-06-20 2019-11-12 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US10569465B2 (en) 2014-06-20 2020-02-25 Carbon, Inc. Three-dimensional printing using tiled light engines
US10611080B2 (en) 2015-12-22 2020-04-07 Carbon, Inc. Three-dimensional printing using selectively lockable carriers
US10647054B2 (en) 2015-12-22 2020-05-12 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
US10668709B2 (en) 2014-08-12 2020-06-02 Carbon, Inc. Three-dimensional printing using carriers with release mechanisms
US10737479B2 (en) 2017-01-12 2020-08-11 Global Filtration Systems Method of making three-dimensional objects using both continuous and discontinuous solidification
US10792868B2 (en) 2015-09-09 2020-10-06 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US10792855B2 (en) 2015-02-05 2020-10-06 Carbon, Inc. Method of additive manufacturing by intermittent exposure
US10933580B2 (en) 2016-12-14 2021-03-02 Carbon, Inc. Continuous liquid interface production with force monitoring and feedback
US10953597B2 (en) 2017-07-21 2021-03-23 Saint-Gobain Performance Plastics Corporation Method of forming a three-dimensional body
US11077608B2 (en) 2018-02-21 2021-08-03 Carbon, Inc. Enhancing adhesion of objects to carriers during additive manufacturing
US11084216B2 (en) 2018-04-23 2021-08-10 Carbon, Inc. Resin extractor for additive manufacturing
US11117315B2 (en) 2018-03-21 2021-09-14 Carbon, Inc. Additive manufacturing carrier platform with window damage protection features
US11230050B2 (en) 2018-02-27 2022-01-25 Carbon, Inc. Lattice base structures for additive manufacturing
US11247389B2 (en) 2019-01-07 2022-02-15 Carbon, Inc. Systems and methods for resin recovery in additive manufacturing
US11376792B2 (en) 2018-09-05 2022-07-05 Carbon, Inc. Robotic additive manufacturing system
US11426938B2 (en) 2018-02-21 2022-08-30 Carbon, Inc. Rapid wash system for additive manufacturing
US11440259B2 (en) 2020-01-31 2022-09-13 Carbon, Inc. Resin reclamation centrifuge rotor for additively manufactured objects
US11440244B2 (en) 2015-12-22 2022-09-13 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
US11458673B2 (en) 2017-06-21 2022-10-04 Carbon, Inc. Resin dispenser for additive manufacturing
US11478987B2 (en) 2016-12-14 2022-10-25 Carbon, Inc. Methods and apparatus for washing objects produced by stereolithography
US11491725B2 (en) 2020-10-09 2022-11-08 Carbon, Inc. Vapor spin cleaning of additively manufactured parts
US11504905B2 (en) 2018-02-21 2022-11-22 Carbon, Inc. Methods of reducing distortion of additively manufactured objects
US11541600B2 (en) 2018-03-20 2023-01-03 Carbon, Inc. Rapid wash carrier platform for additive manufacturing of dental models
US11786711B2 (en) 2013-08-14 2023-10-17 Carbon, Inc. Continuous liquid interphase printing
US11919236B2 (en) 2018-09-26 2024-03-05 Carbon, Inc. Spin cleaning method and apparatus for additive manufacturing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057600A1 (en) 2004-11-29 2006-06-14 Bayerische Motoren Werke Ag Seat occupancy pressure sensor
DE102007010624B4 (en) * 2007-03-02 2009-04-30 Deltamed Gmbh Device for layerwise generative production of three-dimensional molded parts, process for producing these molded parts and these molded parts
CN105034370A (en) * 2015-07-13 2015-11-11 苏州大学 Rapid forming method based on mask film curing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171490A (en) * 1988-11-29 1992-12-15 Fudim Efrem V Method and apparatus for production of three-dimensional objects by irradiation of photopolymers
DE9319405U1 (en) * 1993-12-17 1994-03-31 Forschungszentrum Informatik A Device for producing a three-dimensional object (model) according to the principle of photofixing
DE29911122U1 (en) * 1999-06-25 1999-09-30 Hap Handhabungs Automatisierun Device for producing a three-dimensional object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102261A1 (en) * 1991-01-23 1992-07-30 Artos Med Produkte Appts. for making shaped articles - has laser-curing liq. in tank with transparent base above patterned band to define areas of liq. irradiated by laser beam source below
JPH04371829A (en) * 1991-06-21 1992-12-24 Teijin Seiki Co Ltd Three dimensional shape-making method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171490A (en) * 1988-11-29 1992-12-15 Fudim Efrem V Method and apparatus for production of three-dimensional objects by irradiation of photopolymers
DE9319405U1 (en) * 1993-12-17 1994-03-31 Forschungszentrum Informatik A Device for producing a three-dimensional object (model) according to the principle of photofixing
DE29911122U1 (en) * 1999-06-25 1999-09-30 Hap Handhabungs Automatisierun Device for producing a three-dimensional object

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43955E1 (en) 2004-05-10 2013-02-05 Envisiontec Gmbh Process for the production of a three-dimensional object with resolution improvement by pixel-shift
US8862260B2 (en) 2004-05-10 2014-10-14 Envisiontec Gmbh Process for the production of a three-dimensional object with resolution improvement by “pixel shift”
US8126580B2 (en) 2006-04-26 2012-02-28 Envisiontec Gmbh Device and method for producing a three-dimensional object by means of mask exposure
US8815143B2 (en) 2006-04-28 2014-08-26 Envisiontec Gmbh Method for producing a three-dimensional object by means of mask exposure
WO2008055533A1 (en) * 2006-11-10 2008-05-15 Envisiontec Gmbh Continuous, generative method and apparatus for the production of a three-dimensional object
EP3187328A1 (en) * 2006-11-10 2017-07-05 Envisiontec GmbH Generative method and device for creating a three dimensional object
US8845316B2 (en) 2007-07-04 2014-09-30 Envisiontec Gmbh Process and device for producing a three-dimensional object
US9067361B2 (en) 2007-07-04 2015-06-30 Envisiontec Gmbh Process and device for producing a three-dimensional object
US10220565B2 (en) 2007-07-04 2019-03-05 Envisiontec Gmbh Process and device for producing a three-dimensional object
US8658076B2 (en) 2007-10-26 2014-02-25 Envisiontec Gmbh Process and freeform fabrication system for producing a three-dimensional object
US10894355B2 (en) 2009-10-19 2021-01-19 Global Filtration Systems Resin solidification substrate and assembly
US9486944B2 (en) 2009-10-19 2016-11-08 Global Filtration Systems Resin solidification substrate and assembly
US11633910B2 (en) 2009-10-19 2023-04-25 Global Filtration Systems Resin solidification substrate and assembly
US10150253B2 (en) 2013-02-12 2018-12-11 Carbon, Inc. Method for three-dimensional fabrication with feed through carrier
US10093064B2 (en) 2013-02-12 2018-10-09 Carbon, Inc. Method for three-dimensional fabrication
US10618215B2 (en) 2013-02-12 2020-04-14 Carbon, Inc. Method for three-dimensional fabrication with feed-through carrier
US10710305B2 (en) 2013-02-12 2020-07-14 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US9205601B2 (en) 2013-02-12 2015-12-08 Carbon3D, Inc. Continuous liquid interphase printing
US9211678B2 (en) 2013-02-12 2015-12-15 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US11235516B2 (en) 2013-02-12 2022-02-01 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US10596755B2 (en) 2013-02-12 2020-03-24 Carbon, Inc. Method for three-dimensional fabrication
US10144181B2 (en) 2013-02-12 2018-12-04 Carbon, Inc. Continuous liquid interphase printing
US9216546B2 (en) 2013-02-12 2015-12-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with feed through carrier
US9993974B2 (en) 2013-02-12 2018-06-12 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US10016938B2 (en) 2013-08-14 2018-07-10 Carbon, Inc. Continuous liquid interphase printing
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
US11141910B2 (en) 2013-08-14 2021-10-12 Carbon, Inc. Continuous liquid interphase printing
US11786711B2 (en) 2013-08-14 2023-10-17 Carbon, Inc. Continuous liquid interphase printing
US11400645B2 (en) 2013-11-14 2022-08-02 Structo Pte Ltd Additive manufacturing device and method
US11628616B2 (en) 2013-11-14 2023-04-18 Structo Pte Ltd Additive manufacturing device and method
US10792859B2 (en) 2013-11-14 2020-10-06 Structo Pte Ltd Additive manufacturing device and method
EP3068610A4 (en) * 2013-11-14 2017-03-01 Structo Pte. Ltd Additive manufacturing device and method
US9975296B2 (en) 2014-02-10 2018-05-22 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US10232605B2 (en) 2014-03-21 2019-03-19 Carbon, Inc. Method for three-dimensional fabrication with gas injection through carrier
US11400698B2 (en) 2014-06-20 2022-08-02 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US11772324B2 (en) 2014-06-20 2023-10-03 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US10569465B2 (en) 2014-06-20 2020-02-25 Carbon, Inc. Three-dimensional printing using tiled light engines
US10471699B2 (en) 2014-06-20 2019-11-12 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US9598606B2 (en) 2014-06-23 2017-03-21 Carbon, Inc. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US10647879B2 (en) 2014-06-23 2020-05-12 Carbon, Inc. Methods for producing a dental mold, dental implant or dental aligner from materials having multiple mechanisms of hardening
US11440266B2 (en) 2014-06-23 2022-09-13 Carbon, Inc. Methods of producing epoxy three-dimensional objects from materials having multiple mechanisms of hardening
US9982164B2 (en) 2014-06-23 2018-05-29 Carbon, Inc. Polyurea resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US11358342B2 (en) 2014-06-23 2022-06-14 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US11312084B2 (en) 2014-06-23 2022-04-26 Carbon, Inc. Methods for producing helmet inserts with materials having multiple mechanisms of hardening
US11299579B2 (en) 2014-06-23 2022-04-12 Carbon, Inc. Water cure methods for producing three-dimensional objects from materials having multiple mechanisms of hardening
US9676963B2 (en) 2014-06-23 2017-06-13 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US10155882B2 (en) 2014-06-23 2018-12-18 Carbon, Inc. Methods of producing EPOXY three-dimensional objects from materials having multiple mechanisms of hardening
US10240066B2 (en) 2014-06-23 2019-03-26 Carbon, Inc. Methods of producing polyurea three-dimensional objects from materials having multiple mechanisms of hardening
US11707893B2 (en) 2014-06-23 2023-07-25 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US9453142B2 (en) 2014-06-23 2016-09-27 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US10968307B2 (en) 2014-06-23 2021-04-06 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US10647880B2 (en) 2014-06-23 2020-05-12 Carbon, Inc. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US11850803B2 (en) 2014-06-23 2023-12-26 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US10899868B2 (en) 2014-06-23 2021-01-26 Carbon, Inc. Methods for producing footwear with materials having multiple mechanisms of hardening
US10493692B2 (en) 2014-08-12 2019-12-03 Carbon, Inc. Acceleration of stereolithography
US9975295B2 (en) 2014-08-12 2018-05-22 Carbon, Inc. Acceleration of stereolithography
US10668709B2 (en) 2014-08-12 2020-06-02 Carbon, Inc. Three-dimensional printing using carriers with release mechanisms
US10974445B2 (en) 2015-02-05 2021-04-13 Carbon, Inc. Method of additive manufacturing by intermittent exposure
US10737438B2 (en) 2015-02-05 2020-08-11 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
US10155345B2 (en) 2015-02-05 2018-12-18 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
US10792855B2 (en) 2015-02-05 2020-10-06 Carbon, Inc. Method of additive manufacturing by intermittent exposure
US10828826B2 (en) 2015-03-05 2020-11-10 Carbon, Inc. Fabrication of three dimensional objects with multiple operating modes
US10391711B2 (en) 2015-03-05 2019-08-27 Carbon, Inc. Fabrication of three dimensional objects with multiple operating modes
US10792868B2 (en) 2015-09-09 2020-10-06 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US10611080B2 (en) 2015-12-22 2020-04-07 Carbon, Inc. Three-dimensional printing using selectively lockable carriers
US11440244B2 (en) 2015-12-22 2022-09-13 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
US10647054B2 (en) 2015-12-22 2020-05-12 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
US11833744B2 (en) 2015-12-22 2023-12-05 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
US11478987B2 (en) 2016-12-14 2022-10-25 Carbon, Inc. Methods and apparatus for washing objects produced by stereolithography
US10933580B2 (en) 2016-12-14 2021-03-02 Carbon, Inc. Continuous liquid interface production with force monitoring and feedback
US10737479B2 (en) 2017-01-12 2020-08-11 Global Filtration Systems Method of making three-dimensional objects using both continuous and discontinuous solidification
US11413856B2 (en) 2017-01-12 2022-08-16 Global Filtration Systems Method of making three-dimensional objects using both continuous and discontinuous solidification
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
US10793745B2 (en) 2017-05-01 2020-10-06 Formlabs, Inc. Dual-cure resins and related methods
US11285669B2 (en) 2017-06-21 2022-03-29 Dentsply Sirona Inc. Container for use in stereolithographic systems
US11724445B2 (en) 2017-06-21 2023-08-15 Carbon, Inc. Resin dispenser for additive manufacturing
US11458673B2 (en) 2017-06-21 2022-10-04 Carbon, Inc. Resin dispenser for additive manufacturing
WO2018234426A1 (en) 2017-06-21 2018-12-27 Sirona Dental Systems Gmbh Container for use in stereolithographic systems
US10953597B2 (en) 2017-07-21 2021-03-23 Saint-Gobain Performance Plastics Corporation Method of forming a three-dimensional body
US11426938B2 (en) 2018-02-21 2022-08-30 Carbon, Inc. Rapid wash system for additive manufacturing
US11897200B2 (en) 2018-02-21 2024-02-13 Carbon, Inc. Rapid wash system for additive manufacturing
US11504905B2 (en) 2018-02-21 2022-11-22 Carbon, Inc. Methods of reducing distortion of additively manufactured objects
US11077608B2 (en) 2018-02-21 2021-08-03 Carbon, Inc. Enhancing adhesion of objects to carriers during additive manufacturing
US11230050B2 (en) 2018-02-27 2022-01-25 Carbon, Inc. Lattice base structures for additive manufacturing
US11541600B2 (en) 2018-03-20 2023-01-03 Carbon, Inc. Rapid wash carrier platform for additive manufacturing of dental models
US11117315B2 (en) 2018-03-21 2021-09-14 Carbon, Inc. Additive manufacturing carrier platform with window damage protection features
US11084216B2 (en) 2018-04-23 2021-08-10 Carbon, Inc. Resin extractor for additive manufacturing
US11478988B2 (en) 2018-04-23 2022-10-25 Carbon, Inc. Resin extractor for additive manufacturing
US11897198B2 (en) 2018-04-23 2024-02-13 Carbon, Inc. Resin extractor for additive manufacturing
US11376792B2 (en) 2018-09-05 2022-07-05 Carbon, Inc. Robotic additive manufacturing system
US11919236B2 (en) 2018-09-26 2024-03-05 Carbon, Inc. Spin cleaning method and apparatus for additive manufacturing
US11731345B2 (en) 2019-01-07 2023-08-22 Carbon, Inc. Systems and methods for resin recovery in additive manufacturing
US11247389B2 (en) 2019-01-07 2022-02-15 Carbon, Inc. Systems and methods for resin recovery in additive manufacturing
US11440259B2 (en) 2020-01-31 2022-09-13 Carbon, Inc. Resin reclamation centrifuge rotor for additively manufactured objects
US11491725B2 (en) 2020-10-09 2022-11-08 Carbon, Inc. Vapor spin cleaning of additively manufactured parts

Also Published As

Publication number Publication date
DE10015408A1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
WO2001072501A1 (en) Method and device for producing components from light-curable materials
DE19957370C2 (en) Method and device for coating a substrate
EP2505341B1 (en) Method for layered construction of a moulded part from highly viscous photopolymerisable material
DE4436695C1 (en) Stereolithography, the making of a three dimensional object by irradiation of powder or liquid layers
EP0821647B1 (en) Device and method for producing three-dimensional objects
DE19715582B4 (en) Method and system for generating three-dimensional bodies from computer data
EP0690780B1 (en) Three-dimensional object production process
DE60012667T2 (en) Apparatus for producing a three-dimensional laminated article of a light-curing liquid
EP2855119A1 (en) Method for constructing a three-dimensional molded body
DE102016209933A1 (en) Apparatus and method for generatively producing a three-dimensional object
EP3187328A1 (en) Generative method and device for creating a three dimensional object
DE4302418A1 (en) Method and device for producing a three-dimensional object
EP3277481B1 (en) Method and device for the layered construction of a shaped part
EP3297813B1 (en) Method and device for producing a three-dimensional object
EP3342583B1 (en) Method and device for generative production of a three-dimensional object
DE102015219866A1 (en) Device and method for producing a three-dimensional object
EP3085519A1 (en) Method and device for generating a three-dimensional object
DE102017213072A1 (en) Additive manufacturing process
EP3277482A1 (en) Method and device for the layered construction of a shaped part
DE102011121568A1 (en) Producing three-dimensional objects by solidifying layers of building material solidifiable by radiation, comprises e.g. reducing the coater volume, such that only the region within a building cell formed by a building cell wall, is coated
DE10204985A1 (en) Method, for making three-dimensional object by solidifying liquid in layers on platform, involves removing solidified material using layer between material and transparent plate
DE102019007480A1 (en) Arrangement and method for producing a layer of a particulate building material in a 3D printer
EP3774289B1 (en) Method and assembly for a continuous or semi-continuous additive manufacture of components
DE102020106001A1 (en) Process for additive manufacturing
DE102016212573A1 (en) Process for the production of three-dimensional components with a powder bed-based jet melting process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP