WO2001072431A1 - Method and device for producing drops of equal size - Google Patents

Method and device for producing drops of equal size Download PDF

Info

Publication number
WO2001072431A1
WO2001072431A1 PCT/CH2001/000191 CH0100191W WO0172431A1 WO 2001072431 A1 WO2001072431 A1 WO 2001072431A1 CH 0100191 W CH0100191 W CH 0100191W WO 0172431 A1 WO0172431 A1 WO 0172431A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
nozzle
gas
jet
prechamber
Prior art date
Application number
PCT/CH2001/000191
Other languages
German (de)
French (fr)
Inventor
Peter Walzel
Original Assignee
Nisco Engineering Ag
Peter Walzel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisco Engineering Ag, Peter Walzel filed Critical Nisco Engineering Ag
Priority to AU2001239089A priority Critical patent/AU2001239089A1/en
Publication of WO2001072431A1 publication Critical patent/WO2001072431A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/045Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being parallel just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0884Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point the outlet orifices for jets constituted by a liquid or a mixture containing a liquid being aligned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/041Injectors peculiar thereto having vibrating means for atomizing the fuel, e.g. with sonic or ultrasonic vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements

Definitions

  • the invention relates to a method and devices for producing drops of equal size with a two-component nozzle. It consists of a prechamber into which at least one nozzle for a liquid medium and into which at least one inlet channel for a gaseous medium opens.
  • a Laval nozzle divided into many thin threads depending on the viscosity of the liquid, so-called multifilaments.
  • the liquid jet which is also laminar, disintegrates due to rotationally symmetrical disturbances of the jet surface. In this case too, the superimposed gas flow causes the liquid jet to expand.
  • the beam In addition to droplets with diameters of approximately the same size, the beam also creates so-called satellite droplets, which are undesirable in most applications.
  • the drops have a diameter that is approximately twice as large as the nozzle diameter. Often, several nozzles are arranged in parallel so that a higher throughput can be achieved.
  • the flow velocity of the jets must remain limited due to the laminarity condition.
  • the present invention has for its object to provide a simple method that allows the liquid medium to be divided into approximately monodisperse drops, the drop dimensions being significantly smaller than the nozzle dimensions. This is to avoid the risk of constipation. In addition, the formation of satellite drops is to be prevented.
  • the object is achieved in that the liquid is introduced as a laminar jet from a nozzle and a gas into a prechamber and, together with the gas as an expanded jet, flows out of this prechamber through an opening which is coaxial with the nozzle, the gas or the liquid is set in periodic vibrations.
  • a liquid jet is introduced from a nozzle into a prechamber.
  • a gas is applied to this pre-chamber, which flows out through an opening together with the liquid jet.
  • the liquid jet is accelerated and expanded both by the pressure field near the opening and by the shear stresses due to the faster flowing gas.
  • the liquid jet With moderate throughputs of the liquid and moderate pressures, the liquid jet remains laminar and decays according to the principle of Rayleigh decay.
  • the amount of pressure that can be used depends, among other things, on: especially on the dimensions of the nozzle and the opening.
  • the desired monodisperse spectrum is established even with low vibration amplitudes when the frequency of the periodic vibration is in the range 0.7 ⁇ f ⁇ ⁇ 1, 3 of the natural decay frequency of the stretched liquid jet.
  • the drop dimensions are significantly smaller than the dimensions of the jet at the nozzle outlet. In extreme cases, values from 1 to 10 were measured. As a result, the method can be used with small droplet dimensions d ⁇ 100 ⁇ even for liquids such as suspensions, which otherwise tend to clog the nozzles.
  • the gas is advantageously between 0.4 ⁇ ML / M G ⁇ 25.
  • Conditioning or moistening the gas is particularly advantageous when used for spray dryers. This prevents caking on the nozzle and on the orifice.
  • Openings in the antechamber can preferably be made in the form of shutters.
  • the diaphragms can in principle have different cross-sectional shapes, but the most advantageous are circular or slit-shaped diaphragms. In the case of non-circular openings, the opening diameter is
  • A is the cross-sectional area of the opening through which a liquid jet passes in each case.
  • the total cross-sectional area of the slot analogously results from the number of liquid threads passing through times the area formed with the equivalent diameter.
  • the prechamber then expediently has a number of openings assigned to the number of nozzles or a slit diaphragm into which a plurality of liquid jets enter.
  • Fig. 1 shows a longitudinal section through the two-component nozzle with vibration excitation of the nozzle in a first embodiment.
  • Fig. 2 shows a longitudinal section through an atomizing device according to the invention with a plurality of two-substance nozzles, in which the liquid above the outlet opening of the nozzles is periodically pulsated with a membrane in a first embodiment.
  • Fig. 3 shows a longitudinal section through a two-component nozzle according to the invention, in which the periodic excitation is transmitted to the gas through a loudspeaker in a first embodiment.
  • the two-component nozzle shown in Fig. 1 consists of a prechamber (1).
  • the nozzle (2) for the liquid opens into the antechamber (1).
  • the liquid is supplied to the nozzle (2) via a flexible feed line (6).
  • the inside of the nozzle (2) is lined with a porous body (5) which serves to even out the liquid supply.
  • the gas is introduced into the prechamber (1) via a channel (3).
  • the laminar liquid jet is expanded by the overpressure in the prechamber (1) and flows out of the prechamber (1) together with the gas through the opening (4).
  • the nozzle (2) is centered on the center of the opening (4).
  • the periodic oscillation is achieved by vertical vibration of the nozzle (2).
  • the vibration is generated with a loudspeaker (7) which is controlled by a frequency generator (8) via an amplifier.
  • the atomization device shown in FIG. 2 with a plurality of two-substance nozzles also consists of a prechamber (1) into which the nozzles (2) for the liquid open.
  • the nozzles (2) are lined on the inside with porous bodies (5) which serve to even out the liquid supply.
  • the gas is introduced into the prechamber via a channel (3).
  • the liquid is supplied to the nozzle (2) via a common feed line (10).
  • the laminar liquid jets are expanded by the overpressure in the prechamber (1) and flow out of the prechamber (1) together with the gas through the openings (4).
  • the nozzles (2) are centered on the centers of the openings (4).
  • the opening (4) is designed as a slot, on the right side as a plurality of holes.
  • the periodic oscillation is achieved here by pulsation of the liquid.
  • the vibration is generated with a piezo oscillator and impressed on the liquid by means of a stamp (12) and a membrane (11).
  • the two-component nozzle shown in Fig. 3 also consists of a prechamber (1) into which a rigid nozzle (2) for the liquid opens.
  • the inside of the nozzle (2) is lined with a porous body (5) which serves to even out the liquid supply.
  • the gas is introduced into the prechamber via a channel (3).
  • the laminar liquid jet is expanded by the overpressure in the prechamber (1) and flows out of the prechamber (1) together with the gas through the openings (4).
  • the nozzle (2) is centered on the center of the opening (4).
  • the periodic excitation is transmitted to the gas with the aid of a loudspeaker (7) and regulated with a frequency generator (8).
  • the prechamber (1) is connected to the loudspeaker unit via a pressure equalization line (13).
  • the opening (4) has a streamlined design.
  • the nozzle is axially in a central position in the prechamber.
  • the liquid is supplied to the nozzle as shown schematically in Fig. 1 via a flexible silicone hose.
  • the nozzle is rigidly connected to the loudspeaker via a rod, which is located axially in a central position at the top of the prechamber. Due to the rigid connection, the loudspeaker can transmit the periodic vibrations directly to the nozzle.
  • the harmonic vibrations can be adjusted via a frequency generator. In the first experiments, the excitation frequency was 200 Hz ⁇ f a ⁇ 1000 Hz. The amplitude is difficult to measure and was less than 0.1 mm.
  • the inlet channel for the gaseous medium has an inlet diameter of 70 mm.
  • the gas volume flow can be adjusted using a speed-controlled fan.
  • loads of 0.4 ⁇ M / M G ⁇ 25 were set. With the given geometric conditions, monodisperse drops with a minimum diameter of approx. 1 mm can be produced.
  • the nozzle is axially in a central position in the prechamber.
  • the liquid is supplied to the nozzle via a rigid supply line.
  • the distance from the nozzle opening to the orifice can be set continuously, a distance a which has approximately proven to be advantageous and which corresponds approximately to the nozzle diameter.
  • the inlet channel for the gaseous medium has an inlet diameter of 65 mm.
  • the gas volume flow can be adjusted using a speed-controlled fan.
  • a loudspeaker is used for vibrating the gas volume flow.
  • the loudspeaker is mounted in an axial and central position on the top of the prechamber. In this way, the vibrations of the membrane can be transferred well to the gas.
  • a pressure compensation line is provided which connects the prechamber to the back of the membrane.
  • the compensating line has an inner diameter of 1 mm.
  • the harmonic vibrations of the speaker can be adjusted using a frequency generator. In the first experiments, the excitation frequency was varied in a range from 200 Hz ⁇ f a ⁇ 1000 Hz.

Abstract

The invention relates to a method and devices for producing monodispersed drops using a two-component nozzle. The devices are each comprised of a pre-chamber (1) into which at least one nozzle (2) for a liquid medium and at least one inlet channel (3) for a gaseous medium discharge. According to the invention, the aim of the invention is accomplished in that a laminar liquid jet stream exiting a nozzle through a gas stream in a pre-chamber is elongated due to the applied pressure and flows together with the gas out of said pre-chamber via an opening, whereby the gas or the liquid is periodically oscillated. The formation of satellite drops, which is normally observed during Rayleigh jet breakup, does not occur at all due to the superposition of periodic oscillations. The frequency of the periodic oscillation ranges from 0.7 < fT < 1.3 of the natural breakup frequency of the elongated liquid jet. Drop sizes which are distinctly smaller than the diameter of the nozzle can be achieved due to the extreme elongation of the jet. In the extreme case, values from 1 to 10 were measured. The inventive method is thus additionally suited for suspensions which tend to quickly clog nozzles having small outlet diameters.

Description

Verfahren und Vorrichtung zur Herstellung gleich großer Tropfen Method and device for producing drops of equal size
Die Erfindung betrifft ein Verfahren und Vorrichtungen zur Herstellung gleich großer Tropfen mit einer Zweistoffdüse. Sie besteht aus einer Vorkammer, in die wenigstens eine Düse für ein flüssiges Medium und in die wenigstens ein Eintrittskanal für ein gasförmiges Medium einmündet.The invention relates to a method and devices for producing drops of equal size with a two-component nozzle. It consists of a prechamber into which at least one nozzle for a liquid medium and into which at least one inlet channel for a gaseous medium opens.
Gattungsgemäße Zweistoffdüsen sind unter dem Begriff Düsen mit parallel verlaufenden Gas- und Flüssigkeitsströmen bekannt. Siehe z.B. Gaήän-Calvo A. M. et al., J. Aerosol Sei. Vol. 30, 1 , pp.117-125, 1999; Gerking, L, pmi Vol. 25, 2, pp.59- 65, 1993; Walz A., Patent DE 3,311 ,343, Patent US 4,534. Bei abgerundeten und glatten Düsen bleibt der Gasstrom bis zu hohen Reynoldszahlen laminar. Der zentral strömende Flüssigkeitsstrahl wird durch den parallel verlaufenden Gasstrom hoher Geschwindigkeit vorzugsweise im Schall- oder Überschallbereich gedehnt und beim Durchschreiten der Düse, z.B. einer Lavaldüse, je nach Viskosität der Flüssigkeit in viele dünne Fäden zerteilt, sogenannte Multifilamente. Wendet man jedoch nur moderate Gasdrücke an, zerfällt der ebenso laminar bewegte Flüssigkeitsstrahl aufgrund rotationssymmetrischer Störungen der Strahloberfläche. Der überlagerte Gasstrom bewirkt auch in diesem Fall noch eine Dehnung des Flüssigkeitsstrahls. Neben Tropfen mit annähernd gleich großen Durchmessern entstehen aus dem Strahl dabei auch sogenannte Satellitentropfen, die in den meisten Anwendungsfällen unerwünscht sind.Generic two-component nozzles are known under the term nozzles with parallel gas and liquid streams. See e.g. Gaήän-Calvo A.M. et al., J. Aerosol Sei. Vol. 30, 1, pp.117-125, 1999; Gerking, L, pmi Vol. 25, 2, pp. 59-65, 1993; Walz A., patent DE 3,311, 343, patent US 4,534. With rounded and smooth nozzles, the gas flow remains laminar up to high Reynolds numbers. The central flowing liquid jet is expanded by the parallel gas flow of high speed, preferably in the sound or supersonic range, and when passing through the nozzle, e.g. a Laval nozzle, divided into many thin threads depending on the viscosity of the liquid, so-called multifilaments. However, if only moderate gas pressures are used, the liquid jet, which is also laminar, disintegrates due to rotationally symmetrical disturbances of the jet surface. In this case too, the superimposed gas flow causes the liquid jet to expand. In addition to droplets with diameters of approximately the same size, the beam also creates so-called satellite droplets, which are undesirable in most applications.
Verfahren zur Herstellung von gleich großen Tropfen durch Schwingungsanregung der Düse oder durch Pulsation der Flüssigkeit sind in der Literatur häufig beschrieben. Siehe z.B. Brandenberger H. R., Dissertation, Nr. 13103, Eidgenössische Technische Hochschule Zürich, 1999; Brenn G., Habilitationsschrift, Friedrich-Alexander-Universität Erlangen-Nürnberg, 1999; Tebel K. H., Dissertation, RWTH Aachen, 1982; Thelen J., et al., Deutsche Versuchsanstalt für Luft- und Raumfahrt, Forschungsbericht 67-91 , 1967; Walzel P, Chemie-Ing.Techn. MS 692, 1979. Bei den eingesetzten Düsen handelt es sich um Einstoff- bzw. Druckdüsen, mit denen laminare Flüssigkeitsstrahlen erzeugt werden, die anschließend nach dem Mechanismus des Rayleigh-Zerfalls zu Tropfen zerfallen. Die Tropfen haben bei diesen Verfahren einen Durchmesser, der ca. doppelt so groß ist wie der Düsendurchmesser. Häufig werden mehrere Düsen parallel angeordnet, damit ein höherer Durchsatz erzielt werden kann. Die Strömungsgeschwindigkeit der Strahlen muß wegen der Laminaritätsbedingung begrenzt bleiben. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein einfaches Verfahren zu schaffen, daß ein Zerteilen des flüssigen Mediums in angenähert monodisperse Tropfen ermöglicht, wobei die Tropfenabmessungen deutlich kleiner sind, als die Düsenabmessungen. Dadurch soll die Verstopfungsgefahr vermieden werden. Außerdem soll das Ausbilden von Satellitentropfen unterbunden werden.Methods for producing drops of equal size by means of vibration excitation of the nozzle or by pulsation of the liquid are frequently described in the literature. See, for example, Brandenberger HR, Dissertation, No. 13103, Swiss Federal Institute of Technology Zurich, 1999; Brenn G., habilitation thesis, Friedrich Alexander University Erlangen-Nuremberg, 1999; Tebel KH, dissertation, RWTH Aachen, 1982; Thelen J., et al., German Aerospace Research Institute, Research Report 67-91, 1967; Walzel P, chemical engineer. MS 692, 1979. The nozzles used are single-substance or pressure nozzles with which laminar liquid jets are generated, which then disintegrate into drops by the Rayleigh decay mechanism. In this process, the drops have a diameter that is approximately twice as large as the nozzle diameter. Often, several nozzles are arranged in parallel so that a higher throughput can be achieved. The flow velocity of the jets must remain limited due to the laminarity condition. The present invention has for its object to provide a simple method that allows the liquid medium to be divided into approximately monodisperse drops, the drop dimensions being significantly smaller than the nozzle dimensions. This is to avoid the risk of constipation. In addition, the formation of satellite drops is to be prevented.
Erfindungsgemäß wird die gestellte Aufgabe dadurch gelöst, daß die Flüsigkeit als laminarer Strahl aus einer Düse und ein Gas in eine Vorkammer eingeleitet wird und gemeinsam mit dem Gas als gedehnter Strahl durch eine zur Düse koaxialen Öffnung aus dieser Vorkammer ausströmt, wobei das Gas oder die Flüssigkeit in periodische Schwingungen versetzt wird.According to the invention, the object is achieved in that the liquid is introduced as a laminar jet from a nozzle and a gas into a prechamber and, together with the gas as an expanded jet, flows out of this prechamber through an opening which is coaxial with the nozzle, the gas or the liquid is set in periodic vibrations.
Bei den von Ganän-Calvo beschriebenen Düsen wird ein Flüssigkeitsstrahl aus einer Düse in eine Vorkammer eingeleitet. Diese Vorkammer wird mit einem Gas beaufschlagt, das gemeinsam mit dem Flüssigkeitsstrahl durch eine Öffnung ausströmt. Infolge des höheren Drucks in der Vorkammer wird der Flüssigkeitsstrahl sowohl durch das Druckfeld in der Nähe der Öffnung als auch durch die Schubspannungen infolge des rascher strömenden Gases beschleunigt und gedehnt. Bei moderaten Durchsätzen der Flüssigkeit und moderaten Drücken bleibt der Flüssigkeitsstrahl laminar und zerfällt nach dem Prinzip des Rayleigh-Zerfalls. Der Flüssigkeitsstrahl ist dann laminar, wenn die Reynoldszahl in der Düse einen Wert Re = w - D - p /η = 2300 nicht überschreitet, siehe z.B. Gersten K., Einführung in die Strömungsmechanik, Vieweg, 1986. Der Betrag des anwendbaren Druckes hängt u.a. vor allem von den Abmessungen der Düse und der Öffnung ab.In the nozzles described by Ganän-Calvo, a liquid jet is introduced from a nozzle into a prechamber. A gas is applied to this pre-chamber, which flows out through an opening together with the liquid jet. As a result of the higher pressure in the prechamber, the liquid jet is accelerated and expanded both by the pressure field near the opening and by the shear stresses due to the faster flowing gas. With moderate throughputs of the liquid and moderate pressures, the liquid jet remains laminar and decays according to the principle of Rayleigh decay. The liquid jet is laminar if the Reynolds number in the nozzle does not exceed Re = w - D - p / η = 2300, see e.g. Gersten K., Introduction to Fluid Mechanics, Vieweg, 1986. The amount of pressure that can be used depends, among other things, on: especially on the dimensions of the nozzle and the opening.
Er kann als Weberzahl WβQ = DB - W - PG ^L definiert werden. Wobei sich derIt can be defined as the Weber number WβQ = D B - W - PG ^ L. Whereby the
Druck angenähert aus Δpc = ( G / 2)- W ergibt. Dabei bedeutet ΔpG derPressure approximates from Δpc = (G / 2) - W results. Δp G means the
Differenzdruck zwischen dem Druck in der Vorkammer und dem Druck in der Öffnung. Obwohl beim natürlichen Rayleigh-Zerfall bereits enge Tropfenspektren gebildet werden, treten dennoch sogenannte Satellitentröpfen auf, deren Durchmesser deutlich kleiner sind als die der Haupttropfen. Außerdem sind die Haupttropfen nicht exakt gleich groß.Differential pressure between the pressure in the pre-chamber and the pressure in the opening. Although narrow droplet spectra are already formed during the natural Rayleigh decay, so-called satellite droplets still occur, the diameter of which is significantly smaller than that of the main droplets. In addition, the main drops are not exactly the same size.
Versuche mit verschieden Anordnungen haben erstaunlicherweise ergeben, daß selbst beim gedehnten Strahl periodische Schwingungsanregungen der Flüssigkeit durch Vibration der Düse in der Umgebung der Eigenfrequenz des Strahlzerfalls am gedehnten Strahl zu extrem engen Tropfenspektren führen. Die auf diese Weise eingeleiteten Oberflächenwellen wandern trotz des abnehmenden Strahldurchmessers stromab bis zum Zerfallsort ohne merkliche Dämpfung. Die natürliche Zerfallsfrequenz kann man am besten aus den gemessenen Tropfengrößen mit fτ = V / Vτ bestimmen. Dabei ist V der Volumenstrom der Flüssigkeit und Vτ = d3π/6 das gemessene mittlere Tropfenvolumen.Experiments with different arrangements have surprisingly shown that even with the stretched jet periodic vibrations of the liquid by vibration of the nozzle in the vicinity of the natural frequency of the jet decay on stretched beam lead to extremely narrow drop spectra. Despite the decreasing beam diameter, the surface waves introduced in this way travel downstream to the point of decay without noticeable damping. The natural decay frequency can best be determined from the measured drop sizes with f τ = V / V τ . V is the volume flow of the liquid and V τ = d 3 π / 6 the measured mean drop volume.
Weitere Versuche, bei denen die Flüssigkeit periodisch pulsierend aus der starren Düse austritt, zeigen den gleichen Effekt. Erstaunlicherweise kann sogar über eine periodische Pulsation des Gases der gewünschte Effekt zum monodispersen Zertropfen genutzt werden. Im letzen Fall kann die Anregung des Gases über einen Lautsprecher erfolgen, dessen Membran auf der Rückseite mit dem gleichem Gasdruck beaufschlagt wird wie die Vorkammer.Further experiments in which the liquid periodically pulsates out of the rigid nozzle show the same effect. Surprisingly, the desired effect can be used for monodisperse droplet even by periodic pulsation of the gas. In the latter case, the gas can be excited via a loudspeaker, the membrane on the back of which is subjected to the same gas pressure as the prechamber.
Das gewünschte monodisperse Spektrum stellt sich auch schon bei geringen Schwingungsamplituden dann ein, wenn die Frequenz der periodischen Schwingung im Bereich 0,7 < fτ < 1 ,3 der natürlichen Zerfallsfrequenz des gedehnten Flüssigkeitsstrahls liegt.The desired monodisperse spectrum is established even with low vibration amplitudes when the frequency of the periodic vibration is in the range 0.7 <f τ <1, 3 of the natural decay frequency of the stretched liquid jet.
Es ist ein wesentliches Merkmal dieses Verfahrens, daß die Tropfenabmessungen deutlich kleiner sind als die Abmessungen des Strahls am Düsenaustritt. Im Extremfall wurden Werte von 1 zu 10 gemessen. Dadurch läßt sich das Verfahren bei kleinen Tropfenabmessungen d < 100μ selbst für Flüssigkeiten wie Suspensionen anwenden, die sonst zum Verstopfen der Düsen neigen.It is an essential feature of this method that the drop dimensions are significantly smaller than the dimensions of the jet at the nozzle outlet. In extreme cases, values from 1 to 10 were measured. As a result, the method can be used with small droplet dimensions d <100μ even for liquids such as suspensions, which otherwise tend to clog the nozzles.
Messungen haben ergeben, daß der für dieses Verfahren sinnvolle Betriebsbereich bei einem dimensionslosen Flüssigkeitsmassenstrom vonMeasurements have shown that the useful operating range for this method with a dimensionless liquid mass flow of
ML = ML • (üg • p • σjr ' < 2,2 und einer Gas-Weberzahl WeG = DB • w • pG / σL < 100 liegt. Bei höheren Flüssigkeitsmassenströmen werden die bezogenen Tropfendurchmesser d/De nicht mehr wesentlich kleiner als bei Düsen anderer Bauart. Höhere Gas-Weberzahlen führen zu einem turbulenten Zerfall des Flüssigkeitsstrahls. Das Verhältnis des Massenstroms der Flüssigkeit zu dem desML = M L • (üg • p • σjr ' <2.2 and a Gas-Weber number We G = D B • w • p G / σ L <100. With higher liquid mass flows, the related drop diameters d / De no longer become much smaller than with other types of nozzles, higher gas weaver numbers lead to turbulent decay of the liquid jet
Gases liegt vorteilhaft zwischen 0,4 < ML /MG < 25.The gas is advantageously between 0.4 <ML / M G <25.
Insbesondere bei der Anwendung für Sprühtrockner ist eine Konditionierung bzw. Befeuchtung des Gases von Vorteil. Dadurch werden Anbackungen an der Düse und an der Blende vermieden. Zur Vermeidung von Turbulenz in der Gasströmung ist es von Vorteil, die Kontur der Öffnungen strömungsgünstig, z.B. abgerundet auszuführen. Auf diese Weise wird eine Ablösung des Gasstroms und die damit einhergehende großräumige Turbulenz vermieden. Turbulenzen stören den geordneten Zerfall des Flüssigkeitsstrahls.Conditioning or moistening the gas is particularly advantageous when used for spray dryers. This prevents caking on the nozzle and on the orifice. In order to avoid turbulence in the gas flow, it is advantageous to design the contour of the openings to be streamlined, for example rounded. In this way, separation of the gas flow and the associated large-scale turbulence are avoided. Turbulence disrupts the orderly decay of the liquid jet.
Öffnungen in der Vorkammer können vorzugsweise in der Form von Blenden ausgeführt werden. Die Blenden können im Prinzip verschiedene Querschnittsformen aufweisen, am günstigsten sind jedoch kreisförmige oder schlitzförmige Blenden. Als Öffnungsdurchmesser wird bei nicht kreisförmigen Öffnungen derOpenings in the antechamber can preferably be made in the form of shutters. The diaphragms can in principle have different cross-sectional shapes, but the most advantageous are circular or slit-shaped diaphragms. In the case of non-circular openings, the opening diameter is
Äquivalenzdurchmesser mit DB ^q = 4 • A / π definiert. Hierbei ist A die durchströmte Querschnittsfläche der Öffnung, durch die jeweils ein Flüssigkeitsstrahl durchtritt. Sinngemäß ergibt sich beispielsweise bei Schlitzdüsen die Gesamtquerschnittsfläche des Schlitzes aus der Anzahl der durchtretenden Flüssigkeitsfäden mal der mit dem Äquivalenzdurchmesser gebildeten Fläche.Equivalence diameter defined with D B ^ q = 4 • A / π. Here, A is the cross-sectional area of the opening through which a liquid jet passes in each case. In the case of slot nozzles, for example, the total cross-sectional area of the slot analogously results from the number of liquid threads passing through times the area formed with the equivalent diameter.
Messungen an Modelldüsen haben ergeben, daß das Verhältnis von Düsendurchmesser D zum Blendendurchmesser DB sinnvollerweise im Bereich 1 < D/DB < 5, vorzugsweise im Bereich 1 ,5 < D/DB < 2 liegen soll. Bei zu kleinen Düsendurchmessem im Vergleich zum Blendendurchmesser stellt sich eine nur mäßige Strahldehnung ein, und die Tropfen werden vergleichsweise groß. Bei zu kleinen Blenden im Vergleich zum Düsendurchmesser besteht die Gefahr, daß sich der Strahl Undefiniert ablöst, und die Blende auf der Innenseite der Vorkammer benetzt. Bei zu großem relativem Abstand a*=a/D der Düse zum engsten Strömungsquerschnitt der Blende erfolgt wiederum eine nur mäßige Strahldehnung. Bei zu kleinem Abstand wird die Gasströmung instabil und der Strahl wird auf unregelmäßige Weise abgelenkt. Günstige Werte liegen bei einem relativen Abstand a* der Düse zum Blendendurchmesser von 0,5 < a* < 4, vorzugsweise im Bereich 0,7 < a* < 2.Measurements on model nozzles have shown that the ratio of nozzle diameter D to orifice diameter D B should be in the range 1 <D / DB <5, preferably in the range 1.5 <D / D B <2. If the nozzle diameters are too small compared to the orifice diameter, the beam expansion is only moderate and the drops become comparatively large. If the orifices are too small compared to the nozzle diameter, there is a risk that the jet will detach undefined and wet the orifice on the inside of the prechamber. If the relative distance a * = a / D of the nozzle to the narrowest flow cross-section of the orifice is too great, the beam expansion is again only moderate. If the distance is too small, the gas flow becomes unstable and the jet is deflected in an irregular manner. Favorable values are at a relative distance a * of the nozzle to the orifice diameter of 0.5 <a * <4, preferably in the range 0.7 <a * <2.
Es ist möglich, eine Vielzahl von Düsen in eine Vorkammer münden zu lassen. Zweckmäßigerweise besitzt die Vorkammer dann eine der Düsenanzahl zugeordnete Anzahl von Öffnungen oder eine Schlitzblende, in die mehrere Flüssigkeitsstrahlen eintreten.It is possible to have a large number of nozzles opening into an antechamber. The prechamber then expediently has a number of openings assigned to the number of nozzles or a slit diaphragm into which a plurality of liquid jets enter.
Nachfolgend sind Ausführungsbeispiele der Erfindung anhand von Zeichnungen beschrieben. Es zeigt: Fig. 1 einen Längsschnitt durch die Zweistoffdüse mit Schwingungsanregung der Düse in einer ersten Ausführungsform.Exemplary embodiments of the invention are described below with reference to drawings. It shows: Fig. 1 shows a longitudinal section through the two-component nozzle with vibration excitation of the nozzle in a first embodiment.
Fig. 2 einen Längsschnitt durch eine erfindungsgemäße Zerstäubungsvorrichtung mit mehreren Zweistoffdüsen, in der die Flüssigkeit oberhalb der Austrittsöffnung der Düsen mit einer Membrane in periodische Pulsationen versetzt wird in einer ersten Ausführungsform.Fig. 2 shows a longitudinal section through an atomizing device according to the invention with a plurality of two-substance nozzles, in which the liquid above the outlet opening of the nozzles is periodically pulsated with a membrane in a first embodiment.
Fig. 3 Einen Längsschnitt durch eine erfindungsgemäße Zweistoffdüse, bei der die periodische Anregung durch einen Lautsprecher an das Gas übertragen wird in einer ersten Ausführungsform.Fig. 3 shows a longitudinal section through a two-component nozzle according to the invention, in which the periodic excitation is transmitted to the gas through a loudspeaker in a first embodiment.
Die in Fig. 1 dargestellte Zweistoffdüse besteht aus einer Vorkammer (1 ). In die Vorkammer (1 ) mündet die Düse (2) für die Flüssigkeit. Die Zufuhr der Flüssigkeit zur Düse (2) erfolgt über eine flexible Zuleitung (6). Die Düse (2) ist innen mit einem porösen Körper (5) ausgekleidet, der zur Vergleichmäßigung des Flüssigkeitzulaufs dient. Das Gas wird über einen Kanal (3) in die Vorkammer (1 ) eingeleitet. Der laminare Flüssigkeitsstrahl wird durch den Überdruck in der Vorkammer (1 ) gedehnt, und strömt gemeinsam mit dem Gas durch die Öffnung (4) aus der Vorkammer (1 ) aus. Die Düse (2) ist zum Mittelpunkt der Öffnung (4) zentriert. Die periodische Schwingung wird im gezeigten Fall durch vertikale Vibration der Düse (2) erreicht. Die Schwingung wird mit einem Lautsprecher (7) erzeugt, der von einem Frequenzgenerator (8) über einen Verstärker angesteuert wird.The two-component nozzle shown in Fig. 1 consists of a prechamber (1). The nozzle (2) for the liquid opens into the antechamber (1). The liquid is supplied to the nozzle (2) via a flexible feed line (6). The inside of the nozzle (2) is lined with a porous body (5) which serves to even out the liquid supply. The gas is introduced into the prechamber (1) via a channel (3). The laminar liquid jet is expanded by the overpressure in the prechamber (1) and flows out of the prechamber (1) together with the gas through the opening (4). The nozzle (2) is centered on the center of the opening (4). In the case shown, the periodic oscillation is achieved by vertical vibration of the nozzle (2). The vibration is generated with a loudspeaker (7) which is controlled by a frequency generator (8) via an amplifier.
Die in Fig.2 gezeigte Zerstäubungsvorrichtung mit mehreren Zweistoffdüsen besteht ebenso aus einer Vorkammer (1 ), in die die Düsen (2) für die Flüssigkeit münden. Die Düsen (2) sind innen mit porösen Körpern (5) ausgekleidet, die zur Vergleichmäßigung des Flüssigkeitzulaufes dienen. Das Gas wird über einen Kanal (3) in die Vorkammer eingeleitet. Die Zufuhr der Flüssigkeit zur Düse (2) erfolgt über eine gemeinsame Zuleitung (10). Die laminaren Flüssigkeitsstrahlen werden durch den Überdruck in der Vorkammer (1 ) gedehnt, und strömen gemeinsam mit dem Gas durch die Öffnungen (4) aus der Vorkammer (1 ) aus. Die Düsen (2) sind zu den Mittelpunkten der Öffnungen (4) zentriert. Auf der linken Seite von Fig. 2 ist die Öffnung (4) beispielhaft als Schlitz ausgeführt, auf der rechten Seite als eine Vielzahl von Bohrungen. Die periodische Schwingung wird hier durch Pulsation der Flüssigkeit erreicht. Die Schwingung wird mit einem Piezoschwinger erzeugt und über einen Stempel (12) und eine Membran (11 ) der Flüssigkeit aufgeprägt. Die in Fig. 3 dargestellte Zweistoffdüse besteht ebenso aus einer Vorkammer (1) in die hier eine starr ausgeführte Düse (2) für die Flüssigkeit mündet. Die Düse (2) ist innen mit einem porösen Körper (5) ausgekleidet, der zur Vergleichmäßigung des Flüssigkeitzulaufes dient. Das Gas wird über einen Kanal (3) in die Vorkammer eingeleitet. Der laminare Flüssigkeitsstrahl wird durch den Überdruck in der Vorkammer (1) gedehnt, und strömt gemeinsam mit dem Gas durch die Öffnungen (4) aus der Vorkammer (1 ) aus. Die Düse (2) ist zum Mittelpunkt der Öffnung (4) zentriert. Die periodische Anregung wird mit Hilfe eines Lautsprechers (7) an das Gas übertragen und mit einem Frequenzgenerator (8) geregelt. Um vor und hinter der Lautsprechermembran einen Druckausgleich zu gewährleisten, ist die Vorkammer (1 ) über eine Druck-Ausgleichsleitung (13) mit der Lautsprechereinheit verbunden. Die Öffnung (4) ist in diesem Ausführungsbeispiel strömungsgünstig ausgeführt.The atomization device shown in FIG. 2 with a plurality of two-substance nozzles also consists of a prechamber (1) into which the nozzles (2) for the liquid open. The nozzles (2) are lined on the inside with porous bodies (5) which serve to even out the liquid supply. The gas is introduced into the prechamber via a channel (3). The liquid is supplied to the nozzle (2) via a common feed line (10). The laminar liquid jets are expanded by the overpressure in the prechamber (1) and flow out of the prechamber (1) together with the gas through the openings (4). The nozzles (2) are centered on the centers of the openings (4). On the left side of Fig. 2, the opening (4) is designed as a slot, on the right side as a plurality of holes. The periodic oscillation is achieved here by pulsation of the liquid. The vibration is generated with a piezo oscillator and impressed on the liquid by means of a stamp (12) and a membrane (11). The two-component nozzle shown in Fig. 3 also consists of a prechamber (1) into which a rigid nozzle (2) for the liquid opens. The inside of the nozzle (2) is lined with a porous body (5) which serves to even out the liquid supply. The gas is introduced into the prechamber via a channel (3). The laminar liquid jet is expanded by the overpressure in the prechamber (1) and flows out of the prechamber (1) together with the gas through the openings (4). The nozzle (2) is centered on the center of the opening (4). The periodic excitation is transmitted to the gas with the aid of a loudspeaker (7) and regulated with a frequency generator (8). In order to ensure pressure equalization in front of and behind the loudspeaker diaphragm, the prechamber (1) is connected to the loudspeaker unit via a pressure equalization line (13). In this exemplary embodiment, the opening (4) has a streamlined design.
Die in Fig. 1 dargestellte Zweistoffdüse ist in einer ersten Ausführungsform durch eine rechteckige Vorkammer mit den Maßen L = 80 mm, B = 80 mm, H = 120 mm getestet worden. Die Düse befindet sich axial in zentraler Lage in der Vorkammer. Die Flüssigkeitszufuhr zur Düse erfolgt wie in Fig.1 schematisch dargestellt, über einen flexiblen Silikonschlauch. Die Düse hat einen Innendurchmesser von D = 9 mm und eine Länge von 30 mm, Innen ist sie mit einem porösen Schaumstoff ausgekleidet, der zur Vergleichmäßigung des Flüssigkeitzulaufes dient. Der Abstand von der Düsenöffnung zum engsten Strömungsquerschnitt der Blende beträgt a = 9 mm, wodurch sich ein Verhältnis von D/a = 1 ergibt. Der Blendendurchmesser beträgt DB = 5 mm. Die Düse ist über eine Stange starr mit dem Lautsprecher verbunden, der sich axial in zentraler Lage an der Oberseite der Vorkammer befindet. Durch die starre Verbindung kann der Lautsprecher die periodischen Schwingungen unmittelbar auf die Düse übertragen. Die harmonischen Schwingungen können über einen Frequenzgenerator eingestellt werden. In ersten Versuchen betrug die Anregungsfrequenz 200 Hz < fa < 1000 Hz. Die Amplitude ist schwer meßbar und lag unter 0,1 mm.1 has been tested in a first embodiment through a rectangular prechamber with the dimensions L = 80 mm, W = 80 mm, H = 120 mm. The nozzle is axially in a central position in the prechamber. The liquid is supplied to the nozzle as shown schematically in Fig. 1 via a flexible silicone hose. The nozzle has an inner diameter of D = 9 mm and a length of 30 mm, inside it is lined with a porous foam that serves to even out the liquid supply. The distance from the nozzle opening to the narrowest flow cross-section of the orifice is a = 9 mm, which results in a ratio of D / a = 1. The aperture diameter is D B = 5 mm. The nozzle is rigidly connected to the loudspeaker via a rod, which is located axially in a central position at the top of the prechamber. Due to the rigid connection, the loudspeaker can transmit the periodic vibrations directly to the nozzle. The harmonic vibrations can be adjusted via a frequency generator. In the first experiments, the excitation frequency was 200 Hz <f a <1000 Hz. The amplitude is difficult to measure and was less than 0.1 mm.
Der Eintrittskanal für das gasförmige Medium besitzt einen Eintrittsdurchmesser von 70 mm. Der Gasvolumenstrom kann über ein drehzahlgeregeltes Gebläse eingestellt werden. In einer ersten Versuchsreihe sind Beladungen von 0,4< M /MG < 25 eingestellt worden. Mit den angegebenen geometrischen Verhältnissen lassen sich monodisperse Tropfen mit einem Minimaldurchmesser von ca. 1 mm herstellen. Eine typische Einstellung ist beispielsweise eine Beladung von ML /MG = 0,56, die sich bei einem Flüssigkeitsvolumenstrom M = 13 g/min und einem Gasdruck von Δp= 450 Pa. einstellt. Bei einer Anregungsfrequenz von fa = 420 Hz ergeben sich Tropfengrößen von d = 1 mm. Die in Fig. 3 dargestellte Zweistoffdüse ist in einer ersten Ausführungsform durch eine rechteckige Vorkammmer mit den Maßen L = 80 mm, B = 80 mm, H = 800 mm realisiert worden. Die Düse befindet sich axial in zentraler Lage in der Vorkammer. Die Flüssigkeitszufuhr zur Düse erfolgt über eine starre Zufuhrleitung. Die Düse hat einen Innendurchmesser von D = 8 mm und eine Länge von 40 mm, innen ist sie mit einem porösen Schaumstoff ausgekleidet, der zur Vergleichmäßigung des Flüssigkeitzulauf dient. Der Abstand von der Düsenöffnung zur Blende kann stufenlos eingestellt werden, wobei sich ein Abstand a als vorteilhaft erwiesen hat, der etwa dem Düsendurchmesser entspricht.The inlet channel for the gaseous medium has an inlet diameter of 70 mm. The gas volume flow can be adjusted using a speed-controlled fan. In a first series of tests, loads of 0.4 <M / M G <25 were set. With the given geometric conditions, monodisperse drops with a minimum diameter of approx. 1 mm can be produced. A typical setting is, for example, a load of M L / M G = 0.56, which is at a liquid volume flow M = 13 g / min and a gas pressure of Δp = 450 Pa. established. With an excitation frequency of f a = 420 Hz, droplet sizes of d = 1 mm result. The two-component nozzle shown in FIG. 3 has been realized in a first embodiment by a rectangular prechamber with the dimensions L = 80 mm, W = 80 mm, H = 800 mm. The nozzle is axially in a central position in the prechamber. The liquid is supplied to the nozzle via a rigid supply line. The nozzle has an inner diameter of D = 8 mm and a length of 40 mm, on the inside it is lined with a porous foam that serves to even out the liquid supply. The distance from the nozzle opening to the orifice can be set continuously, a distance a which has approximately proven to be advantageous and which corresponds approximately to the nozzle diameter.
Der Eintrittskanal für das gasförmige Medium besitzt einen Eintrittsdurchmesser von 65 mm. Der Gasvolumenstrom kann über ein drehzahlgeregeltes Gebläse eingestellt werden. Zur Schwingungsanregung des Gasvolumenstroms wird in dieser Ausführungsform ein Lautsprecher verwendet. Der Lautsprecher ist in axialer und zentraler Lage an der Oberseite der Vorkammer angebracht. Die Schwingungen der Membran können auf diese Weise gut auf das Gas übertragen werden. Zum Druckausgleich zwischen Vorder- und Rückseite der Membran ist eine Druckausgleichsleitung vorgesehen, die die Vorkammer mit der Rückseite der Membran verbindet. Die Ausgleichsleitung hat einen Innendurchmesser von 1 mm. Die harmonischen Schwingungen des Lautsprechers können über einen Frequenzgenerator eingestellt werden. In ersten Versuchen wurde die Anregungsfrequenz in einem Bereich von 200 Hz < fa < 1000 Hz variiert. Bei Beladungen von 0,4 < l\/1L /MQ 25 konnten dabei monodisperse Tropfen mit einem Minimaldurchmesser von ca. 1 mm hergestellt werden. Eine typische Einstellung ist beispielsweise eine Beladung von ML /MG =1 ,3 die sich bei einem Flüssigkeitsvolumenstrom ML= 27 g/min und einem Gasdruck von Δp= 350 Pa einstellt. Bei einer Anregungsfrequenz von fa = 600 Hz ergeben sich Tropfengrößen von d = 1 ,1 mm. The inlet channel for the gaseous medium has an inlet diameter of 65 mm. The gas volume flow can be adjusted using a speed-controlled fan. In this embodiment, a loudspeaker is used for vibrating the gas volume flow. The loudspeaker is mounted in an axial and central position on the top of the prechamber. In this way, the vibrations of the membrane can be transferred well to the gas. To equalize the pressure between the front and back of the membrane, a pressure compensation line is provided which connects the prechamber to the back of the membrane. The compensating line has an inner diameter of 1 mm. The harmonic vibrations of the speaker can be adjusted using a frequency generator. In the first experiments, the excitation frequency was varied in a range from 200 Hz <f a <1000 Hz. With loads of 0.4 <1/1 L / M Q 25 monodisperse drops with a minimum diameter of approx. 1 mm could be produced. A typical setting is, for example, a loading of ML / M G = 1, 3, which occurs at a liquid volume flow M L = 27 g / min and a gas pressure of Δp = 350 Pa. With an excitation frequency of f a = 600 Hz, droplet sizes of d = 1.1 mm result.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung gleich großer Tropfen dadurch gekennzeichnet, daß eine Flüssigkeit als laminarer Strahl aus einer Düse und ein Gas in eine Vorkammer eingeleitet wird und gemeinsam mit dem Gas als gedehnter Strahl durch eine Öffnung in der Vorkammer ausströmt, wobei das Gas oder die Flüssigkeit in periodische Schwingungen versetzt wird.1. A process for producing drops of the same size, characterized in that a liquid is introduced as a laminar jet from a nozzle and a gas into a prechamber and flows out together with the gas as a stretched jet through an opening in the prechamber, the gas or the liquid is set in periodic vibrations.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß die periodischen Schwingungen der Flüssigkeit durch eine Vibration der Düse oder durch eine der mittleren Ausströmgeschwindigkeit überlagerten Pulsation der Flüssigkeit erzeugt wird.2. The method according to claim 1, characterized in that the periodic oscillations of the liquid is generated by a vibration of the nozzle or by a pulsation of the liquid superimposed on the mean outflow speed.
3. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß das Gas durch Druckschwankungen in periodische Schwingungen versetzt wird.3. The method according to claim 1, characterized in that the gas is periodically vibrated by pressure fluctuations.
4. Verfahren nach Anspruch 1 - 3 gekennzeichnet durch eine periodische Schwingung deren Frequenz im Bereich 0,7 < fr < 1 ,3 der natürlichen Zerfallsfrequenz des gedehnten Flüssigkeitsstrahls liegt.4. The method according to claim 1-3 characterized by a periodic vibration whose frequency is in the range 0.7 <fr <1, 3 of the natural decay frequency of the stretched liquid jet.
5. Verfahren nach Anspruch 1 - 4 gekennzeichnet durch einen dimensionslosen5. The method according to claim 1-4 characterized by a dimensionless
Flüssigkeitsmassenstrom von ML = I\/1L - (Dg - p σ| < ^.2 und einer Gas-Liquid mass flow of ML = I \ / 1L - (Dg - p σ | < ^ .2 and a gas
Weberzahl WeG = Dß - Wg -pQ / σL< 100 sowie ein Verhältnis des Massenstroms der Flüssigkeit zum Massenstrom des Gases von 0,4< ML /MG < 25.Weber number WeG = Dß - Wg -pQ / σL <100 and a ratio of the mass flow of the liquid to the mass flow of the gas of 0.4 <M L / M G <25.
6. Verfahren nach Anspruch 1 bis 5 dadurch gekennzeichnet, daß das Gas vor dem Eintritt in die Vorkammer vorkonditioniert, d.h. befeuchtet oder temperiert wird.6. The method according to claim 1 to 5, characterized in that the gas is preconditioned before entering the antechamber, i.e. is moistened or tempered.
7. Vorrichtung gekennzeichnet durch Öffnungen in der Form von Blenden deren Einlauf vorzugsweise strömungsgünstig ausgeführt ist.7. The device is characterized by openings in the form of diaphragms, the inlet of which is preferably designed to be fluid.
8. Vorrichtung zur Ausführung des Verfahrens nach Anspruch 1 - 4, gekennzeichnet durch ein Verhältnis von Düsendurchmesser D zum Blendendurchmesser DB von 1 < D / DB < 5, das vorzugsweise im Bereich 1 ,5 < D / DB < 2 liegt, und einem Abstand a*= a / D vom Düsenaustritt zum engsten Strömungsquerschnitt der Öffnung von 0,5 < a / D < 4, vorzugsweise im Bereich 0,7 < a / D < 2.8. Device for carrying out the method according to claims 1-4, characterized by a ratio of nozzle diameter D to Diaphragm diameter D B of 1 <D / D B <5, which is preferably in the range 1, 5 <D / DB <2, and a distance a * = a / D from the nozzle outlet to the narrowest flow cross section of the opening of 0.5 <a / D <4, preferably in the range 0.7 <a / D <2.
Vorrichtung nach Anspruch 1-3 gekennzeichnet durch eine Vielzahl von Düsen, die gemeinsam in eine Vorkammer münden und eine gleiche Zahl von Blenden oder einer oder mehrerer schlitzförmiger Öffnungen. Apparatus according to claims 1-3 characterized by a plurality of nozzles which open together in a prechamber and an equal number of orifices or one or more slot-shaped openings.
PCT/CH2001/000191 2000-03-28 2001-03-28 Method and device for producing drops of equal size WO2001072431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001239089A AU2001239089A1 (en) 2000-03-28 2001-03-28 Method and device for producing drops of equal size

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10015109.4 2000-03-28
DE2000115109 DE10015109A1 (en) 2000-03-28 2000-03-28 Processes and devices for producing drops of equal size

Publications (1)

Publication Number Publication Date
WO2001072431A1 true WO2001072431A1 (en) 2001-10-04

Family

ID=7636520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000191 WO2001072431A1 (en) 2000-03-28 2001-03-28 Method and device for producing drops of equal size

Country Status (3)

Country Link
AU (1) AU2001239089A1 (en)
DE (1) DE10015109A1 (en)
WO (1) WO2001072431A1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024518A1 (en) * 2005-05-27 2006-11-30 CiS Institut für Mikrosensorik gGmbH Substrate coating method, involves spraying liquid under pressure through nozzle on substrate, where liquid is activated for vibration, which effects monodispersive decay of liquid jet leaving from nozzle
US7708949B2 (en) 2002-06-28 2010-05-04 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US7776927B2 (en) 2007-03-28 2010-08-17 President And Fellows Of Harvard College Emulsions and techniques for formation
WO2011076452A1 (en) * 2009-12-21 2011-06-30 Robert Bosch Gmbh Injection valve
US8765485B2 (en) 2003-08-27 2014-07-01 President And Fellows Of Harvard College Electronic control of fluidic species
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US8871444B2 (en) 2004-10-08 2014-10-28 Medical Research Council In vitro evolution in microfluidic systems
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9017623B2 (en) 2007-02-06 2015-04-28 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US9038919B2 (en) 2003-04-10 2015-05-26 President And Fellows Of Harvard College Formation and control of fluidic species
US9039273B2 (en) 2005-03-04 2015-05-26 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
ES2543037A1 (en) * 2014-09-17 2015-08-13 Grupo Técnico Rivi, S.L. Industrial lubrication system distributed by oil mist (Machine-translation by Google Translate, not legally binding)
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US9238206B2 (en) 2011-05-23 2016-01-19 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
US9273308B2 (en) 2006-05-11 2016-03-01 Raindance Technologies, Inc. Selection of compartmentalized screening method
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9448172B2 (en) 2003-03-31 2016-09-20 Medical Research Council Selection by compartmentalised screening
CN106042646A (en) * 2016-06-21 2016-10-26 祖海娇 Integrated spray type printing nozzle
US9498759B2 (en) 2004-10-12 2016-11-22 President And Fellows Of Harvard College Compartmentalized screening by microfluidic control
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US9839890B2 (en) 2004-03-31 2017-12-12 National Science Foundation Compartmentalised combinatorial chemistry by microfluidic control
US10052605B2 (en) 2003-03-31 2018-08-21 Medical Research Council Method of synthesis and testing of combinatorial libraries using microcapsules
US10195571B2 (en) 2011-07-06 2019-02-05 President And Fellows Of Harvard College Multiple emulsions and techniques for the formation of multiple emulsions
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US10874997B2 (en) 2009-09-02 2020-12-29 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
CN113984598A (en) * 2021-09-30 2022-01-28 西安交通大学 Liquid nitrogen liquid drop preparation facilities with controllable particle size
US11268887B2 (en) 2009-03-23 2022-03-08 Bio-Rad Laboratories, Inc. Manipulation of microfluidic droplets
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20211577U1 (en) * 2002-07-15 2003-11-27 Bolte, Georg, Dr. Apparatus for controlled production and delivery of aerosols, comprises nozzles and compressed air and/or device for generating high-frequency vibrations
EP2735364A1 (en) 2012-11-27 2014-05-28 Basf Se Melt packing by means of laminar beam decomposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933679A (en) * 1972-01-14 1976-01-20 Gulf Oil Corporation Uniform microspheroidal particle generating method
EP0120506A2 (en) * 1983-03-29 1984-10-03 Alfred Prof. Dr.-Ing. Walz Metal powder and process for producing the same
WO1999030833A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Device and method for creating dry particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933679A (en) * 1972-01-14 1976-01-20 Gulf Oil Corporation Uniform microspheroidal particle generating method
EP0120506A2 (en) * 1983-03-29 1984-10-03 Alfred Prof. Dr.-Ing. Walz Metal powder and process for producing the same
WO1999030833A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Device and method for creating dry particles

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986628B2 (en) 2002-06-28 2015-03-24 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US7708949B2 (en) 2002-06-28 2010-05-04 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
EP2275206A1 (en) * 2002-06-28 2011-01-19 The President and Fellows of Harvard College Microfluidic device for fluid dispersion
US8337778B2 (en) 2002-06-28 2012-12-25 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
US9448172B2 (en) 2003-03-31 2016-09-20 Medical Research Council Selection by compartmentalised screening
US9857303B2 (en) 2003-03-31 2018-01-02 Medical Research Council Selection by compartmentalised screening
US10052605B2 (en) 2003-03-31 2018-08-21 Medical Research Council Method of synthesis and testing of combinatorial libraries using microcapsules
US10293341B2 (en) 2003-04-10 2019-05-21 President And Fellows Of Harvard College Formation and control of fluidic species
US20150283546A1 (en) 2003-04-10 2015-10-08 President And Fellows Of Harvard College Formation and control of fluidic species
US11141731B2 (en) 2003-04-10 2021-10-12 President And Fellows Of Harvard College Formation and control of fluidic species
US9038919B2 (en) 2003-04-10 2015-05-26 President And Fellows Of Harvard College Formation and control of fluidic species
US10625256B2 (en) 2003-08-27 2020-04-21 President And Fellows Of Harvard College Electronic control of fluidic species
US8765485B2 (en) 2003-08-27 2014-07-01 President And Fellows Of Harvard College Electronic control of fluidic species
US9878325B2 (en) 2003-08-27 2018-01-30 President And Fellows Of Harvard College Electronic control of fluidic species
US11383234B2 (en) 2003-08-27 2022-07-12 President And Fellows Of Harvard College Electronic control of fluidic species
US9789482B2 (en) 2003-08-27 2017-10-17 President And Fellows Of Harvard College Methods of introducing a fluid into droplets
US9925504B2 (en) 2004-03-31 2018-03-27 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US9839890B2 (en) 2004-03-31 2017-12-12 National Science Foundation Compartmentalised combinatorial chemistry by microfluidic control
US11821109B2 (en) 2004-03-31 2023-11-21 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US9186643B2 (en) 2004-10-08 2015-11-17 Medical Research Council In vitro evolution in microfluidic systems
US9029083B2 (en) 2004-10-08 2015-05-12 Medical Research Council Vitro evolution in microfluidic systems
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
US8871444B2 (en) 2004-10-08 2014-10-28 Medical Research Council In vitro evolution in microfluidic systems
US9498759B2 (en) 2004-10-12 2016-11-22 President And Fellows Of Harvard College Compartmentalized screening by microfluidic control
US10316873B2 (en) 2005-03-04 2019-06-11 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
US9039273B2 (en) 2005-03-04 2015-05-26 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
DE102005024518A1 (en) * 2005-05-27 2006-11-30 CiS Institut für Mikrosensorik gGmbH Substrate coating method, involves spraying liquid under pressure through nozzle on substrate, where liquid is activated for vibration, which effects monodispersive decay of liquid jet leaving from nozzle
DE102005024518B4 (en) * 2005-05-27 2009-12-24 CiS Institut für Mikrosensorik gGmbH Method and device for coating a substrate
US9410151B2 (en) 2006-01-11 2016-08-09 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9534216B2 (en) 2006-01-11 2017-01-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US11351510B2 (en) 2006-05-11 2022-06-07 Bio-Rad Laboratories, Inc. Microfluidic devices
US9273308B2 (en) 2006-05-11 2016-03-01 Raindance Technologies, Inc. Selection of compartmentalized screening method
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9498761B2 (en) 2006-08-07 2016-11-22 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US10603662B2 (en) 2007-02-06 2020-03-31 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US9440232B2 (en) 2007-02-06 2016-09-13 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US9017623B2 (en) 2007-02-06 2015-04-28 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US11819849B2 (en) 2007-02-06 2023-11-21 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US7776927B2 (en) 2007-03-28 2010-08-17 President And Fellows Of Harvard College Emulsions and techniques for formation
US10357772B2 (en) 2007-04-19 2019-07-23 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US11618024B2 (en) 2007-04-19 2023-04-04 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US11224876B2 (en) 2007-04-19 2022-01-18 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US10960397B2 (en) 2007-04-19 2021-03-30 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10675626B2 (en) 2007-04-19 2020-06-09 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11534727B2 (en) 2008-07-18 2022-12-27 Bio-Rad Laboratories, Inc. Droplet libraries
US11596908B2 (en) 2008-07-18 2023-03-07 Bio-Rad Laboratories, Inc. Droplet libraries
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
US11268887B2 (en) 2009-03-23 2022-03-08 Bio-Rad Laboratories, Inc. Manipulation of microfluidic droplets
US10874997B2 (en) 2009-09-02 2020-12-29 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
CN102713246A (en) * 2009-12-21 2012-10-03 罗伯特·博世有限公司 Injection valve
WO2011076452A1 (en) * 2009-12-21 2011-06-30 Robert Bosch Gmbh Injection valve
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US10808279B2 (en) 2010-02-12 2020-10-20 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9228229B2 (en) 2010-02-12 2016-01-05 Raindance Technologies, Inc. Digital analyte analysis
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US11077415B2 (en) 2011-02-11 2021-08-03 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US11768198B2 (en) 2011-02-18 2023-09-26 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11747327B2 (en) 2011-02-18 2023-09-05 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US11965877B2 (en) 2011-02-18 2024-04-23 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US9573099B2 (en) 2011-05-23 2017-02-21 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
US9238206B2 (en) 2011-05-23 2016-01-19 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US11754499B2 (en) 2011-06-02 2023-09-12 Bio-Rad Laboratories, Inc. Enzyme quantification
US10195571B2 (en) 2011-07-06 2019-02-05 President And Fellows Of Harvard College Multiple emulsions and techniques for the formation of multiple emulsions
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
WO2016042189A1 (en) * 2014-09-17 2016-03-24 Grupo Técnico Rivi,S.L. Industrial lubrication system distributed via oil mist
ES2543037A1 (en) * 2014-09-17 2015-08-13 Grupo Técnico Rivi, S.L. Industrial lubrication system distributed by oil mist (Machine-translation by Google Translate, not legally binding)
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
CN106042646A (en) * 2016-06-21 2016-10-26 祖海娇 Integrated spray type printing nozzle
CN113984598A (en) * 2021-09-30 2022-01-28 西安交通大学 Liquid nitrogen liquid drop preparation facilities with controllable particle size

Also Published As

Publication number Publication date
AU2001239089A1 (en) 2001-10-08
DE10015109A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
WO2001072431A1 (en) Method and device for producing drops of equal size
US6299145B1 (en) Device and method for fluid aeration via gas forced through a liquid within an orifice of a pressure chamber
DE10104012C2 (en) Aerosol generating device
DE1775698A1 (en) Oil nebulizer
EP0698418A2 (en) Method and apparatus for simultaneously dispersing and spraying of at least two fluids
DE4214272A1 (en) Method and device for producing microspheres
WO1999030812A1 (en) Device and method for aeration of fluids
DE19617924A1 (en) Piezoelectric excitation of sprayed fluid close to nozzle exits
AT410405B (en) METHOD AND DEVICE FOR SEPARATING INTERFERENTS FROM SUSPENSIONS BY FLOTATION
DE2701702A1 (en) METHOD AND DEVICE FOR GENERATING BUBBLES IN A LIQUID
DE3546231A1 (en) Powder spray gun
DE1782158C3 (en) Device for generating gas bubbles for a pulp
DE2343190C3 (en) Atomization process for liquids and equipment for carrying out the process
EP1054738B1 (en) Mist generating head
DE102013220361A1 (en) Process for producing a dispersed fluid mixture
DE102014209171A1 (en) Method and apparatus for focusing a viscous medium dispensed from a dispensing opening of a dispenser of a jet device
DE60305486T2 (en) Air assisted ultrasonic atomizer
CH704943B1 (en) Bi-fuel internal mixing nozzle assembly and method for atomizing a liquid.
WO2003090935A1 (en) Device for the production of an aerosol
DE102008062198A1 (en) Flotation device for removal of impurities from aqueous fiber suspension in flotation container using cavities, has discharge pipe provided for flotation froth, and flotation container coupled with vibrator having preset frequency
DE2843408B1 (en) Process for producing the finest liquid drops
CH694039A5 (en) Method and apparatus for producing a laminar or quasi-laminar coherent liquid jet.
EP1517743A2 (en) Saturation of liquids with gas by injection of said gas under pressure and relaxation for introducing said liquids into a flotation cell
DE1729090A1 (en) Method and device for the production of real foams and foams
DE2302464B2 (en) Wet scrubber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP