WO2001064349A9 - Appareil depoussiereur et appareil de climatisation - Google Patents

Appareil depoussiereur et appareil de climatisation Download PDF

Info

Publication number
WO2001064349A9
WO2001064349A9 PCT/JP2001/001402 JP0101402W WO0164349A9 WO 2001064349 A9 WO2001064349 A9 WO 2001064349A9 JP 0101402 W JP0101402 W JP 0101402W WO 0164349 A9 WO0164349 A9 WO 0164349A9
Authority
WO
WIPO (PCT)
Prior art keywords
dust
electrode
filter
dust collector
discharge
Prior art date
Application number
PCT/JP2001/001402
Other languages
English (en)
French (fr)
Other versions
WO2001064349A1 (fr
Inventor
Ryou Katou
Yoshikazu Tashiro
Original Assignee
Matsushita Seiko Kk
Kato Ryou
Yoshikazu Tashiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Kk, Kato Ryou, Yoshikazu Tashiro filed Critical Matsushita Seiko Kk
Priority to US09/926,427 priority Critical patent/US6635106B2/en
Priority to EP01906295A priority patent/EP1175943A4/en
Priority to JP2001563239A priority patent/JP5089000B2/ja
Publication of WO2001064349A1 publication Critical patent/WO2001064349A1/ja
Publication of WO2001064349A9 publication Critical patent/WO2001064349A9/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes

Definitions

  • the present invention collects air dust, indoor dust, dust, and the like in the air conditioning and industrial fields, and charges dust without using corona discharge in spite of being electric dust collection.
  • TECHNICAL FIELD The present invention relates to a dust collector provided with a charging unit that generates almost no ozone and an air conditioner equipped with such a dust collector. Background art
  • the charging unit 101 includes a linear electrode 102 and a ground electrode plate A 103, and a voltage applying electrode plate 105 is provided downstream of the charging unit 101 in the ventilation direction.
  • a dust collecting portion 104 composed of a ground electrode plate B 106 is provided.
  • the charged dust is introduced into the dust collecting portion 104 along the flow of the blast, and receives the force of the electric field between the voltage-applying electrode plate 105 and the ground electrode plate B 106 to be applied to one of the two electrode plates. Adhered and removed,
  • Clean air is blown from the back of the dust collector 104.
  • a linear electrode is shown as the discharge electrode.
  • a needle electrode is used. Corona discharge occurs in a state where a constant current flows between the tip of the electrode and the ground electrode plate A103, and the dust is charged and removed by the same mechanism.
  • a dust collector of a type in which a dust collector 104 is replaced with a filter 108 is conventionally known.
  • the dust collector will be described with reference to FIG.
  • a charging unit 101 including a linear electrode 102 and a ground electrode plate A 103 and a filter 108 are provided in order from the ventilation direction.
  • a conductive grid plate 109 is installed on the downstream side of the filter 108 and is connected to the ground.
  • the linear electrode is supplied by the high-voltage stabilized power supply 107 so that there is a potential difference of 5 to 15 kV between the linear electrode 102 and the ground electrode plate A103. Voltage is applied to 102.
  • the charging unit 101 applies a voltage to the linear electrode 102 as described above to cause corona discharge in the vicinity of the linear electrode 102 to charge dust, An electric field is generated between the electrode 102 and the grid plate 109, and the filter medium of the filter 108 is polarized by the electric field. Then, the charged dust introduced into the filter receives a force toward the surface of the filter medium fiber along the polarization electric field inside the filter medium. As a result, the dust is easily collected by the filter medium, and the dust collecting performance of the filter is enhanced. In such a conventional dust collector, there is a problem in that the discharge current of the charging unit for charging the dust is large.If the discharge current increases, the power consumption and the amount of ozone harmful to the human body increase. It is required to charge the dust with almost no dust.
  • the conventional charging unit generally uses a tungsten linear electrode as a discharge electrode, and a ground electrode plate is provided in opposition to the electrode.However, at the same time as air is ionized near the linear electrode, Useless discharge current flows because charge transfer occurs at every part of the surface of the linear electrode, and because the surface of the linear electrode is smooth, it is difficult to make the electric field stronger than ever. There is a problem that air cannot be ionized efficiently. In addition, a high voltage is applied to this discharge electrode, and a very strong electric field is formed near the discharge electrode, so that charged particles such as electrons, ions, and charged dust collide with the discharge electrode. There is also a problem of wear and tear, and there is a need to eliminate wasteful discharge current and efficiently ionize air while reducing the collision of charged particles to the discharge electrode.
  • conventional charge section Specifically linear electrodes 0. lm per 1 0 to 2 0 A, And, in the blowing air volume 1 m 3 / min per a 1 0 0 ⁇ 2 0 0 A degree of the discharge current
  • the design is such that the dust collection efficiency is more than 80%.
  • a discharge current of this level is applied, power consumption is large, and when ozone is large from 2 O ppb, about 100 ppb is generated, which is an unfavorable level for the human body.
  • the higher the speed at which the dust passes through the filter that is, the higher the wind speed on the filter surface, the more the charged dust is distributed along the polarization electric field inside the filter medium. Since the dust collection effect exerted by the force toward the filter media fiber surface is lost, if the wind speed on the filter surface is high, the dust collection performance of the filter will not be improved, and the pressure loss of the filter will increase.
  • Another problem is that the filter medium cannot be efficiently and uniformly polarized unless the grid plate is in contact with the surface of the filter. There is a demand for uniform polarization.
  • the present invention is intended to solve such a conventional problem, and has the effect of charging the dust with almost no discharge current and securing the conventional level of dust collection capability, and at the same time having the effect of relaxing the mood. Ions can be released, and the air can be ionized more efficiently. Cuts due to poor electrode formation due to corner discharge and wear at the tip of the needle electrode, etc. It prevents electrode wear and maintains the enhanced dust collection performance without deteriorating.Furthermore, when the dust collection part is a filter, it is necessary to maintain high dust collection performance while significantly reducing power consumption. It is an object of the present invention to provide a dust collecting device capable of performing the above-mentioned, and an air conditioner having a dust collecting function having such a feature. Disclosure of the invention
  • the dust collector of the present invention has an ion emitting means for emitting ions without causing corona discharge, and a dust collector provided downstream of the ion emitting means. It consists of a part.
  • a dust collector capable of charging dust with almost no discharge current.
  • the dust collector according to claim 2 is characterized in that, in the dust collector according to claim 1, the ion emission means emits negative ions.
  • a dust collector capable of discharging dust while charging the dust with little discharge current and releasing negative ions having an effect of relaxing a mood.
  • the dust collector according to claim 3 is the dust collector according to claim 1, wherein the discharge electrode of the ion emitting means is one or more linear electrodes, and both sides of the linear electrode.
  • the electrode connected to the ground is covered with an insulator or a semiconductor so that the discharge current when a high voltage is applied to the linear electrode is 1 iA or less per 0.1 lm of the linear electrode. It is characterized by.
  • a dust collector capable of suppressing corona discharge and efficiently ionizing air by preventing a discharge current from flowing more than necessary, and reducing collision of charged particles with a discharge electrode. Is obtained.
  • the dust collector according to claim 4 is characterized in that, in the dust collector according to claim 3, the ion emission means emits negative ions. According to the present invention, there is provided a dust collector capable of discharging dust while charging the dust with little discharge current and releasing negative ions having an effect of relaxing a mood.
  • the dust collector according to claim 5 is the dust collector according to claim 1, wherein one or more of the discharge electrodes of the ion emitting means is a needle-like electrode having a sharp tip. It is characterized by the following.
  • corona discharge is achieved by forming a discharge electrode in a needle shape to collect a strong electric field portion at one location for each electrode and to limit an electrode portion capable of transferring charges.
  • a possible dust collector is obtained.
  • the dust collector according to claim 6 is characterized in that, in the dust collector according to claim 5, the ion emitting means emits negative ions. According to the present invention, when the dust is charged with almost no discharge current, At the same time, a dust collector that can release negative ions that have effects such as relaxing the mood can be obtained.
  • an insulator or a semiconductor is provided so as not to generate corona discharge around a tip portion of the needle electrode. It is characterized by the following.
  • a dust collector capable of suppressing corona discharge, further eliminating unnecessary discharge current, ionizing air efficiently, and reducing collision of charged particles with a discharge electrode can be obtained.
  • the dust collector according to claim 8 is characterized in that, in the dust collector according to claim 5, the discharge current per one needle-shaped electrode is 1 ⁇ ° or less. According to the present invention, the corona discharge is not performed, and the discharge current does not flow more than the value required for ion release, thereby efficiently discharging only the ions and reducing the collision of the charged particles with the discharge electrode. A dust collector is obtained.
  • the dust collector according to claim 9 is the dust collector according to claim 5, wherein the number of the needle electrodes is equal to or less than one per 4 O mm square area with respect to the ventilation surface. It is characterized by being placed.
  • a dust collector capable of reducing the discharge current while securing the same dust collection performance as the conventional one is obtained.
  • the dust collector according to claim 10 is the dust collector according to claim 5, wherein a conductive grid plate connected to the ground is installed downstream of the needle electrode. Further, a filter made of a filter material constituting a dust collecting portion is provided between the needle-like electrode and the grid plate.
  • the discharge current is greatly reduced while the filter medium of the filter is polarized. It is possible to obtain a dust collector that can charge the dust while keeping the size small.
  • the dust collector according to claim 11 is the dust collector according to claim 10, wherein the filter and the conductive grid plate are formed in a pleated shape and overlapped with each other. It is characterized by being arranged so as to match.
  • the filter plate is formed into a pleated shape to reduce the wind speed on the filter surface, and at the same time, the lattice plate is added to the filter surface in a pleated shape, and the filter plate is formed into a pleated shape.
  • the dust collector according to claim 12 is the dust collector according to claim 5, wherein a filter made of a filter material is provided downstream of the needle-shaped electrode, and a filter downstream of the filter is provided.
  • the conductive layer is formed by applying a conductive paint to the surface of the conductive layer, and the conductive layer is connected to the ground.
  • a dust collector capable of forming a ground plane downstream of the filter without a grid plate is obtained.
  • the dust collector according to claim 13 is characterized in that, in the dust collector according to claim 12, the filter is formed in a pleated shape.
  • the present invention it is possible to obtain a dust collector capable of reducing the wind speed on the filter surface by forming the filter into a pleated shape, and efficiently and uniformly polarizing the filter medium of the filter.
  • An air conditioner according to claim 14 is provided with the dust collector according to any one of claims 1 to 13.
  • an air conditioner with reduced power consumption and ozone generation and high dust collection performance can be obtained.
  • an air conditioner according to claim 15 is provided with the dust collector according to any one of claims 5 to 13, and the needle electrode is provided directly on the grill to charge the dust. And an air conditioner having a dust collecting function of collecting dust in a dust collecting portion provided inside.
  • an air conditioner is obtained in which the grill and the needle electrode are integrated, and the dust collecting portion is separated from the needle electrode and incorporated into the air conditioner.
  • FIG. 1 is a configuration diagram of a dust collection device using a linear electrode according to one embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a dust collection device using a needle electrode according to one embodiment of the present invention.
  • FIG. 3 is a configuration diagram of a dust collector provided with a filter between a needle-like electrode and a grounded grid plate according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a dust collector provided with a pleated grid plate and a filter connected to a needle electrode and a ground, which is one embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a dust collecting device including a needle-shaped electrode and a filter coated with a conductive paint on the back surface according to an embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of an air conditioner provided with a dust collector using needle-shaped electrodes according to one embodiment of the present invention.
  • FIG. 7 is an explanatory view of an air conditioner in which a needle-shaped electrode and a grill according to one embodiment of the present invention are integrated and a dust collecting portion is provided inside the air conditioner.
  • Figure 8 shows the configuration of a conventional dust collector.
  • FIG. 9 is a configuration diagram of a conventional dust collecting apparatus.
  • the dust collecting apparatus of the present invention is characterized by comprising an ion emitting means for emitting ions without causing corona discharge, and a dust collecting section provided downstream of the ion emitting means.
  • an ion emitting means for emitting ions without causing corona discharge
  • a dust collecting section provided downstream of the ion emitting means.
  • corona discharge As an effective means of charging dust and the like upstream of the dust collection section has been an effective means.
  • a ground electrode facing the linear electrode or the needle electrode is provided, and a high voltage is applied between the electrodes. Then, up to a certain voltage, almost no current flows. At this time, almost no air ions are generated.
  • a strong electric field around the discharge electrodes causes gas (air) to locally ionize and break down, and at the same time, the current value rises sharply due to the discharge. This is corona discharge. Utilize the corona discharge region, which is characterized by a large discharge current.
  • the state where no corona discharge occurs is defined as a discharge current of 1 A or less per needle-shaped electrode (a level that can be measured with a general instrument), and 0 for a linear electrode. The value is 1 ⁇ m or less per lm.
  • the insulation distance is linear, if it is linear, the surface smoothness, and if it is needle-like, the degree of sharpness cannot be generally determined, but at least 1 OmmZk V or more is preferable. It is necessary to provide an insulation distance of 2 O mmZk V or more.
  • the insulating or semiconductive material although it depends on the insulation distance, a material having an insulation resistance at which the discharge current becomes 1 A or less may be used.
  • the ion emitting means emits negative ions
  • a negative voltage is applied to the discharge electrode to ionize air
  • the positive ions are attracted to the electrode and adhere to the gas molecules to return to gas molecules
  • the negative ions are returned to gas molecules.
  • the ions repel and diffuse to the surroundings. Air is ionized without causing corona discharge with a large discharge current by covering the ground electrode with an insulating material or semiconductive material, or by increasing the distance between the discharge electrode and the ground electrode.
  • the discharge electrode of the ion emitting means is one or more linear electrodes, ground electrodes are provided on both sides of the linear electrode, and when a high voltage is applied to the linear electrode, the discharge current is reduced to a linear electrode. It is characterized in that the earth electrode is coated with an insulator or a semiconductor so that the current per lm is 1 A or less. As described above, in corona discharge, air is locally broken down and ionized, and at the same time, the discharge current rises sharply due to local but air breakdown. The discharge current represents the amount of transfer of electric charge occurring on the surface of the discharge electrode and the opposite ground electrode, and has a characteristic that is closely proportional to power consumption and ozone generation.
  • the transfer of electric charge on the electrode surface is restricted to suppress corona discharge, and the air is ionized efficiently by preventing the discharge current from flowing more than necessary.
  • a discharge current of 1 A or less per 0.1 ⁇ m of the linear electrode a sufficient amount of air ions for charging the dust can be obtained.
  • the discharge current can be significantly reduced compared to the conventional art, so that power consumption and ozone generation can be reduced as much as possible.
  • a plurality of linear electrodes are usually arranged in parallel to the ventilation cross section, ions are emitted uniformly to the ventilation cross section, and the dust passing through the ion emitting portion can be uniformly charged.
  • the discharge electrode of the ion emitting means is a needle-like electrode having a sharp tip.
  • the strong electric field part is collected at one place per electrode, and the electrode part that can transfer charges is limited, thereby suppressing corona discharge and eliminating wasteful discharge current.
  • Can be in close ratio with discharge current The power consumption and the amount of ozone generated in the example relationship can be significantly reduced. Also, by forming a very strong electric field at the sharp portion of the tip, the air can be ionized more efficiently, and the discharged large amount of ions can make the dust more easily charged.
  • a sharp tip is sufficient, so there is no problem of breakage due to damage, and the discharge current is very low, and electrons and ions on the discharge electrode surface
  • the collision of charged particles such as charged dust is small, it has the effect of suppressing the abrasion of the sharp portion at the tip and making the discharge electrode last longer.
  • an insulator or a semiconductor is provided around the tip of the needle-shaped electrode.
  • the ground electrode is covered with the insulator or the semiconductor, and the distance between the discharge electrode and the ground electrode is reduced. Since the discharge current is hardly allowed to flow by taking a large amount, power consumption and generation of ozone can be almost eliminated. In addition, there is almost no discharge current, and there are few collisions of charged particles such as electrons, ions, and charged dust on the surface of the discharge electrode, so that the abrasion of the sharp edge can be suppressed and the discharge electrode can last longer. Having.
  • the discharge current per needle electrode is set to 1 or less.
  • the ground electrode is covered with an insulating material or a semiconductive material, By ionizing the air without causing corona discharge by increasing the distance between the ground electrode, etc., it is possible to generate 100,000 or more Zcc of air ions as before, and achieve the same level of dust collection performance as before. Even when the voltage applied to the discharge electrode is doubled while maintaining the power consumption, the power consumption is less than 50 times lower than that of the conventional one because the discharge current is suppressed, and the ozone generation amount is 1 ppb or less. Has the effect of not even smelling.
  • one or more needle-shaped electrodes are arranged per area of 4 O mm square with respect to the ventilation surface.
  • the number of electrodes is at least one per 2 O mm square with respect to the ventilation surface, and it is less than one-fourth of the conventional number when compared with the number of needle electrodes.
  • a wind speed of 1 mZ s is flowed into the dust collector, it is less than 10 lines per lm 3 / min.
  • the discharge current per tube is set to 15 A or less at most, to suppress power consumption and ozone generation.
  • a conductive grid plate connected to the ground electrode is installed downstream of the needle electrode, and a filter made of a filter material constituting a dust collecting portion is provided between the needle electrode and the grid plate. It is what it was. A sufficient insulation distance is secured between the needle-shaped electrode and the grid plate, and an insulating filter is installed between the needle-shaped electrode and the grid plate, so that the discharge current flowing between the needle-shaped electrode and the grid plate Is much smaller than before. Therefore, the power consumption and the amount of ozone generated which has a bad effect on the human body can be significantly reduced.
  • the filter having the polarized polarity is provided between the needle electrode and the grid plate of the ground, the filter medium is polarized in filter medium fiber units by an electric field between the needle electrode and the grid plate. This polarization action continues as long as an electric field exists between the needle electrode and the lattice plate, that is, as long as a high voltage is applied to the needle electrode, so that the filter medium can always be in a polarized state.
  • the charged dust passing through the filter medium receives the force of moving to the surface of the filter medium fiber along the polarization electric field inside the filter medium due to the action of Coulomb, so that the dust easily adheres to the filter medium.
  • the filter medium should be more strongly polarized, so the applied voltage of the discharge electrode should be increased.However, in that case, the discharge current in the conventional charging unit would be larger than before. There was a limit to increasing the applied voltage.
  • the dust collector of the present invention originally has a structure in which the discharge current is very small and the discharge current does not easily flow even when the voltage is increased, the voltage applied to the discharge electrode is set to be high. Is easy.
  • the discharge current can be greatly reduced and the inside of the filter can be always kept in a polarized state, high dust collection performance can be maintained while significantly reducing power consumption and ozone generation. It has the effect of being able to.
  • the filter and the conductive grid plate are formed in a pleated shape, and are arranged so as to overlap each other. By increasing the filter area by making the filter into a pleated shape, the amount of air flow per unit surface area of the filter can be reduced, and the wind speed on the filter surface can be reduced.
  • the speed at which dust passes through the filter medium can be reduced.
  • the speed at which dust moves along the polarization electric field inside the filter medium to the filter medium fiber surface is basically not affected by the speed at which the dust passes through the filter. The longer the time it takes to adhere to the filter media, the more it adheres to the filter media and the higher the dust collection performance.
  • the lower the wind speed passing through the filter surface the lower the pressure loss at the filter. The lower the wind speed at the filter surface, the lower the energy applied to the ventilation, and the wind noise and fan noise when the air passes through the filter. Noise such as driving noise of the vehicle can also be reduced.
  • the conductive grid plate connected to the ground has a pleated shape that matches the surface of the filter and has a structure that is almost uniformly in contact with the filter medium, the entire filter medium can be uniformly polarized. As a result, dust collection performance can be improved. In addition, it can prevent the dust collection performance from deteriorating by imparting a polarization effect to the filter medium and allowing extra charge inside the filter medium due to charged dust and ions to escape to the outside, but the grid plate and the surface of the filter medium contact each other. With this structure, extra charge is transmitted to the grid plate to make it easier to escape, so high dust collection performance can be maintained.
  • the low wind velocity on the filter surface enables high dust collection performance to be achieved, while at the same time reducing the ventilation energy and noise, and the conductive grid connected to the ground. Since the plate has a pliable shape that matches the surface of the filter, it has the effect of uniformly polarizing the filter medium to obtain high dust collection performance and, at the same time, maintaining the enhanced dust collection performance.
  • a filter made of a filter material is provided on the downstream side of the needle electrode, and a conductive layer is formed by applying a conductive paint on the surface on the downstream side of the filter material, and the conductive layer is connected to the ground. Applying conductive paint to the back of the film and connecting that surface to ground Therefore, the ground plane can be formed on the downstream side of the filter without the conductive grid plate connected to the ground, which has the effect of simplifying the manufacturing and reducing the processing cost and material cost. .
  • the present invention is an air conditioner characterized by including the above dust collecting device, which has a dust collecting function with low pressure loss at the same time as the air conditioning function.
  • an air conditioner characterized by having a dust collecting function of directly charging a dust by providing a needle electrode in the dust collecting device directly on a grill and collecting the dust by a dust collecting portion provided inside, Specifically, it has a structure in which the needle-shaped electrodes are provided inside the grill so that the needle-shaped electrodes do not come into direct contact with human hands, while the needle-shaped electrodes contact the ventilation air.
  • the grille and the needle electrode are integrated to reduce the thickness of the main body, and by separating the dust collection part, it is possible to clean and replace only the dust collection part, improving maintainability. The air conditioner thus obtained is obtained.
  • the discharge current, the ion concentration, the dust collection efficiency, and the ozone concentration were measured using the dust collector of the embodiment, which is an ion emitting means, and a conventional dust collector. A comparison was made.
  • an experimental device was created based on the conventional dust collector shown in FIG. To explain the equipment using Fig. 8, three stainless steel plates with a thickness of 0.5 mm, a length of 50 mm, and a width of 256 mm were placed in the middle of a duct with an opening dimension of 2 64 mm and 122 mm. Electrode plates are applied by applying a voltage of +2 kV to stainless steel plates every other sheet at intervals of 3 mm. It was set to 5. A stainless steel plate provided so as to sandwich each of the voltage applying electrode plates 105 was connected to a ground, and a dust collecting portion 104 was formed as a ground electrode plate B 106.
  • a charging section with the conditions shown in Table 1 was installed at 40 O mm upstream of the dust collection section 104, and high-pressure stability was achieved.
  • a direct-current voltage as shown in Table 1 was applied to the linear electrode 102 using the power supply 107.
  • the measured discharge current was converted to a discharge current per lm 3 Zmin.
  • a blower is installed at the rear of the duct to allow air to flow in the duct under the condition of 1 m 3 Zmin, and dust collection efficiency 7] (%), ion generation (pieces Zc c ) And generated ozone concentration (ppb) were measured.
  • the duct wind speed is about 0.5mZs.
  • the dust collection efficiency was determined by measuring the dust concentration immediately before the charging unit 101 and immediately after the dust collection unit 104 using a particle counter KC-01C manufactured by Rion. The dust concentration was measured by a coefficient method, and 0.167 liters of air was sampled, and the total number of dust particles having a particle size of 0.3 m or more contained therein was determined. Assuming that the dust concentration immediately before the charging unit 101 is C f and the dust concentration immediately after the dust collecting unit 104 is C b, the dust collection efficiency 77 can be obtained by the following equation.
  • the air ion concentration is as low as 0.4 cm 2 Vsec or more when the air in the duct is sampled from the position 200 mm behind the charged part and the air in the duct is sampled.
  • the ion concentration was measured using an ion tester KST-900 manufactured by Kobe Denpasha, which measures the ion concentration.
  • the unit is pcs / cc.
  • the generated ozone concentration was measured by sampling the air in the duct immediately before the dust collecting section 104 and using EG 2001 F, an ozone monitor manufactured by Ebara Corporation.
  • the unit is ppb, indicating a mass concentration of one part in one billion.
  • each charging unit will be described with reference to FIGS.
  • the charging section 101 of No. 1 which is a comparative example has the same configuration as that of FIG. 8 of the conventional example, and the linear electrode 102 using a tungsten wire having a wire diameter of 0.15 mm and a length of 220 mm is moved in the ventilation direction.
  • the linear electrode 102 using a tungsten wire having a wire diameter of 0.15 mm and a length of 220 mm is moved in the ventilation direction.
  • a total of seven electrode plates A103 were installed at equal intervals.
  • the charging portion 101 is a charging portion having a shape that is conventionally used, and since the ground electrode plate A 103 is provided near the top and bottom of the linear electrode 102 using only air as an insulating material, Corona discharge occurs between the two electrodes, and air is easily ionized near the linear electrode 102. As a result, a high dust collection efficiency of 95% is achieved. However, a large discharge current accompanies the ionization of air and corona discharge is more likely to occur.As a result, the discharge current is as large as 140 A, resulting in higher power consumption. The drawback is that a relatively large amount of 24 ppb is generated and that the linear electrode 102 absorbs negative ions and hardly emits them because the voltage polarity of the linear electrode 102 is positive. is there.
  • the charging section 101 of No. 2 which is a comparative example has the same configuration as that of the conventional example shown in FIG. 8 except that the polarity of the linear electrode 102 is negative, and the magnitude of the discharge current is N o. Voltage was applied so as to be the same as 140. As with No.1, the ground electrode plate A103 sandwiches only air so that corona discharge occurs and the air is easily ionized, resulting in a high dust collection efficiency of 95%. Has been realized. In addition, since the polarity of the linear electrode 102 is negative, negative ions can be repelled from the linear electrode 102 and not absorbed, so that a large amount of negative ions can be released.
  • the corona discharge causes a large discharge current of 140 A, which increases the power consumption due to the discharge, and the large discharge current makes the polarity of the linear electrode 102 negative.
  • the result is 103 ppb which is much larger than that of the brass discharge, and the drawback that ozone is generated in large quantities becomes apparent.
  • the charging section 101 of No. 3 which is a comparative example has almost the same configuration as that of FIG. 8 of the conventional example, except that the ground electrode plate A 103 is removed and that the linear electrode 102 has a structure of 110 k. V is applied.
  • steel punching metal with countless holes with a diameter of 5 mm is installed at a position 80 mm upstream of the charging unit 101 and connected to the ground. did. Power with little discharge current and little ozone generation ⁇ Dust collection efficiency is only 40%, which is below the practical level. It is assumed that this is because the effect of ionizing air is small because the amount of generated ions is low.
  • FIG. 1 shows the configuration of the charging unit 101 of No. 4 which is an embodiment.
  • the surface of the ground electrode plate A103 of the No. 1 charging section is covered with a Shiridani vinyl tape as an insulating coating layer 1, and a tongue set so as to be sandwiched between the tapes. It is composed of ten linear electrodes 102. With this configuration, +5.
  • the dust collection efficiency was 80%, which is lower than that of No. 1 and No. 2 charged parts, but a sufficiently practical value.
  • the reason may be that the amount of positive air ions generated is as large as 250,000 Zc c, and that sufficient air ionization has occurred.
  • an electric field exists between the linear electrode 102 and the ground electrode plate A103, a large discharge current due to corona discharge is suppressed because the surface of the ground electrode plate A103 is insulated. I have. Therefore, the discharge current is 4 A despite the same applied voltage as the No. 1 charged part, which is much smaller than 140 A of the No. 1 and No. 2 charged parts. That is, since the voltage is the same, the power consumption is reduced by the decrease in the current. At the same time, little ozone was generated due to the small discharge current. That is, it can be said that only ions are generated without causing corona discharge.
  • the dust collector can be made easier for the human body.
  • the charging section 101 of No. 5 in the embodiment has substantially the same configuration as that of No. 4, but has a negative voltage polarity of the linear electrode 102 shown in FIG.
  • the dust collection efficiency is
  • the dust collection performance was 88%, which was practical enough.
  • the voltage polarity of the linear electrode 102 was negative, a large amount of negative ions were emitted at 160,000 / cc. Since the discharge current was as small as 12 A, the power consumption was small, and the generated ozone concentration was very low at 7 ppb.
  • FIG. 2 shows the configuration of the charging unit 101 of No. 6 which is an embodiment.
  • discharge electrodes six needle-shaped electrodes 2 with a body diameter of 0.7 mm and a length of 30 mm with a sharp point are provided parallel to the duct inlet at 30 mm intervals in the direction perpendicular to the ventilation direction. And 10 kV applied to it.
  • a steel punching metal with a myriad of holes with a diameter of 5 mm was installed as a grid plate 109 at a position 150 mm on the upstream side and connected to the ground.
  • the dust collection efficiency is 85%, which is a sufficiently practical level. No.
  • the dust collection efficiency is higher than that of a 0.15 mm diameter wire, it is clear that a sharper needle has better performance for ionizing air.
  • the polarity of the discharge electrode was negative, a large amount of 270,000 negative ions were released as Zc c.
  • the discharge current was 0.6, which was very small, so the power consumption was small, and almost no ozone was generated.
  • the surface of the discharge electrode may be slightly degraded due to the collision of electrons and ions to the surface of the discharge electrode to some extent.However, in the case of a wire, the surface of the discharge electrode may be cut and lose its function as a discharge electrode. In the case of a needle, on the other hand, the surface may be slightly deteriorated, but there is little discharge current, so there is little wear and the shape and function of the discharge electrode itself will not be lost by cutting.
  • the charging section 101 of No. 7 in the embodiment has almost the same configuration as that of No. 6, and a stainless steel wire mesh of mesh 20 is provided as a grid plate at a position 30 mm downstream of the needle electrode instead of steel punched metal. It is connected to ground, and a voltage of 18 kV is applied to the needle electrode, and a discharge current of 22 A flows.
  • the number of the needle electrodes is six, which means that they are installed one by one in an area of about 70 mm square.
  • the discharge current per unit is 3.7 aA. In order to suppress this discharge current only by air insulation, the distance between the needle electrode and the ground must be about 30 mm.
  • the dust collection efficiency was 93%, almost the same as No.
  • the charging unit 101 of No. 8 in the embodiment has the same configuration as that of No. 7, and a stainless steel wire mesh of mesh 20, which is a ground, is provided at a position 30 mm downstream of the needle electrode, and the applied voltage and discharge current Is adjusted to one 10kV, 40 / A.
  • the discharge current per line is 6.7 A.
  • the dust collection efficiency was 97%, which was equal to or higher than that of No. 1 as a comparative example, and the amount of ozone generated was 7 ppb, which was much lower than 24 ppb of No. 1.
  • Negative ions were released in large quantities at 270,000 cc, and the discharge current was as low as 40 A, indicating that power consumption could be reduced. Table 1 summarizes the above points.
  • Example No. 6 a needle-shaped discharge electrode is used as the discharge electrode, and the discharge current is reduced to 1 A or less, so that power consumption and the amount of harmful ozone generated are reduced.
  • the discharge current is reduced to 1 A or less, so that power consumption and the amount of harmful ozone generated are reduced.
  • a dust collector that emits only ions without corona discharge can also be used to reduce the power consumption and the amount of ozone generated without reducing the dust collection efficiency at all.
  • the number of needle electrodes is set to one or less per 40 mm square area with respect to the ventilation surface, and the number of the By optimizing, the amount of ozone generated can be reduced to less than half of the conventional level. By doing so, it is possible to reduce power consumption and the amount of harmful ozone generated while achieving the same high dust collection performance as before.
  • a negative polarity voltage negative ions, which are said to have a positive effect on the human body, can be supplied.
  • FIG. 2 shows a diagram in which a grid plate 109 is provided on the upstream side of the needle electrode 2, the grid plate 109 is provided on the downstream side of the needle electrode 2 as shown in No. The same effect can be obtained by providing the same.
  • the linear electrode 102 is made of tungsten, but the same effect can be obtained by using another material having conductivity instead. Although a needle made of steel with a sharp tip was used as the needle electrode 2, if the air can be ionized, it is also effective to use another conductive material instead. There is no difference between the fruits.
  • a 20 mesh stainless steel wire mesh is used as the conductive grid plate 109 connected to the ground, but any mesh roughness or any shape can be used if ventilation is possible.
  • the same effect can be obtained by using, for example, a conductive sheet made by processing conductive fibers.
  • the dust collector was configured to create an electric field by applying a potential difference between the voltage application electrode plate and the earth electrode plate, and to collect mainly charged dust by the force of the electric field.
  • a filtration filter that mechanically collects dust an electrostatic filter that is made so that an electric field can be generated inside using a pre-polarized dielectric material as a filter material, and that mechanically or by the force of the electric field, collects dust.
  • sandwich such a filter between electrodes Use a different type of dust collector, such as an electric field filter designed to collect dust by applying a uniform electric field in one direction by applying a voltage at all times and placing it in a uniform electric field. The same effect is produced even when there is.
  • FIG. 9 shows a conventional dust collector.
  • An experimental device was created based on this dust collector. The experimental apparatus will be described below with reference to FIG. A duct with an opening size of 100 mm x 50 mm was created, and a charging section 101, a filter 108, and a grid plate 109 were provided in order from the upstream side in the ventilation direction. The grid plate 109 is provided immediately after the filter 108 and is in contact with the filter. Kuraray's medium-performance filter material was used for the filter 108.
  • the filter material alone has a performance of dust collection efficiency of about 50% (coefficient method, 0 or more), and the main component of the filter material is polypropylene.
  • This filter contains a surfactant in advance to remove dust adhering to it by washing and to be reused, and is designed to have high rigidity so that it does not lose its shape when washed with water.
  • the lattice plate 109 a stainless mesh having a mesh of 20 and a wire diameter of 0.5 mm was used. The wind speed passing through the duct was set to l mZ s.
  • the grid plate 109 and the ground electrode plate A103 are connected to ground, and a DC voltage is applied to the discharge electrode using the high-voltage stabilized power supply 107, and the dust collection efficiency (%) and discharge current A ) And the pressure loss (Pa) of the entire dust collector were measured.
  • the results are shown in Table 2.
  • the discharge current is converted to lm 3 Zmin and is shown as 3.33 times the actually measured value.
  • the dust collection efficiency was determined by measuring the dust concentration immediately before the charging unit 101 and the dust concentration immediately after the grid plate 109 using a Rion KC-01C particle counter. Dust concentration was measured by the coefficient method, and 0.167 liters of air was sampled and the total number of dust particles having a particle size of 0.3 m or more contained therein was determined.
  • each charging unit will be described with reference to FIGS.
  • No. 9 which is a comparative example, has the same configuration as that of FIG. 9 of the conventional example, in which the linear electrodes 102 using a tungsten wire having a wire diameter of 0.15 mm and a length of 10 Omm are arranged at intervals of 24 mm in the ventilation direction Two vertical lines, that is, two stages, and apply a voltage of 0 to 5.5 kV, during which a steel ground electrode plate A with a depth of 15 mm and a width of 10 Omm as viewed from the ventilation direction A Three 103s are installed at equal intervals. The distance between the linear electrode 102 and the grid plate 109 is 25 mm.
  • the charging portion 101 is a charging portion having a shape that is commonly used in the past, and since the ground electrode plate A 103 is provided around the linear electrode 102 using only air as an insulator, corona discharge occurs between the two electrodes. Then, air is easily ionized in the vicinity of the linear electrode 102. Therefore, the dust collection efficiency was 92% at the applied voltage of 5.5 kV, and the dust collection performance of the 50% filter at 0 kV was greatly improved. However, a corona discharge accompanied by a large discharge current was caused to ionize the air, so a 13 A discharge current in terms of lrr ⁇ Zmin flowed. Incidentally, when 5.0 kV is applied to the discharge electrode and a discharge current of 2 A in lm 3 Zmin is applied and the discharge current is 69%, the dust collection when a small discharge current is applied is 69%. Performance has not been improved enough.
  • FIG. 3 shows the configuration of No. 10 which is an embodiment.
  • a discharge electrode a needle-shaped electrode 2 with a body diameter of 0.7 mm and a length of 30 mm with a sharp tip is provided at the center of the duct, perpendicular to the ventilation direction, and 30 mm downstream
  • a filter 108 is provided on the side, and a grid plate 109 is provided immediately after the filter 108.
  • the needle electrode 2 and the grid plate 109 have a structure separated by a filter 108 as well as air.
  • FIG. 4 shows the configuration of No. 11 which is an embodiment.
  • a needle-shaped electrode 2 is provided as a discharge electrode, and is pleated by folding it six steps downstream of the needle electrode 30 mm so that the width in the ventilation direction is 30 mm (that is, three peaks are formed).
  • the processed filter 108, and immediately after that, a lattice plate 109 processed into a pleated shape by folding it in six steps like the filter is provided so as to come into contact with the surface of the filter.
  • the lattice plate 109 is in contact with the surface of the filter.
  • the lattice plate 109 does not necessarily need to be in contact, and may be disposed close to each other.
  • the needle electrode 2 and the grid plate 109 have a structure separated not only by air but also by a filter 108.
  • Lattice 1 When 09 is connected to ground and a voltage of 0 to -6 kV is applied to the needle electrode 102, a dust collection efficiency of 94% is obtained by applying 16 kV, and higher dust collection performance than No. 9 is obtained. I was able to. The discharge current at that time was 1.7 A, which is about 18 compared to the discharge current when No. 9 of the comparative example had a dust collection efficiency of 92%, which means that it is almost minute. When 14 kV was applied to the needle electrode 2, the dust collection efficiency was greatly improved to 91%, and the discharge current at that time was 0.3 A in terms of lm 3 min.
  • the number of needle electrodes 2 used was one, as in No. 10, and high dust collection efficiency was obtained with a discharge current of 1 A or less per discharge electrode. It can be said that the reason why high dust collection performance was stably obtained with a very small discharge current is the same as that of No. 10 in the embodiment.
  • the reason why the dust collection performance was higher than that of No. 10 was that the wind velocity passing through the filter surface was reduced by processing the filter and grid plate into pleated shapes.
  • No. 9 which is a comparative example without pleating is 580 Pa at a wind speed of lms
  • No. 11 which is an example is 170 Pa
  • 1 No. 3 to No. 9 Decreased to 1/4.
  • a conductive grid plate connected to the ground downstream of the filter is required.
  • a filter that is folded into a pleated shape In such cases, it is possible to improve the dust collection performance by pre-processing the grid plate according to the shape.
  • the pleating of the grid plate becomes difficult, and furthermore, the processing area and material cost increase because the area of the grid plate to be pleated increases. filter Even if the material is not processed into a pleated shape, if the ground surface can be formed on the back surface of the filter without a conductive grid plate, manufacturing can be simplified and material costs can be reduced accordingly.
  • a paint containing a conductive material such as carbon black is applied to one side of the film 108 and dried.
  • the conductive layer 4 can be formed on one surface of the filter 108.
  • a filter 108 is placed with the needle-shaped electrode 2 and the surface on which the conductive layer 4 is formed on the downstream side as the back surface, and the surface of the conductive layer 4 is connected to the ground.
  • a ground plane can be formed on the back surface of the filter 108 without providing a conductive grid plate processed into a pre-shaped shape.
  • the procedure for forming the conductive layer 4 is as follows: after the filter material is processed into a pleated shape to form the filter 108, even if a conductive paint is applied to one side of the filter 108, the surface of the filter material before the pleating process is performed. A conductive paint may be applied to the surface and dried to form a conductive layer 4 in advance on one surface of the filter medium, and then pleated to make a filter.
  • a high voltage is applied to the needle electrode 2 to generate an electric field between the needle electrode 2 and the back surface of the filter 108, and the filter medium of the filter 108 is polarized by the action of the electric field. it can.
  • a 20-mesh stainless steel mesh is used as the conductive grid plate 109 connected to the ground, but any mesh roughness or any shape can be used if ventilation is possible.
  • a similar effect can be obtained by using a conductive sheet made by processing conductive fibers.
  • the filter medium used in this experiment was mainly made of polypropylene, but other materials may be used as long as they have polarizability, such as polyethylene, polyfluoroethylene, or polyester or polyamide. Similar effects can be obtained with other filter media.
  • a tungsten wire was used instead of the needle electrode only when the corona discharge was suppressed by coating or removing the opposite earth electrode plate with an insulating coating layer and the discharge current was reduced. Even when the linear electrode is used as the discharge electrode, the same effect as when the needle electrode is used as the discharge electrode can be obtained.
  • carbon black is used as an example of the conductive paint.
  • conductive fillers such as metal fibers or other conductive substances such as conductive polymers are included.
  • an air conditioner air conditioner equipped with the dust collector of the above embodiment
  • the suction grille 5 in order from the suction side of the air passage, the suction grille 5, the coarse dust filter 6 for removing large dust, the needle-shaped electrode 2 as shown in Embodiment 1, and the conductive grid connected to the ground It is composed of a dust collector 7 equipped with a plate 109 and a dust collecting section 104, a photocatalytic unit 8, a heat exchanger 9, a fan 10, and an outlet 11.
  • dust and tobacco smoke generated indoors are sucked in from the suction grille 5 and large dust such as cotton dust is collected by the mesh-shaped coarse dust filter 6.
  • the dust collector 7 mainly collects fine dust having a particle size of 0.1 to 1.
  • the dust is charged by minus ions (or brass ions) supplied from the needle electrode 2 provided on the upstream side of the dust collector 7, and the dust is collected by the dust collecting section 104 provided on the downstream side. Gathered. At this time, the amount of ozone generated from the needle electrode 2 is small.
  • the odor which is a molecular component that cannot be collected by the dust collector 7, is removed by the photocatalyst unit 8.
  • photodeodorizing catalysts have recently been used as an alternative to deodorizing filters, and these photodeodorizing catalysts can be used semipermanently to decompose odor components by the action of the catalyst. Since the photocatalytic unit 8 can be regenerated by sunlight, the deodorizing performance can be restored by drying the sun on a sunny day.
  • the air thus purified is heat-exchanged by the heat exchanger 9 to change the temperature to an arbitrary temperature, and the clean and comfortable air set at an arbitrary temperature is blown through the fan 10 to the outlet 1 1 Supplied from In this way, not only the air conditioning, but also the power consumption and the amount of ozone generated are small, and at the same time, the negative effect is said to have a positive effect on the human body, such as a relaxing effect.
  • Air conditioning can be added to the air-conditioning function, which is easier on the human body when the air is supplied.
  • FIG. 7 shows a configuration diagram of an air conditioner in which a suction grill and a needle electrode are integrated to form a needle electrode integrated grill 12 and a dust collecting portion 104 is provided inside the main body.
  • a suction grill and a needle electrode are integrated to form a needle electrode integrated grill 12 and a dust collecting portion 104 is provided inside the main body.
  • the needle-shaped electrode 2 which is the charging part of the dust collector, is installed inside the suction grille 12
  • a coarse dust filter 6, which collects large dust is installed inside the suction grille 12. It is.
  • the dust collector of the present invention is incorporated in an air conditioner.
  • the dust collector can be incorporated as a dust collector in various household appliances and industrial equipment such as a fan heater and a dehumidifier. The invention's effect
  • a dust collector that reduces the energy used for dust collection, reduces the generation of harmful ozone, is gentler to the human body, and has the effect of producing negative ions at the same time and having a positive effect on the human body. Can be provided.
  • the dust collecting device of the present invention it is possible to provide an air conditioner that realizes a higher quality environment for humans.
  • the dust collection function enables the maintenance of the dust collection part to be improved by removing the dust collection part independently while keeping the body compact.

Description

明細書
集塵装置および空調装置 技術分野
本発明は、 空調及び産業分野で大気塵、 室内の粉塵、 ほこりなどを集塵し、 ま た、 電気集塵であるにも関わらず、 コロナ放電を利用せずに、 また、 粉塵を帯電 させる際にオゾンの発生がほとんどない荷電部を設けた集塵装置及びこのような 集塵装置を備えた空調装置に関するものである。 背景技術
従来、 この種の集塵装置としては、例えば、特開平 6 - 3 1 2 0 0号公報に記載 されたものが知られている。 以下、 その集塵装置について図 8を参照しながら説 明する。 図 8に示すように、 荷電部 1 0 1は線状電極 1 0 2とアース電極板 A 1 0 3とからなり、 荷電部 1 0 1の通風方向下流側に電圧印加電極板 1 0 5とァー ス電極板 B 1 0 6とからなる集塵部 1 0 4を設けている。 通常、 荷電部 1 0 1に おいては線状電極 1 0 2とアース電極板 A 1 0 3の間に 5〜1 5 k V、 また、 集 塵部 1 0 4の電圧印加電極板 1 0 5とアース電極板 B 1 0 6の間に 2〜6 k Vの 電位差を持つように高圧安定化電源 1 0 7によって線状電極 1 0 2及び電圧印加 電極板 1 0 5にそれぞれ電圧が印加されている。
上記構成において、 荷電部 1 0 1では線状電極 1 0 2に高い電圧がかかってお り、 線状電極 1 0 2近傍に非常に強い電界が作られている。 そのため、 空気中の 電荷をもつ物質が空気分子と衝突を起こし、 空気分子から電子が分離したり、 分 離した電子が他の空気分子に付着したりして空気イオンとなる。 これを空気のィ オン化と呼ぶことにする。 そして、 アース電極の間にある絶縁体である空気が絶 縁破壊を起こし、 一定の大きな放電電流を伴いながら空気のイオン化が起こる放 電現象をコロナ放電という力 コロナ放電によって作られた空気ィォンが集塵装 置に供給された空気に含まれる粉塵に付着して粉塵を帯電させる。 帯電した粉塵 は送風の流れに沿って集塵部 1 0 4に導入され、 電圧印加電極板 1 0 5とアース 電極板 B 1 0 6との電界の力を受けて両電極板のどちらかに付着して取り除かれ、
差替え用紙(規則 26) W 1
清浄な空気が集塵部 1 0 4後方から吹出される。 また、 上記従来例では、 放電電 極として、 線状のものを示したが、 他に不平等電界を形成するような形状、 例え ば、 針状の電極を用いても同様で、 針状電極の先端とアース電極板 A 1 0 3の間 で一定電流が流れた状態でコロナ放電が生じ、 同様の機構で粉塵が帯電、 除去さ れる。
また、 集塵部 1 0 4をフィルタ 1 0 8に置き換えたタイプの集塵装置が従来か ら知られている。 以下、 その集塵装置について図 9を参照しながら説明する。 図 9に示すように、 通風方向から順に、 線状電極 1 0 2とアース電極板 A 1 0 3と からなる荷電部 1 0 1とフィルタ 1 0 8が設けられている。 フィル夕 1 0 8の下 流側には導電性の格子板 1 0 9が設置されており、 アースに接続されている。 通 常、 荷電部 1 0 1においては線状電極 1 0 2とアース電極板 A 1 0 3の間に 5〜 1 5 k Vの電位差を持つように高圧安定化電源 1 0 7によって線状電極 1 0 2に 電圧が印加されている。
上記構成において、 荷電部 1 0 1では前述したように線状電極 1 0 2に電圧を 印加することにより、 線状電極 1 0 2近傍でコロナ放電を起こして粉塵を帯電す ると同時に、 線状電極 1 0 2と格子板 1 0 9の間に電界が発生し、 その電界によ つてフィルタ 1 0 8の濾材は分極される。 そして、 フィルタの中に導入された帯 電粉塵は、 濾材内部の分極電場に沿って濾材繊維表面へ向かう力を受ける。 その 結果、 濾材に捕集されやすくなり、 フィルタの集塵性能は高められる。 このような従来の集塵装置では、 粉塵を帯電させる荷電部の放電電流が大きい という課題があり、 放電電流が増えると消費電力及び人体に有害なオゾンの発生 量が大きくなることから、 放電電流をほとんど流さないで粉塵を帯電させること が要求されている。
また、 従来の電気集塵装置用の荷電部では、 オゾン発生量を抑えるために放電 電極にプラスの極性の電圧を印加するため、 粉塵を帯電すると同時に、 人の気分 をリラックスさせるなどというよい効果をもっといわれるマイナスイオンを放出 することができないという課題があり、 放電電流をほとんど流さないで粉塵を帯 電させると同時に、 マイナスイオンを放出できることが要求されている。 また、 従来の荷電部は放電電極としてタングステン製の線状電極を用い、 これ に対向させてアース電極板を設けるといった構成が一般的であるが、 線状電極近 傍で空気をイオン化すると同時に、 電荷の授受が線状電極表面のあらゆる部分で 起こるために無駄な放電電流が流れてしまい、 また、 線状電極の表面は滑らかで あるために電界を今まで以上に強くしにくいなどの理由によって効率よく空気を イオン化できないという課題がある。 また、 この放電電極には高電圧が印加され ており、 放電電極の近傍では非常に強い電界が形成されているため、 電子、 ィォ ン、 帯電粉塵などの荷電粒子が放電電極に衝突して損耗しゃすいという課題もあ り、 無駄な放電電流をなくして効率よく空気をイオン化すると同時に、 放電電極 への荷電粒子の衝突を減らすことが要求されている。
また、 従来の荷電部は具体的に線状電極 0. l m当たり 1 0〜2 0 A、 そし て、 送風風量 1 m3/m i n当たりで、 1 0 0〜 2 0 0 A程度の放電電流を流 して集塵効率が 8 0 %以上になるような設計となっている。 また、 針状の電極を 用いた場合でも、 送風風量 l m3/m i n当たりで、 1 0 0〜 2 0 0 μ A程度の 放電電流が流れており、 やはりコロナ放電をさせて、 粉塵を帯電させている。 こ の程度の放電電流を流すと消費電力も大きく、 オゾンも 2 O p p bから多い場合 には 1 0 0 p p b程度発生するため人体にとってよくないレベルとなり、 また、 臭いの閾値以上となるためオゾン臭が不快であるという課題があり、 従来と同等 の集塵性能を確保しながら放電電流を大幅に小さくすることが要求されている。 そして、 前記集塵装置を備えた空調装置においては、 風量が大きく、 装置内部 の通過風速も大きいため、 集塵機能を付加させる手段として、 コロナ放電を用い て帯電させた粉塵を圧力損失の少ない集塵部で集塵する電気集塵ュニットを用い ることによって、 圧力損失を低くしたまま高い集塵性能を持たせることが可能で ある。 しかし、 コロナ放電を用いた電気集塵ユニットを使用すると放電電流が大 きいため消費電力も高くなり、 また、 オゾン発生量も大きくなつて人体にとって 悪影響を及ぼすとともにオゾン臭力不快であるという課題があり、 電気集塵によ る集塵機能を付加させた空調装置においても放電電流を低減することが要求され ている。
また、 前記集塵部をフィル夕に置き換えたタイプの集塵装置の荷電部でも、 前 記と同じ課題を有しており、 濾材を分極させると同時に、 放電電流を大幅に小さ くしながら粉塵を帯電させることが要求されている。
更に、 前記集塵部をフィル夕に置き換えたタイプの集塵装置においては、 粉塵 がフィル夕を通過する速度、 即ち、 フィルタ面の風速が大きいほど、 帯電粉塵が 濾材内部の分極電場に沿って濾材繊維表面へ向かう力の及ぼす集塵効果を失うた め、 フィルタ面の風速が大きいとフィル夕の集塵性能が上がらないと同時に、 フ ィルタの圧力損失が大きくなるという課題がある。 また、 フィル夕の面に合わせ て格子板が接触していないと濾材を効率よく一様に分極させることができないと いった課題もあり、 フィルタ面の通過風速を下げると同時に、 フィルタを効率よ く一様に分極させることが要求されている。
また、 前記フィルタのプリーツ形状の山の数が多くなると、 導電性の格子板の 加工が難しくなつて材料費も高くなるという課題があり、 格子板がなくてもフィ ル夕の下流側にアース面を形成できることが要求されている。
本発明は、 このような従来の課題を解決するものであり、 放電電流をほとんど 流さないで粉塵を帯電させて従来レベルの集塵能力を確保すると同時に、 気分を リラックスさせるなどの効果を持つマイナスイオンを放出することができ、 更に より効率よく空気をィオン化することができ、 コ口ナ放電の発生による線状電極 の劣ィヒに起因する切れや、 針状電極の先端部の磨耗など電極の損耗を防ぎ、 高め た集塵性能を劣化させずに保つことができ、 更に、 集塵部をフィルタにした場合 においては、 消費電力を大幅に低減しつつ高い集塵性能を維持することができる 集塵装置、 及びそのような特徴の集塵機能を有した空調装置を提供することを目 的としている。 発明の開示
本発明の集塵装置は、 上記目標を達成するため、 請求の範囲第 1項に記載した 通り、 コロナ放電をさせずにイオンを放出するイオン放出手段とその下流側に設 置された集塵部で構成される。
そして、 本発明によれば、 放電電流をほとんど流さないで粉塵を帯電させるこ とができる集塵装置が得られる。 また、 請求の範囲第 2項記載の集塵装置は、 請求の範囲第 1項記載の集塵装置 において、 イオン放出手段がマイナスイオンを放出することを特徴とする。 そして、 本発明によれば、 放電電流をほとんど流さないで粉塵を帯電させると 同時に、 気分をリラックスさせるなどの効果を持つマイナスイオンを放出するこ とができる集塵装置が得られる。
また、 請求の範囲第 3項記載の集塵装置は、 請求の範囲第 1項記載の集塵装置 において、 イオン放出手段の放電電極を 1もしくは複数個の線状電極とし、 線状 電極の両側にアース電極を設け、 線状電極に高電圧を印加した時の放電電流が線 状電極 0 . l m当たり 1 i A以下となるようにアースに接続された電極を絶縁体 または半導体で被覆したことを特徴とする。
そして、 本発明によれば、 コロナ放電を抑制し、 放電電流を必要以上に流さな いことで効率よく空気をィォン化すると同時に、 放電電極への荷電粒子の衝突を 減らすことができる集塵装置が得られる。
また、 請求の範囲第 4項記載の集塵装置は、 請求の範囲第 3項記載の集塵装置 において、 イオン放出手段がマイナスイオンを放出することを特徴とする。 そして、 本発明によれば、 放電電流をほとんど流さないで粉塵を帯電させると 同時に、 気分をリラックスさせるなどの効果を持つマイナスイオンを放出するこ とができる集塵装置が得られる。
また、 請求の範囲第 5項記載の集塵装置は、 請求の範囲第 1項記載の集塵装置 において、 イオン放出手段の放電電極を 1もしくは複数個の先端が鋭利な針状電 極としたことを特徴とする。
そして、 本発明によれば、 放電電極を針状にすることによって強電界部分を電 極 1個当たり 1箇所に集めて電荷の授受が可能な電極部分を限定することによつ て、 コロナ放電を抑制して無駄な放電電流をなくし、 また、 先端の鋭利部分に非 常に強い電界を形成させることによって、 更に、 効率よく空気をイオン化すると 同時に、放電電極への荷電粒子の衝突を減らすことができる集塵装置が得られる。 また、 請求の範囲第 6項記載の集塵装置は、 請求の範囲第 5項記載の集塵装置 において、 イオン放出手段がマイナスイオンを放出することを特徴とする。 そして、 本発明によれば、 放電電流をほとんど流さないで粉塵を帯電させると 同時に、 気分をリラックスさせるなどの効果を持つマイナスイオンを放出するこ とができる集塵装置が得られる。
また、 請求の範囲第 7項記載の集塵装置は、 請求の範囲第 5項記載の集塵装置 において、 針状電極の先端部分周囲にコロナ放電を生じさせないよう絶縁体また は半導体を設けたことを特徴とする。
そして、 本発明によれば、 コロナ放電を抑制し、 無駄な放電電流を更になくし て効率よく空気をイオン化すると同時に、 放電電極への荷電粒子の衝突を減らす ことができる集塵装置が得られる。
また、 請求の範囲第 8項記載の集塵装置は、 請求の範囲第 5項記載の集塵装置 において、針状電極 1個当たりの放電電流が 1 β Α以下であることを特徵とする。 そして、 本発明によれば、 コロナ放電をさせず、 放電電流をイオン放出のため に必要な値以上流さないことで効率よくイオンのみを放出すると同時に、 放電電 極への荷電粒子の衝突を減らすことができる集塵装置が得られる。
また、 請求の範囲第 9項記載の集塵装置は、 請求の範囲第 5項記載の集塵装置 において、 針状電極が、 通風面に対して 4 O mm四方の面積当たり 1個以下で配 置されたことを特徴とする。
そして、 本発明によれば、 従来と同等の集塵性能を確保しながら放電電流を小 さくすることができる集塵装置が得られる。
また、 請求の範囲第 1 0に記載の集塵装置は、 請求の範囲第 5項に記載の集塵 装置において、針状電極の下流側にアースに接続された導電性の格子板を設置し、 針状電極と格子板との間に集塵部を構成する濾材からなるフィルタを設けたこと を特徴とする。
そして、 本発明によれば、 針状電極と格子板の間で形成される電界中に絶縁性 及び分極性を持つフィル夕を置くことにより、 フィルタの濾材を分極させると同 時に、 放電電流を大幅に小さくしながら粉塵を帯電させることが可能な集塵装置 が得られる。
また、 請求の範囲第 1 1項に記載した集塵装置は、 請求の範囲第 1 0項に記載 の集塵装置において、 フィルタと導電性の格子板とをプリーツ状に形成し、 互い に重ね合わせるようにして配置したことを特徴とする。 , そして、 本発明によれば、 フィル夕をプリーツ形状にすることによりフィルタ 面の風速を下げると同時に、 格子板をフィルタの面に合わせてプリーツ形状に加 ェし、 フィル夕の面に合わせて格子板を重ね合わせることによってフィルタの濾 材を効率よく一様に分極させることができる集塵装置が得られる。
また、 請求の範囲第 1 2項に記載の集塵装置は、 請求の範囲第 5項に記載の集 塵装置において、 針状電極の下流側に濾材からなるフィルタを設け、 フィル夕の 下流側の面に導電性塗料を塗布して導電層を形成し、 導電層をアースに接続した ことを特徴とする。
そして、 本発明によれば、 格子板がなくてもフィルタの下流側にアース面を形 成できる集塵装置が得られる。
また、 晴求の範囲第 1 3項に記載の集塵装置は、 請求の範囲第 1 2項に記載の 集塵装置において、 フィルタをプリーツ状に形成したことを特徴とする。
そして、 本発明によれば、 フィルタをプリーツ形状にすることによりフィルタ 面において風速を下げ、 フィル夕の濾材を効率よく一様に分極させることができ る集塵装置が得られる。
また、 請求の範囲第 1 4項に記載の空調装置は、 請求の範囲第 1乃至 1 3項の いずれかに記載の集塵装置を備えることを特徴とする。
そして、 本発明によれば、 消費電力とオゾン発生量を低減して高い集塵性能を 付加した空調装置が得られる。
また、 請求の範囲第 1 5項記載の空調装置は、 請求の範囲第 5乃至 1 3項のい ずれかに記載の集塵装置を備え、 その針状電極をグリルに直接設けて粉塵を帯電 させ、 内部に設けられた集塵部で粉塵を捕集する集塵機能を有した空調装置とし たことを特徴とする。
そして、 本発明によれば、 グリルと針状電極を一体型にし、 集塵部を針状電極 から分離させて空調装置内に組み込んだ空調装置が得られる。 図面の簡単な説明
図 1は、 本発明の一実施例である線状電極を用いた集塵装置の構成図 図 2は、 本発明の一実施例である針状電極を用いた集塵装置の構成図 図 3は、 本発明の一実施例である針状電極とアース接続された格子板との間に フィルタを備えた集塵装置の構成図
図 4は、 本発明の一実施例である針状電極とアース接続されたプリーツ状に形 成された格子板とフィル夕とを備えた集塵装置の構成図
図 5は、 本発明の一実施例である針状電極と裏面に導電塗料を塗布したフィル 夕とで構成された集塵装置の構成図
図 6は、 本発明の一実施例である針状電極を用いた集塵装置を備えた空調装置 の説明図
図 7は、 本発明の一実施例である針状電極とグリルとを一体化し、 空調装置内 部に集塵部を設けた空調装置の説明図
図 8は、 従来の集塵装置の構成図
図 9は、 従来の集塵装置の構成図 発明を実施するための最良の形態
本発明の集塵装置は、 コロナ放電をさせずにイオンを放出するイオン放出手段 とその下流側に設置された集塵部で構成されることを特徴としたものである。 周 囲にアース電極を設け、 針や棘、 線などの形状の放電電極にある一定以上の電圧 を印加すると、 放電電極付近に大きな電界が形成されるようになり、 空気分子中 の電子が分離したり、 また、 分離した電子が別の空気分子に結合するなどして空 気分子がイオン化し空気イオンとなる。 そして、 発生した空気イオンが電界の力 によって拡散し、 粉塵に付着して粉塵を帯電する。
今までの常識では、 集塵部の上流側で粉塵などを帯電させる手段として、 コロ ナ放電を用いることが有効な手段とされてきた。 コロナ放電をさせるためには、 線状電極や針状電極に対向するアース電極を設け、 この間に高電圧を印加する。 そうすると、 ある電圧までは、 電流はほとんど流れない。 この時は、 空気イオン もほとんど発生しない。 しかし、 コロナ放電が発生する電圧まで上げるど、 放電 電極の回りが強電界となって気体 (空気) が局部的な絶縁破壊を起こしてイオン 化すると同時に、 放電によって電流値が急激に上昇する。 これがコロナ放電であ る。 この放電電流が大きいというのが特徴であるコロナ放電の領域を利用するこ とで、 空気をイオン化して粉塵を帯電させることができるが、 放電電流に比例し てオゾンが発生することからコロナ放電では多量のオゾン発生を伴う。ちなみに、 極性については、マイナス極性のコロナ放電のほうがオゾン発生量は多くなる(ブ ラス極性のコロナ放電の約 3〜 6倍)。また、放電電流が大きいと消費電力も増大 する。 そこで、 本発明者らは、 放電電流を抑制しながら空気イオンの生成を行う ことにより、 オゾン発生と消費電力を抑えつつ粉塵の帯電性能を保つ手段を見出 した。 アース電極を絶縁性物質や半導電性物質で被覆じたり、 放電電極とアース 電極の距離をおき、 空気による絶縁を大きくしてコロナ放電を起こさずにイオン のみを放出させる (絶縁破壊を起こさずに空気をイオン化する) こと (これをィ オン化放電と定義する) により、 空気イオンの付着による粉塵の帯電性能を持ち ながら、 放電電流をほとんど流さない状態にして消費電力及びオゾンの発生を極 力低減することができるという作用を有する。
このコロナ放電が発生していない状態とは、 具体的な目安として 1つの針状電 極当たり、放電電流が 1 A以下(一般的な計器で測定できるレベル)、線状電極 であれば、 0. l m当たり 1 μ Α以下の値である。 また、 この状態をつくるため には、 空気絶縁及び十分な距離がとれない場合は、 絶縁もしくは半導体材料でァ —スにあたる部分を被覆する必要がある。 空気絶縁の場合の絶縁距離としては、 線状の場合は、 線径、 表面の平滑度、 針状の場合は、 尖がりの程度によってー概 にいえないが、 少なくとも 1 O mmZk V以上、 好ましくは、 2 O mmZk V以 上の絶縁距離を設けることが必要である。 絶縁もしくは半導電性材料としては、 絶縁距離によって違うが、 放電電流が 1 A以下になる絶縁抵抗となるものを用 いればよい。
また、 イオン放出手段がマイナスイオンを放出することを特徵としたものであ り、 放電電極にマイナス電圧を印加して空気をイオン化し、 プラスイオンは電極 にひきつけて付着させ気体分子に戻し、 マイナスイオンは反発させて周囲に拡散 させる。 そして、 アース電極を絶縁性物質や半導電性物質で被覆したり、 放電電 極とアース電極の距離を大きく取るなどして大きな放電電流を伴うコロナ放電を 起こさずに空気をイオン化し、 放電電極にマイナス電圧を印加することによって マイナスィオンのみを存在させることにより、 空気イオンの付着による粉塵の帯 電性能を持ちながら、 放電電流を低下させて消費電力及びオゾンの発生を低減す ると同時に、 人体によい影響を与えるといわれているマイナスイオンを放出する ことができるという作用を有する。
また、 イオン放出手段の放電電極を 1もしくは複数個の線状電極とし、 線状電 極の両側にアース電極を設け、 線状電極に高電圧を印加した時の放電電流が線状 電極 0. l m当たり 1 A以下となるようにアース電極を絶縁体または半導体で 被覆したことを特徴としたものである。 コロナ放電では前述した通り、 空気を局 部的に絶縁破壊させてイオン化すると同時に、 局部的ではあるが空気が絶縁破壊 を起こすために放電電流が急激に上昇する。 放電電流は放電電極及び対向のァー ス電極表面で起こる電荷の授受の量を表すものであり、 特徴として消費電力及び オゾン発生量と密接な比例関係にある。 そこで、 アース電極を絶縁体もしくは半 導体で被覆することで電極表面の電荷の授受を制限することによってコロナ放電 を抑制し、 放電電流を必要以上に流さないことで効率よく空気をイオン化するこ とができる。 そして、 線状電極 0. l m当たり 1 A以下の放電電流で、 粉塵を 帯電させるのに十分な量の空気イオンを得ることができる。 以上のような理由か ら、 放電電流を従来から大幅に低くすることができるため、 消費電力及びオゾン 発生量を極力低減することができる。 また、 線状電極は複数個の場合通常は通風 断面に対して平行に配置するため、 通風断面に対して均一にイオンは放出され、 イオン放出部を通過する粉塵を均一に帯電させることができる。 また、 絶縁体も しくは半導体で被覆しているためにコロナ放電にはほとんどならず (電圧を上げ ていくとコロナ放電ではなく、 この場合絶縁破壊を起こし火花放電へ移行する)、 従って、 電圧にあまり影響されずにイオンを放出することができる。 そして、 放 電電流が非常に低く、 放電電極表面への電子、 イオン、 帯電粉塵などの荷電粒子 の衝突が少ないため、 損耗による切れを抑制して放電電極を長持ちさせることが できるなどといった作用を有する。
また、 イオン放出手段の放電電極を先端が鋭利な針状電極としたことを特徴と したものである。 放電電極を針状にすることによって強電界部分を電極 1個当た り 1箇所に集めて電荷の授受が可能な電極部分を限定することによって、 コロナ 放電を抑制して無駄な放電電流をなくすことができるため、 放電電流と密接な比 例関係にある消費電力及びオゾン発生量を大幅に低減することができる。 また、 先端の鋭利部分に非常に強い電界を形成させることによって、 更に、 効率よく空 気をイオン化できるため、 放出した大量のイオンによって粉塵をより帯電させや すくすることができる。 また、 全体の線径が小さい必要がある線状電極と異なり 先端が鋭利であればよいので損傷による切れといった問題がなく、 かつ、 放電電 流が非常に低く、 放電電極表面への電子、 イオン、 帯電粉塵などの荷電粒子の衝 突が少ないため、 先端の鋭利部分の磨耗を抑制して放電電極を長持ちさせること ができるといった作用を有する。
また、 針状電極の先端部分の周囲に絶縁体もしくは半導体を設けたことを特徴 としたものであり、 その際、 アース電極を絶縁体や半導体で被覆したり、 放電電 極とアース電極の距離を大きく取るなどして放電電流がほとんど流れない状態に しているため、 消費電力及びオゾンの発生をほとんどなしにすることができる。 かつ、 放電電流がほとんどなく、 放電電極表面への電子、 イオン、 帯電粉塵など の荷電粒子の衝突が少ないため、 先端の鋭利部分の磨耗を抑制して放電電極を長 持ちさせることができるといった作用を有する。
また、 針状電極 1個当たりの放電電流を 1 以下にしたことを特徴としたも のであり、 具体的には、 アース電極を絶縁性物質や半導電性物質で被覆したり、 針状電極とアース電極の距離を大きく取るなどしてコロナ放電を起こさずに空気 をイオン化することにより、 空気イオンを従来と同様 1 0万個 Z c c以上発生さ せることを可能とし、 従来レベルの集塵性能を持ちつつ、 放電電極に印加する電 圧を 2倍にしても、 放電電流を抑えているため消費電力は従来のものよりも 5 0 分の 1以下となり、 また、 オゾン発生量は 1 p p b以下になって実際に臭いすら しなくなるという作用を有する。
また、 針状電極が通風面に対して 4 O mm四方の面積当たり 1個以下で配置さ れることを特徴としたものである。 従来は通風面に対して少なくとも 2 O mm四 方当たり 1本以上の本数で配置されており、 針状電極の本数で比較すると従来の 4分の 1以下となっている。 1 mZ sの風速を集塵装置内に流して用いるとする と、 l m3/m i n当たり 1 0本以下ということになる。 この時、 1本当たりの 放電電流は大きくても 1 5 A以下にして消費電力及び'オゾン発生量を抑制する W 01 6434
必要がある。 このようにして針状電極の全体的な数を減らして最適化する。 そう することで放電電流を低下させながら空気をイオン化して空気イオンを従来と同 様 1 0万個 Z c c以上発生させ、 従来以下の消費電力及びオゾン発生量で、 従来 と同等の集塵性能を持たせることができるという作用を有する。
また、 針状電極の下流側にアース電極に接続された導電性の格子板を設置し、 針状電極と格子板との間に集塵部を構成する濾材からなるフィルタを設けたこと を特徴としたものである。 針状電極と格子板の間は十分な絶縁距離が確保されて おり、 また、 針状電極と格子板の間に絶縁性をもつフィル夕が設置されているた め、 針状電極と格子板の間を流れる放電電流は従来と比較して非常に小さい。 従 つて、 消費電力及び人体によくない影響をおよぼすオゾンの発生量を大幅に低減 することができる。 そして、 放電電流が非常に小さいことから推測されるように 針状電極近傍でコ口ナ放電はほとんど起こっていないが、 高電圧が印加されてい る針状電極近傍ではイオン化放電によって空気のイオン化が起こるために空気ィ オンが放出され、 その空気イオンを粉塵に付着させることによって粉塵を帯電さ せることができる。 また、 分極性を持つフィルタは針状電極とアースの格子板と の間に設置されているため、 針状電極と格子板との間の電界によって濾材が濾材 繊維単位で分極される。 この分極作用は、 針状電極と格子板との間の電界が存在 する、 即ち、 針状電極に高電圧が印加されている限り続くため、 濾材を常に分極 状態にすることができる。 そして、 濾材を通過する帯電粉塵はクーロンの作用に より、 濾材内部の分極電場に沿って濾材繊維表面へ移動する力を受けるために濾 材に付着しやすくなり、 また、 粉塵も濾材の分極電場によって分極作用を受けて 分極するため、 帯電していない粉塵でさえも、 帯電粉塵ほどではないにしても濾 材の分極電場に沿って濾材繊維表面へ移動する作用を受けるために濾材に付着し やすくなることから、 フィル夕単体のみの場合よりも高い集塵性能を発揮するこ とができる。 集塵性能を高くするには濾材をより強く分極すればよいので放電電 極の印加電圧を高くすればよいが、 そうすると、 従来の荷電部では放電電流も今 まで以上に大きくなつてしまうので、 印加電圧を高くするにも限度があった。 し かし、 本発明の集塵装置はもともと放電電流が非常に小さく、 また、 電圧を高く しても放電電流が流れにくい構造であるため、 放電電極の印加電圧を高く設定す ることが容易である。 以上のように、 放電電流を大幅に小さくし、 更に、 フィル 夕内部を常に分極した状態にすることができるため、 消費電力及びオゾン発生量 を大幅に低減しながら高い集塵性能を維持することができるという作用を有する。 また、 フィルタと導電性の格子板とをプリーツ状に形成し、 互いに重ね合わせ るように配置したことを特徴としたものである。 フィル夕をプリーツ形状にして フィル夕面積を増やすことにより、 フィルタの単位表面積当たりの通風量を減ら せるため、 フィルタ面の風速を小さくすることができる。 従って、 粉塵が濾材を 通過する速度を小さくすることができる。 粉塵が濾材内部の分極電場に沿って濾 材繊維表面へ移動する速度は粉塵がフィルタを通過する速度に基本的には影響さ れないため、 フィルタ面の風速が小さいほど、 粉塵が濾材繊維表面へ付着するた めの時間は長くなつて濾材に付着しゃすくなるので集塵性能が高くなる。 また、 フィルタ面の通過風速が小さいほどフィル夕の圧力損失が小さくなるため、 フィ ル夕面の風速が小さいほど通風にかかるエネルギーが小さくなり、 空気がフィル 夕を通過する時の風切り音やファンの駆動音といった騒音も減らすことができる。 また、 アース接続された導電性の格子板がフィル夕の面に合わせたプリーツ形状 であり、 濾材とほぼ一様に接触した構造となっているので、 濾材全面を一様に分 極させることができ、 その結果、 集塵性能を高めることができる。 また、 濾材に 分極作用を与えて、 帯電粉塵やイオンなどによる濾材内の余分な電荷を外に逃が すことによって集塵性能の劣化を防ぐことができるが、 格子板と濾材の面が接触 した構造にすることにより、 余分な電荷を格子板に伝えさせて逃がしやすくして いるため、 高い集塵性能を維持することができる。 以上のようにフィルタ面の通 過風速が小さいために高い集塵性能を達成することができると同時に、 通風エネ ルギーや騒音を小さくすることができ、 また、 アースに接続された導電性の格子 板がフィルタの面に合わせたプリ一ッ形状であるために、 濾材を一様に分極して 高い集塵性能を得ると同時に、 高めた集塵性能を維持することができるといった 作用を有する。
また、 針状電極の下流側に濾材からなるフィルタを設け、 濾材の下流側の面に 導電性塗料を塗布して導電層を形成し、 導電層をアースに接続したことを特徴と する。 フィル夕の裏面に導電性塗料を塗布してその面をアースに接続することに よって、 アース接続された導電性の格子板がなくてもフィルタの下流側にアース 面を形成することができるため、 製造を簡略化して加工コスト及び材料コストを 低減することができるという作用を有する。
また、 上記集塵装置を備えることを特徴とした空調装置であり、 空調機能と同 時に、 低圧力損失で集塵機能を付加させたものである。 そして、 従来よりも消費 電力とオゾン発生量を抑えることにより、 低ランニングコストでオゾンによる人 体への悪影響及び不快感を低減しながら高い集塵機能を付加させることができる という作用を有する。
また、 上記集塵装置における針状電極をグリルに直接設けて粉塵を帯電させ、 内部に設けられた集塵部で粉塵を捕集する集塵機能を有することを特徴とした空 調装置であり、 具体的には針状電極をグリルの内側に設けて、 針状電極を直接人 の手に触れないようにしながら針状電極が通風空気に接触するようにした構造で ある。 そして、 グリルと針状電極を一体型とすることにより本体の厚みを小さく し、 また、 集塵部を分離させることにより、 集塵部のみを洗浄及び交換すること を可能にしてメンテナンス性を向上させた空調装置が得られる。 実施例
(実施例及び従来例における集塵装置の集塵試験例 1 )
集塵試験 1においては、 以下に説明するように、 イオン放出手段である実施例 の集塵装置と、 従来の集塵装置と用いて、 放電電流、 イオン濃度、 集塵効率、 ォ ゾン濃度の比較を行った。
まず、 図 8に示した従来の集塵装置に基づいて実験装置を作成した。 図 8を用 いて装置の説明を行うと、 開口寸法 2 6 4mm 1 2 2 mmのダクトの途中に、 厚さ 0 . 5 mm、 長さ 5 0 mm、 幅 2 5 6 mmの 3枚のステンレス鋼板をポリプ ロピレン製スぺ一サ一 1 1 1を間に挟んで 3 mm間隔で 3 1枚重ね、 ステンレス 鋼板に + 2 k Vの電圧を 1枚おきに印加して電圧印加電極板 1 0 5とした。 それ ぞれの電圧印加電極板 1 0 5を挟むようにして設けられたステンレス鋼板をァー スに接続してアース電極板 B 1 0 6とした集塵部 1 0 4を作成した。 そして、 集 塵部 1 0 4の 4 0 O mm上流側に表 1に示した条件の荷電部を設置し、 高圧安定 化電源 107を用いて線状電極 102に表 1に示すような、 直流の電圧を印加し た。 尚、 測定した放電電流は、 lm3Zmi n当たりの放電電流に換算した。 ま た、 図には示していないが、 ダクト最後方に送風機を設けてダクト内送風風量 1 m3Zmi nの条件で通風し、 集塵効率 7] (%)、 イオン発生量 (個 Zc c)、 発 生オゾン濃度 (ppb) を測定した。 この時のダクト風速は約 0. 5mZsであ る。 集塵効率はリオン社製パーティクルカウンタ一 KC— 01 Cを用い、 荷電部 101の直前と集塵部 104の直後の粉塵濃度を測定して求めた。 粉塵濃度は係 数法で測定し、 0. 167リットルの空気をサンプリングして、 その中に含まれ る粒径 0. 3 m以上の粉塵の全個数を測定して求めた。 荷電部 101直前の粉 塵濃度を C f、 集塵部 104直後の粉塵濃度を C bとすると、 集塵効率 77は次式 で求めることができる。
77 = (1— Cb/C f ) X 100 (%) 空気イオン濃度は、 荷電部後方 200mmの位置からダクト内空気をサンプリ ングし、 電気移動度が 0. 4 cm2 V· s e c以上の小イオンの個数濃度を計測 する神戸電波社製イオンテスター KST— 900を用いて測定した。 単位は個/ c cである。
発生オゾン濃度は集塵部 104直前からダクト内空気をサンプリングし、 荏原 実業社製オゾンモニタ一 EG 2001 Fを用いて測定を行った。 単位は ppbで あり、 10億分の 1の質量濃度を示す。
それぞれの荷電部の構成について図 1、 2、 8を用いて説明する。
比較例である No. 1の荷電部 101は、 従来例の図 8と同じ構成であり、 線 径 0. 15mm、 長さ 220mmのタングステン製の線を用いた線状電極 102 を、 通風方向に対して垂直方向に 20 mmの間隔で 6本、 即ち、 6段設置して + 5. 7 kVの電圧を印加し、 その間に通風方向から見て奥行き長さ 16 mm、 幅 220mmの鋼製アース電極板 A 103を等間隔に計 7枚設置したものである。 この荷電部 101は、 従来よく使われている形状の荷電部であり、 アース電極板 A 103を空気のみを絶縁材として線状電極 102の上下近くに設けているため、 両電極間でコロナ放電が起こり、 線状電極 1 0 2近傍で空気が容易にイオン化す るようになっている。そのため、集塵効率 9 5 %と高い集塵性能を実現している。 しかし、 空気のイオン化とともに大きな放電電流を伴ぅコロナ放電が起こりやす くなつているため、 放電電流が 1 4 0 Aと大きいことから消費電力が大きくな ることと、 放電電流が大きいためオゾンが 2 4 p p bと比較的多量に発生するこ とと、 線状電極 1 0 2の電圧極性がプラスであるため、 線状電極 1 0 2がマイナ スイオンを吸収してしまいほとんど放出しないことが欠点である。
比較例である N o . 2の荷電部 1 0 1は、 従来例の図 8と同じ構成で、 線状電 極 1 0 2の極性をマイナスにしたものであり、 放電電流の大きさが N o . 1と同 じ 1 4 0 になるように電圧を印加したものである。 N o . 1と同様に空気の みを挟んでアース電極板 A 1 0 3を設けているためにコロナ放電が起こって容易 に空気がイオン化するため、 集塵効率 9 5 %と高い集塵効率を実現している。 ま た、 線状電極 1 0 2の極性がマイナスであるため、 線状電極 1 0 2からマイナス イオンが反発されて吸収されないことにより、 マイナスィオンを多量に放出する ことができる。 しかし、 コロナ放電により放電電流が 1 4 0 Aと大きいため放 電による消費電力が大きくなることと、 放電電流が大きく線状電極 1 0 2の極'性 がマイナスであることから、 オゾン発生量がブラス放電よりも更に大きい 1 0 3 p p bになるという結果となり、 オゾンが大量に発生するという欠点が明らかに なった。
比較例である N o . 3の荷電部 1 0 1は、 従来例の図 8とほぼ同じ構成である が、 アース電極板 A 1 0 3を取り除いて線状電極 1 0 2に一 1 0 k Vを印加した ものである。 また、 図には示していないが、 荷電部 1 0 1の上流側 8 0 mmの位 置に 5 mm径の穴が無数に開いた鋼製パンチングメタルを格子板として設置しァ ースに接続した。放電電流はほとんど流れずオゾンもほとんど発生していない力^ 集塵効率が 4 0 %と実用レベル以下の性能しかもたない。 イオン発生量が低いこ とから、 空気をイオン化する効果が小さいためであると推測される。
実施例である N o . 4の荷電部 1 0 1の構成を図 1に示す。 イオン発生する手 段としては、 N o . 1の荷電部のアース電極板 A 1 0 3表面を絶縁被覆層 1とし て塩ィ匕ビニールテープで被覆し、 それに挟まれるようにして設置されたタングス テン製の線状電極 102で構成されている。 この構成で線状電極 102に +5.
7 kVの電圧を印加したところ集塵効率は 80%となり、 No. 1及び No. 2 の荷電部に比べて低いものの十分実用的なレベルの値である。 理由としてプラス の空気イオン発生量が 25万個 Zc cと多く、 空気のイオン化が十分起こってい ることが考えられる。 また、 線状電極 102とアース電極板 A 103の間には電 場が存在しているが、 アース電極板 A 103の表面が絶縁されているためにコロ ナ放電による大きな放電電流が抑制されている。 そのため、 No. 1の荷電部と 同じ印加電圧にも関わらず放電電流が 4 Aと、 No. 1及び No. 2の荷電部 の 140 Aに比べて非常に小さくなつている。 即ち、 電圧が同じため電流の減 少分だけ消費電力が小さくなつている。 同時に、 放電電流が小さいためオゾンも ほとんど発生しなかった。 即ち、 コロナ放電を起こさずにイオンのみを発生して いるということができる。
このように、 放電電流を低下させることで消費電力及び有害なオゾンの発生量 を低減して人体によりやさしい集塵装置にすることができる。
実施例である No. 5の荷電部 101は、 No. 4とほぼ同じ構成であるが、 図 1に示す線状電極 102の電圧極性をマイナスにしたものである。 集塵効率は
88%と十分実用的な集塵性能を示した。 同時に、 線状電極 102の電圧極性が マイナスであるためマイナスイオンが 16万個/ c cと大量に放出された。 そし て、 放電電流は 12 Aと小さいことから消費電力は小さくなり、 発生オゾン濃 度も 7 p p bと非常に低いものとなった。
このように、 放電電流を低下させることで消費電力及び有害なオゾンの発生量 を低減すると同時に、 マイナスイオンを発生することにより人体によい影響をも たらす集塵装置にすることができることがわかった。
実施例であ.る No. 6の荷電部 101の構成を図 2に示す。 放電電極として、 本体部径 0. 7 mm, 長さ 30 mmの先端が鋭利に尖つた針状電極 2をダクト吸 込み口に 30mmの間隔で通風方向に対して垂直方向に 6本平行に併設し、 それ に一 10 kV印加したものである。 その上流側 150mmの位置に 5 mm径の穴 が無数に開いた鋼製パンチングメタルを格子板 109として設置しアースに接続 した。 集塵効率は 85%と十分実用的なレベルとなっている。 No. 3の荷電部 と比較して集塵効率が高いことから、 0. 15 mm径の線よりも鋭利な針の方が 空気をイオン化する性能に優れていることがわかる。 また、 放電電極の極性がマ ィナスであるためマイナスイオンが 27万個 Zc cと大量に放出された。 放電電 流は 0. 6 となり非常に小さいため消費電力は小さく、 また、 オゾンもほと んど発生しなかった。 また、 放電電極表面へ電子やイオンが多少なりとも衝突す るため放電電極表面は多少の劣化を起こすことが考えられるが、 線の場合は切れ につながり放電電極としての機能をなくしてしまうのに対し、 針の場合は表面が 多少劣化する可能性はあるが、 放電電流がほとんどないため、 磨耗は少なく、 切 断などによつて放電電極自体の形、 機能をなくすことはない。
実施例である No. 7の荷電部 101は、 No. 6とほぼ同じ構成で、 格子板 として鋼製パンチングメタルの代わりにメッシュ 20のステンレス製金網を針状 電極の下流側 30mmの位置に設けてアースに接続し、 針状電極に一 8 k Vの電 圧を印加して放電電流を 22 A流したものである。 針状電極は 6本であり、 約 70mm四方相当の面積に一個の割合で設置されていることになる。 1個当たり の放電電流は 3. 7 a Aである。 空気の絶縁だけでこの放電電流に抑えるために は針状電極とアースの間隔が 30mm程度必要である。 集塵効率は、 比較例であ る No. 1とほぼ同等の 93%となり、 オゾン発生量は No. 1の 24ppbを 大きく下回る 5ppbであった。 そして、 マイナスイオンも 20万個 Zc cと大 量に放出されており、 放電電流も 22 Aと小さいため消費電力も小さくできる ことがわかった。
実施例である No. 8の荷電部 101は、 No. 7と同じ構成で、 アースであ るメッシュ 20のステンレス製金網を針状電極の下流側 30mmの位置に設けて、 印加電圧及び放電電流を一 10kV、 40/ Aに調節したものである。 針状電極 は 6本であり、 約 70mm四方相当の面積に一個の割合で設置されていることに なる。 1本当たりの放電電流は 6. 7 Aである。 集塵効率は、 比較例である N o. 1と同等以上の 97%となり、 オゾン発生量は No. 1の 24ppbを大き く下回る 7 ppbであった。 マイナスイオンも 27万個ノ c cと大量に放出され ており、 放電電流も 40 Aと小さいため消費電力も小さくできることがわかつ た。 以上のことを整理した内容を表 1にまとめた
(表 1)
Figure imgf000021_0001
比較例である No. 1及び No. 2で示したように線状電極の場合、 通常のコ ロナ放電をさせている時は、 集塵効率も高いが、 オゾン発生量も非常に高い。 実 施例である No. 4または No. 5で示したように、 本発明である放電電流を 1 A以下でイオンのみを発生させている場合は、 集塵性能を維持しながらオゾン 発生を極力抑制できている。 但し、 比較例 3で示しているように、 放電電流が 0 の時はイオン発生量もほとんどなく集塵性能も低い。 集塵性能を維持するために は、放電電流は、線状電極 0. lm当たり 0. 1 A以上は必要である。そして、 No. 5ではマイナス極性の電圧を放電電極に印加しているためマイナスイオン も大量に放出されている。
また、 実施例である No. 6が示すように、 放電電極として針状の放電電極を 用いると同時に、 放電電流を 1 A以下にすることで、 消費電力及び有害なォゾ ンの発生量を大きく低減し、 イオンの発生手段からマイナスイオンを発生するこ とができるため、 人体によい影響をもたらすと同時に、 放電電極の損耗劣化が少 なく、 長時間使用できる構成になり、 メンテナンスコストを下げることができる ことがわかった。
また、 集塵効率を少しでも落としたくないが、 消費電力とオゾン発生量を低下 させたいという使い方も、 コロナ放電を起こさずイオンのみを放出する集塵装置 では可能である。 実施例である N o , 7または N o . 8が示すように、 針状電極 の数を通風面に対して 4 0 mm四方の面積当たり 1個以下とし、 従来と比べて本 数を減らして最適化することにより、 オゾン発生量を従来の半分以下にすること ができる。 こうすることにより、 従来と同じ高い集塵性能を達成しながら消費電 力及び有害なオゾンの発生量を低減させることができる。 また、 同時に、 マイナ スの極性の電圧を印加することにより、 人体によい影響をもたらすといわれてい るマイナスイオンを供給することができる。
なお、 図 2では針状電極 2の上流側に格子板 1 0 9を設けた図が示されている が、 N o . 7のように針状電極 2の下流側に格子板 1 0 9を設けても同様の効果 が得られる。
なお、 本実施例では、 線状電極 1 0 2にタングステン製のものを用いたが、 代 わりとして導電性を持つ他の材質のものを用いても同様の効果が得られる。 なお、 針状電極 2として先端が鋭利に尖った鋼製の針を用いたが、 空気をィォ ン化できるならば、 その代わりに導電性を持つ他の材質のものを用いてもその効 果に差は生じない。
なお、 本実施例では、 アース接続された導電性の格子板 1 0 9として 2 0メッ シュのステンレス製の金網を用いたが、 通風可能であればどんなメッシュ粗さで も、 もしくはどんな形状でもよく、 例えば、 導電性繊維を加工して作った導電性 シートなどを用いても同様の効果が得られる。
なお、 集塵部は、 電圧印加電極板とアース電極板の間に電位差を与えて電界を つくり、 その電界の力で主に帯電した粉塵を捕集する構成としたが、 ガラス繊維 などを濾材にして機械的に粉塵を捕集する濾過フィルタや、 あらかじめ分極され た誘電体を濾材にして内部に電界ができるように作られ、 機械的もしくはその電 界の力で粉塵を捕集する静電フィルタ、 また、 そういったフィル夕を電極で挟ん で電圧をかけ、 常に方向のそろった電界の中に置くことにより一方向に統一され た電界の力で粉塵を捕集するように工夫された電界フィル夕など他の種類の集塵 部を用いた場合にも同様の効果を生じる。
(実施例及び従来例における集塵装置の集塵試験例 2 )
次に、集塵装置のイオン放出手段と集塵部に特徴を有する実施例の集塵装置と、 従来の集塵装置と用いて、 放電電流、 集塵効率、 圧力損失の比較を行った。 図 9に従来の集塵装置を示す。 この集塵装置に基づいて実験装置を作成した。 図 9を用いて実験装置の説明を以下に行う。 開口寸法 1 0 0 mmX 5 0 mmのダ クトを作成し、 通風方向の上流側から順番に荷電部 1 0 1、 フィルタ 1 0 8、 格 子板 1 0 9を設けた。格子板 1 0 9は、フィルタ 1 0 8の直後に設けられており、 接触した状態となっている。 フィルタ 1 0 8を構成する濾材にはクラレ製の中性 能タイプのものを用いた。 これはフィルタ面の風速が l m/ sの時、 濾材単体で 集塵効率約 5 0 % (係数法、 0. 以上) の性能を持つもので、 濾材の主成 分はポリプロピレンである。 このフィルタは、 洗浄によって付着した粉塵を除去 し、 再使用できるようにあらかじめ界面活性剤を含有しており、 水で洗浄しても 型崩れしないように高い剛性となるよう設計されている。 また、 格子板 1 0 9に は 2 0メッシュ、 線径 0 . 5 mmのステンレス製の網を用いた。 また、 ダクトの 通過風速は l mZ sとした。 格子板 1 0 9及びアース電極板 A 1 0 3をアースに 接続し、 高圧安定化電源 1 0 7を用いて放電電極に直流電圧を印加し、 その時の 集塵効率(%)、 放電電流 A) 及び集塵装置全体の圧力損失 (P a ) を測定し た。 その結果を表 2に示す。
(表 2)
Figure imgf000024_0001
なお、放電電流は lm3Zm i nに換算し、実測値の 3. 33倍で示してある。 集塵効率はリオン社製パーティクルカウンタ一 KC一 01Cを用い、 荷電部 10 1直前の粉塵濃度と格子板 109直後の粉塵濃度を測定して求めた。 粉塵濃度は 係数法で測定し、 0. 167リットルの空気をサンプリングしてその中に含まれ る粒径 0. 3 m以上の粉塵の全個数を測定して求めた。
それぞれの荷電部の構成について図 3、 4、 9を用いて説明する。
比較例である No. 9は、従来例の図 9と同じ構成であり、線径 0. 15mm、 長さ 10 Ommのタングステン製の線を用いた線状電極 102を 24mmの間隔 で、 通風方向に対して垂直方向に 2本、 即ち、 2段設置して 0〜5. 5kVの電 圧を印加し、 その間に通風方向から見て奥行き長さ 15mm、 幅 10 Ommの鋼 製アース電極板 A 103を等間隔に 3枚設置したものである。 なお、 線状電極 1 02と格子板 109の距離は 25 mmである。 この荷電部 101は、 従来よく使 われている形状の荷電部であり、 アース電極板 A 103を空気のみを絶縁物とし て線状電極 102のまわりに設けているため、 両電極間でコロナ放電が起こり、 線状電極 102近傍で空気が容易にイオン化するようになっている。 そのため、 印加電圧 5. 5 kVで集塵効率 92%となり、 0 kVで 50%のフィルタの集塵 性能は大幅に高まった。 しかし、 空気をイオン化するために、 大きな放電電流を 伴うコロナ放電を起こしているので lrr^Zm i n換算で 13 Aの放電電流が 流れた。 ちなみに、 放電電極に 5. 0 kVを印加して lm3Zm i n換算で 2 Aの放電電流を流した場合は 69%となり、 微小な放電電流を流した場合の集塵 性能は十分高まっているとはいえない。
実施例である No. 10の構成を図 3に示す。 放電電極として、 本体部径 0. 7 mm、 長さ 30 mmの先端が鋭利に尖つた針状電極 2がダクトの中央に 1本、 通風方向に対して垂直に設けられており、その 30mm下流側にフィルタ 108、 その直後に格子板 109が設けられている。 針状電極 2と格子板 109は、 空気 だけでなくフィル夕 108で隔てられた構造となっている。 格子板 109をァ一 スに接続し、 針状電極 102に 0〜― 6 kVの電圧を印加したところ、 一6 kV 印加して集塵効率が 92%となり、 0 kVで 50%だったフィルタの集塵性能は 大幅に高まった。 その時の放電電流は lm3/m i n換算で 2. 3 Aであり、 比較例である No. 9が同じく 92 %の集塵効率になった時の放電電流と比べて 約 1/6となり、 ほぼ微小であるということができる。 また、 針状電極 2に一 5 kV印加すると集塵効率が 86%と大きく向上し、 その時の放電電流は lm3Z m i n換算で 0.6 Aであった。使用している針状電極 2の本数は 1本であり、 放電電極 1本当たり 1 A以下の放電電流で高い集塵効率を得ることができた。 印加針状電極 2と格子板 109の絶縁距離が十分であることと、 針状電極 2と格 子板 109の間が絶縁性をもつフィルタで隔てられたことによって過剰な放電電 流を抑制し、 コロナ放電を起こさないで針状電極からイオンを放出し、 粉塵を帯 電させることができた。 それと針状電極と格子板の間の電界によってフィルタを 分極させつづけたことによって、 安定して高い集塵性能をフィルタに与えること ができた。
実施例である No. 11の構成を図 4に示す。 放電電極として針状電極 2が設 けられており、 その 30mm下流側に、 通風方向の幅が 30mmになるようにし て 6段折ることによって (即ち、 山が 3つできるように) プリーツ形状に加工さ れたフィルタ 108、 その直後にフィルタと同じように 6段折ることによってプ リーツ形状に加工された格子板 109がフィルタの面に接触するように設けられ ている。 尚、 本実施例である No. 11においては、 格子板 109がフィル夕の 面に接触するようにしているが、 必ずしも接触している必要はなく、 近接して配 置されていればよい。 こちらも比較例 No. 9と同様に針状電極 2と格子板 10 9は、 空気だけでなくフィル夕 108で隔てられた構造となっている。 格子板 1 09をアースに接続し、針状電極 102に 0〜― 6 kVの電圧を印加したところ、 一 6 kV印加して集塵効率が 94%となり、 No. 9よりも更に高い集塵性能を 得ることができた。 その時の放電電流は 1. 7 Aであり、 比較例である No. 9が 92 %の集塵効率となつた時の放電電流と比べて約 1 8となり、 ほとんど 微小であるということができる。 また、 針状電極 2に一 4 k V印加すると集塵効 率は 91%と大きく向上し、 その時の放電電流は lm3 mi n換算で 0. 3 Aだった。 使用している針状電極 2の本数は No. 10と同様 1本であり、 放電 電極 1本当たり 1 A以下の放電電流で高い集塵効率を得ることができた。 この ように微小な放電電流で安定して高い集塵性能が得られた理由は実施例である N o. 10と同様であるといえる。 No. 10より高い集塵性能となったのは、 フ ィルタ及び格子板をプリーツ形状に加工することによってフィルタ面の通過風速 を小さくしたためである。 更に、 圧力損失を比較すると、 プリーツ加工していな い比較例である No. 9が lm sの風速で 580 P aであるのに対して、 実施 例である No. 11は 170 P aとなり、 No. 9に対して 1ノ 3〜: 1 /4に低 下している。 その分だけ通風エネルギーが低減していることになり、 ファンの回 転数を落として送風コスト及び'騒音を下げることが可能である。 また、 洗浄可能 な濾材を用いているため、 粉塵が付着して汚れや目詰まりがフィルタに顕著に表 れてきた場合は、 洗浄して粉塵を洗い流した後、 乾燥させることにより再び使用 することが可能である。 洗浄して何度も再生使用するならば、 洗浄後に界面活性 剤を含有する液体に含浸させてから乾燥すれば再び洗浄可能なフィル夕にするこ とができる。
裏面に導電性塗料を塗布して導電層を形成させたフィルタと針状電極を備えた 集塵装置の構成を、 図 5を用いて説明する。
濾材を分極し、 また、 濾材に付着した余分な電荷を外に逃がすにはフィルタの 下流側にアース接続された導電性の格子板が必要であるが、 プリーツ形状に折り 加工されたフィルタを使用する場合などは、 その形状に合わせて格子板もプリ一 ッ加工した方が集塵性能を高くすることができる。 しかし、 プリーツの段数が増 えると格子板のプリーツ加工が難しくなり、 更には、 プリーツにする格子板の面 積が増えることから加工コストや材料コストが多くかかることになる。 フィルタ をプリーツ形状に加工しない場合にも、 導電性の格子板なしにフィル夕の裏面に アース面を形成することができれば、 その分製造も簡単になり材料コストも下げ ることができる。 そこでフィル夕 1 0 8の片面にカーボンブラックなどの導電性 を持つ物質を含む塗料を塗布し、 乾燥させる。 こうすることによって、 フィルタ 1 0 8の片側表面に導電層 4を形成することができる。 そして、 通風方向から順 に、 針状電極 2、 その下流側に導電層 4が形成された面を裏面にしてフィルタ 1 0 8を設置し、 導電層 4の面をアースに接続する。 こうすることによってプリ一 ッ形状に加工した導電性の格子板を設けなくてもフィルタ 1 0 8の裏面にアース 面を形成することができる。 導電層 4を形成する手順としては、 濾材をプリーツ 形状に加工してフィルタ 1 0 8にした後に、 フィルタ 1 0 8の片面に導電性塗料 を塗布しても、 プリーツ加工する前の濾材の平面に導電性塗料を塗布し乾燥させ てあらかじめ導電層 4を濾材の片側表面に形成した後に、 プリーツ加工してフィ ル夕にしてもどちらでもよい。
そして、 針状電極 2に高電圧を印加して針状電極 2とフィルタ 1 0 8の裏面と の間に電界を生じさせ、 その電界の作用によってフィルタ 1 0 8の濾材を分極さ せることができる。
なお、 本実施例では、 アース接続された導電性の格子板 1 0 9として 2 0メッ シュのステンレス製の網を用いたが、通風可能であればどんなメッシュ粗さでも、 もしくは、 どんな形状ャもよく、 例えば、 導電性繊維を加工して作った導電性シ ートなどを用いても同様の効果が得られる。
なお、 本実験で使用したフィル夕の濾材はポリプロピレンが主成分であるが、 分極性を持つならば他の材質でもよく、 ポリエチレンやポリフッ化工チレン、 ま たは、 ポリエステルやポリアミドなどといった分極性をもつ他の濾材でも同様の 効果が得られる。
なお、 対向するアース電極板を絶縁被覆層で被覆したり、 もしくは、 取り外す などしてコロナ放電を抑制し、 放電電流を低減した場合に限り、 針状電極の代わ りにタングステン線などを用いた線状電極を放電電極として用いても、 針状電極 を放電電極に用いた場合と同様の効果が得られる。
なお、 本実施例では、 導電性塗料の含有物質としてカーボンブラックを例とし てあげているが、 金属繊維など他の導電性フィラーや、 もしくは、 導電性ポリマ 一など、 他の導電性物質を含有物質としてもその効果に差は生じない。
なお、 本実施例では特に記述をしていないが、 針状電極 2の印加電圧の極性を マイナスにすれば、 人の気分をリラックスさせるなどというよい効果を持つとい われるマイナスイオンを同時に、 放出することができることはいうまでもない。
(本発明の集塵装置を備えた空調装置の実施例)
図 6を用いて上記実施例の集塵装置を備えた空調装置 (エアコン) の構成を説 明する。 空調装置本体内に風路の吸込み側から順に、 吸込みグリル 5、 大きい粉 塵を除去する粗塵フィルタ 6、 実施例 1に示した通りの針状電極 2及びアース接 続された導電性の格子板 1 0 9と集塵部 1 0 4を備えた集塵装置 7、 光触媒ュニ ット 8、 熱交換機 9、 ファン 1 0、 及び吹出し口 1 1という構成となっている。 上記構成において、 室内で発生した粉塵やタバコ煙などは、 吸込みグリル 5から' 吸込まれ、 網状に成形された粗塵フィル夕 6で綿ほこりなどの大きな粉塵が捕集 される。 そして、 集塵装置 7で主に粒径 0. 1〜1 の細かい粉塵が捕集さ れる。 集塵装置 7の上流側に設けられた針状電極 2から供給されるマイナスィォ ン (もしくは、 ブラスイオン) により粉塵が帯電され、 その下流側に設けられた 集塵部 1 0 4により粉塵が捕集される。 この時、 針状電極 2からのオゾン発生量 はわずかである。 そして、 集塵装置 7で捕集できない分子成分である臭いは光触 媒ユニット 8で除去される。 脱臭機構は、 従来は吸着剤として活性炭がつめこま れた脱臭フィル夕が使用されており、 活性炭は吸着容量が飽和すると脱臭性能が なくなるため、 その度に交換して使われてきた。 しかし、 最近脱臭フィルタに代 わるものとして光脱臭触媒が使用されてきており、 この光脱臭触媒は臭い成分を 触媒の働きで分解するために半永久的に使用することができる。 この光触媒ュニ ット 8は日光により再生させることが可能なため、 晴れた日に天日干しすること によって脱臭性能を復元させることができる。 そして、 このように清浄化された 空気を熱交換機 9で熱交換することによって任意の温度に変化させ、 清浄かつ任 意の温度に設定された快適な空気が、 ファン 1 0を通して吹出し口 1 1から供給 される。 このようにして空調のみではなく、 消費電力及びオゾン発生量が小さい と同時に、 リラックス効果など人体によい影響を与えるといわれるマイナスィォ ンをも供給するといつた人体によりやさしい空気清浄機能を、 空調装置に付加す ることができる。
また、 吸込みグリルと針状電極を一体化して針状電極一体型グリル 1 2とし、 本体内部に集塵部 1 0 4を設けた空調装置の構成図を図 7に示す。 集塵装置の荷 電部である針状電極 2を吸込みグリル 1 2の内側に設置し、 吸込みグリル 1 2内 部に大きい粉塵を捕集する粗塵フィルタ 6を設けた以外は図 6と同様である。 吸 込みグリル 1 2と針状電極 2を一体化して針状電極一体型グリル 1 2とすること により、 本体の厚さ寸法を小さくすることができ、 構造がコンパクトになる。 ま た、 集塵部 1 0 4を独自に取り出せる構造であるために洗浄や交換など集塵部 1 0 4のメンテナンスを格段に向上させることができる。
本実施例では、 本発明の集塵装置をエアコンに組み込んだ例を示したが、 ファ ンヒーター、 除湿器など、 各種家電製品や産業機器に、 集塵装置として組み込み 可能である。 発明の効果
以上の説明から明らかなように、 本発明によれば集塵に使用するエネルギーを 低減し、 有害なオゾンの生成を低減して人体によりやさしい集塵装置を提供でき る。
また、 集塵に使用するエネルギーを低減し、 有害なオゾンの生成を低減して人 体によりやさしく、 マイナスイオンを同時に、 発生することにより人体によい影 響をもたらすという効果のある集塵装置を提供できる。
また、 更に、 放電電極の損耗が少なく、 付け替えなどのメンテナンスを減らす という効果のある集塵装置を提供できる。
また、 更に、 汚染環境を高いレベルで清浄化する集塵性能を長時間にわたって 発揮するという効果のある集塵装置を提供できる。
また、 本発明の集塵装置を備えることにより、 人にとってより質の高い環境を 実現させる空調装置を提供できる。
また、 集塵機能を付加しても本体がコンパクトなままで、 集塵部を独自に取り 出せることで集塵部のメンテナンス性を向上させることを可能にした集塵機能付
き空調装置を提供できる,

Claims

請求の範囲
1 . コロナ放電をさせずにイオンを放出するイオン放出手段とその下流側に設 置された集塵部で構成される集塵装置。
2 . イオン放出手段がマイナスイオンを放出する請求の範囲第 1項記載の集塵
3 . イオン放出手段の放電電極を 1もしくは複数個の線状電極とし、 線状電極 の両側にアース電極を設け、 線状電極に高電圧を印加した時の放電電流が線状電 極 0. l m当たり 1 A以下となるようにアースに接続された電極を絶縁体また は半導体で被覆した請求の範囲第 1項記載の集塵装置。
4. 前記イオン放出手段がマイナスィオンを放出する請求の範囲第 3項記載の
5 . イオン放出手段の放電電極を 1もしくは複数個の先端が鋭利な針状電極と した請求の範囲第 1項記載の集塵装置。
6. 前記イオン放出手段がマイナスィオンを放出する請求の範囲第 5項記載の
7 . 針状電極の先端部分周囲にコロナ放電を生じさせないよう絶縁体または半 導体を設けた請求の範囲第 5項記載の集塵装置。
8 . 針状電極 1個当たりの放電電流が 1 以下である請求の範囲第 5項記載
9. 針状電極が、 通風面に対して 4 O mm四方の面積当たり 1個以下で配置さ れた請求の範囲第 5項記載の集塵装置。
1 0. 針状電極の下流側にアースに接続した導電性の格子板を設置し、 針状電極 と格子板との間に集塵部を構成する濾材からなるフィルタを設けた請求の範囲第 5項に記載の集塵装置。
1 1 . フィル夕と導電性の格子板とをプリーツ状に形成し、 互いに重ね合わせる ようにして配置した請求の範囲第 1 0項に記載の集塵装置。
1 2. 針状電極の下流側に濾材からなるフィルタを設け、 フィルタの下流側の面 に導電性塗料を塗布して導電層を形成し、 導電層をアースに接続した請求の範囲 第 5項に記載の集塵装置。
1 3 . フィルタをプリーツ状に形成した請求の範囲第 1 2項に記載の集塵装置。
1 4.請求の範囲第 1乃至 1 3項のいずれかに記載の集塵装置を備えた空調装置。
1 5 . 請求の範囲第 5乃至 1 3項のいずれかに記載の集塵装置を備え、 その針状 電極をグリルに直接設けて粉塵を帯電させ、 内部に設けられた集塵部で粉塵を捕 集する集塵機能を有した空調装置。
PCT/JP2001/001402 2000-03-03 2001-02-26 Appareil depoussiereur et appareil de climatisation WO2001064349A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/926,427 US6635106B2 (en) 2000-03-03 2001-02-26 Dust collecting apparatus and air-conditioning apparatus
EP01906295A EP1175943A4 (en) 2000-03-03 2001-02-26 DUST COLLECTOR AND AIR CONDITIONING APPARATUS
JP2001563239A JP5089000B2 (ja) 2000-03-03 2001-02-26 集塵装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-58462 2000-03-03
JP2000058462 2000-03-03
JP2000-206492 2000-07-07
JP2000206492 2000-07-07

Publications (2)

Publication Number Publication Date
WO2001064349A1 WO2001064349A1 (fr) 2001-09-07
WO2001064349A9 true WO2001064349A9 (fr) 2001-11-22

Family

ID=26586702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001402 WO2001064349A1 (fr) 2000-03-03 2001-02-26 Appareil depoussiereur et appareil de climatisation

Country Status (6)

Country Link
US (1) US6635106B2 (ja)
EP (1) EP1175943A4 (ja)
JP (2) JP5089000B2 (ja)
CN (1) CN1232355C (ja)
TW (1) TW553773B (ja)
WO (1) WO2001064349A1 (ja)

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163669A1 (en) * 1998-11-05 2005-07-28 Sharper Image Corporation Air conditioner devices including safety features
US6544485B1 (en) * 2001-01-29 2003-04-08 Sharper Image Corporation Electro-kinetic device with enhanced anti-microorganism capability
US7220295B2 (en) * 2003-05-14 2007-05-22 Sharper Image Corporation Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices
US20050210902A1 (en) 2004-02-18 2005-09-29 Sharper Image Corporation Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes
US20050199125A1 (en) * 2004-02-18 2005-09-15 Sharper Image Corporation Air transporter and/or conditioner device with features for cleaning emitter electrodes
US20020150520A1 (en) * 1998-11-05 2002-10-17 Taylor Charles E. Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode
US7318856B2 (en) * 1998-11-05 2008-01-15 Sharper Image Corporation Air treatment apparatus having an electrode extending along an axis which is substantially perpendicular to an air flow path
US20030206837A1 (en) 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
US7695690B2 (en) * 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US6176977B1 (en) 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6632407B1 (en) * 1998-11-05 2003-10-14 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
US6350417B1 (en) * 1998-11-05 2002-02-26 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
FI113157B (fi) * 2002-04-11 2004-03-15 Lifa Iaq Ltd Oy Sähkösuodatinrakenne
US7056370B2 (en) * 2002-06-20 2006-06-06 Sharper Image Corporation Electrode self-cleaning mechanism for air conditioner devices
US6749667B2 (en) * 2002-06-20 2004-06-15 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
EP2540398A1 (en) * 2002-06-21 2013-01-02 Tessera, Inc. Spark management device and method
JP3970707B2 (ja) * 2002-07-12 2007-09-05 松下エコシステムズ株式会社 空気清浄機
KR100498401B1 (ko) * 2003-01-07 2005-07-01 엘지전자 주식회사 플라즈마 공기 정화기
US7405672B2 (en) * 2003-04-09 2008-07-29 Sharper Image Corp. Air treatment device having a sensor
US6984987B2 (en) * 2003-06-12 2006-01-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features
US7368004B2 (en) * 2003-07-03 2008-05-06 Matsushita Electric Industrial Co., Ltd. Electric dust collector
US7724492B2 (en) * 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US20050051420A1 (en) * 2003-09-05 2005-03-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with insulated driver electrodes
US7077890B2 (en) * 2003-09-05 2006-07-18 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US20050095182A1 (en) * 2003-09-19 2005-05-05 Sharper Image Corporation Electro-kinetic air transporter-conditioner devices with electrically conductive foam emitter electrode
US20050082160A1 (en) * 2003-10-15 2005-04-21 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with a mesh collector electrode
US7767169B2 (en) 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US20050146712A1 (en) * 2003-12-24 2005-07-07 Lynx Photonics Networks Inc. Circuit, system and method for optical switch status monitoring
US20050279905A1 (en) * 2004-02-18 2005-12-22 Sharper Image Corporation Air movement device with a quick assembly base
US7638104B2 (en) * 2004-03-02 2009-12-29 Sharper Image Acquisition Llc Air conditioner device including pin-ring electrode configurations with driver electrode
US20060018812A1 (en) * 2004-03-02 2006-01-26 Taylor Charles E Air conditioner devices including pin-ring electrode configurations with driver electrode
US7112236B2 (en) * 2004-04-08 2006-09-26 Fleetguard, Inc. Multistage space-efficient electrostatic collector
KR100606828B1 (ko) * 2004-07-02 2006-08-01 엘지전자 주식회사 공기조화기의 공기청정장치
KR100606721B1 (ko) * 2004-07-06 2006-08-01 엘지전자 주식회사 공기조화기의 공기청정장치
US20060016333A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
US20060018807A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with enhanced germicidal lamp
US20060016336A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with variable voltage controlled trailing electrodes
US20060018810A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with 3/2 configuration and individually removable driver electrodes
US7285155B2 (en) * 2004-07-23 2007-10-23 Taylor Charles E Air conditioner device with enhanced ion output production features
KR100600756B1 (ko) * 2004-09-14 2006-07-19 엘지전자 주식회사 연면 방전형 공기정화장치
KR100657476B1 (ko) * 2004-09-14 2006-12-13 엘지전자 주식회사 연면 방전형 공기정화장치
US7113402B2 (en) * 2004-10-01 2006-09-26 Lenovo (Singapore) Pte. Ltd. Systems, apparatus and method for reducing dust on components in a computer system
US20060112955A1 (en) * 2004-11-30 2006-06-01 Ranco Incorporated Of Delaware Corona-discharge air mover and purifier for fireplace and hearth
US7182805B2 (en) * 2004-11-30 2007-02-27 Ranco Incorporated Of Delaware Corona-discharge air mover and purifier for packaged terminal and room air conditioners
US7417553B2 (en) * 2004-11-30 2008-08-26 Young Scott G Surface mount or low profile hazardous condition detector
US7311756B2 (en) * 2004-11-30 2007-12-25 Ranco Incorporated Of Delaware Fanless indoor air quality treatment
US7226496B2 (en) * 2004-11-30 2007-06-05 Ranco Incorporated Of Delaware Spot ventilators and method for spot ventilating bathrooms, kitchens and closets
US7226497B2 (en) * 2004-11-30 2007-06-05 Ranco Incorporated Of Delaware Fanless building ventilator
JP3840579B2 (ja) * 2005-02-25 2006-11-01 ダイキン工業株式会社 空気調和装置
KR100624731B1 (ko) * 2005-04-11 2006-09-20 엘지전자 주식회사 연면 방전형 공기정화장치
US20070079464A1 (en) * 2005-10-07 2007-04-12 Ko-Wen Chiu Cleaning box and method for cleaning pipe by utilizing the same
NO323806B1 (no) * 2005-11-01 2007-07-09 Roger Gale Entrinns elektrostatisk stovutfeller
JP2007241244A (ja) * 2006-02-13 2007-09-20 Sharp Corp 帯電装置、画像形成装置、および帯電方法
US7647014B2 (en) * 2006-02-13 2010-01-12 Sharp Kabushiki Kaisha Pretransfer charging device and image forming apparatus including same
US7833322B2 (en) 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
US7485174B2 (en) * 2006-09-19 2009-02-03 Wang Dong-Lei Electrostatic Dust Collector
ES2301414B1 (es) * 2006-12-11 2009-03-16 Bsh Electrodomesticos España, S.A. Dispositivo y proceso para el limpiado de un medio gaseoso contaminado con particulas.
US7393385B1 (en) * 2007-02-28 2008-07-01 Corning Incorporated Apparatus and method for electrostatically depositing aerosol particles
IL182389A (en) 2007-04-10 2010-11-30 Yefim Riskin Method of air purification from dust and electrostatic filter
JP5067084B2 (ja) * 2007-09-11 2012-11-07 パナソニック株式会社 空気清浄フィルタおよび空気清浄装置
JP5097514B2 (ja) * 2007-11-22 2012-12-12 国立大学法人東京工業大学 ワイヤ電極式イオナイザ
US8628607B2 (en) * 2008-02-11 2014-01-14 Yadapalli Kondala Rao Vacuum pump suction filter meant for collecting impurities from function
JP5527208B2 (ja) * 2008-08-21 2014-06-18 パナソニック株式会社 電気集じん機
US7912656B2 (en) * 2008-09-03 2011-03-22 Massachusetts Institute Of Technology System and method for providing amplitude spectroscopy of a multilevel quantum system
US8961659B2 (en) * 2008-10-20 2015-02-24 Carrier Corporation Electrically enhanced air filtration system using rear fiber charging
KR101610024B1 (ko) * 2008-12-01 2016-04-21 삼성전자 주식회사 전기집진장치 및 그 전극
WO2010100411A1 (en) * 2009-03-02 2010-09-10 Darwin Technology International Limited System for enhancing air filter efficiency with external electrical dust charging device
US8409336B2 (en) * 2009-09-01 2013-04-02 Hunter Fan Company Air filter system
US8106367B2 (en) * 2009-12-30 2012-01-31 Filt Air Ltd. Method and ionizer for bipolar ion generation
DE102010034251A1 (de) * 2010-08-13 2012-02-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Verringerung von Rußpartikeln im Abgas einer Verbrennungskraftmaschine
US8807204B2 (en) * 2010-08-31 2014-08-19 International Business Machines Corporation Electrohydrodynamic airflow across a heat sink using a non-planar ion emitter array
US9028588B2 (en) * 2010-09-15 2015-05-12 Donald H. Hess Particle guide collector system and associated method
US9797864B2 (en) * 2011-05-24 2017-10-24 Carrier Corporation Current monitoring in electrically enhanced air filtration system
US20130047858A1 (en) * 2011-08-31 2013-02-28 John R. Bohlen Electrostatic precipitator with collection charge plates divided into electrically isolated banks
US20130047859A1 (en) * 2011-08-31 2013-02-28 John R. Bohlen Electrostatic precipitator cell with removable corona unit
US20130047857A1 (en) * 2011-08-31 2013-02-28 John R. Bohlen Air cleaner with an electrical current in a corona wire correlating to air speed
GB2499044B (en) 2012-02-06 2014-03-19 Dyson Technology Ltd A fan
GB2499042A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd A nozzle for a fan assembly
GB2499041A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd Bladeless fan including an ionizer
EP2836305B1 (en) * 2012-04-13 2017-08-23 Tecnologica S.A.S. di Vanella Salvatore & C. Filtration assembly
JP2013230454A (ja) * 2012-04-29 2013-11-14 Tornex Inc 電気集塵機用電源の制御方式
FR3000413B1 (fr) * 2012-12-27 2016-01-08 Centre Nat Rech Scient Dispositif pour controler la charge d'un aerosol en post-decharge
MX2015010577A (es) * 2013-02-15 2015-11-16 Tecnologica S A S Di Vanella Salvatore & C Aparato de filtracion de particulas para gases de combustion, gases de escape y similares y circuito de salida asociado.
CN103421398B (zh) * 2013-06-09 2016-04-06 深圳市天得一环境科技有限公司 自清洁静电集尘器及静电集尘极板表面涂料
CN103939998B (zh) * 2014-01-10 2016-09-28 宁波东大空调设备有限公司 室内净化新风机的导电带缠绕型机芯的加工方法
KR102255135B1 (ko) * 2014-01-24 2021-05-24 엘지전자 주식회사 공기조화장치
CN103817001A (zh) * 2014-03-08 2014-05-28 银花 太阳能大气污染净化塔
CN103868154B (zh) * 2014-03-21 2016-03-30 宁波东大空调设备有限公司 一种半封闭式空调伴侣空气净化器
JP6233589B2 (ja) * 2014-03-27 2017-11-22 株式会社富士通ゼネラル 空気調和機
JP6233590B2 (ja) * 2014-03-27 2017-11-22 株式会社富士通ゼネラル 空気調和機
KR102242769B1 (ko) * 2014-06-26 2021-04-21 엘지전자 주식회사 전기집진장치 및 그를 갖는 공기조화기
CN104307633A (zh) * 2014-06-30 2015-01-28 国家电网公司 静电除尘器
CN104084309A (zh) * 2014-07-03 2014-10-08 王健 半导体静电吸附装置
KR102199377B1 (ko) * 2014-07-08 2021-01-06 엘지전자 주식회사 전기집진장치 및 그를 갖는 공기조화기
EP3184175B1 (en) 2014-08-18 2021-03-03 Creative Technology Corporation Dust collection device
EP3204164B1 (en) 2014-10-08 2021-07-07 Sic S.r.l. Electrostatic filter for purifying a gas flow
WO2016067554A1 (ja) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 電気集塵装置
KR102478243B1 (ko) 2014-12-22 2022-12-19 삼성전자주식회사 전기 집진기
KR101647719B1 (ko) * 2015-02-25 2016-08-11 엘지전자 주식회사 전기집진 공기정화기
KR102481567B1 (ko) * 2015-02-27 2022-12-26 파나소닉 아이피 매니지먼트 가부시키가이샤 전기 집진 장치
WO2016143010A1 (ja) * 2015-03-06 2016-09-15 三菱電機株式会社 空気調和機
CN104707728A (zh) * 2015-03-25 2015-06-17 郑尔历 消除和控制pm2.5-pm0.5范围颗粒物的装置和方法
CN105107317B (zh) * 2015-08-03 2017-05-17 艾考林空气净化技术(北京)有限公司 恒流限压超低臭氧型静电式空气净化器
EP3162444B1 (en) * 2015-10-30 2021-09-15 LG Electronics Inc. Electric dust collector and air conditioner including the same, air conditioner using an electric dust collector
KR20170051893A (ko) * 2015-11-03 2017-05-12 현대자동차주식회사 전기식 집진필터
CN105413864B (zh) * 2015-12-02 2017-08-25 邹栋 智能空气净化器
JP2017120157A (ja) * 2015-12-28 2017-07-06 株式会社富士通ゼネラル 空気調和機
JP2017125651A (ja) * 2016-01-14 2017-07-20 株式会社富士通ゼネラル 空気調和機
CN105536988A (zh) * 2016-01-21 2016-05-04 合肥工业大学 一种具有浮尘定向收集的空气净化器结构
CN105781947B (zh) * 2016-03-06 2019-08-27 淄博环能海臣环保技术服务有限公司 一种等离子体空气净化无叶电风扇
US20170354980A1 (en) 2016-06-14 2017-12-14 Pacific Air Filtration Holdings, LLC Collecting electrode
US10882053B2 (en) 2016-06-14 2021-01-05 Agentis Air Llc Electrostatic air filter
US20170354979A1 (en) * 2016-06-14 2017-12-14 Pacific Air Filtration Holdings, LLC Electrostatic air cleaner
US10828646B2 (en) 2016-07-18 2020-11-10 Agentis Air Llc Electrostatic air filter
JP6692267B2 (ja) * 2016-09-20 2020-05-13 株式会社東芝 集塵装置および空気調和装置
CN206483573U (zh) * 2016-11-10 2017-09-12 广州澳兰斯水处理设备有限公司 一种静电式空气净化装置及空气净化器
CN106524455A (zh) * 2016-11-30 2017-03-22 湖州佑华机电设备有限公司 一种中央空调出风口的净化结构
CN106766048A (zh) * 2016-11-30 2017-05-31 湖州佑华机电设备有限公司 一种中央空调出风口结构
WO2018143742A2 (ko) * 2017-02-03 2018-08-09 (주)동일기연 필터링 장치
KR102336514B1 (ko) * 2017-03-06 2021-12-08 삼성전자주식회사 전기집진장치 및 집진유닛의 제조방법
KR102167328B1 (ko) * 2017-04-27 2020-10-19 엘지전자 주식회사 전기집진장치
CN207599883U (zh) * 2017-06-01 2018-07-10 新威离子科技有限公司 空气净化器
KR20200070216A (ko) * 2017-10-30 2020-06-17 파나소닉 아이피 매니지먼트 가부시키가이샤 전기 집진 장치
JP2019120858A (ja) * 2018-01-10 2019-07-22 エイチピー プリンティング コリア カンパニー リミテッド 画像形成装置
CN108679000B (zh) * 2018-04-28 2019-06-11 浙江大学 一种具有自清洁功能的离子风扇
CN108514782A (zh) * 2018-05-29 2018-09-11 苏州英菲蒙拓环境科技有限责任公司 一种高性能hvepc滤芯
US10875034B2 (en) 2018-12-13 2020-12-29 Agentis Air Llc Electrostatic precipitator
US10792673B2 (en) 2018-12-13 2020-10-06 Agentis Air Llc Electrostatic air cleaner
KR102245545B1 (ko) * 2018-12-19 2021-04-28 주식회사 에이블프로윈 공기 정화 장치
US11524304B2 (en) * 2018-12-21 2022-12-13 Robert Bosch Gmbh Electrostatic charging air cleaning device and collection electrode
US11268711B2 (en) 2018-12-21 2022-03-08 Robert Bosch Gmbh Electrostatic charging air cleaning device
EP3932563A4 (en) * 2019-04-02 2022-04-27 Samsung Electronics Co., Ltd. CHARGER AND DUST COLLECTOR
DE102019219886A1 (de) * 2019-12-17 2021-06-17 Robert Bosch Gmbh Luftreinigungsvorrichtung mit elektrostatischer aufladung und sammlungselektrode
US20230046930A1 (en) * 2019-12-27 2023-02-16 Creative Technology Corporation Electrostatic precipitator
DE102020004010A1 (de) 2020-07-03 2022-01-05 Paragon Gmbh & Co. Kgaa Elektrische Abscheidevorrichtung für Fahrzeugklimaanlagen
US11623018B2 (en) 2020-08-31 2023-04-11 Promethium Limited Photoactivated semiconductor photocatalytic air purification
US11612673B2 (en) 2020-08-31 2023-03-28 Promethium Limited Photoactivated semiconductor photocatalytic air purification
KR102497128B1 (ko) * 2022-02-10 2023-02-08 유한책임회사 센도리 먼지집진용 열교환소자를 구비하는 공기순환장치
KR102467577B1 (ko) * 2022-02-18 2022-11-16 주식회사 청풍인 교체주기를 늘이기 위한 필터를 구비하는 열회수형 환기장치
CN114832943A (zh) * 2022-04-29 2022-08-02 中国计量大学 应用于高风速下的紧凑型两级式静电除气溶胶颗粒装置
EP4357025A1 (en) 2022-10-21 2024-04-24 Hengst SE Active field polarized media air cleaning device

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR962028A (ja) * 1950-05-27
US1343285A (en) * 1913-03-05 1920-06-15 Int Precipitation Co Means for separating suspended matter from gases
US2129783A (en) * 1935-10-15 1938-09-13 Westinghouse Electric & Mfg Co Electrical precipitator for atmospheric dust
SE354199B (ja) * 1969-09-30 1973-03-05 G Romell
US4231766A (en) * 1978-12-11 1980-11-04 United Air Specialists, Inc. Two stage electrostatic precipitator with electric field induced airflow
US4376642A (en) * 1980-08-18 1983-03-15 Biotech Electronics Ltd. Portable air cleaner unit
DE3148380C2 (de) * 1981-12-07 1986-09-04 Philips Patentverwaltung Gmbh, 2000 Hamburg Ionengenerator zur Erzeugung einer Luftströmung
JPS59209664A (ja) * 1983-05-12 1984-11-28 Nippon Soken Inc 送風装置
JPS60122062A (ja) * 1983-12-05 1985-06-29 Nippon Soken Inc 空気清浄器
JPS60147263A (ja) * 1984-01-10 1985-08-03 Nippon Soken Inc 空気清浄器
JPS61138550A (ja) * 1984-12-12 1986-06-26 Matsushita Electric Ind Co Ltd エアフイルタ
JPS634185Y2 (ja) * 1985-07-01 1988-02-02
JPS6283553A (ja) * 1985-10-07 1987-04-17 Toyota Motor Corp 車両用複列ベルト式無段変速機
JPH0137709Y2 (ja) * 1985-11-14 1989-11-14
JPS639238A (ja) * 1986-06-30 1988-01-14 Toshiba Corp 無線通信の制御方式
JPS639238U (ja) * 1986-07-02 1988-01-21
JPS63138550A (ja) * 1986-12-01 1988-06-10 Toshiba Corp テ−プテンシヨンレバ−装置
JPH0357123U (ja) * 1989-10-06 1991-05-31
JP3057123B2 (ja) 1992-05-19 2000-06-26 株式会社神戸製鋼所 可搬式産業用ロボット
JP3261167B2 (ja) * 1992-07-20 2002-02-25 松下電工株式会社 電気集塵フィルタ
SE504098C2 (sv) * 1993-11-24 1996-11-11 Tl Vent Ab Avskiljare för ett elektrofilter
DE4400420A1 (de) * 1994-01-10 1995-07-13 Maxs Ag Verfahren und Vorrichtung zum elektrostatischen Abscheiden von Verunreinigungen, wie Schwebstoffe oder dergleichen aus einem Gasstrom
US6077334A (en) * 1995-01-17 2000-06-20 Joannou; Constantinos J. Externally ionizing air filter
US5573577A (en) * 1995-01-17 1996-11-12 Joannou; Constantinos J. Ionizing and polarizing electronic air filter
JPH10235221A (ja) * 1996-06-26 1998-09-08 Matsushita Electric Works Ltd 空気清浄器
JP3710887B2 (ja) * 1996-08-16 2005-10-26 シチズン時計株式会社 装身具の中留構造
RU2169622C2 (ru) * 1996-10-09 2001-06-27 Пауэрспан Корп. Способ преобразования so2 и nox в кислоты посредством барьерного разряда и устройство для его осуществления
DE19650585C2 (de) * 1996-12-06 2001-11-22 Appbau Rothemuehle Brandt Verfahren und Vorrichtung zur elektrischen Aufladung und Abtrennung schwierig abzuscheidender Partikel aus einem Gasfluid
SE512593C2 (sv) * 1997-05-06 2000-04-10 Blue Air Ab Förfarande och anordning för rening av ett gasformigt medium
JP3057123U (ja) * 1998-07-29 1999-03-30 丸子電子株式会社 高圧静電位印加電極
US6312507B1 (en) * 1999-02-12 2001-11-06 Sharper Image Corporation Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box
US6245126B1 (en) * 1999-03-22 2001-06-12 Enviromental Elements Corp. Method for enhancing collection efficiency and providing surface sterilization of an air filter
DE19913614C1 (de) * 1999-03-25 2000-05-11 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Behandlung von strömenden Gasen, insbesondere von Abgasen
US6497754B2 (en) * 2001-04-04 2002-12-24 Constantinos J. Joannou Self ionizing pleated air filter system

Also Published As

Publication number Publication date
JP5369210B2 (ja) 2013-12-18
JP2012154621A (ja) 2012-08-16
US6635106B2 (en) 2003-10-21
EP1175943A4 (en) 2008-07-02
CN1232355C (zh) 2005-12-21
EP1175943A1 (en) 2002-01-30
CN1364100A (zh) 2002-08-14
WO2001064349A1 (fr) 2001-09-07
US20030005824A1 (en) 2003-01-09
TW553773B (en) 2003-09-21
JP5089000B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5369210B2 (ja) 集塵装置および空調装置
JP3852429B2 (ja) 空気清浄機
JP2017070949A (ja) 電子空気浄化器、およびその関連するシステム、ならびにその方法
AU2021277606B2 (en) Corrugated Filtration Media for Polarising Air Cleaner
US9764331B2 (en) Filter media for active field polarized media air cleaner
JP2007007589A (ja) 電気集塵デバイス及びこれを組込んだ空気清浄装置
JP2007029845A (ja) 電気集塵デバイス及び該電気集塵デバイスを搭載した空気処理装置
KR20190134362A (ko) 집진 필터
JP3456959B2 (ja) 集塵装置
JPH0223218B2 (ja)
JP2020138178A (ja) エアフィルタユニットおよびそれを用いた空気清浄装置
JP7196550B2 (ja) 空気清浄装置
JP3019961B2 (ja) 電気集塵機
JP2007196199A (ja) 放電装置並びに該放電装置を備えた空気浄化装置及び起風装置
JPH1190262A (ja) 空気清浄装置
JPH11276822A (ja) 集塵・脱臭フィルタ
JPH0263561A (ja) 空気清浄機の集塵装置
JPS60183051A (ja) 静電式空気清浄機
JP4591086B2 (ja) 放電装置及び空気浄化装置
JPH10236154A (ja) 空気清浄装置
JPH11276821A (ja) 集塵・脱臭フィルタ
JPS62140657A (ja) イオン風式空気清浄器
JPH07289938A (ja) 空気清浄装置
JPH11221492A (ja) 電気式集塵エレメント及び空気清浄機
JPH09122534A (ja) 空気清浄機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800411.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2001 563239

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001906295

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09926427

Country of ref document: US

AK Designated states

Kind code of ref document: C2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

COP Corrected version of pamphlet

Free format text: PAGE 13, DESCRIPTION, REPLACED BY CORRECT PAGE 13

WWP Wipo information: published in national office

Ref document number: 2001906295

Country of ref document: EP