WO2001062373A1 - Kavitationsmischer - Google Patents

Kavitationsmischer Download PDF

Info

Publication number
WO2001062373A1
WO2001062373A1 PCT/EP2001/002253 EP0102253W WO0162373A1 WO 2001062373 A1 WO2001062373 A1 WO 2001062373A1 EP 0102253 W EP0102253 W EP 0102253W WO 0162373 A1 WO0162373 A1 WO 0162373A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
difficult
flow around
around
flow chamber
Prior art date
Application number
PCT/EP2001/002253
Other languages
English (en)
French (fr)
Other versions
WO2001062373B1 (de
Inventor
Rolf Schüler
Original Assignee
Locher, Manfred, Lorenz
Schüler & Locher Oeg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Locher, Manfred, Lorenz, Schüler & Locher Oeg filed Critical Locher, Manfred, Lorenz
Priority to AU2001256171A priority Critical patent/AU2001256171A1/en
Priority to US10/220,097 priority patent/US6935770B2/en
Priority to EP01929373A priority patent/EP1280598B1/de
Priority to AT01929373T priority patent/ATE258080T1/de
Priority to DE50101363T priority patent/DE50101363D1/de
Publication of WO2001062373A1 publication Critical patent/WO2001062373A1/de
Publication of WO2001062373B1 publication Critical patent/WO2001062373B1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions

Definitions

  • the invention relates to a device for mixing the components of a mass flow flowing through, the components in particular being solid, liquid or gaseous by means of a hydrodynamic supercavitation field in order to produce a mixture, in particular an emulsion or suspension.
  • the phenomenon of hydrodynamic cavitation thus consists in the formation of cavities filled with a vapor gas mixture, the so-called cavitation bubbles, in the interior of a rapidly flowing liquid stream or at edge areas of a body which is difficult to flow around and which is arranged in the flowing liquid stream, in each case as a result of a liquid flow (flow) condition local pressure drop.
  • Hydrodynamic cavitation occurs in all hydraulic systems in which large pressure differences occur, such as turbines, pumps and high-pressure nozzles.
  • cavitation which is caused by a tensile stress in the water or a liquid in the flow or acoustic field.
  • Another type of cavitation is to locally deposit energy in the liquid, for example by means of a spark or a laser pulse. Details of the latter can be found, for example, in Olgert Lindau's diploma thesis, "Dynamics and Luminescence of Laser-Generated Cavitation Bubbles", 1998, made in the Third Physical Institute of the Georg-August University in Göttingen.
  • cavitation and the associated effects can be used to mix the components of a flowing mass flow.
  • two different liquids or a liquid and a solid (particle) or a liquid and a gas can be mixed together.
  • the mixing, emulsifying and dispersing action of cavitation is based on a large number of forces, which result from collapsing cavitation bubbles, on the mixture of components to be treated.
  • the imploding of cavitation bubbles in the vicinity of the interface between two liquid-solid phase regions is accompanied by the dispersion of the solid phase (particles) in the liquid phase (liquid) and the formation of a suspension.
  • the imploding of cavitation bubbles in the vicinity of the interface of two different liquid phases is the comminution of one liquid in the other and the formation of one Emulsion accompanied.
  • the interface of the continuous phases is destroyed, that is, their erosion, and the formation of a dispersion medium and a disperse phase occurs.
  • US-A-3834982 describes a device for producing a suspension of fiber materials.
  • the device consists of a housing with an inlet opening for the supply of components of a fiber material suspension and an outlet opening for the removal of the cavitated fiber material suspension, as well as a flow chamber with a one-piece cylindrical body which is difficult to flow around and which is generally also due to its function Cavitator is called).
  • the component flow flows through the flow chamber and the cylindrical body which is difficult to flow and is placed therein and which is arranged transversely to the direction of flow, so that it produces a local tapering of the fiber material suspension.
  • a hydrodynamic cavitation field is thus formed behind the cylinder, i.e. the cylinder creates a spatial area in the flowing mass flow, in which cavitation bubbles occur in a dynamic process, exist and collapse (implode).
  • the cavitation mixer described in SU-A-1088782 additionally has a device with which the
  • Air pressure source generated pressure vibrations can be superimposed.
  • the cavitation mixer disclosed in SU-A-1678426 has an axially elastically mounted body which is difficult to flow around and which is said to cause its own resonance vibrations in the liquid medium.
  • a further cavitation mixer which has two hemispheres as a body which is difficult to flow around and which delimit a rectangular groove between them.
  • the pulsation of the current in the groove should act on the cavitation area and thereby increase the frequency of cavitation bubbles and their intensity.
  • cavitation mixers in which the mixing effect is to be improved by attempting to improve the cavitation effect by means of further tear-off edges or superimposition with pressure waves which correspond to further tear-off edges.
  • DE-A-3610744 mentions a device for direct ventilation and circulation, in particular of waste water, which generates a cavitation field by means of a wing screw and mixes air into the water.
  • US-A-4127332 discloses another mixing device which uses cavitation for this purpose. Compared to the above-mentioned cavitation mixers, in which only one cavitation field is generated in each case in order to mix two different components of a system, the cavitation effect and thus the mixing effect in cavitation mixers that produce a so-called supercavitation field, i.e. a superposition of several cavitation fields, significantly improved.
  • DE-A-4433744 discloses a cavitation mixer which, as a body which is difficult to flow around (cavitator), has a truncated cone which is formed from a plurality of partial bodies which are difficult to flow around, between each of which a cavity through which there is a flow.
  • This body, which is difficult to flow around is arranged in a fixed position in a passage chamber which, viewed in the direction of flow, has a constant circular cross section in the entire region of the body which is difficult to flow around.
  • a first cavitation field is generated in a conventional manner by flowing around the entire body.
  • the flowable cavities are another source of cavitation fields caused by the
  • Superposition of the individual cavitation fields creates a so-called supercavitation field and causes a multiplication of the cavitation effect of each individual cavitation field.
  • Hydrodynamic supercavitation generators as in DE-A-4433744 represent effective mixing devices which can be used to process a fluid consisting of several components, for example to mix, emulsify, homogenize, disperse or dissolve them, or to add liquids with gases saturate.
  • Super cavitation generators are universal devices for processing a wide range of products in the chemical, petrochemical, cosmetic and pharmaceutical industries, as well as in the ceramics and food industries and in other economic sectors.
  • the mixing and homogenization processes in the mixer are based on the use of hydrodynamic cavitation and are bound to such physical effects as pressure waves, accumulation, self-excited vibrations, vibration turbulization and rectified diffusion, for example, which arise when cavitation bubbles collapse.
  • the volumetric concentration of the cavitation bubbles in the apparatus reaches orders of magnitude of 1 to 10 10 1 / m 3 .
  • pressure pulses become initiated that reach 10 3 MPa and more, just as temperatures of around 5000 K occur when a cavitation bladder implosion in the bladder (see, for example, VDI-Nachzin, April 1, 1999, No.
  • EP-A-0644271 also discloses a hydrodynamic supercavitation mixer which contains a body which is difficult to flow around and which consists of at least two elements which ensure the formation of own cavitation fields.
  • the elements or partial bodies from which the body which is difficult to flow around can be in the form of hollow truncated cones or hemispheres, and can also each be attached to a hollow rod. These rods are designed so that they can be inserted into each other and each connected to individual devices so that they can be axially displaced relative to each other. In this way, the individual elements forming the body, which is difficult to flow around, can be axially displaced relative to one another in the direction of flow and can thus be arranged at different distances from one another.
  • the properties of the hydrodynamic cavitation field caused by each element can be varied and adjusted not only by the shape of the elements but also by their relative distance from one another, which in turn depends on the superposition of the individual cavitation fields, i.e. the supercavitation field of the cavitation mixer has a corresponding effect.
  • EP-A-644271 also teaches that in order to optimize the processes of dispersion and emulsification, it is expedient to introduce a gaseous component into the hydrodynamic flow of components at least in a section of its local constriction - or immediately behind it.
  • the elements of the poorly flowable body can also consist of an elastic non-metallic material.
  • the cavitation mixer can also contain a further additional body which is difficult to flow around, which is arranged behind the first body which is difficult to flow around, in the flow direction and is connected to it by an elastic element which can be moved along the axis of the flow channel.
  • the method or the device according to EP-A-0644271 offers the possibility of regulating the intensity of the resulting hydrodynamic supercavitation field in adaptation to the specific technological process sequences.
  • the body which is difficult to flow around as a whole is arranged at a fixed location in a flow channel which, in the region of the body which is difficult to flow around and in the direction of flow, also has a constant circular cross section.
  • Prior art super cavitation generators generally provide good results, however there is a need for improvement in many ways. It is therefore an object of the present invention to provide a device for mixing the constituents or components of a mass flow flowing through by means of at least one hydrodynamic supercavitation field, in such a way that the mass flow treated is extremely homogeneous and remains so over an arbitrarily long period of time, even if the Apparatus for mixing components which are usually difficult to mix is used, which components cannot be mixed with devices according to the prior art, or can only be mixed poorly and / or only for a relatively short time.
  • additives such as additives or emulsifiers
  • a device for mixing the components of a mass flow flowing through according to the present invention - hereinafter referred to as super cavitation mixer - comprises a housing with at least one inlet opening and at least one outlet opening. All or part of the mass flow to be mixed is introduced into the at least one inlet opening, and after the application of a hydrodynamic supercavitation field, the mass flow is led out through the at least one outlet opening.
  • the essential components of the supercavitation mixer include a flow chamber which is part of the housing and a body which is difficult to flow around and which is arranged in the flow chamber by means of a holder.
  • the body that is difficult to flow around has at least two areas that are difficult to flow around, each of which ensures local flow restriction in the mass flow flowing through the flow chamber in the area of the body that is difficult to flow around.
  • the cross section of the flow chamber which is taken perpendicular to its central axis, becomes larger in at least a part of the region of the flow chamber, which surrounds the body which is difficult to flow around, in the direction of flow of the mass flow flowing through the flow chamber. This widening part of the flow chamber is essential for the generation of the highly effective supercavitation field according to the invention.
  • the partial areas that are difficult to flow around and the body that is difficult to flow around as a whole are the sources for several cavitation fields that overlap and thus form a supercavitation field.
  • the supercavitation field provided by the supercavitation mixer according to the present invention is suitable for particularly effectively mixing or homogenizing a wide variety of components. With the super cavitation mixer, even components that are normally difficult to mix can be converted into particularly homogeneous and extremely long-term stable mixtures - without additional additives such as emulsifiers. If the components are liquid, emulsions are obtained, if one of the components is liquid and the other is solid, that is to say, for example, consists of particles with a certain size distribution, suspensions are obtained in which the particle size is considerably reduced.
  • the supercavitation mixer according to the invention can also be used to mix gaseous and liquid components or to dissolve a gaseous component particularly effectively in one or more liquid components.
  • Some examples of possible mixtures are water-diesel suspensions, the homogenization of food or colors, or the mixing or dissolution of chlorine gas in water.
  • constituents or components to be mixed do not necessarily have to be of different atomic or molecular compositions.
  • two components to be mixed can each have the same chemical composition, except that one component is in the liquid phase and the other component is in the solid phase.
  • Two or more components to be mixed can also be the same in each case contain chemical components, only in different concentrations.
  • recycling or multiple treatment of a multicomponent mass flow which has already been treated once with the supercavitation mixer according to the invention is also possible if this is advantageous for process engineering or other reasons.
  • a further advantageous embodiment of the invention consists in coupling a plurality of supercavitation mixers according to the invention in such a way that their respective supercavitation fields are superimposed on one another in a common area of a common flow chamber, which in turn increases the mixing effect of the individual supercavitation fields.
  • Another advantage of such an embodiment is that, with the same total flow rate - in comparison to a correspondingly dimensioned single super cavitation mixer with a large, powerful pump - only several small pumps are required, which is much more effective in terms of process technology.
  • the body of the supercavitation mixer which is difficult to flow around, can be displaced axially along the direction of the central axis of the flow chamber. This makes it possible to position the body which is difficult to flow around in the at least one widening region of the flow chamber in such a way that, depending on the type of components to be mixed, an optimal cavitation effect or an optimal supercavitation field is provided, so that an optimally homogeneous and long-term stable mixture can be achieved. It goes without saying that further process parameters or result parameters can also be set or adjusted in this way.
  • a further advantageous embodiment of the invention according to claim 3 or 4 consists accordingly in that the barely flowable sub-body consists of a plurality of individual sub-bodies which are difficult to flow around (which correspond to the sub-regions which are difficult to flow around), which are connected to one another and arranged such that they all - or only a few or only one - can be moved independently of one another along the direction of the central axis of the flow chamber.
  • the supercavitation field and thus the mixing action of the supercavitation mixer can also be regulated so that, depending on the process parameters and the type of components to be mixed, desired properties of the multicomponent mass flow, such as homogeneity and stability, can be optimally regulated.
  • At least one of the partial areas or partial bodies of the body which is difficult to flow around is designed such that its cross section, which is taken perpendicular to the central axis of the flow chamber, is at the end of the partial area or partial body which faces the input opening of the housing is smaller than the end which faces the output opening of the housing.
  • the flow chamber of the super cavitation mixer has a bulge in its wall, which is formed, for example, in a bulge-like protuberance all the way along its base.
  • This bulge can be arranged at a corresponding point in relation to the body which is difficult to flow around, in such a way that the supercavitation field is influenced in a targeted manner and its mixing effect is optimized.
  • the body which is difficult to flow around consists at least partially of an elastic non-metallic material or has a corresponding coating. This avoids a destructive reaction of the cavitation fields on the apparatus itself.
  • part of the mass flow to be mixed or a specific component thereof can be introduced directly into the flow chamber via a correspondingly designed holder and a correspondingly designed body which is difficult to flow around and which each have corresponding cavities.
  • the supercavitation field or its mixing action can in turn be influenced in a targeted manner, in particular depending on the type of components to be mixed, in such a way that an optimal mixing action is achieved.
  • both the body which is difficult to flow around and the mass flow in the flow-through chamber can each be subjected to ultrasound.
  • the body, which is difficult to flow around can be set in vibration, for example, which causes the formation of cavitation fields or can increase their mixing effect.
  • the application of ultrasound to the mass flow with ultrasound can cause additional ultrasound cavitation and can intensify the cavitation fields already generated by the body, which is difficult to flow around, or increase their mixing effect.
  • reinforcement of the mixing effect or the cavitation fields is also understood here to mean any modification of the properties of the cavitation fields (for example the size distribution of the cavitation bubbles, their spatial distribution or their potential energy before their implosion), which contributes to the mass flow to be mixed after the Treatment has better or specifically desired properties.
  • the mass flow flowing through the flow-through chamber can also be acted upon correspondingly with laser light of corresponding intensity and / or wavelength in a corresponding one or more corresponding spatial areas.
  • La shows a schematic cross-sectional view of a first exemplary embodiment of the invention
  • Fig. Lb is a schematic cross-sectional view of a second exemplary embodiment of the invention, which is a modification of the first embodiment of Fig. La;
  • FIG. 2a shows a cross-sectional view of an example of a body which is difficult to flow around for the supercavitation mixer according to the invention
  • FIG. 2b shows a cross-sectional view of a modification of the exemplary difficult-to-flow body from FIG. 2a;
  • FIG. 2c shows a cross-sectional view of a further modification of the example body of FIGS. 2a and 2b which is difficult to flow around;
  • FIGS. 3a to 3f cross-sectional views for exemplary partial areas of the body which are difficult to flow around, in particular its end partial area facing the outlet opening of the housing;
  • FIGS. 4a and 4b are schematic plan views in the flow direction of exemplary bodies which are difficult to flow around;
  • Fig. 5 is a perspective view of an exemplary spiral device with helical trained elements that can be arranged at the beginning and / or end of the flow chamber to additionally mix the mass flow flowing through;
  • Fig. 6 is a schematic cross-sectional view of an exemplary coupling of two supercavitation mixers according to the invention, such that their respective supercavitation fields overlap spatially.
  • reference numeral 100 in each case denotes a device for mixing the components of a mass flow flowing through by means of a hydrodynamic supercavitation field, i.e. an overlay of several cavitation fields.
  • This device according to the invention is called supercavitation mixer 100 below.
  • FIGS. 1 a and 1 b only serve to illustrate the essential properties of a supercavitation mixer 100 according to the invention, but are otherwise not to be understood as restrictive.
  • FIG. La is a schematic cross-sectional view in the longitudinal direction of a supercavitation mixer 100 according to an exemplary first embodiment of the invention.
  • the supercavitation mixer 100 comprises a housing 1 which has an inlet opening 2 and an outlet opening 3. Part or all of the multicomponent mass flow to be mixed is fed through the inlet opening 2, typically by means of a pump device (not shown). The mixed mass flow is then removed through the outlet opening 3.
  • the ones to be mixed Components of the mass flow can be solid, liquid or gaseous, that is to say the mixed mass flow removed after the treatment is, for example, an emulsion, a suspension, a liquid saturated with dissolved gas or other, essentially fluid mixtures or mixtures.
  • the housing 1 further comprises a flow chamber 4 and a body 8 which is difficult to flow around by means of a holder 6.
  • the holder 6 is designed and arranged such that it enters the housing through a further opening 5 in the housing 1 protrudes in such a way that the body 8, which is difficult to flow around, is positioned in the flow chamber 4.
  • the flow chamber 4 the body 8 is difficult to flow around and the holder 6 each consist of a rotationally symmetrical body, which are arranged so that their axes of symmetry coincide, that is, equal to the central axis of the flow chamber 4.
  • the bracket 6 consists essentially of a hollow rod, i.e. has a cavity 63 therethrough with an inlet opening 61 and an outlet opening 62.
  • the body 8 which is difficult to flow around, has a central, continuous bore 83 along its central axis with the associated inlet opening 81 and outlet opening 82.
  • the outlet opening 62 of the rod or holder 6 is connected to the inlet opening 81 of the body which is difficult to flow around, and the holder 6 and the body which is difficult to flow around
  • Bodies 8 are arranged in the housing 1 or the flow chamber 4 in such a way that their central or
  • the flow direction of the mass flow flowing through the flow chamber 4 here and below is always to be understood as the mean or effective direction of the mass flow flowing through the flow chamber 4. This means that averaging over turbulences and the like should be avoided. If the flow chamber 4 - as shown in FIGS. 1 a and 1 b - is rotationally symmetrical or essentially rotationally symmetrical, then the flow direction is the same as the direction of the axis of symmetry or central axis of the
  • the body 8 which is difficult to flow around has at least two partial areas 80 which are difficult to flow around, between each of which a space 87 through which there is a flow.
  • the body which is difficult to flow around creates a plurality of cavitation fields which overlap one another, and thus in particular in the flow direction behind form a supercavitation field around the body 8, which is difficult to flow around.
  • FIG. 2a shows an enlarged schematic cross-sectional view in the longitudinal direction of the exemplary body 8 which is difficult to flow around in the exemplary first embodiment of FIG.
  • the subareas 80 which are difficult to flow around in FIG. 2a the shape of a truncated cone to generate cavitation fields. As can be seen in particular in FIG.
  • the last two sub-regions 80 of the body 8 which are difficult to flow around are for this purpose designed together with their associated intermediate space 87 as a whole so that this entirety has a cross-section (which is taken perpendicular to the central axis of the flow chamber 4), the surface of which, viewed in the direction of flow of the mass flow flowing through the flow chamber 4, only increases continuously, then smaller and then bigger again.
  • the outer circumference (the circumferential line) of the end of the body 8 which is difficult to flow around according to the first embodiment has two local minima and two local maxima.
  • the last area 80 which is difficult to flow around here has a hollow end area 84 into which the above end outlet opening 82 also opens.
  • the truncated cones 80 are each arranged one behind the other in such a way that the area of their cross section, which is taken perpendicular to the central axis of the flow chamber 4, becomes larger when viewed in the direction of flow.
  • the (truncated) tip of each truncated cone faces the mass flow flowing through the flow chamber 4, while the base of each truncated cone is closest to the outlet opening 3 of the housing. This also applies to the last two sub-areas 80 which are difficult to flow around in the first embodiment.
  • the truncated cones are designed and arranged such that - seen in the direction of flow - each subsequent truncated cone protrudes somewhat further into the flow - in the direction perpendicular to the central axis of the flow chamber 4 - than the previous truncated cones. This also applies analogously to the last two subareas 80 that are difficult to flow around.
  • the flow chamber 4 of the other at their beginning that is, at the end of the housing 1 is the input port 2 to the next, a narrowing in the direction of flow through-flow chamber 42, to which the widening Flow chamber section 41 connects.
  • the cross-sectional area perpendicular to the central axis of the flow chamber 4 of the narrowing flow chamber section 42 is circular and increases continuously in the direction of flow, so that. a flow restriction is provided and the formation of the cavitation fields in the subsequent area of the flow chamber 4 is further optimized by means of the body 8 which is difficult to flow around.
  • 1 b is a schematic cross-sectional view in the longitudinal direction of a supercavitation mixer 100 according to an exemplary second embodiment of the invention, which represents a modification of the exemplary first embodiment of FIG.
  • the second embodiment of the invention differs from the first only in two modifications.
  • the first modification relates to the body 8 which is difficult to flow around, which in the second embodiment is designed in such a way that each of its partial regions 80 which is difficult to flow around and which is in the form of a truncated cone is formed as a part 10.
  • the two last partial areas 80 of the first embodiment which are difficult to flow around, as seen in the direction of flow, are now designed as a single partial body 10.
  • the flow-through spaces 87 between the partial areas 80 or partial bodies 10 which are difficult to flow around are realized by means of spacers 9.
  • the body 8 of the second embodiment which is difficult to flow around has in particular the same shape as that of the first embodiment. Compare also FIG. 2b, which shows an enlarged schematic cross-sectional view in the longitudinal direction of the exemplary body 8 which is difficult to flow around, of the exemplary second embodiment of FIG. 1b, with the analogous FIG. 2a.
  • the second modification relates to the flow chamber 4, which in the second embodiment additionally has a bulge 20.
  • Fig. Lb adjoining the widening flow chamber section 41 of the flow chamber 4 is an area of the flow chamber which has a rotationally symmetrical bulge 20 in the wall of the Flow chamber 4 has along its circumference, this bulge 20 is located partially in the end region of the body 8 which is difficult to flow around.
  • the enlargement of the cross section of the flow chamber 4 in the flow direction due to the bulge 20 can further strengthen and optimize the cavitation effect and mixing effect of the supercavitation mixer 100 according to the second embodiment.
  • the bulge 20 can also be located elsewhere, i.e. seen in the direction of flow, it can also begin directly behind - or a little bit behind - the body 8 which is difficult to flow around, or it can also be arranged completely in the region of the body 8 which is difficult to flow around - for example around its center or its end.
  • the bulge 20 does not necessarily have to be rotationally symmetrical in a corresponding embodiment, even if the flow chamber 4 is rotationally symmetrical, just as the bulge 20 does not have to be formed continuously or completely along the circumference of the flow chamber 4.
  • the shape and arrangement of one or more bulges 20 results solely from the fact that the cavitation and mixing action of the supercavitation mixer 100 according to the invention is strengthened and optimized.
  • Super cavitation mixer 100 is characterized in particular in that the cross section of the flow chamber 4, which is taken perpendicular to its central axis, at least in a part of the area surrounding the body 8, which is difficult to flow around, in the flow direction of the mass flow flowing through the flow chamber 4.
  • This widening part of the flow chamber 4 is essential for the generation of the highly effective supercavitation field according to the invention, since the cavitation fields then caused by the body 8, which is difficult to flow around, have a particularly high cavitation or mixing effect, that is, their superposition - the supercavitation field - is in the Able to produce a particularly homogeneous and particularly long-term stable mixture of the components of a mass flow flowing through the flow chamber 4, compared to the mixtures known to date according to the prior art, even for components which are very difficult to mix according to the prior art, and also without additives which have a mixing effect (additives), as has been shown experimentally.
  • this widening part of the flow chamber 4 can generally be implemented in such a way that the flow chamber 4 according to the present invention as a whole or only in a partial area or in several, not necessarily related partial areas, the at least a part of the body which is difficult to flow around 8 surrounded, is designed so that the cross section of the flow chamber 4 in this widening part of the flow chamber 4 is larger in the flow direction of the mass flow flowing through the flow chamber 4.
  • This widening part of the flow chamber 4 can in particular be realized by a continuously expanding, rotationally symmetrical flow chamber section 41 as shown in FIG. 1 a, or solely by a front partial area of a bulge 20, or by a combination of two such areas 41 and 20 as shown in FIG. 1b.
  • Other, not necessarily rotationally symmetrical or corresponding individual or distributed partial areas of a flow chamber 4 that extend all around the flow chamber 4, provided that they are all only at least partially in the region of the body 8 which is difficult to flow around and their cross section in the flow direction of the mass flow flowing through the flow chamber 4 is larger are also suitable.
  • the body which is difficult to flow around creates several cavitation fields which overlap one another and thus form a supercavitation field behind the body 8 which is difficult to flow around, in particular in the direction of flow. It should be noted that this supercavitation field - depending on the specific one Design of the body 8 which is difficult to flow around, the flow chamber 4 and their relative arrangement to one another - also extends partially or completely around the body 8 which is difficult to flow around.
  • the holder 6 for the body 8, which is difficult to flow around, is designed in the first and second embodiments (as a rod) and arranged in such a way that it projects through an opening 5 in the housing 1 into the housing and the flow chamber 4.
  • the holder 6 can be designed in any way, for example as a toroidal device which resembles a wheel with spokes, in such a way that it can be arranged completely in the flow chamber 4 of the housing 1, for example on a partial area of the inner wall of the flow chamber 4, so similar to DE-A-4433744.
  • the holder 6 can comprise a device or can be connected to a device which is suitable for the body 8, which is difficult to flow around, on its own or in connection with the bracket 6 - to move in the region of the flow chamber 4 along the direction of the central axis of the flow chamber.
  • the body 8, which is difficult to flow around, as a whole can be displaced and positioned relative to the expanding part of the flow chamber 4 (realized, for example, by an expanding flow chamber section 41 and / or a bulge 20 of the flow chamber 4), such that the mixing effect of the The supercavitation field caused by the body 8, which is difficult to flow around, can be optimally adjusted, both in terms of the type of components to be mixed and in terms of further process parameters and / or target parameters of the desired mixed mass flow.
  • a particularly simple setting or adjustment of the supercavitation field in this way can be achieved if a part or the entire flow chamber 4 is transparent, for example made of appropriate plastic, so that this setting can be checked or made directly visually.
  • Body 8 consist of a single piece or of a plurality of partial bodies 10 which are difficult to flow around and which are arranged accordingly. It should be emphasized that this
  • each sub-body 10 that is difficult to flow around can include one or more of the sub-regions 80 of the body 8 that is difficult to flow around.
  • the individual partial bodies 10 can be arranged at a predetermined distance from one another by means of spacers 9 along the central axis of the body 8 which is difficult to flow around.
  • the flow-through spaces 87 between the sub-areas 80 that are difficult to flow around or partial bodies 10 of a body 8 that are difficult to flow around can be set individually so that the mixing effect of the supercavitation field generated can be strengthened or optimized.
  • the spacers 9 can consist of an elastic material, for example plastic, so that the medium flowing through the flow chamber 4, the generated cavitation fields and the sub-body 10 are in a feedback relationship, such that the sub-body 10 are set in vibration, so that in turn the cavitation or mixing effect of the Kavitationsfeider is strengthened or optimized.
  • a further possibility in this connection is, for example, to fix or arrange the partial body 10 of a body 8 which is difficult to flow around at the end of a hollow rod, so that the body which is difficult to flow around is realized by correspondingly plugging the individual rods into one another, the cross section of which increases correspondingly can, similar to EP-A-0644271.
  • Rods of this kind as just described, each with a partial body 10 at its end, can then be displaced independently of one another along the direction of their central axis.
  • each of the partial bodies 10 of a body 8 which is difficult to flow around in this way can be displaced independently of all others along the direction of the central axis of the flow through chamber 4.
  • the entirety of the hollow rods represents the holder 6.
  • the person skilled in the art can also easily think of other configurations of the body 8 and the holder 6 which are difficult to flow around, such that a body 8 consisting of several partial bodies 10 is difficult to flow around is designed such that at least one of its partial bodies 10 can be displaced independently of all others along the direction of the central axis of the flow chamber 4.
  • the sub-areas 80 or sub-bodies 10 of a body 8 which are difficult to flow around typically have the shape of a cone. dull.
  • related shapes such as the shape of a truncated cone with a corrugated surface or the shape of a hemisphere are also suitable for generating cavitation fields.
  • each partial area 80 of a body 8 that is difficult to flow around is formed such that its cross section, which is taken perpendicular to the central axis of the flow chamber, is at the end of the partial body 8, that of the inlet opening 2 of the flow chamber 4 closest, is smaller than at the end of the partial body, which is the outlet opening 3 of the flow chamber 4 closest.
  • truncated cones or hemispheres In the case of truncated cones or hemispheres, this means that they are each arranged one behind the other in such a way that the area or the outer circumferential line of their cross section, which is taken perpendicular to the central axis of the flow chamber 4, becomes larger in the flow direction, as in FIGS. 1 and 2 can be seen.
  • the "tip" of each truncated cone or hemisphere faces the mass flow flowing through the flow chamber 4, while the base of each truncated cone or hemisphere is closest to the outlet opening 3 of the housing.
  • the truncated cones or hemispheres can also be hollowed out, as viewed in the direction opposite to the direction of flow (from their base), that is to say they have the shape of hollow truncated cones or hollow hemispheres.
  • This also applies in general, that is to say the partial areas 80 or partial bodies 10 can also all or partially in FIG Direction against the flow direction can be hollowed out.
  • FIGS. 1 to 2 show corresponding partial areas 80 or partial body 10 to which this applies.
  • a partial area 80 or partial body 10 that is difficult to flow around can also be designed such that it has a plurality of elevations 88 on part of its surface.
  • elevations 88 can, for example, have the shape of small cone tips or a shape related to them.
  • the partial area 80 or partial body 10 has the shape of a hollow or full truncated cone, as shown schematically in cross section in FIG. 3a, and the elevations 88 again have the shape of small cone tips, it is advantageous if these cone tips are so that their axes of symmetry are all oriented parallel to one another and to the direction of flow of the mass flow flowing through the flow chamber 4 and that each cone tip faces the mass flow flowing through the flow chamber 4, as shown in Fig. 3a (in Fig. 3a the flow direction corresponds the direction from left to right).
  • the small elevations 88 can of course also be oriented and / or configured differently, also depending on the configuration of the partial areas 80 or partial body 10. Also advantageous are, for example, concentrically arranged, annular elevations 88 with a sharp upper edge which faces the mass flow flowing through the flow chamber 4 in whole or in part.
  • the flow chamber 4 has a flow chamber section 42 narrowing in the flow direction at its beginning, that is to say at the end which is closest to the inlet opening 2 of the housing 1, around which
  • This section of the flow chamber 4 can also be cylindrical or have another shape, for example with a constant cross section.
  • the end of the body 8 which is difficult to flow around that is to say the two partial areas 80 (which are difficult to flow around), plus the associated flow-through region in between Intermediate space 87) or the sub-body 10, which or of all sub-areas or sub-bodies of the output opening 3 of the housing 1 is closest, so that its cross section, which is taken perpendicular to the central axis of the flow chamber 4, in the flow direction of the mass flow flowing through the flow chamber 4 is first seen larger and then smaller and then larger again.
  • FIGS. 3b to 3f represent schematic cross-sectional views along the longitudinal direction or axis of symmetry of a rotationally symmetrical end portion or end portion of a body 8 which is difficult to flow around.
  • FIGS. 3b to 3f in this embodiment of the body 8 which is difficult to flow around, the area or the outer circumferential line of the associated cross section in the figures takes from left to right, which is the same as the direction of flow in FIGS.
  • 1 to 3 of the mass flow flowing through the flow chamber 4 is - starting from an initial value (local minimum value) only gradually - not necessarily linearly - up to a first local maximum value, and then continuously down to a local minimum cross-sectional value and from then on again continuously up to a global maximum value at the very end of the last partial area or partial body. It goes without saying that this cross-sectional behavior is independent of whether the body which is difficult to flow around is completely solid or has a bore 82 extending therethrough, as shown in FIGS. 3c, 3e and 3f or in FIGS. 3b and 3d.
  • Body 8 may be solid or flat - as for example in FIG. 3e - or may generally have a hollow end region 84, which is the outlet opening 3 of the housing 1 is facing, the cross section of this cavity, which is taken perpendicular to the central axis of the flow chamber, in the direction of flow of the mass flow flowing through the flow chamber 4 continuously increasing, as shown for example in Figures 3b, 3c, 3d and 3f.
  • FIGS. 3b, 3c, 3d and 3f In the case of the rotationally symmetrical end of the body 8 which is difficult to flow around, as shown in FIGS.
  • the hollow end region 84 can be configured such that each of its cross-sectional areas, which is taken in the longitudinal direction and contains its axis of symmetry completely, has an edge line which, viewed in the direction of flow of the mass flow flowing through the flow chamber 4, in the mathematical sense is convex. Analogously, and as shown in FIGS. 3d and 3f, this boundary line can be concave in the mathematical sense.
  • a plurality of the elevations 88 are arranged here on part of its surface, either in the form of small cone tips or in the form of concentrically arranged, ring-like elevations with a sharp top edge.
  • a partial area 80 which is difficult to flow around or partial body 10 which is difficult to flow around is neither rotationally symmetrical, still symmetrical in another sense, must still be continuous.
  • a partial area 80 or partial body 10 that is difficult to flow around can have cutouts that pass through in the direction of flow.
  • FIGS. 4a and 4b show examples of partial areas 80 or partial bodies 10 which are difficult to flow around, viewed in the flow direction, the cross-section of which, taken perpendicular to the central axis of the flow chamber 4, has the area of a circle, minus several segments or circular sections 11 and / or minus several sectors or circular sections, more precisely circular rings, 12.
  • the body 8 which is difficult to flow around, is not itself damaged by the action of the cavitation fields, it is advantageous if it consists at least partially of an elastic non-metallic material or at least partially has an elastic non-metallic coating, for example of a suitable plastic.
  • the body 8, which is difficult to flow around, and the holder 6 can generally be solid. However, they can also generally be designed with a cavity 83 or 63 passing through them and connected to one another via corresponding openings 82 or 81, so that part of the mass flow to be mixed is not via the inlet opening 2 of the housing 1 but via a corresponding inlet opening 61 the holder 6 and a corresponding outlet end opening 82 of the body 8, which is difficult to flow around, can be inserted directly into the flow chamber. This is particularly advantageous if the part of the mass flow to be mixed which is to be introduced directly into the flow chamber is gaseous and the other part which is introduced via the inlet opening 2 of the housing 1 is liquid.
  • the body 8 which is difficult to flow around can of course have more than one outlet opening 82 which, depending on the desired mixing action and cavitation action of the corresponding supercavitation mixer 100 according to the invention, are arranged in a corresponding manner over the entire body 8 which is difficult to flow around.
  • FIG. 2c shows a body 8 which is difficult to flow and which, although its overall shape is the same as that of the first or second embodiment, but which also has a hollow space 83 therethrough with a plurality of outlet openings.
  • One of these outlet openings is the central outlet end opening 82 already shown in FIGS. 1a and 1b.
  • the body 8 which is difficult to flow around and which is in principle a further development of the body 8 which is difficult to flow around has a cavity 83 which passes therethrough with intermediate outlet openings 85 which are each located in a partial surface area of the body 8 which is difficult to flow around , which at least partially faces the inner wall of the flow chamber 4 and which is located between two adjacent partial areas 80 or partial bodies 10 of the body 8 which are difficult to flow around.
  • the body 8 which is difficult to flow around has a hollow space 83 with outlet side openings 86, each of which is located in a partial surface area of the body 8 which is difficult to flow around, and which at least partially faces the inner wall of the flow chamber 4 and which is in the area of a difficult one sub-flow area 80 or partial body 10 of the body 8 which is difficult to flow around.
  • the intermediate outlet openings 85 nor the outlet side openings 86 need to be arranged as symmetrically as shown in FIG. 2c.
  • the cavity 83 passing through the body 8, which is difficult to flow around can have only one outlet end opening 82 or only one or more outlet intermediate openings 85 or only one or more outlet side openings 86.
  • the cavity 83 therethrough has only one or more intermediate outlet openings 85 or only one or more outlet side openings 86.
  • the supercavitation mixer according to the invention can further comprise an ultrasound device and / or laser device in order to optimize the mixing action and / or cavitation formation of the entire device.
  • the body 8, which is difficult to flow around can be subjected to ultrasound as a whole or in part directly.
  • the mass flow flowing through can also be subjected to ultrasound at a suitable point in the flow chamber 4 - or at several points or even in the entire flow chamber 4
  • an ultrasound device can also set the body or parts thereof which are difficult to flow around directly into ultrasound vibrations, as can a suitable part of the flow chamber 4 or the entire flow chamber 4, in order to achieve the effects just described and positive effects or the like.
  • a laser device can apply laser light to the mass flow or a part thereof in the flow chamber 4 in order to also generate or support cavitation, for example, also by local heating, which can also influence the direction of flow and eddy formation, among other things.
  • a helical device 90 in order to promote the mixing effect of the entire device, the beginning and / or end of the flow chamber 4, that is to say the end which is closest to the inlet opening 2 of the housing 1, and / or at the end closest to the outlet opening 3 of the housing 1, a helical device 90 can be provided, as is schematically outlined in a perspective view in FIG. 5.
  • a coil device 90 consists essentially of a plurality of coil-shaped elements 92 and an outer wall 94 which is designed such that the coil device 90 can be arranged and fastened at the corresponding end of the passage chamber 4, for example by means of a sealing rubber 96
  • Outer wall 94 encloses a hollow space in which the plurality of helical elements 92 are arranged.
  • the helical elements 92 have an elongated, essentially flat or two-dimensional shape and run essentially in the direction of the flow direction of the mass flow flowing through the flow chamber 4, but are twisted or bent helically or helically or spirally along this direction, whereby they are fastened, for example, with part of their longitudinal edge to the inner wall of the outer wall 94 in such a way that the mass flow flowing through is divided into several partial flows, which are also set in rotation by the helical design of the elements 92.
  • This principle of mixing streams using helical devices is well known in the art.
  • a plurality of supercavitation mixers 100 according to the invention can be combined or coupled with one another in such a way that that of each individual supercavitation mixer according to the invention
  • Supercavitation mixers 100 can be illustrated by overlaying the multiple
  • such a device 200 has the advantage that a total mass flow is not caused by a single one
  • the individual supercavitation mixers 100 are connected and coupled to one another in such a way that their individual flow chambers 4 pass seamlessly into a subsequent common flow chamber 40.
  • the outlet openings 3 of the housing 1 of the supercavitation mixer 100 are connected or superimposed to form a single common opening 30, which represents the inlet opening of the common downstream flow chamber 40.
  • the supercavitation fields generated by each supercavitation mixer 100 then overlap. After exposure to the superimposed supercavitation fields, the entire mass flow flowing through the device 200 is removed through the outlet opening 50 of the flow chamber 40.
  • the individual supercavitation fields are advantageously superimposed symmetrically on one another in the device 200, that is to say spatial regions of the respective supercavitation fields which are equivalent to one another are superimposed on one another. If these are the areas of the strongest or optimal cavitation effect of each supercavitation field, their effect is optimally potentiated in the overlay. However, this symmetrical type of overlay can also be abandoned if this results in a better mixing effect or other desired effects can or should be achieved.
  • a device analogous to the above device 200, in which several supercavitation fields are superimposed, is also possible with the supercavitation mixers disclosed in DE-A-4433744.
  • Output opening 50 of the flow chamber 40 can be partially or completely returned - via the inlet opening 2 of the housing 1 and / or the corresponding inlet opening
  • a device 100 for mixing the components of a mass flow flowing through provides a particularly homogeneous and extremely stable or extremely long stable mixture, even if, according to the prior art, components which are immiscible or difficult to mix are mixed, and also without the use of additives ( additives Emulsifiers, etc.) to support the mixing effect.
  • the device 100 has a body 8 which is difficult to flow around and which is arranged in a flow chamber 4 and which is at least partially arranged in a part of the flow chamber 4 which widens in the direction of flow, so that the cavitation effect and mixing action of the supercavitation field generated by the body 8 which is difficult to flow around is substantially increased and is optimized.

Abstract

Eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes stellt eine besonders homogene und beliebig lange stabile Mischung bereit, auch wenn im allgemeinen nicht oder nur schwerst mischbare Komponenten gemischt werden. Die Vorrichtung weist einen in einer Durchflusskammer (4) angeordneten schwer umströmbaren Körper (8) auf, der mindestens teilweise in einem sich in Strömungsrichtung aufweitenden Teil der Durchflusskammer (4) angeordnet ist, so dass die Kavitationswirkung und Mischwirkung des von dem schwer umströmbaren Körper (8) erzeugten Superkavitationsfeldes wesentlich verstärkt wird.

Description

Beschreibung Kavitationsmischer
Die Erfindung betrifft eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes, wobei die Komponenten insbesondere fest, flüssig oder gasförmig sein können, mittels einem hydrodynamischen Superkavitationsfeld, um eine Mischung, insbesondere eine Emulsion oder Suspension, zu erzeugen.
Sinkt in einer dahinströmenden Flüssigkeit aufgrund von einer Stromeinengung lokal der sogenannte statische Druck unter den Dampfdruck, so tritt Kavitation auf, das heißt, es bilden sich in der Flüssigkeit dampfgefüllte Gasblasen, die auch Kavitationsblasen genannt werden. Nimmt danach der statische Druck wieder zu und übersteigt den Dampfdruck, so brechen diese Gasblasen implosionsartig (praktisch mit Schallgeschwindigkeit) zusammen.
Dieser Mechanismus der hydrodynamisch erzeugten Kavitation fällt unter den Gültigkeitsbereich der Bernoulli-Gleichung. Gemäß dieser gilt allgemein (vgl. "Gerthsen Physik", Helmut Vogel, ISBN 3-540-59278-4, 18. Auflage, Springer-Verlag Berlin Heidelberg New York, 1995, Kapitel 3.3.6, Strömung idealer Flüssigkeiten, Seite 118 bis 121) auf jeder Potentialfläche der äußeren Volumenkräfte in einem dahinströmenden Stromfaden, im Falle der Schwerkraft also überall auf gleicher Höhe, p + l/2pv2 = po = const, wobei po der Druck ist, der in der ruhenden Flüssigkeit herrschen würde, zum Beispiel der Luftdruck plus dem hydrostatischen Druck pgh. Die Summe aus dem statischen Druck p und dem Staudruck l/2pv2 hat in gegebener Tiefe überall den gleichen Wert.
Wenn die Strömungsgeschwindigkeit den Wert vj. = V2p0/ p erreicht oder überschreitet, so wird der statische Druck null oder negativ. Solche Geschwindigkeiten (im Wasser ist vk = 14 m/s) werden an allen schnellen Wasserfahrzeugen, bei langsamen zumindest an den Schrauben, ferner an Turbinenschaufeln und in Flüssigkeitspumpen leicht erreicht. Schon etwas vorher sinkt der statische Druck unter den Dampfdruck der Flüssigkeit, der einige 102 Pa beträgt, und Kavitation tritt auf, insbesondere wenn mikroskopische Luftbläschen als Keime bereits vorhanden sind, was schwer vermeidbar ist.
Die Erscheinung der hydrodynamischen Kavitation besteht also in der Bildung von mit einem Dampfgasgemisch gefüllten Hohlräumen, den sogenannten Kavitationsblasen, im Inneren eines schnell dahinströmenden Flüssigkeitsstromes oder an Randbereichen eines in dem dahinströmenden Flüssigkeitsstrom angeordneten schlecht umströmbaren Körpers, jeweils infolge einer durch die Flüssigkeitsbewegung (Strömung) bedingten lokalen Druckabsenkung. Zur hydrodynamischen Kavitation kommt es so in allen hydraulischen Systemen, in denen große Druckunterschiede auftreten, wie Turbinen, Pumpen und Hochdruckdüsen .
Bei der Ultraschallkavitation werden in der Unterdruckphase eines Schallfeldes die Zerreißspannungen des Materials überschritten, so daß wieder die mit Dampf bzw. Gas gefüllten Kavitationsblasen entstehen. In der Sonochemie macht man sich die extremen Bedingungen beim Kollaps (Druck, Temperatur) der im Ultraschallfeld erzeugten Kavitationsblasen zunutze. Auch der physikalische Effekt der Sonoluminiszenz ist mit der Dynamik von Kavitationsblasen und deren Erzeugung mittels einem Ultraschallfeld verbunden.
Bei den vorerwähnten Beispielen handelt es sich um Kavitation, die durch eine im Wasser bzw. einer Flüssigkeit anliegende Zugspannung im Strömungs- oder im akustischen Feld entsteht. Eine weitere Art Kavitation zu erzeugen besteht darin, lokal Energie in der Flüssigkeit zu deponieren, zum Beispiel durch einen Funken oder einen Laserpuls . Einzelheiten zu letzterem findet man beispielsweise in der Diplomarbeit von Olgert Lindau, "Dynamik und Lumineszenz lasererzeugter Kavitationsblasen", 1998, angefertigt im Dritten Physikalischen Institut der Georg-August-Universität zu Göttingen.
Bekanntermaßen kann man Kavitation und die damit einhergehenden Effekte zum Vermischen der Komponenten eines dahinströmenden Massestromes verwenden. Somit kann man beispielsweise zwei verschiedene Flüssigkeiten oder eine Flüssigkeit und einen Feststoff (Teilchen) oder eine Flüssigkeit und ein Gas miteinander vermischen. Die vermischende, emulgierende und dispergierende Einwirkung der Kavitation beruht auf einer großen Anzahl von Krafteinwirkungen, die von zusammenstürzenden Kavitationsblasen herrühren, auf das zu behandelnde Gemisch von Komponenten. Das Implodieren von Kavitationsblasen in der Nähe der Grenzfläche zweier Phasenbereiche flüssig-fest wird von der Dispergierung der festen Phase (Teilchen) in der flüssigen Phase (Flüssigkeit) und von der Bildung einer Suspension begleitet . Analog wird das Implodieren von Kavitationsblasen in der Nähe der Grenzfläche zweier verschiedener flüssiger Phasen von der Zerkleinerung der einen Flüssigkeit in der anderen und der Bildung einer Emulsion begleitet. In beiden Fällen geschieht die Zerstörung der Grenzfläche der durchgehenden Phasen, das heißt, deren Erosion, und die Bildung eines Dispersionsmediums und einer dispersen Phase.
In US-A-3834982 ist eine Vorrichtung zur Erzeugung einer Suspension von Fasermaterialien beschrieben. Die Vorrichtung besteht aus einem Gehäuse mit einer Eingangsöffnung für die Zufuhr von Komponenten einer Fasermaterialsuspension und einer Ausgangsöffnung für die Entnahme der kavitierten Fasermaterialsuspension sowie einer Durchflußkammer mit einem in ihr platzierten, aus einem Stück bestehenden, schwer umströmbaren zylindrischen Körper (der wegen seiner Funktion allgemein auch Kavitator genannt wird) . Der Komponentenstrom durchströmt die Durchflußkammer und den darin plazierten schwer uinströmbaren zylindrischen Körper, der quer zur Strömungsrichtung angeordnet ist, so daß dieser eine lokale Verjüngung der Fasermaterialsuspension erzeugt. Somit wird hinter dem Zylinder ein hydrodynamisches Kavitationsfeld ausbildet, d.h. der Zylinder erzeugt einen räumlichen Bereich in dem dahinströmenden Massestrom, in dem in einem dynamischen Prozeß Kavitationsblasen entstehen, vorhanden sind und zusammenstürzen (implodieren).
Infolge der Form des einen schwer umströmbaren, zylinderförmigen Körpers in US-A-3834982 entsteht hinter diesem aufgrund der durch ihn bedingten Querschnittsverjüngung des Strömungsquerschnitts nur ein einziges Kavitationsfeld. Somit bewirkt diese Vorrichtung nur eine relativ schlechte Vermischung der Komponenten der Fasermaterialsuspension in Bezug auf die Homogenität (Teilchengröße) und Langzeitstabilität der erzeugten Dispersion. Die Intensität des mit der Vorrichtung nach US-A-3834982 erzeugten Kavitationsfeldes ist zum Mischen bzw. Dispergieren von schwer vermischbaren bzw. dispergierbaren Phasen zu gering.
Der in SU-A-1088782 beschriebene Kavitationsmischer hat zusätzlich eine Einrichtung, mit der das
Kavitationsfeld mit weiteren mittels einer
Luftdruckquelle erzeugten Druckschwingungen überlagert werden kann.
Der in SU-A-1678426 offenbarte Kavitationsmischer hat einen axial elastisch gelagerten schwer umströmbaren Körper, der eigene Resonanzschwingungen im Flüssigkeits- edium hervorrufen soll.
In SU-A-1720695 ist ein weiterer Kavitationsmischer beschrieben, der als schwer umströmbaren Körper zwei Halbkugeln hat, die zwischen sich eine rechteckige Nut begrenzen. Die Pulsation des Stromes in der Nut soll auf den Kavitationsbereich einwirken und dadurch die Häufigkeit von Kavitationsblasen und deren Intensität erhöhen .
Die vorgenannten drei Druckschriften offenbaren somit Kavitationsmischer, bei denen die Mischwirkung dadurch verbessert werden soll, daß versucht wird, die Kavitationswirkung durch weitere Abrißkanten oder Überlagerung mit Druckwellen, die weiteren Abrißkanten entsprechen, zu verbessern.
In der DE-A-3610744 ist eine Vorrichtung zur direkten Belüftung und Umwälzung, insbesondere von Abwässern, genannt, die mittels einer Flügelschraube ein Kavitationsfeld erzeugt und Luft im Wasser untermischt.
US-A-4127332 offenbart eine weitere Mischvorrichtung, die zu diesem Zweck Kavitation verwendet . Im Vergleich zu den oben genannten Kavitationsmischern, bei denen jeweils nur ein Kavitationsfeld erzeugt wird, um zwei verschiedene Komponenten eines Systems zu mischen, ist die Kavitationswirkung und somit Mischwirkung in Kavitationsmischern, die ein sogenanntes Superkavitationsfeld erzeugen, das heißt, eine Überlagerung von mehreren Kavitationsfeldern, wesentlich verbessert.
So ist in DE-A-4433744 ein Kavitationsmischer offenbart, der als schwer umströmbaren Körper (Kavitator) einen Kegelstumpf besitzt, der aus mehreren schwer umströmbaren Teilkörpern gebildet ist, zwischen denen sich jeweils ein durchströmbarer Hohlraum befindet. Dieser schwer umströmbare Körper ist in einer festen Position in einer Durchlaßkammer angeordnet, die - in Strömungsrichtung gesehen - im gesamten Bereich des schwer umströmbaren Körpers einen konstanten kreisförmigen Querschnitt besitzt.
Ein erstes Kavitationsfeld wird auf herkömmliche Weise durch Umströmen des Gesamtkörpers erzeugt. Darüberhinaus sind die durchströmbaren Hohlräume eine weitere Quelle für Kavitationsfeider, die durch die
Strömung in diesen Hohlräumen entstehen, die insbesondere auch nach außen in die um den Gesamtkörper fließenden Strömungen gerichtet sind, so daß die Kavitationsblasen in den durchströmbaren Hohlräumen auch nach außen hin in das herkömmliche Kavitationsfeld übergehen. Die räumliche
Überlagerung der einzelnen Kavitationsfelder erzeugt ein sogenanntes Superkavitationsfeld und bewirkt eine Vervielfachung der Kavitationswirkung jedes einzelnen Kavitationsfeldes . Hydrodynamische Superkavitationsgeneratoren wie in DE-A-4433744 stellen effektive Mischvorrichtungen dar, die dazu verwendet werden können, ein aus mehreren Komponenten bestehendes hindurchströmendes Fluid zu bearbeiten, beispielsweise zu vermischen, zu emulgieren, zu homogenisieren, zu dispergieren oder aufzulösen, oder Flüssigkeiten mit Gasen zu sättigen. Superkavitationsgeneratoren sind universelle Vorrichtungen zur Bearbeitung eines breiten Spektrums von Produkten in der chemischen, petrochemischen, kosmetischen und pharmazeutischen Industrie, sowie in der Keramik- und Nahrungsmittelindustrie und in anderen Wirtschaftszweigen.
Typische technische Grunddaten eines hydrodynamischen
Superkavitationsgenerators und Parameter des zu bearbeitenden Mediums sind:
Produktivität: 0,1 bis 500 m3/h
Eingangsdruck: 0,3 bis 1,2 MPa Milieuviskosität: 0,001 bis 30 Pa s
Milieutemperatur: 5 bis 250°C
Länge insgesamt: 50 bis 800 mm
Durchmesser der Arbeitskammer: 15 bis 300 mm
Masse: 0,4 bis 40 kg minimale Nutzungsdauer: 30 000 h
Die Misch- und Homogenisierungsprozesse im Mischer basieren auf der Nutzung der hydrodynamischen Kavitation und sind an solche physikalischen Effekte wie Druckwellen, Kumulation, selbsterregte Schwingungen, Vibrationsturbulisation und gleichgerichtete Diffusion, beispielsweise, gebunden, die beim Kollaps von Kavitationsblasen entstehen. Die volumetrische Konzentration der Kavitationsblasen in den Apparaturen erreicht Größenordnungen von 1 bis 1010 1/m3. Beim Kollaps einer jeden Kavitationsblase werden Druckimpulse initiiert, die 103 MPa und mehr erreichen, ebenso wie bei der Implosion einer Kavitationsblase in der Blase Temperaturen von rund 5000 K auftreten (vgl. zum Beispiel VDI-Nachrichten, 1. April 1999, Nr. 13, "Schadstoffe im Ultraschall"). Derartig hohe Druckimpulse tragen bei der großen volumetrischen Konzentration der Bläschen im Arbeitsbereich des Mischers dazu bei, daß die einer Volumeneinheit des zu bearbeitenden Mediums zugeführte Impulsleistung 104 bis 105 kW/m3 beträgt. Zu erwähnen ist auch, daß in der Arbeitskammer des Mischers eine Vakuumzone mit einem Druck von 4 bis 10 kPa erzeugt wird, was es möglich macht, verschiedene flüssige und gasförmige Komponenten direkt in den Mischer zu injizieren.
In EP-A-0644271 ist ebenfalls ein hydrodynamischer Superkavitationsmischer offenbart, der einen schwer umströmbaren Körper enthält, der aus mindestens zwei Elementen besteht, welche die Formierung eigener Kavitationsfelder sicherstellen. Die Elemente bzw. Teilkörper, aus denen der schwer umströmbare Körper besteht, können die Form von hohlen abgestumpften Kegeln oder Halbkugeln besitzen, und können zudem jeweils an einer hohlen Stange befestigt sein. Diese Stangen sind so ausgestaltet, daß ineinandergesteckt und jeweils mit individuellen Vorrichtungen verbunden werden können, so daß sie axial relativ zueinander verschoben werden können. Auf diese Weise können die einzelnen, den schwer umströmbaren Körper bildenden Elemente, in Strömungsrichtung axial gegeneinander verschoben und so in verschiedenen Abständen relativ zueinander angeordnet werden. Auf diese Weise kann nicht nur durch die Form der Elemente sondern auch durch ihren relativen Abstand zueinander das von jedem Element hervorgerufene hydrodynamische Kavitationsfeld in seinen Eigenschaften variiert und eingestellt werden, was sich wiederum auf die Überlagerung der einzelnen Kavitationsfeider, das heißt, das Superkavitationsfeld des Kavitationsmischers entsprechend auswirkt .
EP-A-644271 lehrt auch, daß es zur Optimierung der Prozesse der Dispergierung und Emulgierung zweckmäßig ist, in den hydrodynamischen Strom von Komponenten zumindest in einem Abschnitt seiner lokalen Einengung - oder unmittelbar dahinter - eine gasförmige Komponente einzuführen. Die Elemente des schlecht umströmbaren Körpers können auch aus einem elastischen nichtmetallischen Material bestehen. Der Kavitationsmischer kann zudem einen weiteren zusätzlichen schwer umströmbaren Körper enthalten, welcher hinter dem ersten schwer umströmbaren Körper, dem er ähnelt, in Stromungs- richtung angeordnet ist und mit ihm durch ein elastisches Element verschiebbar längs der Achse des Durchflußkanals verbunden ist.
Über die verstellbaren Elemente des schwer umströmbaren Körpers bietet das Verfahren bzw. die Vorrichtung nach EP-A-0644271 die Möglichkeit, die Intensität des entstehenden hydrodynamischen Superkavitationsfeldes in Anpassung an die konkreten technologischen Prozeßabläufe zu regeln. Allerdings ist der schwer umströmbare Körper als ganzes an einem festen Ort in einem Durchflußkanal angeordnet, der in dem Bereich des schwer umströmbaren Körpers und in Strömungsrichtung gesehen zudem einen konstanten kreis- förmigen Querschnitt aufweist.
Obwohl die hydrodynamischen
Superkavitationsgeneratoren nach dem Stand der Technik im allgemeinen gute Ergebnisse liefern, besteht doch ein Bedarf an Verbesserungen in vielerlei Hinsicht. Somit ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Bestandteile bzw. Komponenten eines hindurchströmenden Massestromes mittels mindestens einem hydrodynamischen Superkavitationsfeld bereitzustellen, derart, daß der behandelte Massestrom extrem homogen ist und dies auch über einen beliebig langen Zeitraum hinweg bleibt, auch wenn die Vorrichtung zum Vermischen von üblicherweise schwerst mischbaren Komponenten verwendet wird, die mit Vorrichtungen nach dem Stand der Technik nicht oder nur schlecht und/oder nur für relativ kurze Zeit gemischt werden können.
Weiterhin ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Bestandteile bzw. Komponenten eines hindurchströmenden Massestromes mittels mindestens einem hydrodynamischen Superkavitationsfeld bereitzustellen, ohne daß Zusatzstoffe (wie Additive oder E ulgatoren) verwendet werden, um die Mischwirkung bzw. das Mischergebnis zu verbessern bzw. überhaupt eine Mischung zu erhalten.
Weiterhin ist es Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes bereitzustellen, wobei die Mischwirkung bzw. das Mischergebnis geregelt an die Art und Konzentrationen der zu vermischenden Komponenten angepaßt werden kann, mit anderen Worten, an die Eigenschaften des speziellen jeweils zu homogenisierenden Systems und an entsprechende Prozeß- und Ergebnisparameter.
Es ist eine weitere Aufgabe der vorliegenden
Erfindung, eine Vorrichtung zum Vermischen der
Komponenten eines hindurchströmenden Massestromes bereitzustellen, bei dem die kinetische Energie der Strömung auf optimale Weise zur Durchmischung bzw. Homogenisierung ausgenutzt wird.
Die Lösung dieser Aufgaben erfolgt durch die Merkmale des Anspruchs 1 bzw. 29.
Eine Vorrichtung zum Vermischen der Bestandteile bzw. Komponenten eines hindurchströmenden Massestromes gemäß der vorliegenden Erfindung - im folgenden Superkavitationsmischer genannt - umfaßt ein Gehäuse mit mindestens einer Eingangsöffnung und mindestens einer Ausgangsöffnung. In die mindestens eine Eingangsöffnung wird der gesamte oder ein Teil des zu vermischenden Massestromes eingeleitet, und nach der Beaufschlagung mit einem hydrodynamischen Superkavitationsfeld wird der Massestrom durch die mindestens eine Ausgangsöffnung ausgeleitet. Als wesentliche Bestandteile umfaßt der Superkavitationsmischer eine Durchflußkammer, die Teil des Gehäuses ist, und einen schwer umströmbaren Körper, der mittels einer Halterung in der Durchflußkammer angeordnet ist. Der schwer umströmbare Körper besitzt mindestens zwei schwer umströmbare Teilbereiche, die jeweils für eine lokale Strömungseinengung im durch die Durchflußkammer hindurchströmenden Massestrom im Bereich des schwer umströmbaren Körpers sorgen. Der Querschnitt der Durchflußkammer, der senkrecht zu ihrer Mittelachse genommen wird, wird wenigstens in einem Teil des Bereichs der Durchflußkammer, der den schwer umströmbaren Körper umgibt, in Strömungsrichtung des durch die Durchflußkammer hindurchströmenden Massestromes größer. Dieser sich aufweitende Teil der Durchflußkammer ist wesentlich für die Erzeugung des erfindungsgemäßen höchsteffektiven Superkavitationsfeldes .
Die schwer umströmbaren Teilbereiche und der schwer umströmbare Körper als ganzes sind die Quellen für mehrere Kavitationsfelder, die sich überlagern und somit ein Superkavitationsfeld bilden. Das von dem Superkavitationsmischer gemäß der vorliegenden Erfindung bereitgestellte Superkavitationsfeld ist dazu geeignet, verschiedenste Komponenten besonders effektiv zu vermischen bzw. zu homogenisieren. Mit dem Superkavitationsmischer können somit selbst normalerweise schwerst mischbare Komponenten - ohne weitere Zusatzstoffe wie zum Beispiel Emulgatoren - in besonders homogene und extrem langzeitstabile Mischungen übergeführt werden. Sind die Komponenten flüssig, so erhält man Emulsionen, ist eine der Komponenten flüssig und die andere fest, das heißt, besteht beispielsweise aus Teilchen mit einer bestimmten Größenverteilung, so erhält man Suspensionen, in denen die Teilchengröße beträchtlich verringert ist. Der erfindungsgemäße Superkavitationsmischer kann des weiteren dazu verwendet werden, um gasförmige und flüssige Komponenten zu vermischen bzw. eine gasförmige Komponente besonders effektiv in einer oder mehreren flüssigen Komponenten aufzulösen.
Einige Beispiele für mögliche Mischungen sind Wasser- Diesel-Suspensionen, die Homogenisierung von Lebensmitteln oder Farben, oder die Einmischung bzw. Auflösung von Chlorgas in Wasser.
Es versteht sich, daß die zu vermischenden Bestandteile bzw. Komponenten nicht notwendigerweise jeweils von verschiedener atomarer bzw. molekularer Zusammensetzung sein müssen. Beispielsweise können zwei zu vermischende Komponenten jeweils dieselbe chemische Zusammensetzung aufweisen, nur daß sich die eine Komponente in der flüssigen Phase und die andere Komponente in der festen Phase befindet. Zwei oder mehr zu vermischende Komponenten können auch jeweils dieselben chemischen Bestandteile enthalten, nur jeweils in anderen Konzentrationen. Insbesondere ist ebenfalls eine Rückführung bzw. Mehrfachbehandlung eines bereits einmal mit dem erfindungsgemäßen Superkavitationsmischer behandelten mehrkomponentigen Massestroms möglich, falls dies aus prozeßtechnischen oder anderen Gründen vorteilhaft ist.
Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, mehrere erfindungsgemäße Superkavitationsmischer zu koppeln, derart, daß ihre jeweiligen Superkavitationsfeider in einem gemeinsamen Bereich einer gemeinsamen Durchflußkammer einander überlagert werden, wodurch die Mischwirkung der einzelnen Superkavitationsfeider wiederum potenziert wird. Ein weiterer Vorteil so einer Ausgestaltung ist, daß man bei gleicher Gesamtdurchflußmenge - im Vergleich zu einem entsprechend dimensionierten einzelnen Superkavitationsmischer mit einer großen, leistungsstarken Pumpe - dann nur mehrere kleine Pumpen benötigt, was prozeßtechnisch viel effektiver ist.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 2 kann der schwer umströmbare Körper des Superkavitationsmischers axial entlang der Richtung der Mittelachse der Durchflußkammer verschoben werden. Dadurch ist es möglich, den schwer umströmbaren Körper in dem mindestens einen sich aufweitenden Bereich der Durchflußkammer gezielt so zu positionieren, daß in Abhängigkeit von der Art der zu vermischenden Komponenten eine optimale Kavitationswirkung bzw. ein optimales Superkavitationsfeld bereitgestellt wird, so daß eine optimal homogene und langzeitstabile Mischung erreicht werden kann. Es versteht sich, daß auf diese Weise auch weitere Prozeßparameter oder Ergebnisparameter eingestellt bzw. eingeregelt werden können. Eine weitere vorteilhafte Ausgestaltung der Erfindung nach Anspruch 3 oder 4 besteht entsprechend darin, daß der schwer umstömbare Teilkörper aus einer Vielzahl einzelner schwer umströmbarer Teilkörper (die den schwer umströmbaren Teilbereichen entsprechen) besteht, die so miteinander verbunden und angeordnet sind, daß sie alle - oder nur einige oder nur einer - unabhängig voneinander entlang der Richtung der Mittelachse der Durchflußkammer verschoben werden können. Dadurch kann das Superkavitationsfeld und somit die Mischwirkung des Superkavitationsmischers ebenfalls so eingeregelt werden, daß in Abhängigkeit von den Prozeßparametern und der Art der zu vermischenden Komponenten gewünschte Eigenschaften des mehrkomponentigen Massestromes wie Homogenität und Stabilität optimal eingeregelt werden können.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 5 ist mindestens einer der schwer umström- baren Teilbereiche bzw. Teilkörper des schwer umströmbaren Körpers so ausgebildet, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, an dem Ende des Teilbereiches bzw. Teilkörpers, das der Eingangsöffnung des Gehäuses zugewendet ist, kleiner als an dem Ende, das der Ausgangsöffnung des Gehäuses zugewendet ist.
Gemäß der vorteilhaften Ausgestaltungen der Erfindung nach Anspruch 16 bis 18 weist die Durchflußkammer des Superkavitationsmischers eine Ausbuchtung ihrer Wandung auf, die beispielsweise in einer wulstartigen Ausstülpung rundherum entlang ihres U fanges ausgebildet ist. Diese Ausbuchtung kann an einer entsprechenden Stelle in Bezug auf den schwer umströmbaren Körper angeordnet werden, derart, daß das Superkavitationfeld gezielt beeinflußt und seine Mischwirkung optimiert wird. Es ist offen- sichtlich, daß, wenn der schwer umströmbare Körper entlang der Richtung der Mittelachse der Durchflußkammer verschoben werden kann, auch wenn dies gegebenenfalls .nur für einen Teilkörper von ihm gilt, die Mischwirkung des Superkavitationsfeldes in Verbindung mit dieser Ausbuchtung besonders gut auf die Art der zu vermischenden Komponenten und weiteren Prozeßparameter eingestellt und optimiert werden kann.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach den Ansprüchen 19 und 20 besteht der schwer umströmbare Körper mindestens teilweise aus einem elastischen nichtmetallischen Material bzw. weist einen entsprechenden Überzug auf . Dadurch wird eine zerstörerische Rückwirkung der Kavitationsfeider auf die Apparatur an sich vermieden.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 21 kann ein Teil des zu vermischenden Massestromes oder eine bestimmte Komponente davon über eine entsprechend ausgestaltete Halterung und einen entsprechend ausgestalteten schwer umströmbaren Körper, die jeweils entsprechende hindurchgehende Hohlräume aufweisen, direkt in die Durchflußkammer eingeleitet werden. Dadurch kann das Superkavitationsfeld bzw. seine Mischwirkung wiederum gezielt beeinflußt werden, insbesondere in Abhängigkeit von der Art der zu vermischenden Komponenten, derart, daß eine optimale Mischwirkung erreicht wird.
Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 26 kann man sowohl den schwer umströmbaren Körper als auch den Massestrom in der Durch lußkammer jeweils mit Ultraschall beaufschlagen. Dadurch kann der schwer umströmbare Körper beispielsweise in Schwingungen versetzt werden, was die Ausbildung der Kavitationsfeider bzw. deren Mischwirkung verstärken kann. Entsprechend kann die Beaufschlagung des Massestromes mit Ultraschall zusätzliche Ultraschallkavitation bewirken und die vom schwer umströmbaren Körper schon selbst erzeugten Kavitationsfeider bzw. deren Mischwirkung verstärken.
Entsprechende Effekte kann man auch erhalten, wenn man gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 27 den schwer umströmbaren Körper direkt und/oder einen Teil der Durchflußkammer oder die ganze
Durchflußkammer in Ultraschallschwingungen versetzt.
Unter dem Begriff der Verstärkung der Mischwirkung oder der Kavitationsfelder wird hier auch jegliche Modifikation der Eigenschaften der Kavitationsfelder (beispielsweise die Größenverteilung der Kavitationsblasen, ihre räumliche Verteilung oder ihre potentielle Energie vor ihrer Implosion) verstanden, die dazu beiträgt, daß der zu vermischende Massestrom nach der Behandlung bessere oder speziell erwünschte Eigenschaften aufweist.
In diesem Sinne kann gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 28 der durch die Durchflußkammer hindurchströmende Massestrom auch entsprechend mit Laserlicht entsprechender Intensität und/oder Wellenlänge in einem entsprechenden oder mehreren entsprechenden räumlichen Bereichen beaufschlagt werden .
Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen des Superkavitationsmischers .
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der bevorzugten Ausführungsformen der Erfindung anhand der Zeichnung.
Es zeigen:
Fig. la eine schematische Querschnittsansicht einer ersten beispielhaften Ausführungsform der Erfindung;
Fig. lb eine schematische Querschnittsansicht einer zweiten beispielhaften Ausführungsform der Erfindung, die eine Modifikation der ersten Ausführungsform von Fig. la darstellt;
Fig. 2a eine Querschnittsansicht eines beispielhaften schwer umströmbaren Körpers für den erfindungsgemäßen Superkavitationsmischer;
Fig. 2b eine Querschnittsansicht einer Modifikation des beispielhaften schwer umströmbaren Körpers von Fig. 2a;
Fig. 2c eine Querschnittsansicht einer weiteren Modifikation des beispielhaften schwer umströmbaren Körpers von Fig. 2a bzw. Fig. 2b;
die Figuren 3a bis 3f Querschnittsansichten für beispielhafte schwer umströmbare Teilbereiche des schwer umströmbaren Körpers, insbesondere seines der Ausgangsöffnung des Gehäuses zugewandten Endteilbereichs;
die Figuren 4a und 4b schematische Draufsichten in Strömungsrichtung auf beispielhafte schwer umströmbare Körper;
Fig. 5 eine perspektivische Ansicht einer beispielhaften Wendelvorrichtung mit wendelartig ausgebildeten Elementen, die am Anfang und/oder am Ende der Durchflußkammer angeordnet werden kann, um den hindurchströmenden Massestrom zusätzlich zu vermischen; und
Fig. 6 eine schematische Querschnittsansicht einer beispielhaften Kopplung von zwei erfindungsgemäßen Superkavitationsmischern, derart, daß sich ihre jeweiligen Superkavitationsfeider räumlich überlagern.
In den Figuren bezeichnet das Bezugszeichen 100 jeweils eine Vorrichtung zum Vermischen der Komponenten eines hindurchströmenden Massestromes mittels einem hydrodynamischen Superkavitationsfeld, d.h. einer Überlagerung von mehreren Kavitationsfeidern. Diese erfindungsgemäße Vorrichtung wird im folgenden Superkavitationsmischer 100 genannt.
Die Figuren la und lb dienen nur dazu, die wesentlichen Eigenschaften eines erfindungsgemäßen Superkavitationsmischers 100 zu veranschaulichen, sind aber ansonsten nicht einschränkend zu verstehen.
Fig. la ist eine schematische Querschnittsansicht in Längsrichtung eines Superkavitationsmischers 100 gemäß einer beispielhaften ersten Ausführungsform der Erfindung.
Wie in Fig. la zu sehen ist, umfaßt der erfindungsge- mäße Superkavitationsmischer 100 ein Gehäuse 1, das eine Eingangsöffnung 2 und eine Ausgangsöffnung 3 aufweist. Durch die Eingangsöffnung 2 wird ein Teil oder der gesamte zu vermischende, mehrkomponentige Massenstrom zugeführt, typischerweise mittels einer Pumpvorrichtung (nicht gezeigt) . Durch die Ausgangsöffnung 3 wird der gemischte Massestrom dann entnommen. Die zu vermischenden Komponenten des Massestroms können fest, flüssig oder gasförmig sein, das heißt, der nach der Behandlung entnommene gemischte Massestrom ist beispielsweise eine Emulsion, eine Suspension, eine mit gelöstem Gas gesättigte Flüssigkeit oder andere, im wesentlichen fluide Mischungen bzw. Gemenge.
Das Gehäuse 1 umfaßt des weiteren eine Durchflußkammer 4 und einen darin mittels einer Halterung 6 angeordneten schwer umströmbaren Körper 8. Die Halterung 6 ist im Fall der ersten Ausführungsform so ausgestaltet und angeordnet, daß sie durch eine weitere Öffnung 5 in dem Gehäuse 1 in das Gehäuse hineinragt, derart, daß der schwer umströmbare Körper 8 in der Durchflußkammer 4 positioniert ist.
In der in Fig. la schematisch gezeigten Ausführungsform besteht die Durchflußkammer 4, der schwer umströmbare Körper 8 und die Halterung 6 jeweils aus einem rotationssymmetrischen Körper, die so angeordnet sind, daß ihre Symmetrieachsen zusammenfallen, das heißt, gleich der Mittelachse der Durchflußkammer 4 sind.
Insbesondere besteht in Fig. la die Halterung 6 im wesentlichen aus einer hohlen Stange, d.h. weist einen hindurchgehenden Hohlraum 63 mit einer Einlaßöffnung 61 und einer Auslaßöf nung 62 auf. Desgleichen besitzt der schwer umströmbare Körper 8 eine zentrale, hindurchgehende Bohrung 83 entlang seiner Mittelachse mit der zugehörigen Einlaßöffnung 81 und Auslaßöffnung 82.
Die Auslaßöffnung 62 der Stange bzw. Halterung 6 ist mit der Einlaßöffnung 81 des schwer umströmbaren Körpers verbunden, und die Halterung 6 und der schwer umströmbare
Körper 8 sind so in dem Gehäuse 1 bzw. der Durchflußkammer 4 angeordnet, daß ihre Mittel- bzw.
Symmetrieachsen zusammenfallen und die Auslaßendöffnung 82 des schwer umströmbaren Körpers 8 der Ausgangsöffnung 3 des Gehäuses 1 zugewandt ist.
Unter der Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes sei hier und im folgenden immer die mittlere oder effektive Richtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes verstanden. Das heißt, über Verwirbelungen und ähnliches sei hinweggemittelt . Ist die Durchflußkammer 4 - wie in Fig. la und lb gezeigt rotationssymmetrisch oder im wesentlichen rotationssymmetrisch, so ist die Strömungsrichtung gleich der Richtung der Symmetrieachse bzw. Mittelachse der
Durchflußkammer 4.
Wie in Fig. la gezeigt bzw. angedeutet, besitzt der schwer umströmbare Körper 8 mindestens zwei schwer umströmbare Teilbereiche 80, zwischen denen sich jeweils ein durchströmbarer Zwischenraum 87 befindet. Die schwer umströmbaren Teilbereiche 80 bewirken jeweils eine lokale Strömungseinengung in der Durchflußkammer 4. Somit erzeugt der schwer umströmbare Körper, wenn er von dem zu vermischenden Massestrom in der Durchflußkammer 4 umströmt wird, mehrerer Kavitationsfelder, die sich einander überlagern, und somit insbesondere in Strömungsrichtung hinter dem schwer umströmbaren Körper 8 ein Superkavitationsfeld bilden.
In Fig. 2a ist eine vergrößerte schematische Quer- schnittsansicht in Längsrichtung des beispielhaften schwer umströmbaren Körpers 8 der beispielhaften ersten Ausführungsform von Fig. la gezeigt.
Mit Ausnahme der letzten zwei - in Strömungsrichtung gesehen - schwer umströmbaren Teilbereiche 80 besitzten die schwer umströmbaren Teilbereiche 80 in Fig. la bzw. 2a die Form eines Kegelstumpfes, um Kavitationsfelder zu erzeugen. Wie insbesondere in Fig. 2a zu sehen ist, sind die letzten zwei schwer umströmbaren Teilbereiche 80 des schwer umströmbaren Körpers 8 (d.h. die zwei schwer umströmbaren Teilbereiche, die von allen schwer umströmbaren Teilbereichen der Ausgangsöffnung 3 des Gehäuses 1 am nächsten liegen) zu diesem Zweck zusammen mit ihrem zugehörigen dazwischenliegenden Zwischenraum 87 als Gesamtheit so ausgestaltet, daß diese Gesamtheit einen Querschnitt besitzt (der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird), der bzw. dessen Fläche in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes gesehen stetig erst größer, dann kleiner und dann wieder größer wird. Mit anderen Worten, der äußere Umfang (die U fangslinie) des Endes des schwer umströmbaren Körpers 8 gemäß der ersten Ausführungsform besitzt zwei lokale Minima und zwei lokale Maxima. Zudem besitzt der letze schwer umströmbare Teilbereich 80 hier einen hohlen Endbereich 84, in den auch die obige Endauslaßöffnung 82 einmündet. Der Querschnitt des hohlen Endbereich 84 bzw. der Aushöhlung 84, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, wird in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes stetig größer.
Die Kegelstümpfe 80 sind jeweils so hintereinander angeordnet sind, daß die Fläche ihres Querschnitts, der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird, in Strömungsrichtung gesehen größer wird. Mit anderen Worten, die (abgestumpfte) Spitze eines jeden Kegelstumpfes ist dem durch die Durchflußkammer 4 hindurchströmenden Massestrom zugewandt, während die Basis eines jeden Kegelstumpfes der Ausgangsöffnung 3 des Gehäuses am nächsten liegt. Dies gilt sinngemäß auch für die zwei letzten schwer umströmbaren Teilbereiche 80 in der ersten Ausführungsform.
Weiterhin sind die Kegelstümpfe so ausgestaltet und angeordnet, daß - in Strömungsrichtung gesehen - jeder nachfolgende Kegelstumpf etwas weiter - in Richtung senkrecht zu der Mittelachse der Durchflußkammer 4 - in die Strömung hineinragt als die vorhergehenden Kegelstümpfe. Dies trifft analog auch wieder auf die zwei letzten schwer umströmbaren Teilbereiche 80 zu.
Wie in Fig. la gezeigt ist, weist die Durchflußkammer 4 in der ersten Ausführungs orm einen rotationssymmetrischen, sich in Strömungsrichtung allmählich erweiternden Durchflußkammerabschnitt 41 auf, dessen Querschnittsfläche senkrecht zur Mittelachse der Durchflußkammer 4 kreisförmig ist und in Strömungsrichtung stetig zunimmt, und in dem der schwer umströmbare Körper 8 angeordnet ist, derart, daß er ein hocheffektives Superkavitationsfeld erzeugt.
Wie in Figur la gezeigt ist, weist die Durchflußkammer 4 des weiteren an ihrem Anfang, das heißt an dem Ende, das der Eingangsöffnung 2 des Gehäuses 1 am nächsten liegt, einen sich in Strömungsrichtung verengenden Durchflußkammerabschnitt 42 auf, an den sich der sich erweiternde Durchflußkammerabschnitt 41 anschliesst. Die Querschnittsfläche senkrecht zur Mittelachse der Durchflußkammer 4 des sich verengenden Durchflußkammerabschnitts 42 ist kreisförmig und nimmt in Strömungsrichtung stetig zu, so daß . eine Stromungs- einengung bereitgestellt ist und die Bildung der Kavitationsfelder im nachfolgenden Bereich der Durchflußkammer 4 mittels des darin angeordneten schwer umströmbaren Körpers 8 weiter optimiert wird. Fig. lb ist eine schematische Querschnittsansicht in Längsrichtung eines Superkavitationsmischers 100 gemäß einer beispielhaften zweiten Ausführungsform der Erfindung, die eine Modifikation der beispielhaften ersten Ausführungsform von Fig. la darstellt. Insbesondere unterscheidet sich die zweite Ausführungsform der Erfindung von der ersten nur durch zwei Modifikationen.
Die erste Modifikation betrifft den schwer umströmbaren Körper 8, der in der zweiten Ausführungsform so ausgestaltet ist, daß jeder seiner schwer umströmbaren Teilbereiche 80, der die Form eines Kegelstumpfes besitzt, als Teilkörper 10 ausgebildet ist. Entsprechend sind die - in Strömungsrichtung gesehen - zwei letzten schwer umströmbaren Teilbereiche 80 der ersten Ausführungsform nun als ein einziger Teilkörper 10 ausgebildet. Die durchströmbaren Zwischenräume 87 zwischen den schwer umströmbaren Teilbereichen 80 bzw. Teilkörpern 10 werden mittels Abstandshaltern 9 realisiert. Als Gesamtheit besitzt der schwer umströmbare Körper 8 der zweiten Ausführungsform insbesondere dieselbe Form wie der der ersten Ausführungsform. Man vergleiche hierzu auch Fig. 2b, die eine vergrößerte schematische Querschnittsansicht in Längsrichtung des beispielhaften schwer umströmbaren Körpers 8 der beispielhaften zweiten Ausführungsform von Fig. lb darstellt, mit der analogen Fig. 2a.
Die zweite Modifikation betrifft die Durchflußkammer 4, die in der zweiten Ausführungsform zusätzlich eine Ausbuchtung 20 aufweist. Wie in Fig. lb gezeigt, schliesst sich an den sich erweiternden Durchflußkammerabschnitt 41 der Durchflußkammer 4 ein Bereich der Durchflußkammer an, der eine rotationssymmetrische Ausbuchtung 20 in der Wandung der Durchflußkammer 4 entlang ihres Umfanges aufweist, wobei sich diese Ausbuchtung 20 teilweise im Endbereich des schwer umströmbaren Körpers 8 befindet. Die durch die Ausbuchtung 20 bedingte Vergrößerung des Querschnitts der Durchflußkammer 4 in Strömungsrichtung kann die Kavitationswirkung und Mischwirkung des Superkavitationsmischers 100 gemäß der zweiten Ausführungsform weiter verstärken und optimieren.
Als Modifikation der zweiten Ausführungsform - und auch entsprechender anderer Ausführungsformen, wie sie im folgenden diskutiert werden - kann sich die Ausbuchtung 20 auch an anderer Stelle befinden, d.h. sie kann in Strömungsrichtung gesehen auch erst direkt hinter - oder ein kleines Stück hinter - dem schwer umströmbaren Körper 8 beginnen, oder sie kann auch vollständig im Bereich des schwer umströmbaren Körpers 8 - beispielsweise um seine Mitte oder sein Ende herum - angeordnet sein.
Es versteht sich weiter, daß die Ausbuchtung 20 in einer entsprechenden Ausführungsform nicht notwendigerweise rotationssymmetrisch sein muß, selbst wenn die Durchflußkammer 4 rotationssymmetrisch ist, ebenso wie die Ausbuchtung 20 nicht ununterbrochen bzw. vollständig entlang des Umfangs der Durchflußkammer 4 ausgebildet sein muß. Form und Anordnung einer - oder auch mehrerer - Ausbuchtungen 20 ergibt sich allein daraus, daß die Kavitationswirkung und Mischwirkung des erfindungsgemäßen Superkavitationsmischers 100 verstärkt und optimiert wird.
An dieser Stelle sei betont, daß jede mögliche
Ausführungsform des erfindungsgemäßen
Superkavitationsmischers 100 sich insbesondere dadurch auszeichnet, daß der Querschnitt der Durchflußkammer 4, der senkrecht zu ihrer Mittelachse genommen wird, wenigstens in einem Teil des Bereichs, der den schwer umströmbaren Körper 8 umgibt, in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes größer wird. Dieser sich aufweitende Teil der Durchflußkammer 4 ist wesentlich für die Erzeugung des erfindungsgemäßen höchsteffektiven Superkavitationsfeldes, da die dann von dem schwer umströmbaren Körper 8 hervorgerufenen Kavitationsfeider eine besonders hohe Kavitationswirkung bzw. Mischwirkung bekommen, das heißt, ihre Überlagerung - das Superkavitationsfeld - ist dazu in der Lage, eine besonders homogene und besonders langzeitstabile Mischung der Komponenten eines durch die Durchflußkammer 4 hindurchströmenden Massestromes zu erzeugen, verglichen mit den bisher nach dem Stand der Technik bekannten Mischungen, selbst für nach dem Stand der Technik schwerst mischbare Komponenten, und auch ohne Zusatzstoffe, die eine Mischwirkung besitzen (Additive) , wie sich experimentell gezeigt hat.
Und dieser sich aufweitende Teil der Durchflußkammer 4 kann allgemein so realisiert werden, daß die Durchflußkammer 4 gemäß der vorliegenden Erfindung als ganzes oder nur in einem Teilbereich oder in mehreren, nicht notwendigerweise zusammenhändenden Teilbereichen, der bzw. die jeweils wenigstens einen Teil des schwer umströmbaren Körpers 8 umgeben, so ausgestaltet ist, daß der Querschnitt der Durchflußkammer 4 in diesem sich aufweitenden Teil der Durchflußkammer 4 in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes größer wird.
Dieser sich aufweitende Teil der Durchflußkammer 4 kann insbesondere durch einen sich stetig erweiternden, rotationssymmetrischen Durchflußkammerabschnitt 41 wie in Fig. la gezeigt realisiert werden, oder allein durch einen vorderen Teilbereich einer Ausbuchtung 20, oder durch eine Kombination zweier solcher Bereiche 41 und 20 wie in Fig. lb gezeigt. Andere, nicht notwendigerweise rotationssymmetrische oder sich ganz um die Durchflußkammer 4 herum erstreckende entsprechende einzelne oder verteilte Teilbereiche einer Durchflußkammer 4, sofern diese alle nur wenigstens teilweise im Bereich des schwer umströmbaren Körpers 8 liegen und ihr Querschnitt in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes größer wird, sind ebenfalls geeignet.
Im folgenden werden nun weitere Modifikationen der vorstehend beschriebenen ersten und zweiten Ausführungsformen und deren Modifikationen beschrieben werden, die alle unabhängig voneinander realisiert und kombiniert werden können und dann jeweils wieder eine weitere mögliche Ausführungsform des erfindungsgemäßen Superkavitationsmischers 100 darstellen.
Im Gegensatz zu den beispielsweise in Fig. la und lb schematisch gezeigten ersten und zweiten Ausfüh- rungsfor en muß weder die Rotationssymmetrie der Durchflußkammer 4 noch die des schwer umströmbaren Körpers 8 noch die der Halterung 6 ebenso wie deren gemeinsame rotationssymmetrische Anordnung für alle Ausführungsformen der Erfindung gegeben sein, sondern nur insoweit, als dies für die Erzeugung der entsprechenden Kavitationsfelder erforderlich ist.
Der schwer umströmbare Körper erzeugt, wenn er von dem zu vermischenden Massestrom in der Durchflußkammer 4 umströmt wird, mehrerer Kavitationsfeider, die sich einander überlagern, und somit insbesondere in Strömungsrichtung hinter dem schwer umströmbaren Körper 8 ein Superkavitationsfeld bilden. Es sei angemerkt, daß sich dieses Superkavitationsfeld - je nach spezieller Ausgestaltung des schwer umströmbaren Körpers 8, der Durchflußkammer 4 und ihrer relativen Anordnung zueinander - auch teilweise oder vollständig um den schwer umströmbaren Körper 8 herum erstreckt.
Die Halterung 6 für den schwer umströmbaren Körper 8 ist in der ersten und zweiten Aus ührungsform so ausgestaltet (als Stange) und angeordnet, daß sie durch eine Öffnung 5 in dem Gehäuse 1 in das Gehäuse und die Durchflußkammer 4 hineinragt. Die Halterung 6 kann aber im Prinzip beliebig ausgestaltet sein, beispielsweise als torusartige Vorrichtung, die einem Rad mit Speichen ähnelt, derartig, daß sie vollständig in der Durchflußkammer 4 des Gehäuses 1 angeordnet werden kann, beispielsweise an einem Teilbereich der Innenwand der Durchflußkammer 4, so ähnlich wie in DE-A-4433744.
Ferner, obwohl in Fig. la und lb nicht gezeigt bzw. nicht zu sehen, kann die Halterung 6 eine Vorrichtung um- fassen bzw. mit einer Vorrichtung verbunden sein, die dazu geeignet ist, den schwer umströmbaren Körper 8 - alleine oder in Verbindung mit der Halterung 6 - im Bereich der Durchflußkammer 4 entlang der Richtung der Mittelachse der Durchflußkammer zu verschieben. Somit kann der schwer umströmbare Körper 8 als ganzes relativ in Bezug auf den sich aufweitenden Teil der Durchflußkammer 4 (beispielsweise realisiert durch einen sich erweiternden Durchflußkammerabschnitt 41 und/oder eine Ausbuchtung 20 der Durchflußkammer 4) verschoben und positioniert werden, derart, daß die Mischwirkung des vom schwer umströmbaren Körper 8 hervorgerufenen Superkavitationsfeldes optimal eingestellt werden kann, sowohl in Bezug auf die Art der zu vermischenden Komponenten als auch in Bezug auf weitere Prozeßparameter und/oder Zielparameter des gewünschten gemischten Massestromes . Eine besonders einfache Einstellung bzw. Einregelung des Superkavitationsfeldes auf diese Weise kann erreicht werden, wenn ein Teil oder die ganze Durchflußkammer 4 durchsichtig, beispielsweise aus entsprechendem Kunststoff, ausgestaltet ist, so daß man direkt visuell diese Einstellung überprüfen bzw. vornehmen kann.
Wie schon in Verbindung mit der ersten und zweiten Ausführungsform diskutiert, kann der schwer umströmbare
Körper 8 aus einem einzigen Stück oder aus einer Vielzahl von schwer umströmbaren Teilkörpern 10 bestehen, die entsprechend angeordnet sind. Es sei betont, daß diese
'Zerlegung' des schwer umströmbaren Körpers 8 beliebig vorgenommen werden kann, sofern nur seine Gesamtform dazu geeignet ist - in Verbindung mit der entsprechend gestalteten Durchflußkammer 4 - das erfindungsgemäße
Superkavitationsfeld zu erzeugen. Insbesondere kann jeder schwer umströmbare Teilkörper 10 einen oder mehrere der schwer umströmbaren Teilbereiche 80 des schwer umströmbaren Körpers 8 umfassen.
Wie in Fig. 2b gezeigt, können dabei die einzelnen Teilkörper 10 mittels Abstandshalter 9 in einem jeweils vorbestimmten Abstand voneinander entlang der Mittelachse des schwer umströmbaren Körpers 8 angeordnet werden. Die durchströmbaren Zwischenräume 87 zwischen den schwer umströmbaren Teilbereichen 80 bzw. schwer umströmbaren Teilkörpern 10 eines schwer umströmbaren Körpers 8 können so individuell eingestellt werden, so daß die Mischwirkung des erzeugten Superkavitationsfeldes verstärkt bzw. optimiert werden kann.
Die Abstandshalter 9 können aus einem elastischen Material, beispielsweise Kunststoff, bestehen, so daß das durch die Durchflußkammer 4 hindurchströmende Medium, die erzeugten Kavitationsfelder und die Teilkörper 10 in einer rückgekoppelten Beziehung stehen, derart, daß die Teilkörper 10 in Schwingungen versetzt werden, so daß wiederum die Kavitationswirkung bzw. Mischwirkung der Kavitationsfeider verstärkt bzw. optimiert wird.
Eine weitere Möglichkeit in diesem Zusammenhang ist beispielsweise die Teilkörper 10 eines schwer umströmbaren Körpers 8 jeweils an dem Ende einer hohlen Stange zu befestigen bzw. anzuordnen, so daß der schwer umströmbare Körper durch entsprechendes Ineinanderstecken der einzelnen Stangen, deren Querschnitt jeweils entsprechend zunimmt, realisiert werden kann, ähnlich wie in EP-A-0644271. Solche wie gerade beschrieben ineinandergesteckten Stangen mit jeweils einem Teilkörper 10 an ihrem Ende können dann unabhängig voneinander entlang der Richtung ihrer Mittelachse verschoben werden. Mit anderen Worten, jeder der Teilkörper 10 eines so ausgestalteten schwer umströmbaren Körpers 8 kann unabhängig von allen anderen entlang der Richtung der Mittelachse der Durchflußkaramer 4 verschoben werden.
In dem zuletzt beschriebenen Beispiel stellt die Gesamtheit der hohlen Stangen die Halterung 6 dar. Dem Fachmann fallen aber ohne weiteres auch andere Ausgestaltungen des schwer umströmbaren Körpers 8 und der Halterung 6 ein, derart, daß ein aus mehreren Teilkörpern 10 bestehender schwer umströmbare Körper 8 so ausgestaltet ist, daß mindestens einer seiner Teilkörper 10 unabhängig von allen anderen entlang der Richtung der Mittelachse der Durchflußkammer 4 verschoben werden kann.
Wie in den Figuren la, lb, 2a und 2b zu sehen, besitzen die schwer umströmbaren Teilbereiche 80 bzw. schwer umströmbaren Teilkörper 10 eines schwer umströmbaren Körpers 8 typischerweise die Form eines Kegel- stumpfes . Aber auch verwandte Formen wie die Form eines Kegelstumpfes mit gewellter Oberfläche oder die Form einer Halbkugel sind ebenfalls geeignet, um Kavitationsfelder zu erzeugen.
Allgemein ist jeder schwer umströmbare Teilbereich 80 bzw. schwer umströmbare Teilkörper 10 eines schwer umströmbaren Körpers 8 so ausgebildet, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durch- flußkammer genommen wird, an dem Ende des Teilkörpers 8, das der Eingangsöffnung 2 der Durchflußkammer 4 am nächsten liegt, kleiner ist als an dem Ende des Teilkörpers, das der Ausgangsöffnung 3 der Durchflußkammer 4 am nächsten liegt.
Im Fall von Kegelstümpfen oder Halbkugeln bedeutet dies, daß diese jeweils so hintereinander angeordnet sind, daß die Fläche bzw. die äußere Umfangslinie ihres Querschnitts, der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird, in Strömungsrichtung gesehen größer wird, wie in den Figuren 1 und 2 zu sehen ist. Mit anderen Worten, die "Spitze" eines jeden Kegelstumpfes bzw. einer jeden Halbkugel ist dem durch die Durchflußkammer 4 hindurchströmenden Massestrom zugewandt, während die Basis eines jeden Kegelstumpfes bzw. einer jeden Halbkugel der Ausgangsöffnung 3 des Gehäuses am nächsten liegt.
Im vorhergehenden Absatz beschriebenen Beispiel können die Kegelstümpfe oder Halbkugeln auch - in Richtung entgegen der Strömungsrichtung gesehen (von ihrer Basis her) - ausgehöhlt sein, also die Form von hohlen Kegelstümpfen oder hohlen Halbkugeln besitzen. Dies gilt auch allgemein, d.h. die Teilbereiche 80 oder Teilkörper 10 können ebenfalls alle oder teilweise in Richtung entgegen der Strömungsrichtung gesehen ausgehöhlt sein.
Es hat sich als vorteilhaft für die Erzeugung der Kavitationsfeider erwiesen, wenn der äußerste Rand eines Teilbereichs 80 bzw. eines Teilkörpers 10, d.h. der Randbereich, der von der Mittelachse der Durchflußkammer 4 den größten Abstand besitzt und so das Ausmaß der Strömungseinengung bestimmt, jeweils in Richtung senkrecht zu der Mittelachse der Durchflußkammer 4 etwas weiter in den hindurchströmenden Massestrom hineinreicht als der äußerste Rand eines in Strömungsrichtung gesehen davor befindlichen Teilbereiches 80 bzw. Teilkörpers 10. Die Figuren 1 bis 2 zeigen entsprechende Teilbereiche 80 bzw. Teilkörper 10, auf die dies zutrifft. Es versteht sich jedoch, daß dies nicht allgemein auf jeden oder alle Teilbereiche 80 bzw. Teilkörper 10 eines schwer umströmbaren Körpers 8 zutreffen muß, sofern der schwer umströmbare Körper 8 in seiner Gesamtform immer noch - in Verbindung mit der entsprechend gestalteten Durchflußkammer 4 - das erfindungsgemäße Superkavitationsfeld erzeugen kann.
Um die Bildung der Kavitationsfeider und deren Misch- Wirkung zu optimieren, kann ein schwer umströmbarer Teilbereich 80 oder Teilkörper 10 auch so ausgestaltet sein, daß er auf einem Teil seiner Oberfläche eine Vielzahl von Erhebungen 88 aufweist. Diese Erhebungen 88 können beispielsweise die Form von kleinen Kegelspitzen oder eine damit verwandte Form besitzen.
Hat der Teilbereich 80 bzw. Teilkörper 10 die Form eines hohlen oder vollen Kegelstumpfes, wie in Fig. 3a schematisch im Querschnitt gezeigt, und besitzen die Erhebungen 88 wiederum die Form von kleinen Kegelspitzen, so ist es vorteilhaft, wenn diese Kegelspitzen so orientiert werden, daß ihre Symmetrieachsen alle parallel zueinander und zu der Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes orientiert sind und daß jede Kegelspitze dem durch die Durchflußkammer 4 hindurchströmenden Massestrom zugewandt ist, wie in Fig. 3a gezeigt (in Fig. 3a entspricht die Strömungsrichtung der Richtung von links nach rechts).
Abweichend von Fig. 3a können die kleinen Erhebungen 88 natürlich auch anders orientiert und/oder ausgestaltet sein, auch in Abhängigkeit von der Ausgestaltung der Teilbereiche 80 bzw. Teilkörper 10. Vorteilhaft sind beispielsweise auch konzentrisch angeordnete, ringartig verlaufende Erhebungen 88 mit einer scharfen oberen Kante, die dem durch die Durchflußkammer 4 hindurchströmenden Massestrom jeweils ganz oder teilweise zugewandt ist .
Obwohl in den Ausführungsformen nach den Figuren la und lb die Durchflußkammer 4 an ihrem Anfang, das heißt an dem Ende, das der Eingangsöffnung 2 des Gehäuses 1 am nächsten liegt, einen sich in Strömungsrichtung verengenden Durchflußkammerabschnitt 42 aufweist, um die
Bildung der Kavitationsfelder im nachfolgenden Bereich der Durchflußkammer 4 mittels des darin angeordneten schwer umströmbaren Körpers 8 zu unterstützen, ist es klar, daß dies nicht unbedingt der Fall sein muß. So kann dieser Abschnitt der Durchflußkammer 4 auch zylindrisch sein oder eine andere Form, beispielsweise mit konstantem Querschnitt, besitzen.
Wie schon in Verbindung mit der ersten und zweiten
Ausführungsform beschrieben, hat es sich als vorteilhaft erwiesen, das Ende des schwer umströmbaren Körpers 8, das heißt die zwei schwer umströmbaren Teilbereiche 80 (plus dem zugehörigen dazwischenliegenden durchströmbaren Zwischenraum 87) bzw. den Teilkörper 10, die bzw. der von allen Teilbereichen bzw. Teilkörpern der Ausgangsö fnung 3 des Gehäuses 1 am nächsten liegt, so auszugestalten, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer 4 genommen wird, in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes gesehen erst größer und dann kleiner und dann wieder größer wird.
Beispiele für diese Ausgestaltung sind in den Figuren 3b bis 3f gezeigt, die schematische Querschnittsansichten entlang der Längsrichtung bzw. Symmetrieachse eines rotationssymmetrischen Endteilbereiches bzw. Endteilkörpers eines schwer umströmbaren Körpers 8 darstellen. Wie in den Figuren 3b bis 3f zu sehen ist, nimmt bei dieser Ausgestaltung des schwer umströmbaren Körpers 8 die Fläche bzw. die äußere Umfangslinie des zugehörigen Querschnitts in den Figuren von links nach rechts - was in den Figuren 1 bis 3 gleich der Strömungs- richtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes ist - von einem Anfangswert (lokalen Minimalwert) startend erst stetig - nicht unbedingt linear - bis zu einem ersten lokalen Maximalwert zu, und dann stetig ab bis zu einem lokalen minimalen Querschnittswert und von da an wiederum stetig zu bis einem globalen Maximalwert ganz am Ende des letzten Teilbereiches bzw. Teilkörpers. Es versteht sich, daß dieses Querschnittsverhalten unabhängig davon ist, ob der schwer umströmbare Körper voll massiv ist oder eine hindurchgehende Bohrung 82 besitzt, wie in Figuren 3c, 3e und 3f bzw. in den Figuren 3b und 3d gezeigt.
Allgemein kann das Ende des schwer umströmbaren
Körpers 8 massiv bzw. eben sein - wie beispielsweise in Fig. 3e - oder kann allgemein einen hohlen Endbereich 84 aufweisen, der der Ausgangsöffnunq 3 des Gehäuses 1 zugewandt ist, wobei der Querschnitt dieses Hohlraumes, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes stetig größer wird, wie beispielsweise in den Figuren 3b, 3c, 3d und 3f gezeigt. Bei dem in den Figuren 3b, 3c, 3d und 3f jeweils gezeigten rotationssymmetrischen Ende des schwer umströmbaren Körpers 8 bedeutet dies, daß der Querschnitt des Hohlraumes 84, der senkrecht zu der Mittelachse der Durchflußkammer genommen wird, die Form eines Kreises besitzt, und daß die Fläche dieser Querschnittskreise in Strömungsrichtung stetig größer wird.
Wie in Fig. 3b und 3c gezeigt kann dabei der hohle Endbereich 84 so ausgestaltet sein, daß jede seiner Querschnittsflächen, die in Längsrichtung genommen wird und seine Symmetrieachse vollständig enthält, eine Randlinie besitzt, die in Strömungsrichtung des durch die Durchflußkammer 4 hindurchströmenden Massestromes gesehen im mathematischen Sinne konvex verläuft. Analog, und wie in Fig. 3d und 3f gezeigt, kann diese Randlinie im mathematischen Sinne konkav verlaufen.
Bei der Ausgestaltung des Endes des schwer umströmbaren Körpers nach Fig. 3f beachte man auch, daß hier auf einem Teil seiner Oberfläche eine Vielzahl der Erhebungen 88 angeordnet sind, entweder in der Form von kleinen Kegelspitzen oder in der Form von konzentrisch angeordneten, ringartig verlaufende Erhebungen mit einer scharfen oberen Kante.
Unabhängig von allen bisher diskutierten
Ausgestaltungen und Modifikationen in Bezug auf den schwer umströmbaren Körper 8 sollte beachtet werden, daß ein schwer umströmbarer Teilbereich 80 bzw. schwer umströmbarer Teilköroer 10 weder rotationssymmetrisch, noch symmetrisch in einem anderen Sinne, noch durchgehend sein muß. Ähnlich wie in EP-A-644271 kann so ein schwer umströmbarer Teilbereich 80 bzw. Teilkörper 10 in Strömungsrichtung gesehen hindurchgehende Aussparungen aufweisen. So zeigen die Figuren 4a und 4b Beispiele für schwer umströmbare Teilbereiche 80 bzw. Teilkörper 10, in Strömungsrichtung gesehen, deren Querschnitt, senkrecht zu der Mittelachse der Durchflußkammer 4 genommen, die Fläche eines Kreises besitzt, minus mehrerer Segmente bzw. Kreisabschnitte 11 und/oder minus mehrerer Sektoren bzw. Kreisausschnitte, genauer gesagt Kreisringe, 12.
Damit der schwer umströmbare Körper 8 durch die Einwirkung der Kavitationsfeider nicht selbst beschädigt wird, ist es vorteilhaft, wenn er mindestens teilweise aus einem elastischen nichtmetallischen Material besteht oder mindestens teilweise einen elastischen nichtmetallischen Überzug aufweist, beispielsweise aus einem geeigneten Kunststoff.
Der schwer umströmbare Körper 8 und die Halterung 6 können allgemein massiv ausgebildet sein. Sie können aber auch allgemein jeweils mit einem hindurchgehenden Hohlraum 83 bzw. 63 ausgestaltet und über entsprechende Öffnungen 82 bzw. 81 miteinander verbunden sein, so daß ein Teil des zu vermischenden Massestromes nicht über die Eingangsöffnung 2 des Gehäuses 1, sondern über eine entsprechende Einlaßöffnung 61 der Halterung 6 und eine entsprechende Auslaßendöffnung 82 des schwer umströmbaren Körpers 8 direkt in die Durchflußkammer eingeführt werden kann. Dies ist besonders vorteilhaft, wenn der so direkt in die Durchflußkammer einzuführende Teil des zu vermischenden Massestromes gasförmig ist und der andere Teil, der über die Eingangsöffnung 2 des Gehäuses 1 eingeführt wird, flüssig ist. Zu diesem Zweck kann der schwer umströmbare Körper 8 natürlich mehr als eine Auslaßöffnung 82 aufweisen, die in Abhängigkeit von der erwünschten Mischwirkung und Kavitationswirkung des entsprechenden erfindungsgemäßen Superkavitationsmischers 100 auf entsprechende Weise über den gesamten schwer umströmbaren Körper 8 verteilt angeordnet werden .
So ist beispielsweise in Fig. 2c ein schwer u ström- barer Körper 8 gezeigt, der zwar von der äußeren Gesamtform her dem der ersten bzw. zweiten Ausführungsform gleicht, der aber zudem einen hindurchgehenden Hohlraum 83 mit mehreren Auslaßöffnungen besitzt. Eine dieser Auslaßöffnungen ist die schon in den Figuren la und lb gezeigte zentrale Auslaßendöffnung 82.
Weiterhin besitzt der in Fig. 2c gezeigte schwer umströmbare Körper 8, der im Prinzip eine Weiterbildung des in Fig. 2b gezeigten schwer umströmbaren Körpers 8 ist, einen hindurchgehenden Hohlraum 83 mit Auslaßzwischenöffnungen 85, die sich jeweils in einem Oberflächenteilbereich des schwer umströmbaren Körpers 8 befinden, der der Innenwand der Durchflußkammer 4 mindestens teilweise zugewandt ist und der sich zwischen zwei benachbarten schwer umströmbaren Teilbereichen 80 bzw. schwer umströmbaren Teilkörpern 10 des schwer umströmbaren Körpers 8 befindet.
Weiter besitzt der in Fig. 2c gezeigte schwer umströmbare Körper 8 einen hindurchgehenden Hohlraum 83 mit Auslaßseitenöffnungen 86, die sich jeweils in einem Oberflächenteilbereich des schwer umströmbaren Körpers 8 befinden, der der Innenwand der Durchflußkammer 4 mindestens teilweise zugewandt ist und der sich im Bereich eines schwer umströmbaren Teilbereiches 80 bzw. schwer umströmbaren Teilkörpers 10 des schwer umströmbaren Körpers 8 befindet.
Es versteht sich, daß weder die Auslaßzwischenöffnungen 85 noch die Auslaßseitenöffnungen 86 so symmetrisch, wie in Fig. 2c gezeigt, angeordnet werden müssen. Ebenso kann der durch den schwer umströmbaren Körper 8 hindurchgehende Hohlraum 83 nur eine Auslaßendöffnung 82 oder nur eine oder mehrerer Auslaßzwischenöffnungen 85 oder nur eine oder mehrerer Auslaßseitenöffnungen 86 aufweisen. Oder der hindurchgehende Hohlraum 83 weist nur eine oder mehrere Auslaßzwischenöffnungen 85 oder nur eine oder mehrere Auslaßseitenöffnungen 86 auf. Auch kann in jedem Fall, wo eine Auslaßendöffnung 82 vorhanden ist, diese auch durch entsprechend angeordnete mehrere Auslaßendöffnungen 82, die sich am Ende des schwer umströmbaren Körpers 8 befinden und der Ausgangsöffnung 3 des Gehäuses 1 zugewandt sind, ersetzt werden.
Unabhängig von allen bisher beschriebenen Ausführungsformen und Modifikationen davon kann der erfindungsgemäße Superkavitationsmischer des weiteren eine Ultraschallvorrichtung und/oder Laservorrichtung umfassen, um die Mischwirkung und/oder Kavitationsbildung der gesamten Vorrichtung zu optimieren.
Zu diesem Zweck kann der schwer umströmbare Körper 8 als ganzes oder teilweise direkt mit Ultraschall beauf- schlagt werden. Dies versetzt den schwer umströmbaren Körper 8 als ganzes und/oder in entsprechenden Teilbereichen in Schwingungen. Unabhängig davon kann man auch den hindurchströmenden Massestrom an einer geeigneten Stelle in der Durchflußkammer 4 - oder auch an mehreren Stellen oder auch in der gesamten Durchflußkammer 4 - mit Ultraschall beaufschlagen, um beispielsweise Verwirbelungen, Druckwellen, Ultraschallkavitation oder verwandte Effekte zu erzeugen, die die hydrodynamische Kavitationsbildung unterstützen oder ergänzen und/oder weitere positive Einwirkung auf die Mischwirkung der gesamten Vorrichtung besitzen. Des weiteren kann eine Ultraschallvorrichtung den schwer umströmbaren Körper oder Teile davon auch direkt in Ultraschallschwingungen versetzen, ebenso wie einen geeigneten Teil der Durchflußkammer 4 bzw. die gesamte Durchflußkammer 4, um die gerade beschriebenen Effekte und positive Einwirkungen oder ähnliche zu erzielen.
Analog kann eine Laservorrichtung den Massestrom bzw. einen Teil davon in der Durchflußkammer 4 mit Laserlicht beaufschlagen, um so beispielsweise ebenfalls Kavitation zu erzeugen oder zu unterstützen, beispielsweise auch durch lokale Erwärmung, die unter anderem auch auf die Strömungsrichtung und Wirbelbildung Einfluß haben kann.
Bei allen bisher diskutierten Ausführungsformen und Modifikationen davon kann des weiteren, um die Mischwirkung der gesamten Vorrichtung zu unterstützen, am Anfang und/oder Ende der Durchflußkammer 4, das heißt, an dem Ende, das der Eingangsöffnung 2 des Gehäuses 1 am nächsten liegt, und/oder an dem Ende, das der Ausgangsöffnung 3 des Gehäuses 1 am nächsten liegt, jeweils eine Wendelvorrichtung 90 bereitgestellt sein, wie sie in Fig. 5 schematisch in einer perspektivischen Ansicht skizziert ist.
Eine Wendelvorrichtung 90 besteht im wesentlichen aus einer Vielzahl von wendelartig ausgebildeten Elementen 92 und aus einer Außenwandung 94, die so ausgebildet ist, daß die Wendelvorrichtung 90 am entsprechenden Ende der Durchlaßkammer 4 angeordnet und befestigt werden kann, beispielsweise mittels eines Dichtungsgummis 96. Die Außenwandung 94 umschließt einen hindurchgehenden Hohlraum, in dem die Vielzahl von wendelartigen Elementen 92 angeordnet sind. Die wendelartigen Elemente 92 haben dabei eine längliche, im wesentlichen flache bzw. zweidimensionale Form und verlaufen im wesentlichen in Richtung der Strömungsrichtung des durch die Durchflußkammer 4 hindurchstömenden Massestromes, sind dabei aber entlang dieser Richtung so schraubenförmig bzw. wendelartig oder spiralig verdrillt oder verbogen, wobei sie beispielsweise mit einem Teil ihrer Längskante an der Innenwand der Außenwandung 94 befestigt sind, daß der hindurchströmende Massestrom in mehrere Teilströme aufgeteilt wird, die zudem durch die wendelartige Ausbildung der Elemente 92 jeweils in Rotation versetzt werden. Dieses Prinzip der Vermischung von Strömen mittels wendelartiger Vorrichtungen ist im Fachgebiet allgemein bekannt.
Mehrere erfindungsgemäße Superkavitationsmischer 100, jeweils gemäß einer der bisher beschriebenen Ausführungs- formen und Modifikationen davon, können miteinander kombiniert bzw. gekoppelt werden, derart, daß das von jedem einzelnen erfindungsgemäßen Superkavitationsmischer
100 erzeugte Superkavitationsfeld mit dem von allen anderen Superkavitationsmischern 100 erzeugten
Superkavitationsfeldern überlagert wird. In solch einer
Einrichtung 200, wie sie schematisch in Fig. 6 in einer
Querschnittsansicht anhand von zwei gekoppelten
Superkavitationsmischern 100 veranschaulicht wird, kann durch die Überlagerung der mehreren
Superkavitationsfeider deren Kavitationswirkung und
Mischwirkung insgesamt nochmals potenziert werden.
Außerdem hat solch eine Einrichtung 200 den Vorteil, daß ein Gesamtmassestrom nicht durch eine einzelne
Vorrichtung hindurch mittels einer entsprechend dimensionierten Pumpe gepreßt werden muß, sondern daß dieser zu vermischende Gesamtstrom auf die einzelnen, zu der Einrichtung 200 gehörenden Superkavitationsmischer 100 aufgeteilt werden kann, so daß jeweils pro Superkavitationsmischer 100 nur eine wesentlich kleiner dimensionierte Pumpe erforderlich ist. Dies erhöht die Effektivität bzw. Energieausnutzung der Einrichtung.
In der in Fig. 6 gezeigten Einrichtung 200 sind die einzelnen Superkavitationsmischer 100 so miteinander verbunden und gekoppelt, daß ihre einzelnen Durchflußkammern 4 nahtlos in eine nachfolgende gemeinsame Durchflußkammer 40 übergehen. Mit anderen Worten, die Ausgangsöffnungen 3 der Gehäuse 1 der Superkavitationsmischer 100 sind zu einer einzigen gemeinsamen Öffnung 30 verbunden bzw. überlagert, die die Eingangsöffnung der gemeinsamen nachfolgenden Durchflußkammer 40 darstellt. Im Bereich der Eingangsöffnung 30, das heißt, im Eingangsbereich der gemeinsamen Durchflußkammer 40, überlagern sich dann die von jedem Superkavitationsmischer 100 erzeugten Superkavitationsfeider . Nach der Beaufschlagung mit den überlagerten Superkavitationsfeidern wird der gesamte durch die Einrichtung 200 hindurchströmende Massestrom durch die Ausgangsöffnung 50 der Durchflußkammer 40 entnommen.
Man beachte auch, daß in der Einrichtung 200 die einzelnen Superkavitationsfelder vorteilhafterweise symmetrisch einander überlagert werden, das heißt, einander äquivalente räumliche Bereiche der jeweiligen Superkavitationsfeider werden miteinander überlagert. Sind dies die Bereiche der stärksten bzw. optimalen Kavitationswirkung eines jeden Superkavitationsfeldes , so potenziert sich in der Überlagerung deren Wirkung optimal. Allerdings kann diese symmetrische Art der Überlagerung auch aufgegeben werden, wenn dadurch eine bessere Mischwirkung oder andere erwünschte Effekte erreicht werden können bzw. sollen.
Eine zur obigen Einrichtung 200 analoge Einrichtung, in der mehrere Superkavitationsfeider überlagert werden, ist auch mit den in DE-A-4433744 offenbarten Superkavitationsmischern möglich .
Bei allen bisher beschriebenen Ausführungsformen und Modifikationen davon sollte beachtet werden, daß der durch einen erfindungsgemäßen Superkavitationsmischer 100 hindurchgeleitete Massestrom nach seiner Entnahme aus der
Ausgangsöffnung 3 des Gehäuses 1 (bzw. der
Ausgangsöffnung 50 der Durchflußkammer 40) teilweise oder ganz rückgeführt werden kann - über die Eingangsöffnung 2 des Gehäuses 1 und/oder die entsprechende Einlaßöffnung
61 der Halterung 6 -, um so nochmals teilweise oder als ganzes behandelt zu werden. Dies gilt selbstverständlich analog auch für die Einrichtung 200, in der mehrere Superkavitationsmischer gekoppelt sind.
Abschließend sei nochmals betont, daß alle Ausgestaltungen des schwer umströmbaren Körpers 8, in denen dieser aus mehreren Einzelteilen besteht, auch auf entsprechende Weise so realisiert werden können, daß der schwer umströmbare Körper aus einem Stück besteht. Dabei geht nur eine gegebenenfalls vorhandene unabhängige relative Beweglichkeit entsprechender Einzelteile verloren.
Zusammengefaßt stellt eine erfindungsgemäße Vorrichtung 100 zum Vermischen der Komponenten eines hindurchströmenden Massestromes eine besonders homogene und extrem bzw. beliebig lange stabile Mischung bereit, auch wenn nach dem Stand der Technik nicht oder nur schwerst mischbare Komponenten gemischt werden, und auch ohne die Verwendung von Zusatzstoffen (Additiven, Emulgatoren u.ä) zur Unterstützung der Mischwirkung. Die Vorrichtung 100 weist einen in einer Durchflußkammer 4 angeordneten schwer umströmbaren Körper 8 auf, der mindestens teilweise in einem sich in Strömungsrichtung aufweitenden Teil der Durchflußkammer 4 angeordnet ist, so daß die Kavitationswirkung und Mischwirkung des von dem schwer umströmbaren Körper 8 erzeugten Superkavitationsfeldes wesentlich verstärkt und optimiert wird.

Claims

Ansprüche
1. Vorrichtung (100) zum Vermischen der Komponenten eines hindurchströmenden Massestromes, wobei die Komponenten insbesondere fest, flüssig oder gasförmig sein können, mittels einem hydrodynamischen Superkavitationsfeld, um eine Mischung, insbesondere eine Emulsion oder Suspension, zu erzeugen, mit
einem Gehäuse (1), das eine Eingangsöffnung (2) für die Zufuhr mindestens eines Teils des zu vermischenden Massestromes und eine Ausgangsöffnung (3) für die Entnahme des Massestromes aufweist;
wobei das Gehäuse (1) eine Durchflußkammer (4) mit einem darin mittels einer Halterung (6) angeordneten schwer umströmbaren Körper (8) aufweist, und
der schwer umströmbare Körper (8) mindestens zwei schwer umströmbare Teilbereiche (80; 10) besitzt, die für jeweils eine lokale Strömungseinengung sorgen,
dadurch gekennzeichnet, daß
der Querschnitt der Durchflußkammer (4), der senkrecht zu ihrer Mittelachse genommen wird, wenigstens in einem Teil (41, 20) des Bereichs, der den schwer umströmbaren Körper (8) umgibt, in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes größer wird.
2. Vorrichtung (100) nach Anspruch 1, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) entlang der Richtung der Mittelachse der Durchflußkammer (4) verschoben werden kann.
3. Vorrichtung (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die schwer umströmbaren Teilbereiche (80; 10) des schwer umströmbaren Körpers (8) mittels mehrerer schwer umströmbarer Teilkörper (10) realisiert werden .
4. Vorrichtung (100) nach Anspruch 3, dadurch gekennzeichnet, daß mindestens einer der Teilkörper (10) unabhängig von allen anderen (10) entlang der Richtung der Mittelachse der Durchflußkammer (4) verschoben werden kann.
5. Vorrichtung (100) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) so ausgebildet ist, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer (4) genommen wird, an dem Ende des Teilkörpers, das der Eingangsöffnung (2) am nächsten liegt, kleiner ist als an dem Ende, das der Ausgangsöffnung (3) am nächsten liegt.
6. Vorrichtung (100) nach Anspruch 5, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) als Kegelstumpf oder als Halbkugel ausgebildet ist.
7. Vorrichtung (100) nach Anspruch 5, dadurch σekennzeichne . aß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) als hohler Kegelstumpf oder als hohle Halbkugel ausgebildet ist.
8. Vorrichtung (100) nach Anspruch 5, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) so ausgestaltet ist, daß er mindestens in einem Oberflächenteilbereich eine Vielzahl von kleinen Erhebungen (88) aufweist.
9. Vorrichtung (100) nach Anspruch 8, dadurch gekennzeichnet, daß mindestens einer der schwer umströmbaren Teilbereiche (80; 10) als Kegelstumpf mit einer Vielzahl von kleinen Erhebungen (88) ausgebildet ist, wobei die kleinen Erhebungen jeweils die Form einer Kegelspitze besitzen und wobei der Oberflächenteilbereich und die Anordnung der kleinen Kegelspitzen dadurch gekennzeichnet ist, daß die Symmetrieachsen der Kegelspitzen alle parallel zueinander und zu der Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes sind und daß jede Kegelspitze dem durch die Durchflußkammer (4) hindurchströmenden Massestrom zugewandt ist.
10. Vorrichtung (100) nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß der schwer umströmbare Teilbereich (80; 10), der von allen Teilbereichen (80; 10) der Ausgangsöffnung (3) am nächsten liegt, so ausgestaltet ist, daß sein Querschnitt, der senkrecht zu der Mittelachse der Durchflußkammer (4) genommen wird, in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes gesehen erst größer und dann kleiner und dann wieder größer wird.
11. Vorrichtung (100) nach Anspruch 10, dadurch gekennzeichnet, daß der schwer umströmbare Teilbereich (80; 10), der von allen Teilbereichen (80; 10) der Ausgangsöffnung (3) am nächsten liegt, einen hohlen Endbereich (84) aufweist, der der Ausgangsöffnung (3) zugewandt ist, wobei der Querschnitt dieses Hohlraums (84), der senkrecht zu der Mittelachse der Durchflußkammer (4) genommen wird, in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes größer wird.
12. Vorrichtung (100) nach Anspruch 11, dadurch gekennzeichnet, daß der hohle Endbereich (84) rotationssymmetrisch ist und seine Symmetrieachse parallel zur Mittelachse der Durchflußkammer (4) liegt.
13. Vorrichtung (100) nach Anspruch 12, dadurch gekennzeichnet, daß jede Querschnittsfläche des hohlen
Endbereichs (84), die dessen Symmetrieachse vollständig enthält, eine Randlinie besitzt, die in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes gesehen konvex verläuft.
14. Vorrichtung (100) nach Anspruch 12, dadurch gekennzeichnet, daß jede Querschnittsfläche des hohlen Endbereichs (84), die dessen Symmetrieachse vollständig enthält, eine Randlinie besitzt, die in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes gesehen konkav verläuft.
15. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Durchflußkammer (4) wenigstens teilweise rotationssymmetrisch ist, wobei ihre Mittelachse die Symmetrieachse ist, und
der schwer umströmbare Körper (8) so angeordnet ist, daß seine Mittelachse mit der Mittelachse der Durchflußkammer (4) zusammenfällt.
16. Vorrichtung (100) nach Anspruch 15, dadurch gekennzeichnet, daß die Durchflußkammer (4) in ihrem rotationssymmetrischen Teil mindestens eine Ausbuchtung (20) in ihrer Wandung entlang ihre Umfanges aufweist.
17. Vorrichtung (100) nach Anspruch 16, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) so angeordnet ist, daß mindestens eine Ausbuchtung (20) mindestens teilweise im Bereich des schwer umströmbaren Körper (8) liegt.
18. Vorrichtung (100) nach Anspruch 16, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) so angeordnet ist, daß mindestens eine Ausbuchtung (20) in Strömungsrichtung des durch die Durchflußkammer (4) hindurchströmenden Massestromes direkt hinter dem schwer umströmbaren Körper (8) liegt.
19. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) mindestens teilweise aus einem elastischen, nichtmetallischen Material besteht.
20. Vorrichtung (100) nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der schwer umströmbare Körper (8) mindestens teilweise einen elastischen, nichtmetallischen Überzug aufweist.
21. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
der schwer umströmbare Körper (8) einen hindurchgehenden Hohlraum (83) mit einer Einlaßöffnung (81) aufweist, die sich an dem Ende des schwer umströmbaren Körpers (8) befindet, das der Eingangsöffnung (2) des Gehäuses (1) am nächsten liegt, wobei der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum (83) mindestens eine Auslaßöffnung (82, 85, 86) aufweist,
die Halterung (6) einen hindurchgehenden Hohlraum (63) mit einer Einlaßöffnung (61) und einer Auslaßöffnung (62) aufweist, wobei letztere mit der Einlaßöffnung (81) des schwer umströmbaren Körpers (8) verbunden ist; und
die Halterung (6) und der schwer umströmbare Körper (8) so miteinander verbunden und in dem Gehäuse (1) angeordnet sind, daß mittels einer Öffnung (5) in dem Gehäuse (1) und über die Einlaßöffnung (61) der Halterung (6) ein Teil des zu vermischenden Massestromes über die mindestens eine Auslaßöffnung (82, 85, 86) des schwer umströmbaren Körpers (8) in die Durchflußkammer (4) eingeführt werden kann.
22. Vorrichtung (100) nach Anspruch 21, dadurch gekennzeichnet, daß die Halterung (6) eine hohle Stange umfaßt, die durch die Öffnung (5) in dem Gehäuse (1) hindurch entlang der Mittelachse der Durchflußkammer (4) in diese hineinragt.
23. Vorrichtung (100) nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum so ausgestaltet ist, das er eine Auslaßöffnung (82) aufweist, die sich an dem Ende des schwer umströmbaren Körpers (8) befindet, das der Ausgangsöffnung (3) des Gehäuses (1) am nächsten liegt.
24. Vorrichtung (100) nach einem der Ansprüche 21, 22 oder 23, dadurch gekennzeichnet, daß der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum so ausgestaltet ist, das er mindestens eine Auslaßöffnung (85) aufweist,
die sich in einem Oberflächenteilbereich des schwer umströmbaren Körpers (8) befindet, der der Innenwand der Durchflußkammer (4) mindestens teilweise zugewandt ist, und
die sich zwischen zwei benachbarten schwer umströmbaren Teilbereichen (80; 10) befindet.
25. Vorrichtung (100) nach einem der Ansprüche 21, 22, 23 oder 24, dadurch gekennzeichnet, daß der durch den schwer umströmbaren Körper (8) hindurchgehende Hohlraum so ausgestaltet ist, das er mindestens eine Auslaßöffnung (86) aufweist,
die sich in einem Ober lächenteilbereich des schwer umströmbaren Körpers (8) befindet, der der Innenwand der Durchflußkammer (4) mindestens teilweise zugewandt ist, und
die sich im Bereich eines schwer umströmbaren Teilbereiches (80; 10) befindet.
26. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß des weiteren eine Einrichtung bereitgestellt ist, um den schwer umströmbaren Körper (8) und/oder den Massestrom an mindestes einem Ort in der Durchflußkammer (4) mit Ultraschall zu beaufschlagen.
27. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß des weiteren eine Einrichtung bereitgestellt ist, um den schwer umströmbaren Körper (8) und/oder einen Teil der Durchflußkammer (4) in Ultraschallschwingungen zu versetzen.
28. Vorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß des weiteren eine Einrichtung bereitgestellt ist, um den Massestrom in der Durchflußkammer (4) mit Laserlicht zu beaufschlagen.
29. Einrichtung (200) zum Vermischen der Komponenten eines hindurchströmenden Massestromes, wobei die Komponenten insbesondere fest, flüssig oder gasförmig sein können, mittels einer Überlagerung von mindestens zwei hydrodynamischen Superkavitationsfeidern, um eine Mischung, insbesondere eine Emulsion oder Suspension, zu erzeugen, dadurch gekennzeichnet, daß
die Einrichtung (200) mindestens zwei Vorrichtungen (100) nach jeweils einem der Ansprüche 1 bis 28 und eine nachfolgende gemeinsame Durchflußkammer (40) aufweist, wobei
die Vorrichtungen (100) so angeordnet und ausgestaltet sind, daß ihre Ausgangsöffnungen (3) als Gesamtheit an die Eingangsöffnung (30) der nachfolgenden gemeinsamen Durchflußkammer (40) anschließen, derart, daß die von den schwer umströmbaren Körpern (8) erzeugten Superkavitationsfelder im Eingangsbereich der gemeinsamen Durchflußkammer (40) räumlich überlappen.
PCT/EP2001/002253 2000-02-28 2001-02-28 Kavitationsmischer WO2001062373A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001256171A AU2001256171A1 (en) 2000-02-28 2001-02-28 Cavitation mixer
US10/220,097 US6935770B2 (en) 2000-02-28 2001-02-28 Cavitation mixer
EP01929373A EP1280598B1 (de) 2000-02-28 2001-02-28 Kavitationsmischer
AT01929373T ATE258080T1 (de) 2000-02-28 2001-02-28 Kavitationsmischer
DE50101363T DE50101363D1 (de) 2000-02-28 2001-02-28 Kavitationsmischer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10009326A DE10009326A1 (de) 2000-02-28 2000-02-28 Kavitationsmischer
DE10009326.4 2000-02-28

Publications (2)

Publication Number Publication Date
WO2001062373A1 true WO2001062373A1 (de) 2001-08-30
WO2001062373B1 WO2001062373B1 (de) 2001-12-20

Family

ID=7632688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002253 WO2001062373A1 (de) 2000-02-28 2001-02-28 Kavitationsmischer

Country Status (6)

Country Link
US (1) US6935770B2 (de)
EP (1) EP1280598B1 (de)
AT (1) ATE258080T1 (de)
AU (1) AU2001256171A1 (de)
DE (2) DE10009326A1 (de)
WO (1) WO2001062373A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1603652A2 (de) * 2003-03-04 2005-12-14 Five Star Technologies, Inc. Vorrichtung und verfahren zur kristallisation unter verwendung von hydrodynamischer kavitation
WO2007020296A1 (de) * 2005-08-19 2007-02-22 Wagner, Manfred Kavitations-entgaser
US7833421B2 (en) * 2005-10-25 2010-11-16 Elmar Huymann Degermination through cavitation
EP2959965A4 (de) * 2013-02-25 2016-11-02 Asahi Organic Chem Ind Flüssigkeitsmischer und vorrichtung mit dem flüssigkeitsmischer

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702949B2 (en) 1997-10-24 2004-03-09 Microdiffusion, Inc. Diffuser/emulsifier for aquaculture applications
US20110075507A1 (en) * 1997-10-24 2011-03-31 Revalesio Corporation Diffuser/emulsifier
US7654728B2 (en) 1997-10-24 2010-02-02 Revalesio Corporation System and method for therapeutic application of dissolved oxygen
US7128278B2 (en) 1997-10-24 2006-10-31 Microdiffusion, Inc. System and method for irritating with aerated water
US6386751B1 (en) 1997-10-24 2002-05-14 Diffusion Dynamics, Inc. Diffuser/emulsifier
US6502979B1 (en) * 2000-11-20 2003-01-07 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
FR2832400B1 (fr) * 2001-11-22 2004-02-13 Herve Maurice Marcel G Brisset Procede et dispositif de traitement des boues hydrophiles par effet de turbulence hydraulique associee a une oxydation et des reactions chimiques par apport d'additifs
US20040251566A1 (en) * 2003-06-13 2004-12-16 Kozyuk Oleg V. Device and method for generating microbubbles in a liquid using hydrodynamic cavitation
DE102004019241A1 (de) * 2004-04-16 2005-11-03 Cellmed Ag Injizierbare vernetzte und unvernetzte Alginate und ihre Verwendung in der Medizin und in der ästhetischen Chirurgie
EP1784251B1 (de) * 2004-09-03 2009-11-18 Crenano Gmbh Mehrkammersuperkavitationsreaktor
US7207712B2 (en) * 2004-09-07 2007-04-24 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
US7380976B2 (en) * 2005-07-18 2008-06-03 Xerox Corporation Device and method with cooling jackets
DE102005037026B4 (de) * 2005-08-05 2010-12-16 Cavitator Systems Gmbh Kavitationsmischer
DE102005051072A1 (de) 2005-10-25 2007-04-26 Wagner, Manfred Entkeimung durch Kavitation
DE102006011881A1 (de) * 2006-03-09 2007-09-13 Vortex-Nanofluid Gmbh Langzeitstabile Dispersion und Verfahren zur Herstellung der Dispersion
US7819335B2 (en) * 2006-01-23 2010-10-26 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US7744015B2 (en) 2006-01-23 2010-06-29 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7735751B2 (en) * 2006-01-23 2010-06-15 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US7424883B2 (en) * 2006-01-23 2008-09-16 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US8028930B2 (en) * 2006-01-23 2011-10-04 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7963458B2 (en) 2006-01-23 2011-06-21 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US8191732B2 (en) 2006-01-23 2012-06-05 Kimberly-Clark Worldwide, Inc. Ultrasonic waveguide pump and method of pumping liquid
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
DE102006007634A1 (de) * 2006-02-18 2007-08-30 Erhard Schindler Zyklonaler Kavitationsgenerator
DE102006024788A1 (de) * 2006-05-27 2007-11-29 Man Roland Druckmaschinen Ag Druckmaschine
DE102006024789A1 (de) * 2006-05-27 2007-11-29 Man Roland Druckmaschinen Ag Druckmaschine
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
CA2667614A1 (en) 2006-10-25 2008-09-25 Revalesio Corporation Method of wound care and treatment
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
WO2008052143A2 (en) 2006-10-25 2008-05-02 Revalesio Corporation Mixing device and output fluids of same
US8597689B2 (en) 2006-10-25 2013-12-03 Revalesio Corporation Methods of wound care and treatment
US8884182B2 (en) * 2006-12-11 2014-11-11 General Electric Company Method of modifying the end wall contour in a turbine using laser consolidation and the turbines derived therefrom
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
EP2025392B1 (de) * 2007-07-30 2012-05-23 Cavitator Systems GmbH Steuerung einer Cavitator-Anlage
AU2008306712A1 (en) * 2007-10-03 2009-04-09 Neorad As Monitoring the injection of fluid
US20100303871A1 (en) * 2007-10-25 2010-12-02 Revalesio Corporation Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US20090263495A1 (en) * 2007-10-25 2009-10-22 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods
US20100310665A1 (en) * 2007-10-25 2010-12-09 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US20090147905A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8858892B2 (en) * 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US20090166177A1 (en) * 2007-12-28 2009-07-02 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8206024B2 (en) * 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US7533830B1 (en) 2007-12-28 2009-05-19 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
US8215822B2 (en) * 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US7950594B2 (en) * 2008-02-11 2011-05-31 Bacoustics, Llc Mechanical and ultrasound atomization and mixing system
DE102008012725A1 (de) * 2008-03-05 2009-09-24 United Waters International Ag Vorrichtung zur Begasung von Flüssigkeiten
CN103919804A (zh) 2008-05-01 2014-07-16 利发利希奥公司 治疗消化功能紊乱的组合物和方法
US8603198B2 (en) 2008-06-23 2013-12-10 Cavitation Technologies, Inc. Process for producing biodiesel through lower molecular weight alcohol-targeted cavitation
US8042989B2 (en) * 2009-05-12 2011-10-25 Cavitation Technologies, Inc. Multi-stage cavitation device
US7762715B2 (en) * 2008-10-27 2010-07-27 Cavitation Technologies, Inc. Cavitation generator
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
DE102009024707A1 (de) * 2009-06-12 2010-12-16 Kaviwo Gmbh Verfahren und Vorrichtung zur Stoffumwandlung in schwebstoffhaltigen Flüssigkeiten
US9611496B2 (en) 2009-06-15 2017-04-04 Cavitation Technologies, Inc. Processes for extracting carbohydrates from biomass and converting the carbohydrates into biofuels
US9988651B2 (en) 2009-06-15 2018-06-05 Cavitation Technologies, Inc. Processes for increasing bioalcohol yield from biomass
DE102009051501A1 (de) 2009-10-30 2011-05-05 Cavitator Systems Gmbh Kavitator mit geraden Seitenwänden
EP2566460A4 (de) 2010-05-07 2015-12-23 Revalesio Corp Zusammensetzungen und verfahren für verbesserte sportliche leistungen und verkürzte erholungszeiten
MX2013001636A (es) 2010-08-12 2013-05-01 Revalesio Corp Composiciones y metodos para el tratamiento de taupatias
US20130258801A1 (en) 2010-11-15 2013-10-03 Hindustan Unilever Limited Mixing apparatus and method for mixing fluids
KR101100801B1 (ko) * 2011-06-15 2012-01-02 (주)한국캐비테이션 수리동력학적 캐비테이션장치
US20130068700A1 (en) * 2011-09-16 2013-03-21 Impulse Devices Inc. System and Method for Treatment of Liquids by Cavitation with Pressure Recovery Capability
US9126176B2 (en) 2012-05-11 2015-09-08 Caisson Technology Group LLC Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same
US9222403B2 (en) * 2013-02-07 2015-12-29 Thrival Tech, LLC Fuel treatment system and method
US9732068B1 (en) 2013-03-15 2017-08-15 GenSyn Technologies, Inc. System for crystalizing chemical compounds and methodologies for utilizing the same
WO2015088983A1 (en) 2013-12-09 2015-06-18 Cavitation Technologies, Inc. Processes for extracting carbohydrates from biomass and converting the carbohydrates into biofuels
EP3189887A1 (de) 2015-12-29 2017-07-12 AVARUS Suisse Holding AG Kavitationsreaktor zum behandeln von fliessfähigen substanzen
EP3187253A1 (de) 2015-12-30 2017-07-05 AVARUS Suisse Holding AG Kavitationsreaktor zum behandeln einer fliessfähigen substanz
US10065158B2 (en) * 2016-08-19 2018-09-04 Arisdyne Systems, Inc. Device with an inlet suction valve and discharge suction valve for homogenizaing a liquid and method of using the same
RU2685629C2 (ru) * 2017-05-24 2019-04-22 Шор Борис Иосифович Активатор жидкости
WO2021113424A1 (en) * 2019-12-05 2021-06-10 Hydrocav, Llc Fluid filtration device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669750A (en) * 1950-11-21 1954-02-23 Monsanto Chemicals Injection molding device
CH366518A (de) * 1959-01-15 1963-01-15 Lendi Wilhelm Homogenisiervorrichtung
FR1381821A (fr) * 1964-02-04 1964-12-14 Ultrasonics Ltd Procédé et dispositif atomiseur pour la production d'aérosols ou autres mélangesintimes de liquides et de gaz
US4299655A (en) * 1978-03-13 1981-11-10 Beloit Corporation Foam generator for papermaking machine
DE4421638A1 (de) * 1993-07-27 1995-02-02 Schoeller Plast Ag Einsatzkörper für eine Einspritzdüse einer Kunststoff-Spritzgußmaschine sowie Einspritzdüse
EP0644271A1 (de) * 1991-11-29 1995-03-22 Oleg Vyacheslavovich Kozjuk Verfahren zur herstellung eines frei dispersen systems und einrichtung zur durchführung des verfahrens
DE4433744A1 (de) * 1994-09-21 1996-03-28 Weizdoerfer Anton & Co Gmbh Vorrichtung zur Erzeugung flüssiger Systeme, insbesondere von Emulsionen, Suspensionen od. dgl. in einem hydrodynamischen Kavitationsfeld
US5535175A (en) * 1994-08-24 1996-07-09 Kankyokagakukogyo Kabushiki Kaisha Stationary type mixing apparatus
DE29608289U1 (de) * 1996-05-08 1996-08-01 Jordanow Iwan Vorrichtung zum Mischen von Strömungsmedien
US5969207A (en) * 1994-02-02 1999-10-19 Kozyuk; Oleg V. Method for changing the qualitative and quantitative composition of a mixture of liquid hydrocarbons based on the effects of cavitation
US6012492A (en) * 1997-05-06 2000-01-11 Kozyuk; Oleg V. Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473787A (en) * 1967-12-18 1969-10-21 Floyd M Bartlett Method and apparatus for mixing drilling fluid
DE2241673C2 (de) * 1972-09-01 1982-03-04 Vsesojuznyj naučno-issledovatel'skij institut celljulozno-bumažnoj promyšlennosti, Leningrad Anlage zur Bearbeitung von Suspensionenvon Faserstoffen
US4127332A (en) * 1976-11-19 1978-11-28 Daedalean Associates, Inc. Homogenizing method and apparatus
EP0879363B1 (de) * 1996-02-15 2002-09-11 Oleg Vyacheslavovich Kozyuk Verfahren und vorrichtung zur herstellung eines frei dispersen systems in einer flüssigkeit
US5971601A (en) * 1998-02-06 1999-10-26 Kozyuk; Oleg Vyacheslavovich Method and apparatus of producing liquid disperse systems
US6502979B1 (en) * 2000-11-20 2003-01-07 Five Star Technologies, Inc. Device and method for creating hydrodynamic cavitation in fluids
US6802639B2 (en) * 2002-10-15 2004-10-12 Five Star Technologies, Inc. Homogenization device and method of using same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669750A (en) * 1950-11-21 1954-02-23 Monsanto Chemicals Injection molding device
CH366518A (de) * 1959-01-15 1963-01-15 Lendi Wilhelm Homogenisiervorrichtung
FR1381821A (fr) * 1964-02-04 1964-12-14 Ultrasonics Ltd Procédé et dispositif atomiseur pour la production d'aérosols ou autres mélangesintimes de liquides et de gaz
US4299655A (en) * 1978-03-13 1981-11-10 Beloit Corporation Foam generator for papermaking machine
EP0644271A1 (de) * 1991-11-29 1995-03-22 Oleg Vyacheslavovich Kozjuk Verfahren zur herstellung eines frei dispersen systems und einrichtung zur durchführung des verfahrens
DE4421638A1 (de) * 1993-07-27 1995-02-02 Schoeller Plast Ag Einsatzkörper für eine Einspritzdüse einer Kunststoff-Spritzgußmaschine sowie Einspritzdüse
US5969207A (en) * 1994-02-02 1999-10-19 Kozyuk; Oleg V. Method for changing the qualitative and quantitative composition of a mixture of liquid hydrocarbons based on the effects of cavitation
US5535175A (en) * 1994-08-24 1996-07-09 Kankyokagakukogyo Kabushiki Kaisha Stationary type mixing apparatus
DE4433744A1 (de) * 1994-09-21 1996-03-28 Weizdoerfer Anton & Co Gmbh Vorrichtung zur Erzeugung flüssiger Systeme, insbesondere von Emulsionen, Suspensionen od. dgl. in einem hydrodynamischen Kavitationsfeld
DE29608289U1 (de) * 1996-05-08 1996-08-01 Jordanow Iwan Vorrichtung zum Mischen von Strömungsmedien
US6012492A (en) * 1997-05-06 2000-01-11 Kozyuk; Oleg V. Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1603652A2 (de) * 2003-03-04 2005-12-14 Five Star Technologies, Inc. Vorrichtung und verfahren zur kristallisation unter verwendung von hydrodynamischer kavitation
JP2006519700A (ja) * 2003-03-04 2006-08-31 ファイブ・スター・テクノロジーズ・インコーポレイテッド 流体力学的キャビテーション結晶化装置および方法
EP1603652B1 (de) * 2003-03-04 2009-07-01 Five Star Technologies, Inc. Verfahren zur kristallisation unter verwendung von hydrodynamischer kavitation
EP2165745A1 (de) 2003-03-04 2010-03-24 Five Star Technologies, Inc. Hydrodynamische Kavitationskristallisierungsvorrichtung
WO2007020296A1 (de) * 2005-08-19 2007-02-22 Wagner, Manfred Kavitations-entgaser
US7833421B2 (en) * 2005-10-25 2010-11-16 Elmar Huymann Degermination through cavitation
EP2959965A4 (de) * 2013-02-25 2016-11-02 Asahi Organic Chem Ind Flüssigkeitsmischer und vorrichtung mit dem flüssigkeitsmischer

Also Published As

Publication number Publication date
AU2001256171A1 (en) 2001-09-03
WO2001062373B1 (de) 2001-12-20
EP1280598A2 (de) 2003-02-05
EP1280598B1 (de) 2004-01-21
DE10009326A1 (de) 2001-08-30
ATE258080T1 (de) 2004-02-15
DE50101363D1 (de) 2004-02-26
US20030147303A1 (en) 2003-08-07
US6935770B2 (en) 2005-08-30

Similar Documents

Publication Publication Date Title
EP1280598B1 (de) Kavitationsmischer
DE69917433T2 (de) Verfahren und vorrichtung zum herstellen von flüssigdispersen systemen in flüssigkeiten
DE102009034977B4 (de) Kavitationsreaktor sowie ein Verfahren zur hydrodynamischen Erzeugung homogener, oszillierender Kavitationsblasen in einem Fluid, ein Verfahren zur Desinfektion eines Fluids und ein Verfahren zum Emulgieren oder zum Suspendieren oder zur Reaktionsbegünstigung zumindest zweier Stoffe
US6802639B2 (en) Homogenization device and method of using same
DE60117165T2 (de) Vorrichtung und verfahren zur erzeugung hydrodynamischer kavitationen in fluiden
DE102017116506B4 (de) Fluidzufuhrleitung, Werkzeugmaschine, Duschkopf und Fluidmischvorrichtung
DE4433744A1 (de) Vorrichtung zur Erzeugung flüssiger Systeme, insbesondere von Emulsionen, Suspensionen od. dgl. in einem hydrodynamischen Kavitationsfeld
EP0475284B1 (de) Verfahren und Vorrichtung zur Einwirkung eines Verdichtungsstosses auf Fluide
DE102005037026B4 (de) Kavitationsmischer
DE2634496C2 (de) Injektor zur Begasung einer Flüssigkeit
DE60115932T2 (de) Verfahren zur Herstellung eines Gerätes zum statischen Mischen
DE69825475T2 (de) Injektionsmischer
EP1924346B1 (de) Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente
DE102018123593B4 (de) Fluidzuführvorrichtung, innere Struktur für eine solche, sowie Werkzeugmaschine, Duschdüse, Fluidmischvorrichtung und Hydrokultursystem mit einer solchen Fluidzuführvorrichtung
EP1278593B1 (de) Statisches mischelement
EP2608875B1 (de) Vorrichtung und verfahren zur gasdispergierung
EP1638675A1 (de) Dispergiervorrichtung
EP2135667A1 (de) Kavitator
DE202010000075U1 (de) Vorrichtung zur Behandlung von Strömungskomponenten mittels turbulenter Strömungen
DE102007011205A1 (de) Hochdruckhomogenisator
DE202006001952U1 (de) Vorrichtung zum Herstellen von Dispersionen
DE2909989A1 (de) Emulsionserzeuger
DE10204923C1 (de) Sonotroden-Dispergier-Vorrichtung
EP3189887A1 (de) Kavitationsreaktor zum behandeln von fliessfähigen substanzen
DE19945508A1 (de) Verfahren und Vorrichtung zur Herstellung von Emulsionen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: B1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

B Later publication of amended claims
WWE Wipo information: entry into national phase

Ref document number: 2001929373

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10220097

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001929373

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001929373

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP