WO2001056926A1 - Alumina composition and method for preparing the same - Google Patents

Alumina composition and method for preparing the same Download PDF

Info

Publication number
WO2001056926A1
WO2001056926A1 PCT/JP2000/000620 JP0000620W WO0156926A1 WO 2001056926 A1 WO2001056926 A1 WO 2001056926A1 JP 0000620 W JP0000620 W JP 0000620W WO 0156926 A1 WO0156926 A1 WO 0156926A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
acid
preparation
moles
gel
Prior art date
Application number
PCT/JP2000/000620
Other languages
French (fr)
Japanese (ja)
Inventor
Goro Sato
Masayoshi Sato
Original Assignee
Goro Sato
Masayoshi Sato
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goro Sato, Masayoshi Sato filed Critical Goro Sato
Priority to PCT/JP2000/000620 priority Critical patent/WO2001056926A1/en
Priority to JP2001556805A priority patent/JP4105870B2/en
Publication of WO2001056926A1 publication Critical patent/WO2001056926A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • B01J35/615
    • B01J35/635
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/447Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes
    • C01F7/448Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes using superatmospheric pressure, e.g. hydrothermal conversion of gibbsite into boehmite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to a method for producing an alumina composition and an alumina composition obtained therefrom. More specifically, a method for producing an alumina composition capable of controlling the specific surface area and the pore structure, which is suitable for a hydrotreating catalyst for petroleum refining or another catalyst carrier, an alumina composition obtained by the production method, and The present invention relates to a catalyst using an alumina composition as a carrier.
  • hydrotreating catalysts for petroleum refining perform a catalytic reaction while performing molecular fractionation. Therefore, the emergence of an alumina carrier having a wide specific surface area and various pore sizes has been desired.
  • an alumina carrier having a high specific surface area and a small average pore diameter is desired, and a carrier having a low specific surface area and a large pore diameter is desired for a demetallizing catalyst.
  • a catalyst having both the desulfurization function and the demetallization function is also desired, and an alumina carrier having a new pore structure for that purpose has been desired.
  • an alumina salt is hydrolyzed in an aqueous solution of an aluminum salt, and alumina is used via pseudoboehmite (see, for example, -7 14 No. 56 and Japanese Patent Publication No. 61-26512).
  • pseudoboehmite see, for example, -7 14 No. 56 and Japanese Patent Publication No. 61-26512.
  • this method has a problem that the pore structure of the alumina carrier cannot be sufficiently controlled.
  • this method has many problems such as a complicated production process, a large amount of consumption of raw materials and energy, and a need for wastewater treatment.
  • a method for converting aluminum hydroxide or alumina having a P-crystal structure to boehmite by rapid thermal dehydration of aluminum hydroxide is not necessarily intended as an alumina carrier for catalysts. 134446, JP-A 64-96511, and JP-A-6-263437.
  • the present inventor has previously proposed an alumina sol in which fibrous boehmite is dispersed suitable for a hydrotreating catalyst carrier and a method for producing the same (W097 / 32817).
  • alumina having a p- and —-crystal structure hereinafter referred to as / 0—alumina having a crystal structure
  • / 0—alumina having a crystal structure is mixed with other aluminum sources as necessary, and After adjusting the composition of monobasic acid and water to a specific molar ratio, it is subjected to hydrothermal treatment to produce a transparent aqueous alumina sol (fibrous boehmite sol). It is disclosed that an alumina molded body is produced using this alumina sol.
  • Alumina composition was once prepared from aluminum hydroxide such as ⁇ via aluminum having p-crystal structure, but directly from aluminum hydroxide without passing through this alumina having p-crystal structure. It was also desired to produce an alumina composition.
  • the present invention relates to an improvement of the invention described in the above-mentioned W097 / 32817, and has a high specific surface area, a large pore volume, a sharp pore size distribution, and a wide range. It is an object of the present invention to provide a controllable method for producing an alumina composition and to provide such an alumina composition. Still another object is to provide a catalyst using these alumina compositions as a carrier. Disclosure of the invention
  • acid-containing aluminum hydroxide and / or aluminum hydroxide obtained by heat-treating aluminum hydroxide in the presence of at least one monobasic acid or a salt thereof at a temperature in the range of 70 to 400.
  • acid-containing alumina source a solution prepared by adding water and, if necessary, a monobasic acid to this acid-containing alumina source so that the k value represented by the following formula has the following range. Is subjected to a hydrothermal treatment at a temperature in the range of 70 to 250 ° C. to obtain an aqueous alumina sol and Or alumina gel and drying and calcining the aqueous alumina sol and / or alumina gel.
  • a is the number of moles in terms of alumina in preparation to A 1 2 ⁇ 3
  • b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid
  • c is prepared solution Number of moles of water.
  • an oxygen-containing organic compound or an inorganic polybasic acid containing an element having an ionic potential of 4.5 or more represented by the following formula or a polybasic acid thereof is produced as a pore structure controlling agent. At least one compound may be mixed.
  • alumina having a P-crystal structure is further used as an alumina raw material, and water and at least one kind of alumina are added to the alumina having the P-crystal structure.
  • a solution prepared by mixing at least one of the basic acid or its salt and at least one of the above pore structure controlling agents so that the k value has the following range is adjusted to a range of 70 to 250.
  • Aqueous alumina sol and Z or alumina gel are obtained by hydrothermal treatment at a temperature, and the aqueous alumina sol and / or alumina gel are dried and calcined.
  • a solution prepared by mixing at least one kind of inorganic monobasic acid or a salt thereof so that the k value has the following range is subjected to hydrothermal treatment at a temperature in the range of 70 to 250 ° C. It is characterized in that an aqueous alumina sol and Z or alumina gel are obtained, and the aqueous alumina sol and / or alumina gel is dried and calcined.
  • alumina having the crystal structure alumina previously treated with a monobasic acid may be used.
  • the k value has the following range by mixing water and at least one monobasic acid or a salt thereof.
  • the aqueous solution prepared above is subjected to hydrothermal treatment at a temperature in the range of 70 to 250 ° C. to obtain an aqueous alumina sol and Z or alumina gel. It is characterized by firing.
  • aluminum hydroxide and Z or alumina having higher solubility than boehmite can be mixed with the above-mentioned preparation liquid within a range not exceeding 95% by weight based on the alumina in the preparation liquid.
  • the acidic aqueous alumina sol and / or alumina gel obtained by the above method is further added with an alkali to increase the specific surface area and the pore volume of the alumina composition.
  • Hydrothermal treatment may be performed at a temperature within the range.
  • FIG. 1 shows a composition ratio in which the monobasic acid is nitric acid, the alumina concentration in the preparation is in the range of 5 to 60% by weight, and the k value is in the range of 0.0001 to 0.20.
  • FIG. 2 shows pore size distribution curves of the alumina compositions prepared in Examples 11 and 56.
  • an acid-containing alumina source obtained by heating aluminum hydroxide in the presence of an acid or alumina having a p-crystal structure is used as an alumina raw material.
  • the aluminum hydroxide used in the present invention is also referred to as alumina hydrate, and typically includes gibbsite, bayerite, Nordstrandite, amorphous aluminum hydroxide and the like.
  • alumina having a P-crystal structure include those obtained by subjecting a gibbsite or the like to vacuum heating dehydration or high-temperature rapid dehydration.
  • Examples of the acid or its salt used in the heat treatment of aluminum hydroxide include monobasic acids such as nitric acid, hydrochloric acid, formic acid, and acetic acid, and aluminum salts such as aluminum nitrate and basic aluminum acetate. .
  • heat treatment is performed on aluminum hydroxide in the presence of at least one of the above monobasic acids.
  • the heat treatment temperature of the acid-mixed aluminum hydroxide is preferably in the range of 70 to 400. At this time, the heating temperature is preferably in the range of 100 to 300 in a period of several minutes to several tens of hours.
  • aluminum hydroxide is heated in the presence of a monobasic acid in the manner described above, the water of crystallization of aluminum hydroxide is partially dehydrated, and the acid groups are adsorbed in the pores formed by the dehydration, and the reactivity is reduced. It is believed that an acid-containing alumina source with a high concentration is formed.
  • heat treatment is performed in a closed vessel, but when using a low vapor pressure acid salt, the heat treatment can be performed in an open state.
  • the concentration of aluminum hydroxide during the heat treatment is preferably in the range of 50 to 80% by weight in terms of Al 2 (.
  • the acid-containing alumina source obtained by the above method has properties similar to P-alumina obtained by rapid heat dehydration such as gibbsite, and the reaction rate is higher than when P-alumina is used as an alumina raw material.
  • Slow but A similar alumina composition can be obtained under the same preparation liquid composition conditions.
  • Alumina having a / 0-crystal structure may be previously treated with a monobasic acid. Specifically, alumina having a p-crystal structure is added to a nitric acid aqueous solution of about 10% or more, and the treatment is performed at a temperature of room temperature to 400. When alumina having a P-crystal structure subjected to such an acid treatment is used, an alumina composition having a high specific surface area can be obtained.
  • the acid-containing alumina source obtained by the above method or alumina having a p-crystal structure (hereinafter collectively referred to as raw alumina) is mixed with water and an acid at a predetermined molar ratio.
  • an acidic aqueous sol and Z or aqueous gel containing fibrous boehmite particles (acidic aqueous sol and Z or aqueous gel” as used in the present invention refers to an aqueous sol or fibrous boehmite particles in which the fibrous boehmite particles obtained by the above hydrothermal treatment are dispersed. It refers to an aqueous gel having a structure or a mixture of both, and in the present invention, may be referred to as an acidic aqueous sol-gel.
  • Such an aqueous sol-gel has the property of swelling when contacted or kneaded with water, and is different from a mere precipitate that does not have such a property.
  • the particle size of the raw material alumina in the preparation solution is not particularly limited, but if the particle size is too large, the raw material alumina is likely to settle in the preparation solution. If the mixture is stirred at high speed, the resulting fibrous boehmite particles may be bound in a bundle, and the alumina composition obtained from the fibrous boehmite bound in such a bundle may be obtained.
  • the product may have a low pore volume and an increase in macropores. For this reason, it is effective to use a pressure-resistant reaction vessel or a rotary pressure-resistant reactor equipped with a low-speed stirring mechanism in order to prevent the raw material alumina from settling at the beginning of the reaction.
  • aluminum hydroxide having a low Na content can be used as the raw material alumina.
  • a very small amount of sodium contained in the raw material alumina can be washed at the powder stage before the reaction, or it can be washed at the hydrogel or molded body stage in the subsequent process.
  • Acids or salts thereof added to the preparation solution include inorganic monobasic acids such as hydrochloric acid and nitric acid, and lower aliphatic monocarboxylic acids such as formic acid, acetic acid and propionic acid.Also, aluminum nitrate and basic acetic acid Monobasic acids generated by dissociation of salts with ionic potentials of 4.5 or higher, such as aluminum and zirconyl nitrate, are also effective.
  • one or more of these acids or salts are used, and particularly when an inorganic monobasic acid and a lower aliphatic monocarboxylic acid are used in a mixture, the pore volume of the alumina composition obtained by the ratio is used. Can be controlled.
  • the molar ratio of alumina, monobasic acid and water in the above prepared solution is one of the important factors in controlling the specific surface area and pore structure of the obtained alumina composition.
  • 0-crystal structure is mixed with water and the acid or a salt thereof such that the k value represented by the following formula has the following range.
  • k (b / a) x (b / c) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 03, b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid, c is in the preparation Indicates the number of moles of water.)
  • the particles do not become an aqueous sol-gel but heavy sedimentable particles. Is generated. Such particles have no plasticity and have a low compressive strength even when the obtained alumina composition is molded. If the k value is larger than 0.20, the effect of increasing the specific surface area of the obtained alumina composition is not recognized even if an oxygen-containing organic compound or an inorganic polybasic acid described later is added, and the pore volume is not increased. Can get only small things. Also, the molded body may be broken during firing.
  • the k value is basically unchanged. Also, the k value does not change regardless of whether the monobasic acid is an organic monocarboxylic acid, an inorganic acid, a pore structure controlling agent, or an improvement in a subsequent process. ,
  • the k value is subdivided depending on the fine setting conditions at the time of preparing the alumina, and will be described below including the improvement of W097 / 32817 of the prior invention.
  • the k value is in the range of 0.02 to 0.20, and in the case of inorganic monobasic acids, the k value is in the range of 0.001 to 0.01.
  • a translucent aqueous alumina sol was produced, and an alumina composition having a large micropore volume of 60 nm or less and a small Mac pore volume of 60 nm or more was obtained.
  • the monobasic acid is a lower aliphatic monocarboxylic acid, even if the k value is less than 0.002, some of the acids (oxy acid, inorganic polyvalent acid) in the pore structure controlling agent are used. It was found that the addition of an acid, etc.) increased the total acid content and produced an aqueous sol-gel, although not transparent, and an effective alumina composition. In addition, in the case of inorganic monobasic acid, an aqueous sol-gel having no transparency was generated beyond 0.01 irrespective of the presence or absence of the pore structure controlling agent, but in a later step after obtaining the alumina sol-gel. It was found that an effective alumina composition can be obtained by improving the shear stress and the like.
  • the above-mentioned pore structure controlling agent is used together with at least one kind of inorganic monobasic acids and lower fatty acid monocarboxylic acids or salts thereof.
  • the k value is preferably in the range of 0.001 to 0.20.
  • the k value is changed to 0.01 ⁇ k ⁇ 0.20 other than the range described in W097 / 32917 by improving the shear stress in the post-process. It was confirmed that the range was effective.
  • nitric acid is about 0.1 to 0.3 mole per mole of alumina.
  • the preferred range is about 0.2 to 0.6 mol.
  • the concentration of alumina in preparation liquid in terms of A l 2 ⁇ 3, 5-6 0% by weight is preferably in the range of. If the alumina concentration is lower than 5% by weight, the low-viscosity state continues for a long time during the hydrothermal treatment, and a problem occurs in that the fibrous boehmite is bound in a bundle by prolonged stirring. If the amount exceeds 60% by weight, the obtained alumina hydrate loses its plasticity and molding becomes difficult. If the concentration is 30% by weight or more, the produced alumina hydrate can be directly kneaded and extruded without special concentration operation.
  • alumina having higher solubility than boehmite may be added to the preparation solution.
  • alumina having higher solubility than boehmite include gibbsite, bayerite, amorphous alumina hydrate, amorphous alumina, ⁇ -alumina, ⁇ -alumina, and 7-alumina.
  • the addition of alumina having higher solubility than these boehmite is effective for obtaining an alumina composition having a relatively small specific surface area.
  • a pore structure controlling agent for controlling the pore structure of the alumina composition can be added to the above-mentioned preparation liquid.
  • a pore structure controlling agent include an oxygen-containing organic compound, or an inorganic polybasic acid or a compound which is dissolved in water to generate an inorganic polybasic acid.
  • Oxygenated organic compounds include starch, agar, gelatin, carbohydrates such as mannan and CMC, mono- or polyhydric alcohols, ketones, Examples thereof include esters, higher aliphatic monocarboxylic acids, aromatic monocarboxylic acids, oxycarboxylic acids, and polycarboxylic acids. These oxygen-containing organic compounds may be compounds such as sodium, ammonium, and aluminum.
  • the resulting product is an aqueous alumina sol, and the alumina composition obtained therefrom has a small effect on increasing the specific surface area, but an effect on increasing the pore volume. Is big.
  • an aqueous alumina sol-gel is formed, which has the effect of increasing the specific surface area and the pore volume.
  • starch, agar, gelatin, mannan and CMC have a thickening effect on the preparation at low concentrations.
  • aliphatic monocarboxylic acid has a lower molecular weight
  • a more transparent aqueous sol is generated, but the effect of increasing the specific surface area and the pore volume is small, and the effect of increasing the molecular weight is larger when the molecular weight is higher.
  • carboxylic acids, polyhydric alcohols, and polycarboxylic acids an aqueous sol-gel composed mainly of hard gel is formed, and the effect of increasing the specific surface area and the pore volume is recognized.
  • polyhydric alcohols increase the pore diameter
  • polyhydric carboxylic acids and certain oxycarboxylic acids both increase the specific surface area
  • the pore volume decreases from a small value.
  • An alumina composition having a sharp pore distribution over a wide range up to a large value can be obtained, and an alumina composition having a bimodal pore distribution can be obtained.
  • most of the oxygen-containing compounds have an effect of improving the mechanical strength of a molded article of the alumina composition.
  • Such an oxygen-containing organic compound is preferably added in the range of 0.002 to 0.2 part by weight per 1 part by weight of alumina. 0. Double If the amount exceeds the above range, the macropore volume of the obtained alumina composition may increase, and the mechanical strength of the molded product may decrease.
  • pore structure controlling agents used in the present invention are inorganic polybasic acids or compounds which dissociate or decompose in hot water to produce inorganic polybasic acids.
  • the ion potential is represented by the following equation.
  • polybasic acids composed of light elements such as B, S i, and P have the effect of increasing the specific surface area and pore volume of the alumina composition with a small amount of addition Mo, W, etc.
  • the effect of increasing the specific surface area of the alumina composition was not recognized unless added in a large amount.
  • Most inorganic polybasic acids have a higher alumina composition than the oxygen-containing organic compound described above. Has the effect of increasing the specific surface area of the product, and it is also effective to use both It is.
  • the atomic ratio is preferably in the range of 0.0002 to 0.2 per mole of atom.
  • the acidic aqueous sol-gel obtained by the above method contains an acid and may be molded as it is for a catalyst carrier. Shrinkage occurs, and only a molded product having a pore volume of, for example, about 0.5 to 0.7 ml / g is obtained, and a molded product having a larger pore volume may not be obtained.
  • the pore volume of the alumina composition can be increased by neutralizing the acid in the sol-gel with an alkali.
  • the alkali used is preferably ammonia gas or aqueous ammonia.
  • the amount of addition is preferably smaller than 1.5 in terms of molar ratio (ammonia Z-acid) to the total amount of acid in the sol-gel. Can be controlled.
  • hydrothermal treatment may be performed again if necessary.
  • the temperature of the hydrothermal treatment is desirably in the range of 70 to 200 ° C, preferably in the range of 110 to 150.
  • an alumina composition having a larger pore volume can be obtained. This It is not clear why the pore volume is increased by re-hydrothermal treatment after alkali neutralization as described above, but the nodules in the three-dimensional network structure of the fibrous matrix in the aqueous gel are strong. It is presumed that bonding occurs, shrinkage due to the capillary condensation of water during dehydration in the drying process is reduced, and a large pore structure is maintained.
  • the aqueous sol-gel thus obtained is dried, and then calcined at 400 or more to obtain an alumina composition.
  • the sintering may be performed in a temperature range of 400 to 600 ° C.
  • formation of a-alumina suitable for a catalyst carrier is confirmed.
  • the aqueous sol-gel obtained in the present invention can have an alumina concentration of 30% by weight or more, it can be formed into an arbitrary shape by extrusion molding or the like as it is. Therefore, an alumina molded body useful for a catalyst carrier or the like can be obtained by drying and calcining after molding.
  • the alumina composition according to the present invention obtained by the above-described method has a very wide range in both the specific surface area and the pore volume, and for example, is calcined in the range of 400 to 600 ° C.
  • the alumina composition thus obtained has a specific surface area of 100 to 400 m 2 Z g, a pore volume of 0.5 to 1.5 ml Z g and an average pore diameter of 50 to 30 OA. have.
  • Such an alumina composition is useful as various types of catalyst carriers, and has a pore structure that is particularly suitable as a carrier for a hydrotreating catalyst in the petroleum refining industry.
  • the alumina composition according to the present invention can be obtained by selecting an alumina composition having an optimum pore structure according to each purpose.
  • the catalyst using the alumina composition according to the present invention as a carrier is obtained by molding the alumina composition obtained by the above method into an appropriate shape and then impregnating the molded body with a catalyst component by a usual method. be able to.
  • the desired catalyst can be obtained by mixing the above-mentioned aqueous sol-gel with a catalyst component, followed by molding, drying and calcining. Further, since the preparation liquid of the alumina raw material contains substances not related to the formation of the alumina sol gel, and aqueous alumina sol gel can be generated in the coexistence of these substances, the catalyst component is added to the preparation liquid. It is also possible to add. For example, when preparing a hydrotreating catalyst for petroleum refining, first add the compound of Mo and W as a catalyst component to a preparation solution to prepare an aqueous sol-gel by the above-mentioned method, and then mold, dry, and calcine it.
  • catalyst components such as Ni and Co can be supported by an impregnation method.
  • the catalyst obtained by this preparation method has sufficient performance for desulfurization activity and nuclear hydrogenation activity.
  • catalyst components such as Mo, W, Ni, and Co
  • the desired catalyst is prepared by simultaneously adding catalyst components such as Mo, W, Ni, and Co to the preparation solution, the formation of nickel aluminate and cobalt aluminate compounds having an inactive composition will not occur. unacceptable.
  • Mo and W at this time are, for example, molybdic acid, Acid is useful as the above-mentioned polybasic acid as a pore structure controlling agent. If such a compound is used as a controlling agent, it acts as a controlling agent and at the same time becomes a catalyst component as it is. This simplifies the catalyst manufacturing process.
  • a compound of Zr and Ce may be added to the preparation solution of the alumina raw material in advance and subjected to hydrothermal treatment to obtain an aqueous sol-gel, which may be molded, dried, and fired.
  • the alumina composition thus obtained has sufficient heat resistance as an exhaust gas purifying catalyst carrier.
  • an alumina composition having a high specific surface area and a large pore volume can be easily obtained.
  • the pore structure such as specific surface area, pore volume, and pore distribution can be arbitrarily controlled, alumina compositions having various pore structures suitable for use as a catalyst carrier used in the petroleum refining industry and the like can be obtained. It can be easily prepared with the same manufacturing equipment by changing some conditions.
  • high concentration of alumina can be prepared, and it can be directly molded from a sol or gel without a concentration operation, or a catalyst component can be added at a preparation liquid stage.
  • the production process of the alumina composition or the catalyst can be greatly shortened.
  • Raw materials used were calculated on the basis, the number of moles of acid in the preparation (b) ZA 1 2 0 3 mole number (a) is 0.20, the number of moles of acid (b) the number of moles of Z water ( c) was 0.016 and the k value ((b / a) X (b / c)) was 0.0032.
  • the prepared solution was placed in a rotary pressure-resistant container, and subjected to hydrothermal treatment at 160 ° C. for 24 hours while rotating to obtain an acidic aqueous sol-gel.
  • the aqueous sol-gel was neutralized by adding the same molar number of aqueous ammonia as nitric acid and converted to an aqueous gel, and subjected to hydrothermal treatment at 135 for 3 hours.After kneading, the mixture was cylindrical with a 1.5-band ⁇ die. It was extruded, dried at 140 and calcined at 560 to produce an alumina molded product.
  • the obtained alumina molded product had a specific surface area of 171 m 2 Z g, a pore volume of less than 60 nm and a pore volume of 0.90 mlZ g, and alumina having a sufficiently large pore volume was obtained.
  • Median particle size is 8.8 m low source one Dagibusai bets [manufactured by Showa Denko KK, HS - 32 0, water attached 0.11%, Al (0H) 3 : 99.83 ⁇ 4, Na 2 0 and the like impurities: 0.0 «] to 77g of 10 g of acetic acid was added, and the mixture was filled in a closed container and heated at 150 ° C for 12 hours to obtain 87 g of an acid-containing gibbsite. After the acid-containing gibbsite was pulverized, 80 ml of ion-exchanged water was added to prepare a preparation.
  • Acid of this preparation (b) / Al 2 0 3 (a) is 0.34, acid (b) / 0 (c) is 0.028, k value was 0.0095.
  • the prepared solution was subjected to hydrothermal treatment under the same conditions as described in Example 11 to obtain an acidic aqueous sol containing a small amount of translucent gel.
  • Aqueous ammonia with the same mole number as the acetic acid contained in this aqueous sol was added, hydrothermally treated at 135 for 3 hours, kneaded, extruded into a 1.5-strand cylinder, dried at 140 ° C, and dried at 560. It was fired to produce an alumina molded product.
  • the specific surface area of the obtained alumina molded product was 132 m 2 Z g, the pore volume was 0.73 ⁇ 1 ⁇ g, and the center pore diameter was 220 A.
  • Example 13 400 g of the same alumina as that used in Example 13 was mixed in advance with nitric acid having different concentrations shown in Table 1, and after aging, ion-exchanged water was added to prepare 1070 g of each of the prepared solutions. 35% alumina concentration of these preparation, respectively, the molar ratio of the predetermined three components of alumina, nitric acid and water thigh 0 3 / ⁇ 1 2 0 3 0.20, with HN0 3 / H 2 0 is 0.021, k value Was 0.0042.
  • Acetic acid aqueous solution (Comparative Examples 1 to 5) to which acetic acid was not added or 6.4 g was added to 560 ml of ion-exchanged water, and 19.1, 48.7, and 84.7 g were added (Examples 9 to 11).
  • An aqueous solution was prepared, and oxalic acid, glycolic acid, citric acid and the like shown in Table 2 were added thereto.
  • To these 385 g of alumina having a p-crystal structure of Example 13 was added to prepare a preparation liquid.
  • the composition was such that A (was 36% by weight and the weight ratio of the above carboxylic acid to alumina was 0.02.
  • An alumina molded article was produced from the obtained preparation in the same manner as in Example_4. .
  • Table 2 shows the specific surface area, pore volume, and compressive strength of the obtained alumina molded product.
  • Example 1 12- L5, Comparative Example-6-9
  • Table 3 shows the specific surface area, pore volume, and compressive fracture strength of the obtained alumina molded product.
  • Example 1 016 0.0024 Daricolic acid 0.02 247 0.83 2.3
  • Example 1 14 0.30 0.034 0.010 Glycolic acid 0.02 0.65 3.5
  • Example-15 0.60 0.077 0.046 Glycolic acid 0.02 227 0.50 3.0
  • Comparative example 6 1.20 0.205 205.245 Not added 211 0.444 1 2
  • Comparative Example 1 7 1.20 0.209 0.250 Glycolic acid 0.02 232 0.45 Collapse during firing
  • Comparative Example 1 8 1.20 0.209 0.250 Oxalic acid 0.02 226 0.46 Collapse during firing Comparative Example 1 9 1.20 0.209 0.250 Cunic acid 0.02 235 0.45 Collapse during firing
  • FIG. 12 shows a pore size distribution curve of the alumina composition of Example 1-12. From the results in Table 3, it was found that a usable alumina carrier was obtained with a k value of 0.46 in Example-15.
  • Example 4 Tartaric acid was added to a diluted aqueous solution of nitric acid at 30 having the same composition as described in Example 4 as shown in Table 4 (from 0.112 g to 112 g in seven steps). —Alumina having a crystal structure was similarly added to prepare a preparation liquid. The resulting preparation was subjected to hydrothermal treatment at 135 for 28 hours in the same manner as in Example-4 to obtain an acidic aqueous sol-gel. The aqueous sol-gel was kneaded while being acidic, extruded into a cylindrical shape of 1.5 ⁇ , dried at 140, and fired at 560 to produce an alumina molded product. Table 4 shows the specific surface area, pore volume, and compressive fracture strength of the obtained alumina molded product. Table 4
  • Example 1 17 0.373 g 0.0001 225 0.70 3.7
  • Example 1 18 1.12 g 0.0003 230 0.72
  • Example 1 19 3.73 g 0.001 245 0.70 3.9
  • Comparative Example 1 10 112 g 0.3 Disintegrated during firing
  • Table 5 shows the specific surface area of the obtained alumina molded product. The specific surface area showed higher values than those of Example 11 and Example 12. Table 5
  • Example 1 26 HS-320 Al (NO dalconic acid 0.02 234
  • Example-28 HS-320 Al (NO lactic acid 0.02 235 Comparative Example 1 11 to 13, Example—29 to 5 1
  • Example 1 of 3! Using 0-crystalline alumina, nitric acid and acetic acid, their addition amount and k value, alumina concentration, types and addition amounts of various organic and inorganic substances, hydrothermal treatment conditions, hydrothermal treatment conditions after alkali neutralization, etc. An alumina molded product was obtained under the conditions shown in Table 6 respectively.
  • Table 6 shows the specific surface area and pore volume of the obtained alumina molded product.
  • This prepared solution was subjected to hydrothermal treatment at 150 at 24 hours in the same manner as in Example-4, and then an alumina molded product was produced in the same manner and under the same conditions as in Example-14.
  • the specific surface area of the obtained molded product was 154 m 2 / g, and the pore volume was 0.78 mlZg.
  • the specific surface area of the alumina, oxalic acid had increased W097 / specific surface area of 32817 JP one example embodiment 4, wherein the alumina 107m 2 Z g and specific base, 47m 2 Z g of additive-free.
  • Example 7 As shown in Table 7, using P-crystal structure alumina and acetic acid and nitric acid of Example 13 as shown in Table 7, the composition of alumina was 15% by weight and 52% by weight, and the k value was 0.00008, 0.002, And a preparation solution having a composition of 0.2 or more was prepared. Using the obtained preparation liquid, an alumina molded product was produced in the same manner and under the same conditions as in Example 14. Table 7 shows the pore volume and compressive fracture strength of the obtained alumina molded product.
  • the composition having a k value of 0.00008 and a composition of 0.2 or more has a small pore volume, a low compressive strength, and the composition having a k value of 0.002 has a small pore volume.
  • the volume and compressive strength were sufficient.
  • alumina having a p-crystal structure of Example 13 was mixed with a mixed solution obtained by adding 75 g of 61% nitric acid and 7.4 g of glycerin to 755 ml of ion-exchanged water to prepare a prepared solution.
  • the weight ratio of alumina was 0.02.
  • Example 15 In Example 55, a preparation solution was prepared by using oxalic acid dihydrate instead of glycerin.
  • the composition of this preparation solution had the same alumina concentration, mole ratio and k value as in Example 55, and the weight ratio of nolumina oxalate was 0.02.
  • the resulting preparation was subjected to hydrothermal treatment according to the same method and conditions as in Example 55.
  • Respect synthesized acidic alumina sol HN0 3 the molar ratio of Nmonia neutralizing, 0.0 (no addition), was added as a 0.5 1.0, the same molding as one example embodiment 1, dry Operations such as drying were performed to produce an alumina molded product.
  • the specific surface area of the obtained alumina molded product was such that when the ammonia was not added, the molar ratio of force was 243 m 2 Z g NH3 / HNO3 was 0.5, and the molar ratio of force was 247 m 2 ng NH3 / H NOs was 1.0.
  • the time was 238 m 2 Z g.
  • FIG. 12 shows the pore size distribution curve of the obtained molded body. It was found that an alumina composition having a sharp pore size distribution curve was obtained without the addition of oxalic acid as compared with Example 1-12 in which the composition of the substantially prepared solution was similar.
  • Example 1 5 7 This example shows an example in which a large amount of nitric acid is used with respect to alumina and a pore structure controlling agent is not added in a high k value region.
  • hydrothermal treatment was carried out at 150 under the reaction conditions of 8 hours to obtain an acidic sol-gel.
  • the sol-gel was divided into three parts, and 100%, 120% and 140% moles of ammonia were added to the contained acid, and then an alumina molded article was prepared by the method and conditions described above.
  • the specific surface area of the obtained aluminum molded product was 144 m 2 Z g, 140 m 2 / g and 138 m 2 / g, respectively, and the pore volume was 0. ⁇ g, 0.70 ml / g and 0.71 ml, respectively.
  • Alumina having a small specific surface area but a large central pore diameter was obtained, and an effective carrier was obtained with a k value of 0.032.
  • the specific surface area of the obtained alumina molded body was 226 m 2 ng, and the pore volume was 0.98 mlZ g, and the respective values increased.
  • Example 13 3 Washing trace Na component containing 365 g of alumina having a crystal structure with 1380 g of 0.25% nitric acid aqueous solution 630 g of this washed cake was added to a mixture of 70 g of aluminum nitrate nonahydrate and 7 g of oxalic acid dihydrate dissolved in 300 ml of ion-exchanged water, and 73.4 g of molybdenum oxide was further added. A liquid was prepared. Its composition A 1 2 0 3 in terms of concentration of 32.4%, the weight ratio of oxalic acid / alumina 0.014, the atomic ratio of Mo / Al was 0.074.
  • This catalyst was crushed and sulfurized at a temperature of 400 with hydrogen sulfide, and then 1 part by volume was charged into a batch type reaction tube.
  • Hydrogenation reaction was carried out by introducing 20 parts by volume of a light oil distillate containing 0.05% by weight of sulfur containing dibenzothiophene and 2400 parts by volume of hydrogen and stirring at 300 and about SOkgZcm 2 for 1 hour.
  • the product showed a desulfurization activity of 75% of the contained sulfur.
  • the hydrogenation activity of the polycyclic aromatic ring was also observed.
  • composition A1 2 0 3 concentration calculated 35.5% ⁇ 0 3 concentration excludes nitrate nickel nitrate, only the calculation to 3.5% component converted from the nitrate of aluminum nitrate, all H 2 0 is 51.9 %, Ni (NOs) 2 is 3.5%, impurities 0.1% molar ratio, HN0 3 / Al 2 (but 0.160, oxalic acid / H 2 0 is 0.0196, k value is 0.031, the weight ratio of oxalic acid / alumina 0.014, the Mo / A1 The atomic ratio was 0.050.

Abstract

An alumina composition capable of being widely changed with controllability with respect to specific surface area, pore volume and pore diameter distribution, which is prepared by a method characterized in that it comprises providing an adjusted liquid having a predetermined ratio of alumina, acid and water through mixing an acid-containing alumina obtained by heating aluminum hydroxide in the presence of a monobasic acid or a salt thereof at a temperature ranging 70 to 400 °C and/or an alumina having ς- and ψ-crystal structures with water and/or a monobasic acid or a salt thereof, and subjecting the adjusted liquid to a hydrothermal reaction optionally in the presence of an oxygen-containing organic compound and/or an inorganic polybasic acid as a pore structure-controlling agent, and drying the resultant acidic aqueous alumina sol-gel followed by calcination; a method for preparing the alumina composition; and a catalyst comprising the alumina composition as a carrier.

Description

明 細 書 アルミナ組成物およびその製造方法 技 術 分 野  Description Alumina composition and method for producing the same Technical field
本発明は、 アルミナ組成物の製造方法およびそれから得られるァ ルミナ組成物に関する。 さらには詳しくは、 石油精製用水素化処理 触媒またはその他の触媒担体に好適な、 比表面積および細孔構造を 制御可能なアルミナ組成物の製造方法および該製造方法によって得 られるアルミナ組成物、 および前記アルミナ組成物を担体とする触 媒に関する。  The present invention relates to a method for producing an alumina composition and an alumina composition obtained therefrom. More specifically, a method for producing an alumina composition capable of controlling the specific surface area and the pore structure, which is suitable for a hydrotreating catalyst for petroleum refining or another catalyst carrier, an alumina composition obtained by the production method, and The present invention relates to a catalyst using an alumina composition as a carrier.
背 景 技 術  Background technology
従来より、 触媒用アルミナ担体には、 比表面積、 細孔容積および 細孔径分布を調整する技術の確立が望まれていた。  Heretofore, it has been desired to establish a technique for adjusting the specific surface area, the pore volume, and the pore size distribution of the alumina support for a catalyst.
特に石油精製用の水素化処理触媒は、 分子分画を行いながら接触 反応を行うので、 広範囲の比表面積と種々の細孔径を有するアルミ ナ担体の出現が望まれていた。 特に、 軽油の深度脱硫触媒用担体で は、 高比表面積でかつ小さな平均細孔直径を有するアルミナ担体が 望まれ、 脱メタル触媒では低比表面積で大きな細孔径を有する担体 が望まれ、 さらには、 このような脱硫機能と脱メタル機能の双方の 機能を有する触媒も望まれ、 そのための新たな細孔構造を有するァ ルミナ担体が所望されていた。  In particular, hydrotreating catalysts for petroleum refining perform a catalytic reaction while performing molecular fractionation. Therefore, the emergence of an alumina carrier having a wide specific surface area and various pore sizes has been desired. In particular, for a carrier for a gas oil deep desulfurization catalyst, an alumina carrier having a high specific surface area and a small average pore diameter is desired, and a carrier having a low specific surface area and a large pore diameter is desired for a demetallizing catalyst. However, a catalyst having both the desulfurization function and the demetallization function is also desired, and an alumina carrier having a new pore structure for that purpose has been desired.
このような水素化処理触媒用のアルミナ担体を製造する際には、 アルミニウム塩水溶液中でアルミニゥム塩を加水分解して、 擬ベー マイ 卜を経由したアルミナを使用していた (たとえば特開昭 46- 7 14 56号公報および特公 61- 265 12号公報参照) 。 しかしながら、 このよ うな方法では、 ある程度の比表面積、 細孔容積、 および細孔径分布 を有するものが得られていたが、 この方法ではアルミナ担体の細孔 構造を、 充分に制御できないという問題があった。 また、 この方法 は製造工程が煩雑であり、 原料 · エネルギーを多量に消費し、 さら には排水処理が必要であるなど問題点が多い。 In producing such an alumina carrier for a hydrotreating catalyst, an alumina salt is hydrolyzed in an aqueous solution of an aluminum salt, and alumina is used via pseudoboehmite (see, for example, -7 14 No. 56 and Japanese Patent Publication No. 61-26512). However, with such a method, a material having a certain specific surface area, pore volume, and pore size distribution has been obtained, but this method has a problem that the pore structure of the alumina carrier cannot be sufficiently controlled. Was. In addition, this method has many problems such as a complicated production process, a large amount of consumption of raw materials and energy, and a need for wastewater treatment.
また、 必ずしも触媒用アルミナ担体を目的としたものではないカ^ 水酸化アルミニウムや水酸化アルミニウムの急速加熱脱水による P —結晶構造を有するアルミナから、 ベーマイ トに結晶転移さる方法 が例えば特公昭 56- 134446号公報、 特開昭 64- 965 1 1号公報、 特開平 6 -263437号公報に提案されている。  In addition, a method for converting aluminum hydroxide or alumina having a P-crystal structure to boehmite by rapid thermal dehydration of aluminum hydroxide is not necessarily intended as an alumina carrier for catalysts. 134446, JP-A 64-96511, and JP-A-6-263437.
しかしながら、 本発明者による特公昭 56- 134446号公報の追試実験 による結果では、 得られるアルミナ成型体の比表面積および細孔容 積が石油精製用触媒の担体として不十分であった。 またこの公報に は、 それらを制御する方法が示されていない。 また、 ベーマイ トの 繊維状粒子が束状に凝集したものが混入しているためか、 細孔径分 布の点で水素化処理触媒担体に必要なシャープな細孔径を有するァ ルミナは得られないという欠陥があった。  However, according to the results of the additional test conducted by the present inventor in Japanese Patent Publication No. 56-134446, the specific surface area and pore volume of the obtained alumina molded product were insufficient as a carrier for a catalyst for petroleum refining. Also, this publication does not show how to control them. In addition, it is not possible to obtain alumina with the sharp pore size required for hydrotreating catalyst carriers in terms of pore size distribution, possibly due to the inclusion of aggregates of boehmite fibrous particles in bundles. There was a defect.
また、 本発明者は、 先に、 水素化処理触媒担体用に好適な繊維状 ベーマイ 卜が分散したアルミナゾルおよびその製造方法を提案して いる (W097/328 17号公報) 。 この W097/32817号公報では、 p —およ び χ -結晶構造を有するアルミナ (以後 /0 —結晶構造を有するアルミ ナという) を、 必要に応じて他のアルミニウム源と混合し、 アルミ ナと一塩基酸と水の組成を特定のモル比に調整したのち水熱処理し て、 透明な水性アルミナゾル (繊維状べ一マイ トゾル) を生成させ、 このアルミナゾルを用いてアルミナ成型体を作製することが開示さ れている。 The present inventor has previously proposed an alumina sol in which fibrous boehmite is dispersed suitable for a hydrotreating catalyst carrier and a method for producing the same (W097 / 32817). In this publication, alumina having a p- and —-crystal structure (hereinafter referred to as / 0—alumina having a crystal structure) is mixed with other aluminum sources as necessary, and After adjusting the composition of monobasic acid and water to a specific molar ratio, it is subjected to hydrothermal treatment to produce a transparent aqueous alumina sol (fibrous boehmite sol). It is disclosed that an alumina molded body is produced using this alumina sol.
しかしながら、 この W097/328 17号公報に記載された方法では比表 面積と細孔容積の制御の点で必ずしも満足できるものではなかつた さらにまた、 上記したいずれの製造方法でも、 ギブサイ トやバイ ャライ ト等の水酸化アルミニウムから一旦 p—結晶構造を有するァ ルミナを経由してアルミナ組成物を作製していたが、 この p —結晶 構造を有するアルミナを経由することなく、 水酸化アルミニウムか ら直接アルミナ組成物を製造することも望まれていた。  However, the method described in W097 / 32817 is not always satisfactory in control of the specific surface area and the pore volume. Alumina composition was once prepared from aluminum hydroxide such as ト via aluminum having p-crystal structure, but directly from aluminum hydroxide without passing through this alumina having p-crystal structure. It was also desired to produce an alumina composition.
本発明は、 前記の W097/328 17号公報に記載された発明の改良に関 するもので、 比表面積が高く、 細孔容積が大きく、 シャープな細孔 径分布を有し、 しかもその広範囲な制御が可能なアルミナ組成物の 製造方法およびそのようなアルミナ組成物を提供することを目的と するものである。 さらには、 これらのアルミナ組成物を担体とする 触媒を提供することを目的とするものである。 発明の開示  The present invention relates to an improvement of the invention described in the above-mentioned W097 / 32817, and has a high specific surface area, a large pore volume, a sharp pore size distribution, and a wide range. It is an object of the present invention to provide a controllable method for producing an alumina composition and to provide such an alumina composition. Still another object is to provide a catalyst using these alumina compositions as a carrier. Disclosure of the invention
本発明に係るアルミナ組成物の製造方法としては、  As a method for producing the alumina composition according to the present invention,
アルミナの原料として、 水酸化アルミニウムを少なく とも 1種の 一塩基酸またはその塩の存在下で 7 0〜 4 0 0での範囲の温度で加 熱処理して得られる酸含有水酸化アルミニウムおよび またはアル ミナ (以後酸含有アルミナ源という) を用い、 この酸含有アルミナ 源に水および必要に応じて一塩基酸を加えて下記式で表される k値 が下記範囲を有するように調製された調製液を、 7 0〜 2 5 0 °Cの 範囲の温度で水熱処理することによって水性のアルミナゾルおよび ノまたはアルミナゲルを得、 該水性アルミナゾルおよび またはァ ルミナゲルを、 乾燥、 焼成することを特徴としている。 As a raw material of alumina, acid-containing aluminum hydroxide and / or aluminum hydroxide obtained by heat-treating aluminum hydroxide in the presence of at least one monobasic acid or a salt thereof at a temperature in the range of 70 to 400. Using Mina (hereinafter referred to as “acid-containing alumina source”), a solution prepared by adding water and, if necessary, a monobasic acid to this acid-containing alumina source so that the k value represented by the following formula has the following range. Is subjected to a hydrothermal treatment at a temperature in the range of 70 to 250 ° C. to obtain an aqueous alumina sol and Or alumina gel and drying and calcining the aqueous alumina sol and / or alumina gel.
0. 0 0 0 1 ≤ k≤ 0. 2 0  0. 0 0 0 1 ≤ k≤ 0. 2 0
ただし、 k = ( b / a ) X ( b Z c )  Where k = (b / a) X (b Z c)
(式中、 aは調製液中のアルミナを A 1 2〇 3に換算したモル数、 b は調製液中の一塩基酸またはその塩の解離で生じた酸のモル数、 c は調製液中の水のモル数。 ) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 〇 3, b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid, c is prepared solution Number of moles of water.)
前記の調製液には、 細孔構造制御剤として、 含酸素有機化合物、 または下記式で表されるイオンポテンシャルが 4. 5以上の元素を 含む無機の多塩基酸、 またはその多塩基酸を生成する化合物の少な く とも 1種を混合してもよい。  In the above-mentioned preparation solution, an oxygen-containing organic compound or an inorganic polybasic acid containing an element having an ionic potential of 4.5 or more represented by the following formula or a polybasic acid thereof is produced as a pore structure controlling agent. At least one compound may be mixed.
元素の原子価 Element valence
イオンポテンシャル =  Ion potential =
元素のィオン半径 また、 本発明に係るアルミナの製造方法では、 さらに、 アルミナ 原料として P - 結晶構造を有するアルミナを用い、 この P - 結晶構 造を有するアルミナに、 水および少なく とも 1種の一塩基酸または その塩、 さらに前記の細孔構造制御剤の少なく とも一種を混合して 前記の k値が下記範囲を有するように調製された調製液を、 7 0〜 2 5 0での範囲の温度で水熱処理することによって水性アルミナゾ ルおよび Zまたはアルミナゲルを得、 該水性アルミナゾルおよび/ またはアルミナゲルを乾燥、 焼成することを特徴としている。  Element Ion Radius Also, in the method for producing alumina according to the present invention, alumina having a P-crystal structure is further used as an alumina raw material, and water and at least one kind of alumina are added to the alumina having the P-crystal structure. A solution prepared by mixing at least one of the basic acid or its salt and at least one of the above pore structure controlling agents so that the k value has the following range is adjusted to a range of 70 to 250. Aqueous alumina sol and Z or alumina gel are obtained by hydrothermal treatment at a temperature, and the aqueous alumina sol and / or alumina gel are dried and calcined.
0. 0 0 0 1 < k≤ 0. 2 0  0. 0 0 0 1 <k≤ 0.20
また、 |0 - 結晶構造を有するアルミナを用いた場合、 水および少 なく とも一種の無機の一塩基酸またはその塩を混合して k値が下記 範囲を有するように調製された調製液を、 7 0〜 2 5 0 °Cの範囲の 温度で水熱処理することによって水性アルミナゾルおよび Zまたは アルミナゲルを得、 該水性アルミナゾルおよび/またはアルミナゲ ルを乾燥、 焼成することを特徴としている。 When alumina having a | 0-crystal structure is used, A solution prepared by mixing at least one kind of inorganic monobasic acid or a salt thereof so that the k value has the following range is subjected to hydrothermal treatment at a temperature in the range of 70 to 250 ° C. It is characterized in that an aqueous alumina sol and Z or alumina gel are obtained, and the aqueous alumina sol and / or alumina gel is dried and calcined.
0 . 0 1≤ k≤ 0 . 2  0. 0 1≤ k≤ 0. 2
前記 結晶構造を有するアルミナは、 予め一塩基酸で処理された ものを使用してもよい。  As the alumina having the crystal structure, alumina previously treated with a monobasic acid may be used.
また、 前記の予め一塩基酸で処理された /0 - 結晶構造を有するァ ルミナを用いた場合、 水および少なく とも一種の一塩基酸またはそ の塩を混合して k値が下記範囲を有するように調製された調製液を、 7 0〜 2 5 0 °Cの範囲の温度で水熱処理することによって水性アル ミナゾルおよび Zまたはアルミナゲルを得、 該水性アルミナゾルお よびノまたはアルミナゲルを乾燥、 焼成することを特徴としている。  When using the above-described / 0-crystal structure-treated alumina with a monobasic acid, the k value has the following range by mixing water and at least one monobasic acid or a salt thereof. The aqueous solution prepared above is subjected to hydrothermal treatment at a temperature in the range of 70 to 250 ° C. to obtain an aqueous alumina sol and Z or alumina gel. It is characterized by firing.
0 . 0 0 0 1≤ k < 0 . 0 1  0. 0 0 0 1≤ k <0. 0 1
さらに、 前記の調製液には、 ベーマイ トより溶解度の高い水酸化 アルミニウムおよび Zまたはアルミナを調製液中のアルミナに対し て 9 5重量%を越えない範囲で混合することができる。  Further, aluminum hydroxide and Z or alumina having higher solubility than boehmite can be mixed with the above-mentioned preparation liquid within a range not exceeding 95% by weight based on the alumina in the preparation liquid.
前記の方法で得られた酸性の水性アルミナゾルおよび またはァ ルミナゲルは、 アルミナ組成物の高比表面積化および大細孔容積化 のために、 さらにアルカリを添加したのち、 7 0〜 2 5 0での範囲 の温度で水熱処理してもよい。  The acidic aqueous alumina sol and / or alumina gel obtained by the above method is further added with an alkali to increase the specific surface area and the pore volume of the alumina composition. Hydrothermal treatment may be performed at a temperature within the range.
本発明に係るアルミナ組成物は上記方法で製造された、 比表面積 と細孔容積が広範囲に制御され、 触媒担体に好適なアルミナ組成物 である。 本発明に係る触媒は、 上記のような比表面積および細孔容積が制 御されたアルミナ組成物を担体とし、 これに触媒成分が担持されて いる。 これらの触媒を調製する場合、 前記の調製液中に水性アルミ ナゾルおよび Zまたはアルミナゲル生成反応に関与しない成分が共 存しても得られるアルミナ組成物には影響しないので、 調製液に触 媒成分を混入して目的の触媒を調製することができる。 図面の簡単な説明 The alumina composition according to the present invention is a alumina composition produced by the above method, having a specific surface area and pore volume controlled in a wide range, and suitable for a catalyst carrier. The catalyst according to the present invention uses an alumina composition having a controlled specific surface area and pore volume as described above as a carrier, on which a catalyst component is supported. When these catalysts are prepared, the resulting alumina composition does not affect the obtained alumina composition even when the aqueous alumina sol and the components not involved in the Z or alumina gel formation reaction coexist in the above-mentioned preparation solution. The desired catalyst can be prepared by mixing the components. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 一塩基酸が硝酸であり、 調製液中のアルミナ濃度が 5〜 6 0重量%、 k値が 0 . 0 0 0 1 〜 0 . 2 0の範囲の組成比を示す。 図 2は、 実施例一 1 2および 5 6で調製したアルミナ組成物の細 孔径分布曲線を示す。 発明を実施するための最良の形態  FIG. 1 shows a composition ratio in which the monobasic acid is nitric acid, the alumina concentration in the preparation is in the range of 5 to 60% by weight, and the k value is in the range of 0.0001 to 0.20. FIG. 2 shows pore size distribution curves of the alumina compositions prepared in Examples 11 and 56. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
アルミナ原料  Alumina raw material
本発明に係るアルミナ組成物の製造方法ではアルミナ原料として、 水酸化アルミニウムを酸の共存下で加熱して得られた酸含有アルミ ナ源、 または p -結晶構造を有するアルミナが用いられる。  In the method for producing an alumina composition according to the present invention, an acid-containing alumina source obtained by heating aluminum hydroxide in the presence of an acid or alumina having a p-crystal structure is used as an alumina raw material.
本発明で用いられる水酸化アルミニウムは、 アルミナ水和物とも 呼ばれるもので、 代表的にはギブサイ ト、 バイャライ ト、 ノルドス トランダイ ト、 非晶質水酸化アルミニウムなどが挙げられる。 また、 P -結晶構造を有するアルミナとしては、 たとえばギブサイ トなどを 真空加熱脱水または高温急速脱水等の処理によって得られたものが 挙げられる。 まず、 本発明のアルミナ原料の一つである、 水酸化アルミニウム を一塩基酸の共存下で加熱処理して得られる酸含有アルミナ源の調 製方法について説明する。 The aluminum hydroxide used in the present invention is also referred to as alumina hydrate, and typically includes gibbsite, bayerite, Nordstrandite, amorphous aluminum hydroxide and the like. Examples of the alumina having a P-crystal structure include those obtained by subjecting a gibbsite or the like to vacuum heating dehydration or high-temperature rapid dehydration. First, a method for preparing an acid-containing alumina source obtained by heat-treating aluminum hydroxide, which is one of the alumina raw materials of the present invention, in the presence of a monobasic acid will be described.
水酸化アルミニウムの加熱処理のときに用いられる酸またはその 塩としては、 硝酸、 塩酸、 蟻酸、 酢酸などの一塩基酸、 または硝酸 アルミ二ゥムゃ塩基性酢酸アルミニゥムなどのアルミニゥム塩が挙 げられる。  Examples of the acid or its salt used in the heat treatment of aluminum hydroxide include monobasic acids such as nitric acid, hydrochloric acid, formic acid, and acetic acid, and aluminum salts such as aluminum nitrate and basic aluminum acetate. .
このような酸の添加量は、 水酸化アルミニウムを A 1 23に換算 したときアルミナ 1モルに対し、 0 . 0 5〜 1 . 0モルの範囲にあ ることが好ましい。 Such amount of such acid, to alumina 1 mole when converted to aluminum hydroxide A 1 23, 0.0 5 to 1.0 mols you and the preferred.
本発明では、 水酸化アルミニウムを、 上記の一塩基酸の少なく と も 1種の共存下で加熱処理が行われる。 この酸混合水酸化アルミ二 ゥムの加熱処理温度は、 7 0〜 4 0 0での範囲が好ましい。 このと き加熱処理が、 数分〜数十時間程度の時間では 1 0 0〜 3 0 0 の 範囲の処理温度が好ましい。 上記のような方法で水酸化アルミニゥ ムを一塩基酸の共存下で加熱すると、 水酸化アルミニウムの結晶水 が部分的に脱水し、 脱水で生じた細孔内に酸基が吸着されて反応性 の高い酸含有アルミナ源が生成すると考えられる。 蒸気圧の高い酸 を用いるときは密閉容器で熱処理するが、 蒸気圧の低い酸塩の場合 は開放下で行う ことができる。  In the present invention, heat treatment is performed on aluminum hydroxide in the presence of at least one of the above monobasic acids. The heat treatment temperature of the acid-mixed aluminum hydroxide is preferably in the range of 70 to 400. At this time, the heating temperature is preferably in the range of 100 to 300 in a period of several minutes to several tens of hours. When aluminum hydroxide is heated in the presence of a monobasic acid in the manner described above, the water of crystallization of aluminum hydroxide is partially dehydrated, and the acid groups are adsorbed in the pores formed by the dehydration, and the reactivity is reduced. It is believed that an acid-containing alumina source with a high concentration is formed. When using a high vapor pressure acid, heat treatment is performed in a closed vessel, but when using a low vapor pressure acid salt, the heat treatment can be performed in an open state.
なお、 加熱処理時の水酸化アルミニウムの濃度は、 A l 2 ( に換算し て、 5 0〜 8 0重量%の範囲にあることが好ましい。 The concentration of aluminum hydroxide during the heat treatment is preferably in the range of 50 to 80% by weight in terms of Al 2 (.
上記の方法で得られる酸含有アルミナ源は、 ギブサイ トなどの急 速加熱脱水で得られる P -アルミナと類似の性質を有しており、 P - アルミナをアルミナ原料として用いたときより反応速度は遅いが、 同じ調製液組成条件で、 類似のアルミナ組成物を得ることができる。 /0 -結晶構造を有するアルミナは、 予め一塩基酸処理がされていて もよい。 具体的には、 p -結晶構造を有するアルミナを約 1 0 %以上 の硝酸水溶液に添加し、 室温〜 4 0 0での温度で処理する。 このよ うな酸処理を行った P -結晶構造を有するアルミナを用いると、 比表 面積の高いアルミナ組成物が得られる。 The acid-containing alumina source obtained by the above method has properties similar to P-alumina obtained by rapid heat dehydration such as gibbsite, and the reaction rate is higher than when P-alumina is used as an alumina raw material. Slow but A similar alumina composition can be obtained under the same preparation liquid composition conditions. Alumina having a / 0-crystal structure may be previously treated with a monobasic acid. Specifically, alumina having a p-crystal structure is added to a nitric acid aqueous solution of about 10% or more, and the treatment is performed at a temperature of room temperature to 400. When alumina having a P-crystal structure subjected to such an acid treatment is used, an alumina composition having a high specific surface area can be obtained.
調製液の調製  Preparation of preparation solution
本発明においては、 まず、 上記の方法で得られた酸含有アルミナ 源、 または p -結晶構造を有するアルミナ (以後これらをまとめて原 料アルミナという) を水および酸と所定のモル比に混合して調製液 を調製し、 この調製液を水熱処理することによって繊維状べ一マイ ト粒子を含む酸性の水性ゾルおよび Zまたは水性ゲルを生成させる。 本発明でいう酸性の水性ゾルおよび Zまたは水性ゲルとは、 上記 の水熱処理で得られた繊維状べ一マイ 卜粒子が分散した水性ゾルま たは繊維状べ一マイ ト粒子が三次元網目構造を形成した水性のゲル、 またはこの両者の混合物を指し、 本発明では酸性の水性ゾルゲルと いうこともある。  In the present invention, first, the acid-containing alumina source obtained by the above method or alumina having a p-crystal structure (hereinafter collectively referred to as raw alumina) is mixed with water and an acid at a predetermined molar ratio. To prepare an acidic aqueous sol and Z or aqueous gel containing fibrous boehmite particles. The term “acidic aqueous sol and Z or aqueous gel” as used in the present invention refers to an aqueous sol or fibrous boehmite particles in which the fibrous boehmite particles obtained by the above hydrothermal treatment are dispersed. It refers to an aqueous gel having a structure or a mixture of both, and in the present invention, may be referred to as an acidic aqueous sol-gel.
このような水性ゾルゲルは、 水と接触するかあるいは混練すると 膨潤する性質を有し、 このような性質を有しない、 単なる沈殿物と は異なる。  Such an aqueous sol-gel has the property of swelling when contacted or kneaded with water, and is different from a mere precipitate that does not have such a property.
調製液中の原料アルミナの粒度は、 特に制限はないが、 粒径が大 きすぎると、 原料アルミナが調製液中で沈降しやすく、 このような 沈降を防止するため、 反応開始後、 中速ないし高速で撹拌すると、 生成する繊維状べ一マイ ト粒子が束状に結束することがあり、 この ような束状に結束した繊維状べ一マイ トから得られるアルミナ組成 物は、 細孔容積が低く、 かつマクロ細孔が増大することがある。 このため、 原料アルミナが、 反応初期に沈降するのを回避するた め、 低速撹拌機構を備えた耐圧反応容器や回転型耐圧反応器を用い ることも有効である。 The particle size of the raw material alumina in the preparation solution is not particularly limited, but if the particle size is too large, the raw material alumina is likely to settle in the preparation solution. If the mixture is stirred at high speed, the resulting fibrous boehmite particles may be bound in a bundle, and the alumina composition obtained from the fibrous boehmite bound in such a bundle may be obtained. The product may have a low pore volume and an increase in macropores. For this reason, it is effective to use a pressure-resistant reaction vessel or a rotary pressure-resistant reactor equipped with a low-speed stirring mechanism in order to prevent the raw material alumina from settling at the beginning of the reaction.
また、 原料アルミナとして、 低 N a含有の水酸化アルミニウムを 用いることもできる。 原料アルミナ中に微量に含まれる微量のナト リウムは、 反応前の粉末の段階で洗浄することが可能であり、 ある いは後工程でのヒ ドロゲルや成型体段階で洗浄することができる。 調製液に添加される酸またはその塩としては、 塩酸、 硝酸などの 無機の一塩基酸、 蟻酸、 酢酸、 プロピオン酸などの低級脂肪族モノ カルボン酸などが挙げられ、 さらに硝酸アルミニウム、 塩基性酢酸 アルミニウム、 硝酸ジルコニルなどのイオンポテンシャルが 4. 5 以 上の元素と結合している塩の解離で生ずる一塩基酸も有効である。 本発明では、 これらの酸または塩の一種または二種以上が用いられ 特に無機一塩基酸と低級脂肪族モノカルボン酸とを混合使用する場 合、 その比率によって得られるアルミナ組成物の細孔容積を制御す ることができる。  In addition, aluminum hydroxide having a low Na content can be used as the raw material alumina. A very small amount of sodium contained in the raw material alumina can be washed at the powder stage before the reaction, or it can be washed at the hydrogel or molded body stage in the subsequent process. Acids or salts thereof added to the preparation solution include inorganic monobasic acids such as hydrochloric acid and nitric acid, and lower aliphatic monocarboxylic acids such as formic acid, acetic acid and propionic acid.Also, aluminum nitrate and basic acetic acid Monobasic acids generated by dissociation of salts with ionic potentials of 4.5 or higher, such as aluminum and zirconyl nitrate, are also effective. In the present invention, one or more of these acids or salts are used, and particularly when an inorganic monobasic acid and a lower aliphatic monocarboxylic acid are used in a mixture, the pore volume of the alumina composition obtained by the ratio is used. Can be controlled.
本発明では、 上記の調製液のアルミナ、 一塩基酸および水のモル 比が、 得られるアルミナ組成物の比表面積および細孔構造を制御す る上で重要な因子の一つである。  In the present invention, the molar ratio of alumina, monobasic acid and water in the above prepared solution is one of the important factors in controlling the specific surface area and pore structure of the obtained alumina composition.
本発明では、 酸含有アルミナ源または |0 - 結晶構造を有するアル ミナなどのアルミナ原料と水および前記酸またはその塩を混合して 下記式で表される k値が下記範囲を有するような調製液を調製する  In the present invention, an acid-containing alumina source or an alumina raw material such as alumina having a | 0-crystal structure is mixed with water and the acid or a salt thereof such that the k value represented by the following formula has the following range. Prepare liquid
0 . 0 0 0 1≤ k≤ 0 . 2 0 … (1)  0. 0 0 0 1≤ k≤ 0 .2 0… (1)
k = ( b / a ) x ( b / c ) (式中、 aは調製液中のアルミナを A 1203に換算したモル数、 bは 調製液中の一塩基酸またはその塩の解離により生じた酸のモル数、 c は調製液中の水のモル数を示す。 ) k = (b / a) x (b / c) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 03, b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid, c is in the preparation Indicates the number of moles of water.)
このような関係式は、 酸が硝酸であり、 調製液中のアルミナ濃度 が 5〜 6 0重量%のときは、 図 1のように表される。  Such a relational expression is expressed as shown in FIG. 1 when the acid is nitric acid and the alumina concentration in the preparation is 5 to 60% by weight.
上記式 ( 1 ) 中の k値が 0. 0 0 0 1未満では、 後述する含酸素 有機化合物や無機の多塩基酸を添加しても、 水性ゾルゲルとはなら ず重質な沈降性の粒子が生成する。 このような粒子は可塑性がなく、 得られるアルミナ組成物を成型しても圧縮強度が弱い。 また k値が 0. 2 0より大きいと、 後述する含酸素有機化合物や無機の多塩基 酸を添加しても、 得られるアルミナ組成物の比表面積の増加効果が 認められず、 また細孔容積も小さいものしか得られない。 また成型 体は、 焼成時に破壊してしまう ことがある。  When the k value in the above formula (1) is less than 0.0001, even if an oxygen-containing organic compound or an inorganic polybasic acid described later is added, the particles do not become an aqueous sol-gel but heavy sedimentable particles. Is generated. Such particles have no plasticity and have a low compressive strength even when the obtained alumina composition is molded. If the k value is larger than 0.20, the effect of increasing the specific surface area of the obtained alumina composition is not recognized even if an oxygen-containing organic compound or an inorganic polybasic acid described later is added, and the pore volume is not increased. Can get only small things. Also, the molded body may be broken during firing.
原料アルミナが、 酸含有アルミナ源、 P -結晶構造を有するアルミ ナ、 または予め塩基酸処理した p -結晶構造を有するアルミナのいず れであっても、 k値は基本的に変化しない。 また一塩基酸が有機モ ノカルボン酸であっても、 無機酸であっても、 さらには、 細孔構造 制御剤の添加であっても、 後工程の改良であっても、 k値は変わら ず、  Regardless of whether the raw material alumina is an acid-containing alumina source, an alumina having a P-crystal structure, or an alumina having a p-crystal structure previously treated with a basic acid, the k value is basically unchanged. Also, the k value does not change regardless of whether the monobasic acid is an organic monocarboxylic acid, an inorganic acid, a pore structure controlling agent, or an improvement in a subsequent process. ,
0. 0 0 0 1≤ k≤ 0. 2 0  0. 0 0 0 1≤ k≤ 0.20
の範囲を満たしている。 なお、 k値は、 アルミナ調製時の細かい 設定条件によって細分化されるが、 以下、 先発明の W097/32817の改 善をも含めて説明する。  Meets the range. The k value is subdivided depending on the fine setting conditions at the time of preparing the alumina, and will be described below including the improvement of W097 / 32817 of the prior invention.
なお、 本発明者が先に提案した W097/32817においては、 原料アル ミナとして p —結晶構造を有するアルミナを用いたとき、 低級脂肪 族モノカルボン酸の場合は k値が 0. 0 0 2〜 0. 2 0の範囲で、 無機一塩基酸の場合は k値が 0. 0 0 0 1〜 0. 0 1の範囲で透明 または半透明の水性アルミナゾルが生成し、 6 0 n m以下のミクロ 細孔容積が多く、 6 0 n m以上のマク口細孔容積が少ないアルミナ 組成物が得られた。 In W097 / 32817 proposed earlier by the present inventors, when alumina having a p-crystal structure was used as the raw material alumina, the lower fat In the case of group monocarboxylic acids, the k value is in the range of 0.02 to 0.20, and in the case of inorganic monobasic acids, the k value is in the range of 0.001 to 0.01. A translucent aqueous alumina sol was produced, and an alumina composition having a large micropore volume of 60 nm or less and a small Mac pore volume of 60 nm or more was obtained.
本発明者がさらに検討した結果、 一塩基酸が低級脂肪族モノカル ボン酸の場合は、 k値が 0. 0 0 2未満でも細孔構造制御剤中の一 部酸類 (ォキシ酸、 無機多価酸など) の添加によって、 全酸量が増 加し、 透明性はないが、 水性のゾルゲルが生成し、 有効なアルミナ 組成物が得られることがわかった。 また、 無機一塩基酸の場合は、 0. 0 1 を越すと細孔構造制御剤の有無にかかわらず、 透明性のな い水性ゾルゲルが生成したが、 アルミナゾルゲルを得た後の後工程 でのシェアス トレス等の改善により、 有効なアルミナ組成物が得ら れることがわかった。  As a result of further study by the present inventors, when the monobasic acid is a lower aliphatic monocarboxylic acid, even if the k value is less than 0.002, some of the acids (oxy acid, inorganic polyvalent acid) in the pore structure controlling agent are used. It was found that the addition of an acid, etc.) increased the total acid content and produced an aqueous sol-gel, although not transparent, and an effective alumina composition. In addition, in the case of inorganic monobasic acid, an aqueous sol-gel having no transparency was generated beyond 0.01 irrespective of the presence or absence of the pore structure controlling agent, but in a later step after obtaining the alumina sol-gel. It was found that an effective alumina composition can be obtained by improving the shear stress and the like.
すなわち、 原料アルミナとして P -結晶構造を有するアルミナを用 いた場合、 無機の一塩基酸および低級脂肪酸モノカルボン酸の少な く とも一種の酸またはこれらの塩と同時に前記の細孔構造制御剤を 用いれば、 k値としては 0. 0 0 0 1〜 0. 2 0の範囲が好ましい また、 原料アルミナとして p -結晶構造を有するアルミナを使用し かつ無機の一塩基酸またはその塩を使用する場合は、 細孔構造制御 剤を用いなくても後工程のシェアス トレス等の改善により k値とし て、 W097/32917に記載された範囲以外の 0. 0 1≤ k≤ 0. 2 0の 範囲が新たに有効な範囲であることが確認できた。  That is, when alumina having a P-crystal structure is used as the raw material alumina, the above-mentioned pore structure controlling agent is used together with at least one kind of inorganic monobasic acids and lower fatty acid monocarboxylic acids or salts thereof. For example, the k value is preferably in the range of 0.001 to 0.20.When alumina having a p-crystal structure is used as the raw material alumina and an inorganic monobasic acid or a salt thereof is used, Even if a pore structure controlling agent is not used, the k value is changed to 0.01≤k≤0.20 other than the range described in W097 / 32917 by improving the shear stress in the post-process. It was confirmed that the range was effective.
具体的な酸の量としては、 調製液中のアルミナ濃度が 3 0〜 4 0 重量%のとき、 アルミナ 1モルに対し、 硝酸は約 0. 1〜 0. 3モ ル、 酢酸の場合は約 0 . 2〜 0 . 6モルが好ましい範囲である。 調製液のアルミナの濃度は、 A l 23に換算して、 5〜 6 0重量 %の範囲が好ましい。 アルミナ濃度が 5重量%より低くなると水熱 処理のときに低粘性の状態が長く続き、 撹拌を長時間行う ことによ つて繊維状べ一マイ トが束状に結束するという問題が起こる。 6 0 重量%を越すと得られるアルミナ水和物に可塑性がなくなり成型が 困難になる。 また、 3 0重量%以上の濃度であれば、 生成したアル ミナ水和物を特別の濃縮操作なしに直接混練および押し出し成型す ることが可能である。 As the specific acid amount, when the alumina concentration in the preparation is 30 to 40% by weight, nitric acid is about 0.1 to 0.3 mole per mole of alumina. In the case of toluene or acetic acid, the preferred range is about 0.2 to 0.6 mol. The concentration of alumina in preparation liquid, in terms of A l 23, 5-6 0% by weight is preferably in the range of. If the alumina concentration is lower than 5% by weight, the low-viscosity state continues for a long time during the hydrothermal treatment, and a problem occurs in that the fibrous boehmite is bound in a bundle by prolonged stirring. If the amount exceeds 60% by weight, the obtained alumina hydrate loses its plasticity and molding becomes difficult. If the concentration is 30% by weight or more, the produced alumina hydrate can be directly kneaded and extruded without special concentration operation.
また、 調製液に、 ベーマイ トより溶解度の高いアルミナを添加し てもよい。 ベーマイ 卜より溶解度の高いアルミナとしてはギブサイ ト、 バイャライ ト、 非晶質アルミナ水和物、 非晶質アルミナ、 χ — アルミナ、 ァ—アルミナ、 7?—アルミナ等が挙げられる。 このよう なべ一マイ 卜より溶解度の高いアルミナは、 調製液中の酸含有アル ミナ源または Ρ -結晶構造を有するアルミナに対して Α 1 203換算で 9 5重量%以下の量で混合することが好ましい。 これらのベ一マイ ト より溶解度の高いアルミナの添加は、 比較的小さい比表面積のアル ミナ組成物を得るときに有効である。 Further, alumina having higher solubility than boehmite may be added to the preparation solution. Examples of alumina having higher solubility than boehmite include gibbsite, bayerite, amorphous alumina hydrate, amorphous alumina, χ-alumina, α-alumina, and 7-alumina. Such higher solubility than pots one My Bok alumina, acid-containing alumina source preparation liquid or [rho - mixed in an amount of 9 5 wt% or less in Alpha 1 2 0 3 in terms of relative alumina having a crystal structure Is preferred. The addition of alumina having higher solubility than these boehmite is effective for obtaining an alumina composition having a relatively small specific surface area.
本発明においては、 上記の調製液にアルミナ組成物の細孔構造を 制御するための細孔構造制御剤を添加することができる。 このよう な細孔構造制御剤としては、 含酸素有機化合物、 または無機の多塩 基酸あるいは水に溶解して無機の多塩基酸を生成する化合物が挙げ られる。  In the present invention, a pore structure controlling agent for controlling the pore structure of the alumina composition can be added to the above-mentioned preparation liquid. Examples of such a pore structure controlling agent include an oxygen-containing organic compound, or an inorganic polybasic acid or a compound which is dissolved in water to generate an inorganic polybasic acid.
含酸素有機化合物としては、 澱粉、 寒天、 ゼラチン、 マンナンお よび C M Cなどの炭水化物、 一価または多価アルコール、 ケトン、 エステル、 高級脂肪族モノカルボン酸、 芳香族モノカルボン酸、 ォ キシカルボン酸、 多価カルボン酸などが例示される。 これらの含酸 素有機化合物はナトリウム、 アンモニゥム、 アルミニウムなどの化 合物であつてもよい。 Oxygenated organic compounds include starch, agar, gelatin, carbohydrates such as mannan and CMC, mono- or polyhydric alcohols, ketones, Examples thereof include esters, higher aliphatic monocarboxylic acids, aromatic monocarboxylic acids, oxycarboxylic acids, and polycarboxylic acids. These oxygen-containing organic compounds may be compounds such as sodium, ammonium, and aluminum.
含酸素化合物のうち、 一価アルコール、 ケトンおよびエステルを 添加した場合は、 得られる生成物は水性アルミナゾルであり、 これ から得られるアルミナ組成物の比表面積増加効果は小さいが、 細孔 容積増加効果は大きい。 また、 炭水化物の場合は水性アルミナゾル ゲルが生成し、 比表面積および細孔容積を増加させる効果がある。 このうち澱粉、 寒天、 ゼラチン、 マンナンおよび C M Cは、 低濃度 で調製液の増粘効果がある。 脂肪族モノカルボン酸は、 分子量が低 いほど高透明な水性ゾルが生成するが、 比表面積および細孔容積の 増加効果は小さく、 高分子量の方がその増加効果は大きい。 ォキシ カルボン酸、 多価アルコール、 多価カルボン酸の場合は硬いゲルが 主体の水性ゾルゲルが生成し、 比表面積および細孔容積を増加させ る効果が認められる。  When monohydric alcohols, ketones and esters are added among the oxygenated compounds, the resulting product is an aqueous alumina sol, and the alumina composition obtained therefrom has a small effect on increasing the specific surface area, but an effect on increasing the pore volume. Is big. In the case of carbohydrates, an aqueous alumina sol-gel is formed, which has the effect of increasing the specific surface area and the pore volume. Among them, starch, agar, gelatin, mannan and CMC have a thickening effect on the preparation at low concentrations. As the aliphatic monocarboxylic acid has a lower molecular weight, a more transparent aqueous sol is generated, but the effect of increasing the specific surface area and the pore volume is small, and the effect of increasing the molecular weight is larger when the molecular weight is higher. In the case of carboxylic acids, polyhydric alcohols, and polycarboxylic acids, an aqueous sol-gel composed mainly of hard gel is formed, and the effect of increasing the specific surface area and the pore volume is recognized.
また、 細孔分布の制御効果については、 多価アルコールは細孔径 を大きく し、 多価カルボン酸およびある種のォキシカルボン酸の場 合はいずれも比表面積を増加させ、 細孔容積は小さい値から大きい 値まで広範囲にわたり、 シャープな細孔分布を有するアルミナ組成 物が得られ、 またバイモダルの細孔分布を有するアルミナ組成物が 得られる。 その他、 前記の含酸素化合物のほとんどがアルミナ組成 物の成型物の機械的強度を向上させる効果を有する。  Regarding the effect of controlling the pore distribution, polyhydric alcohols increase the pore diameter, and polyhydric carboxylic acids and certain oxycarboxylic acids both increase the specific surface area, and the pore volume decreases from a small value. An alumina composition having a sharp pore distribution over a wide range up to a large value can be obtained, and an alumina composition having a bimodal pore distribution can be obtained. In addition, most of the oxygen-containing compounds have an effect of improving the mechanical strength of a molded article of the alumina composition.
このような含酸素有機化合物は、 アルミナ 1重量部当たり 0 . 0 0 0 2〜 0 . 2重量部の範囲で添加されることが好ましい。 0 . 2重 量部を越すと、 得られるアルミナ組成物のマクロの細孔容積が増加 し、 成型物の機械的強度が低下することがある。 Such an oxygen-containing organic compound is preferably added in the range of 0.002 to 0.2 part by weight per 1 part by weight of alumina. 0. Double If the amount exceeds the above range, the macropore volume of the obtained alumina composition may increase, and the mechanical strength of the molded product may decrease.
本発明で用いられる他の細孔構造制御剤は、 無機の多塩基酸ある いは熱水中で解離もしくは分解して無機の多塩基酸を生成する化合 物である。  Other pore structure controlling agents used in the present invention are inorganic polybasic acids or compounds which dissociate or decompose in hot water to produce inorganic polybasic acids.
これらのうち、 好ましい多塩基酸としては、 イオンポテンシャル が 4. 5 以上の元素 (たとえば B 、 C 、 S i、 P 、 S 、 T i 、 V、 M o W、 Z r ) を含む無機の多塩基酸またはその化合物であり、 具体的 にはホウ酸、 ケィ酸 (ケィ酸ソ一ダを陽イオン交換樹脂によりィォ ン交換したもの) 、 ポリケィ酸 (ェチルシリゲートの加水分解物) リ ン酸、 リ ン酸アルミニウム、 硫酸、 スルホサリチル酸、 硫酸アン モニゥム、 ペルォキソチタン酸、 無水バナジン酸、 モリブデン酸、 三酸化モリブデン、 夕ングステン酸および酢酸ジルコニルなどが挙 げられる。  Among these, preferred polybasic acids include inorganic polyacids containing elements having an ionic potential of 4.5 or more (for example, B, C, Si, P, S, Ti, V, MOW, Zr). A basic acid or a compound thereof, specifically, boric acid, caic acid (ion-exchanged of sodium silicate with a cation exchange resin), polycaic acid (hydrolyzate of ethyl silicate), phosphoric acid, Examples include aluminum phosphate, sulfuric acid, sulfosalicylic acid, ammonium sulfate, peroxotitanic acid, vanadic anhydride, molybdic acid, molybdenum trioxide, suigustenoic acid, and zirconyl acetate.
イオンポテンシャルは下式で表される。  The ion potential is represented by the following equation.
元素の原子価 Element valence
イオンポテンシャル =  Ion potential =
元素のィオン半径 これらのうち、 B, S i , Pなどの軽元素からなる多塩基酸は少量の添 加でアルミナ組成物の比表面積および細孔容積を増加させる効果が ある力 Mo, Wなどの重元素からなる多塩基酸の場合は、 多量に添加 しないとアルミナ組成物の比表面積の増加効果は認められなかった 大部分の無機の多塩基酸は前記の含酸素有機化合物より もアルミナ 組成物の比表面積を大きくする効果があり、 この両者の併用も有効 である。 Element ion radius Among these, polybasic acids composed of light elements such as B, S i, and P have the effect of increasing the specific surface area and pore volume of the alumina composition with a small amount of addition Mo, W, etc. In the case of a polybasic acid composed of the following heavy elements, the effect of increasing the specific surface area of the alumina composition was not recognized unless added in a large amount. Most inorganic polybasic acids have a higher alumina composition than the oxygen-containing organic compound described above. Has the effect of increasing the specific surface area of the product, and it is also effective to use both It is.
上記の無機の多塩基酸は、 多量に添加した場合、 アルミナ組成物 を成型したときの成型物の機械的強度を低下させることがあること から、 その添加量は、 調製液中のアルミナの A1原子 1モルに対し原 子比で 0. 0002〜0. 2 の範囲が好ましい。  When the above-mentioned inorganic polybasic acid is added in a large amount, the mechanical strength of the molded product when the alumina composition is molded may be reduced. The atomic ratio is preferably in the range of 0.0002 to 0.2 per mole of atom.
水熱処理  Hydrothermal treatment
本発明では、 上記のように調製された調製液を、 必要に応じて上 記の各種細孔構造制御剤を添加して、 7 0〜 2 5. 0で、 好ましくは 9 0〜 2 0 0での範囲の温度でォートクレーブ等の耐圧容器中で水 熱処理を行う。 この結果、 繊維状べ一マイ ト粒子の酸性の水性ゾル ゲルが生成する。  In the present invention, the prepared solution prepared as described above is added with the various pore structure controlling agents described above, if necessary, to obtain 70 to 25.0, preferably 90 to 200. Hydrothermal treatment is performed in a pressure vessel such as an autoclave at a temperature in the range of. As a result, an acidic aqueous sol-gel of fibrous boehmite particles is formed.
上記の方法で得られた酸性の水性ゾルゲルは酸を含んでおり、 こ のままで触媒担体用に成型してもよいが、 成型後の乾燥による脱水 による繊維状べ一マイ 卜の再配列により収縮作用が起こり、 例えば 0. 5〜0. 7ml/g程度の細孔容積の成型物しか得られず、 より大きな細 孔容積の成型物を得ることができないことがある。  The acidic aqueous sol-gel obtained by the above method contains an acid and may be molded as it is for a catalyst carrier. Shrinkage occurs, and only a molded product having a pore volume of, for example, about 0.5 to 0.7 ml / g is obtained, and a molded product having a larger pore volume may not be obtained.
そこで、 ゾルゲル中の酸をアルカリで中和することによって、 ァ ルミナ組成物の細孔容積を大きくすることができる。 使用されるァ ルカリ としては、 アンモニアガスまたはアンモニア水が好ましく、 添加量としてはゾルゲル中の全酸量に対し、 モル比 (アンモニア Z 酸) で 1. 5以下の量であれば細孔容積を制御することができる。  Therefore, the pore volume of the alumina composition can be increased by neutralizing the acid in the sol-gel with an alkali. The alkali used is preferably ammonia gas or aqueous ammonia. The amount of addition is preferably smaller than 1.5 in terms of molar ratio (ammonia Z-acid) to the total amount of acid in the sol-gel. Can be controlled.
アルカリで中和したのち、 必要に応じて、 再度水熱処理してもよ い。 この水熱処理の温度は 7 0〜 2 0 0 °C、 好ましくは 1 1 0〜 1 5 0 の範囲にあることが望ましい。 アルカリ中和後水熱処理を行 うと、 さらに大きな細孔容積を有するアルミナ組成物ができる。 こ のようにアルカリ中和後に再度水熱処理することによって、 細孔容 積が大きくなる理由は明確ではないが、 水性ゲル中の繊維状べ一マ ィ 卜の 3次元網目構造における結節部が強固な結合になり、 乾燥ェ 程における脱水時の水の毛管凝縮力による収縮が小さくなり大きな 細孔構造が保持されるものと推測される。 After neutralization with alkali, hydrothermal treatment may be performed again if necessary. The temperature of the hydrothermal treatment is desirably in the range of 70 to 200 ° C, preferably in the range of 110 to 150. When hydrothermal treatment is performed after alkali neutralization, an alumina composition having a larger pore volume can be obtained. This It is not clear why the pore volume is increased by re-hydrothermal treatment after alkali neutralization as described above, but the nodules in the three-dimensional network structure of the fibrous matrix in the aqueous gel are strong. It is presumed that bonding occurs, shrinkage due to the capillary condensation of water during dehydration in the drying process is reduced, and a large pore structure is maintained.
乾燥 · 焼成  Drying and firing
このようにして得られた水性ゾルゲルは、 乾燥したのち、 4 0 0 以上で焼成することによってアルミナ組成物が得られる。 特に、 4 0 0〜 6 0 0 °Cの温度範囲で焼成すればよく、 この温度範囲で焼 成すると触媒担体用として好適なァ - アルミナの生成が確認される。 本発明で得られる水性ゾルゲルは、 アルミナ濃度が 3 0重量%以 上のものも得られるので、 その場合このまま押し出し成型などで任 意の形状に成型することができる。 したがって、 成型後乾燥、 焼成 して触媒担体用などに有用なアルミナ成型体を得ることができる。  The aqueous sol-gel thus obtained is dried, and then calcined at 400 or more to obtain an alumina composition. In particular, the sintering may be performed in a temperature range of 400 to 600 ° C. When sintering is performed in this temperature range, formation of a-alumina suitable for a catalyst carrier is confirmed. Since the aqueous sol-gel obtained in the present invention can have an alumina concentration of 30% by weight or more, it can be formed into an arbitrary shape by extrusion molding or the like as it is. Therefore, an alumina molded body useful for a catalyst carrier or the like can be obtained by drying and calcining after molding.
アルミナ組成物  Alumina composition
前記のような方法で得られた本発明に係るアルミナ組成物は、 比 表面積、 細孔容積ともきわめて広範囲の値を有しており、 たとえば 4 0 0〜 6 0 0 °Cの範囲で焼成して得られたアルミナ組成物は、 比 表面積が 1 0 0〜 4 0 0 m 2 Z g、 細孔容積が 0 . 5〜 1 . 5 m l Z g 平均細孔径が 5 0〜 3 0 O Aの範囲を有している。 このようなアル ミナ組成物は、 各種の触媒担体として有用であり、 特に石油精製ェ 業における水素化処理用触媒の担体として好適な細孔構造を有して いる。 The alumina composition according to the present invention obtained by the above-described method has a very wide range in both the specific surface area and the pore volume, and for example, is calcined in the range of 400 to 600 ° C. The alumina composition thus obtained has a specific surface area of 100 to 400 m 2 Z g, a pore volume of 0.5 to 1.5 ml Z g and an average pore diameter of 50 to 30 OA. have. Such an alumina composition is useful as various types of catalyst carriers, and has a pore structure that is particularly suitable as a carrier for a hydrotreating catalyst in the petroleum refining industry.
水素化処理触媒では、 石油留分中におけるァスフアルテンの触媒 細孔内への拡散、 ニッケル、 バナジウム金属の沈積による細孔の閉 塞、 重質炭化水素の過分解によるカーボンの生成等の諸現象が触媒 の細孔径に左右されるといわれていることから、 脱メタル用触媒、 重油用脱硫触媒、 灯軽油脱硫触媒など目的によって、 それぞれ異な る細孔構造の担体が要求されるが、 本発明に係るアルミナ組成物は それぞれの目的に応じた最適の細孔構造のものを選択して得ること ができる。 In hydrotreating catalysts, asphaltene in petroleum fractions diffuses into the pores of the catalyst, and pores close due to the deposition of nickel and vanadium metals. It is said that various phenomena such as clogging and the formation of carbon due to the overcracking of heavy hydrocarbons depend on the pore size of the catalyst. Although carriers having different pore structures are required, the alumina composition according to the present invention can be obtained by selecting an alumina composition having an optimum pore structure according to each purpose.
触媒  Catalyst
本発明に係るアルミナ組成物を担体とする触媒は、 前記の方法で得 られたアルミナ組成物を適当な形状に成型した後、 この成型体に触 媒成分を通常の方法で含浸させることによって得ることができる。 The catalyst using the alumina composition according to the present invention as a carrier is obtained by molding the alumina composition obtained by the above method into an appropriate shape and then impregnating the molded body with a catalyst component by a usual method. be able to.
また本発明においては、 前記の水性ゾルゲルに触媒成分を混合し たのち、 成型、 乾燥、 焼成して目的の触媒を得ることもできる。 さ らには、 前記アルミナ原料の調製液にアルミナゾルゲルの生成に関 与しない物質を含有させ、 これらの物質の共存下で水性アルミナゾ ルゲルを生成させることができるので、 前記調製液に触媒成分を添 加することも可能である。 例えば、 石油精製用の水素化処理触媒を 調製する場合、 まず触媒成分の M o、 Wの化合物を調製液に加えて 前記の方法で水性ゾルゲルを調製し、 これを成型、 乾燥、 焼成した のちさらに N i , C oなどの触媒成分を含浸法で担持することもで きる。 この調製法で得られた触媒は、 脱硫活性および核水素化活性 などに十分な性能を有している。 また、 M o , W , N i , C oなど の触媒成分を同時に調製液に加えて、 目的の触媒を調製しても、 不 活性組成のニッケルアルミネ一 ト、 コバルトアルミネー 卜化合物の 生成が認められない。  In the present invention, the desired catalyst can be obtained by mixing the above-mentioned aqueous sol-gel with a catalyst component, followed by molding, drying and calcining. Further, since the preparation liquid of the alumina raw material contains substances not related to the formation of the alumina sol gel, and aqueous alumina sol gel can be generated in the coexistence of these substances, the catalyst component is added to the preparation liquid. It is also possible to add. For example, when preparing a hydrotreating catalyst for petroleum refining, first add the compound of Mo and W as a catalyst component to a preparation solution to prepare an aqueous sol-gel by the above-mentioned method, and then mold, dry, and calcine it. Further, catalyst components such as Ni and Co can be supported by an impregnation method. The catalyst obtained by this preparation method has sufficient performance for desulfurization activity and nuclear hydrogenation activity. In addition, even if the desired catalyst is prepared by simultaneously adding catalyst components such as Mo, W, Ni, and Co to the preparation solution, the formation of nickel aluminate and cobalt aluminate compounds having an inactive composition will not occur. unacceptable.
このときの M o, Wなどは、 たとえばモリブデン酸、 タンダステ ン酸は、 前記した細孔構造制御剤としての多塩基酸として有用であ ることから、 このような化合物を制御剤として用いていれていると 制御剤として作用すると同時にそのまま触媒成分となるので、 触媒 製造工程の簡略化になる。 Mo and W at this time are, for example, molybdic acid, Acid is useful as the above-mentioned polybasic acid as a pore structure controlling agent.If such a compound is used as a controlling agent, it acts as a controlling agent and at the same time becomes a catalyst component as it is. This simplifies the catalyst manufacturing process.
また、 前記のアルミナ原料の調製液に、 予め Z rおよび C eの化 合物を添加して水熱処理を行って水性ゾルゲルを得、 これを成型、 乾燥、 焼成してもよい。 こう して得られたアルミナ組成物は、 排気 ガス浄化用触媒担体として十分な耐熱性を有している。 発明の効果  Further, a compound of Zr and Ce may be added to the preparation solution of the alumina raw material in advance and subjected to hydrothermal treatment to obtain an aqueous sol-gel, which may be molded, dried, and fired. The alumina composition thus obtained has sufficient heat resistance as an exhaust gas purifying catalyst carrier. The invention's effect
本発明のアルミナ組成物の製造法によれば、 高比表面積、 大細孔 容積を有するアルミナ組成物を容易に得ることができる。 しかも比 表面積、 細孔容積および細孔分布などの細孔構造を任意に制御でき ることから、 石油精製工業などに用いられる触媒担体用として目的 にかなう種々の細孔構造を有するアルミナ組成物を多少の条件を変 えるだけで同じ製造装置で容易に調製することができる。  According to the method for producing an alumina composition of the present invention, an alumina composition having a high specific surface area and a large pore volume can be easily obtained. In addition, since the pore structure such as specific surface area, pore volume, and pore distribution can be arbitrarily controlled, alumina compositions having various pore structures suitable for use as a catalyst carrier used in the petroleum refining industry and the like can be obtained. It can be easily prepared with the same manufacturing equipment by changing some conditions.
また、 アルミナの高濃度調製が可能となり、 濃縮操作なしにゾル またはゲルから直接成型することができる、 あるいは触媒成分を調 製液の段階で添加することができる。 アルミナ組成物または触媒の 製造工程の大幅な短縮を図ることができる。 実施例  Also, high concentration of alumina can be prepared, and it can be directly molded from a sol or gel without a concentration operation, or a catalyst component can be added at a preparation liquid stage. The production process of the alumina composition or the catalyst can be greatly shortened. Example
以下、 本発明を実施例により説明するが、 本発明はこれらの実施 例に何ら限定されるものではない  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
実施例一 _ 1 Al (NOs) 3を 28.4%含有する水溶液 1 7 4 gへ、 中心粒径が 0. 5 zzmのギブサイ ト [住友化学工業社製、 C- 3005、 付着水分 0.17% Al (0H) 3 : 99.5% , Na20 等の不純分 0.35%] の 535 gを加え、 こ れを 250°Cで熱処理することにより、 χ-アルミナからなる酸含有ァ ルミナブロックを得た。 Α 1203換算で 352 g含有するこのブロックを 粉砕して粉末とし、 イオン交換水 720mlを添加して、 アルミナ濃度が 30重量%の調製液を作製した。 Example 1 _ 1 Gibbsite with a center particle size of 0.5 zzm to an aqueous solution containing 28.4% Al (NOs) 3 [C-3005, manufactured by Sumitomo Chemical Co., Ltd., adhering water 0.17% Al (0H) 3 : 99.5 535 g of 0.35% of impurities such as Na 2 O, etc.] and heat-treated at 250 ° C. to obtain an acid-containing alumina block made of χ-alumina. And grinding the blocks 352 g contained in Alpha 1 2 0 3 in terms of a powder, by addition of ion-exchanged water 720ml, alumina concentration was prepared 30 wt% of the preparation.
用いた原料を基準にして計算し、 この調製液の酸のモル数(b) Z A 1203のモル数(a) は 0.20であり、 酸のモル数(b) Z水のモル数(c) は 0.016であり、 k値 ((b/a) X (b/c) ) は 0.0032であった。 この調製液 を回転型耐圧容器へ入れ、 回転しながら 160°C-24時間水熱処理を行 レ 酸性の水性ゾルゲルを得た。 この水性ゾルゲルに含まれる硝酸 と同モル数のアンモニア水を添加して中和し水性ゲルへ転換して 13 5でで 3時間水熱処理を行い、 混練後、 1.5匪 φのダイスで円柱状で 押出成型し、 140でで乾燥を行い、 560 の温度で焼成してアルミナ 成型物を作製した。 Raw materials used were calculated on the basis, the number of moles of acid in the preparation (b) ZA 1 2 0 3 mole number (a) is 0.20, the number of moles of acid (b) the number of moles of Z water ( c) was 0.016 and the k value ((b / a) X (b / c)) was 0.0032. The prepared solution was placed in a rotary pressure-resistant container, and subjected to hydrothermal treatment at 160 ° C. for 24 hours while rotating to obtain an acidic aqueous sol-gel. The aqueous sol-gel was neutralized by adding the same molar number of aqueous ammonia as nitric acid and converted to an aqueous gel, and subjected to hydrothermal treatment at 135 for 3 hours.After kneading, the mixture was cylindrical with a 1.5-band φ die. It was extruded, dried at 140 and calcined at 560 to produce an alumina molded product.
得られたアルミナ成型物の比表面積は 171m 2Z g、 細孔直径 60nm 未満の細孔容積が 0.90mlZ gで細孔容積が十分大きなアルミナが得 られた。 The obtained alumina molded product had a specific surface area of 171 m 2 Z g, a pore volume of less than 60 nm and a pore volume of 0.90 mlZ g, and alumina having a sufficiently large pore volume was obtained.
実施例一 2 Example 1 2
中心粒径が 8.8 mの低ソ一ダギブサイ ト [昭和電工社製、 HS - 32 0、 付着水分 0.11%、 Al (0H) 3:99.8¾, Na20等不純分 : 0.0«] の 77gに 酢酸 10gを添加し、 密閉容器へ充填し、 150°Cで 12時間加熱すること により酸含有ギブサイ ト 87 gを得た。 この酸含有ギブサイ トを粉砕 後、 イオン交換水 80mlを加えて調製液を作成した。 この調製液の酸 (b)/Al 203 (a)は 0.34、 酸(b) / 0 (c)は 0.028、 k値は 0.0095であった。 この調製液を実施例一 1記載の方法と同じ条件で水熱処理を行い、 半透明のゲル状物の少ない酸性の水性ゾルを得た。 この水性ゾルに 含まれる酢酸と同モル数のアンモニア水を添加して 135でで 3時間水 熱処理を行い、 混練した後 1.5践 の円柱状に押出成型し、 140°Cで 乾燥後 560でで焼成してアルミナ成型物を作製した。 得られたアルミ ナ成型物の比表面積は 132m2Z g、 細孔容積が 0.73ΙΠ1Ζ g、 中心細 孔直径 220Aであつた。 Median particle size is 8.8 m low source one Dagibusai bets [manufactured by Showa Denko KK, HS - 32 0, water attached 0.11%, Al (0H) 3 : 99.8¾, Na 2 0 and the like impurities: 0.0 «] to 77g of 10 g of acetic acid was added, and the mixture was filled in a closed container and heated at 150 ° C for 12 hours to obtain 87 g of an acid-containing gibbsite. After the acid-containing gibbsite was pulverized, 80 ml of ion-exchanged water was added to prepare a preparation. Acid of this preparation (b) / Al 2 0 3 (a) is 0.34, acid (b) / 0 (c) is 0.028, k value was 0.0095. The prepared solution was subjected to hydrothermal treatment under the same conditions as described in Example 11 to obtain an acidic aqueous sol containing a small amount of translucent gel. Aqueous ammonia with the same mole number as the acetic acid contained in this aqueous sol was added, hydrothermally treated at 135 for 3 hours, kneaded, extruded into a 1.5-strand cylinder, dried at 140 ° C, and dried at 560. It was fired to produce an alumina molded product. The specific surface area of the obtained alumina molded product was 132 m 2 Z g, the pore volume was 0.73ΙΠ1Ζ g, and the center pore diameter was 220 A.
実施例一 3 Example 1 3
P—結晶構造を有する中心粒径 のアルミナ (住友化学工業 社製、 BK- 540 Al 203:93.6 %、 Na20等の不純分 : 0.3%、 水分 : 6. 1 % ) 320 gを、 イオン交換水へ、 硝酸アルミニウム · 9水和物の 6 2 5 gとともに添加し、 湿式粉碎し、 次いで 7 0 %のグリコール酸 8. 8gと 85%リ ン酸を加えて調製液を作成した。 Median particle size of alumina with a P- crystal structure (manufactured by Sumitomo Chemical Co., Ltd., BK- 540 Al 2 0 3: 93.6%, impurities such as Na 2 0: 0.3%, water: 6.1%) to 320 g Was added to ion-exchanged water together with 65 g of aluminum nitrate 9-hydrate, wet milled, and then 8.8 g of 70% glycolic acid and 85% phosphoric acid were added to prepare a prepared solution. .
この調製液のアルミナ濃度は 30%、 所定 3成分のモル比は、 用い た硝酸アルミ二ゥムから計算して HN03/Al2( が 0. 17、 HN03/H20が 0.01 3で、 k値が 0.0022で、 グリコール酸 アルミナの重量比が 0.02、 P /A1の原始比が 0.0014であった。 Alumina concentration in the preparation liquid to 30%, the molar ratio of the predetermined three components, calculated from aluminum nitrate two © beam was used HN0 3 / Al 2 (but with 0. 17, HN0 3 / H 2 0 0.01 3 The k value was 0.0022, the weight ratio of alumina glycolic acid was 0.02, and the primitive ratio of P / A1 was 0.0014.
この調製液を耐圧容器へ入れ 100 で 48時間、 140でで 16時間水熱 処理を静止下で行った結果、 酸性の水性ゾルゲルを得た。 この酸性 の水性ゾルゲルに含まれる硝酸の 40 %を中和するモル数のアンモニ ァ水を添加して 135でで 3時間水熱処理を行い、 混練後、 1.5匪の円 柱状に押出成型し、 140 で乾燥後 500で、 550T:、 600でで焼成した 結果、 得られたアルミナ成型体の比表面積はそれぞれ 270m 2Z g、 252m2/ g , 233m2ノ gであった。 実施例一 4〜 8 This prepared solution was placed in a pressure-resistant container and subjected to hydrothermal treatment at 100 at 48 hours and at 140 at 16 hours under static conditions. As a result, an acidic aqueous sol-gel was obtained. Ammonia water is added in a molar amount to neutralize 40% of the nitric acid contained in the acidic aqueous sol-gel, and the mixture is subjected to hydrothermal treatment at 135 for 3 hours. After kneading, the mixture is extruded into a 1.5-band cylindrical shape. in after drying 500, a result of firing at at 550T :, 600, respectively the specific surface area of the obtained alumina molded 270m 2 Z g, 252m 2 / g, was 233m 2 Bruno g. Example 1 4-8
実施例一 3 に用いたものと同じアルミナ 400 gを表 1 に示す濃度の 異なる硝酸と予めそれぞれ混合し、 熟成後イオン交換水を追加して 調製液 1070 gをそれぞれ作成した。 これらの調製液のアルミナ濃度 はそれぞれ 35%で、 アルミナと硝酸と水の所定 3成分のモル比は腿 03/Α 1203が 0.20、 HN03/H20が 0.021で、 k値が 0.0042であった。 400 g of the same alumina as that used in Example 13 was mixed in advance with nitric acid having different concentrations shown in Table 1, and after aging, ion-exchanged water was added to prepare 1070 g of each of the prepared solutions. 35% alumina concentration of these preparation, respectively, the molar ratio of the predetermined three components of alumina, nitric acid and water thigh 0 3 / Α 1 2 0 3 0.20, with HN0 3 / H 2 0 is 0.021, k value Was 0.0042.
これらの調製液を、 実施例一 1 に記載の方法で 135°Cで 28時間水熱 処理を行い酸性の水性ゾルゲルを得た。 これらの.酸性の水性ゾルゲ ルに含まれる酸のモル数と同モル数のアンモニア水を加え中和し、 混練後 1.5mmの円柱状に押出成型し、 140°Cで乾燥後、 560 で焼成し た結果、 得られたそれぞれのアルミナ成型体の比表面積を表 1 に示 した。  These prepared solutions were hydrothermally treated at 135 ° C. for 28 hours by the method described in Example 11 to obtain an acidic aqueous sol-gel. These aqueous acidic sol gels are neutralized by adding ammonia water in the same number of moles as the acid contained in the acidic aqueous sol gel, kneaded, extruded into a 1.5 mm column, dried at 140 ° C, and fired at 560 As a result, the specific surface area of each obtained alumina molded body is shown in Table 1.
Figure imgf000023_0001
Figure imgf000023_0001
表 1 の結果より、 初期添加の硝酸濃度が高くなる程、 比表面積の 大きいアルミナを得られることが判明した。 From the results in Table 1, it was found that the higher the nitric acid concentration in the initial addition, the higher the specific surface area of alumina.
実施例— 9〜 1 1、 比較例— ;!〜 5 Example—9-11, Comparative Example— ~ Five
イオン交換水 560 mlに、 それぞれ酢酸を添加しない、 または 6.4 g添加した酢酸水溶液 (比較例 1 〜 5 ) 、 および 19. 1、 48.7、 84.7 g添加した (実施例 9〜 1 1 ) 常温の酢酸水溶液を調製し、 これに 表 2 に示す蓚酸、 グリコール酸及びクェン酸等を加えた。 これらに 実施例一 3の p —結晶構造を有するアルミナ 38 5 gを添加し、 調製液 を作製した。 その組成は A ( が 36重量%で、 上記カルボン酸のァ ルミナに対する重量比は 0. 0 2であった。 得られた調製液から実施例 _ 4 と同様にして、 アルミナ成型物を作製した。 Acetic acid aqueous solution (Comparative Examples 1 to 5) to which acetic acid was not added or 6.4 g was added to 560 ml of ion-exchanged water, and 19.1, 48.7, and 84.7 g were added (Examples 9 to 11). An aqueous solution was prepared, and oxalic acid, glycolic acid, citric acid and the like shown in Table 2 were added thereto. To these 385 g of alumina having a p-crystal structure of Example 13 was added to prepare a preparation liquid. The composition was such that A (was 36% by weight and the weight ratio of the above carboxylic acid to alumina was 0.02. An alumina molded article was produced from the obtained preparation in the same manner as in Example_4. .
得られたアルミナ成型物の比表面積、 細孔容積、 圧縮強度を表 2 に示す。 表 2  Table 2 shows the specific surface area, pore volume, and compressive strength of the obtained alumina molded product. Table 2
実施例 モル比率と k値 添 加 剤 SA PV 圧縮強度 比較例 b/a b/c k 種 類 重量比 mVg ml/g kg 比較例一 1 0. 00 0. 000 0. 00000 グリコール酸 0. 02 158 0. 42 1. 0以下 比較例一 2 0. 03 0. 003 0. 00009 未添加 145 0. 37 1. 0以下 比較例— 3 0. 03 0. 003 0. 00009 グリコール酸 0. 02 169 0. 44 1. 0以下 比較例一 4 0. 03 0. 003 0. 00009 蓚酸 0. 02 166 0. 41 1. 0以下 比較例一 5 0. 03 0. 003 0. 00009 クェン酸 0. 02 172 0. 40 1. 0以下 実施例一 9 0. 09 0. 009 0. 0008 グリコール酸 0. 02 198 0. 54 1. 3 実施例一 10 0. 23 0. 028 0. 006 グリコール酸 0. 02 230 0. 75 2. 2 実施例一 11 0. 40 0. 046 0. 019 グリコール酸 0. 02 248 0. 59 2. 7  Example Molar ratio and k value Additive SA PV Compressive strength Comparative example b / ab / ck Type Weight ratio mVg ml / g kg Comparative example 1 1 0.000 0.000 0.00000 Glycolic acid 0.02 158 0 42 1.0 or less Comparative Example 1 2 0.03 0.003 0. 00009 Not added 145 0.37 1.0 or less Comparative Example—3 0.03 0.003 0. 44 1.0 or less Comparative example 1 4 0.03 0.003 0.00009 Oxalic acid 0.02 166 0.41 1.0 0 or less Comparative example 1 5 0.03 0.003 0. 00009 Cunic acid 0.02 172 0 401.0 or less Example 1 9 0.09 0. 009 0.0008 Glycolic acid 0.02 198 0.54 1.3 Example 1 10 0.23 0. 028 0. 0.75 2.2 Example 1 11 0.40 0.046 0.019 Glycolic acid 0.02 248 0.59 2.7
表 2より、 比較例 1 〜 5のように k値が小さいものでは十分な比 表面積、 細孔容積、 圧縮破壊強度のアルミナ成型物しか得られない ことが判明した。 また実施例— 9の k値の 0. 0008は、 比表面積およ び細孔容積の増加に効果があることが判明した。 From Table 2, it was found that, when the k value was small as in Comparative Examples 1 to 5, only an alumina molded product having a sufficient specific surface area, pore volume, and compressive fracture strength could be obtained. Further, it was found that 0.0008 of the k value in Example-9 was effective in increasing the specific surface area and the pore volume.
実施例一 1 2〜 : L 5、 比較例— 6 〜 9 Example 1 12-: L5, Comparative Example-6-9
イオン交換水 5 60 m lに 6 1 %硝酸 5 5、 1 09、 2 1 9、 437 gを添加 して、 常温の硝酸水溶液を調製し、 これに表 3 に示す蓚酸、 グリコ ール酸及びクェン酸等を加えた。 これらに実施例 3の P —結晶構造 を有するアルミナ 3 8 5 gを添加し、 調製液を作製した。 その組成は A I 2O3 が 3 6重量%、 上記カルボン酸のアルミナに対する重量比は 0. 0 2であった。 得られた調製液を、 実施例— 4 と同様にして、 アルミナ 成型物を作製した。 Add 55%, 109, 219, and 437 g of 6% 1% nitric acid to 560 ml of ion-exchanged water to prepare an aqueous solution of nitric acid at room temperature, and add oxalic acid, glycolic acid, and quench acid as shown in Table 3. Acid and the like were added. To these, 385 g of the alumina having the P — crystal structure of Example 3 was added to prepare a preparation solution. The composition was such that AI 2 O 3 was 36% by weight and the weight ratio of the carboxylic acid to alumina was 0.02. The resulting preparation was subjected to alumina treatment in the same manner as in Example-4. A molded product was produced.
得られたアルミナ成型物の比表面積、 細孔容積、 圧縮破壊強度を 表 3 に示す。  Table 3 shows the specific surface area, pore volume, and compressive fracture strength of the obtained alumina molded product.
表 3 Table 3
実施例 モル比率と k値 添 加 剤 SA PV 圧縮強度 比較例 b/a b/c k 種 類 重量比 iVg ml/g kg 実施例 - 12 0. 15 0. 016 0. 0024 未添加 175 0. 84 2. 2 実施例— 13 0. 15 0. 016 0. 0024 ダリコ一ル酸 0. 02 247 0. 83 2. 3 実施例一 14 0. 30 0. 034 0. 010 グリコール酸 0. 02 0. 65 3. 5 実施例 - 15 0. 60 0. 077 0. 046 グリコ一ル酸 0. 02 227 0. 50 3. 0 比較例一 6 1. 20 0. 205 0. 245 未添加 211 0. 44 1. 2 比較例一 7 1. 20 0. 209 0. 250 グリコ一ル酸 0. 02 232 0. 45 焼成時崩壊 比較例一 8 1. 20 0. 209 0. 250 蓚酸 0. 02 226 0. 46 焼成時崩壊 比較例一 9 1. 20 0. 209 0. 250 クェン酸 0. 02 235 0. 45 焼成時崩壊 Example Molar ratio and k value Additive SA PV Compressive strength Comparative example b / ab / ck Type Weight ratio iVg ml / g kg Example-12 0.15 0.016 0.0024 Not added 175 0.84 2 2 Example—13 0.15 0. 016 0.0024 Daricolic acid 0.02 247 0.83 2.3 Example 1 14 0.30 0.034 0.010 Glycolic acid 0.02 0.65 3.5 Example-15 0.60 0.077 0.046 Glycolic acid 0.02 227 0.50 3.0 Comparative example 6 1.20 0.205 205.245 Not added 211 0.444 1 2 Comparative Example 1 7 1.20 0.209 0.250 Glycolic acid 0.02 232 0.45 Collapse during firing Comparative Example 1 8 1.20 0.209 0.250 Oxalic acid 0.02 226 0.46 Collapse during firing Comparative Example 1 9 1.20 0.209 0.250 Cunic acid 0.02 235 0.45 Collapse during firing
また、 実施例一 1 2 のアルミナ組成物の細孔径分布曲線を図一 2 に示す。 表 3 の結果よ り、 実施例— 1 5の k値 0. 046で、 使用可能な アルミナ担体が得られることが判明した。 FIG. 12 shows a pore size distribution curve of the alumina composition of Example 1-12. From the results in Table 3, it was found that a usable alumina carrier was obtained with a k value of 0.46 in Example-15.
実施例一 1 6〜 2 1 、 比較例— 1 0 Example 1 16 to 21, Comparative Example—10
実施例— 4記載と同組成の 30での希薄硝酸水溶液に、 酒石酸を、 表 4 となるように (0. 1 12 gから 1 1 2 gまで 7段階) 添加し、 実施例 一 3の p —結晶構造のアルミナを同様に 加して調製液を作製した。 得られた調製液を、 実施例— 4 と同様に 135 で 28時間で水熱処理 を行い、 酸性の水性ゾルゲルを得た。 この水性ゾルゲルを酸性のま まで混練し、 1. 5ππη φの円柱状に押し出し成型し、 140 で乾燥後 56 0でで焼成して、 アルミナ成型物を作製した。 得られたアルミナ成型物の比表面積、 細孔容積、 圧縮破壊強度を 表 4 に示す。 表 4 Example 4 Tartaric acid was added to a diluted aqueous solution of nitric acid at 30 having the same composition as described in Example 4 as shown in Table 4 (from 0.112 g to 112 g in seven steps). —Alumina having a crystal structure was similarly added to prepare a preparation liquid. The resulting preparation was subjected to hydrothermal treatment at 135 for 28 hours in the same manner as in Example-4 to obtain an acidic aqueous sol-gel. The aqueous sol-gel was kneaded while being acidic, extruded into a cylindrical shape of 1.5ππηφ, dried at 140, and fired at 560 to produce an alumina molded product. Table 4 shows the specific surface area, pore volume, and compressive fracture strength of the obtained alumina molded product. Table 4
実施例 酒石酸の 酒石酸/アルミナ SA PV 圧縮強度 比較例 添加量 重量比 mVg ml/g kg 実施例— 16 0. 112 g 0. 0003 223 0. 69 3. 4  Example Tartaric acid tartaric acid / alumina SA PV Compressive strength Comparative example Addition amount Weight ratio mVg ml / g kg Example—16 0.12 g 0.0003 223 0.69 3.4
実施例一 17 0. 373 g 0. 001 225 0. 70 3. 7  Example 1 17 0.373 g 0.0001 225 0.70 3.7
実施例一 18 1. 12 g 0. 003 230 0. 72  Example 1 18 1.12 g 0.0003 230 0.72
実施例一 19 3. 73 g 0. 01 245 0. 70 3. 9  Example 1 19 3.73 g 0.001 245 0.70 3.9
実施例— 20 11. 2 g 0. 03 248 0. 56 3. 6  Example—20 11.2 g 0.03 248 0.56 3.6
実施例 - 21 37. 3 g 0. 1 222 0. 48 2. 1  Example-21 37.3 g 0.1 222 0.48 2.1
比較例一 10 112 g 0. 3 焼成時に崩壊  Comparative Example 1 10 112 g 0.3 Disintegrated during firing
実施例一 2 2〜 2 8 Example 1 22 to 28
実施例一 1 及び実施例一 2 に用いたギブサイ トを用い、 同記載の 方法と条件に従い、 酸含有アルミナ水和物及びアルミナを作成し粉 末化した。 この粉末をイオン交換水へ分散した懸濁物へ、 細孔構造 制御剤として、 ぶどう糖、 マレイン酸、 グリセリ ン、 グリ コール酸、 ダルコン酸、 蓚酸二水和物と乳酸をそれぞれ表 5 に示すよう に添加 し、 7種類の調製液を作成した。 得られた調製液を、 実施例一 1及び実施例一 2 と同様に 1 60でで 2 4時間水熱処理を行い、 酸性の水性ゾルゲルを得た。 この水性ゾルゲ ルを実施例一 1 の方法と条件に従いアルミナ成型物を作製した。  Using the gibbsites used in Examples 11 and 12, acid-containing alumina hydrate and alumina were prepared and powdered according to the method and conditions described in the same. To a suspension of this powder dispersed in ion-exchanged water, glucose, maleic acid, glycerin, glycolic acid, dalconic acid, oxalic acid dihydrate and lactic acid are shown in Table 5 as pore structure control agents. To prepare seven types of preparation solutions. The prepared solution was subjected to hydrothermal treatment at 160 at 24 hours in the same manner as in Examples 11 and 12 to obtain an acidic aqueous sol-gel. An alumina molded product was produced from this aqueous sol gel according to the method and conditions of Example 11.
得られたアルミナ成型物の比表面積を表 5 に示す。 実施例一 1及 び実施例一 2 に比べて比表面積がそれぞれ高い値を示した。 表 5  Table 5 shows the specific surface area of the obtained alumina molded product. The specific surface area showed higher values than those of Example 11 and Example 12. Table 5
実施例 ギブサイ 熱処理時の 添 カロ 剤 SA  Examples Gibsai Additives during heat treatment SA
卜の種類 酸の種類 種類 対アルミナ重量比 mVg 実施例 - 22 C-3005 Al (NO 3) ぶどう糖 0. 02 188 Type of acid Type of acid Type to weight ratio of alumina mVg Example-22 C-3005 Al (NO 3 ) glucose 0.02 188
実施例 - 23 C-3005 Al (NO 3) マレイン酸 0. 02 203 Example-23 C-3005 Al (NO 3 ) maleic acid 0.02 203
実施例 - 24 HS-320 CHaCOOH グリセリン 0. 02 177  Example-24 HS-320 CHaCOOH Glycerin 0.02 177
実施例 - 25 HS-320 Al (NO グリコール酸 0. 02 237  Example-25 HS-320 Al (NO glycolic acid 0.02 237
実施例一 26 HS-320 Al (NO ダルコン酸 0. 02 234  Example 1 26 HS-320 Al (NO dalconic acid 0.02 234
実施例 - 27 HS-320 Al (NO 蓚酸二水和物 0. 02 206  Example-27 HS-320 Al (NO oxalic acid dihydrate 0.02 206
実施例 - 28 HS-320 Al (NO 乳酸 0. 02 235 比較例一 1 1 〜 1 3、 実施例— 2 9〜 5 1 Example-28 HS-320 Al (NO lactic acid 0.02 235 Comparative Example 1 11 to 13, Example—29 to 5 1
実施例一 3の! 0—結晶構造のアルミナと硝酸と酢酸とを用い、 そ の添加量と k値、 アルミナ濃度、 各種有機物と無機物の種類と添加 量、 水熱処理条件、 アルカリ中和後の水熱処理等条件について、 そ れぞれ表 6に示される条件でアルミナ成型物を得た。  Example 1 of 3! Using 0-crystalline alumina, nitric acid and acetic acid, their addition amount and k value, alumina concentration, types and addition amounts of various organic and inorganic substances, hydrothermal treatment conditions, hydrothermal treatment conditions after alkali neutralization, etc. An alumina molded product was obtained under the conditions shown in Table 6 respectively.
得られたアルミナ成型物の比表面積及び細孔容積を表 6 に示す。 Table 6 shows the specific surface area and pore volume of the obtained alumina molded product.
表 6 Table 6
Figure imgf000028_0001
Figure imgf000028_0001
実施例一 5 2 Example 1 5 2
イオン交換水 547 mlに酢酸 61.7gと蓚酸二水和物 8.4 gを添加し、 次いで実施例— 3の p—結晶構造のアルミナ 160 gと W097/32817号公 報実施例一 4に記載のギブサイ ト 231 gを添加した調製液を作製した この液の組成は、 アルミナ濃度が 30重量%、 酢酸濃度が 6.2%、 蓚酸 濃度が 0.60%で、 酢酸ノアルミナのモル比が 0.35、 酢酸 水のモル 比が 0.029、 k値が 0.010であった。  61.7 g of acetic acid and 8.4 g of oxalic acid dihydrate were added to 547 ml of ion-exchanged water, and then 160 g of alumina having a p-crystal structure of Example-3 and Gibci described in Example 14 of W097 / 32817 Publication The composition of this solution was prepared by adding 231 g of the solution, the composition of this solution had an alumina concentration of 30% by weight, an acetic acid concentration of 6.2%, an oxalic acid concentration of 0.60%, a molar ratio of nooacetate acetate of 0.35, and a molar ratio of acetic acid water. Was 0.029 and the k value was 0.010.
この調製液を実施例— 4と同様の方法で 150 で 24時間の水熱処理 を行った後、 実施例一 4同様の方法と条件でアルミナ成型物を作製 した。 得られた成型物の比表面積は 154m2/ g、 細孔容積は 0.78 m lZ gであった。 このアルミナの比表面積は、 蓚酸が無添加の W097/ 32817 号公報実施例一 4記載のアルミナの比表面積 107m2Z gと比 ベ、 47m2Z g増加していた。 This prepared solution was subjected to hydrothermal treatment at 150 at 24 hours in the same manner as in Example-4, and then an alumina molded product was produced in the same manner and under the same conditions as in Example-14. The specific surface area of the obtained molded product was 154 m 2 / g, and the pore volume was 0.78 mlZg. The specific surface area of the alumina, oxalic acid had increased W097 / specific surface area of 32817 JP one example embodiment 4, wherein the alumina 107m 2 Z g and specific base, 47m 2 Z g of additive-free.
実施例— 5 3〜 5 4、 比較例— 1 1〜: 1 4 Example—53 to 54, Comparative Example—11 to: 14
実施例一 3の P —結晶構造のアルミナと酢酸及び硝酸を用い、 表 7 に示されるように、 製液の組成がアルミナが 15重量%及び 52重 量%で、 k値が 0.00008、 0.002、 および 0.2以上の組成の調製液を作 製した。 得られた調製液を用いて、 実施例一 4と同様の方法および 条件でアルミナ成型物を作製した。 得られたアルミナ成型物の細孔 容積と圧縮破壊強度を、 表 7 に示す。  As shown in Table 7, using P-crystal structure alumina and acetic acid and nitric acid of Example 13 as shown in Table 7, the composition of alumina was 15% by weight and 52% by weight, and the k value was 0.00008, 0.002, And a preparation solution having a composition of 0.2 or more was prepared. Using the obtained preparation liquid, an alumina molded product was produced in the same manner and under the same conditions as in Example 14. Table 7 shows the pore volume and compressive fracture strength of the obtained alumina molded product.
その結果、 アルミナ濃度が 1 5 %と 5 2 %とでは k値が 0.00008と 0.2以上の組成では細孔容積が少なく、 かつ圧縮強度が低く、 k値が 0. 0 0 2の組成では細孔容積および圧縮強度が充分であった。 As a result, when the alumina concentration is 15% and 52%, the composition having a k value of 0.00008 and a composition of 0.2 or more has a small pore volume, a low compressive strength, and the composition having a k value of 0.002 has a small pore volume. The volume and compressive strength were sufficient.
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000030_0001
Figure imgf000030_0002
実施例一 5 5 Example 1 5 5
イオン交換水 755 mlに 61%硝酸を 75gとグリセリ ン 7.4gとを添加 した混合液に、 実施例一 3の p —結晶構造を有するアルミナを 3950 g混合し、 調製液を作製した。 調製液の組成は アルミナ濃度が 30% で、 モル比率および k値は、 HN03/A1203が 0.20であり、 HNC /ILOが 0. 017であり、 k値は 0.0034であり、 グリセリンノアルミナの重量比は 0.02であつた。 3950 g of alumina having a p-crystal structure of Example 13 was mixed with a mixed solution obtained by adding 75 g of 61% nitric acid and 7.4 g of glycerin to 755 ml of ion-exchanged water to prepare a prepared solution. The composition of the preparation liquid in 30% concentration of alumina, the molar ratio and k values, HN0 3 / A1 2 0 3 is 0.20, HNC / ILO is 0. 017, the k value is 0.0034, glycerin Bruno The weight ratio of alumina was 0.02.
次いで、 実施例 1 に記載の反応容器を用い、 回転しながら 8 0 °C で 2 O mPa以上に増粘させた後、 1 3 5でで 2 8時間静止下で水熱処 理を行った。 この方法で合成した酸性アルミナゾルゲルの H N O 3に 対して、 中和するアンモニアのモル比を 0.0 0.4 0.6 0.8 1.0 1.20となるように変えて添加し、 次いで常温及び 135°Cの加熱処理を 行い、 実施例一 1 と同様にして、 成型、 乾燥してアルミナ成型物を 作製した。 得られたアルミナ成型物の比表面積と細孔容積を表 8に 示す。 表 8 Next, using the reaction vessel described in Example 1, the viscosity was increased to 2 O mPa or more at 80 ° C. while rotating, and then hydrothermal treatment was performed at 135 at rest for 28 hours. . The molar ratio of ammonia to be neutralized was changed to 0.00.4 0.6 0.8 1.0 1.20 with respect to HNO 3 of the acidic alumina sol gel synthesized by this method, and then heat treatment was performed at room temperature and 135 ° C. It was molded and dried in the same manner as in Example 11 to produce an alumina molded product. Table 8 shows the specific surface area and pore volume of the obtained alumina molded product. Table 8
Figure imgf000031_0001
Figure imgf000031_0001
アンモニア添加後、 水熱処理を行った場合に、. 細孔容積が高くな When the hydrothermal treatment is performed after the addition of ammonia, the pore volume increases.
2  Two
ることが判明した。 Turned out to be.
実施例一 5 6 Example 1 5 6
実施例一 5 5において、 グリセリ ンの替わりに、 蓚酸 2水和物を 使用して調製液を作製した。 この調製液の組成はアルミナ濃度、 モ ル比率および k値が実施例— 5 5 と同じであり、 蓚酸ノアルミナの 重量比は 0 . 0 2であった。 得られた調製液は、 実施例 5 5 と同様 の方法および条件に従い水熱処理を行った。 合成した酸性アルミナ ゾルゲルの HN03に対して、 中和する ンモニァのモル比を、 0. 0 (無 添加) 、 0. 5 1. 0として添加した後、 実施例一 1 と同様の成型、 乾 燥等の操作を行いアルミナ成型物を作製した。 Example 15 In Example 55, a preparation solution was prepared by using oxalic acid dihydrate instead of glycerin. The composition of this preparation solution had the same alumina concentration, mole ratio and k value as in Example 55, and the weight ratio of nolumina oxalate was 0.02. The resulting preparation was subjected to hydrothermal treatment according to the same method and conditions as in Example 55. Respect synthesized acidic alumina sol HN0 3, the molar ratio of Nmonia neutralizing, 0.0 (no addition), was added as a 0.5 1.0, the same molding as one example embodiment 1, dry Operations such as drying were performed to produce an alumina molded product.
得られたアルミナ成型物の比表面積は、 アンモニア無添加のとき 力 243m 2 Z g NH3/HNO3 のモル比が 0. 5のとき力 247m 2ノ g NH3/H NOs のモル比が 1. 0のときが 238m 2Z gであった。 また得られた成型 体の細孔径分布曲線を図一 2 に示す。 蓚酸無添加で略調製液の組成 が類似の実施例一 1 2 と比較し、 シャープな細孔径分布曲線を有す るアルミナ組成物が得られることが判明した。 The specific surface area of the obtained alumina molded product was such that when the ammonia was not added, the molar ratio of force was 243 m 2 Z g NH3 / HNO3 was 0.5, and the molar ratio of force was 247 m 2 ng NH3 / H NOs was 1.0. The time was 238 m 2 Z g. FIG. 12 shows the pore size distribution curve of the obtained molded body. It was found that an alumina composition having a sharp pore size distribution curve was obtained without the addition of oxalic acid as compared with Example 1-12 in which the composition of the substantially prepared solution was similar.
実施例一 5 7 本実施例はアルミナに対して硝酸を多く用いた k値の高い領域で 細孔構造制御剤無添加の例を示す。 Example 1 5 7 This example shows an example in which a large amount of nitric acid is used with respect to alumina and a pore structure controlling agent is not added in a high k value region.
ィオン交換水 420mlに 61%硝酸を 190 g添加し、 これに p—結晶構 造を有する中心粒径 15 111のアルミナ (住友化学工業社製、 BK-112 Al 203 : 93.6 %、 Na20等の不純分 : 0.3%、 水分 : 6. 1%) 400 g添加 して調製液を作成した。 この調製液の所定 3成分のモル比は HN03/A 1203が 0.50、 HN03/H20が 0.064で、 k値は 0.032であった。 And Ion-exchanged water 420ml 61% added nitric acid 190 g, alumina having a center particle diameter of 15 111 with p- crystal structure thereto (manufactured by Sumitomo Chemical Co., Ltd., BK-112 Al 2 0 3 : 93.6%, Na 2 Impurities such as 0: 0.3%, water: 6.1%) 400 g were added to prepare a preparation. The molar ratio of the predetermined three components of the preparation liquid HN0 3 / A 1 2 0 3 is 0.50, HN0 3 / H 2 0 is at 0.064, k value was 0.032.
実施例一 4の方法に従い、 反応条件は 150でで 8時間の水熱処理を 行い酸性のゾルゲルを得た。 そのゾルゲルを 3分割し、 含有する酸 に対して 100%、 120%、 140%のモル数のアンモニアを添加した後、 同記載の方法と条件でアルミナ成型物を作成した。 得られたアルミ ナ成型物の比表面積はそれぞれ 144m2Z g、 140m2/ g , 138m2/ gで、 細孔容積はそれぞれ 0. δδπιΙΖ g、 0.70ml/ g , 0.71mlノ gで、 それぞれの比表面積は小さいが中心細孔径の大きいアルミナが得ら れ、 k値が 0. 0 3 2で有効な担体が得られた。 According to the method of Example 14, hydrothermal treatment was carried out at 150 under the reaction conditions of 8 hours to obtain an acidic sol-gel. The sol-gel was divided into three parts, and 100%, 120% and 140% moles of ammonia were added to the contained acid, and then an alumina molded article was prepared by the method and conditions described above. The specific surface area of the obtained aluminum molded product was 144 m 2 Z g, 140 m 2 / g and 138 m 2 / g, respectively, and the pore volume was 0.δδπιΙΖ g, 0.70 ml / g and 0.71 ml, respectively. Alumina having a small specific surface area but a large central pore diameter was obtained, and an effective carrier was obtained with a k value of 0.032.
実施例一 5 8 Example 1 5 8
3号珪酸ソーダの希釈水溶液を、 陽イオン交換樹脂を通し、 3.0% の Si02 を含む珪酸水溶液を得た。 イオン交換水 269mlにこの珪酸 水溶液 290 gと酢酸を 54.4g及び実施例一 3で使用したものと同じ p 一結晶構造のアルミナ 395 gを添加して、 調製液を作製した。 この調 製液の組成は、 A 1203 :CH3C00H:H20 がそれぞれ 36.7% : 5.4% : 57.0 %であり、 Si( が 0.86%、 その他不純物が 0. 12%であり、 モル比率 と k値は、 CH3C00H/A 1203が 0.25であり、 CH3C00H/H20が 0.028であり、 kが 0.007であり、 Si/Al の原子比が 0.02であった。 The dilute aqueous solution of sodium silicate No. 3, through a cation exchange resin to obtain a silicic acid aqueous solution containing 3.0% of Si0 2. To 269 ml of ion-exchanged water were added 290 g of this aqueous solution of silicic acid, 54.4 g of acetic acid, and 395 g of alumina having the same p-crystal structure as used in Example 13 to prepare a preparation solution. The composition of the adjustment made solution, A 1 2 0 3: CH 3 C00H: H 2 0 , respectively 36.7%: 5.4%: A 57.0% Si (but 0.86% is other impurities 0.12%, molar ratio and the k value, CH 3 C00H / a 1 2 0 3 is 0.25, CH 3 C00H / H 2 0 is 0.028, k is 0.007, the atomic ratio of Si / Al was 0.02 .
その後調製液を、 実施例一 3 と同様の方法で 135で、 28時間、 無攪 3i 拌下で水熱処理を行い、 実施例一 3 と同様にして、 シリカ含有アル ミナ成型物を得た。 Thereafter, the prepared solution was stirred at 135 for 28 hours without stirring in the same manner as in Example 13. 3i A hydrothermal treatment was performed with stirring, and a silica-containing alumina molded product was obtained in the same manner as in Example 13.
得られたアルミナ成型体の比表面積は 226m2ノ gであり、 細孔容 積は 0.98mlZ gで、 それぞれの値が増加した。 The specific surface area of the obtained alumina molded body was 226 m 2 ng, and the pore volume was 0.98 mlZ g, and the respective values increased.
実施例一 5 9 Example 1 5 9
イオン交換水 95.5mlに、 酢酸 3.3gとニューテックス社製ジルコゾ —ル ZA- 30 [Ζ Γ · 0 · (CH3C00)し 48. 1%] 9.29gと酢酸セリウム [Ce (CHsCOO) 3:92.5% ] 17.64 gを溶解し、 実施例一 3の p —結晶構造の アルミナを 48. 1 g添加して調製液を作製した。 調製液の組成は、 A1 203:CH3C00H:H20 がそれぞれ 25.9% : 3.08% : 59· 9%で、 Zr02が 1.62 %、 その他 Na20等の不純分と酢酸セリウムが 9.47%で、 モル比率 は、 CH3C00H/A 1203が 0.20、 CH3C00H/H20が 0.015、 k値が 0.003、 Zr/A 1の原子比が 0.026であった。 なお、 反応に大きく関与しないイオン ポテンシャル 4.5より小さい酢酸セリウムの酢酸根は三成分のモル比 率と k値の計算から省いた。 In 95.5 ml of ion-exchanged water, 3.3 g of acetic acid and zircosol ZA-30 manufactured by Nutex Corporation [Ζ Γ · 0 · (CH 3 C00) 48.1%] 9.29 g and cerium acetate [Ce (CHsCOO) 3: 92.5%] 17.64 g was dissolved, and 48.1 g of alumina having a p-crystal structure of Example 13 was added to prepare a preparation solution. The composition of the preparation liquid, A1 2 0 3: CH 3 C00H: H 2 0 25.9%, respectively: 3.08%: in 59 · 9% Zr0 2 1.62% and impurities and cerium acetate, such as other Na 2 0 in 9.47%, molar ratio, CH 3 C00H / a 1 2 0 3 is 0.20, CH 3 C00H / H 2 0 is 0.015, k value of 0.003, the atomic ratio of Zr / a 1 was 0.026. The acetic acid group of cerium acetate having an ionic potential of less than 4.5, which is not significantly involved in the reaction, was omitted from the calculation of the molar ratio of the three components and the k value.
得られた調製液を、 実施例一 4と同様の操作方法で 125でで 56時間 で水熱処理を行い、 得られた酸性の水性ゾルゲルを乾燥した後、 57 O :で 3時間予備焼成し、 含有する微量の N a成分を水洗後さらに 1 100でで 3時間焼成した。 その結果、 得られたアルミナ組成物は比表 面積が 53m2 gであり、 X—線回折の結果、 アルミナの結晶形は 0 —アルミナやひ—アルミナを含まず、 δ—アルミナであり、 しかも 耐熱性があることが実証された。 The obtained preparation liquid was subjected to hydrothermal treatment at 125 in 56 hours in the same manner as in Example 14, and after drying the obtained acidic aqueous sol-gel, it was pre-baked in 57 O: for 3 hours. After washing a small amount of the contained Na component, it was further baked at 1100 for 3 hours. As a result, the obtained alumina composition had a specific surface area of 53 m 2 g, and as a result of X-ray diffraction, the crystal form of alumina was 0-alumina and non-alumina-free, δ-alumina, and It has been demonstrated that it has heat resistance.
実施例一 6 0 Example 1 60
実施例一 3で記載したものと同じ Ρ —結晶構造を有するアルミナ 365 gを、 0.25%硝酸水溶液 1380 gで含有する微量の N a成分を洗浄 し、 この洗浄ケーキ 630 gを、 硝酸アルミニウム 9水和物 70gと蓚酸 2水和物 7 gとを 300mlイオン交換水に溶かした混合液に添加し、 さ らに酸化モリブデン 73.4gを加えて調製液を作製した。 その組成は A 1203 換算濃度が 32.4%、 蓚酸/アルミナの重量比が 0.014、 Mo/Al の原子比が 0.074であった。 これを耐圧容器へ入れ、 135 で 28時間 水熱処理を行い、 酸性の水性ゾルゲルを得た。 これにアンモニア水 を添加して中和したのち、 135で、 3時間水熱処理後、 混練、 押出成 型、 乾燥後 450°Cの温度で焼成し、 Mo含有アルミナ成型物を得た。 次 いでニッケルのアンモニゥム錯体水溶液を、 前記の Mo含有アルミナ 成型物へ含浸し、 乾燥後 550での温度で焼成し、 比表面積が 319m2 g、 細孔容積が 0.51mlZ gの触媒を得た。 Same as described in Example 13 3 — Washing trace Na component containing 365 g of alumina having a crystal structure with 1380 g of 0.25% nitric acid aqueous solution 630 g of this washed cake was added to a mixture of 70 g of aluminum nitrate nonahydrate and 7 g of oxalic acid dihydrate dissolved in 300 ml of ion-exchanged water, and 73.4 g of molybdenum oxide was further added. A liquid was prepared. Its composition A 1 2 0 3 in terms of concentration of 32.4%, the weight ratio of oxalic acid / alumina 0.014, the atomic ratio of Mo / Al was 0.074. This was placed in a pressure vessel and subjected to hydrothermal treatment at 135 for 28 hours to obtain an acidic aqueous sol-gel. After ammonia water was added to neutralize the mixture, it was hydrothermally treated at 135 for 3 hours, kneaded, extruded, dried, and fired at a temperature of 450 ° C to obtain a Mo-containing alumina molded product. Next, an aqueous solution of nickel ammonium complex was impregnated into the Mo-containing alumina molded product, dried and calcined at a temperature of 550 to obtain a catalyst having a specific surface area of 319 m 2 g and a pore volume of 0.51 mlZ g.
この触媒を破砕し、 硫化水素を用い 400 の温度で硫化した後、 1 容積部をバッチ式反応管へ充填した。  This catalyst was crushed and sulfurized at a temperature of 400 with hydrogen sulfide, and then 1 part by volume was charged into a batch type reaction tube.
ジベンゾチォフェンを含有する硫黄換算で 0.05重量%含む軽油質 留分 20容量部と、 水素を 2400容量部導入し、 300で、 約 SOkgZcm2で 1時間攪拌して水素添加反応を行った。 Hydrogenation reaction was carried out by introducing 20 parts by volume of a light oil distillate containing 0.05% by weight of sulfur containing dibenzothiophene and 2400 parts by volume of hydrogen and stirring at 300 and about SOkgZcm 2 for 1 hour.
反応後の生成物を分析した結果、 含有硫黄の 75%の脱硫活性を示 した。 また、 多環芳香族環の水素添加活性も認められた。  As a result of analyzing the product after the reaction, the product showed a desulfurization activity of 75% of the contained sulfur. The hydrogenation activity of the polycyclic aromatic ring was also observed.
実施例一 6 1 Example 1 6 1
イオン交換水 448 mlに硝酸アルミニウム 9水和物 70.6 gと硝酸二 ッケル 6水和物を 56.7gと蓚酸 2水和物 7 gとを溶解し、 さらにモ リブデン酸 57.3gと、 実施例一 3と同じ p—結晶構造を有するアル ミナ 374 gを添加した。 その組成は A1203 換算濃度が 35.5%、 丽 03 濃度は硝酸ニッケルの硝酸根を除外し、 硝酸アルミニウムの硝酸根 から換算した成分だけを計算して 3.5%、 全 H20 が 51.9%、 Ni (NOs) 2 が 3.5%、 不純分が 0.1%、 モル比率は、 HN03/Al2( が 0.160、 蓚酸 /H20が 0.0196、 k値が 0.031、 蓚酸/アルミナの重量比が 0.014、 Mo/ A1の原子比が 0.050であつた。 In 448 ml of ion-exchanged water, 70.6 g of aluminum nitrate nonahydrate, 56.7 g of nickel nitrate hexahydrate and 7 g of oxalic acid dihydrate were dissolved, and 57.3 g of molybdic acid was added. 374 g of alumina having the same p-crystal structure as in Example 1 were added. Its composition A1 2 0 3 concentration calculated 35.5%丽0 3 concentration excludes nitrate nickel nitrate, only the calculation to 3.5% component converted from the nitrate of aluminum nitrate, all H 2 0 is 51.9 %, Ni (NOs) 2 is 3.5%, impurities 0.1% molar ratio, HN0 3 / Al 2 (but 0.160, oxalic acid / H 2 0 is 0.0196, k value is 0.031, the weight ratio of oxalic acid / alumina 0.014, the Mo / A1 The atomic ratio was 0.050.
水熱処理から成型、 焼成までは実施例一 4記載の操作方法条件に 従って行い、 さらに含有する微量の Naを洗浄した後 140 で乾燥し、 比表面積が 261m2Z g、 細孔容積が 0.62ml/ gを有する水素化処理 用の触媒成型体を得た。 The steps from hydrothermal treatment to molding and firing are performed in accordance with the operating method conditions described in Example 14.Furthermore, a small amount of contained Na is washed and dried at 140, the specific surface area is 261 m 2 Z g, and the pore volume is 0.62 ml. / g was obtained.
得られた成型体は N i を不活性化するニッケル · アルミネート化 合物が生成した時に現れる色調は認められず、 またその化合物の生 成の兆候を調べる方法の 750 および 800°Cの高温焼成に於けるニッ ケル · アルミネート結晶の成長加速試験を行い、 X—線回折の結果 その結晶の生成は認められなかった。  The resulting molded body did not show the color tone that appeared when the nickel-aluminate compound that inactivates Ni was formed, and the high temperature of 750 and 800 ° C was used to examine the signs of the formation of the compound. An accelerated nickel aluminate crystal growth test during firing was performed. X-ray diffraction showed no formation of the crystal.

Claims

請求の範囲 The scope of the claims
1 . 水酸化アルミニウムを少なく とも 1種の一塩基酸またはその塩 の存在下で 7 0〜 4 0 0 ^の範囲の温度で加熱処理して得られる.酸 含有水酸化アルミニウムおよび Zまたはアルミナに、 水および必要 に応じて一塩基酸を加えて下記式で表される k値を下記範囲に調整 した調製液を、 7 0〜 2 5 0 の範囲の温度で水熱処理することに よってアルミナゾルおよび Zまたはアルミナゲルを得、 該アルミナ ゾルおよび またはアルミナゲルを乾燥、 焼成することを特徴とす るアルミナ組成物の製造方法。 1. Obtained by heat-treating aluminum hydroxide in the presence of at least one monobasic acid or a salt thereof at a temperature in the range of 70 to 400 ^. , Water and, if necessary, a monobasic acid to adjust the k value represented by the following formula to the following range, and then subject the alumina sol and the alumina sol to hydrothermal treatment at a temperature in the range of 70 to 250. A method for producing an alumina composition, comprising obtaining Z or alumina gel, drying and calcining the alumina sol and / or alumina gel.
0 . 0 0 0 1≤ k≤ 0 . 2 0  0. 0 0 0 1≤ k≤ 0 .2 0
ただし、 k = ( b / a ) X ( b / c )  Where k = (b / a) X (b / c)
(式中、 aは調製液中のアルミナを A 1 2 0 3に換算したモル数、 b は調製液中の酸またはその塩の解離で生じた酸のモル数、 c は調製 液中の水のモル数) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 0 3, b is the number of moles of acid generated by the dissociation of an acid or a salt thereof in the preparation liquid, c is water in the preparation Number of moles)
2 . 前記調製液に、 細孔構造制御剤を添加することを特徴とする請 求項 1 に記載のアルミナ組成物の製造方法。 2. The method for producing an alumina composition according to claim 1, wherein a pore structure controlling agent is added to the preparation liquid.
3 . p - 結晶構造を有するアルミナに、 水および少なく とも 1種の 一塩基酸またはその塩および細孔構造制御剤を混合して下記式で表 される k値を下記範囲に調整した調製液を、 7 0〜 2 5 0での範囲 の温度で水熱処理することによってアルミナゾルおよび またはァ ルミナゲルを得、 該アルミナゾルおよび またはアルミナゲルを乾 燥、 焼成することを特徴とするアルミナ組成物の製造方法。 3b 3. A liquid prepared by mixing water, at least one monobasic acid or a salt thereof, and a pore structure controlling agent with alumina having a p-crystal structure, and adjusting the k value represented by the following formula to the following range. Is subjected to hydrothermal treatment at a temperature in the range of 70 to 250 to obtain an alumina sol and / or alumina gel, and drying and firing the alumina sol and / or alumina gel. . 3b
0 . 0 0 0 1≤ k≤ 0 . 2 0 0. 0 0 0 1≤ k≤ 0 .2 0
ただし、 k = ( b / a ) X ( b / c )  Where k = (b / a) X (b / c)
(式中、 aは調製液中のアルミナを A 1 2 0 に換算したモル数、 b は調製液中の 一塩基酸またはその塩の解離で生じた酸のモル数、 c は調製液中の水のモル数) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 0, b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid, c is in the preparation Number of moles of water)
4 . ιθ - 結晶構造を有するアルミナに、 水および少なく とも 1種の 無機の一塩基酸またはその塩を混合して下記式で表される k値を下 記範囲に調整した調製液を、 7 0〜 2 5 0 :の範囲の温度で水熱処 理することによってアルミナゾルおよび Zまたはアルミナゲルを得 該アルミナゾルおよび Zまたはアルミナゲルを乾燥、 焼成すること を特徴とするアルミナ組成物の製造方法。 4. A prepared solution prepared by mixing water and at least one inorganic monobasic acid or a salt thereof with alumina having an ιθ-crystal structure and adjusting the k value represented by the following formula to the following range, A method for producing an alumina composition, comprising obtaining an alumina sol and Z or alumina gel by hydrothermal treatment at a temperature in the range of 0 to 250: drying and firing the alumina sol and Z or alumina gel.
0 . 0 1≤ k≤ 0 . 2 0  0. 0 1≤ k≤ 0 .2 0
ただし、 k = ( b / a ) X ( b / c )  Where k = (b / a) X (b / c)
(式中、 aは調製液中のアルミナを A 1 2〇 に換算したモル数、 b は調製液中の 一塩基酸またはその塩の解離で生じた酸のモル数、 c は調製液中の水のモル数) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 〇, b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid, c is in the preparation Number of moles of water)
5 . 前記 p - 結晶構造を有するアルミナが、 予め一塩基酸で処理さ れていることを特徴とする請求項 3 または 4に記載のアルミナ組成 物の製造方法。 5. The method for producing an alumina composition according to claim 3, wherein the alumina having a p-crystal structure is previously treated with a monobasic acid.
6 . 予め一塩基酸で処理された 結晶構造を有するアルミナに、 水および必要に応じて一塩基酸を加えて下記式で表される k値を下 記範囲に調整した調製液を、 7 0〜 2 5 0 の範囲の温度で水熱処 理することによってアルミナゾルおよび/またはアルミナゲルを得 該アルミナゾルおよびノまたはアルミナゲルを乾燥、 焼成すること を特徴とするアルミナ組成物の製造方法。 6. A prepared solution was prepared by adding water and, if necessary, a monobasic acid to alumina having a crystal structure previously treated with a monobasic acid to adjust the k value represented by the following formula to the following range. Hydrothermal treatment at a temperature in the range of An alumina sol and / or an alumina gel is obtained by treating the alumina sol and / or the alumina gel.
0. 0 0 0 1 ≤ k < 0. 0 1  0. 0 0 0 1 ≤ k <0.0. 1
ただし、 k = ( b / a ) X ( b / c )  Where k = (b / a) X (b / c)
(式中、 aは調製液中のアルミナを A 1 20 に換算したモル数、 b は調製液中の一塩基酸またはその塩の解離で生じた酸のモル数、 c は調製液中の水のモル数) (Wherein, a is the number of moles in terms of alumina in preparation to A 1 2 0, b is the number of moles of acid generated by the dissociation of the monobasic acid or a salt thereof in the preparation liquid, c is in the preparation Number of moles of water)
7. 前記細孔構造制御剤が、 (i)含酸素有機化合物、 および 7. The pore structure controlling agent comprises: (i) an oxygen-containing organic compound, and
(ii)下記式で表されるイオンポテンシャルが 4. 5以上の元素を含 む無機の多塩基酸、 またはその多塩基酸を熱水中で解離あるいは分 解して生成する化合物の少なく とも 1種である  (ii) At least one of an inorganic polybasic acid containing an element having an ion potential of 4.5 or more represented by the following formula or a compound formed by dissociating or decomposing the polybasic acid in hot water. Is a seed
ことを特徴とする請求項 2 または 3 に記載のアルミナ組成物の製 造方法。  4. The method for producing an alumina composition according to claim 2, wherein:
元素の原子価  Element valence
イオンポテンシャル =  Ion potential =
元素のイオン半径  Element ionic radius
8. 前記調製液に、 ベーマイ トより溶解度の高い水酸化アルミニゥ ムおよび Zまたはアルミナを、 調製液中のアルミナに対して 9 5重 量%を越えない範囲で混合することを特徴とする請求項 1〜 6のい ずれかに記載のアルミナ組成物の製造方法。 8. An aluminum hydroxide having higher solubility than boehmite and Z or alumina are mixed with the preparation solution in a range not exceeding 95% by weight based on alumina in the preparation solution. 7. The method for producing an alumina composition according to any one of 1 to 6.
9. 前記アルミナゾルおよびノまたはアルミナゲルに、 アルカリを 添加したのち、 7 0〜 2 5 0 °Cの範囲の温度で水熱処理することを 特徴とする請求項 1 〜 8のいずれかに記載のアルミナ組成物の製造 方法。 9. After adding an alkali to the alumina sol and / or the alumina gel, perform a hydrothermal treatment at a temperature in the range of 70 to 250 ° C. A method for producing an alumina composition according to any one of claims 1 to 8, characterized in that:
1 0 . 請求項 1 〜 9のいずれかに記載の方法で製造されたものであ ることを特徴とするアルミナ組成物。 10. An alumina composition produced by the method according to any one of claims 1 to 9.
1 1 . 請求項 1 0記載のアルミナ組成物を担体とし、 これに触媒成 分が担持されてなることを特徴とする触媒。 11. A catalyst comprising the alumina composition according to claim 10 as a carrier, and a catalyst component carried on the carrier.
PCT/JP2000/000620 2000-02-04 2000-02-04 Alumina composition and method for preparing the same WO2001056926A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/000620 WO2001056926A1 (en) 2000-02-04 2000-02-04 Alumina composition and method for preparing the same
JP2001556805A JP4105870B2 (en) 2000-02-04 2001-02-05 Porous alumina, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000620 WO2001056926A1 (en) 2000-02-04 2000-02-04 Alumina composition and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2001056926A1 true WO2001056926A1 (en) 2001-08-09

Family

ID=11735659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000620 WO2001056926A1 (en) 2000-02-04 2000-02-04 Alumina composition and method for preparing the same

Country Status (2)

Country Link
JP (1) JP4105870B2 (en)
WO (1) WO2001056926A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745105A (en) * 2020-12-24 2021-05-04 深圳技术大学 High-sintering-activity alumina ceramic powder and preparation method thereof
EP4050130A4 (en) * 2019-10-25 2022-12-14 China Petroleum & Chemical Corporation Alumina grain, preparation method therefor and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344928A (en) * 1979-02-26 1982-08-17 Rhone-Poulenc Industries Process for preparing alumina particulates, at least a fraction of which being ultrafine boehmite
JPH02293371A (en) * 1989-04-17 1990-12-04 Hermann C Starck Berlin Gmbh & Co Kg Sintered object of alpha-al203
EP0885844A1 (en) * 1996-03-05 1998-12-23 Goro Sato Alumina sol, process for preparing the same, process for preparing alumina molding using the same, and alumina-based catalyst prepared thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344928A (en) * 1979-02-26 1982-08-17 Rhone-Poulenc Industries Process for preparing alumina particulates, at least a fraction of which being ultrafine boehmite
JPH02293371A (en) * 1989-04-17 1990-12-04 Hermann C Starck Berlin Gmbh & Co Kg Sintered object of alpha-al203
EP0885844A1 (en) * 1996-03-05 1998-12-23 Goro Sato Alumina sol, process for preparing the same, process for preparing alumina molding using the same, and alumina-based catalyst prepared thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANUSZ T. TRAWCZYNSKI: "Effect of Aluminium Hydroxide Precipitation Conditions on the Alumina Surface Acidity", IND. ENG. CHEM. RES., vol. 35, no. 1, 1996, pages 241 - 244, XP002928256 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050130A4 (en) * 2019-10-25 2022-12-14 China Petroleum & Chemical Corporation Alumina grain, preparation method therefor and use thereof
CN112745105A (en) * 2020-12-24 2021-05-04 深圳技术大学 High-sintering-activity alumina ceramic powder and preparation method thereof
CN112745105B (en) * 2020-12-24 2022-06-14 深圳技术大学 High-sintering-activity alumina ceramic powder and preparation method thereof

Also Published As

Publication number Publication date
JP4105870B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP3304360B2 (en) Alumina sol, method for producing the same, method for producing alumina molded body using the same, and alumina-based catalyst obtained by the method
US6884406B2 (en) Process for preparing an alumina composition
Kim et al. Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite
US6930217B2 (en) Catalyst containing microporous zeolite in mesoporous support and method for making same
US7208446B2 (en) Quasi-crystalline boehmites containing additives
JP5404056B2 (en) Oxide mixture
JP6134334B2 (en) Silica-containing alumina support, catalyst produced therefrom and method of use thereof
Yang et al. Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin
JP5117657B2 (en) Process for producing pseudocrystalline boehmite from inexpensive precursors
US6506358B1 (en) Process for the preparation of quasi-crystalline boehmites
MXPA02006039A (en) Alumina trihydrate derived high pore volume, high surface area aluminum oxide composites and methods of their preparation and use.
EP1204596A2 (en) Quasi-crystalline boehmites containing additives
van Garderen et al. Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application
BR0016511B1 (en) hydrothermally stable swellable aluminum oxide / clay composites with high pore volume and methods for their preparation and use.
EP0950638B1 (en) Pseudoboehmite powder for catalyst carrier and process for preparing the same
JP4264852B2 (en) Alumina extrudate, process for its preparation and its use as catalyst or catalyst support
EP2392548B1 (en) Process for preparing an amorphous silica-alumina composition and relative amorphous silica-alumina composition
Gandıa et al. Non-aggressive pillaring of clays with zirconium acetate. Comparison with alumina pillared clays
WO2001056926A1 (en) Alumina composition and method for preparing the same
do Carmo et al. Synthesis of highly porous alumina-based oxides with tailored catalytic properties in the esterification of glycerol
JP4119144B2 (en) Method for producing porous inorganic oxide
JPWO2010013428A1 (en) Method for producing polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol, and polyinorganic monobasic aluminum hydrate and / or aqueous alumina sol obtained by the production method
RU2584951C1 (en) Method of producing catalyst support for conversion of hydrocarbon raw material based on mesoporous material
US20030180214A1 (en) Process for the preparation of quasi-crystalline boehmites
RU2026111C1 (en) Method for manufacture of catalyst for oil fraction hydrorefining

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase