WO2001055256A1 - Resin composition and layered product - Google Patents

Resin composition and layered product Download PDF

Info

Publication number
WO2001055256A1
WO2001055256A1 PCT/JP2001/000400 JP0100400W WO0155256A1 WO 2001055256 A1 WO2001055256 A1 WO 2001055256A1 JP 0100400 W JP0100400 W JP 0100400W WO 0155256 A1 WO0155256 A1 WO 0155256A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
layer
resin composition
parts
laminate
Prior art date
Application number
PCT/JP2001/000400
Other languages
French (fr)
Japanese (ja)
Inventor
Kohsuke Ohtani
Hikaru Shimizu
Kohichi Iketani
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2001055256A1 publication Critical patent/WO2001055256A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters

Definitions

  • the present invention relates to a resin composition and a laminate. More specifically, the present invention has an excellent balance between the melt fluidity required at the time of molding and the adhesiveness with the polyurethane foam, and is capable of obtaining a laminate which is firmly adhered to polyurethane without using a primer (adhesive).
  • the present invention relates to a resin composition which can be obtained and a laminate obtained by using the resin composition. Background art
  • resin laminates are frequently used for interior parts of automobiles.
  • a laminate in which a polyurethane foam layer for exhibiting cushioning property is laminated with a skin layer for improving appearance is used as the laminate.
  • the skin layer polyvinyl chloride resin has been widely used.
  • the tendency of vinyl chloride resin to be avoided has increased, and a material that can replace vinyl chloride resin is desired.
  • Researches using thermoplastic elastomers as such materials are underway.
  • the adhesion between the thermoplastic elastomer and the polyurethane was insufficient, and it was necessary to use a primer (adhesive) to obtain a strong laminate.
  • the technology using primers has the problems of increasing the cost for primers, complicating the steps involved in the primer coating process, and deteriorating the working environment due to the organic solvent contained in the primers. I have.
  • the problem to be solved by the present invention is to achieve an excellent balance between the melt fluidity required at the time of molding and the adhesiveness between the polyurethane foam and the polyurethane and the polyurethane without using a primer (adhesive).
  • TECHNICAL FIELD The present invention relates to a resin composition capable of obtaining a laminate bonded to a resin and a laminate obtained by using the resin composition. Disclosure of the invention
  • the present invention relates to a resin composition containing the following component (B) in an amount of 3 to 100 parts by weight based on 100 parts by weight of the following component (A).
  • the present invention provides a laminate (I) comprising the above resin composition layer (1) and a polyurethane layer (2) laminated, a resin composition layer (1) and a thermoplastic elastomer layer ( 3) a laminate (11), a layer of a thermoplastic elastomer (3), a layer of a resin composition (1), and a layer of a polyurethane (2) sequentially laminated (III) And a layered product (IV) obtained by sequentially laminating a layer (3) of a thermoplastic elastomer, a layer (1) of a resin composition, a layer (2) of a polyurethane, and a layer (4) of a thermoplastic resin core material. It is.
  • the epoxy group-containing monomer- ⁇ -olefin copolymer as the component ( ⁇ ) is a copolymer of a monomer having an epoxy ring and an ⁇ -olefin, and is a copolymer having an epoxy ring.
  • the monomer include glycidyl acrylate, glycidyl methyl acrylate, vinyl dalicidyl ether, aryl glycidyl ether, methyl glycidyl glycidyl ether, and daricidyl itaconate.
  • ⁇ -olefins examples include ethylene, propylene, 1-butene and the like.
  • the copolymer of the monomer having an epoxy ring and the one-strength olefin is a copolymer in which, in addition to the monomer having an epoxy ring and 0; -olefin, other monomers are copolymerized. May be included.
  • Monomers having an epoxy ring and monomers other than ⁇ -olefin include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone; styrene; High methyl styrene, vinyl Vinyl aromatic compounds such as toluene, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, n-butyl acrylate, methoxymethyl acrylate, methoxyethyl acrylate Acrylates and the like.
  • carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate
  • vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone
  • styrene High methyl styrene
  • vinyl Vinyl aromatic compounds such as toluene, methyl acrylate, ethyl acrylate, propyl acrylate,
  • the composition of the monomeric olefin copolymer having an epoxy ring is not particularly limited, but preferably, a unit derived from a monomer having an epoxy ring is 1 to 50% by weight. And 99-50% by weight of units derived from ⁇ - and refined olefins, and if necessary, units derived from monomers having an epoxy ring and monomers other than mono-refined olefins are 49 9 % By weight (total of each unit is 100% by weight). If the proportion of the monomer having an epoxy ring is less than 1% by weight, the adhesiveness between the obtained composition and the polyurethane may be insufficient.
  • the thermoplastic elastomer and the polyurethane may be insufficiently bonded. In some cases, the laminate may not have sufficient adhesiveness. If the ⁇ -olefin exceeds 99% by weight, the adhesiveness between the obtained composition and the polyurethane may be insufficient. If the amount is less than 50% by weight, the adhesiveness of the laminate with the thermoplastic elastomer may be insufficient. May not be enough. When the amount of the monomer having an epoxy ring and the monomer other than Ichijin Refin exceeds 49% by weight, the adhesiveness between the obtained composition and polyurethane may be insufficient.
  • Component ( ⁇ ) is a terpene-phenol copolymer.
  • terpene examples include hemiterpenes such as isoprene, monoterpenes such as ⁇ -pinene, 3-binene and limonene, sesquiterpenes such as longifolene, diterpenes such as rosin, carotene, isoprene rubber, and natural rubber. Polyterpenes and the like can be given.
  • phenols examples include monovalent phenols such as hydroxybenzene, naphthol, anthrol, cresol and thymol, and divalent phenols such as catechol, resorcin, hydroquinone, orcin, urushiol, bisphenol ⁇ , binaphthol, and anthrahydroquinone. And trivalent phenols such as pyrogallol, fluorodalsin, and hydroxyhydroquinone.
  • monovalent phenols such as hydroxybenzene, naphthol, anthrol, cresol and thymol
  • divalent phenols such as catechol, resorcin, hydroquinone, orcin, urushiol, bisphenol ⁇ , binaphthol, and anthrahydroquinone.
  • trivalent phenols such as pyrogallol, fluorodalsin, and hydroxyhydroquinone.
  • the ⁇ ⁇ value due to the phenol content (the amount required to neutralize the COOH reacted with ⁇ by acetylating 1 g of the terpene-phenol copolymer) (mg number) is preferably 50 to 500. If the OH value is less than 50, the adhesiveness with the polyurethane may be insufficient, and if it exceeds 50,000, the adhesiveness of the laminate with the thermoplastic elastomer may be insufficient.
  • the component (B) is used in an amount of 3 to 100 parts by weight, preferably 3 to 80 parts by weight, more preferably 5 to 70 parts by weight, based on 100 parts by weight of the component (A). Used by weight. If the amount of the component (B) is less than 3 parts by weight, the adhesion to the polyurethane will be insufficient. On the other hand, if the amount of the component (B) exceeds 100 parts by weight, the mechanical strength of the obtained composition will decrease.
  • Component (C) a hydroxyl group-containing copolymer other than (A) and (B)
  • Component (D) olefin polymer other than (A) and (B)
  • the use of the component (C) is preferable because the adhesiveness of the laminate with polyurethane can be further improved.
  • the component (C) include polyvinyl alcohol and ⁇ -olefin-vinyl alcohol copolymer.
  • Examples of the one-year-old resin include ethylene, propylene, and 1-butene.
  • the amount of the component (C) to be used is preferably 3 to 80 parts by weight, more preferably 5 to 70 parts by weight, per 100 parts by weight of the component (A). If the amount of (C) is less than 3 parts by weight, the adhesion to polyurethane may be insufficiently improved. On the other hand, if the amount of component (C) exceeds 80 parts by weight, the flexibility of the resulting composition may be insufficient. May decrease.
  • the use of the component (D) is preferable because the adhesiveness of the laminate with the thermoplastic elastomer can be further improved.
  • an olefin polymer other than the component (II) can be exemplified.
  • the olefin polymer include polypropylene, low-density polyethylene, linear low-density polyethylene, a copolymer of ethylene and ⁇ -olefin (preferably propylene, 1-butene, etc.) other than ethylene, ethylene and ⁇ -olefin.
  • Copolymers composed of monomers copolymerizable with ethylene other than refin and the like can be exemplified.
  • ethylene other than Hiichi Sai Refin Polymerizable monomers include vinyl carboxylate esters such as vinyl acetate and vinyl propionate; vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone; vinyl aromatic compounds such as styrene, ⁇ -methyl styrene, and vinyl toluene; Examples include acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, ⁇ -butyl acrylate, ⁇ -octyl acrylate, methoxymethyl acrylate, and methoxyethyl acrylate. it can.
  • the amount of component (D) to be used is preferably 5 to 500 parts by weight, more preferably 10 to 300 parts by weight, per 100 parts by weight of component (A).
  • the amount of the component (D) is less than 5 parts by weight, the adhesive strength between the layer of the obtained composition and the thermoplastic elastomer layer is little.
  • the amount of the (D) exceeds 500 parts by weight, polyurethane and May have insufficient adhesiveness.
  • the resin composition of the present invention can be obtained, for example, by melt-kneading the components ( ⁇ ) and ( ⁇ ) and, if necessary, the components (C) and ⁇ or (D).
  • the laminate (I) of the present invention is a laminate obtained by laminating a layer (1) of the resin composition of the present invention and a layer (2) of polyurethane.
  • the resin composition layer (1) is formed by a known method such as a powder molding method, an extrusion molding method, a compression molding method, a calendar molding method, an injection molding method, and a vacuum molding method.
  • a layer of the resin composition (1) is set in one of a pair of male and female molds for forming a polyurethane layer, and a polyurethane raw material is injected, molded, foamed and cured to form a polyurethane foam layer.
  • the laminate ( ⁇ ) of the present invention is a laminate obtained by laminating a layer (1) of the resin composition of the present invention and a layer (3) of a thermoplastic elastomer.
  • thermoplastic elastomer examples include thermoplastic elastomers such as an olefin type, a styrene type, an ester type, and a urethane type. Among them, preferred are olefin-based and styrene-based thermoplastic elastomers which have excellent physical property balance including durability properties such as heat resistance and light resistance.
  • Olefin-based thermoplastic elastomers are thermoplastic elastomers consisting of an olefin-based resin and an olefin-based rubber, and are classified into blend types, cross-linked types in which the rubber part is cross-linked by dynamic cross-linking, and polymerization types. Is done.
  • Styrene-based thermoplastic elastomers are block copolymers such as styrene-butadiene-styrene and styrene-isoprene-styrene, or hydrogenated products thereof, and furthermore, these block copolymers or hydrogenated products thereof and polyolefin resins. What was blended is mentioned.
  • the laminate ( ⁇ ) it may be formed by a known method such as a powder molding method, an extrusion molding method, a compression molding method, a calendar molding method, an injection molding method, a vacuum molding method, or the like.
  • the laminate may be formed by, for example, a powder slush molding method, a fluid immersion method, an electrostatic coating method, a powder spraying method, a powder rotational molding method, or the like.
  • a resin composition powder having an average particle diameter of 30 to 100 is used as the resin composition.
  • the average particle size is preferably between 50 and 700 im. If the average particle size is too small, the blocking resistance of the resin composition powder will be reduced. On the other hand, if the average particle size is too large, the meltability of the resin composition will be reduced during powder molding.
  • pellets of the resin composition are obtained by melt-kneading using an extruder.
  • the obtained resin composition pellets are cooled (preferably, cooled to the glass transition temperature of the resin composition or lower), and a resin composition powder can be obtained using an impact mill.
  • fine powder having an average particle diameter of 10 m or less powdered pigment, alumina, silica, luminous force, calcium carbonate and the like can be used.
  • the powder slush molding method is performed by a method comprising the following first to ninth steps.
  • First step Step of applying fluorine and Z or silicone release agent on the molding surface of the mold
  • Second step a step of supplying the thermoplastic elastomer composition powder onto the molding surface of the mold heated above the melting temperature of the thermoplastic elastomer composition powder.
  • Third step a step of heating the powder of the thermoplastic elastomer composition on the molding surface of the second step for a predetermined time, and fusing powders whose surfaces have been melted at least to each other.
  • Fourth step a predetermined time in the third step Recovering the unfused thermoplastic elastomer composition powder after the passage of time
  • Fifth step a step of supplying the powder of the resin composition of the present invention onto the molding surface of the mold to which the powder of the thermoplastic elastomer composition has been fused.
  • Sixth step a step of heating the powder of the resin composition of the present invention on the molding surface of the fifth step for a predetermined time, and fusing powders having at least their surfaces fused together.
  • Seventh step a step of collecting the unfused resin composition powder of the present invention after a predetermined time has elapsed in the sixth step
  • Eighth step As needed, a step of further heating the mold on which the powder of the molten thermoplastic elastomer composition and the powder of the resin composition of the present invention are placed.
  • thermoplastic elastomer composition used in the present powder slush molding those proposed in Japanese Patent Application Laid-Open No. 5-50050, Japanese Patent Application Laid-Open No. 10-30036 and the like are preferably used.
  • the laminate (III) of the present invention is a laminate obtained by sequentially laminating a layer (3) of a thermoplastic elastomer, a layer (1) of a resin composition of the present invention, and a layer (2) of a polyurethane.
  • “sequential lamination” does not indicate the time sequence of the lamination process, but indicates the structure of the laminated body (the same applies hereinafter).
  • the laminate ( ⁇ ) is molded by a known method such as a powder molding method, an extrusion molding method, a compression molding method, a calendar molding method, an injection molding method, and a vacuum molding method.
  • polyurethane The laminate (II) is set in one of a pair of male and female molds for forming a layer, and a polyurethane foam layer is formed by injecting, clamping, foaming, and curing a polyurethane raw material.
  • the laminate (IV) of the present invention comprises a layer (3) of a thermoplastic elastomer, a layer (1) of a resin composition of the present invention, a layer (2) of a polyurethane, and a layer (4) of a thermoplastic resin core material. It is a laminated body that is sequentially laminated.
  • a laminate ( ⁇ ) and a thermoplastic resin core material layer formed by injection molding or the like are set on each of a pair of male and female molds for molding a polyurethane layer.
  • the polyurethane foam layer may be formed by injecting, clamping, foaming, and curing the raw material.
  • the laminate of the present invention can be optimally used for automotive interior parts such as instrument panels, door trims, console boxes, and pillars.
  • Ethylene-glycidyl methacrylate mono-vinyl acetate copolymer (MFR 340 g / 10 min (JISK-72 10 (load 2.16)) containing 18% by weight of glycidyl methacrylate and 1% by weight of vinyl acetate kg, temperature 1 90 ° C))) 70 parts by weight, terpene-phenol copolymer (Yashara Chemical Co., Ltd., YP-902) 30 parts by weight, antioxidant (Chivas Specialty Chemicals Co., Ltd.) , I RGANOX 1 076) 0.1 part by weight was kneaded for 5 minutes at 190 ° C and 50 rpm using a Labo Plastomill (manufactured by Toyo Seiki Co., Ltd., Model 65C150), and then 190 ° C Heating and compression were performed for 5 minutes using a press molding machine heated to obtain a lmm-thick molded sheet.
  • the obtained molded sheet was set in a polyurethane foaming mold, and a polyurethane raw material solution (polyol mainly composed of propylene oxide of glycerin and ethylene oxide, water, triethanolamine, triethylene diamine) was used.
  • a polyurethane raw material solution polyol mainly composed of propylene oxide of glycerin and ethylene oxide, water, triethanolamine, triethylene diamine
  • the mixture is supplied to the above-mentioned polyurethane foaming mold, closed, then foamed and cured.
  • a laminate was obtained. After standing overnight, the laminate was cut to a width of 50 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured.
  • Glycidyl methacrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidyl methacrylate vinyl acetate copolymer (MFR 340 g Z10 min (JISK—7 210 (load 2.16 kg, temperature 1 90 ° C))) 70 parts by weight, terpene-phenol copolymer (Yashara Chemical Co., Ltd., YP-902) 10 parts by weight, polyvinyl alcohol (Kuraray Co., Ltd., CP — 1 210) 20 parts by weight of an antioxidant (IRGANOX 1 076) manufactured by Ciba Specialty Chemicals Co., Ltd.
  • MFR 340 g Z10 min JISK—7 210 (load 2.16 kg, temperature 1 90 ° C)
  • Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidyl methacrylate mono-vinyl acetate copolymer (MFR 340 g Z10 min (JISK—7 210 (load 2.1 6 kg, temperature 190 ° C)))) 70 parts by weight, terpene-phenol copolymer (YP-902, manufactured by Yashara Chemical Co., Ltd.) 10 parts by weight, ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd.) 20 parts by weight of EP-E105B), an antioxidant (IRGANOX 1 076) manufactured by Ciba Specialty Chemicals Co., Ltd.
  • MFR 340 g Z10 min JISK—7 210 (load 2.1 6 kg, temperature 190 ° C)
  • terpene-phenol copolymer YP-902, manufactured by Yashara Chemical Co., Ltd.
  • Example 4 0.1 part by weight of Labo Plastic Mill (Toyo Seiki Co., Ltd.) After kneading for 5 minutes at 190 ° C and 50 rpm using Model 65 C 150), heat and compress for 5 minutes using a press molding machine heated to 190 ° C. Was carried out to obtain a lmm-thick molded sheet.
  • a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 1 shows the results.
  • Example 4 shows the results.
  • Glycidyl methacrylate 18% by weight, vinyl acetate 1% by weight ethylene-glycidyl methacrylate-vinyl acetate copolymer (MFR 340 g Z10 min (JIS K-7210 (load 2.16 kg, load 2.16 kg, (Temperature 190 ° C))) 40 parts by weight, terpene-phenol copolymer (Yasuhara Chemical Co., Ltd., YP-902) 20 parts by weight, ethylene-vinyl acetate copolymer (Sumitomo Chemical Co., Ltd., Smitate HC-10) 40 parts by weight, antioxidant (IRGANOX 1076, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight of Labo Plastomill (Toyo Seiki Co., Ltd., Model 65C 150 ) At 190 ° C and 50 rpm for 5 minutes, and then heated and compressed for 5 minutes by a press molding machine heated to 190 to obtain a
  • Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidyl methacrylate vinyl acetate copolymer (MFR 340 g Z10 min (JIS K-7210 (load 2.16 kg, temperature 190 ° C))) 70 parts by weight, polyvinyl alcohol (Kuraray Co., Ltd., CP-1210) 30 parts by weight, antioxidant (Chivas Specialty Chemicals Co., Ltd., IRGANOX1076) 0.1 part by weight Was kneaded for 5 minutes at 190 ° C and 50 rpm using a Labo Plastomill (Model 65C150, manufactured by Toyo Seiki Co., Ltd.), and then pressed for 5 minutes by a press molding machine heated to 190 ° C. Heating and compression were performed to obtain a lmm thick molded sheet.
  • a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer
  • Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidylmethacrylate acrylate monovinyl acetate copolymer (MFR 340 g Z10 min (JISK-7210 (load 2.16 kg, temperature 190 ° C)))
  • MFR 340 g Z10 min JISK-7210 (load 2.16 kg, temperature 190 ° C)
  • Ethylene-glycidyl methacrylate mono-vinyl acetate copolymer (MFR 340 g / 10 minutes (JISK-7210 (load 2. 16 kg, temperature 190 ° C))) 80 parts by weight, terpene-phenol copolymer (YP-902), 20 parts by weight, antioxidant (Chivas specialty chemicals, manufactured by Yashara Chemical Co., Ltd.) IRG ANOX 1 0 7 6) 0.1 part by weight using a twin-screw extruder (Model: TEX-30 SS-40W-3V, manufactured by Nippon Steel Works, Ltd.) The resulting mixture was kneaded to obtain a resin composition, which was cut by a resin mill to obtain pellets.
  • the pellets were cooled to ⁇ 100 ° C. using liquid nitrogen, and then pulverized while keeping the cooling state to obtain a resin composition powder.
  • 100 parts by weight of the resin composition powder thus obtained 3 parts by weight of silica (OX-50, manufactured by Dedasa Co., Ltd.), and 3 parts by weight of alumina silica (JC-130, manufactured by Mizusawa Chemical Co., Ltd.)
  • silica OX-50, manufactured by Dedasa Co., Ltd.
  • alumina silica JC-130, manufactured by Mizusawa Chemical Co., Ltd.
  • thermoplastic elastomer composition powder [Production of thermoplastic elastomer composition powder]
  • Propylene-ethylene copolymer resin (Ethylene unit content 5% by weight, MFR 2 28 £ / 10 minutes () 1 K7 210 (Load 2.16 kg, Temperature 230 ° C))) 40 parts by weight Hydrogenated styrene-butadiene-styrene block copolymer (total styrene unit content: 15% by weight, ratio of hydrogenated butadiene units having side chains having 2 or more carbon atoms to hydrogenated butadiene units 8 0%, hydrogenation rate 98%, number average molecular weight 130,000, MFR 30g / 10min (JIS K7 210 (load 2.16 kg, temperature 230 ° C))) 45 parts by weight , Ethylene-propylene copolymer rubber (manufactured by Sumitomo Chemical Co., Ltd., SPO V0 141, propylene unit content 27% by weight, MF R lgZ l O content (JIS K7 210 (load
  • thermoplastic elastomer composition powder Pellets of a thermoplastic elastomer were obtained. The pellets using liquid nitrogen, - after cooling to 1 20 D C, and Kona ⁇ while maintaining the cooled state, to obtain a thermoplastic elastomer first composition Pas Uda scratch. 100 parts by weight of the thermoplastic elastomer composition powder thus obtained, 1 part by weight of silica (manufactured by Dedasa, OX-50) and 2 parts by weight of alumina silica (manufactured by Mizusawa Chemical Co., Ltd., JC-30) were mixed with a super mixer (Kawada Seisakusho) The mixture was mixed at room temperature at 1500 rpm for 2 minutes using a 5 L supermixer (manufactured by Sharp Corporation) to obtain a thermoplastic elastomer composition powder containing fine powder.
  • silica manufactured by Dedasa, OX-50
  • alumina silica manufactured by Mizusawa Chemical Co., Ltd., JC-30
  • the powder of the thermoplastic elastomer composition is supplied onto the molding surface of a mold (30 cm square) having a grain pattern heated to 260 ° C, left for 5 seconds, and then the excess powder is removed. Then, the resin composition powder is supplied to the mold surface to which the powder of the thermoplastic elastomer composition has adhered, and after leaving it for 10 seconds, excess powder is blown off and the mold is placed in an oven at 260 ° C. For 30 seconds. Thereafter, the mold melted into a sheet composed of the thermoplastic elastomer composition layer and the resin composition layer is cooled, and the sheet is released from the mold, whereby the resin composition layer and the thermoplastic elastomer are removed. A laminate consisting of one layer was obtained. The molded sheet thickness obtained by the powder slush molding method was about lmm.
  • the molded sheet obtained by the above powder slush molding method was set in a polyurethane foaming mold so that the resin composition layer surface was continuous with the polyurethane foam layer, and a raw material solution of polyurethane (glycerin propylene) was used.
  • Polyols mainly composed of oxides and ethylene oxide adducts, water, triethanolamine, triethylenediamine
  • the mixture is fed to the above-mentioned mold for polyurethane foaming, closed, then foamed and cured to form a layer of thermoplastic elastomer and resin composition.
  • a laminate in which a product layer and a polyurethane foam layer were sequentially laminated was obtained. After standing overnight, the laminate was cut to a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 2 shows the results.
  • Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight of ethylene monodaricidyl methacrylate-vinyl acetate copolymer (MFR 340 g Z10 min. (JISK—7210 (load 2.16 kg, temperature 190 ° C))) 50 parts by weight, terpene-phenol copolymer (Yashara Chemical Co., Ltd., YP-902) 20 parts by weight, polyvinyl alcohol (Kuraray Co., Ltd., CP — 1 2 1 0) 20 parts by weight, ethylene-propylene copolymer (manufactured by Sumitomo Chemical Co., Ltd., SPO V0 141) 10 parts by weight, antioxidant (manufactured by Ciba Specialty Chemicals) I RGANOX 1 0 7 6) 0.1 Knead the resin at 180 ° C using a twin screw extruder (Model TEX-30 SS-4 OW-3 V,
  • the composition was obtained and cut with a pelletizer to obtain pellets.
  • the pellets were cooled to 100 ° C. using liquid nitrogen, and then pulverized while keeping the cooling state to obtain a resin composition powder.
  • 100 parts by weight of the resin composition powder thus obtained, 3 parts by weight of silica (manufactured by Dedasa, OX-50), and 3 parts by weight of alumina silica (manufactured by Mizusawa Chemical Co., Ltd., JC-30) were mixed with a super mixer (Kawada Seisakusho) The mixture was mixed at room temperature and 1500 rpm for 2 minutes using a 5 L super mixer) to obtain a resin composition powder mixed with fine powder.
  • Example 5 In the same manner as in Example 5, a powder slush molded sheet obtained by sequentially laminating a layer of a thermoplastic elastomer, a layer of a resin composition, and a foamed layer of a polypropylene was obtained. Left overnight Thereafter, the laminate was cut into a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 2 shows the results.
  • Glycidylmethyl acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidylmethacrylate-vinyl acetate copolymer (MFR340gZ10min (JISK-7210 (load 2.16 kg, temperature 190 ° C)))
  • MFR340gZ10min JISK-7210 (load 2.16 kg, temperature 190 ° C)
  • the pellet was cooled to 100 ° C using liquid nitrogen, pulverized while maintaining the cooling state, and ethylene-daricidyl methacrylate A vinyl acetate copolymer powder was obtained.
  • Example 4 In the same manner as in Example 4, a laminate was obtained in which a layer of the thermoplastic elastomer, a layer of the ethylene-glycidylmethacrylonitrile-vinyl acetate copolymer obtained above, and a polyurethane foam layer were sequentially laminated.
  • a layer of the thermoplastic elastomer, a layer of the ethylene-glycidylmethacrylonitrile-vinyl acetate copolymer obtained above, and a polyurethane foam layer were sequentially laminated.
  • the laminate was cut to a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 3 shows the results.
  • thermoplastic elastomer sheet Manufacture of thermoplastic elastomer sheet
  • the powder of the thermoplastic elastomer composition is supplied onto a molding surface of a mold (30 cm square) having a grain pattern heated to 260 ° C., left for 12 seconds, and then exposed to excess powder. Was removed and the mold was left in an oven at 260 ° C. for 60 seconds. Thereafter, the mold melted into a sheet composed of the thermoplastic elastomer composition layer was cooled, and the sheet was released from the mold to obtain a powder slush molded sheet composed of the thermoplastic elastomer. The thickness of the molded sheet obtained by the powder slush molding method was about lmm.
  • a primer adheresive
  • AD-471 manufactured by Tokusekisho Kogyo Co., Ltd.
  • the molded sheet obtained by the powder slush molding method is set in a polyurethane foaming mold so that the primer-coated surface is continuous with the polyurethane foam layer,
  • a high-speed stirrer is used for 10 seconds to mix polyurethane raw material liquid (a mixture of polyols mainly composed of glycerin propylene oxide and ethylene oxide additives, water, triethanolamine, triethylene diamine, etc. and polymer MD I).
  • polyurethane raw material liquid a mixture of polyols mainly composed of glycerin propylene oxide and ethylene oxide additives, water, triethanolamine, triethylene diamine, etc. and polymer MD I.
  • the mixture was supplied to the above-mentioned mold for polyurethane foaming, and after being clamped, foamed and cured to obtain a laminate in which a layer of a thermoplastic elastomer and a polyurethane foam layer were laminated. After standing overnight, the laminate was cut to a width of 25
  • Example 1 Example 2 Example 3 Example 1 Example 2
  • the present invention it is possible to obtain a laminate that has an excellent balance between the melt fluidity required at the time of molding and the adhesiveness with the polyurethane foam, and that is firmly adhered to polyurethane without using a primer (adhesive). It is possible to provide a resin composition which can be obtained, and a laminate obtained by using the resin composition.

Abstract

A resin composition which comprises 100 parts by weight of the following ingredient (A) and 3 to 100 parts by weight of the following ingredient (B); and a layered product which comprises a layer of the resin composition and a polyurethane layer superposed thereon. An epoxy monomer/α-olefin copolymer. A terpene/phenol copolymer.

Description

明 樹脂組成物及び積層体 枝術分野  Akira Resin compositions and laminates
本発明は樹脂組成物及び積層体に関するものである。 更に詳しくは、 本発明は 成形加工時に求められる溶融流動性とポリゥレタン発泡体との接着性のバランス に優れ、 プライマ一 (接着剤) を用いることなくポリウレタンと強固に接着した 積層体を得ることができる樹脂組成物及び該樹脂組成物を用いて得られる積層体 に関するものである。 背景技術  The present invention relates to a resin composition and a laminate. More specifically, the present invention has an excellent balance between the melt fluidity required at the time of molding and the adhesiveness with the polyurethane foam, and is capable of obtaining a laminate which is firmly adhered to polyurethane without using a primer (adhesive). The present invention relates to a resin composition which can be obtained and a laminate obtained by using the resin composition. Background art
たとえば自動車の内装部品には樹脂の積層体が多用されている。 通常、 該積層 体としては、 クッション性を発現するためのポリウレタン発泡層に外観を良好と するための表皮層を積層したものが用いられ、 該表皮層としては塩ィヒビニル樹脂 が汎用されてきた。 ところが、 近年の環境保護の観点から、 塩化ビニル樹脂が敬 遠される傾向が強まり、 塩化ビニル樹脂に代る材料が望まれている。 該材料とし て、 熱可塑性エラストマ一を用いる研究が進められている。 ところが、 従来の技 術によると、 熱可塑性エラストマ一とポリウレタンとの接着性が不十分であり、 強固な積層体を得るためにはプライマー (接着剤) を用いることが必要とされた。 しかしながら、 プライマ一を用いる技術は、 プライマー分のコストアップ、 ブラ イマ一の塗布工程に伴う工程の煩雑化の他、 プライマーに含有される有機溶剤に より作業環境が悪化するという問題を有している。  For example, resin laminates are frequently used for interior parts of automobiles. Usually, a laminate in which a polyurethane foam layer for exhibiting cushioning property is laminated with a skin layer for improving appearance is used as the laminate. As the skin layer, polyvinyl chloride resin has been widely used. However, from the viewpoint of environmental protection in recent years, the tendency of vinyl chloride resin to be avoided has increased, and a material that can replace vinyl chloride resin is desired. Researches using thermoplastic elastomers as such materials are underway. However, according to the conventional technology, the adhesion between the thermoplastic elastomer and the polyurethane was insufficient, and it was necessary to use a primer (adhesive) to obtain a strong laminate. However, the technology using primers has the problems of increasing the cost for primers, complicating the steps involved in the primer coating process, and deteriorating the working environment due to the organic solvent contained in the primers. I have.
かかる現状において、 本発明が解決しょうとする課題は、 成形加工時に求めら れる溶融流動性とポリウレタン発泡体との接着性のバランスに優れ、 プライマー (接着剤) を用いることなくポリウレ夕ンと強固に接着した積層体を得ることが できる樹脂組成物及び該樹脂組成物を用いて得られる積層体に関するものである。 発明の開示 Under the current situation, the problem to be solved by the present invention is to achieve an excellent balance between the melt fluidity required at the time of molding and the adhesiveness between the polyurethane foam and the polyurethane and the polyurethane without using a primer (adhesive). TECHNICAL FIELD The present invention relates to a resin composition capable of obtaining a laminate bonded to a resin and a laminate obtained by using the resin composition. Disclosure of the invention
本発明は下記の成分 (A) 1 0 0重量部に対して下記の成分 (B) 3〜1 0 0 重量部を含有する樹脂組成物に係るものである。  The present invention relates to a resin composition containing the following component (B) in an amount of 3 to 100 parts by weight based on 100 parts by weight of the following component (A).
(A) エポキシ基含有単量体— α—ォレフィン共重合体  (A) Epoxy group-containing monomer-α-olefin copolymer
(Β) テルペン一フエノール共重合体  (Β) Terpene-phenol copolymer
また、 本発明は、 上記の樹脂組成物の層 (1) とポリウレタンの層 (2) を 積層してなる積層体 (I ) 、 樹脂組成物の層 (1) と熱可塑性エラストマ一の層 (3) を積層してなる積層体 (1 1) 、 熱可塑性エラストマ一の層 (3) と樹脂 組成物の層 (1) とポリウレタンの層 (2) を順次積層してなる積層体 (III) 及び 熱可塑性エラストマ一の層 (3) 、 樹脂組成物の層 (1) 、 ポリウレタン の層 (2) および熱可塑性樹脂芯材層 (4) を順次積層してなる積層体 (IV) に 係るものである。 発明を卖旆するための最良の形熊  Further, the present invention provides a laminate (I) comprising the above resin composition layer (1) and a polyurethane layer (2) laminated, a resin composition layer (1) and a thermoplastic elastomer layer ( 3) a laminate (11), a layer of a thermoplastic elastomer (3), a layer of a resin composition (1), and a layer of a polyurethane (2) sequentially laminated (III) And a layered product (IV) obtained by sequentially laminating a layer (3) of a thermoplastic elastomer, a layer (1) of a resin composition, a layer (2) of a polyurethane, and a layer (4) of a thermoplastic resin core material. It is. The best shape bear for invention
成分 (Α) としてのエポキシ基含有単量体一 α—才レフイン共重合体とは、 ェ ポキシ環を有する単量体と α—才レフィンとの共重合体であり、 エポキシ環を有 する単量体の例としては、 グリシジルァクリレート、 グリシジルメ夕ァクリレー ト、 ビニルダリシジルエーテル、 ァリルグリシジルエーテル、 メ夕クリルグリシ ジルエーテル、 ィタコン酸ダリシジルエステル等があげられる。  The epoxy group-containing monomer-α-olefin copolymer as the component (Α) is a copolymer of a monomer having an epoxy ring and an α-olefin, and is a copolymer having an epoxy ring. Examples of the monomer include glycidyl acrylate, glycidyl methyl acrylate, vinyl dalicidyl ether, aryl glycidyl ether, methyl glycidyl glycidyl ether, and daricidyl itaconate.
α—ォレフィンの例としては、 エチレン、 プロピレン、 1ーブテン等があげら れる。  Examples of α-olefins include ethylene, propylene, 1-butene and the like.
エポキシ環を有する単量体とひ一才レフィンとの共重合体はエポキシ環を有す る単量体及び 0;—ォレフィンに加えてこれら以外の単量体が共重合されているも のも含んでもよい。  The copolymer of the monomer having an epoxy ring and the one-strength olefin is a copolymer in which, in addition to the monomer having an epoxy ring and 0; -olefin, other monomers are copolymerized. May be included.
エポキシ環を有する単量体と α—ォレフィン以外の単量体としては、 酢酸ビニ ル、 プロピオン酸ビニル等のカルボン酸ビニルエステル類、 メチルビ二ルケトン、 ェチルビ二ルケ卜ン等のビニルケトン類、 スチレン、 ひーメチルスチレン、 ビニ ルトルエン等のビニル芳香族化合物、 メチルァクリレート、 ェチルァクリレート、 プロピルァクリレー卜、 n—プチルァクリレー卜、 n—才クチルァクリレート、 メトキシメチルァクリレート、 メトキシェチルァクリレート等のァクリレ一ト類、 等をあげることができる。 エポキシ環を有する単量体一ひ一才レフィン共重合体 はその共重合の組成に特に限定はないが、 好ましくは、 エポキシ環を有する単量 体から誘導される単位が 1〜 5 0重量%と α—才レフィンから誘導される単位が 9 9〜5 0重量%、 及び必要に応じ、 エポキシ環を有する単量体とひ一才レフィ ン以外の単量体から誘導される単位を 4 9重量%以下含む (各単位の合計を 1 0 0重量%とする) 。 エポキシ環を有する単量体の割合が 1重量%未満であると、 得られる組成物とポリウレタンとの接着性が不十分となる場合があり、 5 0重 量%を超えると熱可塑性エラストマ一との積層体において接着性が十分でなくな る場合がある。 α—ォレフィンが 9 9重量%を超えると得られる組成物とポリゥ レタンとの接着性が不十分となる場合があり、 5 0重量%未満であると熱可塑性 エラストマ一との積層体において接着性が十分でなくなる場合がある。 エポキシ 環を有する単量体とひ一才レフィン以外の単量体が 4 9重量%を超えると得られ る組成物とポリウレタンとの接着性が不十分となる場合がある。 Monomers having an epoxy ring and monomers other than α-olefin include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone; styrene; High methyl styrene, vinyl Vinyl aromatic compounds such as toluene, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, n-butyl acrylate, methoxymethyl acrylate, methoxyethyl acrylate Acrylates and the like. The composition of the monomeric olefin copolymer having an epoxy ring is not particularly limited, but preferably, a unit derived from a monomer having an epoxy ring is 1 to 50% by weight. And 99-50% by weight of units derived from α- and refined olefins, and if necessary, units derived from monomers having an epoxy ring and monomers other than mono-refined olefins are 49 9 % By weight (total of each unit is 100% by weight). If the proportion of the monomer having an epoxy ring is less than 1% by weight, the adhesiveness between the obtained composition and the polyurethane may be insufficient. If the proportion exceeds 50% by weight, the thermoplastic elastomer and the polyurethane may be insufficiently bonded. In some cases, the laminate may not have sufficient adhesiveness. If the α-olefin exceeds 99% by weight, the adhesiveness between the obtained composition and the polyurethane may be insufficient. If the amount is less than 50% by weight, the adhesiveness of the laminate with the thermoplastic elastomer may be insufficient. May not be enough. When the amount of the monomer having an epoxy ring and the monomer other than Ichijin Refin exceeds 49% by weight, the adhesiveness between the obtained composition and polyurethane may be insufficient.
成分 (Β ) はテルペン一フエノール共重合体である。 テルペンとしてはイソプ レン等のへミテルペン類、 α—ピネン、 3—ビネン、 リモネン等のモノテルペン 類、 ロンギフォーレン等のセスキテルペン類、 ロジン等のジテルペン類、 カロチ ン、 イソプレンゴム、 天然ゴム等のポリテルペン等をあげることができる。 フエ ノールとしてはヒドロキシベンゼン、 ナフトール、 アントロール、 クレゾ一ル、 チモール等の 1価フエノール類、 カテコール、 レゾルシン、 ヒドロキノン、 オル シン、 ウルシオール、 ビスフエノール Α、 ビナフトール、 アントラヒドロキノン 等の 2価フエノール類、 ピロガロール、 フロロダルシン、 ヒドロキシヒドロキノ ン等の 3価フエノール類をあげることができる。 テルペン—フエノール共重合体 としては、 フエノールの含有量に起因する Ο Η価 (テルペン一フエノール共重合 体 1 gをァセチル化して〇Ηと反応した C O O Hを中和するのに要する Κ〇Ηの m g数) が 5 0〜5 0 0であるのが好ましい。 O H価が 5 0未満であるとポリウ レタンとの接着性が不十分となる場合があり、 5 0 0を超えると熱可塑性エラス トマ一との積層体において接着性が十分でなくなる場合がある。 Component (Β) is a terpene-phenol copolymer. Examples of the terpene include hemiterpenes such as isoprene, monoterpenes such as α -pinene, 3-binene and limonene, sesquiterpenes such as longifolene, diterpenes such as rosin, carotene, isoprene rubber, and natural rubber. Polyterpenes and the like can be given. Examples of phenols include monovalent phenols such as hydroxybenzene, naphthol, anthrol, cresol and thymol, and divalent phenols such as catechol, resorcin, hydroquinone, orcin, urushiol, bisphenol ビ, binaphthol, and anthrahydroquinone. And trivalent phenols such as pyrogallol, fluorodalsin, and hydroxyhydroquinone. As the terpene-phenol copolymer, the す る value due to the phenol content (the amount required to neutralize the COOH reacted with 〇Η by acetylating 1 g of the terpene-phenol copolymer) (mg number) is preferably 50 to 500. If the OH value is less than 50, the adhesiveness with the polyurethane may be insufficient, and if it exceeds 50,000, the adhesiveness of the laminate with the thermoplastic elastomer may be insufficient.
本発明の樹脂組成物においては、 成分 (A) 1 0 0重量部に対し、 成分 (B ) が 3〜1 0 0重量部、 好ましくは 3〜8 0重量部、 より好ましくは 5〜7 0重量 部用いられる。 成分 (B ) が 3重量部未満であるとポリウレタンとの接着性が不 十分となり、 一方、 成分 (B ) が 1 0 0重量部を超えると得られる組成物の機械 的強度が低下する。  In the resin composition of the present invention, the component (B) is used in an amount of 3 to 100 parts by weight, preferably 3 to 80 parts by weight, more preferably 5 to 70 parts by weight, based on 100 parts by weight of the component (A). Used by weight. If the amount of the component (B) is less than 3 parts by weight, the adhesion to the polyurethane will be insufficient. On the other hand, if the amount of the component (B) exceeds 100 parts by weight, the mechanical strength of the obtained composition will decrease.
本発明においては、 必須成分である成分 (A) 及び (B ) に加えて、 下記の成 分 (C ) 及び Z又は (D ) を用いてもよい。  In the present invention, the following components (C) and Z or (D) may be used in addition to the essential components (A) and (B).
( C ) 成分: (A) および (B ) 以外の水酸基含有共重合体  Component (C): a hydroxyl group-containing copolymer other than (A) and (B)
(D ) 成分: (A) および (B ) 以外のォレフィン系重合体  Component (D): olefin polymer other than (A) and (B)
成分 (C ) の使用はポリウレタンとの積層体において接着性をより向上させる ことができるので好ましい。 成分 (C ) としては、 ポリビニルアルコール、 α— ォレフィン—ビニルアルコール共重合体等を例示することができる。 ひ一才レフ インとしてはエチレン、 プロピレン、 1ーブテン等を例示することができる。 成分 (C ) の使用量は成分 (A) 1 0 0重量部あたり 3〜8 0重量部が好まし く、 更に好ましくは 5〜7 0重量部である。 (C ) が 3重量部未満であるとポリ ウレタンとの接着性の向上が不十分となる場合があり、 一方、 成分 (C ) が 8 0 重量部を超えると得られる組成物の柔軟性が低下する場合がある。  The use of the component (C) is preferable because the adhesiveness of the laminate with polyurethane can be further improved. Examples of the component (C) include polyvinyl alcohol and α-olefin-vinyl alcohol copolymer. Examples of the one-year-old resin include ethylene, propylene, and 1-butene. The amount of the component (C) to be used is preferably 3 to 80 parts by weight, more preferably 5 to 70 parts by weight, per 100 parts by weight of the component (A). If the amount of (C) is less than 3 parts by weight, the adhesion to polyurethane may be insufficiently improved. On the other hand, if the amount of component (C) exceeds 80 parts by weight, the flexibility of the resulting composition may be insufficient. May decrease.
また、 成分 (D ) の使用は熱可塑性エラストマ一との積層体において接着性を より向上させることができるので好ましい。 成分 (D ) としては、 成分 (Α) 以 外のォレフィン系重合体を例示することができる。 ォレフィン系重合体としては、 ポリプロピレン、 低密度ポリエチレン、 直鎖状低密度ポリエチレン、 エチレンと エチレン以外の α—ォレフィン (好ましくはプロピレン、 1—ブテン等) からな る共重合体、 エチレンと α—才レフィン以外のエチレンと共重合可能な単量体か らなる共重合体等を例示することができる。 ひ一才レフィン以外のエチレンと共 重合可能な単量体として、 酢酸ビニル、 プロピオン酸ビニル等のカルボン酸ビニ ルエステル類、 メチルビ二ルケトン、 ェチルビ二ルケトン等のビニルケトン類、 スチレン、 α—メチルスチレン、 ビニルトルエン等のビニル芳香族化合物、 メチ ルァクリレート、 ェチルァクリレート、 プロピルァクリレート、 η—プチルァク リレー卜、 η—ォクチルァクリレート、 メトキシメチルァクリレート、 メトキシ ェチルァクリレート等のァクリレート類等を例示することができる。 The use of the component (D) is preferable because the adhesiveness of the laminate with the thermoplastic elastomer can be further improved. As the component (D), an olefin polymer other than the component (II) can be exemplified. Examples of the olefin polymer include polypropylene, low-density polyethylene, linear low-density polyethylene, a copolymer of ethylene and α-olefin (preferably propylene, 1-butene, etc.) other than ethylene, ethylene and α-olefin. Copolymers composed of monomers copolymerizable with ethylene other than refin and the like can be exemplified. With ethylene other than Hiichi Sai Refin Polymerizable monomers include vinyl carboxylate esters such as vinyl acetate and vinyl propionate; vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone; vinyl aromatic compounds such as styrene, α-methyl styrene, and vinyl toluene; Examples include acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, η-butyl acrylate, η-octyl acrylate, methoxymethyl acrylate, and methoxyethyl acrylate. it can.
成分 (D ) の使用量は、 成分 (A) 1 0 0重量部あたり 5〜5 0 0重量部が好 ましく、 更に好ましくは 1 0〜3 0 0重量部である。 成分 (D ) が 5重量部未満 であると得られた組成物の層と熱可塑性エラストマ一層との接着力の向上が少な く、 一方、 (D ) が 5 0 0重量部を超えるとポリウレタンとの接着性が不十分と なる場合がある。  The amount of component (D) to be used is preferably 5 to 500 parts by weight, more preferably 10 to 300 parts by weight, per 100 parts by weight of component (A). When the amount of the component (D) is less than 5 parts by weight, the adhesive strength between the layer of the obtained composition and the thermoplastic elastomer layer is little. On the other hand, when the amount of the (D) exceeds 500 parts by weight, polyurethane and May have insufficient adhesiveness.
本発明の樹脂組成物は例えば成分 (Α) 及び (Β ) 、 並びに必要に応じて成分 ( C ) 及び Ζ又は (D ) を溶融混練することにより得られる。  The resin composition of the present invention can be obtained, for example, by melt-kneading the components (Α) and (Β) and, if necessary, the components (C) and Ζ or (D).
本発明の積層体 (I ) は、 本発明の樹脂組成物の層 (1 ) とポリウレタンの層 ( 2 ) を積層してなる積層体である。 積層体 (I ) を得るには、 たとえば、 樹脂 組成物の層 (1 ) を粉末成形法、 押出し成形法、 圧縮成形法、 カレンダー成形法、 射出成形法、 真空成形法等の公知の方法によって成形した後、 ポリウレタン層成 形用一対の雌雄金型の一方に樹脂組成物の層 (1 ) をセットし、 ポリウレタンの 原料を注入、 型締め、 発泡、 硬化させてポリウレタン発泡層を成形すればよい。 本発明の積層体 (Π ) は、 本発明の樹脂組成物の層 (1 ) と熱可塑性エラスト マーの層 (3 ) を積層してなる積層体である。  The laminate (I) of the present invention is a laminate obtained by laminating a layer (1) of the resin composition of the present invention and a layer (2) of polyurethane. To obtain the laminate (I), for example, the resin composition layer (1) is formed by a known method such as a powder molding method, an extrusion molding method, a compression molding method, a calendar molding method, an injection molding method, and a vacuum molding method. After molding, a layer of the resin composition (1) is set in one of a pair of male and female molds for forming a polyurethane layer, and a polyurethane raw material is injected, molded, foamed and cured to form a polyurethane foam layer. Good. The laminate (Π) of the present invention is a laminate obtained by laminating a layer (1) of the resin composition of the present invention and a layer (3) of a thermoplastic elastomer.
熱可塑性エラストマ一としては、 ォレフィン系、 スチレン系、 エステル系及 びウレタン系等の熱可塑性エラストマ一を例示することができる。 中でも耐熱性、 耐光性等の耐久物性を含め、 物性バランスに優れるォレフィン系及びスチレン系 熱可塑性エラストマ一が好ましい。 ォレフィン系熱可塑性エラストマ一はォレフ ィン系樹脂とォレフィン系ゴムからなる熱可塑性エラストマ一であり、 ブレンド タイプ、 動的架橋によりゴム部分を架橋した架橋タイプ、 及び重合タイプに分類 される。 スチレン系熱可塑性エラストマ一はスチレン—ブタジエン一スチレン、 スチレン一イソプレン一スチレン等のブロック共重合体、 またはこれらの水添物、 さらには、 これらブロック共重合体またはその水添物とポリオレフィン樹脂とを 配合したものが挙げられる。 Examples of the thermoplastic elastomer include thermoplastic elastomers such as an olefin type, a styrene type, an ester type, and a urethane type. Among them, preferred are olefin-based and styrene-based thermoplastic elastomers which have excellent physical property balance including durability properties such as heat resistance and light resistance. Olefin-based thermoplastic elastomers are thermoplastic elastomers consisting of an olefin-based resin and an olefin-based rubber, and are classified into blend types, cross-linked types in which the rubber part is cross-linked by dynamic cross-linking, and polymerization types. Is done. Styrene-based thermoplastic elastomers are block copolymers such as styrene-butadiene-styrene and styrene-isoprene-styrene, or hydrogenated products thereof, and furthermore, these block copolymers or hydrogenated products thereof and polyolefin resins. What was blended is mentioned.
積層体 (Π ) を得るには、 たとえば、 粉末成形法、 押出し成形法、 圧縮成形法、 カレンダー成形法、 射出成形法、 真空成形法等の公知の方法によって成形すれば よい。  In order to obtain the laminate (Π), it may be formed by a known method such as a powder molding method, an extrusion molding method, a compression molding method, a calendar molding method, an injection molding method, a vacuum molding method, or the like.
たとえば、 粉末成形法により積層体 (I I ) を得るには、 たとえば、 粉末スラッ シュ成形法、 流動浸漬法、 静電塗装法、 粉末溶射法、 粉末回転成形法などにより 成形すればよい。  For example, in order to obtain the laminate (II) by the powder molding method, the laminate may be formed by, for example, a powder slush molding method, a fluid immersion method, an electrostatic coating method, a powder spraying method, a powder rotational molding method, or the like.
粉末成形法により積層体 (I I ) を得るには、 該樹脂組成物として、 平均粒径 3 0〜1 0 0 0 の樹脂組成物パウダーを用いる。  In order to obtain the laminate (II) by the powder molding method, a resin composition powder having an average particle diameter of 30 to 100 is used as the resin composition.
平均粒径は、 好ましくは 5 0〜7 0 0 i mである。 平均粒径が過小であると樹 脂組成物パウダーの耐ブロッキング性が低下し、 一方、 平均粒径が過大であると 粉末成形する際、 樹脂組成物の溶融性が低下する。  The average particle size is preferably between 50 and 700 im. If the average particle size is too small, the blocking resistance of the resin composition powder will be reduced. On the other hand, if the average particle size is too large, the meltability of the resin composition will be reduced during powder molding.
樹脂組成物パウダーを得る方法の例として、 押出機を用い、 溶融混練にて樹脂 組成物のペレット得る。 次いで、 得られた樹脂組成物のペレットを冷却 (好まし くは樹脂組成物のガラス転移温度以下に冷却) し、 衝撃式粉碎機を用いて樹脂組 成物パウダーを得ることができる。  As an example of a method for obtaining the resin composition powder, pellets of the resin composition are obtained by melt-kneading using an extruder. Next, the obtained resin composition pellets are cooled (preferably, cooled to the glass transition temperature of the resin composition or lower), and a resin composition powder can be obtained using an impact mill.
得られた樹脂組成物パウダーの耐ブロッキング性をさらに向上させるために樹 脂組成物パウダー 1 0 0重量物に対して、 平均粒径が 1 0 i m以下の微細紛体を 0 . 1〜1 0重量部配合することが好ましい。  In order to further improve the blocking resistance of the obtained resin composition powder, 0.1 to 10% by weight of a fine powder having an average particle size of 10 im or less with respect to 100% by weight of the resin composition powder. It is preferable to mix parts.
平均粒径が 1 0 m以下の微細紛体としては粉末顔料、 アルミナ、 シリカ、 ァ ルミナシリ力、 炭酸カルシウム等を用いることができる。  As the fine powder having an average particle diameter of 10 m or less, powdered pigment, alumina, silica, luminous force, calcium carbonate and the like can be used.
たとえば、 粉末スラッシュ成形法は以下に示す第一工程から第九工程からなる 方法により行われる。 第一工程:金型の成形面上に、 フッ素及び Zまたはシリコン系離型剤を塗布す る工程 For example, the powder slush molding method is performed by a method comprising the following first to ninth steps. First step: Step of applying fluorine and Z or silicone release agent on the molding surface of the mold
第二工程:熱可塑性エラストマ一組成物の粉末の溶融温度以上に加熱された金 型の成形面上に、 熱可塑性エラストマ一組成物の粉末を供給する工程  Second step: a step of supplying the thermoplastic elastomer composition powder onto the molding surface of the mold heated above the melting temperature of the thermoplastic elastomer composition powder.
第三工程:第二工程の成形面上で熱可塑性エラストマ一組成物の粉末を所定の 時間加熱し、 少なくともその表面が溶融した粉末を互いに融着させる工程 第四工程:第三工程において所定時間経過した後に、 融着しなかった熱可塑性 エラストマ一組成物の粉末を回収する工程  Third step: a step of heating the powder of the thermoplastic elastomer composition on the molding surface of the second step for a predetermined time, and fusing powders whose surfaces have been melted at least to each other. Fourth step: a predetermined time in the third step Recovering the unfused thermoplastic elastomer composition powder after the passage of time
第五工程:熱可塑性エラストマ一組成物の粉末が融着した金型の成形面上に本 発明の樹脂組成物の粉末を供給する工程  Fifth step: a step of supplying the powder of the resin composition of the present invention onto the molding surface of the mold to which the powder of the thermoplastic elastomer composition has been fused.
第六工程:第五工程の成形面上で本発明の樹脂組成物の粉末を所定の時間加熱 し、 少なくともその表面が溶融した粉末を互いに融着させる工程。  Sixth step: a step of heating the powder of the resin composition of the present invention on the molding surface of the fifth step for a predetermined time, and fusing powders having at least their surfaces fused together.
第七工程:第六工程において所定時間経過した後に、 融着しなかった本発明の 樹脂組成物の粉末を回収する工程  Seventh step: a step of collecting the unfused resin composition powder of the present invention after a predetermined time has elapsed in the sixth step
第八工程:必要に応じて、 溶融した熱可塑性エラストマ一組成物の粉末、 及び 本発明の樹脂組成物の粉末がのっている金型をさらに加熱する工程  Eighth step: As needed, a step of further heating the mold on which the powder of the molten thermoplastic elastomer composition and the powder of the resin composition of the present invention are placed.
第九工程:第八工程の後、 金型を冷却して、 その上に形成された成形体を金型 から取り外す工程  Ninth step: After the eighth step, the step of cooling the mold and removing the molded body formed thereon from the mold
本粉末スラッシュ成形に用いられる熱可塑性エラストマ一組成物としては、 特 開平 5— 5 0 5 0号公報、 特開平 1 0— 3 0 0 3 6号公報等で提案されているも のが好ましく用いられる。  As the thermoplastic elastomer composition used in the present powder slush molding, those proposed in Japanese Patent Application Laid-Open No. 5-50050, Japanese Patent Application Laid-Open No. 10-30036 and the like are preferably used. Can be
本発明の積層体 (I I I ) は、 熱可塑性エラス卜マーの層 (3 ) と本発明の樹脂 組成物の層 (1 ) とポリウレタンの層 (2 ) を順次積層してなる積層体である。 ここで、 「順次積層」 とは、 積層の工程の時間的順序を示すものではなく、 積層 体の構造を表したものである (以下、 同じ。 ) 。 積層体 (I I I ) を得るには、 た とえば、 積層体(Π)を粉末成形法、 押出し成形法、 圧縮成形法、 カレンダー成形 法、 射出成形法、 真空成形法等の公知の方法によって成形した後、 ボリウレタン 層成形用一対の雌雄金型の一方に積層体 (II) をセットし、 ポリウレタンの原料 を注入、 型締め、 発泡、 硬化させてポリウレタン発泡層を成形すればよい。 The laminate (III) of the present invention is a laminate obtained by sequentially laminating a layer (3) of a thermoplastic elastomer, a layer (1) of a resin composition of the present invention, and a layer (2) of a polyurethane. Here, “sequential lamination” does not indicate the time sequence of the lamination process, but indicates the structure of the laminated body (the same applies hereinafter). In order to obtain the laminate (III), for example, the laminate (Π) is molded by a known method such as a powder molding method, an extrusion molding method, a compression molding method, a calendar molding method, an injection molding method, and a vacuum molding method. After that, polyurethane The laminate (II) is set in one of a pair of male and female molds for forming a layer, and a polyurethane foam layer is formed by injecting, clamping, foaming, and curing a polyurethane raw material.
本発明の積層体 (IV) は、 熱可塑性エラストマ一の層 (3) と本発明の樹脂組 成物の層 (1) とポリウレタンの層 (2) と熱可塑性樹脂芯材層 (4) を順次積 層してなる積層体である。 積層体 (IV) を得るには、 たとえば、 ポリウレタン層 成形用一対の雌雄金型のそれぞれに積層体 (Π) 、 及び射出成形等により成形さ れた熱可塑性樹脂芯材層をセットし、 ポリウレタンの原料を注入、 型締め、 発泡、 硬化させてポリウレタン発泡層を成形すればよい。  The laminate (IV) of the present invention comprises a layer (3) of a thermoplastic elastomer, a layer (1) of a resin composition of the present invention, a layer (2) of a polyurethane, and a layer (4) of a thermoplastic resin core material. It is a laminated body that is sequentially laminated. To obtain the laminate (IV), for example, a laminate (Π) and a thermoplastic resin core material layer formed by injection molding or the like are set on each of a pair of male and female molds for molding a polyurethane layer. The polyurethane foam layer may be formed by injecting, clamping, foaming, and curing the raw material.
本発明の積層体は、 たとえばインストルメントパネル、 ドアトリム、 コンソ一 ルボックス、 ピラ一等の自動車内装部品等に最適に使用できる。  The laminate of the present invention can be optimally used for automotive interior parts such as instrument panels, door trims, console boxes, and pillars.
実施例 Example
以下、 本発明を実施例により詳細に説明するが、 本発明はこれらに限定されな い。  Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
実施例 1 Example 1
グリシジルメ夕クリレートの含有量 1 8重量%、 酢酸ビニルの含有量 1重量% のエチレン—グリシジルメタクリレ一トー酢酸ビニル共重合体(MFR 340 g /10分 (J I S K— 72 10 (荷重 2. 1 6 kg, 温度 1 90°C) ) ) 70 重量部、 テルペン一フエノール共重合体 (ヤスハラケミカル (株) 社製、 YP— 902) 30重量部、 酸化防止剤 (チバスべシャリティケミカルズ (株) 社製、 I RGANOX 1 076) 0. 1重量部をラボプラストミル (東洋精機 (株) 製、 型式 65C 1 50) を用いて 190°C、 50 r p mの条件で 5分間混練した後、 1 90°Cに加熱されたプレス成形機により 5分間、 加熱、 圧縮を行い lmm厚の 成形シ一トを得た。 得られた成形シートをポリウレタン発泡用金型にセットし、 ポリウレタンの原料液 (グリセリンのプロピレンォキシド、 エチレンォキシド付 加物を主体としたポリオール、 水、 トリエタノールァミン、 トリエチレンジアミ ン等からなる混合物とポリメリック MD I) を 1 0秒間高速攪拌機により混合し た後、 上記のポリウレタン発泡用金型に供給し、 型締めした後、 発泡、 硬化させ 積層体を得た。 一昼夜放置後、 積層体を 5 0mm幅に切断し、 成形シートとポリ ウレタン発泡層との接着強度の測定を行った。 Ethylene-glycidyl methacrylate mono-vinyl acetate copolymer (MFR 340 g / 10 min (JISK-72 10 (load 2.16)) containing 18% by weight of glycidyl methacrylate and 1% by weight of vinyl acetate kg, temperature 1 90 ° C)))) 70 parts by weight, terpene-phenol copolymer (Yashara Chemical Co., Ltd., YP-902) 30 parts by weight, antioxidant (Chivas Specialty Chemicals Co., Ltd.) , I RGANOX 1 076) 0.1 part by weight was kneaded for 5 minutes at 190 ° C and 50 rpm using a Labo Plastomill (manufactured by Toyo Seiki Co., Ltd., Model 65C150), and then 190 ° C Heating and compression were performed for 5 minutes using a press molding machine heated to obtain a lmm-thick molded sheet. The obtained molded sheet was set in a polyurethane foaming mold, and a polyurethane raw material solution (polyol mainly composed of propylene oxide of glycerin and ethylene oxide, water, triethanolamine, triethylene diamine) was used. After mixing the mixture consisting of the above and polymer MD I) with a high-speed stirrer for 10 seconds, the mixture is supplied to the above-mentioned polyurethane foaming mold, closed, then foamed and cured. A laminate was obtained. After standing overnight, the laminate was cut to a width of 50 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured.
結果を表 1に示す。 Table 1 shows the results.
実施例 2 Example 2
グリシジルメタクリレー卜の含有量 1 8重量%、 酢酸ビニルの含有量 1重量% のエチレンーグリシジルメタクリレート一酢酸ビニル共重合体(MFR 340 g Z10分 (J I S K— 7 2 1 0 (荷重 2. 1 6 k g, 温度 1 90°C) ) ) 7 0 重量部、 テルペン一フエノール共重合体 (ヤスハラケミカル (株) 社製、 YP— 9 02) 1 0重量部、 ポリビニルアルコール ( (株) クラレ社製、 CP— 1 2 1 0) 2 0重量部、 酸化防止剤 (チバスべシャリティケミカルズ (株) 社製、 I R GANOX 1 0 7 6) 0. 1重量部をラボプラストミル (東洋精機 (株) 製、 型 式 6 5 C 1 50) を用いて 1 90°C、 50 r pmの条件で 5分間混練した後、 1 9 0°Cに加熱されたプレス成形機により 5分間、 加熱、 圧縮を行い lmm厚の成 形シートを得た。 以下、 実施例 1と同様にし積層体を得、 成形シートとポリウレ タン発泡層の接着強度の測定を行った。 結果を表 1に示す。  Glycidyl methacrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidyl methacrylate vinyl acetate copolymer (MFR 340 g Z10 min (JISK—7 210 (load 2.16 kg, temperature 1 90 ° C))) 70 parts by weight, terpene-phenol copolymer (Yashara Chemical Co., Ltd., YP-902) 10 parts by weight, polyvinyl alcohol (Kuraray Co., Ltd., CP — 1 210) 20 parts by weight of an antioxidant (IRGANOX 1 076) manufactured by Ciba Specialty Chemicals Co., Ltd. 0.1 parts by weight of Labo Plastomill (manufactured by Toyo Seiki Co., Ltd.) After kneading for 5 minutes at 190 ° C and 50 rpm using Model 65 C1 50), heat and compress for 5 minutes with a press molding machine heated to 190 ° C, and lmm A thick molded sheet was obtained. Hereinafter, a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 1 shows the results.
実施例 3 Example 3
グリシジルメ夕クリレートの含有量 1 8重量%、 酢酸ビニルの含有量 1重量% のエチレン一グリシジルメタクリレ一トー酢酸ビニル共重合体(MFR 340 g Z10分 (J I S K— 7 2 1 0 (荷重 2. 1 6 k g、 温度 190 °C) ) ) 70 重量部、 テルペン一フエノール共重合体 (ヤスハラケミカル (株) 社製、 YP— 90 2) 1 0重量部、 エチレン一ビニルアルコール共重合体 ( (株) クラレ社製、 EP-E 1 0 5B) 20重量部、 酸化防止剤 (チバスべシャリティケミカルズ (株) 社製、 I RGANOX 1 0 7 6) 0. 1重量部をラボプラス卜ミル (東洋 精機 (株) 製、 型式 6 5 C 1 50) を用いて 1 90°C、 50 r pmの条件で 5分 間混練した後、 1 9 0°Cに加熱されたプレス成形機により 5分間、 加熱、 圧縮を 行い lmm厚の成形シートを得た。 以下、 実施例 1と同様にし積層体を得、 成形 シートとボリウレタン発泡層の接着強度の測定を行った。 結果を表 1に示す。 実施例 4 Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidyl methacrylate mono-vinyl acetate copolymer (MFR 340 g Z10 min (JISK—7 210 (load 2.1 6 kg, temperature 190 ° C)))) 70 parts by weight, terpene-phenol copolymer (YP-902, manufactured by Yashara Chemical Co., Ltd.) 10 parts by weight, ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd.) 20 parts by weight of EP-E105B), an antioxidant (IRGANOX 1 076) manufactured by Ciba Specialty Chemicals Co., Ltd. 0.1 part by weight of Labo Plastic Mill (Toyo Seiki Co., Ltd.) After kneading for 5 minutes at 190 ° C and 50 rpm using Model 65 C 150), heat and compress for 5 minutes using a press molding machine heated to 190 ° C. Was carried out to obtain a lmm-thick molded sheet. Hereinafter, a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 1 shows the results. Example 4
グリシジルメタクリレー卜の含有量 18重量%、 酢酸ビニルの含有量 1重量% のエチレンーグリシジルメ夕クリレート—酢酸ビニル共重合体(MFR 340 g Z10分 (J I S K- 7210 (荷重 2. 16 k g、 温度 190 °C) ) ) 40 重量部、 テルペン一フエノール共重合体 (ヤスハラケミカル (株) 社製、 YP— 902) 20重量部、 エチレン一酢酸ビニル共重合体 (住友化学工業 (株) 社製、 スミテート HC— 10) 40重量部、 酸化防止剤 (チバスべシャリティケミカル ズ (株) 社製、 I RGANOX 1076) 0. 1重量部をラボプラストミル (東 洋精機 (株) 製、 型式 65C 150) を用いて 190°C、 50 r pmの条件で 5 分間混練した後、 190 に加熱されたプレス成形機により 5分間、 加熱、 圧縮 を行い lmm厚の成形シートを得た。 以下、 実施例 1と同様にし積層体を得、 成 形シートとポリウレ夕ン発泡層の接着強度の測定を行つた。 結果を表 1に示す。 比較例 1  Glycidyl methacrylate 18% by weight, vinyl acetate 1% by weight ethylene-glycidyl methacrylate-vinyl acetate copolymer (MFR 340 g Z10 min (JIS K-7210 (load 2.16 kg, load 2.16 kg, (Temperature 190 ° C))) 40 parts by weight, terpene-phenol copolymer (Yasuhara Chemical Co., Ltd., YP-902) 20 parts by weight, ethylene-vinyl acetate copolymer (Sumitomo Chemical Co., Ltd., Smitate HC-10) 40 parts by weight, antioxidant (IRGANOX 1076, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight of Labo Plastomill (Toyo Seiki Co., Ltd., Model 65C 150 ) At 190 ° C and 50 rpm for 5 minutes, and then heated and compressed for 5 minutes by a press molding machine heated to 190 to obtain a lmm thick molded sheet. Thereafter, a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 1 shows the results. Comparative Example 1
グリシジルメ夕クリレートの含有量 18重量%、 酢酸ビニルの含有量 1重量% のエチレン—グリシジルメタクリレート一酢酸ビニル共重合体(MFR 340 g Z10分 (J I S K- 7210 (荷重 2. 16 kg, 温度 190°C) ) ) 70 重量部、 ポリビニルアルコール ( (株) クラレ社製、 CP— 1210) 30重量 部、 酸化防止剤 (チバスべシャリティケミカルズ (株) 社製、 I RGANOX1 076) 0. 1重量部をラボプラストミル (東洋精機 (株) 製、 型式 65C 15 0) を用いて 190°C、 50 r pmの条件で 5分間混練した後、 190°Cに加熱 されたプレス成形機により 5分間、 加熱、 圧縮を行い lmm厚の成形シートを得 た。 以下、 実施例 1と同様にし積層体を得、 成形シートとポリウレタン発泡層の 接着強度の測定を行った。 結果を表 1に示す。  Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidyl methacrylate vinyl acetate copolymer (MFR 340 g Z10 min (JIS K-7210 (load 2.16 kg, temperature 190 ° C))) 70 parts by weight, polyvinyl alcohol (Kuraray Co., Ltd., CP-1210) 30 parts by weight, antioxidant (Chivas Specialty Chemicals Co., Ltd., IRGANOX1076) 0.1 part by weight Was kneaded for 5 minutes at 190 ° C and 50 rpm using a Labo Plastomill (Model 65C150, manufactured by Toyo Seiki Co., Ltd.), and then pressed for 5 minutes by a press molding machine heated to 190 ° C. Heating and compression were performed to obtain a lmm thick molded sheet. Hereinafter, a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 1 shows the results.
比較例 2 Comparative Example 2
グリシジルメ夕クリレートの含有量 18重量%、 酢酸ビニルの含有量 1重量% のエチレン—グリシジルメ夕クリレート一酢酸ビニル共重合体(MFR 340 g Z10分 (J I S K— 7210 (荷重 2. 16 kg, 温度 190 °C) ) )を 1 90 に加熱されたプレス成形機により 5分間、 加熱、 圧縮を行い lmm厚の成 形シートを得た。 以下、 実施例 1と同様にし積層体を得、 成形シートとポリウレ 夕ン発泡層の接着強度の測定を行った。 結果を表 1に示す。 Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidylmethacrylate acrylate monovinyl acetate copolymer (MFR 340 g Z10 min (JISK-7210 (load 2.16 kg, temperature 190 ° C))) 1 Heating and compression were performed for 5 minutes by a press molding machine heated to 90 to obtain a molded sheet having a thickness of lmm. Hereinafter, a laminate was obtained in the same manner as in Example 1, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 1 shows the results.
実施例 5 Example 5
[樹脂組成物パウダーの製造]  [Production of resin composition powder]
グリシジルメ夕クリレートの含有量 1 8重量%、 酢酸ビニルの含有量 1重量% のエチレン—グリシジルメタクリレ一トー酢酸ビニル共重合体(MFR 340 g /1 0分 (J I S K— 72 1 0 (荷重 2. 1 6 k g、 温度 1 90 °C) ) ) 8 0 重量部、 テルペン一フエノール共重合体 (ヤスハラケミカル (株) 社製、 YP— 9 02) 2 0重量部、 酸化防止剤 (チバスべシャリティケミカルズ社製、 I RG ANOX 1 0 7 6) 0. 1重量部を二軸押出機 ( (株) 日本製鋼所製、 型式 TE X- 3 0 S S -40W- 3V) を用いて 1 1 0 にて混練し樹脂組成物を得、 ぺ レ夕ィザ一にて裁断しペレットを得た。 このペレットを、 液体窒素を用いて— 1 00°Cに冷却後、 冷却状態を保ったまま粉砕し、 樹脂組成物のパウダーを得た。 かくして得た樹脂組成物パウダー 1 00重量部とシリカ (デダサ社製、 OX— 5 0) 3重量部、 及びアルミナシリカ (水沢化学社製、 J C一 3 0) 3重量部をス 一パーミキサー (川田製作所社製、 5 Lスーパ一ミキサー) を用いて、 室温、 1 500 r pmで 2分間混合して、 微細紛体が配合された樹脂組成物パウダー得た。  Ethylene-glycidyl methacrylate mono-vinyl acetate copolymer (MFR 340 g / 10 minutes (JISK-7210 (load 2. 16 kg, temperature 190 ° C))) 80 parts by weight, terpene-phenol copolymer (YP-902), 20 parts by weight, antioxidant (Chivas specialty chemicals, manufactured by Yashara Chemical Co., Ltd.) IRG ANOX 1 0 7 6) 0.1 part by weight using a twin-screw extruder (Model: TEX-30 SS-40W-3V, manufactured by Nippon Steel Works, Ltd.) The resulting mixture was kneaded to obtain a resin composition, which was cut by a resin mill to obtain pellets. The pellets were cooled to −100 ° C. using liquid nitrogen, and then pulverized while keeping the cooling state to obtain a resin composition powder. 100 parts by weight of the resin composition powder thus obtained, 3 parts by weight of silica (OX-50, manufactured by Dedasa Co., Ltd.), and 3 parts by weight of alumina silica (JC-130, manufactured by Mizusawa Chemical Co., Ltd.) Using a 5 L super mixer (manufactured by Kawada Manufacturing Co., Ltd.), the mixture was mixed at room temperature and 1500 rpm for 2 minutes to obtain a resin composition powder containing fine powder.
[熱可塑性エラストマ一組成物パウダーの製造]  [Production of thermoplastic elastomer composition powder]
プロピレン一エチレン共重合体樹脂 (エチレン単位含有量 5重量%、 MFR 2 28£/1 0分 (】 1 K7 2 1 0 (荷重 2. 1 6 k g、 温度 2 30 °C) ) ) 40重量部、 スチレン一ブタジエン一スチレンブロック共重合体の水添物 (全スチレン単位含有量 1 5重量%、 水添されたブタジエン単位に対する炭素数 2以上の側鎖を有する水添されたブタジエン単位の割合 8 0 %、 水添率 9 8 %、 数平均分子量 1 3万、 MFR 3 0g/1 0分 (J I S K7 2 1 0 (荷重 2. 1 6 k g、 温度 2 3 0°C) ) ) 45重量部、 エチレン一プロピレン共重合体ゴム (住友化学社製、 S PO V0 1 4 1、 プロピレン単位含有量 2 7重量%、 MF R lgZ l O分 (J I S K7 2 1 0 (荷重 2. 1 6 k g、 温度 1 90 °C) ) ) 1 2重量部、 マイクロクリス夕リンワックス (日本精蠟社製、 H i M i c l 0 8 0) 3重量部、 酸化防止剤 (チバスべシャリティケミカルズ社製、 I RGANO X— 1 0 7 6) 0. 5重量部を二軸押出し機を用いて、 1 50°Cにて混練し、 熱 可塑性エラストマ一のペレットを得た。 このペレットを液体窒素を用いて、 — 1 20DCに冷却後、 冷却状態を保ったまま粉碎し、 熱可塑性エラストマ一組成物パ ウダ一を得た。 かくして得た熱可塑性エラストマ一組成物パウダー 1 00重量部 とシリカ (デダサ社製、 OX— 50) 1重量部及びアルミナシリカ (水沢化学社 製、 J C一 30) 2重量部をスーパーミキサー (川田製作所社製、 5 Lスーパ一 ミキサー) を用いて、 室温、 1 500 r pmで 2分間混合して、 微細紛体が配合 された熱可塑性ェラストマー組成物パゥダ一得た。 Propylene-ethylene copolymer resin (Ethylene unit content 5% by weight, MFR 2 28 £ / 10 minutes () 1 K7 210 (Load 2.16 kg, Temperature 230 ° C))) 40 parts by weight Hydrogenated styrene-butadiene-styrene block copolymer (total styrene unit content: 15% by weight, ratio of hydrogenated butadiene units having side chains having 2 or more carbon atoms to hydrogenated butadiene units 8 0%, hydrogenation rate 98%, number average molecular weight 130,000, MFR 30g / 10min (JIS K7 210 (load 2.16 kg, temperature 230 ° C))) 45 parts by weight , Ethylene-propylene copolymer rubber (manufactured by Sumitomo Chemical Co., Ltd., SPO V0 141, propylene unit content 27% by weight, MF R lgZ l O content (JIS K7 210 (load 2.16 kg, temperature 190 ° C))) 12 parts by weight, micro-crispy phosphorus wax (manufactured by Nippon Seisakusho, Hi M icl 08 0) 3 parts by weight, antioxidant (IRGANO X—11076, manufactured by Ciba Specialty Chemicals) 0.5 part by weight using a twin screw extruder at 150 ° C. Pellets of a thermoplastic elastomer were obtained. The pellets using liquid nitrogen, - after cooling to 1 20 D C, and Kona碎while maintaining the cooled state, to obtain a thermoplastic elastomer first composition Pas Uda scratch. 100 parts by weight of the thermoplastic elastomer composition powder thus obtained, 1 part by weight of silica (manufactured by Dedasa, OX-50) and 2 parts by weight of alumina silica (manufactured by Mizusawa Chemical Co., Ltd., JC-30) were mixed with a super mixer (Kawada Seisakusho) The mixture was mixed at room temperature at 1500 rpm for 2 minutes using a 5 L supermixer (manufactured by Sharp Corporation) to obtain a thermoplastic elastomer composition powder containing fine powder.
[粉末スラッシュ成形法による樹脂組成物の層及び熱可塑性エラス卜マーの層か らなる積層体の製造]  [Production of a laminate comprising a layer of a resin composition and a layer of a thermoplastic elastomer by a powder slush molding method]
熱可塑性エラストマ一組成物のパウダーを、 26 0°Cに加熱されたしぼ模様付 き金型 (3 0 cm角) の成形面上に供給し、 5秒間放置した後、 余剰のパウダー を払い落とし、 次いで樹脂組成物パウダーを熱可塑性エラストマ一組成物のパゥ ダ一が付着した金型面に供給し、 1 0秒間放置した後、 余剰のパウダーを払い落 とし、 金型を 260°Cのオーブン内にて 30秒間放置した。 その後、 熱可塑性ェ ラストマ一組成物層及び樹脂組成物層からなるシート状に溶融した金型を冷却し、 該金型からシートを脱型することにより、 樹脂組成物の層及び熱可塑性エラスト マ一の層からなる積層体を得た。 粉末スラッシュ成形法により得られた成形シ一 卜厚みは約 lmmであった。  The powder of the thermoplastic elastomer composition is supplied onto the molding surface of a mold (30 cm square) having a grain pattern heated to 260 ° C, left for 5 seconds, and then the excess powder is removed. Then, the resin composition powder is supplied to the mold surface to which the powder of the thermoplastic elastomer composition has adhered, and after leaving it for 10 seconds, excess powder is blown off and the mold is placed in an oven at 260 ° C. For 30 seconds. Thereafter, the mold melted into a sheet composed of the thermoplastic elastomer composition layer and the resin composition layer is cooled, and the sheet is released from the mold, whereby the resin composition layer and the thermoplastic elastomer are removed. A laminate consisting of one layer was obtained. The molded sheet thickness obtained by the powder slush molding method was about lmm.
[ポリウレタン発泡層が積層された積層体の製造]  [Manufacture of laminate with polyurethane foam layer laminated]
上記粉末スラッシュ成形法により得られた成形シ一トを樹脂組成物層面がポ リウレ夕ン発泡層と層続きになるようにポリウレタン発泡用金型にセットし、 ポ リウレタンの原料液 (グリセリンのプロピレンォキシド、 エチレンォキシド付加 物を主体としたポリオール、 水、 卜リエ夕ノールァミン、 トリエチレンジァミン 等からなる混合物とポリメリック MD I ) を 1 0秒間高速攪拌機により混合した 後、 上記のポリウレタン発泡用金型に供給し、 型締めした後、 発泡、 硬化させ、 熱可塑性エラストマ一の層と樹脂組成物の層とポリウレタン発泡層が順次積層さ れた積層体を得た。 一昼夜放置後、 積層体を 2 5 mm幅に切断し、 成形シートと ポリウレタン発泡層との接着強度の測定を行った。 結果を表 2に示す。 The molded sheet obtained by the above powder slush molding method was set in a polyurethane foaming mold so that the resin composition layer surface was continuous with the polyurethane foam layer, and a raw material solution of polyurethane (glycerin propylene) was used. Polyols mainly composed of oxides and ethylene oxide adducts, water, triethanolamine, triethylenediamine After mixing with a high-speed stirrer for 10 seconds, the mixture is fed to the above-mentioned mold for polyurethane foaming, closed, then foamed and cured to form a layer of thermoplastic elastomer and resin composition. A laminate in which a product layer and a polyurethane foam layer were sequentially laminated was obtained. After standing overnight, the laminate was cut to a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 2 shows the results.
実施例 6 Example 6
[樹脂組成物パウダーの製造]  [Production of resin composition powder]
グリシジルメ夕クリレートの含有量 1 8重量%、 酢酸ビニルの含有量 1重量% のエチレン一ダリシジルメタクリレート—酢酸ビニル共重合体(MFR 340 g Z1 0分 (J I S K— 72 1 0 (荷重 2. 1 6 k g, 温度 1 9 0 °C) ) ) 50 重量部、 テルペン一フエノール共重合体 (ヤスハラケミカル (株) 社製、 YP— 9 02) 2 0重量部、 ポリビニルアルコール ( (株) クラレ社製、 CP— 1 2 1 0) 2 0重量部、 エチレン一プロピレン共重合体 (住友化学工業 (株) 社製、 S PO V0 14 1) 1 0重量部、 酸化防止剤 (チバスべシャリティケミカルズ社 製、 I RGANOX 1 0 7 6) 0. 1重量部を二軸押出し機 ( (株) 日本製鋼所 製、 型式 TEX— 30 S S— 4 OW— 3 V) を用いて 1 80 °Cにて混練し樹脂組 成物を得、 ペレタイザ一にて裁断しペレットを得た。 このペレットを液体窒素を 用いて一 1 00°Cに冷却後、 冷却状態を保ったまま粉砕し、 樹脂組成物のパウダ —を得た。 かくして得た樹脂組成物パウダー 1 00重量部とシリカ (デダサ社製、 OX— 50) 3重量部、 及びアルミナシリカ (水沢化学社製、 J C一 30) 3重 量部をスーパ一ミキサー (川田製作所製、 5 Lスーパ一ミキサー) を用いて、 室 温、 1 50 0 r pmで 2分間混合して、 微細紛体が配合された樹脂組成物パウダ 一得た。  Glycidylmethacrylate acrylate content 18% by weight, vinyl acetate content 1% by weight of ethylene monodaricidyl methacrylate-vinyl acetate copolymer (MFR 340 g Z10 min. (JISK—7210 (load 2.16 kg, temperature 190 ° C))) 50 parts by weight, terpene-phenol copolymer (Yashara Chemical Co., Ltd., YP-902) 20 parts by weight, polyvinyl alcohol (Kuraray Co., Ltd., CP — 1 2 1 0) 20 parts by weight, ethylene-propylene copolymer (manufactured by Sumitomo Chemical Co., Ltd., SPO V0 141) 10 parts by weight, antioxidant (manufactured by Ciba Specialty Chemicals) I RGANOX 1 0 7 6) 0.1 Knead the resin at 180 ° C using a twin screw extruder (Model TEX-30 SS-4 OW-3 V, manufactured by Nippon Steel Works, Ltd.) at 180 ° C. The composition was obtained and cut with a pelletizer to obtain pellets. The pellets were cooled to 100 ° C. using liquid nitrogen, and then pulverized while keeping the cooling state to obtain a resin composition powder. 100 parts by weight of the resin composition powder thus obtained, 3 parts by weight of silica (manufactured by Dedasa, OX-50), and 3 parts by weight of alumina silica (manufactured by Mizusawa Chemical Co., Ltd., JC-30) were mixed with a super mixer (Kawada Seisakusho) The mixture was mixed at room temperature and 1500 rpm for 2 minutes using a 5 L super mixer) to obtain a resin composition powder mixed with fine powder.
[粉末スラッシュ成形法による成形シー卜及びポリウレ夕ン発泡層が積層された 積層体の製造]  [Manufacture of laminated body in which molded sheet by powder slush molding method and polyurethane foam layer are laminated]
実施例 5と同様にして、 熱可塑性エラストマ一の層と樹脂組成物の層とポリゥ レ夕ン発泡層が順次積層してなる粉末スラッシュ成形シートを得た。 一昼夜放置 後、 積層体を 2 5 mm幅に切断し、 成形シートとポリウレタン発泡層との接着強 度の測定を行った。 結果を表 2に示す。 In the same manner as in Example 5, a powder slush molded sheet obtained by sequentially laminating a layer of a thermoplastic elastomer, a layer of a resin composition, and a foamed layer of a polypropylene was obtained. Left overnight Thereafter, the laminate was cut into a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 2 shows the results.
比較例 3 Comparative Example 3
グリシジルメ夕クリレートの含有量 1 8重量%、 酢酸ビニルの含有量 1重量% のエチレン—グリシジルメ夕クリレート—酢酸ビニル共重合体(M F R 3 4 0 g Z 1 0分 (J I S K - 7 2 1 0 (荷重 2 . 1 6 k g , 温度 1 9 0 °C) ) )のぺ レットを、 液体窒素を用いて一 1 0 0 °Cに冷却後、 冷却状態を保ったまま粉碎し、 エチレン—ダリシジルメタクリレートー酢酸ビニル共重合体のパゥダ一を得た。  Glycidylmethyl acrylate content 18% by weight, vinyl acetate content 1% by weight ethylene-glycidylmethacrylate-vinyl acetate copolymer (MFR340gZ10min (JISK-7210 (load 2.16 kg, temperature 190 ° C))) The pellet was cooled to 100 ° C using liquid nitrogen, pulverized while maintaining the cooling state, and ethylene-daricidyl methacrylate A vinyl acetate copolymer powder was obtained.
[粉末スラッシュ成形法による成形シー卜及びポリゥレ夕ン発泡層が積層された 積層体の製造]  [Manufacture of laminated body formed by laminating molding sheet by powder slush molding method and polystyrene foam layer]
実施例 4と同様にして、 熱可塑性エラストマ一の層と上記にて得られたェチレ ンーグリシジルメ夕クリレ一トー酢酸ビニル共重合体の層とポリウレタン発泡層 が順次積層してなる積層体を得た。 一昼夜放置後、 積層体を 2 5 mm幅に切断し、 成形シートとポリウレタン発泡層との接着強度の測定を行った。 結果を表 3に示 す。  In the same manner as in Example 4, a laminate was obtained in which a layer of the thermoplastic elastomer, a layer of the ethylene-glycidylmethacrylonitrile-vinyl acetate copolymer obtained above, and a polyurethane foam layer were sequentially laminated. Was. After standing all day and night, the laminate was cut to a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 3 shows the results.
比較例 4 Comparative Example 4
[熱可塑性エラストマ一シートの製造]  [Manufacture of thermoplastic elastomer sheet]
熱可塑性エラストマ一組成物のパウダーを、 2 6 0 °Cに加熱されたしぼ模様付 き金型 (3 0 c m角) の成形面上に供給し、 1 2秒間放置した後、 余剰のパウダ 一を払い落とし、 金型を 2 6 0 °Cのオーブン内にて 6 0秒間放置した。 その後、 熱可塑性エラストマ一組成物層からなるシート状に溶融した金型を冷却し、 該金 型からシー卜を脱型することにより、 熱可塑性エラストマ一からなる粉末スラッ シュ成形シートを得た。 粉末スラッシュ成形法により得られた成形シ一トの厚み は約 l mmであった。 得られた熱可塑性エラストマ一シートの片面にプライマ一 (接着剤) (特殊色料工業 (株) 社製、 A D— 4 7 1 ) を塗布した。  The powder of the thermoplastic elastomer composition is supplied onto a molding surface of a mold (30 cm square) having a grain pattern heated to 260 ° C., left for 12 seconds, and then exposed to excess powder. Was removed and the mold was left in an oven at 260 ° C. for 60 seconds. Thereafter, the mold melted into a sheet composed of the thermoplastic elastomer composition layer was cooled, and the sheet was released from the mold to obtain a powder slush molded sheet composed of the thermoplastic elastomer. The thickness of the molded sheet obtained by the powder slush molding method was about lmm. A primer (adhesive) (AD-471, manufactured by Tokusekisho Kogyo Co., Ltd.) was applied to one surface of the obtained thermoplastic elastomer sheet.
上記粉末スラッシュ成形法により得られた成形シ一トをプライマ一塗布面が ポリウレ夕ン発泡層と層続きになるようにポリウレ夕ン発泡用金型にセットし、 ポリウレタンの原料液 (グリセリンのプロピレンォキシド、 エチレンォキシド付 加物を主体としたポリオール、 水、 トリエタノールァミン、 トリエチレンジアミ ン等からなる混合物とポリメリック MD I ) を 1 0秒間高速攪拌機により混合し た後、 上記のポリウレタン発泡用金型に供給し、 型締めした後、 発泡、 硬化させ、 熱可塑性エラストマ一の層とポリウレタン発泡層が積層してなる積層体を得た。 一昼夜放置後、 積層体を 2 5 mm幅に切断し、 成形シートとポリウレタン発泡層 との接着強度の測定を行った。 結果を表 3に示す。 The molded sheet obtained by the powder slush molding method is set in a polyurethane foaming mold so that the primer-coated surface is continuous with the polyurethane foam layer, A high-speed stirrer is used for 10 seconds to mix polyurethane raw material liquid (a mixture of polyols mainly composed of glycerin propylene oxide and ethylene oxide additives, water, triethanolamine, triethylene diamine, etc. and polymer MD I). Then, the mixture was supplied to the above-mentioned mold for polyurethane foaming, and after being clamped, foamed and cured to obtain a laminate in which a layer of a thermoplastic elastomer and a polyurethane foam layer were laminated. After standing overnight, the laminate was cut to a width of 25 mm, and the adhesive strength between the molded sheet and the polyurethane foam layer was measured. Table 3 shows the results.
表 1 table 1
実施 実施 実施 比較 比較  Implementation Implementation Implementation Comparison Comparison
例 1 例 2 例 3 例 1 例 2  Example 1 Example 2 Example 3 Example 1 Example 2
エチレン一グリシジノレ—  Ethylene-glycidinole
メタクリレート一 70 70 70 70 100  Methacrylate 70 70 70 70 100
酢酸ビニル共重合体  Vinyl acetate copolymer
テノレペン一フエノ一ノレ 30 10 10  Tenoropen Pennoen 30 10 10
共重合体 Y P— 9 0 2  Copolymer Y P— 9 0 2
ポリビュルアルコール 20 30  Polybutyl alcohol 20 30
C P - 1 2 1 0  C P-1 2 1 0
エチレン一ビニノレ  Ethylene monovinyl
アルコール共重合体 20  Alcohol copolymer 20
E P - E 1 0 5  E P-E 1 0 5
ポリウレタン接着強度 1750 275 730 20 10  Polyurethane adhesive strength 1750 275 730 20 10
( g / 5 O mm幅) (g / 5 O mm width)
表 2 Table 2
業 hの利用可能 H available
以上説明したとおり、 本発明により、 成形加工時に求められる溶融流動性と ポリウレタン発泡体との接着性のバランスに優れ、 プライマ一 (接着剤) を用い ることなくポリウレタンと強固に接着した積層体を得ることができる樹脂組成物 及び該樹脂組成物を用いて得られる積層体を提供することができる。  As described above, according to the present invention, it is possible to obtain a laminate that has an excellent balance between the melt fluidity required at the time of molding and the adhesiveness with the polyurethane foam, and that is firmly adhered to polyurethane without using a primer (adhesive). It is possible to provide a resin composition which can be obtained, and a laminate obtained by using the resin composition.

Claims

請 求 の 囲 Around the claim
1. 下記の成分 (A) 1 00重量部及び下記成分 (B) 3〜 1 00重量部を 含有する樹脂組成物。 1. A resin composition containing 100 parts by weight of the following component (A) and 3 to 100 parts by weight of the following component (B).
(A) :エポキシ基含有単量体一 α—才レフイン共重合体  (A): Epoxy group-containing monomer-α-olefin copolymer
(Β) :テルペン一フエノール共重合体  (Β): Terpene-phenol copolymer
2. 成分 (A) 1 0 0重量部に対してさらに下記の成分 (C) 3〜8 0重量 を含有する請求の範囲第 1項記載の樹脂組成物。  2. The resin composition according to claim 1, further comprising the following component (C) in an amount of 3 to 80 parts by weight based on 100 parts by weight of the component (A).
(C) :成分 (Α) 及び (Β) 以外の水酸基含有共重合体  (C): a hydroxyl group-containing copolymer other than the components (Α) and (Β)
3. 成分 (A) 1 00重量部に対してさらに下記の成分 (D) 5〜5 00 重量を含有する請求の範囲第 1項又は 2項記載の樹脂組成物。  3. The resin composition according to claim 1, further comprising 5 to 500 parts by weight of the following component (D) based on 100 parts by weight of component (A).
(D) :成分 (Α) 及び (Β) 以外のォレフィン系重合体  (D): an olefin polymer other than the components (Α) and (Β)
4. 請求の範囲第 1〜 3項のいずれかに記載の樹脂組成物の平均粒径 30〜 1 000 /imである粉末成形用樹脂組成物パウダー。  4. A resin composition powder for powder molding, wherein the resin composition according to any one of claims 1 to 3 has an average particle size of 30 to 1,000 / im.
5. 請求の範囲第 1〜 3項のいずれかに記載の樹脂組成物の層 (1) とポリ ウレタンの層 (2) を積層してなる積層体 (I ) 。  5. A laminate (I) obtained by laminating a layer (1) of the resin composition according to any one of claims 1 to 3 and a layer (2) of a polyurethane.
6. 請求の範囲第 1〜 3項のいずれかに記載の樹脂組成物の層 (1) と熱可 塑性エラストマ一の層 (3) を積層してなる積層体 (II) 。  6. A laminate (II) formed by laminating a layer (1) of the resin composition according to any one of claims 1 to 3 and a layer (3) of a thermoplastic elastomer.
7. 請求の範囲第 6項記載の積層体 (II) が粉末成形法により製造される積 層体の製造方法。  7. A method for producing a laminate, wherein the laminate (II) according to claim 6 is produced by a powder molding method.
8. 熱可塑性エラストマ一の層 (3) 、 請求の範囲第 1〜 3項のいずれかに 記載の樹脂組成物の層 (1) 及びポリウレタンの層 (2) を順次積層してなる積 層体 (III) 。  8. A laminated body obtained by sequentially laminating a layer (3) of a thermoplastic elastomer, a layer (1) of the resin composition according to any one of claims 1 to 3, and a layer (2) of a polyurethane. (III).
9. 熱可塑性エラストマ一の層 (3) 、 請求の範囲第 1〜 3項のいずれかに 記載の樹脂組成物の層 (1) 、 ポリウレタンの層 (2) 及び熱可塑性樹脂芯材層 (4) を順次積層してなる積層体 (IV) 。  9. Layer of thermoplastic elastomer (3), layer of resin composition (1) according to any of claims 1 to 3, layer of polyurethane (2), and core layer of thermoplastic resin (4) ) Are sequentially laminated.
PCT/JP2001/000400 2000-01-28 2001-01-22 Resin composition and layered product WO2001055256A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-019974 2000-01-28
JP2000019974 2000-01-28
JP2000-277768 2000-09-13
JP2000277768A JP2001279032A (en) 2000-01-28 2000-09-13 Resin composition and laminate

Publications (1)

Publication Number Publication Date
WO2001055256A1 true WO2001055256A1 (en) 2001-08-02

Family

ID=26584371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000400 WO2001055256A1 (en) 2000-01-28 2001-01-22 Resin composition and layered product

Country Status (2)

Country Link
JP (1) JP2001279032A (en)
WO (1) WO2001055256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646292B2 (en) 2011-08-24 2017-05-09 Follett Corporation Method and system for distributing digital media content

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162518A1 (en) 2000-12-20 2002-08-08 Sumitomo Chemical Co Resin composition, laminate and manufacture of the laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258202A (en) * 1995-03-27 1996-10-08 Showa Denko Kk Multilayered laminate
EP0816427A1 (en) * 1996-07-02 1998-01-07 SOLVAY (Société Anonyme) Composition based on polyolefins and ethylene/vinylacetate copolymers
JPH10296923A (en) * 1997-04-25 1998-11-10 Nippon Synthetic Chem Ind Co Ltd:The Laminate
JPH11157023A (en) * 1997-11-25 1999-06-15 Sekisui Chem Co Ltd Laminated sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258202A (en) * 1995-03-27 1996-10-08 Showa Denko Kk Multilayered laminate
EP0816427A1 (en) * 1996-07-02 1998-01-07 SOLVAY (Société Anonyme) Composition based on polyolefins and ethylene/vinylacetate copolymers
JPH10296923A (en) * 1997-04-25 1998-11-10 Nippon Synthetic Chem Ind Co Ltd:The Laminate
JPH11157023A (en) * 1997-11-25 1999-06-15 Sekisui Chem Co Ltd Laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646292B2 (en) 2011-08-24 2017-05-09 Follett Corporation Method and system for distributing digital media content

Also Published As

Publication number Publication date
JP2001279032A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
EP2592115B1 (en) Thermoplastic polymer composition and molded article
JP5270802B2 (en) Hot melt composition for slush molding
JPH11323073A (en) Thermoplastic polymer composition
EP2599833B1 (en) Thermoplastic polymer composition and molded article
WO2018143373A1 (en) Multilayer sheet for skin material
KR101552161B1 (en) Rubber sheet composition for bonding sole of shoes, and method for preparing sole of shoes
WO2001055256A1 (en) Resin composition and layered product
US6808810B2 (en) Resin composition, laminate and production of laminate
JPH08164588A (en) Composite plastic molding
JP3775546B2 (en) Thermoplastic polymer composition
CA3205473A1 (en) Thermoplastic polymer structure and methods for making the same
JP3380479B2 (en) Slush molded skin and molded article using the same
JP3160569B2 (en) Slush molded skin and molded body using the same
JP3034785B2 (en) Resin molded body having skin and method for producing the same
KR101878065B1 (en) Composition of Adhesive Tie-Resin for Polyethylene and PVC Multi-Layer Adhesion
JP2003192837A (en) Powder molding resin composition
JP4314442B2 (en) Laminated structure and manufacturing method thereof
JP4454940B2 (en) Powder molding resin composition
JP2002249551A (en) Resin composition, laminated product, preparation process of laminated product
JP2003011142A (en) Composite skin and method for manufacturing the same
JP2002249545A (en) Resin composition and laminated product
JP4085187B2 (en) Adhesive laminate, method for producing adhesive laminate, and multilayer laminate
JP3961285B2 (en) Resin composition for powder molding
WO2021054030A1 (en) Layered film and production method therefor
JP2000143897A (en) Thermoplastic elastomer composition, said composition powder and skin material composed of same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642