WO2001046720A1 - Elliptical polarizing plate, method for producing the same, and liquid crystal display comprising the same - Google Patents

Elliptical polarizing plate, method for producing the same, and liquid crystal display comprising the same Download PDF

Info

Publication number
WO2001046720A1
WO2001046720A1 PCT/JP2000/009097 JP0009097W WO0146720A1 WO 2001046720 A1 WO2001046720 A1 WO 2001046720A1 JP 0009097 W JP0009097 W JP 0009097W WO 0146720 A1 WO0146720 A1 WO 0146720A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
polarizing plate
polymer layer
film
Prior art date
Application number
PCT/JP2000/009097
Other languages
French (fr)
Japanese (ja)
Other versions
WO2001046720A8 (en
Inventor
Toshihiro Ichizuka
Hiroyasu Ishikawa
Original Assignee
Nippon Petrochemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP36537899A external-priority patent/JP2001183525A/en
Priority claimed from JP36537999A external-priority patent/JP2001183526A/en
Application filed by Nippon Petrochemicals Co., Ltd. filed Critical Nippon Petrochemicals Co., Ltd.
Publication of WO2001046720A1 publication Critical patent/WO2001046720A1/en
Publication of WO2001046720A8 publication Critical patent/WO2001046720A8/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • the present invention relates to an elliptically polarizing plate used to enhance the display performance of a liquid crystal display device, a method for manufacturing the same, and a liquid crystal display device using the same.
  • Liquid crystal display devices have the advantages of thinness, light weight, and low power consumption.However, for example, complete black-and-white display has not been achieved with the STN type liquid crystal display device. At present, liquid crystal display devices with excellent display performance have not yet been realized.
  • Some means for improving the display performance of the liquid crystal display device have been proposed.
  • One of them is to arrange a retardation film between the polarizing plate and the liquid crystal cell of the liquid crystal display device.
  • This method has an advantage that the method can be easily carried out simply by bonding a retardation film to a polarizing plate to form an elliptically polarizing plate without significantly changing the manufacturing process of the liquid crystal display device.
  • the thickness is increased by the amount of the retardation film and the adhesive layer for laminating the retardation film, and when wound into rolls in the manufacturing process of elliptically polarizing plates, the amount of winding per roll is reduced and productivity is poor.
  • the thickness of the liquid crystal layer and the thickness of the final product increase.
  • the interface between the polarizing plate and the retardation film may peel off under high-temperature or high-humidity conditions due to differences in the expansion and contraction behavior of each layer due to heat and humidity.
  • JP-A-4-157017 and JP-A-6-224317 propose an optically anisotropic element in which a liquid crystalline polymer is fixed in orientation.
  • a liquid crystalline polymer since the orientation axis angle can be set arbitrarily, various elliptically polarizing plates can be manufactured by continuously laminating a long film form.
  • the thickness of the elliptically polarizing plate may increase, and the interface between the polarizing plate and the optically anisotropic element may be broken under high-temperature or high-humidity conditions.
  • Japanese Patent Application Laid-Open No. Hei 8-277841 describes a liquid crystal polymer layer transferred onto a peelable substrate. This method may simplify the layer structure and reduce the total film thickness, but if an elliptically polarizing plate with excellent optical performance, quality, and durability under high temperature and high humidity conditions cannot be obtained, There was.
  • An object of the present invention is to reduce the thickness by simplifying the layer structure of an elliptically polarizing plate, to prevent problems such as peeling even under high temperature and high humidity conditions, and to further improve optical characteristics.
  • Elliptically polarizing plate that can be continuously bonded from a long film by setting the orientation axis angle of the element to the absorption axis of the polarizing plate, a method of manufacturing the same, and a liquid crystal display using the same It is to provide a device.
  • a first aspect of the present invention is an elliptically polarizing plate having a liquid crystal polymer layer and a polarizing element, wherein the optically anisotropic element (a) having a liquid crystal polymer layer oriented on a cellulose triacetate film and a light-transmitting protective element are provided.
  • An elliptically polarizing plate characterized in that a polarizing element is sandwiched between the film and the film (b), and the optically anisotropic element is subjected to a vulcanization process.
  • a second aspect of the present invention is the above-mentioned elliptically polarizing plate, wherein a light-transmitting overcoat layer is provided on the surface of the liquid crystal polymer layer.
  • a third aspect of the present invention is the above-mentioned elliptically polarizing plate, wherein the light-transmitting overcoat layer is made of an acryl-based resin.
  • a fourth aspect of the present invention resides in the above-mentioned elliptically polarizing plate, wherein the liquid crystal polymer layer is made of optically positive uniaxial liquid crystal molecules.
  • a fifth aspect of the present invention is the above-mentioned elliptical polarization, wherein the orientation direction of the liquid crystal polymer near one of the two surfaces of the liquid crystal polymer layer is not parallel to the MD direction.
  • a sixth aspect of the present invention is the above-mentioned elliptically polarizing plate, wherein the optically anisotropic element, the translucent protective film, and the polarizing element are in the form of a long film.
  • a seventh aspect of the present invention is to form a liquid crystal polymer layer on a cellulose triacetate film
  • an optically anisotropic element is manufactured by providing a translucent overcoat layer on the surface of the liquid crystal polymer layer, and then the optically anisotropic element is subjected to a vulcanization treatment. Thereafter, the polarizing film is interposed with an adhesive layer. And bonding the optically anisotropic element and the light-transmitting protective film so as to be sandwiched therebetween.
  • An eighth aspect of the present invention resides in a liquid crystal display device characterized in that the elliptically polarizing plate is disposed on at least one surface of a liquid crystal cell.
  • a ninth aspect of the present invention is a method for producing an elliptically polarizing plate having a liquid crystal polymer layer and a polarizing element, wherein the liquid crystal polymer layer supported on a substrate which can be separated from the polarizing element is separated by an adhesive layer.
  • a method for manufacturing an elliptically polarizing plate characterized by laminating.
  • a tenth aspect of the present invention is the ninth method, wherein the surface of the liquid crystal polymer layer formed on the removable substrate is protected by a transparent overcoat layer.
  • the eleventh aspect of the present invention resides in the tenth method, wherein the translucent overcoat layer is made of an acrylic resin.
  • a twelfth aspect of the present invention is the method according to any one of the ninth to eleventh aspects, wherein the liquid crystal polymer layer is made of optically positive uniaxial liquid crystal molecules.
  • a thirteenth aspect of the present invention is the liquid crystal display device according to the ninth to eleventh features, wherein the alignment direction of the liquid crystal polymer in the vicinity of one of the two side surfaces of the liquid crystal polymer layer is not parallel to the MD direction. Is in one of the ways.
  • a liquid crystal polymer layer supported on a removable substrate is a long filter.
  • the present invention is directed to any one of the ninth to thirteenth methods in which the bonding is performed continuously in a lume form.
  • a fifteenth aspect of the present invention is a liquid crystal display device characterized in that an elliptically polarizing plate manufactured by any one of the ninth to fourteenth methods is disposed on at least one surface of a liquid crystal cell.
  • FIG. 1 A shows the above-described first to eighth typical examples of the present invention, and B shows the ninth to 13th typical examples.
  • protective film (T AC) is a protective film, and a typical example thereof is a cellulose triacetate (T AC) film.
  • Polyizing film indicates a typical example of a polarizing element.
  • O C layer means (translucent) over-coat layer.
  • Trip adhesive means either an adhesive or an adhesive.
  • the liquid crystal polymer layer used in the elliptically polarizing plate of the present invention can be obtained, for example, by cooling a liquid crystal polymer oriented on an alignment treatment substrate to a glass transition temperature (T g) or lower and fixing the orientation.
  • T g glass transition temperature
  • the thermotropic liquid crystal polymer used must be able to maintain the molecular alignment state of the liquid crystal phase even when cooled from the molten state (liquid crystal state) to Tg or less.
  • the liquid crystal phase of the liquid crystal polymer when melted may have any molecular arrangement structure such as smectic, nematic, twisted nematic, and cholesteric.
  • the liquid crystal phase has a homogenous alignment and a homeotropic alignment near the alignment substrate and the air interface, respectively.
  • liquid crystal polymer for example, a liquid crystal polymer having a mesogen in the main chain such as polyester, polyamide, polycarbonate, and polyesterimide, or a side of polyacrylate, polymethacrylate, polymalonate, polysiloxane, etc. Examples thereof include a liquid crystal polymer having a mesogen in a chain.
  • polyester a polymer containing an orf-substituted aromatic unit as a constituent component is most preferable, but a polymer containing as a constituent component an aromatic unit having a bulky substituent in place of the ortho-substituted aromatic unit can also be used.
  • Twisted nematic alignment can be achieved by introducing an optically active unit into the liquid crystal polymer chain or by blending an optically active compound.
  • Even oligomers and low molecular weight compounds are thermally crosslinked or photocrosslinked in a state where they are cooled to a liquid crystal state or liquid crystal transition temperature or lower and are fixed in orientation by introducing a crosslinkable group or blending an appropriate crosslinking agent.
  • Liquid crystal polymers that can be polymerized by such means are also included in the liquid crystal polymers. Further, even a discotic liquid crystal compound can be used without any problem.
  • liquid crystal polymer one having optically positive or negative uniaxiality is usually used. Their optical properties are appropriately selected depending on the functions required of the elliptically polarizing plate. In the case of a liquid crystal polymer layer having a twisted nematic orientation, a liquid crystal polymer exhibiting positive uniaxiality is preferably used. .
  • the T g of the liquid crystal polymer is preferably room temperature or higher, and more preferably 50 ° C. or higher, since it affects the alignment stability after the alignment is fixed. T g can be adjusted by the type of monomer used in the liquid crystal polymer, monomer ratio, polymerization conditions and the like, but can also be adjusted by using the above-mentioned crosslinking means in combination.
  • the triacetate cell aperture film used for the optically anisotropic element of the embodiment A of FIG. 1 (the first to eighth aspects of the present invention) is basically used as a transparent support film, and the elliptically polarizing plate mainly has a color. When used for compensation, it is desirable that the optical anisotropy be as small as possible. When used for viewing angle compensation, those having optical characteristics that complement the optical characteristics of the liquid crystal polymer layer can be used, and those that are optically negative uniaxial or biaxial are usually used. Can be
  • a method for forming a liquid crystal polymer layer on a cellulose triacetate film includes a method in which a liquid crystal polymer is aligned on an alignment-treated cellulose triacetate film and a liquid crystal polymer layer is directly formed on the film.
  • a method b in which a liquid crystal polymer is oriented on another orientation substrate to form a liquid crystal polymer layer, and then the layer is transferred onto a cellulose triacetate film.
  • a cellulose triacetate film provided with an organic or inorganic alignment film is preferably used. Examples of the organic alignment film include a polyvinyl alcohol-polyimide derivative.
  • the surface provided with the alignment film is subjected to an alignment process such as a rubbing process.
  • the alignment substrate may be, for example, a thermosetting resin such as polyimide, epoxy resin, or phenol resin, a polyamide such as nylon; a polyether imide; a polyether ketone; a polyether ether ketone (PEEK); Polyketone; Polyether sulfone; Polyphenylene sulfide; Polyphenylene oxide; Polyester such as polyethylene terephthalate and polybutylene terephthalate; Polyacetal; Polyacrylonitrile; Poly (meth) acrylate; A polymer film exemplified by a thermoplastic resin such as polyvinyl alcohol can be used. Further, an organic thin film made of another resin described above may be formed on the surface of the polymer film.
  • a thermosetting resin such as polyimide, epoxy resin, or phenol resin
  • a polyamide such as nylon
  • PEEK polyether ether ketone
  • Polyketone Polyether sulfone
  • Polyphenylene sulfide Polyphenylene oxide
  • the polymer film is subjected to an orientation treatment such as a rubbing treatment and provided to an oriented substrate.
  • an orientation substrate is also used in the embodiment B.
  • such an alignment substrate is not suitable for use in an optically anisotropic element from the viewpoint of optical isotropic properties, translucency, and physical characteristics. Therefore, a liquid crystal polymer layer is formed on a cellulose triacetate film. To obtain an optically anisotropic element.
  • a rubbing treatment is usually applied to align a liquid crystal polymer on an alignment substrate (hereinafter, including cellulose triacetate film).
  • an alignment substrate hereinafter, including cellulose triacetate film.
  • the rubbing treatment can be performed at a predetermined arbitrary angle with respect to the MD direction of the long oriented substrate.
  • the angle of the rubbing direction with respect to the MD direction is appropriately set according to the function of the elliptically polarizing plate.
  • the rubbing is usually performed in an oblique direction with respect to the MD direction. Is preferred.
  • the angle of the oblique direction is preferably in the range of 144 degrees to +45 degrees.
  • the rubbing treatment can be performed by an arbitrary method, for example, a rubbing roll is arranged at an arbitrary angle with respect to the MD direction of the long film on a stage for transporting the long film in the MD direction, and the film is removed.
  • the rubbing roll is rotated while being conveyed in the MD direction, and the film surface is rubbed.
  • Rubbing roll and stage This is a mechanism that can freely adjust the angle formed by the moving direction of the rubbing roll, and an appropriate rubbing cloth material is attached to the surface of the rubbing roll.
  • a method of forming a liquid crystal polymer layer by bringing the liquid crystal polymer into contact with the rubbed surface of the alignment substrate for example, a method of dissolving the liquid crystal polymer in an appropriate solvent, coating and drying, or A method of directly extruding a liquid crystal polymer with a T-die or the like is used. From the viewpoint of the uniformity of the film thickness, a method of applying a solution and drying is appropriate.
  • the method for applying the liquid crystal polymer solution is not particularly limited, and examples thereof include a die coating method, a slot die coating method, a slide die coating method, a roll coating method, and a bar coating method.
  • a dipping pulling method or the like can be adopted.
  • the solvent is removed by an appropriate drying method to form an unoriented liquid crystal polymer layer.
  • the liquid crystal polymer is oriented by heating at a predetermined temperature for a predetermined time, and then cooled to a temperature of T g or less to form a liquid crystal polymer layer having a fixed orientation.
  • the thickness is not particularly limited as long as the function of the elliptically polarizing plate is exhibited, and is approximately 0.05 m to 100 / m, preferably approximately 0.1 001 to 3001. is there.
  • any adhesive can be used as long as it is translucent and optically isotropic, and examples thereof include acrylic, epoxy, ethylene monoacetate, and rubber adhesives.
  • an acrylic adhesive is preferably used.
  • the liquid crystal polymer layer having a fixed orientation formed on the cellulose triacetate film is made of a light-curing, electron beam-curing or thermosetting acrylic resin to protect the surface.
  • An overcoat layer is provided.
  • the liquid crystal polymer layer is formed by a method such as crosslinking, it may not be necessary to provide a translucent overcoat layer.
  • an elliptically polarizing plate is manufactured by using an optically anisotropic element as a protective film for a polarizing element.
  • the number of layers constituting the elliptically polarizing plate can be reduced as compared with the case where the optically anisotropic element is bonded to the polarizing plate whose both sides of the polarizing element are protected by the cellulose triacetate film.
  • the influence of shrinkage strain of each layer due to heat or humidity is reduced, and defects such as peeling at the bonded interface can be eliminated.
  • the optically anisotropic element is subjected to a curing treatment before bonding to the polarizing element.
  • the aging treatment is usually performed by contacting with an aqueous alkali solution.
  • aqueous alkali solution potassium hydroxide, sodium hydroxide, or the like is used.
  • the concentration of the alkali is about 0.1 to 10%, preferably about 0.5 to 5%, and more preferably about 1 to 3%.
  • a dilute solution of about% is sufficient.
  • mild conditions of 1 to 60 minutes at room temperature, preferably 30 minutes or less, more preferably 15 minutes or less are sufficient. If the overcoat layer is provided on the liquid crystal polymer layer, the liquid crystal polymer layer is not eroded or damaged in the curing step.
  • polarizing element used in the present invention an element obtained by adsorbing a polarizing element such as iodine or a dichroic dye on a base material such as a stretched PVA film is generally used.
  • a polarizing element is formed as a polarizing plate with both sides sandwiched by protective films, and usually, a single film of triacetate cell orifice is used as the protective film.
  • an elliptically polarizing plate can be obtained by using the above-described optically anisotropic element as a protective film on at least one surface of the polarizing element.
  • the polarizing element and the optically anisotropic element are bonded together with an acrylic, SBR, or silicone adhesive or adhesive.
  • the optically anisotropic element can be bonded to the polarizing element either on the liquid crystal polymer layer side where the translucent overcoat layer is provided or on the cellulose triacetate film side. And a polarizing element are preferably attached to each other.
  • the translucent protective film used in the present invention the above optically anisotropic element is used. Power that can be used ⁇ It is preferable to use a light-transmissive film with low optical anisotropy, which is marketed under the trade names of ZONEX, ART ⁇ N, FUJITAC, etc., with small birefringence.
  • the translucent protective film and the polarizer are formed in the same manner as in the case of bonding an optically anisotropic element.
  • the liquid crystal polymer layer formed on the alignment substrate film is then transferred to a removable substrate.
  • This method is a method in which the liquid crystal polymer layer is transferred to a detachable substrate by using an appropriate adhesive.
  • This adhesive layer is optically isotropic, has an adhesive force on both the liquid crystal polymer layer and the peelable substrate after curing, and has another substrate bonded to the liquid crystal polymer layer side. In this case, there is no particular limitation as long as the detachable substrate can be detached even after bonding. Examples of such adhesives include photo-curable, electron beam-curable, and thermo-curable adhesives, and among them, photo-curable acrylic adhesives are preferred.
  • the cured adhesive layer also functions as an overcoat layer for protecting the liquid crystal polymer layer.
  • the releasable substrate used in the present invention is not particularly limited as long as it is a substrate having releasability and self-supporting property, but usually, a plastic film is used.
  • the term “releasability” as used in the present invention means that, when the liquid crystalline polymer layer and the substrate are bonded via an adhesive, an appropriate adhesive force is maintained, and when the substrate is separated, the resin is cured. It means that separation is possible at the interface between the adhesive layer and the substrate.
  • the peelable substrate film used in the present invention usually has a peel strength at an interface with an adhesive (after curing) of 180 ° (a 180 ° peel test, a peeling speed of 30 cmZ), which is usually 0.1 ⁇ m. 5 to 8 ON / 25 mm.
  • a separation strength of 2 to 50 NZ 25 mm is used.
  • the plastic film suitable as the detachable substrate include polyethylene, polypropylene, and olefin-based resins such as 4-methylpentene-11 resin, polyamide, polyimide, polyamide amide, polyether imide, and polyether imide.
  • Ether ketone polyether ether ketone, polyether sulfone, polyketone sulfide, polysulfone, polystyrene, polyphenylene sulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyacetal, polycarbonate
  • the Poly Binni Alcohol, cellulosic plastics and the like are examples of the like.
  • plastic films may be used by themselves, or those coated with silicone, organic or inorganic thin films, or chemically-coated ones to provide appropriate release properties. Those that have been subjected to a treatment or those that have been subjected to a physical treatment such as corona discharge treatment can be used.
  • polypropylene, polyether ether ketone, polyethylene terephthalate, polycarbonate, and plastic films obtained by subjecting these film surfaces to silicone treatment or corner discharge treatment have both an adhesive and appropriate adhesiveness and releasability. This is desirable.
  • a liquid crystal polymer layer formed on a substrate that can be separated from the polarizing element and whose surface is protected by a translucent overcoat layer is an adhesive represented by an acrylic, SBR, or silicon
  • the elliptically polarizing plate of the present invention is obtained by laminating with an adhesive.
  • a light-transmitting overcoat layer made of a photocurable, electron beam-curable or thermosetting acryl-based resin is provided. If an elliptically polarizing plate is manufactured without providing a light-transmitting overcoat layer, the liquid crystal polymer layer may be damaged, and an elliptically polarizing plate with excellent optical performance and quality may not be obtained.
  • the polarizing element may be supplied in a form in which both sides are protected by a triacetate cell mouth film, or after the polarizing element and the liquid crystal polymer layer are directly bonded, the peelable substrate film is removed, and then Both sides of the polarizing element side and the liquid crystal polymer layer side may be protected with a cellulose triacetate film.
  • an elliptically polarizing plate can be obtained by removing the substrate film that can be separated at an appropriate time after lamination with the polarizing element.
  • the liquid crystal polymer layer (optically anisotropic element) can be continuously supplied in the form of a long film.
  • the lamination operation can be performed continuously.
  • the liquid crystal polymer layer (optically anisotropic element) and the polarizing element it is necessary to stack the transmission axis of the polarizing element and the alignment axis near either one of the two interfaces of the liquid crystal polymer layer at a specific angle.
  • the liquid crystal polymer layer of the present invention can set the orientation angle in any direction, It is possible to laminate one after the other in the MD direction.
  • the elliptically polarizing plate of the present invention is arranged in a liquid crystal cell, it is necessary that the liquid crystal polymer layer side of the elliptically polarizing plate be on the liquid crystal cell side.
  • the elliptically polarizing plate in the present invention includes a so-called circularly polarizing plate and a linearly polarizing plate.
  • liquid crystal polymer solution 2 A 1 Owt% methylene chloride solution of the side chain type acrylic polymer represented by the formula (II) was prepared.
  • a rubbing roll of 150 mm ⁇ around which a rayon cloth is wound is set at an angle, and continuously rotated by rotating at high speed. Perform rubbing, and align the substrate with a rubbing angle of 45 °. I got Irum.
  • the rubbing angle is an angle clockwise from the MD direction when the rubbing surface is viewed from above.
  • the solution obtained in Liquid Crystal Polymer Solution Preparation Example 1 was continuously applied on the alignment substrate film using a die coater and dried to form an unoriented liquid crystal polymer layer. The liquid crystal polymer was aligned by heat treatment at 100 ° C. for 10 minutes, and then cooled to room temperature to fix the alignment.
  • This liquid crystal polymer layer had a twisted nematic orientation, a twist angle of 230 ° and an And of 0.84 m.
  • the liquid crystal polymer layer was transferred to an uncured 80 m-thick cellulose triacetate film using an ultraviolet-curable acrylic adhesive.
  • the same acryl-based adhesive was applied to the surface of the liquid crystal polymer layer for surface protection and then cured to form a light-transmitting overcoat layer.
  • an optically anisotropic element A having a total thickness of about 100 ⁇ m was obtained.
  • Alkyl-modified polyvinyl alcohol is applied to a long, 80-inch thick cellulose triacetate film that has not been subjected to oxidation treatment, dried, and then subjected to a rubbing treatment in the same manner as in the production example of optical anisotropic element A.
  • a rubbing treatment in the same manner as in the production example of optical anisotropic element A.
  • the solution prepared in Preparation Example 2 of the liquid crystal polymer solution was applied to the alignment substrate film, dried, and then subjected to a heat alignment treatment to fix the alignment of the liquid crystal polymer layer.
  • This liquid crystal polymer layer was in a nematic orientation, and the An was 0.8 ⁇ m.
  • An UV-curable acrylic adhesive was applied to the liquid crystal polymer layer side for surface protection to obtain an optically anisotropic element B having a total thickness of about 100 / m.
  • optically anisotropic element A was immersed in a 2% aqueous hydration solution at room temperature for 5 minutes to carry out a curing treatment, washed in running water, and dried.
  • a cured optically anisotropic element A is continuously attached to one side of a polarizing element in which iodine is adsorbed on stretched polyvinyl alcohol using an acrylic adhesive such that the liquid crystal polymer layer is on the outside.
  • An elliptically polarizing plate A of the present invention was produced by bonding a cured cellulose triacetate film to the other surface of the polarizing element. The total film thickness was about 200 m. Optical inspection of the elliptically polarizing plate A showed no damage such as spots or scratches on the liquid crystal polymer layer.
  • optically anisotropic element A side of this elliptically polarizing plate A is attached to a glass plate via an ataryl adhesive, put in a constant temperature and humidity chamber at 60 ° C and 90% RH, and taken out after elapse of 500 hours. Observation revealed no abnormalities such as peeling or bubbles.
  • Example 2 Preparation of elliptically polarizing plate B:
  • An elliptically polarizing plate B was obtained in the same manner as in Example 1 except that the optically anisotropic element B was used instead of the optically anisotropic element A.
  • the total film thickness was about 20 Om.
  • Optical examination of this elliptically polarizing plate B showed no damage such as spots or scratches on the liquid crystal polymer layer.
  • the optically anisotropic element B side of the elliptically polarizing plate B is attached to a glass plate via an ataryl adhesive, put in a constant temperature and humidity chamber at 60 ° C and 90% RH, and taken out after elapse of 500 hours. Upon observation, no abnormalities such as peeling or foaming were observed.
  • Example 3 Preparation of elliptically polarizing plate C:
  • An elliptically polarizing plate C was obtained in the same manner as in Example 1 except that the optically anisotropic element C was used instead of the optically anisotropic element A.
  • the total film thickness was about 200 / m.
  • Optical inspection of the elliptically polarizing plate C showed no damage such as spots or scratches on the liquid crystal polymer layer.
  • the optically anisotropic element C side of the elliptically polarizing plate C is adhered to a glass plate via an acrylic adhesive, placed in a constant temperature and humidity chamber at 60 ° C and 90% RH, and taken out after a lapse of 500 hours. Upon observation, no abnormalities such as peeling or foaming were observed.
  • Example 4
  • a liquid crystal display device was manufactured.
  • the elliptically polarizing plate C is arranged on both sides of the optically anisotropic element C such that the side of the optically anisotropic element C is close to the driving liquid crystal cell, and the rubbing direction of the optically anisotropic element C and the orientation angle of the liquid crystal adjacent to the liquid crystal cell are 90 °. It was arranged so that it might become.
  • the driving liquid crystal cell used ZL 1-47992 as the liquid crystal material, and the cell parameters were cell gap 4.8 ⁇ m, twist angle 90 ° (left twist), and pretilt angle 4 °. The viewing angle characteristics of this liquid crystal display device were wider than those without the optically anisotropic element C.
  • Optical anisotropic element E was obtained in exactly the same manner as in optical anisotropic element A, except that an acrylic adhesive for surface protection was not applied to the liquid crystal polymer layer.
  • Elliptically polarized light obtained by adhering an optically anisotropic element D to one side of the polarizing element so that the liquid crystal polymer layer is on the outside, and adhering a cellulose triacetate film to the other side in accordance with Example 1.
  • Plate D was obtained.
  • An acrylic adhesive was applied to the optically anisotropic element D side of the elliptically polarizing plate D and attached to a glass plate, and the same tests as in Examples 1 and 2 were performed. Peeling was observed between the polarizing element and the cellulose triacetate surface of the optically anisotropic element D.
  • Comparative Example 2 (Preparation of elliptically polarizing plate E): The optically anisotropic element E was immersed in a 2% aqueous hydroxide solution at room temperature for 5 minutes to carry out a curing treatment, washed in running water, and dried.
  • a cured cellulose triacetate film was attached to both sides of a polarizing element in which iodine was adsorbed to the stretched polyvinyl alcohol, to produce a polarizing plate.
  • the elliptically polarizing plate F was manufactured by continuously bonding the liquid crystal polymer layer side of the optically anisotropic element B to this polarizing plate via an acrylic-based adhesive without subjecting it to a vulcanizing treatment.
  • the elliptically polarizing plate F is as thick as about 300 xm and the winding thickness is large, so that the processing length in one operation must be shorter than that of the elliptically polarizing plates of Examples 1 and 2. Was not obtained.
  • An acryl-based adhesive was applied to the optically anisotropic element B side of the elliptically polarizing plate F and attached to a glass plate, and the same test as in Example 2 was carried out. .5 mm peeling was observed.
  • This liquid crystal polymer layer had a twisted nematic orientation, a twist angle of ⁇ 230 ° and an And of 0.84 m.
  • An ultraviolet-curable acryl-based adhesive is applied to the liquid crystal polymer layer on the PEEK film, bonded to a polyethylene terephthalate (PET) film, cured, separated from the PEEK film, and the liquid crystal polymer layer is PET. Transcribed on film Was. Next, apply the same acrylic adhesive to the surface of the liquid crystal polymer layer, bond it to the PET film, and cure it.
  • PET polyethylene terephthalate
  • PET film (separable substrate) Z-cured acrylic adhesive layer (translucent overcoat) (Coating layer) Z liquid crystal polymer layer No-cured ataryl adhesive layer (light-transmitting overcoat layer) A laminated film A composed of a ZPET film (separable substrate) was obtained.
  • a polarizing plate made by laminating 80 m thick cellulose triacetate (TAC) film with an acrylic adhesive on both sides of a polarizing element in which iodine is adsorbed to stretched polyvinyl alcohol. And the above laminated film A were continuously laminated via an acryl-based adhesive while continuously peeling the PET film on one side thereof, thereby producing an elliptically polarizing plate G.
  • the total thickness of this elliptically polarizing plate is about 200 m: o
  • the PET film on the liquid crystal polymer layer side was peeled off from the elliptically polarizing plate G, and attached to a glass plate via an acryl-based adhesive to form a test piece.
  • the test pieces were placed in a constant temperature oven at 80 ° C dry and a constant temperature / humidity oven at 60 ° C 90% RH.Each 500 hours later, they were removed and observed.No abnormality such as peeling or foaming was observed under both conditions. The power that has come.
  • a long PPS film having a width of 65 Omm and a thickness of 80 ⁇ m was subjected to rubbing treatment in the same manner as in Example 5 to obtain an oriented substrate film having a rubbing angle of 45 °.
  • the solution prepared in Preparation Example 2 of the liquid crystal polymer solution was applied to the above-mentioned alignment substrate film, dried and then subjected to a heating alignment treatment to fix the alignment of the liquid crystal polymer layer.
  • This liquid crystal polymer layer was in a nematic orientation, and had an And of 0.
  • a laminated film B was produced in the same manner as in Example 5, and an elliptically polarizing plate H was produced.
  • the total film thickness of this elliptically polarizing plate was about 200 m.
  • test piece was attached to a glass plate via an adhesive.
  • the test pieces were placed in a constant temperature oven at 80 ° C dry and a constant temperature / humidity oven at 60 ° C 90% RH.Each 500 hours later, they were taken out and observed.In both conditions, abnormalities such as peeling and foaming were observed. The power that was not recognized at all.
  • the PET film on the liquid crystal polymer layer side was peeled off from the elliptically polarizing plate I, and affixed to a glass plate via an acryl-based adhesive to form a test piece.
  • the test specimens were placed in a constant temperature oven at 80 ° C dry and a constant temperature / humidity oven at 60 ° C 90% RH.After 500 hours, they were taken out and observed.In both conditions, abnormalities such as peeling and bubbles were observed. Was not recognized at all.
  • a liquid crystal display device was manufactured using the elliptically polarizing plate I.
  • the elliptically polarizing plate I was arranged so that the liquid crystal polymer layer side was close to the driving liquid crystal cell, and was arranged such that the rubbing direction of the liquid crystal polymer layer and the orientation angle of the liquid crystal adjacent to the liquid HB cell were 90 °. .
  • the driving liquid crystal cell used ZL 1-4792 as a liquid crystal material, and the cell parameters were a cell gap of 4.8 / m, a twist angle of 90 ° (left twist), and a pretilt angle of 4 °. The viewing angle characteristics of this liquid crystal display were wider than those without the liquid crystal polymer layer. Comparative Example 4 (Preparation of elliptically polarizing plate K):
  • a UV curable acrylic adhesive was applied to the liquid crystal polymer layer formed on the film obtained in Example 5 in accordance with Example 5 according to Example 5, and the thickness of the film was not reduced to 80 m. It was cured after bonding with a TAC film. Next, the PEEK film was peeled off, and the liquid crystal polymer layer was transferred onto the TAC film. Apply the same acrylic adhesive to the liquid crystal polymer layer side to protect the surface, and bond it to the PET film to form a PE TZ cured acrylic adhesive layer Z liquid crystal polymer layer Z cured acrylic adhesive layer AC A film was obtained.
  • An elliptically polarizing plate K was produced by continuously laminating the PET film from the laminated film to the polarizing plate of Example 5 via an acrylic adhesive while continuously removing the PET film.
  • the total film thickness of this elliptically polarizing plate was as thick as about 300 ⁇ m.
  • Example 5 Without forming a surface protective layer on the liquid crystal polymer layer transferred on the PET film obtained in Example 5, the polarizer of Example 5 was continuously bonded to the polarizing plate via an acryl-based adhesive to form an ellipse. A polarizing plate L was produced. When an optical inspection was performed on the elliptically polarizing plate L, many spots and scratches were considered to be caused by damage to the liquid crystal polymer layer. An acryl-based adhesive was applied to the liquid crystal polymer layer side of the elliptical polarizing plate L and attached to a glass plate to obtain a test piece. When the same test as in Examples 5 and 6 was performed, fine pieces, wrinkles and cracks were recognized on the test piece under dry conditions at 800 after elapse of 500 hours.
  • the elliptically polarizing plate of the present invention has a small total number of laminating layers constituting the elliptically polarizing plate and thus has a small total film thickness. Room can be processed. Furthermore, since the layer structure is simplified, there is an advantage that no peeling or bubbles are generated at the interface in the accelerated durability test. In the laminating process, it can be laminated in the form of a long film. The bonding process can be streamlined compared to the conventional method, and there is no damage to the liquid crystal polymer layer.

Abstract

An elliptical polarizing plate having a liquid crystal polymer layer and a polarizing element by a method comprising the steps of forming the liquid crystal polymer layer on a cellulose triacetate film, forming a translucent overcoat layer on the liquid crystal polymer layer, performing saponification to fabricate an optical anisotropic element, and bonding a polarizing film to the optical anisotropic element with an adhesive layer in such a way as to sandwich the polarizing film between the optical anisotropic element and a translucent protective film or by a method comprising the step of bonding a polarizing element to the liquid crystal polymer layer formed on a separable substrate continuously with a tacky adhesive layer.

Description

明 細 書 楕円偏光板とその製造方法及びそれを用いた液晶表示装置 〔発明の属する技術分野〕  Description Elliptical polarizing plate, method for producing the same, and liquid crystal display device using the same [Technical field to which the invention pertains]
本発明は、 液晶表示装置の表示性能を高めるために使用される楕円偏光板およ びその製造方法ならびにそれを使用した液晶表示装置に関する。  The present invention relates to an elliptically polarizing plate used to enhance the display performance of a liquid crystal display device, a method for manufacturing the same, and a liquid crystal display device using the same.
〔従来の技術〕  [Conventional technology]
液晶表示装置は、 薄型軽量、 低消費電力という利点を有するが、 例えば S TN 型液晶表示装置においては完全な白黒表示が達成されていない、 TN型液晶表示 装置においては、 視野角特性が不十分であるなど、 表示性能の優れた液晶表示装 置は未だ実現されていないのが現状である。  Liquid crystal display devices have the advantages of thinness, light weight, and low power consumption.However, for example, complete black-and-white display has not been achieved with the STN type liquid crystal display device. At present, liquid crystal display devices with excellent display performance have not yet been realized.
液晶表示装置の表示性能を改善するための手段はいくつか提案されているが、 その一つに液晶表示装置の偏光板と液晶セルの間に位相差フィルムを配置する方 法かある。 この方法は、 偏光板に位相差フィルムを貼り合わせて楕円偏光板とす るだけで、 液晶表示装置の製造工程を大幅に変更することなしに簡便に実施でき るという利点を有する。 しかし、 位相差フィルムとそれを貼り合わせるための粘 接着層の分だけ厚みが増し、 楕円偏光板の製造工程でロールに巻き取る際に、 1 ロールあたりの巻き取り量が少なくなり生産性が悪くなるという問題や、 最終製 品の液晶ノ、°ネルの厚みが増すという問題がある。  Some means for improving the display performance of the liquid crystal display device have been proposed. One of them is to arrange a retardation film between the polarizing plate and the liquid crystal cell of the liquid crystal display device. This method has an advantage that the method can be easily carried out simply by bonding a retardation film to a polarizing plate to form an elliptically polarizing plate without significantly changing the manufacturing process of the liquid crystal display device. However, the thickness is increased by the amount of the retardation film and the adhesive layer for laminating the retardation film, and when wound into rolls in the manufacturing process of elliptically polarizing plates, the amount of winding per roll is reduced and productivity is poor. And the thickness of the liquid crystal layer and the thickness of the final product increase.
また、 異種の複数の層から構成されるため各層の熱や湿度による伸縮挙動の違 いにより、 偏光板と位相差フィルムの界面が高温または高湿条件下で剥がれる等 の不具合が生じる場合があつた。  In addition, since the layers are composed of multiple layers of different types, the interface between the polarizing plate and the retardation film may peel off under high-temperature or high-humidity conditions due to differences in the expansion and contraction behavior of each layer due to heat and humidity. Was.
従来、 位相差フイルムとしてはポリカーボネ一ト等を一軸延伸配向させた高分 子フイルムを用いるものがほとんどであり、 長尺フィルム形態におけるそれらの 配向軸は通常延伸方向すなわち MD方向に限られている。 一方、 偏光板もポリビ ニルアルコール等の一軸延伸フイルムを使用しているため、 長尺フィルム形態に おける吸収軸は通常 MD方向に限られている。 従って、 偏光板と位相差フイルム を長尺フィルム形態から連続的に貼り合わせて楕円偏光板を製造する場合、 偏光 板の吸収軸と位相差フィルムの配向軸が平行の特殊な場合に限られていた。 平行 以外の軸配置にするためには、 長尺フイルムからシート状に切り出して貼り合わ せる必要があり、 工程が煩雑で生産性が悪いという問題もあった。 さらに、 延伸 配向させた位相差フィルムでは、 高分子の配向を自在にコントロールすることが 困難であり光学特性の自由度に制限があった。 以上のように、 偏光板の吸収軸と 位相差フィルムの配向軸が様々な軸配置を有し光学性能に優れた楕円偏光板への 要求に対して、 十分に対応することができなかった。 Conventionally, most retardation films use polymer films in which polycarbonate and the like are uniaxially stretched and oriented, and their orientation axes in a long film form are usually limited to the stretching direction, that is, the MD direction. . On the other hand, since the polarizing plate also uses a uniaxially stretched film such as polyvinyl alcohol, the absorption axis in a long film form is usually limited to the MD direction. Therefore, when an elliptically polarizing plate is manufactured by continuously laminating a polarizing plate and a retardation film from a long film form, it is limited to a special case where the absorption axis of the polarizing plate and the orientation axis of the retardation film are parallel. Was. parallel In order to arrange the shafts other than the above, it was necessary to cut and bond the long film into a sheet shape, and there was a problem that the process was complicated and productivity was poor. Furthermore, in the stretched and oriented retardation film, it was difficult to freely control the orientation of the polymer, and the degree of freedom of the optical characteristics was limited. As described above, it was not possible to sufficiently respond to the demand for an elliptically polarizing plate having excellent optical performance due to various arrangements of the absorption axis of the polarizing plate and the orientation axis of the retardation film.
特開平 4 一 5 7 0 1 7号公報および特開平 6— 2 4 2 3 1 7号公報においては 、 液晶性高分子を配向固定化させた光学異方素子が提案されている。 このような 液晶性高分子を用いた場合、 配向軸角度が任意に設定できるため、 長尺フィルム 形態から連続的に貼り合わせて種々の楕円偏光板が製造可能である。 しかし前述 のように、 楕円偏光板の厚みが増し、 偏光板と光学異方素子の界面が高温または 高湿条件下で剝がれる等の不具合が生じる場合があった。  JP-A-4-157017 and JP-A-6-224317 propose an optically anisotropic element in which a liquid crystalline polymer is fixed in orientation. When such a liquid crystalline polymer is used, since the orientation axis angle can be set arbitrarily, various elliptically polarizing plates can be manufactured by continuously laminating a long film form. However, as described above, the thickness of the elliptically polarizing plate may increase, and the interface between the polarizing plate and the optically anisotropic element may be broken under high-temperature or high-humidity conditions.
特開平 8 - 2 7 8 4 9 1号公報には剥離可能な基板上に転写された液晶高分子 層について記述されている。 この方法によって層構成を簡略化でき総膜厚も薄く できる可能性があるが、 光学性能、 品質および高温、 高湿条件下での耐久性に優 れた楕円偏光板が得られなレ、場合があつた。  Japanese Patent Application Laid-Open No. Hei 8-277841 describes a liquid crystal polymer layer transferred onto a peelable substrate. This method may simplify the layer structure and reduce the total film thickness, but if an elliptically polarizing plate with excellent optical performance, quality, and durability under high temperature and high humidity conditions cannot be obtained, There was.
〔発明の目的〕  [Object of the invention]
本発明の目的は、 楕円偏光板の層構造を簡略化することによって、 厚みが抑え られ、 高温、 高湿条件下においても剝がれなどの不具合が生じることがなく、 さ らには光学異方素子の配向軸角度を偏光板の吸収軸に対して任意に設定して、 長 尺フィルム形態から連続的に貼り合わせ可能な楕円偏光板と、 その製造方法およ びそれを使用した液晶表示装置を提供することにある。  An object of the present invention is to reduce the thickness by simplifying the layer structure of an elliptically polarizing plate, to prevent problems such as peeling even under high temperature and high humidity conditions, and to further improve optical characteristics. Elliptically polarizing plate that can be continuously bonded from a long film by setting the orientation axis angle of the element to the absorption axis of the polarizing plate, a method of manufacturing the same, and a liquid crystal display using the same It is to provide a device.
〔発明の要旨〕  [Summary of the Invention]
本発明の第 1は、 液晶高分子層と偏光素子を有する楕円偏光板であって、 三酢 酸セルロースフィルム上に配向した液晶高分子層を有する光学異方素子 (a ) と 透光性保護フィルム (b ) との間に偏光素子が挟持され、 かつ、 光学異方素子が 鹼化処理されていることを特徴とする楕円偏光板にある。  A first aspect of the present invention is an elliptically polarizing plate having a liquid crystal polymer layer and a polarizing element, wherein the optically anisotropic element (a) having a liquid crystal polymer layer oriented on a cellulose triacetate film and a light-transmitting protective element are provided. An elliptically polarizing plate characterized in that a polarizing element is sandwiched between the film and the film (b), and the optically anisotropic element is subjected to a vulcanization process.
本発明の第 2は、 液晶高分子層の表面に透光性オーバーコート層が設けられて いることを特徴とする上記の楕円偏光板にある。 本発明の第 3は、 透光性オーバーコート層がァクリル系樹脂からなることを特 徵とする上記の楕円偏光板にある。 A second aspect of the present invention is the above-mentioned elliptically polarizing plate, wherein a light-transmitting overcoat layer is provided on the surface of the liquid crystal polymer layer. A third aspect of the present invention is the above-mentioned elliptically polarizing plate, wherein the light-transmitting overcoat layer is made of an acryl-based resin.
本発明の第 4は、 液晶高分子層が光学的に正の一軸性を示す液晶分子からなる ことを特徴とする上記の楕円偏光板にある。  A fourth aspect of the present invention resides in the above-mentioned elliptically polarizing plate, wherein the liquid crystal polymer layer is made of optically positive uniaxial liquid crystal molecules.
本発明の第 5は、 液晶高分子層の両側表面のいずれか一方の表面付近における 液晶高分子の配向方向が、 MD方向と平行でないことを特徴とする上記の楕円偏 光 こある。  A fifth aspect of the present invention is the above-mentioned elliptical polarization, wherein the orientation direction of the liquid crystal polymer near one of the two surfaces of the liquid crystal polymer layer is not parallel to the MD direction.
本発明の第 6は、 光学異方素子、 透光性保護フィルムおよび偏光素子が長尺フ ィル厶形態であることを特徴とする上記の楕円偏光板にある。  A sixth aspect of the present invention is the above-mentioned elliptically polarizing plate, wherein the optically anisotropic element, the translucent protective film, and the polarizing element are in the form of a long film.
本発明の第 7は、 三酢酸セルロースフイルム上に液晶高分子層を形成したのち A seventh aspect of the present invention is to form a liquid crystal polymer layer on a cellulose triacetate film,
、 該液晶高分子層の表面に透光性オーバーコート層を設けることによって光学異 方素子を製造し、 次いで該光学異方素子に鹼化処理を施し、 しかる後に偏光膜を 接着剤層を介して該光学異方素子と透光性保護フィルムに挟持されるように貼り 合わせることを特徴とする上記の楕円偏光板の製造方法にある。 Then, an optically anisotropic element is manufactured by providing a translucent overcoat layer on the surface of the liquid crystal polymer layer, and then the optically anisotropic element is subjected to a vulcanization treatment. Thereafter, the polarizing film is interposed with an adhesive layer. And bonding the optically anisotropic element and the light-transmitting protective film so as to be sandwiched therebetween.
本発明の第 8は、 液晶セルの少なくとも片側の面に、 上記の楕円偏光板が配置 されていることを特徴とする液晶表示装置にある。  An eighth aspect of the present invention resides in a liquid crystal display device characterized in that the elliptically polarizing plate is disposed on at least one surface of a liquid crystal cell.
本発明の第 9は、 液晶高分子層と偏光素子を有する楕円偏光板の製造方法であ つて、 偏光素子と剝離可能な基板上に担持された液晶高分子層を粘接着層を介し て貼り合わせることを特徴とする楕円偏光板の製造方法にある。  A ninth aspect of the present invention is a method for producing an elliptically polarizing plate having a liquid crystal polymer layer and a polarizing element, wherein the liquid crystal polymer layer supported on a substrate which can be separated from the polarizing element is separated by an adhesive layer. A method for manufacturing an elliptically polarizing plate characterized by laminating.
本発明の第 1 0は、 再剝離可能な基板上に形成された液晶高分子層の表面が透 光性ォ一バーコ一ト層で保護されている上記第 9の方法にある。  A tenth aspect of the present invention is the ninth method, wherein the surface of the liquid crystal polymer layer formed on the removable substrate is protected by a transparent overcoat layer.
本発明の第 1 1は、 透光性オーバーコート層がアクリル系樹脂からなることを 特徴とする上記第 1 0の方法にある。  The eleventh aspect of the present invention resides in the tenth method, wherein the translucent overcoat layer is made of an acrylic resin.
本発明の第 1 2は、 液晶高分子層が光学的に正の一軸性を示す液晶分子からな ることを特徴とする上記第 9〜第 1 1のいずれかの方法にある。  A twelfth aspect of the present invention is the method according to any one of the ninth to eleventh aspects, wherein the liquid crystal polymer layer is made of optically positive uniaxial liquid crystal molecules.
本発明の第 1 3は、 液晶高分子層の両側表面のいずれか一方の表面付近におけ る液晶高分子の配向方向が、 MD方向と平行でないことを特徴とする上記第 9〜 第 1 1のいずれかの方法にある。  A thirteenth aspect of the present invention is the liquid crystal display device according to the ninth to eleventh features, wherein the alignment direction of the liquid crystal polymer in the vicinity of one of the two side surfaces of the liquid crystal polymer layer is not parallel to the MD direction. Is in one of the ways.
本発明の第 1 4は、 再剥離可能な基板上に担持された液晶高分子層が長尺フィ ルム形態であり貼り合わせが連続的に行われる上記第 9〜第 1 3のいずれかの方 法にある。 According to a fourteenth aspect of the present invention, a liquid crystal polymer layer supported on a removable substrate is a long filter. The present invention is directed to any one of the ninth to thirteenth methods in which the bonding is performed continuously in a lume form.
本発明の第 1 5は、 液晶セルの少なくとも片側の面に上記第 9〜第 1 4のいず れかの方法で製造した楕円偏光板が配置されていることを特徴とする液晶表示装 にあ o  A fifteenth aspect of the present invention is a liquid crystal display device characterized in that an elliptically polarizing plate manufactured by any one of the ninth to fourteenth methods is disposed on at least one surface of a liquid crystal cell. Oh
〔図面の簡単な説明〕  [Brief description of drawings]
本発明の楕円偏光板の典型例とその製造方法の典型例を示す。  A typical example of the elliptically polarizing plate of the present invention and a typical example of the manufacturing method thereof will be described.
〔発明の実施の形態〕  [Embodiment of the invention]
図 1において Aは、 上記した本発明の第 1〜第 8の典型例を示し、 Bは第 9〜 第 1 3の典型例を示す。 図中 「保護フイルム (T A C ) 」 とは保護フィルムであ つて、 その典型例が三酢酸セルロース (T A C ) フイルムであることを意味する 。 「偏光フィルム」 は偏光素子の典型例を示す。 「O C層」 は (透光性) オーバ —コート層を意味する。 「拈接着剤」 は粘着剤又は接着剤のいずれかであること を意味する。  In FIG. 1, A shows the above-described first to eighth typical examples of the present invention, and B shows the ninth to 13th typical examples. In the figure, “protective film (T AC)” is a protective film, and a typical example thereof is a cellulose triacetate (T AC) film. "Polarizing film" indicates a typical example of a polarizing element. “O C layer” means (translucent) over-coat layer. “Trip adhesive” means either an adhesive or an adhesive.
本発明の好ましい実施態様について、 以下に詳しく説明する。  Preferred embodiments of the present invention will be described in detail below.
本発明の楕円偏光板に使用される液晶高分子層は、 例えば、 配向処理基板上で 配向させた液晶高分子をガラス転移温度 (T g ) 以下に冷却し、 配向を固定化す ることによって得られる。 そのような液晶高分子としては、 溶融時に液晶性を示 すサーモトロピック液晶ポリマーが用いられる。 使用されるサーモトロピック液 晶ポリマーは、 溶融状態 (液晶状態) から T g以下に冷却しても液晶相の分子配 列状態が保持されることが必要である。  The liquid crystal polymer layer used in the elliptically polarizing plate of the present invention can be obtained, for example, by cooling a liquid crystal polymer oriented on an alignment treatment substrate to a glass transition temperature (T g) or lower and fixing the orientation. Can be As such a liquid crystal polymer, a thermotropic liquid crystal polymer which exhibits liquid crystallinity when melted is used. The thermotropic liquid crystal polymer used must be able to maintain the molecular alignment state of the liquid crystal phase even when cooled from the molten state (liquid crystal state) to Tg or less.
液晶高分子の溶融時の液晶相は、 スメクチック、 ネマチック、 ねじれネマチッ ク、 コレステリックなどのいずれの分子配列構造であってもよく、 配向基板付近 及び空気界面付近ではそれぞれホモジニァス配向及びホメオトロピック配向状態 であり、 液晶高分子の平均のダイレクターがフイルムの法線方向から傾斜してい るいわゆるハイブリッ ド配向であってもよい。  The liquid crystal phase of the liquid crystal polymer when melted may have any molecular arrangement structure such as smectic, nematic, twisted nematic, and cholesteric.The liquid crystal phase has a homogenous alignment and a homeotropic alignment near the alignment substrate and the air interface, respectively. There may be a so-called hybrid orientation in which the average director of the liquid crystal polymer is inclined from the normal direction of the film.
液晶高分子としては、 例えばポリエステル、 ポリアミ ド、 ポリカーボネート、 ポリエステルイミ ドなどの主鎖にメソゲンを有する液晶ポリマ一、 あるいはポリ ァクリレート、 ポリメタクリレート、 ポリマロネート、 ポリシロキサンなどの側 鎖にメソゲンを有する液晶ポリマーなどを例示することができる。 ポリエステル としてはオルフ置換芳香族単位を構成成分として含むポリマーが最も好ましいが 、 オルソ置換芳香族単位の代わりにかさ高い置換基を有する芳香族単位を構成成 分として含むポリマーも使用することができる。 該液晶高分子鎖中に光学活性な 単位を導入するか、 光学活性な化合物をブレンドすることによって、 ねじれネマ チック配向させることができる。 またオリゴマーや低分子化合物であっても、 架橋性基の導入あるいは適宜な架橋剤のプレンドによって、 液晶状態あるいは液 晶転移温度以下に冷却して配向固定化された状態で、 熱架橋あるいは光架橋等の 手段により高分子化できるものも液晶高分子に含まれる。 また、 ディスコチック 液晶化合物であっても問題なく使用することができる。 As the liquid crystal polymer, for example, a liquid crystal polymer having a mesogen in the main chain such as polyester, polyamide, polycarbonate, and polyesterimide, or a side of polyacrylate, polymethacrylate, polymalonate, polysiloxane, etc. Examples thereof include a liquid crystal polymer having a mesogen in a chain. As the polyester, a polymer containing an orf-substituted aromatic unit as a constituent component is most preferable, but a polymer containing as a constituent component an aromatic unit having a bulky substituent in place of the ortho-substituted aromatic unit can also be used. Twisted nematic alignment can be achieved by introducing an optically active unit into the liquid crystal polymer chain or by blending an optically active compound. Even oligomers and low molecular weight compounds are thermally crosslinked or photocrosslinked in a state where they are cooled to a liquid crystal state or liquid crystal transition temperature or lower and are fixed in orientation by introducing a crosslinkable group or blending an appropriate crosslinking agent. Liquid crystal polymers that can be polymerized by such means are also included in the liquid crystal polymers. Further, even a discotic liquid crystal compound can be used without any problem.
液晶高分子は通常、 光学的に正または負の一軸性を示すものが用いられる。 そ れらの光学特性は、 楕円偏光板に要求される機能によって適宜選択されるが、 ね じれネマチック配向した液晶高分子層の場合は、 正の一軸性を示す液晶高分子が 好適に用いられる。  As the liquid crystal polymer, one having optically positive or negative uniaxiality is usually used. Their optical properties are appropriately selected depending on the functions required of the elliptically polarizing plate. In the case of a liquid crystal polymer layer having a twisted nematic orientation, a liquid crystal polymer exhibiting positive uniaxiality is preferably used. .
液晶高分子の T gは、 配向固定化後の配向安定性に影響を及ぼすため、 室温以 上であることが好ましく、 さらに 5 0 °C以上であることが好ましい。 T gは、 液 晶高分子に用いられるモノマーの種類、 モノマ一比、 重合条件等によって調節で きるが、 前記のような架橋手段を併用することによっても調節が可能である。 図 1の Aの態様 (本発明の第 1〜第 8 ) の光学異方素子に用いる三酢酸セル口 一スフィル厶は基本的に透明支持フィルムとして用いられており、 楕円偏光板が 主に色補償に使用される場合は、 できるだけ光学異方性の小さいものが望ましい 。 視野角補償に用いられる場合には、 液晶高分子層の光学特性を補完する光学特 性を有するものを用いることができ、 通常、 光学的に負の一軸性また二軸性のも のが用いられる。  The T g of the liquid crystal polymer is preferably room temperature or higher, and more preferably 50 ° C. or higher, since it affects the alignment stability after the alignment is fixed. T g can be adjusted by the type of monomer used in the liquid crystal polymer, monomer ratio, polymerization conditions and the like, but can also be adjusted by using the above-mentioned crosslinking means in combination. The triacetate cell aperture film used for the optically anisotropic element of the embodiment A of FIG. 1 (the first to eighth aspects of the present invention) is basically used as a transparent support film, and the elliptically polarizing plate mainly has a color. When used for compensation, it is desirable that the optical anisotropy be as small as possible. When used for viewing angle compensation, those having optical characteristics that complement the optical characteristics of the liquid crystal polymer layer can be used, and those that are optically negative uniaxial or biaxial are usually used. Can be
三酢酸セルロースフィルム上に液晶高分子層を形成する方法としては、 配向処 理をした三酢酸セルロースフイルム上に液晶高分子を配向させて、 該フイルム上 に液晶高分子層を直接形成する方法 aと、 別の配向基板上で液晶高分子を配向さ せて液晶高分子層を形成させた後に、 該層を三酢酸セルロースフィルム上に転写 する方法 bがある。 方法 aの場合、 三酢酸セルロースフイルムに有機または無機の配向膜を設けた ものが好適に用いられる。 有機配向膜としてはポリビニルアルコールゃポリイミ ド誘導体を挙げることができる。 配向膜が設けられた面には、 ラビング処理など の配向処理が施される。 A method for forming a liquid crystal polymer layer on a cellulose triacetate film includes a method in which a liquid crystal polymer is aligned on an alignment-treated cellulose triacetate film and a liquid crystal polymer layer is directly formed on the film. There is a method b in which a liquid crystal polymer is oriented on another orientation substrate to form a liquid crystal polymer layer, and then the layer is transferred onto a cellulose triacetate film. In the case of method a, a cellulose triacetate film provided with an organic or inorganic alignment film is preferably used. Examples of the organic alignment film include a polyvinyl alcohol-polyimide derivative. The surface provided with the alignment film is subjected to an alignment process such as a rubbing process.
方法 bの場合、 配向基板としては、 例えばポリイミ ド、 エポキシ樹脂、 フエノ —ル樹脂などの熱硬化性樹脂、 ナイロンなどのポリアミ ド;ポリエーテルイミ ド ; ポリエーテルケトン ; ポリエーテルエ一テルケトン (P E E K) ; ポリケトン ; ポリエーテルスルフォン ; ポリフェニレンサルフアイ ド; ポリフェニレンォキ サイド;ポリェチレンテレフ夕レート、 ポリブチレンテレフタレ一トなどのポリ エステル; ポリアセタール;ポリ力一ポネ一ト ;ポリ (メタ) ァクリレート ;ポ リビニルアルコールなどの熱可塑性樹脂で例示される高分子フイルムを使用する ことができる。 また、 高分子フイルムの表面に前記例示の他の樹脂からなる有機 薄膜を形成してもよい。 前記高分子フィルムは、 ラビング処理などの配向処理が 施されて配向基板に供せられる。 このような配向基板は、 Bの態様においても用 いられる。 前記のような配向基板は通常、 光学等方性、 透光性、 物理特性の面か ら、 光学異方素子に用いることが適切でない場合が多いため、 液晶高分子層を三 酢酸セルロースフィルム上に転写して光学異方素子を得る。  In the case of Method b, the alignment substrate may be, for example, a thermosetting resin such as polyimide, epoxy resin, or phenol resin, a polyamide such as nylon; a polyether imide; a polyether ketone; a polyether ether ketone (PEEK); Polyketone; Polyether sulfone; Polyphenylene sulfide; Polyphenylene oxide; Polyester such as polyethylene terephthalate and polybutylene terephthalate; Polyacetal; Polyacrylonitrile; Poly (meth) acrylate; A polymer film exemplified by a thermoplastic resin such as polyvinyl alcohol can be used. Further, an organic thin film made of another resin described above may be formed on the surface of the polymer film. The polymer film is subjected to an orientation treatment such as a rubbing treatment and provided to an oriented substrate. Such an alignment substrate is also used in the embodiment B. Usually, such an alignment substrate is not suitable for use in an optically anisotropic element from the viewpoint of optical isotropic properties, translucency, and physical characteristics. Therefore, a liquid crystal polymer layer is formed on a cellulose triacetate film. To obtain an optically anisotropic element.
図 1の Aおよび Bの態様において、 配向基板 (以下、 三酢酸セルロースフィル ムを含む) 上に液晶高分子を配向させるには通常ラビング処理が施される。 以下 、 ラビング処理について、 長尺フィルム形態の場合で説明する。 ラビング処理は 、 長尺の配向基板の MD方向に対して所定の任意の角度で行うことができる。 M D方向に対するラビング方向の角度は、 楕円偏光板の機能に応じて適宜設定され るが、 色補償板としての機能が要求される場合は、 通常、 MD方向に対して斜め 方向にラビングされるのが好ましい。  In the embodiments A and B of FIG. 1, a rubbing treatment is usually applied to align a liquid crystal polymer on an alignment substrate (hereinafter, including cellulose triacetate film). Hereinafter, the rubbing process will be described in the case of a long film form. The rubbing treatment can be performed at a predetermined arbitrary angle with respect to the MD direction of the long oriented substrate. The angle of the rubbing direction with respect to the MD direction is appropriately set according to the function of the elliptically polarizing plate. However, when a function as a color compensator is required, the rubbing is usually performed in an oblique direction with respect to the MD direction. Is preferred.
斜め方向の角度としては、 一 4 5度〜 + 4 5度の範囲が好ましい。  The angle of the oblique direction is preferably in the range of 144 degrees to +45 degrees.
ラビング処理は任意の方法で行うことができる力、 例えば、 長尺フイルムを M D方向に搬送するステージ上に、 長尺フィルムの MD方向に対して任意の角度で ラビングロールを配置し、 該フィルムを MD方向に搬送しながら該ラビングロー ルを回転させ、 該フイルム表面をラビング処理する。 ラビングロールとステージ の移動方向が成す角度は自在に調整し得る機構であり、 ラビングロールの表面に は、 適宜のラビング布材が貼付してある。 The rubbing treatment can be performed by an arbitrary method, for example, a rubbing roll is arranged at an arbitrary angle with respect to the MD direction of the long film on a stage for transporting the long film in the MD direction, and the film is removed. The rubbing roll is rotated while being conveyed in the MD direction, and the film surface is rubbed. Rubbing roll and stage This is a mechanism that can freely adjust the angle formed by the moving direction of the rubbing roll, and an appropriate rubbing cloth material is attached to the surface of the rubbing roll.
次に、 液晶高分子を配向基板のラビング処理面に接触させて液晶高分子層を形 成する方法としては、 例えば、 液晶高分子を適宜の溶剤に溶解させ塗布 ·乾燥さ せる方法、 あるいは、 Tダイなどにより直接液晶高分子を溶融押し出しする方法 などが挙げられる。 膜厚の均一性などの点からは、 溶液塗布して乾燥する方法が 適当である。  Next, as a method of forming a liquid crystal polymer layer by bringing the liquid crystal polymer into contact with the rubbed surface of the alignment substrate, for example, a method of dissolving the liquid crystal polymer in an appropriate solvent, coating and drying, or A method of directly extruding a liquid crystal polymer with a T-die or the like is used. From the viewpoint of the uniformity of the film thickness, a method of applying a solution and drying is appropriate.
液晶高分子溶液の塗布方法としては、 特に限定されず、 例えばダイコート法、 スロットダイコート法、 スライドダイコート法、 ロールコ一ト法、 バーコ一ト法 The method for applying the liquid crystal polymer solution is not particularly limited, and examples thereof include a die coating method, a slot die coating method, a slide die coating method, a roll coating method, and a bar coating method.
、 浸漬引き上げ法などを採用することができる。 A dipping pulling method or the like can be adopted.
塗布後、 適宜な乾燥方法により溶剤を除去して未配向の液晶高分子層が形成さ れる。 次いで、 所定温度で所定時間加熱して液晶高分子を配向させた後、 T g以 下に冷却することにより配向が固定化された液晶高分子層を形成することができ 液晶高分子層の膜厚は、 楕円偏光板の機能が発揮される範囲であれば特に制限 はなく、 約 0 . 0 5 m〜 1 0 0 / m、 好ましくは約 0 . 1〃01〜3 0 01が適 当である。  After the application, the solvent is removed by an appropriate drying method to form an unoriented liquid crystal polymer layer. Next, the liquid crystal polymer is oriented by heating at a predetermined temperature for a predetermined time, and then cooled to a temperature of T g or less to form a liquid crystal polymer layer having a fixed orientation. The thickness is not particularly limited as long as the function of the elliptically polarizing plate is exhibited, and is approximately 0.05 m to 100 / m, preferably approximately 0.1 001 to 3001. is there.
図 1の Aの態様において、 液晶高分子層を配向基板から三酢酸セルロースフィ ル厶に転写する場合、 適宜の粘接着剤を用いて行うことができる。 粘接着剤とし ては、 透光性であって光学的に等方であれば任意のものが使用でき、 アクリル系 、 エポキシ系、 エチレン一酢酸ビニル系、 ゴム系などを挙げることができるが、 特に、 アクリル系粘接着剤が好適に用いられる。  In the embodiment A of FIG. 1, when transferring the liquid crystal polymer layer from the alignment substrate to the cellulose triacetate film, it can be carried out using an appropriate adhesive. Any adhesive can be used as long as it is translucent and optically isotropic, and examples thereof include acrylic, epoxy, ethylene monoacetate, and rubber adhesives. In particular, an acrylic adhesive is preferably used.
三酢酸セルロースフィルム上に形成された配向の固定化された液晶高分子層は 、 その表面を保護するために、 光硬化型、 電子線硬化型または熱硬化型のァクリ ル系樹脂からなる透光性オーバーコート層が設けられる。 液晶高分子層が架橋等 による方法で形成されている場合は、 透光性オーバーコート層を設ける必要がな い場合もある。  The liquid crystal polymer layer having a fixed orientation formed on the cellulose triacetate film is made of a light-curing, electron beam-curing or thermosetting acrylic resin to protect the surface. An overcoat layer is provided. When the liquid crystal polymer layer is formed by a method such as crosslinking, it may not be necessary to provide a translucent overcoat layer.
図 1の Aの態様 (本発明の第 1〜第 8 ) においては、 光学異方素子を偏光素子 の保護フィル厶として用いることにより楕円偏光板を製造する。 そうすることに よって、 偏光素子の両側が三酢酸セルロースフィルムで保護された偏光板に光学 異方素子を貼合するよりも、 楕円偏光板を構成する層数を減らすことができる。 その結果として、 熱あるいは湿度による各層の収縮ひずみの影響が小さくなり、 貼り合わせた界面での剝がれ等の不具合をなくすことが可能である。 ただし、 通 常の三酢酸セルロースフィルム上に液晶高分子層を設けた光学異方素子では偏光 素子と接着することが難しい。 本発明では光学異方素子を鹼化することでその問 題点を解決し、 全体として、 前記した本発明の目的を効果的に達成することが可 能となった。 In the embodiment A of FIG. 1 (first to eighth aspects of the present invention), an elliptically polarizing plate is manufactured by using an optically anisotropic element as a protective film for a polarizing element. To do Therefore, the number of layers constituting the elliptically polarizing plate can be reduced as compared with the case where the optically anisotropic element is bonded to the polarizing plate whose both sides of the polarizing element are protected by the cellulose triacetate film. As a result, the influence of shrinkage strain of each layer due to heat or humidity is reduced, and defects such as peeling at the bonded interface can be eliminated. However, it is difficult to bond an ordinary optically anisotropic element having a liquid crystal polymer layer on a cellulose triacetate film to a polarizing element. In the present invention, the problem is solved by changing the optical anisotropic element, and the object of the present invention can be effectively achieved as a whole.
図 1の Aの態様においては、 光学異方素子は偏光素子と貼合する前に、 鹼化処 理が施される。 鹼化処理は、 通常アルカリ水溶液に接触させることによって行わ れる。 アルカリ水溶液としては、 水酸化カリウム、 水酸化ナトリウムなどが用い られ、 アル力リ濃度としては、 約 0 . 1〜 1 0 %、 好ましくは約 0 . 5〜 5 %、 さらに好ましくは約 1〜3 %程度の希薄溶液で十分である。 処理条件としては、 室温で 1〜 6 0分、 好ましくは 3 0分以下、 さらに好ましくは 1 5分以下の温和 な条件で十分である。 液晶高分子層にオーバーコート層が設けられていれば、 鹼 化処理工程において液晶高分子層が浸食されたり、 損傷を受けたりすることはな い。  In the embodiment shown in FIG. 1A, the optically anisotropic element is subjected to a curing treatment before bonding to the polarizing element. The aging treatment is usually performed by contacting with an aqueous alkali solution. As the aqueous alkali solution, potassium hydroxide, sodium hydroxide, or the like is used. The concentration of the alkali is about 0.1 to 10%, preferably about 0.5 to 5%, and more preferably about 1 to 3%. A dilute solution of about% is sufficient. As the treatment conditions, mild conditions of 1 to 60 minutes at room temperature, preferably 30 minutes or less, more preferably 15 minutes or less are sufficient. If the overcoat layer is provided on the liquid crystal polymer layer, the liquid crystal polymer layer is not eroded or damaged in the curing step.
本発明において用いる偏光素子としては、 延伸した P V Aフイルムなどの基材 にヨウ素や 2色性色素などの偏光要素を吸着させたものが一般的に用いられる。 偏光素子は一般的には両側を保護フィルムで挟まれて偏光板とされ、 通常は、 保 護フィル厶として三酢酸セル口一スフイルムが用いられる。 図 1の Aの態様では 、 偏光素子の少なくとも片面に保護フィルムとして上記の光学異方素子を用いる ことにより、 楕円偏光板を得ることができる。  As the polarizing element used in the present invention, an element obtained by adsorbing a polarizing element such as iodine or a dichroic dye on a base material such as a stretched PVA film is generally used. In general, a polarizing element is formed as a polarizing plate with both sides sandwiched by protective films, and usually, a single film of triacetate cell orifice is used as the protective film. In the embodiment A of FIG. 1, an elliptically polarizing plate can be obtained by using the above-described optically anisotropic element as a protective film on at least one surface of the polarizing element.
偏光素子と光学異方素子とは、 アクリル系、 S B R系、 あるいはシリコーン系 の粘着剤または接着剤によって貼り合わされる。 光学異方素子は、 透光性オーバ ーコ一ト層が設けられた液晶高分子層側、 三酢酸セルロースフイルム側のどちら でも偏光素子と貼り合わせることが可能であるが、 三酢酸セルロースフィルム側 と偏光素子を貼り合わせることが好ましい。  The polarizing element and the optically anisotropic element are bonded together with an acrylic, SBR, or silicone adhesive or adhesive. The optically anisotropic element can be bonded to the polarizing element either on the liquid crystal polymer layer side where the translucent overcoat layer is provided or on the cellulose triacetate film side. And a polarizing element are preferably attached to each other.
本発明に使用される透光性保護フィルムとしては、 上記の光学異方素子を用い ることもできる力 \ 複屈折の小さいゼォネックス、 A R T〇N、 フジタック等の 商品名で市販されている光学異方性の少なレ、透光性フィルムを用いることが好ま しい。 透光性保護フイルムと偏光子は、 光学異方素子を貼り合わせる場合と同様 な方法で行われる。 As the translucent protective film used in the present invention, the above optically anisotropic element is used. Power that can be used \ It is preferable to use a light-transmissive film with low optical anisotropy, which is marketed under the trade names of ZONEX, ART〇N, FUJITAC, etc., with small birefringence. The translucent protective film and the polarizer are formed in the same manner as in the case of bonding an optically anisotropic element.
図 1の Bの態様 (本発明の第 9〜第 1 5 ) においては、  In the embodiment of FIG. 1B (ninth to fifteenth aspects of the present invention),
配向基板フィルム上に形成された液晶高分子層は次に剝離可能な基板に転写さ れる。 この方法は、 適宜の接着剤により液晶高分子層を剝離可能な基板に移行さ せる方法である。 この接着剤層としては、 光学的に等方なものであり、 硬化後に 液晶高分子層と剥離可能な基板両方に接着力を有し、 かつ、 液晶高分子層側に別 の基板を貼合した場合、 貼合後においても剝離可能な基板を剝離することができ れば特に限定されない。 かかる接着剤としては光硬化型、 電子線硬化型、 熱硬化 型の接着剤を挙げることができるが、 なかでも光硬化型アクリル系接着剤が好ま しい。 硬化した後の接着剤層は、 液晶高分子層を保護するためのオーバ一コート 層としても機能する。  The liquid crystal polymer layer formed on the alignment substrate film is then transferred to a removable substrate. This method is a method in which the liquid crystal polymer layer is transferred to a detachable substrate by using an appropriate adhesive. This adhesive layer is optically isotropic, has an adhesive force on both the liquid crystal polymer layer and the peelable substrate after curing, and has another substrate bonded to the liquid crystal polymer layer side. In this case, there is no particular limitation as long as the detachable substrate can be detached even after bonding. Examples of such adhesives include photo-curable, electron beam-curable, and thermo-curable adhesives, and among them, photo-curable acrylic adhesives are preferred. The cured adhesive layer also functions as an overcoat layer for protecting the liquid crystal polymer layer.
本発明において用いられる剥離可能な基板としては、 剝離性を有し、 自己支持 性を具備する基板であれば特に限定されないが、 通常、 プラスチックフィルムが 用いられる。 本発明でいう剝離性とは、 接着剤を介し液晶性高分子層と基板を接 着した状態において、 適度な接着力を保持しており、 かつ、 基板を剝離しようと する際には硬化した接着剤層と基板との界面で剝離できることをいう。 本発明で 用いられる剥離可能な基板フィルムとしては、 接着剤 (硬化後) との界面での剝 離強度 ( 1 8 0 ° 剝離試験、 剥離速度 3 0 c mZ分) の値として、 通常 0 . 5〜 8 O N/ 2 5 mm. 好ましくは 2〜5 0 NZ 2 5 mmの剝離強度のものが挙げら れる。 剝離可能な基板として好適なプラスチックフィルムとしては、 具体的には 、 ポリエチレン、 ポリプロピレン、 4 —メチルペンテン一 1樹脂等のォレフィ ン 系樹脂、 ポリァミ ド、 ポリイミ ド、 ポリアミ ドイミ ド、 ポリエーテルィミ ド、 ポ リエーテルケトン、 ポリエーテルエーテルケトン、 ポリエーテルスルホン、 ポリ ケトンサルファイ ド、 ポリスルホン、 ポリスチレン、 ポリフエ二レンサルフアイ ド、 ポリフヱニレンオキサイ ド、 ポリエチレンテレフ夕レート、 ポリブチレンテ レフ夕レート、 ポリアリ レート、 ポリアセタール、 ポリカーボネート、 ポリ ビニ ルアルコール、 セルロース系プラスチックス等が挙げられる。 The releasable substrate used in the present invention is not particularly limited as long as it is a substrate having releasability and self-supporting property, but usually, a plastic film is used. The term “releasability” as used in the present invention means that, when the liquid crystalline polymer layer and the substrate are bonded via an adhesive, an appropriate adhesive force is maintained, and when the substrate is separated, the resin is cured. It means that separation is possible at the interface between the adhesive layer and the substrate. The peelable substrate film used in the present invention usually has a peel strength at an interface with an adhesive (after curing) of 180 ° (a 180 ° peel test, a peeling speed of 30 cmZ), which is usually 0.1 μm. 5 to 8 ON / 25 mm. Preferably, a separation strength of 2 to 50 NZ 25 mm is used. Specific examples of the plastic film suitable as the detachable substrate include polyethylene, polypropylene, and olefin-based resins such as 4-methylpentene-11 resin, polyamide, polyimide, polyamide amide, polyether imide, and polyether imide. Ether ketone, polyether ether ketone, polyether sulfone, polyketone sulfide, polysulfone, polystyrene, polyphenylene sulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyacetal, polycarbonate The Poly Binni Alcohol, cellulosic plastics and the like.
これらのプラスチックフイルムそれ自身を用いてもよいし、 適度な剝離性を持 たせるためにこれらのプラスチックフイルムの表面に、 シリコーンをコ一トした もの、 有機薄膜または無機薄膜を形成したもの、 化学的処理を施したもの、 コロ ナ放電処理などのような物理的処理を施したものを用いることができる。 本発明 では、 ポリプロピレン、 ポリエーテルエ一テルケトン、 ポリエチレンテレフタレ 一ト、 ポリカーボネートおよびこれらのフィルム表面をシリコーン処理またはコ 口ナ放電処理したプラスチックフィルムが、 接着剤と適度な接着性および剝離性 を兼ね備えていることから望ましい。  These plastic films may be used by themselves, or those coated with silicone, organic or inorganic thin films, or chemically-coated ones to provide appropriate release properties. Those that have been subjected to a treatment or those that have been subjected to a physical treatment such as corona discharge treatment can be used. In the present invention, polypropylene, polyether ether ketone, polyethylene terephthalate, polycarbonate, and plastic films obtained by subjecting these film surfaces to silicone treatment or corner discharge treatment have both an adhesive and appropriate adhesiveness and releasability. This is desirable.
偏光素子と剝離可能な基板上に形成され、 表面が透光性オーバーコート層で保 護された液晶高分子層とは、 アクリル系、 S B R系、 あるいはシリコン系によつ て代表される粘着剤または接着剤によって貼り合わされ、 本発明の楕円偏光板が 得られる。 液晶高分子層の表面を保護するために、 光硬化型、 電子線硬化型また は熱硬化型のァクリル系樹脂からなる透光性オーバーコート層が設けられる。 透 光性オーバーコート層を設けることなく楕円偏光板の製造に供すれば、 液晶高分 子層が損傷を受け、 光学性能および品質に優れた楕円偏光板が得られないことが ある。 液晶高分子層が架橋等による方法で形成されている場合は、 透光性オーバ ーコ一ト層を設ける必要がない場合もある。 偏光素子はその両面を三酢酸セル口 —スフィルムで保護された形態で供給されてもよいし、 偏光素子と液晶高分子層 を直接貼り合わせた後に、 剥離可能な基板フィルムを取り除き、 しかる後に三酢 酸セルロースフィルムで偏光素子側および液晶高分子層側の両側を保護してもよ レ、。 いずれの場合でも偏光素子と貼合後の適宜な時点で剝離可能な基板フィルム は除かれ楕円偏光板とすることができる。  A liquid crystal polymer layer formed on a substrate that can be separated from the polarizing element and whose surface is protected by a translucent overcoat layer is an adhesive represented by an acrylic, SBR, or silicon Alternatively, the elliptically polarizing plate of the present invention is obtained by laminating with an adhesive. In order to protect the surface of the liquid crystal polymer layer, a light-transmitting overcoat layer made of a photocurable, electron beam-curable or thermosetting acryl-based resin is provided. If an elliptically polarizing plate is manufactured without providing a light-transmitting overcoat layer, the liquid crystal polymer layer may be damaged, and an elliptically polarizing plate with excellent optical performance and quality may not be obtained. When the liquid crystal polymer layer is formed by a method such as crosslinking, it may not be necessary to provide a light-transmitting overcoat layer. The polarizing element may be supplied in a form in which both sides are protected by a triacetate cell mouth film, or after the polarizing element and the liquid crystal polymer layer are directly bonded, the peelable substrate film is removed, and then Both sides of the polarizing element side and the liquid crystal polymer layer side may be protected with a cellulose triacetate film. In any case, an elliptically polarizing plate can be obtained by removing the substrate film that can be separated at an appropriate time after lamination with the polarizing element.
本発明においては、 A及び Bのいずれの態様においても液晶高分子層 (光学異 方素子) は、 長尺フィルム形態で連続的に供給可能であり、 同様に長尺形態の偏 光素子と容易に連続的に積層操作を行うことができる。 液晶高分子層 (光学異方 素子) と偏光素子の積層は、 偏光素子の透過軸と液晶高分子層の両界面のどちら か一方の表面付近における配向軸を特定の角度で積層する必要があるが、 本発明 の液晶高分子層は任意の方向に配向角度を設定できるために長尺フィルム同士を 互いに MD方向に揃えて連続的に重ね合わせて積層することが可能である。 本発明の楕円偏光板を液晶セルに配置する場合には、 楕円偏光板の液晶高分子 層側が液晶セル側になるようにすることが必要である。 In the present invention, in both the embodiments A and B, the liquid crystal polymer layer (optically anisotropic element) can be continuously supplied in the form of a long film. The lamination operation can be performed continuously. When stacking the liquid crystal polymer layer (optically anisotropic element) and the polarizing element, it is necessary to stack the transmission axis of the polarizing element and the alignment axis near either one of the two interfaces of the liquid crystal polymer layer at a specific angle. However, since the liquid crystal polymer layer of the present invention can set the orientation angle in any direction, It is possible to laminate one after the other in the MD direction. When the elliptically polarizing plate of the present invention is arranged in a liquid crystal cell, it is necessary that the liquid crystal polymer layer side of the elliptically polarizing plate be on the liquid crystal cell side.
本発明における楕円偏光板は、 いわゆる円偏光板や直線偏光板といわれるもの も含まれる。  The elliptically polarizing plate in the present invention includes a so-called circularly polarizing plate and a linearly polarizing plate.
〔実施例〕  〔Example〕
以下実施例により本発明を詳述する。  Hereinafter, the present invention will be described in detail with reference to examples.
液晶高分子溶液の調製 1 : Preparation of liquid crystal polymer solution 1:
( I) 式で示した混合ポリマー (ベースポリマーの対数粘度 = 0. 2 1、 Tg = 60°C、 光学活性ポリマーの対数粘度 = 0. 1 8) を含む 20\^%の1^ーメチ ルピロリ ドン溶液を調製した。  20 \ ^% of 1 ^ -methylpyrroli, including the mixed polymer shown by the formula (I) (logarithmic viscosity of base polymer = 0.21, Tg = 60 ° C, logarithmic viscosity of optically active polymer = 0.18) A don solution was prepared.
( I ) (I)
Figure imgf000013_0001
Figure imgf000013_0001
97. 2 w t %  97.2 w t%
Figure imgf000013_0002
Figure imgf000013_0002
2. 8 wt %  2.8 wt%
*印は光学活性炭素を示す。  * Indicates optically active carbon.
液晶高分子溶液の調製 2 (II)式で示した側鎖型アクリル重合体の 1 Owt%塩化メチレン溶液を調整し た。 Preparation of liquid crystal polymer solution 2 A 1 Owt% methylene chloride solution of the side chain type acrylic polymer represented by the formula (II) was prepared.
(I) (I)
C≡NC≡N
Figure imgf000014_0001
Figure imgf000014_0001
n ^ 1 8  n ^ 1 8
液晶高分子溶液の調製 3 : Preparation of liquid crystal polymer solution 3:
(III)式で示した液晶性ポリエステル (対数粘度 =0. 1 6、 Tg= 1 00°C ) の 7 wt%のクロ口ホルム溶液を調整した。  A 7 wt% solution of the liquid crystalline polyester represented by the formula (III) (logarithmic viscosity = 0.16, Tg = 1100 ° C.) was prepared.
(1) (1)
Figure imgf000014_0002
Figure imgf000014_0002
光学異方素子 Aの作製: Preparation of optical anisotropic element A:
65 Omm幅、 厚み 1 00 mの長尺の P E E Kフィルムを搬送しながら、 レ 一ヨン布を巻き付けた 1 50 mm øのラビングロ一ルを斜めに設定し、 高速で回 転させることにより連続的にラビングを行い、 ラビング角度 45° の配向基板フ イルムを得た。 ここで、 ラビング角度はラビング面を上からみたときに MD方向 から時計回り方向の角度とする。 液晶高分子溶液の調製例 1で得られた溶液を、 前記配向基板フィルム上に、 ダイコ一ターを用いて連続的に塗布 '乾燥し、 未配 向の液晶高分子層を形成した後、 2 0 0 °C x 1 0分間加熱処理をして液晶高分子 を配向させ、 次いで室温に冷却して配向を固定化した。 この液晶高分子層は、 ね じれネマチック配向しており、 ねじれ角は一 2 3 0 ° 、 A n dは 0 . 8 4 mで あった。 この液晶高分子層を鹼化処理していない厚さ 8 0 mの三酢酸セルロー スフイルムに紫外線硬化型アクリル系接着剤を用いて転写した。 表面保護のため に同じァクリル系接着剤を液晶高分子層表面に塗布したのち硬化させて透光性ォ 一バーコ—ト層を設けた。 以上のようにして総膜厚が約 1 0 0〃mの光学異方素 子 Aを得た。 While transporting a long PEEK film with a width of 65 mm and a thickness of 100 m, a rubbing roll of 150 mm ø around which a rayon cloth is wound is set at an angle, and continuously rotated by rotating at high speed. Perform rubbing, and align the substrate with a rubbing angle of 45 °. I got Irum. Here, the rubbing angle is an angle clockwise from the MD direction when the rubbing surface is viewed from above. The solution obtained in Liquid Crystal Polymer Solution Preparation Example 1 was continuously applied on the alignment substrate film using a die coater and dried to form an unoriented liquid crystal polymer layer. The liquid crystal polymer was aligned by heat treatment at 100 ° C. for 10 minutes, and then cooled to room temperature to fix the alignment. This liquid crystal polymer layer had a twisted nematic orientation, a twist angle of 230 ° and an And of 0.84 m. The liquid crystal polymer layer was transferred to an uncured 80 m-thick cellulose triacetate film using an ultraviolet-curable acrylic adhesive. The same acryl-based adhesive was applied to the surface of the liquid crystal polymer layer for surface protection and then cured to form a light-transmitting overcoat layer. As described above, an optically anisotropic element A having a total thickness of about 100 μm was obtained.
光学異方素子 Bの作製: Preparation of optically anisotropic element B:
鹼化処理をしていない厚さ 8 0 inの長尺の三酢酸セルロースフィル厶にアル キル変性ポリビニルアルコールを塗布、 乾燥させ、 次に光学異方素子 Aの作製例 と同様にラビング処理をしてラビング角度 4 5 ° の配向基板フィルムを得た。 液 晶高分子溶液の調製例 2で調製した溶液を、 前記配向基板フイルムに塗布し、 乾 燥後加熱配向処理をして液晶高分子層を配向固定化した。 この液晶高分子層はネ マチック配向しており、 A n dは 0 . 8〃mであった。 表面保護のために紫外線 硬化型アクリル系接着剤を液晶高分子層側に塗布して、 総膜厚が約 1 0 0 / mの 光学異方素子 Bを得た。  Alkyl-modified polyvinyl alcohol is applied to a long, 80-inch thick cellulose triacetate film that has not been subjected to oxidation treatment, dried, and then subjected to a rubbing treatment in the same manner as in the production example of optical anisotropic element A. Thus, an oriented substrate film having a rubbing angle of 45 ° was obtained. The solution prepared in Preparation Example 2 of the liquid crystal polymer solution was applied to the alignment substrate film, dried, and then subjected to a heat alignment treatment to fix the alignment of the liquid crystal polymer layer. This liquid crystal polymer layer was in a nematic orientation, and the An was 0.8 μm. An UV-curable acrylic adhesive was applied to the liquid crystal polymer layer side for surface protection to obtain an optically anisotropic element B having a total thickness of about 100 / m.
光学異方素子 Cの作製: Preparation of optically anisotropic element C:
6 5 0 mm幅、 厚み 1 0 0 mの長尺の P E E Kフイルムを搬送しながら、 レ 一ヨン布を巻き付けた 1 5 0 mm øのラビングロールの回転方向と MD方向が平 行になるように設定し、 高速で回転させることにより連続的にラビングを行い、 配向基板フィルムを得た。 液晶高分子溶液の調製例 3で得られた溶液を、 前記配 向基板フィルム上に、 ダイコ一夕一を用いて塗布した後乾燥し、 2 3 0 °C x 1 0 分間加熱処理をして液晶高分子を配向させ、 次いで固定化した。 膜厚 0 . 6 μ. π 、 膜厚方向の平均チルト角が 3 5 ° のネマチックハイブリツ ド配向をしているこ とが確かめられた。 このフィル厶を鹼化処理をしていない厚さ 8 0〃mの三酢酸 セルロースフィル厶に紫外線硬化型ァクリル系接着剤を用いて転写した。 表面保 護のために同じアクリル系接着剤を液晶高分子層側に塗布して総膜厚が約 1 0 0 mの光学異方素子 Cを得た。 While transporting a long PEEK film with a width of 600 mm and a thickness of 100 m, the rotation direction of the rubbing roll of 150 mm ø around which the rayon cloth is wound is parallel to the MD direction. The rubbing was performed continuously by setting and rotating at high speed to obtain an oriented substrate film. The solution obtained in Liquid Crystal Polymer Solution Preparation Example 3 was applied onto the oriented substrate film using Daiko All Night, dried, and heated at 230 ° C for 10 minutes. The liquid crystal polymer was aligned and then fixed. It was confirmed that the film had a nematic hybrid orientation with a film thickness of 0.6 μ.π and an average tilt angle of 35 ° in the film thickness direction. This film is not treated with acetic acid. It was transferred to a cellulose film using an ultraviolet-curable acryl-based adhesive. The same acrylic adhesive was applied to the liquid crystal polymer layer side for surface protection to obtain an optically anisotropic element C having a total thickness of about 100 m.
実施例 1 (楕円偏光板 Aの作製) : Example 1 (Preparation of elliptically polarizing plate A):
光学異方素子 Aを室温で、 2 %水酸化力リゥム水溶液中に 5分間浸漬して鹼化 処理を行い、 流水中で洗浄した後乾燥させた。  The optically anisotropic element A was immersed in a 2% aqueous hydration solution at room temperature for 5 minutes to carry out a curing treatment, washed in running water, and dried.
延伸したポリビニルアルコールに沃素を吸着させた偏光素子の一方の面に、 ァ クリル系接着剤を用いて、 鹼化した光学異方素子 Aを液晶高分子層が外側となる ように連続的に貼り合わせた。 偏光素子の他方の面には鹼化した三酢酸セルロー スフイルムを貼り合わせ本発明の楕円偏光板 Aを作製した。 総膜厚は約 2 0 0 mであつた。 この楕円偏光板 Aを光学検査したところ液晶高分子層にシミや傷な どの損傷は見られなかつた。  A cured optically anisotropic element A is continuously attached to one side of a polarizing element in which iodine is adsorbed on stretched polyvinyl alcohol using an acrylic adhesive such that the liquid crystal polymer layer is on the outside. I combined. An elliptically polarizing plate A of the present invention was produced by bonding a cured cellulose triacetate film to the other surface of the polarizing element. The total film thickness was about 200 m. Optical inspection of the elliptically polarizing plate A showed no damage such as spots or scratches on the liquid crystal polymer layer.
この楕円偏光板 Aの光学異方素子 A側をアタリル系粘着剤を介してガラス板に 貼り付け、 6 0 °C 9 0 % R Hの恒温恒湿槽に入れ、 5 0 0時間経過後に取り出し て観察したところ、 剝がれや泡の発生などの異常は一切認められなかった。 実施例 2 (楕円偏光板 Bの作製) :  The optically anisotropic element A side of this elliptically polarizing plate A is attached to a glass plate via an ataryl adhesive, put in a constant temperature and humidity chamber at 60 ° C and 90% RH, and taken out after elapse of 500 hours. Observation revealed no abnormalities such as peeling or bubbles. Example 2 (Preparation of elliptically polarizing plate B):
光学異方素子 Aの代わりに光学異方素子 Bを用いる他は実施例 1と同様にして 、 楕円偏光板 Bを得た。 総膜厚は約 2 0 O mであった。 この楕円偏光板 Bを光 学検査したところ液晶高分子層にシミや傷などの損傷は見られなかつた。  An elliptically polarizing plate B was obtained in the same manner as in Example 1 except that the optically anisotropic element B was used instead of the optically anisotropic element A. The total film thickness was about 20 Om. Optical examination of this elliptically polarizing plate B showed no damage such as spots or scratches on the liquid crystal polymer layer.
この楕円偏光板 Bの光学異方素子 B側をアタリル系粘着剤を介してガラス板に 貼り付け、 6 0 °C 9 0 % R Hの恒温恒湿槽に入れ、 5 0 0時間経過後に取り出し て観察したところ、 剥がれや泡の発生などの異常は一切認められなかつた。 実施例 3 (楕円偏光板 Cの作製) :  The optically anisotropic element B side of the elliptically polarizing plate B is attached to a glass plate via an ataryl adhesive, put in a constant temperature and humidity chamber at 60 ° C and 90% RH, and taken out after elapse of 500 hours. Upon observation, no abnormalities such as peeling or foaming were observed. Example 3 (Preparation of elliptically polarizing plate C):
光学異方素子 Aの代わりに光学異方素子 Cを用いる他は実施例 1と同様にして 、 楕円偏光板 Cを得た。 総膜厚は約 2 0 0 / mであった。 この楕円偏光板 Cを光 学検査したところ液晶高分子層にシミや傷などの損傷は見られなかつた。  An elliptically polarizing plate C was obtained in the same manner as in Example 1 except that the optically anisotropic element C was used instead of the optically anisotropic element A. The total film thickness was about 200 / m. Optical inspection of the elliptically polarizing plate C showed no damage such as spots or scratches on the liquid crystal polymer layer.
この楕円偏光板 Cの光学異方素子 C側をアクリル系粘着剤を介してガラス板に 貼り付け、 6 0 °C 9 0 % R Hの恒温恒湿槽に入れ、 5 0 0時間経過後に取り出し て観察したところ、 剝がれや泡の発生などの異常は一切認められなかつた。 実施例 4 : The optically anisotropic element C side of the elliptically polarizing plate C is adhered to a glass plate via an acrylic adhesive, placed in a constant temperature and humidity chamber at 60 ° C and 90% RH, and taken out after a lapse of 500 hours. Upon observation, no abnormalities such as peeling or foaming were observed. Example 4:
この楕円偏光板 Cを用いて液晶表示装置を作製した。 楕円偏光板 Cは光学異方 素子 C側を駆動用液晶セルに近接するようにその両側に配置し、 光学異方素子 C のラビング方向と液晶セルの隣接する液晶の配向角が 9 0 ° となるように配置し た。 駆動用液晶セルは、 液晶材料として Z L 1 - 4 7 9 2を用い、 セルパラメ一 夕はセルギャップ 4 . 8〃m、 ねじれ角 9 0 ° (左ねじれ) 、 プレチルト角 4 ° であつた。 この液晶表示装置の視野角特性は光学異方素子 Cのない場合に比べて 広い特性を示した。  Using this elliptically polarizing plate C, a liquid crystal display device was manufactured. The elliptically polarizing plate C is arranged on both sides of the optically anisotropic element C such that the side of the optically anisotropic element C is close to the driving liquid crystal cell, and the rubbing direction of the optically anisotropic element C and the orientation angle of the liquid crystal adjacent to the liquid crystal cell are 90 °. It was arranged so that it might become. The driving liquid crystal cell used ZL 1-47992 as the liquid crystal material, and the cell parameters were cell gap 4.8〃m, twist angle 90 ° (left twist), and pretilt angle 4 °. The viewing angle characteristics of this liquid crystal display device were wider than those without the optically anisotropic element C.
〔比較例〕  (Comparative example)
光学異方素子 Dの作製: Preparation of optically anisotropic element D:
鹼化処理をした厚さ 8 0〃mの三酢酸セルロースフィルムにアルキル変性ポリ ビニルアルコールを塗布、 乾燥させ、 次に光学異方素子 Aの作製例に記載された 方法でラビング処理をしてラビング角度 4 5 ° の配向フィルムを得た。 液晶高分 子溶液の調製例 2で調製した溶液を、 上記ラビング処理をした三酢酸セルロース 長尺フィルムに塗布し、 乾燥後加熱配向処理をして液晶高分子層を配向固定化し た。 この液晶高分子層の Δ η dは 0 . 8 mであった。 表面保護のために紫外線 硬化型アクリル系接着剤を液晶高分子層側に塗布して、 総膜厚が約 1 0 0 / mの 光学異方素子 Dを得た。  An alkyl-modified polyvinyl alcohol is applied to the oxidized 80-μm-thick cellulose triacetate film, dried, and then rubbed by the rubbing method described in the example of manufacturing optical anisotropic element A. An oriented film having an angle of 45 ° was obtained. The solution prepared in Preparation Example 2 of the liquid crystal polymer solution was applied to the above-mentioned rubbed cellulose triacetate long film, dried and then subjected to a heating alignment treatment to fix the alignment of the liquid crystal polymer layer. Δη d of this liquid crystal polymer layer was 0.8 m. An ultraviolet-curable acrylic adhesive was applied to the liquid crystal polymer layer side for surface protection to obtain an optically anisotropic element D having a total thickness of about 100 / m.
光学異方素子 Eの作製: Preparation of optical anisotropic element E:
光学異方素子 A作製例において表面保護のためのアクリル系接着剤を液晶高分 子層に塗布しないほかは全く同じ操作で光学異方素子 Eを得た。  Optical anisotropic element E was obtained in exactly the same manner as in optical anisotropic element A, except that an acrylic adhesive for surface protection was not applied to the liquid crystal polymer layer.
比較例 1 (楕円偏光板 Dの作製) : Comparative Example 1 (Preparation of elliptically polarizing plate D):
実施例 1に準拠して偏光素子の片側に光学異方素子 Dを液晶高分子層が外側と なるように貼り合わせ、 もう一方の側には鹼化した三酢酸セルロースフィルムを 貼り合わせた楕円偏光板 Dを得た。 この楕円偏光板 Dの光学異方素子 D側にァク リル系粘着剤を塗布しガラス板に貼り付けて、 実施例 1、 2と同様の試験を行つ たところ、 1 0 0時間経過後に偏光素子と光学異方素子 Dの三酢酸セルロース面 との間に剥がれが認められた。  Elliptically polarized light obtained by adhering an optically anisotropic element D to one side of the polarizing element so that the liquid crystal polymer layer is on the outside, and adhering a cellulose triacetate film to the other side in accordance with Example 1. Plate D was obtained. An acrylic adhesive was applied to the optically anisotropic element D side of the elliptically polarizing plate D and attached to a glass plate, and the same tests as in Examples 1 and 2 were performed. Peeling was observed between the polarizing element and the cellulose triacetate surface of the optically anisotropic element D.
比較例 2 (楕円偏光板 Eの作製) : 光学異方素子 Eを室温で、 2 %水酸化力リゥム水溶液中に 5分間浸漬して鹼化 処理を行い、 流水中で洗浄した後乾燥させた。 Comparative Example 2 (Preparation of elliptically polarizing plate E): The optically anisotropic element E was immersed in a 2% aqueous hydroxide solution at room temperature for 5 minutes to carry out a curing treatment, washed in running water, and dried.
実施例 1に準拠して偏光素子の片側に光学異方素子 Eを液晶高分子層が外側と なるように配し、 もう一方の側には鹼化した三酢酸セルロースフイルムを貼り合 わせた楕円偏光板 Eを得た。 この楕円偏光板 Eの光学検查を行ったところ、 液晶 高分子層の損傷によると思われるシミや傷が多数発生していた。  An ellipse in which the optically anisotropic element E is arranged on one side of the polarizing element so that the liquid crystal polymer layer is on the outside according to Example 1, and a cured cellulose triacetate film is adhered on the other side. A polarizing plate E was obtained. When an optical inspection of the elliptically polarizing plate E was performed, a number of spots and scratches which were considered to be caused by damage of the liquid crystal polymer layer were found.
比較例 3 (楕円偏光板 Fの作製) : Comparative Example 3 (Preparation of elliptically polarizing plate F):
延伸したポリビニルアルコールに沃素を吸着させた偏光素子の両側に、 ァクリ ル系接着剤を用いて、 鹼化した三酢酸セルロースフィルムを貼り合わせて偏光板 を作製した。 光学異方素子 Bを鹼化処理することなく、 その液晶高分子層側をァ クリル系拈着剤を介してこの偏光板に連続的に貼合して楕円偏光板 Fを作製した 。 この楕円偏光板 Fは厚さ約 3 0 0 x mと厚く、 巻き厚が大きくなるために一回 の操作での処理長さは実施例 1、 2の楕円偏光板の作製に比べて短くならざるを 得なかった。 楕円偏光板 Fの光学異方素子 B側にァクリル系粘着剤を塗布しガラ ス板に貼りつけて、 実施例し 2と同様の試験を行ったところ、 5 0 0時間経過 後に端部に 0 . 5 mmの剥がれが認められた。  Using a acryl-based adhesive, a cured cellulose triacetate film was attached to both sides of a polarizing element in which iodine was adsorbed to the stretched polyvinyl alcohol, to produce a polarizing plate. The elliptically polarizing plate F was manufactured by continuously bonding the liquid crystal polymer layer side of the optically anisotropic element B to this polarizing plate via an acrylic-based adhesive without subjecting it to a vulcanizing treatment. The elliptically polarizing plate F is as thick as about 300 xm and the winding thickness is large, so that the processing length in one operation must be shorter than that of the elliptically polarizing plates of Examples 1 and 2. Was not obtained. An acryl-based adhesive was applied to the optically anisotropic element B side of the elliptically polarizing plate F and attached to a glass plate, and the same test as in Example 2 was carried out. .5 mm peeling was observed.
実施例 5 (楕円偏光板 Gの作製) : Example 5 (Preparation of elliptically polarizing plate G):
6 5 0 mm幅、 厚み 1 0 0 mの長尺の P E E Kフイルムを搬送しながら、 レ 一ヨン布を巻き付けた 1 5 O mm 0のラビングロ一ルを斜めに設定し、 高速で回 転させることにより連続的にラビングを行い、 ラビング角度 4 5。 の配向基板フ イルムを得た。 ここで、 ラビング角度はラビング面を上からみたときに MD方向 から時計回り方向の角度とする。 液晶高分子溶液の調製例 1で得られた溶液を、 前記配向基板フイルム上に、 ダイコー夕一を用いて連続的に塗布'乾燥し、 未配 向の液晶高分子層を形成した後、 2 0 0 °C x 1 0分間加熱処理をして液晶高分子 を配向させ、 次いで室温に冷却して配向を固定化した。 この液晶高分子層は、 ね じれネマチック配向しており、 ねじれ角は— 2 3 0 ° 、 A n dは 0 . 8 4 mで あった。 P E E Kフィルム上の液晶高分子層に紫外線硬化型ァクリル系接着剤を 塗布し、 ポリエチレンテレフ夕レート (P E T) フイルムと貼り合わせた後に硬 化させ、 P E E Kフィル厶を剝離して液晶高分子層を P E Tフィル厶上に転写し た。 次いで、 液晶高分子層の表面に同じアクリル系接着剤を塗布し、 PETフィ ルムと貼り合わせた後に硬化させ、 PETフイルム (剝離可能な基板) Z硬化ァ クリル系接着剤層 (透光性オーバーコート層) Z液晶高分子層ノ硬化アタリル系 接着剤層 (透光性オーバーコート層) ZPETフィルム (剝離可能な基板) から なる積層フィルム Aを得た。 While transporting a long PEEK film with a width of 65 mm and a thickness of 100 m, set a rubbing roll of 150 mm0 around which a rayon cloth is wound, and rotate it at high speed. Rubbing is performed continuously with a rubbing angle of 45. An oriented substrate film was obtained. Here, the rubbing angle is an angle clockwise from the MD direction when the rubbing surface is viewed from above. The solution obtained in Preparation Example 1 of the liquid crystal polymer solution was continuously applied and dried on the alignment substrate film using Daiko Yuichi to form an unoriented liquid crystal polymer layer. The liquid crystal polymer was aligned by heat treatment at 100 ° C. for 10 minutes, and then cooled to room temperature to fix the alignment. This liquid crystal polymer layer had a twisted nematic orientation, a twist angle of −230 ° and an And of 0.84 m. An ultraviolet-curable acryl-based adhesive is applied to the liquid crystal polymer layer on the PEEK film, bonded to a polyethylene terephthalate (PET) film, cured, separated from the PEEK film, and the liquid crystal polymer layer is PET. Transcribed on film Was. Next, apply the same acrylic adhesive to the surface of the liquid crystal polymer layer, bond it to the PET film, and cure it. PET film (separable substrate) Z-cured acrylic adhesive layer (translucent overcoat) (Coating layer) Z liquid crystal polymer layer No-cured ataryl adhesive layer (light-transmitting overcoat layer) A laminated film A composed of a ZPET film (separable substrate) was obtained.
延伸したポリビニルアルコールに沃素を吸着させた偏光素子の両側に、 ァクリ ル系接着剤を用いて、 厚さ 80 mの鹼化した三酢酸セルロース (TAC) フィ ルムを貼り合わせて作製された偏光板と上記の積曆フィルム Aとをその片側の P ETフイルムを連続的に剝がしながら、 ァクリル系粘着剤を介して連続的に貼合 して楕円偏光板 Gを作製した。 この楕円偏光板の総膜厚は約 200 mであつナ: o  A polarizing plate made by laminating 80 m thick cellulose triacetate (TAC) film with an acrylic adhesive on both sides of a polarizing element in which iodine is adsorbed to stretched polyvinyl alcohol. And the above laminated film A were continuously laminated via an acryl-based adhesive while continuously peeling the PET film on one side thereof, thereby producing an elliptically polarizing plate G. The total thickness of this elliptically polarizing plate is about 200 m: o
この楕円偏光板 Gを光学検査したところ液晶高分子層にシミや傷などの損傷は 見られなカヽつた。  When the elliptically polarizing plate G was optically inspected, no damage such as spots or scratches was found on the liquid crystal polymer layer.
この楕円偏光板 Gから液晶高分子層側の PETフィルムを剝がし、 ァクリル系 拈着剤を介してガラス板に貼り付けて試験片とした。 この試験片を 80°Cドライ の恒温槽と 60°C90 %RHの恒温恒湿槽に入れ、 それぞれ 500時間経過後に 取り出して観察したところ、 両条件とも剥がれや泡の発生などの異常は一切認め られな力、つた。  The PET film on the liquid crystal polymer layer side was peeled off from the elliptically polarizing plate G, and attached to a glass plate via an acryl-based adhesive to form a test piece. The test pieces were placed in a constant temperature oven at 80 ° C dry and a constant temperature / humidity oven at 60 ° C 90% RH.Each 500 hours later, they were removed and observed.No abnormality such as peeling or foaming was observed under both conditions. The power that has come.
実施例 6 (楕円偏光板 Hの作製) : Example 6 (Preparation of elliptically polarizing plate H):
65 Omm幅、 厚み 80〃mの長尺の P P Sフィルムを実施例 5と同様にラビ ング処理をしてラビング角度 45° の配向基板フィルムを得た。 液晶高分子溶液 の調製例 2で調製した溶液を、 前記配向基板フィルムに塗布し、 乾燥後加熱配向 処理をして液晶高分子層を配向固定化した。 この液晶高分子層はネマチック配向 しており、 An dは 0. であった。 以下、 実施例 5と同様な操作により積 層フイルム Bを作製し、 さらに楕円偏光板 Hを作製した。 この楕円偏光板の総膜 厚は約 200〃mであった。  A long PPS film having a width of 65 Omm and a thickness of 80 μm was subjected to rubbing treatment in the same manner as in Example 5 to obtain an oriented substrate film having a rubbing angle of 45 °. The solution prepared in Preparation Example 2 of the liquid crystal polymer solution was applied to the above-mentioned alignment substrate film, dried and then subjected to a heating alignment treatment to fix the alignment of the liquid crystal polymer layer. This liquid crystal polymer layer was in a nematic orientation, and had an And of 0. Hereinafter, a laminated film B was produced in the same manner as in Example 5, and an elliptically polarizing plate H was produced. The total film thickness of this elliptically polarizing plate was about 200 m.
この楕円偏光板 Hを光学検査したところ液晶高分子層にシミや傷などの損傷は 見られなかった。  Optical inspection of the elliptically polarizing plate H showed no damage or stains on the liquid crystal polymer layer.
この楕円偏光板 Hから液晶高分子層側の P E Tフィルムを剥がし、 アタリル系 粘着剤を介してガラス板に貼り付けて試験片とした。 この試験片を 80°Cドライ の恒温槽と 6 0°C90%RHの恒温恒湿槽に入れ、 それぞれ 500時間経過後に 取り出して観察したところ、 両条件とも剝がれや泡の発生などの異常は一切認め られな力、つた。 Peel off the PET film on the liquid crystal polymer layer side from this elliptically polarizing plate H A test piece was attached to a glass plate via an adhesive. The test pieces were placed in a constant temperature oven at 80 ° C dry and a constant temperature / humidity oven at 60 ° C 90% RH.Each 500 hours later, they were taken out and observed.In both conditions, abnormalities such as peeling and foaming were observed. The power that was not recognized at all.
実施例 7 (楕円偏光板 Iの作製) : Example 7 (Preparation of elliptically polarizing plate I):
65 Omm幅、 厚み 1 00〃mの長尺の P E E Kフイルムを搬送しながら、 レ 一ヨン布を巻き付けた 1 50 mm øのラビングロールの回転方向と MD方向が平 行になるように設定し、 高速で回転させることにより連続的にラビングを行い、 配向基板フィルムを得た。 液晶高分子溶液の調製例 3で得られた溶液を、 前記配 向基板フィルム上に、 ダイコーターを用いて塗布した後乾燥し、 230 °Cx 1 0 分間加熱処理をして液晶高分子を配向させ、 次いで固定化した。 膜厚 0. 6 ( m 、 膜厚方向の平均チルト角が 35° のネマチックハイブリツ ド配向をしているこ とが確かめられた。 以下、 実施例 5と同様な操作により積層フイルム Cを作製し 、 さらに楕円偏光板 Iを作製した。 この楕円偏光板の総膜厚は約 200 であ つた。  While conveying a long PEEK film with a width of 65 mm and a thickness of 100 m, set the rotation direction of the rubbing roll of 150 mm ø around which the rayon cloth is wound and the MD direction in parallel. Rubbing was performed continuously by rotating at high speed to obtain an oriented substrate film. The solution obtained in Liquid Crystal Polymer Solution Preparation Example 3 was coated on the above-mentioned oriented substrate film using a die coater, dried, and heated at 230 ° C for 10 minutes to align the liquid crystal polymer. And then immobilized. It was confirmed that the film had a nematic hybrid orientation with a film thickness of 0.6 (m) and an average tilt angle of 35 ° in the film thickness direction. A laminated film C was prepared in the same manner as in Example 5. Then, an elliptically polarizing plate I was manufactured, and the total thickness of the elliptically polarizing plate was about 200.
この楕円偏光板 Iを光学検査したところ液晶高分子層にシミや傷などの損傷は 見られなかった。  Optical inspection of this elliptically polarizing plate I revealed no damage such as spots or scratches on the liquid crystal polymer layer.
この楕円偏光板 Iから液晶高分子層側の P E Tフィル厶を剥がし、 ァクリル系 粘着剤を介してガラス板に貼り付けて試験片とした。 この試験片を 80°Cドライ の恒温槽と 60°C 90 %RHの恒温恒湿槽に入れ、 それぞれ 500時間経過後に 取り出して観察したところ、 両条件とも剝がれや泡の発生などの異常は一切認め られなかった。  The PET film on the liquid crystal polymer layer side was peeled off from the elliptically polarizing plate I, and affixed to a glass plate via an acryl-based adhesive to form a test piece. The test specimens were placed in a constant temperature oven at 80 ° C dry and a constant temperature / humidity oven at 60 ° C 90% RH.After 500 hours, they were taken out and observed.In both conditions, abnormalities such as peeling and bubbles were observed. Was not recognized at all.
実施例 8 : Example 8:
楕円偏光板 Iを用いて液晶表示装置を作製した。 楕円偏光板 Iは液晶高分子層 側を駆動用液晶セルに近接するように配置し、 液晶高分子層のラビング方向と液 HBセルの隣接する液晶の配向角が 90° となるように配置した。 駆動用液晶セル は、 液晶材料として ZL 1 - 4 792を用い、 セルパラメ一夕はセルギャップ 4 . 8 /m、 ねじれ角 9 0° (左ねじれ) 、 プレチルト角 4 ° であった。 この液晶 表示装置の視野角特性は液晶高分子層のない場合に比べて広い特性を示した。 比較例 4 (楕円偏光板 Kの作製) : A liquid crystal display device was manufactured using the elliptically polarizing plate I. The elliptically polarizing plate I was arranged so that the liquid crystal polymer layer side was close to the driving liquid crystal cell, and was arranged such that the rubbing direction of the liquid crystal polymer layer and the orientation angle of the liquid crystal adjacent to the liquid HB cell were 90 °. . The driving liquid crystal cell used ZL 1-4792 as a liquid crystal material, and the cell parameters were a cell gap of 4.8 / m, a twist angle of 90 ° (left twist), and a pretilt angle of 4 °. The viewing angle characteristics of this liquid crystal display were wider than those without the liquid crystal polymer layer. Comparative Example 4 (Preparation of elliptically polarizing plate K):
実施例 5で得られた Ρ Ε Ε Κフィルム上に形成された液晶高分子層に、 実施例 5に準拠して紫外線硬化型アクリル系接着剤塗布し、 厚さ 8 0 mの鹼化してい ない T A Cフィルムと貼り合わせた後に硬化させた。 次いで、 P E E Kフィルム を剥いで液晶高分子層を T A Cフィルム上に転写した。 表面保護のために同じァ クリル系接着剤を液晶高分子層側に塗布し P E Tフィルムと貼り合わせて、 P E TZ硬化アクリル系接着層 Z液晶高分子層 Z硬化アクリル系接着層 A Cなる 構成の積層フィルムを得た。  A UV curable acrylic adhesive was applied to the liquid crystal polymer layer formed on the film obtained in Example 5 in accordance with Example 5 according to Example 5, and the thickness of the film was not reduced to 80 m. It was cured after bonding with a TAC film. Next, the PEEK film was peeled off, and the liquid crystal polymer layer was transferred onto the TAC film. Apply the same acrylic adhesive to the liquid crystal polymer layer side to protect the surface, and bond it to the PET film to form a PE TZ cured acrylic adhesive layer Z liquid crystal polymer layer Z cured acrylic adhesive layer AC A film was obtained.
この積層フイルムから P E Tフィルムを連続的に剝がしながら、 実施例 5の偏 光板にアクリル系粘着剤を介して連続的に貼合して楕円偏光板 Kを作製した。 こ の楕円偏光板の総膜厚は約 3 0 0 u mと厚いものであった。  An elliptically polarizing plate K was produced by continuously laminating the PET film from the laminated film to the polarizing plate of Example 5 via an acrylic adhesive while continuously removing the PET film. The total film thickness of this elliptically polarizing plate was as thick as about 300 μm.
この楕円偏光板 Kの液晶高分子層側にァクリル系粘着剤を塗布しガラス板に貼 り付けて試験片とした。 実施例 5及び 6と同様の試験を行ったところ、 5 0 0時 間経過後に 6 0 °C 9 0 % R H条件下の試験片に 0 . 4 mmの剝がれが認められた o  An acryl-based adhesive was applied to the liquid crystal polymer layer side of the elliptically polarizing plate K, and was adhered to a glass plate to obtain a test piece. When the same tests as in Examples 5 and 6 were performed, a 0.4 mm skewing was observed on the test piece under the condition of 60 ° C and 90% RH after 500 hours.o
比較例 5 (楕円偏光板 Lの作製) : Comparative Example 5 (Preparation of elliptically polarizing plate L):
実施例 5で得られた P E Tフィルム上に転写された液晶高分子層に表面保護層 を形成することなく、 実施例 5の偏光板にァクリル系粘着剤を介して連続的に貼 合して楕円偏光板 Lを作製した。 この楕円偏光板 Lの光学検査を行ったところ、 液晶高分子層の損傷によると思われるシミや傷が多数発生していた。 この楕円偏 光板 Lの液晶高分子層側にァクリル系粘着剤を塗布しガラス板に貼り付けて試験 片とした。 実施例 5及び 6と同様の試験を行ったところ、 5 0 0時間経過後に 8 0でドライ条件下の試験片に細かレ、しわと割れが認められた。  Without forming a surface protective layer on the liquid crystal polymer layer transferred on the PET film obtained in Example 5, the polarizer of Example 5 was continuously bonded to the polarizing plate via an acryl-based adhesive to form an ellipse. A polarizing plate L was produced. When an optical inspection was performed on the elliptically polarizing plate L, many spots and scratches were considered to be caused by damage to the liquid crystal polymer layer. An acryl-based adhesive was applied to the liquid crystal polymer layer side of the elliptical polarizing plate L and attached to a glass plate to obtain a test piece. When the same test as in Examples 5 and 6 was performed, fine pieces, wrinkles and cracks were recognized on the test piece under dry conditions at 800 after elapse of 500 hours.
〔発明の効果〕  〔The invention's effect〕
本発明の楕円偏光板は楕円偏光板を構成するラミネ一ト層の数が少ないために 、 総膜厚が薄くなるために、 フィルムの取扱い性に優れ、 1回の貼り合わせ操作 でより長いフィル厶を処理することが出来る。 さらに層構造が簡略化されている ために、 促進耐久性試験において界面で剝がれや泡の発生がない利点がある。 貼 り合わせ工程において、 長尺フイルムの状態で貼合することができるために、 従 来法より貼合工程が合理化でき、 液晶高分子層の損傷もない。 The elliptically polarizing plate of the present invention has a small total number of laminating layers constituting the elliptically polarizing plate and thus has a small total film thickness. Room can be processed. Furthermore, since the layer structure is simplified, there is an advantage that no peeling or bubbles are generated at the interface in the accelerated durability test. In the laminating process, it can be laminated in the form of a long film. The bonding process can be streamlined compared to the conventional method, and there is no damage to the liquid crystal polymer layer.

Claims

請求の範囲 The scope of the claims
1 . 液晶高分子層と偏光素子を有する楕円偏光板であって三酢酸セル Π—スフィ ルム上に配向した液晶高分子層を有する光学異方素子と透光性保護フィルムとの 間に偏光素子が挟持され、 かつ、 光学異方素子が鹼化処理されていることを特徴 とする楕円偏光板。  1. An elliptically polarizing plate having a liquid crystal polymer layer and a polarizing element, and a polarizing element disposed between the optically anisotropic element having the liquid crystal polymer layer oriented on the triacetate cell-film and the light-transmitting protective film. An elliptically polarizing plate, characterized in that the optically anisotropic element is subjected to a vulcanization treatment.
2 . 液晶高分子層の表面に透光性オーバーコ一ト層が設けられていることを特徴 とする請求項 1記載の楕円偏光板。  2. The elliptically polarizing plate according to claim 1, wherein a translucent overcoat layer is provided on a surface of the liquid crystal polymer layer.
3 . 透光性ォーバ一コート層がアタリル系樹脂からなることを特徴とする請求項 2記載の楕円偏光板。  3. The elliptically polarizing plate according to claim 2, wherein the translucent overcoat layer is made of an ataryl resin.
4 . 液晶高分子層が光学的に正の一軸性を示す液晶分子からなることを特徴とす る請求項 1〜 3のいずれか 1項に記載の楕円偏光板。  4. The elliptically polarizing plate according to any one of claims 1 to 3, wherein the liquid crystal polymer layer is composed of liquid crystal molecules having optically positive uniaxiality.
5 . 液晶高分子層の両側表面のいずれか一方の表面付近における液晶高分子の配 向方向が、 MD方向と平行でないことを特徴とする請求項 1〜 4のいずれか 1項 に記載の楕円偏光板。  5. The ellipse according to any one of claims 1 to 4, wherein the direction of orientation of the liquid crystal polymer near one of the two surfaces of the liquid crystal polymer layer is not parallel to the MD direction. Polarizer.
6 . 光学異方素子、 透光性保護フィルムおよび偏光素子が長尺フィルム形態であ ることを特徴とする請求項 1〜 5のいずれか 1項に記載の楕円偏光板。  6. The elliptically polarizing plate according to any one of claims 1 to 5, wherein the optically anisotropic element, the translucent protective film, and the polarizing element are in the form of a long film.
7 . 三酢酸セルロースフイルム上に液晶高分子層を形成したのち、 該液晶高分子 層の表面に透光性オーバーコート層を設けることによつて光学異方素子を製造し 、 次いで該光学異方素子に鹼化処理を施し、 しかる後に偏光膜を接着剤層を介し て該光学異方素子と透光性保護フィルムに挟持されるように貼り合わせることを 特徴とする請求項 2〜 6のいずれか 1項に記載の楕円偏光板の製造方法。  7. After forming a liquid crystal polymer layer on the cellulose triacetate film, an optically anisotropic element is manufactured by providing a translucent overcoat layer on the surface of the liquid crystal polymer layer, and then the optically anisotropic element is manufactured. The device is subjected to a vulcanization treatment, and thereafter, a polarizing film is bonded via an adhesive layer so as to be sandwiched between the optically anisotropic device and the light-transmitting protective film. Or the method for producing an elliptically polarizing plate according to item 1.
8 . 液晶セルの少なくとも片側の面に、 請求項 1〜 5のいずれか 1項に記載の楕 円偏光板が配置されていることを特徴とする液晶表示装置。  8. A liquid crystal display device, wherein the elliptically polarizing plate according to any one of claims 1 to 5 is disposed on at least one surface of a liquid crystal cell.
9 . 液晶高分子層と偏光素子を有する楕円偏光板の製造方法であって、 偏光素子 と剝離可能な基板上に形成された液晶高分子層を粘接着層を介して貼り合わせる ことを特徴とする楕円偏光板の製造方法。  9. A method for producing an elliptically polarizing plate having a liquid crystal polymer layer and a polarizing element, wherein the liquid crystal polymer layer formed on a substrate that is separable from the polarizing element is bonded via an adhesive layer. A method for producing an elliptically polarizing plate.
10. 再剝離可能な基板上に形成された液晶高分子層の表面が透光性オーバーコー ト層で保護されていることを特徴とする請求項 9に記載の方法。  10. The method according to claim 9, wherein the surface of the liquid crystal polymer layer formed on the releasable substrate is protected by a translucent overcoat layer.
11. 透光性ォーバ一コート層がアクリル系樹脂からなることを特徴とする請求項 1 0に記載の方法。 11. The translucent overcoat layer is made of an acrylic resin. 10. The method according to 10.
12. 液晶高分子層が光学的に正の一軸性を示す液晶分子からなることを特徴とす る請求項 9〜 1 1のいずれか 1項に記載の方法。  12. The method according to any one of claims 9 to 11, wherein the liquid crystal polymer layer is composed of optically positive uniaxial liquid crystal molecules.
13. 液晶高分子層の両側表面のいずれか一方の表面付近における液晶高分子の配 向方向が、 MD方向と平行でないことを特徴とする請求項 9〜1 2のいずれか 1 項に記載の方法。  13. The liquid crystal polymer layer according to any one of claims 9 to 12, wherein the orientation direction of the liquid crystal polymer near one of the two surfaces of the liquid crystal polymer layer is not parallel to the MD direction. Method.
14. 剝離可能な基板上に担持された液晶高分子層が長尺フィルム形態であり貼り 合わせが連続的に行われる請求項 9〜 1 3のいずれか 1項に記載の方法。  14. The method according to any one of claims 9 to 13, wherein the liquid crystal polymer layer supported on the releasable substrate is in the form of a long film, and the bonding is performed continuously.
15. 液晶セルの少なくとも片側の面に請求項 9〜 1 4のいずれか 1項に記載の方 法で製造した楕円偏光板が配置されていることを特徴とする液晶表示装置。  15. A liquid crystal display device comprising an elliptically polarizing plate manufactured by the method according to any one of claims 9 to 14 on at least one surface of a liquid crystal cell.
PCT/JP2000/009097 1999-12-22 2000-12-21 Elliptical polarizing plate, method for producing the same, and liquid crystal display comprising the same WO2001046720A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/365378 1999-12-22
JP36537899A JP2001183525A (en) 1999-12-22 1999-12-22 Method of producing elliptically polarizing plate
JP11/365379 1999-12-22
JP36537999A JP2001183526A (en) 1999-12-22 1999-12-22 Elliptically polarizing plate, method of producing the same, and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
WO2001046720A1 true WO2001046720A1 (en) 2001-06-28
WO2001046720A8 WO2001046720A8 (en) 2002-08-08

Family

ID=26581657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009097 WO2001046720A1 (en) 1999-12-22 2000-12-21 Elliptical polarizing plate, method for producing the same, and liquid crystal display comprising the same

Country Status (2)

Country Link
TW (1) TW556024B (en)
WO (1) WO2001046720A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970214B2 (en) 2001-09-04 2005-11-29 Nippon Oil Corporation Elliptical polarizer and liquid crystal display device
US8134659B2 (en) 2008-06-13 2012-03-13 Jx Nippon Oil & Energy Corporation Elliptical polarizer and vertical alignment type liquid crystal display device using the same
US8179501B2 (en) 2007-08-31 2012-05-15 Nippon Oil Corporation Liquid crystal display device having an elliptical polarizer with first and second anisotropic layers
US8203673B2 (en) 2006-11-17 2012-06-19 Nippon Oil Corporation Elliptical polarizer and vertical alignment type liquid crystal display device comprising the same

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242434A (en) * 1993-02-12 1994-09-02 Nippon Petrochem Co Ltd Optical element
EP0644439A1 (en) * 1993-02-12 1995-03-22 Nippon Petrochemicals Co., Ltd. Liquid crystal polymer film, laminated sheet for optical element which uses the film, and optical element comprising the sheet
JP3009020U (en) * 1994-09-14 1995-03-28 日本合成化学工業株式会社 Laminated structure
JPH08271733A (en) * 1995-04-03 1996-10-18 Fujimori Kogyo Kk Front side protective sheet for front side polarizing plate, its production and sticking method of front side protective sheet to polarizing base film
JPH08300543A (en) * 1995-05-09 1996-11-19 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure
JPH0943431A (en) * 1995-07-28 1997-02-14 Nippon Synthetic Chem Ind Co Ltd:The Phase difference film and its use
JPH09178941A (en) * 1995-12-27 1997-07-11 Sekisui Chem Co Ltd Production of elliptical polarizing plate
JPH09178937A (en) * 1995-12-25 1997-07-11 Nippon Oil Co Ltd Production of compensation plate for liquid crystal display element
JPH09258021A (en) * 1996-03-25 1997-10-03 Nitto Denko Corp Elliptical polarizing plate
JPH09288213A (en) * 1996-04-19 1997-11-04 Nippon Synthetic Chem Ind Co Ltd:The Elliptical polarization plate
JPH09329785A (en) * 1996-06-10 1997-12-22 Fuji Photo Film Co Ltd Liquid crystal display element
JPH10197722A (en) * 1996-12-27 1998-07-31 Nitto Denko Corp Polarized light reflecting element, elliptic polarizing element, and liquid crystal display device
US5795650A (en) * 1995-09-27 1998-08-18 Lintec Corporation Pressure-sensitive adhesive sheet
EP0926533A2 (en) * 1997-12-25 1999-06-30 Fuji Photo Film Co., Ltd. Optical compensating sheet and liquid crystal display comprising the sheet
JPH11271531A (en) * 1998-03-23 1999-10-08 Sekisui Chem Co Ltd Manufacture of elliptically polarizing plate
JP2000155214A (en) * 1998-11-19 2000-06-06 Nitto Denko Corp Wide view angule polarizing plate and liquid crystal display device
JP2000258631A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Wide visual field angle polarizing plate and liquid crystal display device
JP2000258632A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Wide visual field angle polarizing plate and liquid crystal display device
JP2001031924A (en) * 1999-07-19 2001-02-06 Nitto Denko Corp Surface-protective film
JP2001042127A (en) * 1999-08-04 2001-02-16 Nitto Denko Corp Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device
JP2001042128A (en) * 1999-08-04 2001-02-16 Nitto Denko Corp Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644439A1 (en) * 1993-02-12 1995-03-22 Nippon Petrochemicals Co., Ltd. Liquid crystal polymer film, laminated sheet for optical element which uses the film, and optical element comprising the sheet
JPH06242434A (en) * 1993-02-12 1994-09-02 Nippon Petrochem Co Ltd Optical element
JP3009020U (en) * 1994-09-14 1995-03-28 日本合成化学工業株式会社 Laminated structure
JPH08271733A (en) * 1995-04-03 1996-10-18 Fujimori Kogyo Kk Front side protective sheet for front side polarizing plate, its production and sticking method of front side protective sheet to polarizing base film
JPH08300543A (en) * 1995-05-09 1996-11-19 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure
JPH0943431A (en) * 1995-07-28 1997-02-14 Nippon Synthetic Chem Ind Co Ltd:The Phase difference film and its use
US5795650A (en) * 1995-09-27 1998-08-18 Lintec Corporation Pressure-sensitive adhesive sheet
JPH09178937A (en) * 1995-12-25 1997-07-11 Nippon Oil Co Ltd Production of compensation plate for liquid crystal display element
JPH09178941A (en) * 1995-12-27 1997-07-11 Sekisui Chem Co Ltd Production of elliptical polarizing plate
JPH09258021A (en) * 1996-03-25 1997-10-03 Nitto Denko Corp Elliptical polarizing plate
JPH09288213A (en) * 1996-04-19 1997-11-04 Nippon Synthetic Chem Ind Co Ltd:The Elliptical polarization plate
JPH09329785A (en) * 1996-06-10 1997-12-22 Fuji Photo Film Co Ltd Liquid crystal display element
JPH10197722A (en) * 1996-12-27 1998-07-31 Nitto Denko Corp Polarized light reflecting element, elliptic polarizing element, and liquid crystal display device
EP0926533A2 (en) * 1997-12-25 1999-06-30 Fuji Photo Film Co., Ltd. Optical compensating sheet and liquid crystal display comprising the sheet
JPH11271531A (en) * 1998-03-23 1999-10-08 Sekisui Chem Co Ltd Manufacture of elliptically polarizing plate
JP2000155214A (en) * 1998-11-19 2000-06-06 Nitto Denko Corp Wide view angule polarizing plate and liquid crystal display device
JP2000258631A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Wide visual field angle polarizing plate and liquid crystal display device
JP2000258632A (en) * 1999-03-10 2000-09-22 Nitto Denko Corp Wide visual field angle polarizing plate and liquid crystal display device
JP2001031924A (en) * 1999-07-19 2001-02-06 Nitto Denko Corp Surface-protective film
JP2001042127A (en) * 1999-08-04 2001-02-16 Nitto Denko Corp Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device
JP2001042128A (en) * 1999-08-04 2001-02-16 Nitto Denko Corp Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970214B2 (en) 2001-09-04 2005-11-29 Nippon Oil Corporation Elliptical polarizer and liquid crystal display device
US8203673B2 (en) 2006-11-17 2012-06-19 Nippon Oil Corporation Elliptical polarizer and vertical alignment type liquid crystal display device comprising the same
US8179501B2 (en) 2007-08-31 2012-05-15 Nippon Oil Corporation Liquid crystal display device having an elliptical polarizer with first and second anisotropic layers
US8134659B2 (en) 2008-06-13 2012-03-13 Jx Nippon Oil & Energy Corporation Elliptical polarizer and vertical alignment type liquid crystal display device using the same

Also Published As

Publication number Publication date
TW556024B (en) 2003-10-01
WO2001046720A8 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
JP5072747B2 (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
US7738064B2 (en) Retardation plate and its manufacturing method, circularly polarizing plate and 1/2 wave plate using same, and a reflective liquid crystal display
JP4107741B2 (en) Optical film manufacturing method, optical film and liquid crystal display device
WO2015111474A1 (en) Polarizing plate, liquid crystal display device
US20140099452A1 (en) Peelable laminated film, peelable laminated film roll, manufacturing method thereof, film, optical film, polarizing plate, manufacturing method of polarizing plate and liquid crystal display device
WO2004090591A1 (en) Process for producing optical laminate and, including the laminate, elliptically polarizing plate, circularly polarizing plate and liquid crystal display unit
JP7405165B2 (en) Manufacturing method of liquid crystal panel, polarizing plate and liquid crystal display device
WO2015152157A1 (en) Polarizing plate, image display and liquid crystal display
TW202033632A (en) Alignment film for transferring liquid crystal compound alignment layer
KR20040031037A (en) Oval polarizing plate and liquid crystal display unit
KR20080071503A (en) Process for producing a liquid crystal film and laminate film for optical device
JP2002365428A (en) Method for manufacturing optical film and laminated polarizing plate and liquid crystal display device using the same
JP3328702B2 (en) Optical element
WO2001046720A1 (en) Elliptical polarizing plate, method for producing the same, and liquid crystal display comprising the same
KR20240019846A (en) Retardation film and manufacturing method thereof, polarizer, and liquid crystal display device
WO2021014685A1 (en) Method for producing thin circularly polarizing plate
WO2004090592A1 (en) Process for producing optical laminate and, including the laminate, elliptically polarizing plate, circularly polarizing plate and liquid crystal display unit
JP2001183526A (en) Elliptically polarizing plate, method of producing the same, and liquid crystal display device using the same
KR100955747B1 (en) Method for producing liquid crystal film and elliptically polarizing plate
JP2001183525A (en) Method of producing elliptically polarizing plate
WO2022181188A1 (en) Laminate and method for manufacturing image display panel
WO2022244301A1 (en) Circular polarizing plate and image display device using same
CN113454701B (en) Image display device and method of manufacturing the same
KR100671402B1 (en) Negative compensation film by nematic liquid crustal and a fabricating method of optical film comprising the same
TW202212090A (en) Manufacturing method of optical film to produce an optical film having a liquid crystal layer with less misalignment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WRT Later publication of a revised version of an international search report translation
122 Ep: pct application non-entry in european phase