WO2001044813A9 - Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors - Google Patents

Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors

Info

Publication number
WO2001044813A9
WO2001044813A9 PCT/US2000/042768 US0042768W WO0144813A9 WO 2001044813 A9 WO2001044813 A9 WO 2001044813A9 US 0042768 W US0042768 W US 0042768W WO 0144813 A9 WO0144813 A9 WO 0144813A9
Authority
WO
WIPO (PCT)
Prior art keywords
analyte
polymer film
diffraction
specific
wicking agent
Prior art date
Application number
PCT/US2000/042768
Other languages
French (fr)
Other versions
WO2001044813A2 (en
WO2001044813A3 (en
Inventor
Rosann M Kaylor
Abraham B Choi
Michael Heinrich Herber Grunze
Chibueze Obinna Chidebelu-Eze
Original Assignee
Kimberly Clark Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Co filed Critical Kimberly Clark Co
Priority to CA2393982A priority Critical patent/CA2393982C/en
Priority to MXPA02005913A priority patent/MXPA02005913A/en
Priority to DE60039066T priority patent/DE60039066D1/en
Priority to KR1020027007705A priority patent/KR100734977B1/en
Priority to EP00992910A priority patent/EP1238277B1/en
Priority to AU47170/01A priority patent/AU779211B2/en
Publication of WO2001044813A2 publication Critical patent/WO2001044813A2/en
Publication of WO2001044813A3 publication Critical patent/WO2001044813A3/en
Publication of WO2001044813A9 publication Critical patent/WO2001044813A9/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00382Stamping
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/808Optical sensing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property

Definitions

  • the present invention is generally in the field of detecting analytes in a medium and, more particularly, the present invention relates to the methods of making optical diffraction-based sensors which are capable of indicating the presence of the analyte in a medium.
  • Sandstrom et al. go on to indicate that slides formed from metal oxides on metal have certain drawbacks, and that the presence of metal ions can also be hai nful in many biochemical applications. They indicate that the ideal top dielectric film is a 2-3 nm thickness of silicon dioxide which is formed spontaneously when silicon monoxide layer is deposited in ambient atmosphere, and that a 70-95 nm layer silicon dioxide on a 40-60 nm layer of silicon monoxide can be used on a glass or plastic substrate. They also describe formation of a wedge of silicon monoxide by selective etching of the silicon monoxide, treatment of the silicon dioxide surface with dichlorodimethylsilane, and application of a biolayer. of antigen and antibody.
  • a device that includes a polymer substrate having a metal coating. An analyte-specific receptor layer is stamped on the coated substrate. The device is used in a process for stamping or as a switch. A diffraction pattern is generated when' an analyte binds to the device. A visualization device, such as a spectrometer, is then used to determine the presence of the diffraction pattern.
  • the device described by Kumar et al. has several disadvantages.
  • One disadvantage is that an extra visualization device is needed to view any diffraction pattern.
  • the Kumar et al. device does not allow a large number of samples to be tested since it is not possible to determine the presence of an analyte by using the unaided eye. Additionally, this device is not able to detect smaller analytes as these analytes do not produce a noticeable diffraction pattern.
  • U.S. Patent No. 5,482,830 to Bogart, et al. describes a device that includes a substrate which has an optically active surface exhibiting a first color in response to light impinging thereon. This first color is defined as a spectral distribution of the emanating light.
  • the substrate also exhibits a second color which is different from the first color (by having a combination of wavelengths of light which differ from that combination present in the first color, or having a different spectral distribution, or by having an intensity of one or more of those wavelengths different from those present in the first color).
  • the second color is exhibited in response to the same light when the analyte is present on the surface.
  • the change from one color to another can be measured either by use of an instrument, or by eye.
  • biosensors having a self-assembling monolayer have been used to detect analytes and are set forth in U.S. Patent Application Nos. 08/768,449 and 08/991,844, both of which are incorporated herein by reference in their entirety.
  • these biosensors currently do not have the requisite sensitivity required to detect smaller analytes since these smaller analytes do not produce a sufficient diffraction pattern to be visible.
  • Some commercial lateral flow technologies have been used which employ latex bead technology. These technologies are currently employed in most of the commercially-available home diagnostic kits (e.g. pregnancy and ovulation kits). These kits use colored beads which accumulate in a defined "capture zone" until the amount of beads becomes visible to the unaided eye.
  • these systems lack the requisite sensitivity to test for many analytes, since a much larger number of latex beads must bind in the capture zone to be visible to the naked eye than that required to cause diffraction in the same size zone. Theoretically, the number of beads needed is about 2 to 3 orders of magnitude higher than the sensors of the present invention.
  • Biosensors having a self-assembling monolayer and using microparticle technology have been used to detect smaller analytes and are set forth in U.S. Patent Application No.
  • the present invention provides an inexpensive and sensitive system and method for detecting analytes present in a medium.
  • the invention provides a new approach to reduce the number of steps involved by a user of diffraction diagnostic devices using "diffraction enhancing elements," such as microparticles.
  • the approach involves the use of a wicking agent that is used to remove unbound labeled microparticles, as well as any residual liquid from the sample.
  • the wicking agent then avoids the necessity of any additional rinsing, which may be cumbersome or more difficult for a user.
  • wicking agents include nitrocellulose membranes, cellulose acetate membranes, and glass microfiber structures.
  • the pore size of the membrane may be varied to control the rate and force of wicking. This can affect the accuracy of the diagnostic device, and can also be taken advantage of to create a one-step device.
  • the one-step device consists of the contact printed capture antibody on a substrate, such as the gold/MYLAR ® , which then has labeled particles pre-dried onto its surface.
  • a small pore size membrane e.g., 0.45 micron nitrocellulose
  • the user simply adds the sample (e.g., serum or blood) to be tested, and then views for a diffraction-image once wicking has occurred.
  • the small pore size delays wicking long enough to allow adequate incubation, such as that needed for antibody-antigen interactions to take place.
  • wicking may be delayed by using an erodible reagent at the periphery of the wicking agent circle.
  • the reagent would eventually dissolve or derivatize so that it would allow wicking after a specific time period
  • the system of the present invention is much more sensitive than current inexpensive systems.
  • the system of the present invention is able to detect low to high molecular weight analytes, microorganisms, and DNA or RNA species in fluid samples. More specifically, the system is able to detect hormones, steroids, antibodies, drug metabolites, and even nucleic acids, among others. This is a significant expansion of the optical diffraction-based sensing technology set forth in U.S. Patent Application Nos. 08/768,449 and 08/991 ,844.
  • the present invention utilizes diffraction enhancing elements, such as latex microspheres, which aid in the detection of smaller analytes. Normally, after an analyte binds to an analyte-specific receptor on a biosensor, the analyte will diffract or reflect transmitted light to produce a diffraction pattern. If the analyte is larger, the diffraction pattern is able to be seen with the unaided eye. However, some analytes are too small such that the diffraction pattern produced is not able to be seen.
  • the biosensor having the analyte- specific receptor material may be used to detect these smaller analytes.
  • the diffraction enhancing elements used are capable of binding to the analyte, and then the element with bound analyte binds to the biosensor. Then, as the light is transmitted through or reflected from the biosensor, the element enhances the diffraction pattern generated by the analyte such that the resulting diffraction pattern may be seen by the unaided eye.
  • the present invention also utilizes methods of contact printing of patterned, analyte-specific receptors.
  • the analyte-specific receptors have receptive materials bound thereto. The receptive materials are specific for a particular analyte or class of analyte, depending upon the receptor used.
  • Patterned analyte-specific receptor layers allow for the controlled placement of analytes with or without diffraction enhancing elements thereon via the patterns of analyte-specific receptors.
  • the biosensing devices of the present invention produced thereby are used by first exposing the biosensing device to the sample medium (that may or may not contain the analyte of choice) mixed with the diffraction enhancing element.
  • a light such as a laser or other point light source
  • a light is transmitted through or reflected from the film.
  • the analyte is present in the medium and is bound, either directly or in conjunction with the diffraction enhancing element, to the receptors on the patterned analyte- specific receptor layer, the light is diffracted in such a way as to produce a visible image.
  • the analyte-specific receptor layers with the analyte and/or diffraction enhancing element bound thereto can produce optical diffraction patterns which differ depending on the reaction of the receptors on the analyte-specific receptor layer with the analyte of interest.
  • the light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound or particle reacting with the analyte-specific receptor layer.
  • the light can be a point white light source or monochromatic electromagnetic radiation, in the visible region. While visible light is the desired light source, the present invention may also be used with non- visible point light sources, such as near-infrared light, coupled with a detector. The thickness of the film and the size of the microparticle may be adjusted to compensate for the non-visible light source. Additionally, the present invention also provides a flexible support for an analyte-specific receptor layer either directly on the substrate or on gold or other suitable metal or metal alloy. '
  • the present invention provides an analyte-specific receptor layer on gold or other material which is suitable for mass production.
  • the biosensors used in the present invention can be produced as a single test for detecting an analyte or it can be formatted as a multiple test device.
  • the biosensors of the present invention can be used to detect (1) antigens or antibodies associated with medical conditions, (2) contamination in garments, such as diapers, and (3) contamination by microorganisms.
  • nutrients for a specific class of microorganisms can be incorporated into the analyte-specific receptor layer.
  • microorganisms can be detected by first contacting the biosensor of the present invention with the nutrients incorporated therein and then incubating, if necessary, the biosensor under conditions appropriate for the growth of the bound microorganism. The microorganism is allowed to grow until there are enough organisms to form a diffraction pattern.
  • Figure 1 shows a biosensor capable of simultaneously measuring several different analytes in a medium.
  • Figure 2 is a schematic of contact printing of analyte-specific receptor layers.
  • Figure 3 is an atomic force microscopy image of evaporated gold on MYLAR®, purchased from Courtaulds Performance Films (Canoga Park, CA).
  • the average roughness of the gold layer is 3-4 nanometers, with maximum roughness of 9 nanometers.
  • Figure 4 is an SEM photomicrograph showing patterned attachment of diffraction enhancing elements in the presence of an analyte.
  • Figure 5 is a schematic of the present invention using the wicking agent to eliminate the need for rinsing steps.
  • Figure 6 is a schematic of the one-step product design of the present invention .
  • Figure 7 shows a light source illuminated through the hole of the wicking agent to check for a diffraction image.
  • the present invention features an improved method for making biosensing devices.
  • the present invention may be used to make biosensing devices which are much more sensitive and can be used to detect smaller analytes which, until now, were not able to be detected without the use of expensive instruments.
  • the analytes that can be detected include, but are not limited to, hormones, proteins such as antibodies, steroids, drug metabolites, nucleic acids, microorganisms such as bacteria, yeasts, fungi and viruses.
  • those made by the present invention allow detection of extremely small quantities and sizes of analytes in a medium in a rapid assay lasting only a few minutes. In addition, no signaling or associated electronic components are required.
  • a biologically active material is deposited onto a metal surface, such as gold, in a defined pattern, such that a diffraction hologram is generated when the target binds to the surface.
  • a metal surface such as gold
  • antibodies that specifically react with a target molecule are printed in a pattern on a metal-coated surface.
  • the invention covers a method to make a one-step device. The method involves pre-drying labeled diffraction enhancing elements or microparticles (e.g., labeled with the allergen of interest) on to the patterned surface, and then placing the wicking agent disk on top prior to use.
  • the test fluid e.g., serum or blood containing allergen-specific IgE
  • the test fluid e.g., serum or blood containing allergen-specific IgE
  • the proper selection of pore size and wicking agent allows the time for wicking to be tailored to the desired incubation time. For example, a 0.45 micron pore size nitrocellulose has delayed wicking of diluted serum with 0.3 micron diameter microparticles for 8-12 minutes; this gives adequate time for the diagnostic device to work.
  • the invention includes the use of an erodible reagent at the periphery of the wicking agent circle to initially prevent wicking from occurring.
  • the reagent could be a hydrophobic material that prevents wicking, but that would eventually dissolve or derivatize so that it would allow wicking after a specific time period. This time period would correspond to the desired incubation period.
  • the present invention modifies the process to use the biosensing device to make it easier for the end-user. It employs a wicking agent, such as nitrocellulose, to remove unbound diffraction enhancing elements and excess fluid, thereby eliminating the need for rinsing steps. This greatly simplifies an immunoassay approach, since rinsing is often the most cumbersome step.
  • the detection system is also unique from commercial immunoassay systems in that the binding event creates a simple holographic image upon exposure to light.
  • the appearance of a hologram or a change in an existing hologram will indicate a positive response.
  • the pattern made by the diffraction of the transmitted light can be any shape including, but not limited to, the transformation of a pattern from one pattern to another upon binding of the analyte to the receptive material.
  • the diffraction pattern is discernible in less than one hour after contact of the analyte with the biosensing device of the present invention.
  • the diffraction grating which produces the diffraction of light upon interaction with the analyte and/or element should have a minimum periodicity of the wavelength of incident light.
  • Very small analytes can be detected indirectly by using diffraction enhancing element particles that are specific for the small analyte.
  • One embodiment in which the small analyte can be detected comprises coating the element particle, such as a latex bead, with a receptor material that specifically binds to the analyte of interest.
  • a variety of methods may be used to attach the receptor material onto the diffraction enhancing particle.
  • a preferred embodiment of the present invention is to use carbodiimide coupling of a proteinaceous receptor to carboxylated particles. Other methods of coupling well-known to those of ordinary skill in the art may be used as well.
  • Diffraction enhancing element particles that can be used in the present invention include, but are not limited to, glass, cellulose, synthetic polymers or plastics, latex, polystyrene, polycarbonate, bacterial or fungal cells and the like.
  • the particles are preferably spherical in shape, but the structural and spatial configuration of the particle is not critical to the present invention. For instance, the particles could be slivers, ellipsoids, cubes, and the like.
  • a desirable particle size ranges from a diameter of approximately 0.1 ⁇ m to 100.0 ⁇ m, desirably between approximately 0.1 ⁇ m to 1 ⁇ m.
  • the composition of the element particle is not critical to the present invention.
  • the difference in refractive index between the medium and the enhancing element is between 0.1 and 1.0. More preferably, the difference in refractive index between the medium and the enhancing element is between 0.2 and 0.7
  • the analyte-specific receptor layer on the polymer film contains a receptive material, such as an antibody, that will specifically bind to an epitope on the analyte that is different from the epitope used in the binding to the particle.
  • a receptive material such as an antibody
  • the medium is first exposed to the diffraction enhancing element particles, such as latex particles, to which the viral particles bind. Then, the diffraction enhancing element particles are optionally washed and exposed to the polymer film with the analyte-specific receptor layers containing the virus specific antibodies. The antibodies then bind to the viral particles on the element particle thereby i ⁇ imobilizing the element particles in the same pattern as the receptors on the film.
  • the polymer film may include a metal coating thereon.
  • the analyte-specific receptor layer would then be located on the metalized surface of the film.
  • the analyte may be detected by first exposing the biosensor comprising the polymer film with the analyte-specific receptor layers containing the antibodies to the medium containing the analyte and causing the analyte to bind to the analyte-specific receptor layer material.
  • a suspension containing the diffraction enhancing element particles is contacted with the sensing device having the analyte bound thereto. The particles then bind to the analyte. Because the bound element particles will cause diffraction of the visible light, a diffraction pattern is formed, indicating the presence of the analyte in the liquid.
  • the biosensor, the diffraction enhancing element particles and the medium containing the analyte may be admixed simultaneously. This will result in a combination of the binding procedures discussed above. Some of the analytes will first bind with a diffraction enhancing element particle prior to binding to the substrate. Other analytes will first bind with the substrate and then bind with an element particle. When a point-light source is shone through the sensor, a diffraction pattern is formed, indicating the presence of the analyte in the liquid.
  • the diffraction enhancing element particles are pre-dried on the biosensor as part of the preparation.
  • the medium containing the analyte is placed on the biosensor surface. This causes re- suspension of the particles, which then bind in the patterned receptor areas of the film if the analyte is present.
  • the analytes that are contemplated as being detected using the present invention include, but are not limited to, bacteria; yeasts; fungi; viruses; protozoa; or antigens specific to these microbes; rheumatoid factor; antibodies, including, but not limited to IgG, IgM, IgA and IgE antibodies; carcinoembryonic antigen; streptococcus Group A antigen; viral antigens; antigens associated with autoimmune disease; allergens; tumor antigens; streptococcus Group B antigen; HTV I or HTV ⁇ antigen; or host response (antibodies) to these and other viruses; antigens specific to RSV or host response (antibodies) to the virus; an antigen; enzyme; hormone; polysaccharide; protein; lipid; carbohydrate; drug or nucleic acid; Salmonella species;
  • Candida species including, but not limited to Candida albicans and Candida tropicalis; Salmonella species; Neisseria meningitides groups A, B, C, Y and W sub 135, Streptococcus pneumoniae, E. coli Kl, Haemophilus influenza type B; an antigen derived from microorganisms; a hapten, a drug of abuse; a therapeutic drug; an environmental agent; and antigens specific to Hepatitis.
  • nutrients for a specific class of microorganisms can be incorporated into the analyte-specific receptor layer.
  • very low concentrations of microorganisms can be detected by first contacting the biosensor of the present invention with the nutrients incorporated therein and then incubating the biosensor under conditions appropriate for the growth of the bound microorganism.
  • the microorganism is allowed to grow until there are enough organisms to form a diffraction pattem.
  • the microorganism is present or can multiply enough to form a diffraction pattem without the presence of a nutrient on the patterned monolayer.
  • a part of the present invention is the analyte- specific receptor material that can be microprinted on the polymer film and will specifically bind to the analyte of interest.
  • the receptor material is defined as one part of a specific binding pair and includes, but is not limited to, antigen/ antibody, enzyme/substrate, oligonucleotide/DNA, chelator/metal, enzyme/inhibitor, bacteria/receptor, virus/receptor, hormone/receptor, DNA/RNA, or RNA/RNA, oligonucleotide /RNA, and binding of these species to any other species, as well as the interaction of these species with inorganic species.
  • the analyte-specific receptor material can be microprinted on the metalized surface of the film.
  • the receptor material that is bound to the attachment layer is characterized by an ability to specifically bind the analyte or analytes of interest.
  • the variety of materials that can be used as receptor material are limited only by the types of material which will combine selectively (with respect to any chosen sample) with the analyte.
  • Subclasses of materials which can be included in the overall class of receptor materials include toxins, antibodies, antigens, hormone receptors, parasites, cells, haptens, metabolites, allergens, nucleic acids, nuclear materials, autoantibodies, blood proteins, cellular debris, enzymes, tissue proteins, enzyme substrates, coenzymes, neuron transmitters, viruses, viral particles, microorganisms, proteins, polysaccharides, chelators, drugs, and any other member of a specific binding pair.
  • This list only incorporates some of the many different materials that can be coated onto the attachment layer to produce a thin film assay system. Whatever the selected analyte of interest is, the receptor material is designed to bind with the analyte of interest.
  • the biosensing device is configured and arranged to provide a pattern detectable by eye in response to transmission of a point light source when the analyte of interest is sandwiched between the receptor material and a diffraction enhancing element.
  • a “blocker” may be necessary to prevent non-specific binding.
  • the term “blocker” as used herein means a reagent that adheres to the sensor surface so that it “blocks” or prevents non-analyte materials from binding to the surface (either in the patterned or un-pattemed areas).
  • the blocking step may be done as a post-treatment to a surface which has already been contact printed (“post-block”), and is the standard technique for filling in non-contact printed regions with another thiol.
  • post-block a surface which has already been contact printed
  • pre-block technique is preferred over the post-block technique.
  • the surface of the substrate is pre- treated with a non-thiol containing blocker and then contact printed.
  • contact printed material usually sulfur containing
  • a subsequent post-block may also be performed, if desired.
  • Blockers can include, but are not limited to, ⁇ -casein, albumins such as bovine serum albumin, pluronic or other surfactants, polyethylene glycol or its derivatives, polyvinyl alcohol, or derivatives of the above compounds, and any other blocking material known to those of ordinary skill in the art.
  • albumins such as bovine serum albumin, pluronic or other surfactants, polyethylene glycol or its derivatives, polyvinyl alcohol, or derivatives of the above compounds, and any other blocking material known to those of ordinary skill in the art.
  • the matrix containing the analyte of interest may be an interstitial fluid, a solid, a gas, or a bodily fluid such as mucous, saliva, urine, fecal material, tissue, marrow, cerebral spinal fluid, serum, plasma, whole blood, sputum, buffered solutions, extracted solutions, semen, vaginal secretions, pericardial, gastric, peritoneal, pleural, a throat swab or other washes and the like.
  • a bodily fluid such as mucous, saliva, urine, fecal material, tissue, marrow, cerebral spinal fluid, serum, plasma, whole blood, sputum, buffered solutions, extracted solutions, semen, vaginal secretions, pericardial, gastric, peritoneal, pleural, a throat swab or other washes and the like.
  • the analyte of interest may be an antigen, an antibody, an enzyme, a DNA fragment, an intact gene, a RNA fragment, a small molecule, a metal, a toxin, an environmental agent, a nucleic acid, a cytoplasm component, pili or flagella component, protein, polysaccharide, drug, or any other material.
  • receptor material for bacteria may specifically bind a surface membrane component, protein or lipid, a polysaccharide, a nucleic acid, or an enzyme.
  • the analyte which is indicative of the bacteria may be a saccharide or polysaccharide, an enzyme, a nucleic acid, a membrane component, a ganglioside or an antibody produced by the host in response to the bacteria.
  • the presence of the analyte may indicate an infectious disease (bacterial or viral), cancer, an allergy, or other medical disorder or condition.
  • the presence of the analyte may be an indication of water or food contamination or other harmful materials.
  • the analyte may indicate drug abuse or may monitor levels of therapeutic agents.
  • an antibody may serve as the receptor material and/or it may be the analyte of interest.
  • the receptor material for example an antibody or an antigen, must form a stable, reactive layer on the attachment layer of the test device. If an antibody is the receptor material, the antibody must be specific to the antigen of interest; and the antibody (receptor material) must bind the antigen (analyte) with sufficient avidity that the antigen is retained at the test surface.
  • the analyte may not simply bind the receptor material, but may cause a detectable modification of the receptor material to occur. This interaction could cause an increase in mass at the test surface or a decrease in the amount of receptor material on the test surface.
  • An example of the latter is the interaction of a degradative enzyme or material with a specific, immobilized substrate. In this case, one would see a diffraction pattern before interaction with the analyte of interest, but the diffraction pattern would disappear if the analyte were present.
  • the specific mechanism through which binding, hybridization, or interaction of the analyte with the receptor material occurs is not important to this invention, but may impact the reaction conditions used in the final assay protocol.
  • the receptor material may be passively applied to the substrate layer. If required, the free functional groups introduced onto the test surface by the attachment layer may be used for covalent attachment of receptor material to the test surface.
  • Test surfaces may be coated with receptor material by application of solution in discrete arrays or patterns; spraying, ink jet, contact printing or other imprinting methods; or printing a blocker material in a pattern followed by total immersion or spin coating with the receptor material.
  • the technique selected should rriiriimize the amount of receptor material required for coating a large number of test surfaces and maintain the stability/functionality of receptor material during application.
  • the technique must also apply or adhere the receptor material to the attachment layer in a very uniform and controlled fashion.
  • the biosensing device of the present invention utilizes methods of contact printing of patterned, analyte-specific receptor layers on polymer or metalized polymer films, desirably transparent or semi-transparent, the compositions produced thereby, and the use of these compositions. Patterned analyte- specific receptor layers allow for the controlled attachment (or binding) placement of the analyte receptor.
  • patterned analyte-specific receptor layers thereon as used herein means the analyte-specific receptor layers in any pattern on the polymer or metalized polymer films.
  • the biosensing device also includes the wicking agent which removes any residual liquid from the analyte sample, thereby avoiding the necessity of any additional rinsing.
  • the film with the patterned analyte-specific receptor layers thereon When the film with the patterned analyte-specific receptor layers thereon is exposed to an analyte that is capable of reacting with the analyte-specific receptor layer, the film will produce optical diffraction patterns which differ depending on the reaction of the patterned analyte-specific receptor layer with the analyte of interest.
  • the medium would contain the diffraction enhancing element particles.
  • the medium may be a high surface tension fluid such as water.
  • the light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the analyte-specific receptor layer.
  • the method involves contacting the sensing device with a test sample containing the diffraction enhancing element particles and potentially containing the analyte. Then, the wicking agent is used to remove unbound labeled particles, as well as any residual liquid from the sample. If the analyte is present in the sample, then when light is transmitted through a metalized polymer film with the analyte-specific receptor layer, a visible diffraction image is formed.
  • the medium in which the analyte may reside can be solid, gel-like, liquid or gas.
  • the fluid is selected from, but not limited to, urine, serum, plasma, spinal fluid, sputum, whole blood, saliva, uro-genital secretions, fecal extracts, pericardia!, gastric, peritoneal, pleural washes, vaginal secretions, or a throat swab.
  • the most common gas that is contemplated as being used with the biosensing device of the present invention is air.
  • the present invention is contemplated in a dipstick form in which a micro-contact printed metalized film is mounted at the end of the dipstick.
  • the dipstick is dipped into the liquid in which the suspected analyte may be present.
  • the liquid would also contain the diffraction enhancing element particles.
  • the dipstick is allowed to remain for several minutes.
  • the wicking agent is then used to remove unbound labeled microparticles, as well as any residual liquid from the sample.
  • a small hole may be punched out of the center of the wicking agent so that once the sample and excess particles are wicked away, the hole allows the user to immediately check for a diffraction image without removing the wicking material.
  • the light is projected through the metalized film or the film is observed with a light behind the film. If a diffraction image is observed, then the analyte is present in the liquid.
  • a multiple analyte test is constructed on the same support.
  • a strip 10 is provided with several micro- contact printed films 20, 25, 30 and 35, each film having a pattern 40 printed thereon.
  • Each of the micro-contact printed films 15, 20, 25, and 30 have a different receptor material that is specific for different analytes.
  • Each of the printed films 15, 20, 25 and 30 may include an array or strip of wicking agents to aid in the use of the strip 10.
  • the present invention can be formatted in any array with a variety of micro- contact printed films thereby allowing the user of the biosensor device of the present invention to detect the presence of multiple analytes in a medium using a single test while the wicking agent avoids the necessity of any additional rinsing steps, which may be cumbersome or more difficult for the user.
  • analyte-specific receptor layers there are many possible supports for the analyte- specific receptor layers. Simple physisorption can occur on many materials, such as polystyrene, glass, nylon, or others well known to those of ordinary skill in the art. Preferred embodiments of immobilizing the analyte-specific receptor layers have involved covalent attachment, such as that possible between thiol or disulfide-containing compounds and gold. Typically, a gold coating, 5 to 2000 nm thick, is supported on a S ⁇ /SiOz wafer, glass, or a polymer film. Optionally, titanium can be used to serve as an adhesion promoter between gold and the support.
  • the analyte-specific receptor attaches to the gold surface during contact printing or immersion from a solution.
  • the support comprises a gold coating on a MYLAR ® film.
  • Figure 2 outlines the procedure used for microcontact printing.
  • An elastomeric stamp is used to transfer analyte-specific receptor "ink" to a gold surface by contact; if the stamp is patterned, a patterned analyte-specific receptor layer forms.
  • the stamp is fabricated by casting polydimethylsiloxane
  • PDMS photolithographically produced master having the inverse of the desired pattern.
  • Masters are prepared using standard photolithographic techniques, or constructed from existing materials having microscale surface features.
  • a photolithographically produced master is placed in a glass or plastic Petri dish, and a 10:1 ratio (w.w) mixture of SYLGARD® silicone elastomer 184 and SYLGARD® silicone elastomer 184 curing agent (Dow Corning Corporation) is poured over it.
  • the elastomer is allowed to sit for approximately 30 minutes at room temperature and reduced pressure to degas, then cured for at least 4 hours at 60°C, and gently peeled from the master.
  • “Inking" of the elastomeric stamp is accomplished by exposing the stamp to a 0.1 to 10 ⁇ M aqueous solution of disulfide-derivatized antibody typically by placing the stamp face down in the solution for 10 seconds to 10 minutes.
  • the stamp is allowed to dry, either under ambient conditions, or typically by exposure to a stream of air or nitrogen gas..
  • the stamp is applied to a gold surface. Light pressure is used to ensure complete contact between the stamp and the surface. After 1 second to 5 minutes, the stamp is then gently peeled from the surface. Following removal of the stamp, the surface is rinsed and dried.
  • further derivatization of unstamped areas can be accomplished, either by using a second stamp or by exposing the entire surface with a different reagent.
  • a protein-blocking agent such as BSA or ⁇ -casein, or any other agent well known in the art.
  • BSA protein-blocking agent
  • ⁇ -casein any other agent well known in the art.
  • the elastomeric character of the stamp is important to the success of the process.
  • Polydimethylsiloxane (PDMS) when cured, is sufficiently elastomeric to allow good conformal contact of the stamp and the surface, even for surfaces with significant relief; this contact is essential for efficient contact transfer of the receptor to a gold film.
  • the elastomeric properties of PDMS are also important when the stamp is removed from the master: if the stamp were rigid (as is the master) it would be difficult to separate the stamp and master after curing without damaging one of the two substrates.
  • PDMS is also sufficiently rigid to retain its shape, even for features with sub-micron dimension.
  • the stamp is durable in that the same stamp can be used over 200 times over a period of a year without significant degradation in performance.
  • Using a printing roll for the stamp could allow for a continuous printing operation.
  • ink-jet printing of the desired pattem could also be done if capable of producing the feature sizes needed for diffraction, for example ⁇ 100 ⁇ m.
  • any plastic film is suitable for the present invention.
  • the plastic film is also capable of having a metal coating deposited thereon.
  • These include, bu.t are not limited to polymers such as: polyethylene-terephthalate (e.g., MYLAR®), acrylonitrile-butadiene-styrene, acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, cellulose triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, nylon, polypropylene, methyl pentene polymers, polyvinyl fluoride, and aromatic polysulfones.
  • the plastic film has an optical transparency of greater than 80%.
  • Other suitable plastics and suppliers may be found, for example, in reference works such as
  • the polymer film has a metal coating thereon and has an optical transparency of between approximately 5% and 95%.
  • a more desired pptical transparency for the plastic film used in the present invention is between approximately 20% and 80%.
  • the polymer film has at least an approximately 80% optical transparency, and the thickness of the metal coating is such as to maintain an optical transparency greater than about 60%, so that diffraction images can be produced by transmitted light. This corresponds to a metal coating thickness of about 10 nm.
  • the gold thickness may be between approximately 1 nm and 1000 nm; for example, thicker gold coatings (>20 nm) would still be suitable for producing diffraction images by reflected light.
  • the preferred metal for deposition on the film is gold.
  • silver, aluminum, chromium, copper, iron, ' zirconium, platinum and nickel, as well as oxides of these metals, may be used.
  • any surface with corrugations of appropriate size could be used as masters.
  • the process of microcontact printing starts with an appropriate relief structure, from which an elastomeric stamp is cast.
  • This 'master' template may be generated photolithographically, or by other procedures, such as commercially available diffraction gratings.
  • the stamp may be made from polydimethylsiloxane.
  • the stamp may be applied in air, or under a fluid capable of preventing excess diffusion of the receptor material. For large-scale or continuous printing processes, it is most desirable to print in air.
  • the pattern is formed on the metalized plastic polymer with the analyte-specific receptor layer. After the stamping process, the metalized areas on the plastic may optionally be blocked, for example, with a protein-repelling agent such as ⁇ -casein.
  • Gold-coated MYLAR® was treated with a 5 mg/mL beta casein diluted in StabilGuard® (by SurModics, Inc.; Eden Prairie, MN) as a blocking agent.
  • the casein treated film was then contact printed with a thiolated antibody to IgE (e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE) to provide a patterned x,y array of antibody in 10- micron circles.
  • a thiolated antibody to IgE e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE
  • Testing involved placing 34 microliters of the diluted serum on top of the diagnostic device within the center of the nitrocellulose hole. Wicking is delayed due to the small 0.45- micron pore size of the material, and typically occurs between 5- 15 minutes after adding the diluted serum. This time allows for adequate incubation to occur between the analyte and the diagnostic. If a shorter (or no) delay of wicking is desired, then a larger pore size material can be used as the wicking agent. After wicking has occurred, the sample was checked for a diffraction image using a point light source (e.g., laser) that is illuminated through the hole. A diffraction image indicates that the analyte (e.g., mold mix-specific IgE in this case) is present.
  • a point light source e.g., laser
  • Example #2 Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein treated film was then contact printed with a thiolated antibody to luteinizing hormone (e.g., a monoclonal) to provide a patterned x,y array of antibody in 10-micron circles. The resulting sample was exposed to 60 microliters of LH-spiked buffered BSA solution.
  • luteinizing hormone e.g., a monoclonal
  • a diffraction image indicates that the analyte (luteinizing hormone in this case) is present.
  • Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent.
  • the casein-treated film was then contact printed with a thiolated antibody to IgE (e.g., a monoclonal having an affinity constant > 4xl0 10 ) to provide a patterned x,y array of antibody in 10- micron circles.
  • IgE e.g., a monoclonal having an affinity constant > 4xl0 10
  • This patterned film was then exposed to 34 microliters of diluted human serum (e.g., International Enzymes Cat#8005) that na ⁇ oeen spiKe ⁇ with IgE.
  • typical dilution of serum was 1 part spiked serum to 2 parts phosphate buffer solution (pH 7.2).
  • a suspension containing 0.3-micron particles conjugated with another monoclonal antibody to IgE e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE
  • a monoclonal anti-IgE such as one specific to the C3-C4 domains of IgE
  • a disk of nitrocellulose e.g., 8 micron pore size
  • a hole e.g., 3/32 inch diameter
  • a diffraction image indicates that the analyte (total IgE in this case) is present. Detection down to at least 1000 ng/mL (initial concentration of
  • Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent.
  • the casein-treated film was then contact printed with a thiolated polyclonal antibody to Group B Strep to provide a patterned x,y array of antibody in 10-micron circles.
  • This patterned film was then exposed to 34 microliters of a solution of Strep B antigen (Difco Cat#2979-50; Detroit, MI) for 5 minutes. This was followed by the addition of 11 microliters of a suspension containing 0.3-micron particles conjugated with an antibody to Strep B (typically at a concentration of 10 9 or 10 10 particles / mL).
  • nitrocellulose e.g., 8 micron pore size
  • a hole e.g., 3/32 inch diameter
  • a diffraction image indicates that the analyte (Strep B antigen in this case) is present. Detection between 10 to 100 ng/mL was achieved.
  • Example #5 Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein-treated film was then contact printed with a thiolated polyclonal antibody to Group B Strep to provide a patterned x,y array of antibody in 10-micron circles.
  • Strep B cell suspensions (at concentrations ranging from 9xl0 9 to 9xl0 3 cells/r ⁇ L) were first treated with an enzyme such as achromopeptidase diluted fo 710 units/mL in deionized water. This cell extraction step typically was done by mixing the enzyme solution with cell suspension (e.g., a 4:3 volume:volume ratio of enzyme solution to cells), and heating at 37C for 20 minutes.
  • a 34 microliter aliquot of the resulting lysed cells were exposed to the patterned film for 5 minutes. This was followed by the addition of 11 microliters of a suspension containing 0.3-micron particles conjugated with an antibody to Strep B (typically at a concentration of 10 9 or 10 10 particles / mL). After 10 minutes, a disk of nitrocellulose (e.g., 8 micron pore size) having a hole (e.g., 3/32 inch diameter) in the center was placed on top of the sample and liquid / particle mixture. This wicks away unbound particles and excess liquid, so that the sample can be checked for a diffraction image using a point light source (e.g., laser), aimed to shine through the hole. A diffraction image indicates that the analyte (Strep B cells in this case) is present. Detection down to at least 9xl0 3 cells/mL was achieved.
  • a point light source e.g., laser
  • Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent.
  • the casein-treated film was then contact printed with a thiolated antibody to IgE (e.g., a monoclonal) to provide a patterned x,y array of antibody in 10-micron circles.
  • IgE e.g., a monoclonal
  • This patterned film was then exposed to 34 microliters of diluted human EDTA plasma (e.g., Interstate Blood Bank, Inc; Memphis, TN) that had been spiked with IgE.
  • Typical dilution of plasma was 1 part spiked plasma to 3 parts phosphate buffer solution (pH 7.2).
  • a suspension containing 0.3-micron particles typically at a concentration of 10 9 or 10 10 particles / mL
  • another monoclonal antibody to IgE e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE
  • a disk of nitrocellulose e.g., 8 micron pore size
  • a hole e.g., 3/32 inch diameter
  • a diffraction image indicates that the analyte (total IgE in this case) is present. Detection between 1000- 10,000 ng/mL (initial concentration of IgE in plasma) was achieved.

Abstract

The present invention provides an inexpensive and sensitive system and method for detecting analytes present in a medium. The system comprises a diffraction enhancing element, such as functionalized micropsheres, which are modified such that they are capable of binding with a target analyte. Additionally, the system comprises a polymer film, which may include a metal coating, upon which is printed a specific, predetermined pattern of analyte-specific receptors. Finally, the system includes a wicking agent which permits the system to be a single step system which avoids the necessity of any additional rinsing steps. Upon attachment of a target analyte to select areas of the polymer film, either directly or with the diffraction enhancing element, diffraction of transmitted and/or reflected light occurs via the physical dimensions and defined, precise placement of the analyte. A diffraction image, such as a hologram, is produced which can be easily seen with the eye or optionally, with a sensing device.

Description

USE OF WICKING AGENT TO ELIMINATE WASH STEPS FOR OPTICAL DIFFRACTION-BASED BIOSENSORS
TECHNICAL FIELD
The present invention is generally in the field of detecting analytes in a medium and, more particularly, the present invention relates to the methods of making optical diffraction-based sensors which are capable of indicating the presence of the analyte in a medium.
B ACKGROUND OF THE INVENTION
There are many systems and devices available for detecting a wide variety of analytes in various media. Most of these systems and devices are relatively expensive and require a trained technician to perform the test. There are many cases where it would be advantageous to be able to rapidly and inexpensively determine if an analyte were present. What is needed is a biosensor system that is easy and inexpensive to manufacture and is capable of reliable and sensitive detection of analytes, including smaller analytes.
Sandstrom et al., 24 Applied Optics 472, 1985, describe use of an optical substrate of silicon with a layer of silicon monoxide and a layer of silicon formed as dielectric films. They indicate that a change in film thickness changes the properties of the optical substrate to produce different colors related to the thickness of the film. The thickness of the film is related to the color observed and a film provided on top of an optical substrate may produce a visible color change. The authors indicate that a mathematical model can be used to quantitate the color change, and that "[c]alculations performed using the computer model show that very little can be gained in optical performance from using a multilayer structure... but a biolayer on the surface changes the reflection of such structures very little since the optical properties are determined mainly by the interfaces inside the multilayer structure. The most sensitive system for detection of biolayers is a single layer coating, while in most other applications performance can be by additional dielectric layers."
Sandstrom et al., go on to indicate that slides formed from metal oxides on metal have certain drawbacks, and that the presence of metal ions can also be hai nful in many biochemical applications. They indicate that the ideal top dielectric film is a 2-3 nm thickness of silicon dioxide which is formed spontaneously when silicon monoxide layer is deposited in ambient atmosphere, and that a 70-95 nm layer silicon dioxide on a 40-60 nm layer of silicon monoxide can be used on a glass or plastic substrate. They also describe formation of a wedge of silicon monoxide by selective etching of the silicon monoxide, treatment of the silicon dioxide surface with dichlorodimethylsilane, and application of a biolayer. of antigen and antibody. From this wedge construction they were able to determine film thickness with an ellipsometer, and note that the "maximum contrast was found in the region about 65 nm where the interference color changed from purple to blue." They indicate that the sensitivity of such a system is high enough for the detection of protein antigen by immobilized antibodies. They conclude "the designs given are sensitive enough for a wide range of applications. The materials, i.e., glass, silicon, and silicon oxides, are chemically inert and do not affect the biochemical reaction studied. Using the computations above it is possible to design slides that are optimized for different applications. The slides can be manufactured and their quality ensured by industrial methods, and two designs are now commercially available. U.S. Patent 5,512,131 issued to Kumar et al. describes a device that includes a polymer substrate having a metal coating. An analyte-specific receptor layer is stamped on the coated substrate. The device is used in a process for stamping or as a switch. A diffraction pattern is generated when' an analyte binds to the device. A visualization device, such as a spectrometer, is then used to determine the presence of the diffraction pattern.
However, the device described by Kumar et al. has several disadvantages. One disadvantage is that an extra visualization device is needed to view any diffraction pattern. By requiring a visualization device, the Kumar et al. device does not allow a large number of samples to be tested since it is not possible to determine the presence of an analyte by using the unaided eye. Additionally, this device is not able to detect smaller analytes as these analytes do not produce a noticeable diffraction pattern.
U.S. Patent No. 5,482,830 to Bogart, et al., describes a device that includes a substrate which has an optically active surface exhibiting a first color in response to light impinging thereon. This first color is defined as a spectral distribution of the emanating light. The substrate also exhibits a second color which is different from the first color (by having a combination of wavelengths of light which differ from that combination present in the first color, or having a different spectral distribution, or by having an intensity of one or more of those wavelengths different from those present in the first color). The second color is exhibited in response to the same light when the analyte is present on the surface. The change from one color to another can be measured either by use of an instrument, or by eye. Such sensitive detection is an advance over the devices described by Sandstrom and Nygren, supra, and allow use of the devices in commercially viable and competitive manner. However, the method and device described in the Bogart, et al. patent has several disadvantages. One disadvantage is the high cost of the device. Another problem with the device is the difficulty in controlling the various layers that are placed on the wafer so that one obtains a reliable- reading.
Additionally, biosensors having a self-assembling monolayer have been used to detect analytes and are set forth in U.S. Patent Application Nos. 08/768,449 and 08/991,844, both of which are incorporated herein by reference in their entirety.
However, these biosensors currently do not have the requisite sensitivity required to detect smaller analytes since these smaller analytes do not produce a sufficient diffraction pattern to be visible. Some commercial lateral flow technologies have been used which employ latex bead technology. These technologies are currently employed in most of the commercially-available home diagnostic kits (e.g. pregnancy and ovulation kits). These kits use colored beads which accumulate in a defined "capture zone" until the amount of beads becomes visible to the unaided eye. However, these systems lack the requisite sensitivity to test for many analytes, since a much larger number of latex beads must bind in the capture zone to be visible to the naked eye than that required to cause diffraction in the same size zone. Theoretically, the number of beads needed is about 2 to 3 orders of magnitude higher than the sensors of the present invention.
Biosensors having a self-assembling monolayer and using microparticle technology have been used to detect smaller analytes and are set forth in U.S. Patent Application No.
09/210,016, which is incorporated herein by reference in its entirety. However, these biosensors require multiple process steps to produce, thereby increasing the difficulty and cost for using these types of sensors.. What is needed is a biosensor system that is easy and inexpensive to manufacture and is capable of reliable and sensitive detection of analytes, including smaller analytes.
SUMMARY OF THE INVENTION
The present invention provides an inexpensive and sensitive system and method for detecting analytes present in a medium. The invention provides a new approach to reduce the number of steps involved by a user of diffraction diagnostic devices using "diffraction enhancing elements," such as microparticles. The approach involves the use of a wicking agent that is used to remove unbound labeled microparticles, as well as any residual liquid from the sample. The wicking agent then avoids the necessity of any additional rinsing, which may be cumbersome or more difficult for a user. Additionally, a small hole (e.g., 3/32 of an inch) can be punched out of the center of the wicking agent so that once the sample and excess particles are wicked away, the hole allows the user to immediately check for a diffraction image without removing the wicking material. Examples of wicking agents include nitrocellulose membranes, cellulose acetate membranes, and glass microfiber structures.
In addition, the pore size of the membrane may be varied to control the rate and force of wicking. This can affect the accuracy of the diagnostic device, and can also be taken advantage of to create a one-step device. To achieve this, the one-step device consists of the contact printed capture antibody on a substrate, such as the gold/MYLAR®, which then has labeled particles pre-dried onto its surface. Additionally, a small pore size membrane (e.g., 0.45 micron nitrocellulose) with a hole cut out is placed on top of the device to complete it. The user simply adds the sample (e.g., serum or blood) to be tested, and then views for a diffraction-image once wicking has occurred. The small pore size delays wicking long enough to allow adequate incubation, such as that needed for antibody-antigen interactions to take place. Alternatively, wicking may be delayed by using an erodible reagent at the periphery of the wicking agent circle. The reagent would eventually dissolve or derivatize so that it would allow wicking after a specific time period The system of the present invention is much more sensitive than current inexpensive systems. The system of the present invention is able to detect low to high molecular weight analytes, microorganisms, and DNA or RNA species in fluid samples. More specifically, the system is able to detect hormones, steroids, antibodies, drug metabolites, and even nucleic acids, among others. This is a significant expansion of the optical diffraction-based sensing technology set forth in U.S. Patent Application Nos. 08/768,449 and 08/991 ,844.
The present invention utilizes diffraction enhancing elements, such as latex microspheres, which aid in the detection of smaller analytes. Normally, after an analyte binds to an analyte-specific receptor on a biosensor, the analyte will diffract or reflect transmitted light to produce a diffraction pattern. If the analyte is larger, the diffraction pattern is able to be seen with the unaided eye. However, some analytes are too small such that the diffraction pattern produced is not able to be seen. By using diffraction enhancing elements, the biosensor having the analyte- specific receptor material may be used to detect these smaller analytes. The diffraction enhancing elements used are capable of binding to the analyte, and then the element with bound analyte binds to the biosensor. Then, as the light is transmitted through or reflected from the biosensor, the element enhances the diffraction pattern generated by the analyte such that the resulting diffraction pattern may be seen by the unaided eye. The present invention also utilizes methods of contact printing of patterned, analyte-specific receptors. The analyte-specific receptors have receptive materials bound thereto. The receptive materials are specific for a particular analyte or class of analyte, depending upon the receptor used. Methods of contact printing which would be useful in generating the sensing devices used in the present system are disclosed fully in U.S. Patent Apphcation Nos. 08/707,456 and 08/769,594, both of which are incorporated herein by reference in their entirety. However, since these methods relate to self-assembling monolayers, the methods need to be altered slightly, as discussed below, to print the analyte-specific receptor material as this material is not self-assembling.
Patterned analyte-specific receptor layers allow for the controlled placement of analytes with or without diffraction enhancing elements thereon via the patterns of analyte-specific receptors. The biosensing devices of the present invention produced thereby are used by first exposing the biosensing device to the sample medium (that may or may not contain the analyte of choice) mixed with the diffraction enhancing element.
Then, after an appropriate incubation period, a light, such as a laser or other point light source, is transmitted through or reflected from the film. If the analyte is present in the medium and is bound, either directly or in conjunction with the diffraction enhancing element, to the receptors on the patterned analyte- specific receptor layer, the light is diffracted in such a way as to produce a visible image. In other words, the analyte-specific receptor layers with the analyte and/or diffraction enhancing element bound thereto can produce optical diffraction patterns which differ depending on the reaction of the receptors on the analyte-specific receptor layer with the analyte of interest. The light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound or particle reacting with the analyte-specific receptor layer. The light can be a point white light source or monochromatic electromagnetic radiation, in the visible region. While visible light is the desired light source, the present invention may also be used with non- visible point light sources, such as near-infrared light, coupled with a detector. The thickness of the film and the size of the microparticle may be adjusted to compensate for the non-visible light source. Additionally, the present invention also provides a flexible support for an analyte-specific receptor layer either directly on the substrate or on gold or other suitable metal or metal alloy. '
The present invention provides an analyte-specific receptor layer on gold or other material which is suitable for mass production. The biosensors used in the present invention can be produced as a single test for detecting an analyte or it can be formatted as a multiple test device. The biosensors of the present invention can be used to detect (1) antigens or antibodies associated with medical conditions, (2) contamination in garments, such as diapers, and (3) contamination by microorganisms. In another embodiment of the present invention, nutrients for a specific class of microorganisms can be incorporated into the analyte-specific receptor layer. In this way, very low concentrations of microorganisms can be detected by first contacting the biosensor of the present invention with the nutrients incorporated therein and then incubating, if necessary, the biosensor under conditions appropriate for the growth of the bound microorganism. The microorganism is allowed to grow until there are enough organisms to form a diffraction pattern.
These and other features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 shows a biosensor capable of simultaneously measuring several different analytes in a medium.
Figure 2 is a schematic of contact printing of analyte-specific receptor layers.
Figure 3 is an atomic force microscopy image of evaporated gold on MYLAR®, purchased from Courtaulds Performance Films (Canoga Park, CA). The average roughness of the gold layer is 3-4 nanometers, with maximum roughness of 9 nanometers.
Figure 4 is an SEM photomicrograph showing patterned attachment of diffraction enhancing elements in the presence of an analyte.
Figure 5 is a schematic of the present invention using the wicking agent to eliminate the need for rinsing steps.
Figure 6 is a schematic of the one-step product design of the present invention .
Figure 7 shows a light source illuminated through the hole of the wicking agent to check for a diffraction image.
DETAILED DESCRIPTION The present invention features an improved method for making biosensing devices. The present invention may be used to make biosensing devices which are much more sensitive and can be used to detect smaller analytes which, until now, were not able to be detected without the use of expensive instruments. The analytes that can be detected include, but are not limited to, hormones, proteins such as antibodies, steroids, drug metabolites, nucleic acids, microorganisms such as bacteria, yeasts, fungi and viruses. In contrast to prior devices, those made by the present invention allow detection of extremely small quantities and sizes of analytes in a medium in a rapid assay lasting only a few minutes. In addition, no signaling or associated electronic components are required.
In the present invention, a biologically active material is deposited onto a metal surface, such as gold, in a defined pattern, such that a diffraction hologram is generated when the target binds to the surface. Typically, antibodies that specifically react with a target molecule are printed in a pattern on a metal-coated surface. In one embodiment, the invention covers a method to make a one-step device. The method involves pre-drying labeled diffraction enhancing elements or microparticles (e.g., labeled with the allergen of interest) on to the patterned surface, and then placing the wicking agent disk on top prior to use. This device is then exposed to the test fluid (e.g., serum or blood containing allergen-specific IgE) by placing it on top within the area of the hole cut from the wicking agent. The proper selection of pore size and wicking agent allows the time for wicking to be tailored to the desired incubation time. For example, a 0.45 micron pore size nitrocellulose has delayed wicking of diluted serum with 0.3 micron diameter microparticles for 8-12 minutes; this gives adequate time for the diagnostic device to work. In another embodiment, the invention includes the use of an erodible reagent at the periphery of the wicking agent circle to initially prevent wicking from occurring. The reagent could be a hydrophobic material that prevents wicking, but that would eventually dissolve or derivatize so that it would allow wicking after a specific time period. This time period would correspond to the desired incubation period.
The present invention modifies the process to use the biosensing device to make it easier for the end-user. It employs a wicking agent, such as nitrocellulose, to remove unbound diffraction enhancing elements and excess fluid, thereby eliminating the need for rinsing steps. This greatly simplifies an immunoassay approach, since rinsing is often the most cumbersome step. The detection system is also unique from commercial immunoassay systems in that the binding event creates a simple holographic image upon exposure to light.
Thus, the appearance of a hologram or a change in an existing hologram will indicate a positive response. The pattern made by the diffraction of the transmitted light can be any shape including, but not limited to, the transformation of a pattern from one pattern to another upon binding of the analyte to the receptive material. In particularly preferred embodiments, the diffraction pattern is discernible in less than one hour after contact of the analyte with the biosensing device of the present invention.
The diffraction grating which produces the diffraction of light upon interaction with the analyte and/or element should have a minimum periodicity of the wavelength of incident light. Very small analytes can be detected indirectly by using diffraction enhancing element particles that are specific for the small analyte. One embodiment in which the small analyte can be detected comprises coating the element particle, such as a latex bead, with a receptor material that specifically binds to the analyte of interest. A variety of methods may be used to attach the receptor material onto the diffraction enhancing particle. These methods include, but are not limited to, simple physisorption to a hydrophobic particle (e.g., binding a protein onto polystyrene particles); binding using a protein A or protein G linker; binding using a streptavidin or avidin-biotin linker; or binding using covalent attachment. A preferred embodiment of the present invention is to use carbodiimide coupling of a proteinaceous receptor to carboxylated particles. Other methods of coupling well-known to those of ordinary skill in the art may be used as well.
Diffraction enhancing element particles that can be used in the present invention include, but are not limited to, glass, cellulose, synthetic polymers or plastics, latex, polystyrene, polycarbonate, bacterial or fungal cells and the like. The particles are preferably spherical in shape, but the structural and spatial configuration of the particle is not critical to the present invention. For instance, the particles could be slivers, ellipsoids, cubes, and the like. A desirable particle size ranges from a diameter of approximately 0.1 μm to 100.0 μm, desirably between approximately 0.1 μm to 1 μm. The composition of the element particle is not critical to the present invention. Preferably, the difference in refractive index between the medium and the enhancing element is between 0.1 and 1.0. More preferably, the difference in refractive index between the medium and the enhancing element is between 0.2 and 0.7
The analyte-specific receptor layer on the polymer film contains a receptive material, such as an antibody, that will specifically bind to an epitope on the analyte that is different from the epitope used in the binding to the particle. Thus, for detecting a small analyte, such as viral particles, the medium is first exposed to the diffraction enhancing element particles, such as latex particles, to which the viral particles bind. Then, the diffraction enhancing element particles are optionally washed and exposed to the polymer film with the analyte-specific receptor layers containing the virus specific antibodies. The antibodies then bind to the viral particles on the element particle thereby iπimobilizing the element particles in the same pattern as the receptors on the film. Because the bound element particles will cause diffraction of the visible light, a diffraction pattern is formed, indicating the presence of the viral particle in the liquid. Additionally, the polymer film may include a metal coating thereon. The analyte-specific receptor layer would then be located on the metalized surface of the film. Alternatively, the analyte may be detected by first exposing the biosensor comprising the polymer film with the analyte-specific receptor layers containing the antibodies to the medium containing the analyte and causing the analyte to bind to the analyte-specific receptor layer material. Next, a suspension containing the diffraction enhancing element particles is contacted with the sensing device having the analyte bound thereto. The particles then bind to the analyte. Because the bound element particles will cause diffraction of the visible light, a diffraction pattern is formed, indicating the presence of the analyte in the liquid.
In another preferred embodiment, the biosensor, the diffraction enhancing element particles and the medium containing the analyte may be admixed simultaneously. This will result in a combination of the binding procedures discussed above. Some of the analytes will first bind with a diffraction enhancing element particle prior to binding to the substrate. Other analytes will first bind with the substrate and then bind with an element particle. When a point-light source is shone through the sensor, a diffraction pattern is formed, indicating the presence of the analyte in the liquid.
Finally, in a simpler embodiment, the diffraction enhancing element particles are pre-dried on the biosensor as part of the preparation. During use, the medium containing the analyte is placed on the biosensor surface. This causes re- suspension of the particles, which then bind in the patterned receptor areas of the film if the analyte is present.
The analytes that are contemplated as being detected using the present invention include, but are not limited to, bacteria; yeasts; fungi; viruses; protozoa; or antigens specific to these microbes; rheumatoid factor; antibodies, including, but not limited to IgG, IgM, IgA and IgE antibodies; carcinoembryonic antigen; streptococcus Group A antigen; viral antigens; antigens associated with autoimmune disease; allergens; tumor antigens; streptococcus Group B antigen; HTV I or HTV π antigen; or host response (antibodies) to these and other viruses; antigens specific to RSV or host response (antibodies) to the virus; an antigen; enzyme; hormone; polysaccharide; protein; lipid; carbohydrate; drug or nucleic acid; Salmonella species;
Candida species, including, but not limited to Candida albicans and Candida tropicalis; Salmonella species; Neisseria meningitides groups A, B, C, Y and W sub 135, Streptococcus pneumoniae, E. coli Kl, Haemophilus influenza type B; an antigen derived from microorganisms; a hapten, a drug of abuse; a therapeutic drug; an environmental agent; and antigens specific to Hepatitis.
In another embodiment of the present invention, nutrients for a specific class of microorganisms can be incorporated into the analyte-specific receptor layer. In this way, very low concentrations of microorganisms can be detected by first contacting the biosensor of the present invention with the nutrients incorporated therein and then incubating the biosensor under conditions appropriate for the growth of the bound microorganism. The microorganism is allowed to grow until there are enough organisms to form a diffraction pattem. Of course, in some cases, the microorganism is present or can multiply enough to form a diffraction pattem without the presence of a nutrient on the patterned monolayer.
A part of the present invention is the analyte- specific receptor material that can be microprinted on the polymer film and will specifically bind to the analyte of interest. Thus, the receptor material is defined as one part of a specific binding pair and includes, but is not limited to, antigen/ antibody, enzyme/substrate, oligonucleotide/DNA, chelator/metal, enzyme/inhibitor, bacteria/receptor, virus/receptor, hormone/receptor, DNA/RNA, or RNA/RNA, oligonucleotide /RNA, and binding of these species to any other species, as well as the interaction of these species with inorganic species.
Additionally, when a metalized polymer film is used, the analyte- specific receptor material can be microprinted on the metalized surface of the film.
The receptor material that is bound to the attachment layer is characterized by an ability to specifically bind the analyte or analytes of interest. The variety of materials that can be used as receptor material are limited only by the types of material which will combine selectively (with respect to any chosen sample) with the analyte. Subclasses of materials which can be included in the overall class of receptor materials include toxins, antibodies, antigens, hormone receptors, parasites, cells, haptens, metabolites, allergens, nucleic acids, nuclear materials, autoantibodies, blood proteins, cellular debris, enzymes, tissue proteins, enzyme substrates, coenzymes, neuron transmitters, viruses, viral particles, microorganisms, proteins, polysaccharides, chelators, drugs, and any other member of a specific binding pair. This list only incorporates some of the many different materials that can be coated onto the attachment layer to produce a thin film assay system. Whatever the selected analyte of interest is, the receptor material is designed to bind with the analyte of interest. In the preferred embodiments, the biosensing device is configured and arranged to provide a pattern detectable by eye in response to transmission of a point light source when the analyte of interest is sandwiched between the receptor material and a diffraction enhancing element.
In many instances, a "blocker" may be necessary to prevent non-specific binding. The term "blocker" as used herein means a reagent that adheres to the sensor surface so that it "blocks" or prevents non-analyte materials from binding to the surface (either in the patterned or un-pattemed areas). The blocking step may be done as a post-treatment to a surface which has already been contact printed ("post-block"), and is the standard technique for filling in non-contact printed regions with another thiol. However, the inventors have discovered that a
"pre-block" technique is preferred over the post-block technique. In the pre-block technique, the surface of the substrate is pre- treated with a non-thiol containing blocker and then contact printed. Not wishing to be bound to any theory, it is theorized that the contact printed material (usually sulfur containing) displaces the physisorbed blocker, thereby permitting the analyte-specific receptor material to be bound directly to the surface of the substrate. A subsequent post-block may also be performed, if desired. Blockers can include, but are not limited to, β-casein, albumins such as bovine serum albumin, pluronic or other surfactants, polyethylene glycol or its derivatives, polyvinyl alcohol, or derivatives of the above compounds, and any other blocking material known to those of ordinary skill in the art. The matrix containing the analyte of interest may be an interstitial fluid, a solid, a gas, or a bodily fluid such as mucous, saliva, urine, fecal material, tissue, marrow, cerebral spinal fluid, serum, plasma, whole blood, sputum, buffered solutions, extracted solutions, semen, vaginal secretions, pericardial, gastric, peritoneal, pleural, a throat swab or other washes and the like. The analyte of interest may be an antigen, an antibody, an enzyme, a DNA fragment, an intact gene, a RNA fragment, a small molecule, a metal, a toxin, an environmental agent, a nucleic acid, a cytoplasm component, pili or flagella component, protein, polysaccharide, drug, or any other material. For example, receptor material for bacteria may specifically bind a surface membrane component, protein or lipid, a polysaccharide, a nucleic acid, or an enzyme. The analyte which is indicative of the bacteria may be a saccharide or polysaccharide, an enzyme, a nucleic acid, a membrane component, a ganglioside or an antibody produced by the host in response to the bacteria. The presence of the analyte may indicate an infectious disease (bacterial or viral), cancer, an allergy, or other medical disorder or condition. The presence of the analyte may be an indication of water or food contamination or other harmful materials. The analyte may indicate drug abuse or may monitor levels of therapeutic agents.
One of the most commonly encountered assay protocols for which this technology can be utilized is an immunoassay. However, the general considerations apply to nucleic acid probes, enzyme/substrate, and other ligand/receptor assay formats. For immunoassays, an antibody may serve as the receptor material and/or it may be the analyte of interest. The receptor material, for example an antibody or an antigen, must form a stable, reactive layer on the attachment layer of the test device. If an antibody is the receptor material, the antibody must be specific to the antigen of interest; and the antibody (receptor material) must bind the antigen (analyte) with sufficient avidity that the antigen is retained at the test surface. In some cases, the analyte may not simply bind the receptor material, but may cause a detectable modification of the receptor material to occur. This interaction could cause an increase in mass at the test surface or a decrease in the amount of receptor material on the test surface. An example of the latter is the interaction of a degradative enzyme or material with a specific, immobilized substrate. In this case, one would see a diffraction pattern before interaction with the analyte of interest, but the diffraction pattern would disappear if the analyte were present. The specific mechanism through which binding, hybridization, or interaction of the analyte with the receptor material occurs is not important to this invention, but may impact the reaction conditions used in the final assay protocol.
In general, the receptor material may be passively applied to the substrate layer. If required, the free functional groups introduced onto the test surface by the attachment layer may be used for covalent attachment of receptor material to the test surface.
A wide range of techniques can be used to apply the receptor material to the substrate layer. Test surfaces may be coated with receptor material by application of solution in discrete arrays or patterns; spraying, ink jet, contact printing or other imprinting methods; or printing a blocker material in a pattern followed by total immersion or spin coating with the receptor material. The technique selected should rriiriimize the amount of receptor material required for coating a large number of test surfaces and maintain the stability/functionality of receptor material during application. The technique must also apply or adhere the receptor material to the attachment layer in a very uniform and controlled fashion.
The biosensing device of the present invention utilizes methods of contact printing of patterned, analyte-specific receptor layers on polymer or metalized polymer films, desirably transparent or semi-transparent, the compositions produced thereby, and the use of these compositions. Patterned analyte- specific receptor layers allow for the controlled attachment (or binding) placement of the analyte receptor. The term "patterned analyte-specific receptor layers thereon" as used herein means the analyte-specific receptor layers in any pattern on the polymer or metalized polymer films. The biosensing device also includes the wicking agent which removes any residual liquid from the analyte sample, thereby avoiding the necessity of any additional rinsing.
When the film with the patterned analyte-specific receptor layers thereon is exposed to an analyte that is capable of reacting with the analyte-specific receptor layer, the film will produce optical diffraction patterns which differ depending on the reaction of the patterned analyte-specific receptor layer with the analyte of interest. The medium would contain the diffraction enhancing element particles. The medium may be a high surface tension fluid such as water. The light can be in the visible spectrum, and be either reflected from the film, or transmitted through it, and the analyte can be any compound reacting with the analyte-specific receptor layer.
In preferred embodiments, the method involves contacting the sensing device with a test sample containing the diffraction enhancing element particles and potentially containing the analyte. Then, the wicking agent is used to remove unbound labeled particles, as well as any residual liquid from the sample. If the analyte is present in the sample, then when light is transmitted through a metalized polymer film with the analyte-specific receptor layer, a visible diffraction image is formed.
The medium in which the analyte may reside can be solid, gel-like, liquid or gas. For purposes of detecting an analyte in a body fluid, the fluid is selected from, but not limited to, urine, serum, plasma, spinal fluid, sputum, whole blood, saliva, uro-genital secretions, fecal extracts, pericardia!, gastric, peritoneal, pleural washes, vaginal secretions, or a throat swab. The most common gas that is contemplated as being used with the biosensing device of the present invention is air.
In one embodiment, the present invention is contemplated in a dipstick form in which a micro-contact printed metalized film is mounted at the end of the dipstick. In use, the dipstick is dipped into the liquid in which the suspected analyte may be present. The liquid would also contain the diffraction enhancing element particles. The dipstick is allowed to remain for several minutes. Upon removing the dipstick, the wicking agent is then used to remove unbound labeled microparticles, as well as any residual liquid from the sample. A small hole may be punched out of the center of the wicking agent so that once the sample and excess particles are wicked away, the hole allows the user to immediately check for a diffraction image without removing the wicking material. The light is projected through the metalized film or the film is observed with a light behind the film. If a diffraction image is observed, then the analyte is present in the liquid.
In another embodiment of the present invention, a multiple analyte test is constructed on the same support. As shown in Figure 1, a strip 10 is provided with several micro- contact printed films 20, 25, 30 and 35, each film having a pattern 40 printed thereon. Each of the micro-contact printed films 15, 20, 25, and 30 have a different receptor material that is specific for different analytes. Each of the printed films 15, 20, 25 and 30 may include an array or strip of wicking agents to aid in the use of the strip 10. It can be seen that the present invention can be formatted in any array with a variety of micro- contact printed films thereby allowing the user of the biosensor device of the present invention to detect the presence of multiple analytes in a medium using a single test while the wicking agent avoids the necessity of any additional rinsing steps, which may be cumbersome or more difficult for the user.
There are many possible supports for the analyte- specific receptor layers. Simple physisorption can occur on many materials, such as polystyrene, glass, nylon, or others well known to those of ordinary skill in the art. Preferred embodiments of immobilizing the analyte-specific receptor layers have involved covalent attachment, such as that possible between thiol or disulfide-containing compounds and gold. Typically, a gold coating, 5 to 2000 nm thick, is supported on a Sϊ/SiOz wafer, glass, or a polymer film. Optionally, titanium can be used to serve as an adhesion promoter between gold and the support. The analyte-specific receptor attaches to the gold surface during contact printing or immersion from a solution. Preferably, the support comprises a gold coating on a MYLAR® film.
Figure 2 outlines the procedure used for microcontact printing. An elastomeric stamp is used to transfer analyte-specific receptor "ink" to a gold surface by contact; if the stamp is patterned, a patterned analyte-specific receptor layer forms. The stamp is fabricated by casting polydimethylsiloxane
(PDMS) on a master having the inverse of the desired pattern. Masters are prepared using standard photolithographic techniques, or constructed from existing materials having microscale surface features. In a preferred embodiment of a typical experimental procedure, a photolithographically produced master is placed in a glass or plastic Petri dish, and a 10:1 ratio (w.w) mixture of SYLGARD® silicone elastomer 184 and SYLGARD® silicone elastomer 184 curing agent (Dow Corning Corporation) is poured over it. The elastomer is allowed to sit for approximately 30 minutes at room temperature and reduced pressure to degas, then cured for at least 4 hours at 60°C, and gently peeled from the master. "Inking" of the elastomeric stamp is accomplished by exposing the stamp to a 0.1 to 10 μM aqueous solution of disulfide-derivatized antibody typically by placing the stamp face down in the solution for 10 seconds to 10 minutes. The stamp is allowed to dry, either under ambient conditions, or typically by exposure to a stream of air or nitrogen gas.. Following inking, the stamp is applied to a gold surface. Light pressure is used to ensure complete contact between the stamp and the surface. After 1 second to 5 minutes, the stamp is then gently peeled from the surface. Following removal of the stamp, the surface is rinsed and dried. Alternatively, further derivatization of unstamped areas can be accomplished, either by using a second stamp or by exposing the entire surface with a different reagent. Subsequently, exposure to a protein-blocking agent, such as BSA or β-casein, or any other agent well known in the art, can also be done. The elastomeric character of the stamp is important to the success of the process. Polydimethylsiloxane (PDMS), when cured, is sufficiently elastomeric to allow good conformal contact of the stamp and the surface, even for surfaces with significant relief; this contact is essential for efficient contact transfer of the receptor to a gold film. The elastomeric properties of PDMS are also important when the stamp is removed from the master: if the stamp were rigid (as is the master) it would be difficult to separate the stamp and master after curing without damaging one of the two substrates. PDMS is also sufficiently rigid to retain its shape, even for features with sub-micron dimension. The stamp is durable in that the same stamp can be used over 200 times over a period of a year without significant degradation in performance. Using a printing roll for the stamp could allow for a continuous printing operation. Alternatively, ink-jet printing of the desired pattem could also be done if capable of producing the feature sizes needed for diffraction, for example < 100 μm.
A more detailed description of the methods and compositions of the present invention follows. All pubhcations cited herein are incorporated by reference in their entirety.
Any plastic film is suitable for the present invention. Preferably, the plastic film is also capable of having a metal coating deposited thereon. These include, bu.t are not limited to polymers such as: polyethylene-terephthalate (e.g., MYLAR®), acrylonitrile-butadiene-styrene, acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, cellulose triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, nylon, polypropylene, methyl pentene polymers, polyvinyl fluoride, and aromatic polysulfones. Preferably, the plastic film has an optical transparency of greater than 80%. Other suitable plastics and suppliers may be found, for example, in reference works such as the Modern Plastics Encyclopedia (McGraw-Hill Publishing Co., New York 1923-1996).
In one embodiment of the invention, the polymer film has a metal coating thereon and has an optical transparency of between approximately 5% and 95%. A more desired pptical transparency for the plastic film used in the present invention is between approximately 20% and 80%. In a desired embodiment of the present invention, the polymer film has at least an approximately 80% optical transparency, and the thickness of the metal coating is such as to maintain an optical transparency greater than about 60%, so that diffraction images can be produced by transmitted light. This corresponds to a metal coating thickness of about 10 nm. However, in other embodiments of the invention, the gold thickness may be between approximately 1 nm and 1000 nm; for example, thicker gold coatings (>20 nm) would still be suitable for producing diffraction images by reflected light.
The preferred metal for deposition on the film is gold. However, silver, aluminum, chromium, copper, iron,' zirconium, platinum and nickel, as well as oxides of these metals, may be used.
In principle, any surface with corrugations of appropriate size could be used as masters. The process of microcontact printing starts with an appropriate relief structure, from which an elastomeric stamp is cast. This 'master' template may be generated photolithographically, or by other procedures, such as commercially available diffraction gratings. In one embodiment, the stamp may be made from polydimethylsiloxane.
The stamp may be applied in air, or under a fluid capable of preventing excess diffusion of the receptor material. For large-scale or continuous printing processes, it is most desirable to print in air. In one embodiment of the present invention, the pattern is formed on the metalized plastic polymer with the analyte-specific receptor layer. After the stamping process, the metalized areas on the plastic may optionally be blocked, for example, with a protein-repelling agent such as β-casein. This invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof, which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention. EXAMPLES Example #1:
Gold-coated MYLAR® was treated with a 5 mg/mL beta casein diluted in StabilGuard® (by SurModics, Inc.; Eden Prairie, MN) as a blocking agent. The casein treated film was then contact printed with a thiolated antibody to IgE (e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE) to provide a patterned x,y array of antibody in 10- micron circles. Further preparation of this one-step device involved applying 11 microliters of mold-mix labeled particles
(0.3 micron particles conjugated with ALK Cat # 512042, suspended in a 5 mg/mL beta casein diluted in StabilGuard®) to this surface, and drying them at ambient conditions. A 0.45- micron pore size nitrocellulose disk with 3/32-inch diameter hole was then placed over the dried particles to complete the diagnostic preparation. This device was tested with samples consisting of IgE-spiked serum at 10 ug/mL IgE which were diluted in 6 parts phosphate buffer solution (pH 8, ionic concentration of 0.1 M). A good source of IgE to use as a positive control was typically a polyclonal source, which showed reactivity to a wide range of allergens. Controls were tested with unspiked serum diluted in the same way as the samples. Testing involved placing 34 microliters of the diluted serum on top of the diagnostic device within the center of the nitrocellulose hole. Wicking is delayed due to the small 0.45- micron pore size of the material, and typically occurs between 5- 15 minutes after adding the diluted serum. This time allows for adequate incubation to occur between the analyte and the diagnostic. If a shorter (or no) delay of wicking is desired, then a larger pore size material can be used as the wicking agent. After wicking has occurred, the sample was checked for a diffraction image using a point light source (e.g., laser) that is illuminated through the hole. A diffraction image indicates that the analyte (e.g., mold mix-specific IgE in this case) is present.
Example #2: Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein treated film was then contact printed with a thiolated antibody to luteinizing hormone (e.g., a monoclonal) to provide a patterned x,y array of antibody in 10-micron circles. The resulting sample was exposed to 60 microliters of LH-spiked buffered BSA solution. This was immediately followed by the addition of 20 microliters of a suspension containing 0.5 micron particles conjugated with another monoclonal to luteinizing hormone antibody (such as a monoclonal that recognizes a different epitope on the hormone than the patterned antibody) at a concentration of 109 or 1010 particles / mL. In some cases, samples were heated to 60C during incubation; incubation times typically range from 5-15 minutes. After incubation, a disk of nitrocellulose (e.g., 8 micron pore size) having a hole (e.g., 3/32 inch diameter) in the center is placed on top of the sample and liquid / particle mixture. This wicks away unbound particles and excess liquid, so that the sample can be checked for a diffraction image using a point light source (e.g., laser) aimed to shine through the hole. A diffraction image indicates that the analyte (luteinizing hormone in this case) is present.
Example #3:
Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein-treated film was then contact printed with a thiolated antibody to IgE (e.g., a monoclonal having an affinity constant > 4xl010) to provide a patterned x,y array of antibody in 10- micron circles. This patterned film was then exposed to 34 microliters of diluted human serum (e.g., International Enzymes Cat#8005) that naα oeen spiKeα with IgE. typical dilution of serum was 1 part spiked serum to 2 parts phosphate buffer solution (pH 7.2). After 5 minutes, 11 microliters of a suspension containing 0.3-micron particles conjugated with another monoclonal antibody to IgE (e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE) was added (typically at a concentration of 109 or 1010 particles / mL). After 10 minutes, a disk of nitrocellulose (e.g., 8 micron pore size) having a hole (e.g., 3/32 inch diameter) in the. center was placed on top of the sample and liquid / particle mixture. This wicks away unbound particles and excess liquid, so that the sample can be checked for a diffraction image using a point light source (e.g., laser) aimed to shine through the hole. A diffraction image indicates that the analyte (total IgE in this case) is present. Detection down to at least 1000 ng/mL (initial concentration of
IgE in serum) was achieved.
Example #4:
Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein-treated film was then contact printed with a thiolated polyclonal antibody to Group B Strep to provide a patterned x,y array of antibody in 10-micron circles. This patterned film was then exposed to 34 microliters of a solution of Strep B antigen (Difco Cat#2979-50; Detroit, MI) for 5 minutes. This was followed by the addition of 11 microliters of a suspension containing 0.3-micron particles conjugated with an antibody to Strep B (typically at a concentration of 109 or 1010 particles / mL). After 10 minutes, a disk of nitrocellulose (e.g., 8 micron pore size) having a hole (e.g., 3/32 inch diameter) in the center was placed on top of the sample and liquid / particle mixture. This wicks away unbound particles and excess liquid, so that the sample can be checked for a diffraction image using a point light source (e.g., laser) aimed to shine through the hole. A diffraction image indicates that the analyte (Strep B antigen in this case) is present. Detection between 10 to 100 ng/mL was achieved.
Example #5: Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein-treated film was then contact printed with a thiolated polyclonal antibody to Group B Strep to provide a patterned x,y array of antibody in 10-micron circles. Strep B cell suspensions (at concentrations ranging from 9xl09 to 9xl03 cells/rήL) were first treated with an enzyme such as achromopeptidase diluted fo 710 units/mL in deionized water. This cell extraction step typically was done by mixing the enzyme solution with cell suspension (e.g., a 4:3 volume:volume ratio of enzyme solution to cells), and heating at 37C for 20 minutes. A 34 microliter aliquot of the resulting lysed cells were exposed to the patterned film for 5 minutes. This was followed by the addition of 11 microliters of a suspension containing 0.3-micron particles conjugated with an antibody to Strep B (typically at a concentration of 109 or 1010 particles / mL). After 10 minutes, a disk of nitrocellulose (e.g., 8 micron pore size) having a hole (e.g., 3/32 inch diameter) in the center was placed on top of the sample and liquid / particle mixture. This wicks away unbound particles and excess liquid, so that the sample can be checked for a diffraction image using a point light source (e.g., laser), aimed to shine through the hole. A diffraction image indicates that the analyte (Strep B cells in this case) is present. Detection down to at least 9xl03 cells/mL was achieved.
Example #6:
Gold-coated MYLAR® was treated with a 5 mg/mL buffered solution of beta casein as a blocking agent. The casein-treated film was then contact printed with a thiolated antibody to IgE (e.g., a monoclonal) to provide a patterned x,y array of antibody in 10-micron circles. This patterned film was then exposed to 34 microliters of diluted human EDTA plasma (e.g., Interstate Blood Bank, Inc; Memphis, TN) that had been spiked with IgE. Typical dilution of plasma was 1 part spiked plasma to 3 parts phosphate buffer solution (pH 7.2). After 5 minutes, 11 microliters was added of a suspension containing 0.3-micron particles (typically at a concentration of 109 or 1010 particles / mL) which were conjugated with another monoclonal antibody to IgE (e.g., a monoclonal anti-IgE, such as one specific to the C3-C4 domains of IgE). After 10 minutes, a disk of nitrocellulose (e.g., 8 micron pore size) having a hole (e.g., 3/32 inch diameter) in the center was placed on top of the sample and liquid / particle mixture. This wicks away unbound particles and excess liquid, so that the sample can be checked for a diffraction image using a point light source (e.g., laser) aimed to shine through the hole. A diffraction image indicates that the analyte (total IgE in this case) is present. Detection between 1000- 10,000 ng/mL (initial concentration of IgE in plasma) was achieved.
Those skilled in the art will recognize that the present invention is capable of many modifications and variations without departing from the scope thereof. Accordingly, the detailed description and examples set forth above are meant to be illustrative only and are not intended to limit, in any manner, the scope of the invention as set forth in the appended claims.

Claims

We claim:
1. A method of detecting an analyte in a medium comprising: contacting the medium with a sensing device, the sensing device comprising: a) a polymer film; b) an analyte-specific receptor layer printed in a pattern onto the polymer film wherein the analyte-specific receptor layer has a receptor material thereon that is specific for the analyte; and c) a wicking agent on the layer of the analyte- specific receptor layer; transmitting a light through the wicking agent and the polymer film; and detecting presence of the analyte by detecting a pattern formed by diffraction of the transmitted light.
2. The method of Claim 1, wherein the analyte-specific receptor layer is printed in a pattern such that when the sensing device binds an analyte, the sensing device diffracts transmitted light to form a diffraction pattern.
3. The method of Claim 2, wherein the diffraction pattern is visible to an unaided eye.
4. The method of Claim 1, further comprising a metal coating on the polymer film and wherein the analyte-specific receptor layer is printed onto the metal coating.
5. The method of Claim 4, wherein the metal is selected from gold, silver, chromium, nickel, platinum, aluminum, iron, copper, gold oxide, chromium oxide or zirconium.
6. The method of Claim 5, wherein the metal is gold.
7. The method of Claim 6, wherein the gold coating is between approximately 1 nanometer and 1000 nanometers in thickness.
8. The method of Claim 1, wherein the polymer film is selected from polyethylene-terephthalate, acrylonitrile-butadiene- styrene, acrylonitrile-methyl acrylate copoiymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, nylon, polypropylene, methyl pentene polymers, polyvinyl fluoride, or aromatic polysulfones.
9. The method of Claim 8, wherein the polymer film is polyethylene-terephthalate.
10. The method of Claim 1, wherein the wicking agent is selected from a nitrocellulose membrane, a cellulose acetate membrane, or a glass microfiber structure.
11. The method of Claim 1, wherein the polymer film has an optical transparency between 5% and 95%.
12. The method of Claim 1, wherein the polymer film has an optical transparency between approximately 20% and 80%.
13. The method of Claim 1, wherein the pattern formed is a holographic pattern.
14. The method of Claim 1, wherein the analyte is selected from bacteria, yeast, fungus, virus, rheumatoid factor, IgG, IgM, IgA and IgE antibodies, carcinoembryonic antigen, streptococcus Group A antigen, viral antigens, antigens 5 associated with autoimmune disease, allergens, tumor antigens," streptococcus Group B antigen, HTV I or HTV II antigen, antibodies viruses, antigens specific to RSV„ an antibody, antigen, enzyme, hormone, polysaccharide, protein, lipid, carbohydrate, drug or nucleic acid, Neisseria meningitides 0 groups A, B, C, Y and W sub 135, Streptococcus pneumoniae,
E. coli Kl, Haemophilus influenza type B, an antigen derived from microorganisms, a hapten, a drug of abuse, a therapeutic drug, an environmental agent, or antigens specific to Hepatitis.
5 15. The method of Claim 14, wherein the analyte is bacteria, yeast, fungus or virus.
16. The method of Claim 1, wherein the receptor material is selected from antigens, antibodies, oligonucleotides, 0 chelators, enzymes, bacteria, yeasts, fungi, viruses, bacterial pili, bacterial flagellar materials, nucleic acids, polysaccharides, lipids, proteins, carbohydrates, metals, hormones or receptors for said materials.
5 17. The method of Claim 1, further comprising a. layer of diffraction enhancing elements on the analyte-specific receptor layer, wherein the diffraction enhancing element has a receptor material thereon that is specific for the analyte; wherein the wicking agent is placed on the layer of diffraction enhancing
,0 elements.
18. The method of Claim 17, wherein the diffraction enhancing element is selected from glass, cellulose, synthetic polymers or plastics, latex, polystyrene, polycarbonate, bacterial or fungal cells.
19. The method of Claim 17, wherein the diffraction enhancing element is polystyrene latex microspheres.
20. The method of Claim 1, further comprising the step of applying a blocking material to the non-printed areas of the polymer film.
21. The method of Claim 20, wherein the blocking material is selected from β-casein, an albumin, a surfactant, polyethylene glycol, polyvinyl alcohol, or derivatives thereof.
22. The method of Claim 1, wherein the sensing device further comprises a layer of blocking material on the polymer film through which the analyte-specific receptor material is printed.
23. The method of Claim 22, wherein the blocking material is selected from β-casein, an albumin, a surfactant, polyethylene glycol, polyvinyl alcohol, or derivatives thereof.
24. The method of Claim 1, wherein the wicking agent is removed before transmitting the light through the polymer film to detect the presence of the analyte.
25. The method of Claim 1, wherein the wicking agent has a hole in its center and the light is transmitted through the hole in the wicking agent and through the polymer film to detect the presence of the analyte.
26. A method of detecting an analyte in a medium comprising: contacting the medium with a sensing device, the sensing device comprising: a) a polymer film; b) an analyte-specific receptor layer printed in a pattem onto the polymer film wherein the analyte-specific receptor layer has a receptor material thereon that is specific for the analyte; c) a wicking agent on the analyte-specific receptor layer; reflecting a light source through the wicking agent and off a surface of the metal-coated polymer film; and detecting presence of the analyte by detecting a pattern formed by diffraction of the reflected light.
27. The method Claim 26, wherein the analyte-specific receptor layer is printed in a pattern such that when the sensing device binds an analyte, the sensing device diffracts reflected light to form a diffraction pattem.
28. The method of Claim 27, wherein the diffraction pattern is visible to an unaided eye.
29. The method of Claim 26, wherein the metal is selected from gold, silver, chromium, nickel, platinum, aluminum, iron, copper, gold oxide, chromium oxide or zirconium.
30. The method of Claim 29, wherein the metal is gold.
31. The method of Claim 30, wherein the gold coating is between approximately 1 nanometer and 1000 nanometers in thickness.
32. The method of Claim 26, wherein the polymer film is selected from polyethylene-terephthalate, acrylonitrile- butadiene-styrene, acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, polyethylene, polyethylene-vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon copolymers, nylon, polypropylene, methyl pentene polymers, polyvinyl fluoride, or aromatic polysulfones.
33. The method of Claim 32, wherein the polymer film is polyethylene-terephthalate.
34. The method of Claim 26, wherein the wicking agent is selected from a nitrocellulose membrane, a cellulose acetate membrane, or a glass microfiber structure.
35. The method of Claim 26, wherein the analyte is selected from bacteria, yeast, fungus, virus, rheumatoid factor, IgG, IgM, IgA and IgE antibodies, carcinoembryonic antigen, streptococcus Group A antigen, viral antigens, antigens associated with autoimmune disease, allergens, tumor antigens, streptococcus Group B antigen, HTV I or HTV II antigen, antibodies viruses, antigens specific to RSV„ an antibody, antigen, enzyme, hormone, polysaccharide, protein, lipid, carbohydrate, drug or nucleic acid, Neisseria meningitides groups A, B, C, Y and W sub 135, Streptococcus pneumoniae, E. coli Kl, Haemophilus influenza type B, an antigen derived from microorganisms, a hapten, a drug of abuse, a therapeutic drug, an environmental agent, or antigens specific to Hepatitis.
36. The method of Claim 35, wherein the analyte is bacteria, yeast, fungus or virus.
37. The method of Claim 26, wherein the receptor material is selected from antigens, antibodies, oligonucleotides, chelators, enzymes, bacteria, yeasts, fungi, viruses, bacterial pili, bacterial flagellar materials, nucleic acids, polysaccharides, lipids, proteins, carbohydrates, metals, hormones or receptors for said materials.
38. The method of Claim 26, further comprising a layer of diffraction enhancing elements on the analyte-specific receptor layer, wherein the diffraction enhancing element has a receptor material thereon that is specific for the analyte; wherein the wicking agent is placed on the layer of diffraction enhancing elements.
39. The method of Claim 38, wherein the diffraction enhancing element is selected from glass, cellulose, synthetic polymers or plastics, latex, polystyrene, polycarbonate, bacterial or fungal cells.
40. The method of Claim 38, wherein the diffraction enhancing element is polystyrene latex microspheres.
41. The method of Claim 26, further comprising the step of applying a blocking material to the non-printed areas of the metal-coated polymer film.
42. The method of Claim 41, wherein the blocking material is selected from β-casein, an albumin, a surfactant, polyethylene glycol, polyvinyl alcohol, or derivatives thereof.
43. The method of Claim 26, wherein* the sensing device further comprises a layer of blocking material on the metal-coated polymer film through which the analyte-specific receptor material is printed.
44. The method of Claim 43, wherein the blocking material is selected from β-casein, an albumin, a surfactant, polyethylene glycol, polyvinyl alcohol, or derivatives thereof.
45. The method of Claim 26, wherein the pattern formed is a holographic pattern.
46. The method of Claim 26, wherein the wicking agent is removed before reflecting the light through the polymer film to detect the presence of the analyte.
47. The method of Claim 26, wherein the wicking agent has a hole in its center and the light is reflected through the hole in the wicking agent and through the polymer film to detect the presence of the analyte.
PCT/US2000/042768 1999-12-17 2000-12-12 Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors WO2001044813A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2393982A CA2393982C (en) 1999-12-17 2000-12-12 Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
MXPA02005913A MXPA02005913A (en) 1999-12-17 2000-12-12 Use of wicking agent to eliminate wash steps for optical diffractionbased biosensors.
DE60039066T DE60039066D1 (en) 1999-12-17 2000-12-12 USE OF A WICKERING AGENT TO ELIMIN
KR1020027007705A KR100734977B1 (en) 1999-12-17 2000-12-12 Use of Wicking Agent to Eliminate Wash Steps for Optical Diffraction-Based Biosensors
EP00992910A EP1238277B1 (en) 1999-12-17 2000-12-12 Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
AU47170/01A AU779211B2 (en) 1999-12-17 2000-12-12 Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/465,921 US6399295B1 (en) 1999-12-17 1999-12-17 Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
US09/465,921 1999-12-17

Publications (3)

Publication Number Publication Date
WO2001044813A2 WO2001044813A2 (en) 2001-06-21
WO2001044813A3 WO2001044813A3 (en) 2002-05-02
WO2001044813A9 true WO2001044813A9 (en) 2002-08-15

Family

ID=23849714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/042768 WO2001044813A2 (en) 1999-12-17 2000-12-12 Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors

Country Status (11)

Country Link
US (1) US6399295B1 (en)
EP (1) EP1238277B1 (en)
KR (1) KR100734977B1 (en)
CN (1) CN1203318C (en)
AT (1) ATE397216T1 (en)
AU (1) AU779211B2 (en)
CA (1) CA2393982C (en)
DE (1) DE60039066D1 (en)
MX (1) MXPA02005913A (en)
TW (1) TWI247893B (en)
WO (1) WO2001044813A2 (en)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599631B2 (en) * 2001-01-26 2003-07-29 Nanogram Corporation Polymer-inorganic particle composites
US20030073250A1 (en) * 1999-05-21 2003-04-17 Eric Henderson Method and apparatus for solid state molecular analysis
US7167615B1 (en) 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US6897015B2 (en) * 2000-03-07 2005-05-24 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of pathogens and biological materials
US7070987B2 (en) * 2000-10-30 2006-07-04 Sru Biosystems, Inc. Guided mode resonant filter biosensor using a linear grating surface structure
US7102752B2 (en) * 2001-12-11 2006-09-05 Kimberly-Clark Worldwide, Inc. Systems to view and analyze the results from diffraction-based diagnostics
US8043868B2 (en) 2001-12-21 2011-10-25 Imec Method and apparatus for detecting an analyte
US7799968B2 (en) 2001-12-21 2010-09-21 Kimberly-Clark Worldwide, Inc. Sponge-like pad comprising paper layers and method of manufacture
EP1321761B1 (en) * 2001-12-21 2006-08-23 Interuniversitair Micro-Elektronica Centrum Method of detecting an analyte
US7244393B2 (en) 2001-12-21 2007-07-17 Kimberly-Clark Worldwide, Inc. Diagnostic device and system
US20030119209A1 (en) * 2001-12-21 2003-06-26 Kaylor Rosann Marie Diagnostic methods and devices
US8367013B2 (en) 2001-12-24 2013-02-05 Kimberly-Clark Worldwide, Inc. Reading device, method, and system for conducting lateral flow assays
US20030119203A1 (en) 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
GB0207943D0 (en) * 2002-04-05 2002-05-15 Univ Cambridge Tech Sensors and their production
US7485453B2 (en) * 2002-05-03 2009-02-03 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7118855B2 (en) * 2002-05-03 2006-10-10 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7214530B2 (en) * 2002-05-03 2007-05-08 Kimberly-Clark Worldwide, Inc. Biomolecule diagnostic devices and method for producing biomolecule diagnostic devices
US7771922B2 (en) * 2002-05-03 2010-08-10 Kimberly-Clark Worldwide, Inc. Biomolecule diagnostic device
US7223368B2 (en) * 2002-05-03 2007-05-29 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US7223534B2 (en) * 2002-05-03 2007-05-29 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
US20050239193A1 (en) * 2002-05-30 2005-10-27 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of microorganisms and microparticles
US7091049B2 (en) * 2002-06-26 2006-08-15 Kimberly-Clark Worldwide, Inc. Enhanced diffraction-based biosensor devices
US7508608B2 (en) 2004-11-17 2009-03-24 Illumina, Inc. Lithographically fabricated holographic optical identification element
US7164533B2 (en) * 2003-01-22 2007-01-16 Cyvera Corporation Hybrid random bead/chip based microarray
US7900836B2 (en) 2002-08-20 2011-03-08 Illumina, Inc. Optical reader system for substrates having an optically readable code
EP1535242A1 (en) * 2002-08-20 2005-06-01 Cyvera Corporation Diffraction grating-based encoded micro-particles for multiplexed experiments
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
AU2003265583C1 (en) * 2002-08-20 2009-05-21 Cyvera Corporation Diffraction grating-based optical identification element
US7923260B2 (en) 2002-08-20 2011-04-12 Illumina, Inc. Method of reading encoded particles
US7901630B2 (en) 2002-08-20 2011-03-08 Illumina, Inc. Diffraction grating-based encoded microparticle assay stick
US7314763B2 (en) * 2002-08-27 2008-01-01 Kimberly-Clark Worldwide, Inc. Fluidics-based assay devices
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
AU2003256008A1 (en) * 2002-09-09 2004-03-29 International Business Machines Corporation Printing method using rubber stamp
WO2004025560A1 (en) * 2002-09-12 2004-03-25 Cyvera Corporation Assay stick comprising coded microbeads
AU2003270726A1 (en) * 2002-09-12 2004-04-30 Cidra Corporation Diffraction grating-based encoded micro-particles for multiplexed experiments
US7092160B2 (en) 2002-09-12 2006-08-15 Illumina, Inc. Method of manufacturing of diffraction grating-based optical identification element
US20100255603A9 (en) 2002-09-12 2010-10-07 Putnam Martin A Method and apparatus for aligning microbeads in order to interrogate the same
WO2004025562A1 (en) * 2002-09-12 2004-03-25 Cyvera Corp. Method and apparatus for labelling using diffraction grating-based encoded optical identification elements
CA2498916A1 (en) * 2002-09-12 2004-03-25 Cyvera Corporation Chemical synthesis using diffraction grating-based encoded optical elements
US7169550B2 (en) * 2002-09-26 2007-01-30 Kimberly-Clark Worldwide, Inc. Diffraction-based diagnostic devices
DE10250495A1 (en) * 2002-10-29 2004-05-19 Micronas Gmbh Method and device for producing a biological microarray and device for detecting a ligand contained in a sample
US7781172B2 (en) 2003-11-21 2010-08-24 Kimberly-Clark Worldwide, Inc. Method for extending the dynamic detection range of assay devices
US7994079B2 (en) 2002-12-17 2011-08-09 Kimberly-Clark Worldwide, Inc. Meltblown scrubbing product
US7247500B2 (en) 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
US20040121334A1 (en) * 2002-12-19 2004-06-24 Kimberly-Clark Worldwide, Inc. Self-calibrated flow-through assay devices
US20060211044A1 (en) * 2003-02-24 2006-09-21 Green Lawrence R Translucent solid matrix assay device dor microarray analysis
US7851209B2 (en) * 2003-04-03 2010-12-14 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in assay devices
US20040197819A1 (en) 2003-04-03 2004-10-07 Kimberly-Clark Worldwide, Inc. Assay devices that utilize hollow particles
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US20050112703A1 (en) 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US7713748B2 (en) 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
US7943089B2 (en) 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
US7433123B2 (en) 2004-02-19 2008-10-07 Illumina, Inc. Optical identification element having non-waveguide photosensitive substrate with diffraction grating therein
US8568382B2 (en) * 2004-03-29 2013-10-29 The Procter & Gamble Company Disposable absorbent articles having co-elongation
US7796266B2 (en) * 2004-04-30 2010-09-14 Kimberly-Clark Worldwide, Inc. Optical detection system using electromagnetic radiation to detect presence or quantity of analyte
US20050244953A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Techniques for controlling the optical properties of assay devices
US20060019265A1 (en) * 2004-04-30 2006-01-26 Kimberly-Clark Worldwide, Inc. Transmission-based luminescent detection systems
US7815854B2 (en) * 2004-04-30 2010-10-19 Kimberly-Clark Worldwide, Inc. Electroluminescent illumination source for optical detection systems
GB0412654D0 (en) * 2004-06-07 2004-07-07 Univ Cambridge Tech Method of detection
US7521226B2 (en) 2004-06-30 2009-04-21 Kimberly-Clark Worldwide, Inc. One-step enzymatic and amine detection technique
WO2006020363A2 (en) 2004-07-21 2006-02-23 Illumina, Inc. Method and apparatus for drug product tracking using encoded optical identification elements
WO2006055736A1 (en) 2004-11-16 2006-05-26 Illumina, Inc. And methods and apparatus for reading coded microbeads
US20070121113A1 (en) * 2004-12-22 2007-05-31 Cohen David S Transmission-based optical detection systems
US7682817B2 (en) * 2004-12-23 2010-03-23 Kimberly-Clark Worldwide, Inc. Microfluidic assay devices
US20080124738A1 (en) * 2005-03-01 2008-05-29 Pritest, Inc Compositions and methods of testing for tuberculosis and mycobacterium infection
US20160355869A1 (en) * 2005-08-02 2016-12-08 University Of Utah Research Foundation Biosensors including metallic nanocavities
US8414962B2 (en) 2005-10-28 2013-04-09 The Penn State Research Foundation Microcontact printed thin film capacitors
EP1782886A1 (en) * 2005-11-02 2007-05-09 Sony Deutschland GmbH A method of patterning molecules on a substrate using a micro-contact printing process
FR2894515B1 (en) * 2005-12-08 2008-02-15 Essilor Int METHOD OF TRANSFERRING A MICRONIC PATTERN TO AN OPTICAL ARTICLE AND OPTICAL ARTICLE THUS OBTAINED
WO2007087329A2 (en) * 2006-01-24 2007-08-02 The University Of North Carolina At Chapel Hill Systems and methods for detecting an image of an object by use of an x-ray beam having a polychromatic distribution
US7830575B2 (en) 2006-04-10 2010-11-09 Illumina, Inc. Optical scanner with improved scan time
US20070258907A1 (en) * 2006-04-24 2007-11-08 Davis Mark E Polymer-coated paramagnetic particles
JP2010508520A (en) * 2006-10-31 2010-03-18 エス アール ユー バイオシステムズ,インコーポレイテッド Method for blocking non-specific protein binding on functionalized surfaces
AU2009322531A1 (en) 2008-12-01 2011-07-07 Brookhaven Science Associates Systems and methods for detecting an image of an object using multi-beam imaging from an X-ray beam having a polychromatic distribution
US8204174B2 (en) * 2009-06-04 2012-06-19 Nextray, Inc. Systems and methods for detecting an image of an object by use of X-ray beams generated by multiple small area sources and by use of facing sides of adjacent monochromator crystals
US8315358B2 (en) * 2009-06-04 2012-11-20 Nextray, Inc. Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods
AU2011230619C1 (en) 2010-03-25 2016-06-23 Oregon Health & Science University CMV glycoproteins and recombinant vectors
LT2691530T (en) 2011-06-10 2018-08-10 Oregon Health & Science University Cmv glycoproteins and recombinant vectors
AU2012216792A1 (en) 2011-09-12 2013-03-28 International Aids Vaccine Initiative Immunoselection of recombinant vesicular stomatitis virus expressing HIV-1 proteins by broadly neutralizing antibodies
EP2586461A1 (en) 2011-10-27 2013-05-01 Christopher L. Parks Viral particles derived from an enveloped virus
ES2631608T3 (en) 2012-06-27 2017-09-01 International Aids Vaccine Initiative Env-glycoprotein variant of HIV-1
US9949671B2 (en) 2013-03-13 2018-04-24 Orthoaccel Technologies, Inc. Diagnostic mouthpieces
US20150065381A1 (en) 2013-09-05 2015-03-05 International Aids Vaccine Initiative Methods of identifying novel hiv-1 immunogens
EP2873423B1 (en) 2013-10-07 2017-05-31 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers
US10174292B2 (en) 2015-03-20 2019-01-08 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
EP3072901A1 (en) 2015-03-23 2016-09-28 International Aids Vaccine Initiative Soluble hiv-1 envelope glycoprotein trimers
WO2021252810A1 (en) 2020-06-10 2021-12-16 Checkable Medical Incorporated In vitro diagnostic device

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216245A (en) 1978-07-25 1980-08-05 Miles Laboratories, Inc. Method of making printed reagent test devices
US4312228A (en) 1979-07-30 1982-01-26 Henry Wohltjen Methods of detection with surface acoustic wave and apparati therefor
SE434438B (en) 1980-02-21 1984-07-23 Gambro Engstrom Ab DEVICE FOR DETECTING THE EXISTENCE OF A GAS COMPONENT IN A GAS MIXTURE
US4363874A (en) 1981-08-07 1982-12-14 Miles Laboratories, Inc. Multilayer analytical element having an impermeable radiation nondiffusing reflecting layer
US4608344A (en) 1981-09-18 1986-08-26 Battelle Memorial Institute Method for the determination of species in solution with an optical wave-guide
US4416505A (en) 1981-10-26 1983-11-22 International Business Machines Corporation Method for making holographic optical elements with high diffraction efficiencies
US4690715A (en) 1982-06-18 1987-09-01 American Telephone And Telegraph Company, At&T Bell Laboratories Modification of the properties of metals
US4534356A (en) 1982-07-30 1985-08-13 Diamond Shamrock Chemicals Company Solid state transcutaneous blood gas sensors
GB8314523D0 (en) 1983-05-25 1983-06-29 Lowe C R Diagnostic device
CH662421A5 (en) 1983-07-13 1987-09-30 Suisse Horlogerie Rech Lab PIEZOELECTRIC CONTAMINATION DETECTOR.
US4661235A (en) 1984-08-03 1987-04-28 Krull Ulrich J Chemo-receptive lipid based membrane transducers
US4596697A (en) 1984-09-04 1986-06-24 The United States Of America As Represented By The Secretary Of The Army Chemical sensor matrix
US4791069A (en) 1984-09-21 1988-12-13 Ortho Diagnostic Systems Inc. Methods for attaching ligands or anti-ligands to a solid phase
US4689310A (en) 1984-09-21 1987-08-25 Ortho Diagnostic Systems Inc. Methods for attaching ligands or anti-ligands to a solid phase
EP0184600B1 (en) 1984-12-10 1990-03-14 Prutec Limited Method for optically ascertaining parameters of species in a liquid analyte
GB8509492D0 (en) 1985-04-12 1985-05-15 Plessey Co Plc Optical assay
US5482830A (en) 1986-02-25 1996-01-09 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
US5468606A (en) 1989-09-18 1995-11-21 Biostar, Inc. Devices for detection of an analyte based upon light interference
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
GB8618133D0 (en) 1986-07-24 1986-09-03 Pa Consulting Services Biosensors
US5182135A (en) 1986-08-12 1993-01-26 Bayer Aktiengesellschaft Process for improving the adherency of metallic coatings deposited without current on plastic surfaces
GB2197065A (en) 1986-11-03 1988-05-11 Stc Plc Optical sensor device
US4877745A (en) 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
US4837715A (en) 1987-01-27 1989-06-06 Kimberly-Clark Corporation Method and apparatus for detecting the placement of components on absorbent articles
US4851816A (en) 1987-02-24 1989-07-25 Helene Macias Crib death (SIDS) warning device
US4748042A (en) 1987-03-31 1988-05-31 V-Tech, Inc. Method and apparatus for imprinting membranes with patterns of antibody
US4812221A (en) 1987-07-15 1989-03-14 Sri International Fast response time microsensors for gaseous and vaporous species
US4842783A (en) 1987-09-03 1989-06-27 Cordis Corporation Method of producing fiber optic chemical sensors incorporating photocrosslinked polymer gels
US5108926A (en) 1987-09-08 1992-04-28 Board Of Regents, The University Of Texas System Apparatus for the precise positioning of cells
US5057560A (en) 1987-10-05 1991-10-15 Ciba-Geigy Corporation Thermotropic copolymer hydrogels from N,N-dimethylacrylamide and methoxy-ethyl (meth) acrylate
US5268306A (en) 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair
DE68907519T2 (en) 1988-05-10 1993-10-21 Amersham Int Plc Biosensors.
EP0341928A1 (en) 1988-05-10 1989-11-15 AMERSHAM INTERNATIONAL plc Improvements relating to surface plasmon resonance sensors
GB8811919D0 (en) 1988-05-20 1988-06-22 Amersham Int Plc Biological sensors
GB8813307D0 (en) 1988-06-06 1988-07-13 Amersham Int Plc Biological sensors
AT390517B (en) 1988-08-04 1990-05-25 Avl Verbrennungskraft Messtech OPTICAL SENSOR AND METHOD FOR THE PRODUCTION THEREOF
EP0363504A1 (en) 1988-10-10 1990-04-18 Dräger Nederland B.V. Method of providing a substrate with a layer comprising a polyvinylbased hydrogel and a biochemically active material
SE8804074D0 (en) 1988-11-10 1988-11-10 Pharmacia Ab SENSOR UNIT AND ITS USE IN BIOSENSOR SYSTEM
SE462454B (en) 1988-11-10 1990-06-25 Pharmacia Ab METHOD FOR USE IN BIOSENSORS
SE8902043L (en) 1988-11-10 1990-05-11 Pharmacia Ab PROCEDURE CHARACTERIZES MACROMOLECULES
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US4895017A (en) 1989-01-23 1990-01-23 The Boeing Company Apparatus and method for early detection and identification of dilute chemical vapors
US5096671A (en) 1989-03-15 1992-03-17 Cordis Corporation Fiber optic chemical sensors incorporating electrostatic coupling
US5411858A (en) 1989-05-17 1995-05-02 Actimed Laboratories, Inc. Manufacturing process for sample initiated assay device
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
GB9008261D0 (en) 1990-04-11 1990-06-13 Ares Serono Res & Dev Ltd Method of improving assay sensitivity
JPH0366384A (en) 1989-08-04 1991-03-22 Senjiyu Seiyaku Kk System for controlling release of physiologically active material
US5235238A (en) 1989-08-10 1993-08-10 Dainabot Company, Limited Electrode-separated piezoelectric crystal oscillator and method for measurement using the electrode-separated piezoelectric crystal oscillator
US5252743A (en) 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
FR2656925B1 (en) 1990-01-08 1992-05-15 Eg G MOISTURE SENSOR AND MEASUREMENT INSTALLATION COMPRISING A PLURALITY OF SUCH SENSORS.
DE4013665A1 (en) 1990-04-27 1991-10-31 Fraunhofer Ges Forschung SENSOR FOR DETECTING A SUBSTANCE IN A LIQUID
EP0455067B1 (en) 1990-05-03 2003-02-26 F. Hoffmann-La Roche Ag Micro-optical sensor
DE4024544A1 (en) 1990-08-02 1992-02-06 Boehringer Mannheim Gmbh ANALYZING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
GB9019123D0 (en) 1990-09-01 1990-10-17 Fisons Plc Analytical device
US5076094A (en) 1990-10-03 1991-12-31 The United States Of America As Represented By The United States Department Of Energy Dual output acoustic wave sensor for molecular identification
US5510481A (en) 1990-11-26 1996-04-23 The Regents, University Of California Self-assembled molecular films incorporating a ligand
US5155791A (en) 1990-12-07 1992-10-13 E. I. Du Pont De Nemours And Company Hybrid optical waveguides for phase-matched nonlinear wavelength conversion
GB9102646D0 (en) 1991-02-07 1991-03-27 Fisons Plc Analytical device
EP0504730B1 (en) 1991-03-22 1997-08-27 Seiko Instruments Inc. Electrochemical measurement system
US5196350A (en) 1991-05-29 1993-03-23 Omnigene, Inc. Ligand assay using interference modulation
GB9111912D0 (en) 1991-06-04 1991-07-24 Fisons Plc Analytical methods
US5418136A (en) 1991-10-01 1995-05-23 Biostar, Inc. Devices for detection of an analyte based upon light interference
DE4202850A1 (en) 1992-01-31 1993-08-05 Boehringer Mannheim Gmbh ANALYSIS ELEMENT FOR IMMUNOASSAYS
US5304293A (en) 1992-05-11 1994-04-19 Teknekron Sensor Development Corporation Microsensors for gaseous and vaporous species
DE59304876D1 (en) 1992-09-14 1997-02-06 Siemens Ag Gas sensor
US5402075A (en) 1992-09-29 1995-03-28 Prospects Corporation Capacitive moisture sensor
CA2108705A1 (en) 1992-11-06 1994-05-07 Richard Barner Biologically recognizing layers on new ti02 waveguide for biosensors
US5351548A (en) 1992-12-02 1994-10-04 Walbro Corporation Capacitive pressure sensor
GB2273772A (en) 1992-12-16 1994-06-29 Granta Lab Ltd Detection of macromolecules utilising light diffraction
EP0680623A4 (en) 1993-01-21 1996-07-24 Oregon State Chemical functionalization of surfaces.
US5327225A (en) 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
US5430815A (en) 1993-02-05 1995-07-04 Raychem Corporation Optical fiber water sensor
US5280548A (en) 1993-03-11 1994-01-18 Boc Health Care, Inc. Emission based fiber optic sensors for pH and carbon dioxide analysis
DE4310142A1 (en) 1993-03-29 1994-10-06 Boehringer Mannheim Gmbh Immunologically active conjugates and a process for their preparation
US5658443A (en) 1993-07-23 1997-08-19 Matsushita Electric Industrial Co., Ltd. Biosensor and method for producing the same
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5352582A (en) 1993-10-28 1994-10-04 Hewlett-Packard Company Holographic based bio-assay
US5455475A (en) 1993-11-01 1995-10-03 Marquette University Piezoelectric resonant sensor using the acoustoelectric effect
US5527711A (en) 1993-12-13 1996-06-18 Hewlett Packard Company Method and reagents for binding chemical analytes to a substrate surface, and related analytical devices and diagnostic techniques
CA2187616A1 (en) 1994-04-15 1995-10-26 Hoechst Celanese Corporation Biocompatible coated article
US5514501A (en) 1994-06-07 1996-05-07 The United States Of America As Represented By The Secretary Of Commerce Process for UV-photopatterning of thiolate monolayers self-assembled on gold, silver and other substrates
US5624537A (en) 1994-09-20 1997-04-29 The University Of British Columbia - University-Industry Liaison Office Biosensor and interface membrane
US5620850A (en) 1994-09-26 1997-04-15 President And Fellows Of Harvard College Molecular recognition at surfaces derivatized with self-assembled monolayers
US5489988A (en) 1995-01-03 1996-02-06 Motorola Environmental sensor and method therefor
US5814565A (en) 1995-02-23 1998-09-29 University Of Utah Research Foundation Integrated optic waveguide immunosensor
US5599695A (en) 1995-02-27 1997-02-04 Affymetrix, Inc. Printing molecular library arrays using deprotection agents solely in the vapor phase
US5717453A (en) 1995-06-07 1998-02-10 Meso Scale Technology, Inc. Three dimensional imaging system
US5849208A (en) 1995-09-07 1998-12-15 Microfab Technoologies, Inc. Making apparatus for conducting biochemical analyses
US5972199A (en) 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5830539A (en) 1995-11-17 1998-11-03 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for functionalizing and coating substrates and devices made according to the methods
GB9602323D0 (en) 1996-02-06 1996-04-03 Boehringer Mannheim Gmbh Materials and methods relating to binding assays
US5780251A (en) 1996-06-27 1998-07-14 Fci Fiberchem, Inc. Ultrasensitive single-step, solid-state competitive immunoassay sensor with interference modifier and/or gel layer
US5891658A (en) 1996-06-27 1999-04-06 FCI--FiberChem, Inc. Single-step, solid-state competitive immunoassay
US5832165A (en) 1996-08-28 1998-11-03 University Of Utah Research Foundation Composite waveguide for solid phase binding assays
US6020047A (en) 1996-09-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Polymer films having a printed self-assembling monolayer
US5922550A (en) 1996-12-18 1999-07-13 Kimberly-Clark Worldwide, Inc. Biosensing devices which produce diffraction images
US5837860A (en) 1997-03-05 1998-11-17 Molecular Tool, Inc. Covalent attachment of nucleic acid molecules onto solid-phases via disulfide bonds
US5858801A (en) 1997-03-13 1999-01-12 The United States Of America As Represented By The Secretary Of The Navy Patterning antibodies on a surface
US6060256A (en) * 1997-12-16 2000-05-09 Kimberly-Clark Worldwide, Inc. Optical diffraction biosensor
US6221579B1 (en) * 1998-12-11 2001-04-24 Kimberly-Clark Worldwide, Inc. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
US6579673B2 (en) * 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors

Also Published As

Publication number Publication date
AU4717001A (en) 2001-06-25
CA2393982C (en) 2011-11-01
EP1238277B1 (en) 2008-05-28
MXPA02005913A (en) 2002-10-23
KR20030010576A (en) 2003-02-05
WO2001044813A2 (en) 2001-06-21
CA2393982A1 (en) 2001-06-21
AU779211B2 (en) 2005-01-13
CN1203318C (en) 2005-05-25
WO2001044813A3 (en) 2002-05-02
KR100734977B1 (en) 2007-07-04
EP1238277A2 (en) 2002-09-11
US6399295B1 (en) 2002-06-04
CN1451095A (en) 2003-10-22
TWI247893B (en) 2006-01-21
DE60039066D1 (en) 2008-07-10
ATE397216T1 (en) 2008-06-15

Similar Documents

Publication Publication Date Title
EP1238277B1 (en) Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
AU759582B2 (en) Patterned binding of functionalized microspheres for optical diffraction-based biosensors
EP1141709B1 (en) Patterned deposition of antibody binding proteins for optical diffraction-based biosensors
EP1040338B1 (en) Optical diffraction biosensor
EP0946865B1 (en) Biosensing devices which produce diffraction images
WO2003093805A1 (en) Diffraction-based diagnostic devices
US8158408B2 (en) Diffraction-based diagnostic devices
AU2003213512B8 (en) Patterned Binding of Functionalized Microspheres for Optical Diffraction-based Biosensors
MXPA01005907A (en) Patterned binding of functionalized microspheres for optical diffraction-based biosensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000992910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2393982

Country of ref document: CA

Ref document number: PA/a/2002/005913

Country of ref document: MX

Ref document number: IN/PCT/2002/906/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020027007705

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 47170/01

Country of ref document: AU

COP Corrected version of pamphlet

Free format text: PAGES 1/6-6/6, DRAWINGS, REPLACED BY NEW PAGES 1/6-6/6

WWE Wipo information: entry into national phase

Ref document number: 008193002

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000992910

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027007705

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 47170/01

Country of ref document: AU