WO2001038084A1 - Electroconductive composite plastic, component of such a composite plastic and method for producing the same - Google Patents

Electroconductive composite plastic, component of such a composite plastic and method for producing the same Download PDF

Info

Publication number
WO2001038084A1
WO2001038084A1 PCT/DE2000/003745 DE0003745W WO0138084A1 WO 2001038084 A1 WO2001038084 A1 WO 2001038084A1 DE 0003745 W DE0003745 W DE 0003745W WO 0138084 A1 WO0138084 A1 WO 0138084A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
plastic
composite plastic
electrically conductive
matrix
Prior art date
Application number
PCT/DE2000/003745
Other languages
German (de)
French (fr)
Inventor
Riittas Taipalus
Original Assignee
Fact Future Advanced Composites & Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fact Future Advanced Composites & Technology Gmbh filed Critical Fact Future Advanced Composites & Technology Gmbh
Priority to AU16927/01A priority Critical patent/AU1692701A/en
Publication of WO2001038084A1 publication Critical patent/WO2001038084A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene

Definitions

  • Electrically conductive composite plastic component of such a composite plastic and process for the production thereof
  • the present invention relates to an electrically conductive composite plastic and a method for the production thereof.
  • a few plastics have a high intrinsic electrical conductivity. They are therefore often referred to as synthetic or organic metals. These show metallic behavior over a wide temperature range and some become superconducting even at low temperatures below about 35 Kelvin. These polymers generally consist of a molecular chain which has so-called conjugated double bonds. Appropriate doping enables electron transport along the molecular chain.
  • the best-known polymers that have an intrinsically electrical conductivity are polyaniline (PANI), polypyrrole (PPY), polythiophene (PT), polyvinylpyridine (PVP) and polyacetylene (PAC). However, all these polymers have in common that they have insufficient mechanical properties, which severely limits their commercial replaceability.
  • these polymers are often mixed with electrically conductive particles such as e.g. B. particles of soot or aluminum filled. It is essential that the introduced conductive particles are arranged so densely that electron transport from one particle to the next particle is possible. Are added to a few particles, the particles are in their insulating matrix so far apart that the electric Leitfähi ⁇ ness this composite essentially by the conductibility Ability of the matrix polymer is formed. However, if the concentration of the filler particles rises above a critical level, continuous paths of conductive filler particles within the material along which the electrical charges can move are formed almost suddenly. These continuous paths then form partially coherent lines which penetrate the insulating matrix polymer.
  • electrically conductive particles such as e.g. B. particles of soot or aluminum filled. It is essential that the introduced conductive particles are arranged so densely that electron transport from one particle to the next particle is possible. Are added to a few particles, the particles are in their insulating matrix so far apart that the electric Leitfähi ⁇ ness this composite
  • the electrical conductivity then increases almost suddenly by several orders of magnitude. A further increase in the filler concentration then only leads to a smaller increase in the electrical conductivity. If the electrical conductivity of such a composite is therefore plotted in a diagram over the concentration of the added conductive particles, a clearly non-linear course is observed.
  • the concentration at which this curve has an inflection point is also referred to as the percolation threshold.
  • electrically conductive polymers and their blends with conventional thermoplastics have many favorable properties, such as. B. a low density and an adjustable electrical conductivity, but do not match the insulating plastics in their mechanical properties, therefore, in addition to the increase in the electrical conductivity of the mixture, a deterioration in the advantageous mechanical properties of the matrix is also observed.
  • Plastics are generally used because of their diverse design options, their low weight and, above all, their low price. With the help of the injection molding process, these plastics can be brought into almost any shape. In the field of electrical engineering, for example, they have been used as housing material for a long time. Metal materials must generally be used for all conductive components. The combination of the electrically insulating housing and the electrically conductive conductor tracks, which are often directly connected to very sensitive electronic components, entails the risk of electrostatic discharge in the form of voltage flashovers and the possible destruction of the semiconductor components.
  • plastics can be made conductive by suitable addition of metallic elements, but only by accepting a substantial deterioration in the favorable properties of the plastics, so that these plastics and metal composites have poor overall properties.
  • the present invention is therefore based on the object of providing a composite plastic or a component of a composite plastic and a method for producing the same, the composite plastic having an adjustable electrical conductivity and, at the same time, good mechanical properties.
  • This object is achieved according to the invention by a component of a composite plastic, the component consisting of a carrier material which is coated or wetted with an electrically conductive plastic, and by a composite plastic consisting of a matrix of the component.
  • the proportion of conductive plastic must be at least so large that the resulting component made of carrier material and conductive plastic becomes conductive. In this way, a conductive, network-like structure essentially forms on the surface of the carrier material.
  • the component is then introduced into the matrix instead of, for example, a metallic element.
  • a metallic element for example, a metallic element.
  • the type of carrier material can be suitably selected so that the carrier material does not significantly impair the mechanical properties or, in the ideal case, even improve it.
  • fibers, spheres or particles are used as the carrier material.
  • a fiber can be impregnated with an electrically conductive plastic, which does not necessarily have to be an intrinsically conductive plastic, but can also be a so-called "filled plastic".
  • the resulting composite (fiber - conductive plastic) is now coated with the actual matrix mixed and the entire composite part or the entire composite part produced for example by the injection molding process.
  • electrically insulating fibers such as. B. glass fibers, polymer fibers (PP, PA, polyester) or aramid fibers, as well as electrically conductive fibers, such as carbon fibers or metal fibers, are used.
  • both an electrically insulating sphere, for example made of glass, or an electrically conductive sphere, for example made of metal, can be used.
  • the particles can be electrically insulating (e.g. talc or CaC0 3 ) or electrically conductive (e.g. made of carbon black, aluminum, graphite).
  • the electrically conductive plastic does not necessarily have to have an intrinsic conductivity.
  • plastics filled with metallic materials can also be used.
  • intrinsically electrically conductive plastics can be mixed with filled plastics.
  • matrix material Materials with the desired mechanical properties, for example in terms of weight or processability, are preferred.
  • matrix material B. polypropylene (PP), polyethylene (PE), polyamide (PA), polystyrene (PS), epoxy (EP) and polyester have been used successfully.
  • the matrix elements are therefore not only limited to thermoplastics.
  • thermosets can also be used.
  • Fibers are particularly preferably used as the carrier material.
  • the fibers are covered in a net-like manner with an electrically conductive material.
  • the wetted fibers are then introduced into the matrix.
  • the elongated shape of the fibers results in the formation of the conductive paths described at the beginning with an even lower concentration of conductive materials.
  • the percolation threshold has thus been significantly reduced. Due to the low proportion of foreign material, the matrix almost retains its original mechanical properties. The matrix also fixes the fibers and protects them from harmful environmental influences.
  • the mechanical properties of the matrix can be improved even further by introducing the impregnated fibers. Due to the fact that forces applied to the material are transferred to the fibers via the fiber matrix interfaces, increased strength and rigidity of the composite material can be achieved.
  • the composite plastic thus obtained can by means of the usual methods such. B. the extrusion, the injection molding, the heating press or the extrusion process.
  • a filled polymer is used as the electrically conductive material and the matrix is formed from the same but unfilled polymer. This enables particularly good mixing between the electrically conductive layer and the matrix.
  • the mechanical properties of the electrically conductive composite plastic can be significantly improved in particular through the use of fibers as the carrier material without the electrical properties being adversely affected.
  • a further reduction in the proportion of metallic elements can also be achieved in that the materials of the composite plastic are selected in such a way that the conductive mesh-like structure on the carrier material also diffuses at least partially into the matrix.
  • the resulting free conductive particles can then provide the electrical connection between two closely adjacent but not overlapping carrier material particles.
  • composite plastics can therefore be made electrically conductive without the mechanical properties being adversely affected.
  • electrical conductivity of known electrically conductive composite plastics can of course also be increased further.
  • the mechanical properties of these composite plastics can be significantly improved, in particular when fibers are used as carrier material.
  • Figure 2 is a schematic representation of the fibers introduced into the matrix.
  • a fiber 2 is shown in FIG.
  • glass fibers are particularly preferred. Both short and discontinuous long E glass fibers can be used. Short fibers of the type SGF 4242 from PGG Industries, which have a density of 2.5 g / cm 3 , have been successfully used as short fibers.
  • the fibers are preferably provided with a silane size, so that good adhesion between the fibers and the matrix is achieved, and thus good processability of the fibers is made possible, for example by means of a twin-screw extruder.
  • conductive fibers such as. B. Kunststoffasem can be used as a carrier material.
  • the production of long and short fiber composites is also possible here.
  • the fibers are then preferably coated in a melt impregnation process with the conductive material, so that a network-like conductive structure 3 forms on the surface of the fiber 2, as indicated schematically in FIG.
  • These fibers 1 are finally embedded in a matrix.
  • a polyaniline complex (PANI) has proven particularly useful as a conductive material. Since PANI generally shows only poor processability, it can be of distribution to use a mixture of a readily processable polymer and PANI as the conductive material, PANI preferably being present in highly concentrated form.
  • the fibers 1 with a network-like conductive surface overlap in the composite in such a way that they form conductive paths.
  • a composite plastic 4 is produced which shows both good electrical conductivity and good mechanical processability.
  • Polypropylene for example, can be used as the matrix.
  • Polypropylene e.g. B. an ethylene-propylene block copolymer (type designation BC 145 B from Borealis, Denmark) has high impact strength even at low temperatures and is a particularly suitable material for injection molding. This material has a density of 0.9 g / cm 3 and a processing range between about 230 ° and about 260 ° C.

Abstract

The invention relates to an electroconductive composite plastic (4) and to a method for producing the same. The inventive composite plastic (4) consists of a matrix (5) and a component (1), said component consisting of a carrier material that is coated or wetted with an electroconductive plastic. The invention provides a composite plastic (4) or a component (1) of a composite plastic (4) and a method for producing the same, said composite plastic (4) having an adjustable electroconductivity and at the same time good mechanical properties.

Description

Elektrisch leitender Verbundkunststoff, Komponente eines solchen Verbundkunststoffs sowie Verfahren zur Herstellung hierfür Electrically conductive composite plastic, component of such a composite plastic and process for the production thereof
Die vorliegende Erfindung betrifft einen elektrisch leitfähigen Verbundkunststoff und ein Verfahren zur Herstellung hierfür.The present invention relates to an electrically conductive composite plastic and a method for the production thereof.
In der Festkörpertheorie sowie in der Materialwissenschaft und der Werkstoffkunde ist eine Einteilung der Materialien hinsichtlich ihrer elektrischen Leitfähigkeit in Isolatoren, elektrische Halbleiter und Leiter üblich. Die meisten Kunststoffe, wie z. B. Polypropylen, weisen zwar oftmals außerge- wohnliche mechanische Eigenschaften beispielsweise hinsichtlich des Gewichts, der Verarbeitbar- keit und der Wirtschaftlichkeit auf, sie zählen jedoch in der Regel zu den Isolatoren. Dadurch ist ihre Einsatzfähigkeit in verschiedenen Bereichen stark eingeschränkt. Ein wesentlicher Nachteil von Isolatoren ist vor allem ihre Neigung zu elektrostatischen Aufladungen. Insbesondere auf dem Gebiet der Elektronik stellt die abrupte Entladung solcher elektrostatischer Aufladungen ein großes Problem dar. Daher ist beispielsweise die Nachfrage nach Verpackungen und Gehäusen groß, die entstandene Ladung verteilen und ableiten können. Dies ist jedoch durch Isolatoren nicht möglich.In solid state theory as well as in materials science and materials science, it is customary to classify materials with regard to their electrical conductivity into insulators, electrical semiconductors and conductors. Most plastics, such as Polypropylene, for example, often have unusual mechanical properties, for example in terms of weight, processability and economy, but they are generally insulators. This severely limits their usability in various areas. A major disadvantage of insulators is their tendency to electrostatic charges. In the field of electronics in particular, the abrupt discharge of such electrostatic charges is a major problem. For example, there is a great demand for packaging and housings that can distribute and dissipate the resulting charge. However, this is not possible with isolators.
Einige wenige Kunststoffe zeigen eine hohe intrinsische elektrische Leitfähigkeit. Sie werden daher oftmals als synthetische oder auch organische Metalle bezeichnet. Diese zeigen über einen weiten Temperaturbereich metallisches Verhalten und einige werden sogar bei tiefen Temperaturen unterhalb von etwa 35 Kelvin supraleitend. Diese Polymere bestehen im allgemeinen aus einer Molekülkette, die sogenannte konjugierte Doppelbindungen aufweist. Durch geeignete Dotierung kann ein Elektronentransport entlang der Molekülkette ermöglicht werden. Die bekanntesten Polymere, die eine intrinsisch elektrische Leitfähigkeit aufweisen, sind Polyanilin (PANI), Polypyrrol (PPY), Po- lythiophen (PT), Poiyvinylpyridin (PVP) und Polyacetylen (PAC). Allen diesen Polymeren ist jedoch gemein, daß sie nur ungenügende mechanische Eigenschaften aufweisen, was ihre kommerzielle Ersetzbarkeit stark einschränkt.A few plastics have a high intrinsic electrical conductivity. They are therefore often referred to as synthetic or organic metals. These show metallic behavior over a wide temperature range and some become superconducting even at low temperatures below about 35 Kelvin. These polymers generally consist of a molecular chain which has so-called conjugated double bonds. Appropriate doping enables electron transport along the molecular chain. The best-known polymers that have an intrinsically electrical conductivity are polyaniline (PANI), polypyrrole (PPY), polythiophene (PT), polyvinylpyridine (PVP) and polyacetylene (PAC). However, all these polymers have in common that they have insufficient mechanical properties, which severely limits their commercial replaceability.
Um die elektrische Leitfähigkeit von normalerweise elektrisch isolierenden Polymeren zu erhöhen, werden diese Polymere oftmals mit elektrisch leitfähigen Partikeln, wie z. B. Partikeln aus Ruß oder Aluminium, gefüllt. Dabei ist wesentlich, daß die eingebrachten leitfähigen Partikeln so dicht angeordnet sind, daß ein Elektronentransport von einem Partikel zum nächsten Partikel möglich ist. Werden zu wenige Partikel zugegeben, so liegen die Partikel in ihrer isolierenden Matrix so weit auseinander daß die elektrische Leitfähiπkeit dieses Verbunds im wesentlichen durch die Leitfä- higkeit des Matrixpolymers gebildet wird. Steigt jedoch die Konzentration der Füllstoffpartikel über ein kritisches Niveau, so bilden sich nahezu sprunghaft kontinuierliche Pfade aus leitfähigen Füllstoffpartikeln innerhalb des Materials, entlang der sich die elektrischen Ladungen bewegen können. Diese kontinuierlichen Pfade bilden dann teilweise zusammenhängende Leitungen, welche das isolierende Matrixpolymer durchdringen. Die elektrische Leitfähigkeit steigt dann fast schlagartig um mehrere Größenordnungen an. Eine weitere Erhöhung der Füllstoffkonzentration führt sodann nur noch zu einer geringeren Zunahme der elektrischen Leitfähigkeit. Trägt man daher die elektrische Leitfähigkeit eines solchen Verbundes in einem Diagramm über der Konzentration der zugefügten leitfähigen Partikeln auf, so wird ein deutlich nichtlinearer Verlauf beobachtet. Diejenige Konzentra- tion, bei der diese Kurve einen Wendepunkt aufweist, wird auch als Perkolationsschwelle bezeichnet.In order to increase the electrical conductivity of normally electrically insulating polymers, these polymers are often mixed with electrically conductive particles such as e.g. B. particles of soot or aluminum filled. It is essential that the introduced conductive particles are arranged so densely that electron transport from one particle to the next particle is possible. Are added to a few particles, the particles are in their insulating matrix so far apart that the electric Leitfähi π ness this composite essentially by the conductibility Ability of the matrix polymer is formed. However, if the concentration of the filler particles rises above a critical level, continuous paths of conductive filler particles within the material along which the electrical charges can move are formed almost suddenly. These continuous paths then form partially coherent lines which penetrate the insulating matrix polymer. The electrical conductivity then increases almost suddenly by several orders of magnitude. A further increase in the filler concentration then only leads to a smaller increase in the electrical conductivity. If the electrical conductivity of such a composite is therefore plotted in a diagram over the concentration of the added conductive particles, a clearly non-linear course is observed. The concentration at which this curve has an inflection point is also referred to as the percolation threshold.
Diese elektrisch leitfähigen Polymere sowie ihre Mischungen (Blends) mit herkömmlichen Thermoplasten haben viele günstige Eigenschaften, wie z. B. eine geringe Dichte und eine einstellbare elektrische Leitfähigkeit, reichen aber in ihren mechanischen Eigenschaften nicht an die isolierenden Kunststoffe heran, daher wird neben der Zunahme der elektrischen Leitfähigkeit der Mischung jedoch auch eine Verschlechterung der vorteilhaften mechanischen Eigenschaften der Matrix beobachtet.These electrically conductive polymers and their blends with conventional thermoplastics have many favorable properties, such as. B. a low density and an adjustable electrical conductivity, but do not match the insulating plastics in their mechanical properties, therefore, in addition to the increase in the electrical conductivity of the mixture, a deterioration in the advantageous mechanical properties of the matrix is also observed.
Kunststoffe werden im allgemeinen aufgrund ihrer vielfältigen Gestaltungsmöglichkeiten, ihres geringen Gewichtes und vor allem ihres niedrigen Preises eingesetzt. Mit Hilfe des Spritzgußverfahrens können diese Kunststoffe nahezu in jede beliebige Form gebracht werden. Im Bereich der Elektrotechnik kommen diese beispielsweise schon seit langer Zeit als Gehäusematerial zum Einsatz. Für alle leitfähigen Komponenten müssen im allgemeinen Werkstoffe aus Metall eingesetzt werden. Die Kombination der elektrisch isolierenden Gehäuse und der elektrisch gut leitenden Leiterbahnen, die oftmals direkt mit sehr empfindlichen elektronischen Bauteilen verbunden sind, bringt die Gefahr von elektrostatischen Entladungen in Form von Spannungsüberschlägen und die mögliche Zerstörung der Halbleiterbauelemente mit sich.Plastics are generally used because of their diverse design options, their low weight and, above all, their low price. With the help of the injection molding process, these plastics can be brought into almost any shape. In the field of electrical engineering, for example, they have been used as housing material for a long time. Metal materials must generally be used for all conductive components. The combination of the electrically insulating housing and the electrically conductive conductor tracks, which are often directly connected to very sensitive electronic components, entails the risk of electrostatic discharge in the form of voltage flashovers and the possible destruction of the semiconductor components.
Zwar lassen sich einige Kunststoffe durch geeignete Zugabe von metallischen Elementen leitfähig machen, jedoch nur unter Inkaufnahme einer wesentlichen Verschlechterung der günstigen Eigenschaften der Kunststoffe, so daß diese Verbundstoffe aus Kunststoff und Metall schlechte Gesamteigenschaften aufweisen.It is true that some plastics can be made conductive by suitable addition of metallic elements, but only by accepting a substantial deterioration in the favorable properties of the plastics, so that these plastics and metal composites have poor overall properties.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Verbundkunststoff bzw. eine Komponente eines Verbundkunststoffs sowie ein Verfahren zur Herstellung desselben bereitzustellen, wobei der Verbundkunststoff eine einstellbare elektrische Leitfähigkeit und gleichzeitig gute mechanische Eigenschaften aufweist. Diese Aufgabe wird erfindungsgemäß durch eine Komponente eines Verbundkunststoffs, wobei die Komponente aus einem Trägermaterial besteht, das mit einem elektrisch leitfähigen Kunststoff beschichtet, bzw. benetzt ist, und durch einen Verbundkunststoff, bestehend aus einer Matrix der Komponente, gelöst.The present invention is therefore based on the object of providing a composite plastic or a component of a composite plastic and a method for producing the same, the composite plastic having an adjustable electrical conductivity and, at the same time, good mechanical properties. This object is achieved according to the invention by a component of a composite plastic, the component consisting of a carrier material which is coated or wetted with an electrically conductive plastic, and by a composite plastic consisting of a matrix of the component.
Im Unterschied zu den bekannten Verfahren werden zur Erzielung der Leitfähigkeit des Kunststoffs keine intrinsisch leitfähigen Materialien in die Matrix eingebracht, sondern das einzubringende Material ist seinerseits ein Verbundstoff, der aus einem meist nicht oder schlecht leitenden Material und einem leitfähigen Kunststoff besteht.In contrast to the known methods, in order to achieve the conductivity of the plastic, no intrinsically conductive materials are introduced into the matrix, but the material to be introduced is itself a composite that consists of a mostly non-conductive or poorly conductive material and a conductive plastic.
Dabei muß der Anteil des leitfähigen Kunststoffs zumindest so groß sein, daß die entstehende Komponente aus Trägermaterial und leitfähigem Kunststoff leitfähig wird. Es bildet sich auf diese Art im wesentlichen auf der Oberfläche des Trägermaterials eine leitfähige netzartige Struktur.The proportion of conductive plastic must be at least so large that the resulting component made of carrier material and conductive plastic becomes conductive. In this way, a conductive, network-like structure essentially forms on the surface of the carrier material.
Die Komponente wird dann statt beispielsweise eines metallischen Elements in die Matrix eingebracht. Dadurch kann der Anteil der leitfähigen Substanz, die in die Matrix eingebracht werden muß, um die gewünschte Leitfähigkeit zu erhalten, deutlich verringert werden. Das Trägermaterial kann in der Art geeignet ausgesucht werden, so daß das Trägermaterial die mechanischen Eigenschaften nicht wesentlich verschlechtert bzw. sie im Idealfall sogar verbessert.The component is then introduced into the matrix instead of, for example, a metallic element. As a result, the proportion of the conductive substance that has to be introduced into the matrix in order to obtain the desired conductivity can be significantly reduced. The type of carrier material can be suitably selected so that the carrier material does not significantly impair the mechanical properties or, in the ideal case, even improve it.
Als Trägermaterial kommen beispielsweise Fasern, Kugeln oder Partikel zur Anwendung.For example, fibers, spheres or particles are used as the carrier material.
So kann beispielsweise eine Faser mit einem elektrisch leitfähigen Kunststoff, der nicht notwendigerweise ein intrinsisch leitender Kunststoff sein braucht, sondern ebenso ein sogenannter „gefüll- ter Kunststoff" sein kann, imprägniert werden. Der entstandene Verbundstoff (Faser - leitfähiger Kunststoff) wird nun mit der eigentlichen Matrix gemischt und der Gesamtverbundteil bzw. das Gesamtverbundteil beispielsweise durch das Spritzgußverfahren hergestellt.For example, a fiber can be impregnated with an electrically conductive plastic, which does not necessarily have to be an intrinsically conductive plastic, but can also be a so-called "filled plastic". The resulting composite (fiber - conductive plastic) is now coated with the actual matrix mixed and the entire composite part or the entire composite part produced for example by the injection molding process.
Hinsichtlich der Faser können sowohl elektrisch isolierende Fasern, wie z. B. Glasfasern, Polymer- fasern (PP, PA, Polyester) oder Aramidfasem, als auch elektrisch leitfähige Fasern, wie beispielsweise Kohlenstoffasern oder Metallfasern, verwendet werden.With regard to the fiber, both electrically insulating fibers, such as. B. glass fibers, polymer fibers (PP, PA, polyester) or aramid fibers, as well as electrically conductive fibers, such as carbon fibers or metal fibers, are used.
Hinsichtlich der Kugel kann sowohl eine elektrisch isolierende Kugel beispielsweise aus Glas oder eine elektrisch leitfähige Kugel beispielsweise aus Metall verwendet werden.With regard to the sphere, both an electrically insulating sphere, for example made of glass, or an electrically conductive sphere, for example made of metal, can be used.
Ebenso können die Partikel elektrisch isolierend (z. B. Talkum oder CaC03) oder elektrisch leitfähig (z. B. aus Ruß, Aluminium, Graphit) sein. Der elektrisch leitfähige Kunststoff muß nicht unbedingt eine intrinsische Leitfähigkeit aufweisen. So können selbstverständlich auch mit metallischen Materialien gefüllte Kunststoffe verwendet werden. Zudem können intrinsisch elektrisch leitfähige Kunststoffe mit gefüllten Kunststoffen gemischt werden.Likewise, the particles can be electrically insulating (e.g. talc or CaC0 3 ) or electrically conductive (e.g. made of carbon black, aluminum, graphite). The electrically conductive plastic does not necessarily have to have an intrinsic conductivity. Of course, plastics filled with metallic materials can also be used. In addition, intrinsically electrically conductive plastics can be mixed with filled plastics.
Als Matrix kommen bevorzugt Materialien mit den gewünschten mechanischen Eigenschaften, beispielsweise hinsichtlich des Gewichts oder der Verarbeitbarkeit in Frage. Als Matrixmaterial sind z. B. Polypropylen (PP), Polyethylen (PE), Polyamid (PA), Polystyrol (PS), Epoxid (EP) und Polyester mit Erfolg verwendet worden. Die Matrixelemente sind daher nicht nur auf Thermoplaste be- schränkt. So können beispielsweise auch Duroplaste verwendet werden.Materials with the desired mechanical properties, for example in terms of weight or processability, are preferred as the matrix. As matrix material z. B. polypropylene (PP), polyethylene (PE), polyamide (PA), polystyrene (PS), epoxy (EP) and polyester have been used successfully. The matrix elements are therefore not only limited to thermoplastics. For example, thermosets can also be used.
Besonders bevorzugt werden als Trägermaterial Fasern verwendet. Im ersten Schritt werden die Fasern erfindungsgemäß netzartig mit einem elektrisch leitfähigen Material überzogen. Im Anschluß daran werden die benetzten Fasern in die Matrix eingebracht. Durch die längliche Form der Fasern, kommt es bei einer noch geringeren Konzentration von leitfähigen Materialien bereits zur Ausbildung der eingangs beschriebenen leitfähigen Pfade. Die Perkolationsschwelle ist somit deutlich verringert worden. Aufgrund des geringen Anteils von Fremdmaterial behält die Matrix nahezu ihre ursprünglichen mechanische Eigenschaften bei. Die Matrix sorgt überdies für eine Fixierung der Fasern und schützt diese vor schädlichen Umwelteinflüssen.Fibers are particularly preferably used as the carrier material. In the first step, the fibers are covered in a net-like manner with an electrically conductive material. The wetted fibers are then introduced into the matrix. The elongated shape of the fibers results in the formation of the conductive paths described at the beginning with an even lower concentration of conductive materials. The percolation threshold has thus been significantly reduced. Due to the low proportion of foreign material, the matrix almost retains its original mechanical properties. The matrix also fixes the fibers and protects them from harmful environmental influences.
Je nach verwendeten Fasern können die mechanischen Eigenschaften der Matrix durch das Einbringen der imprägnierten Fasem sogar noch weiter verbessert werden. Dadurch, daß auf den Werkstoff aufgebrachte Kräfte über die Fasermatrixgrenzflächen auf die Fasern übertragen werden, kann eine erhöhte Festigkeit und Steifigkeit des Verbundwerkstoffs erzielt werden.Depending on the fibers used, the mechanical properties of the matrix can be improved even further by introducing the impregnated fibers. Due to the fact that forces applied to the material are transferred to the fibers via the fiber matrix interfaces, increased strength and rigidity of the composite material can be achieved.
Der so erhaltene Verbundkunststoff kann mit Hilfe der üblichen Verfahren, wie z. B. dem Extrusi- ons-, dem Spritzgieß-, dem Heizpreß- oder dem Fließpreßverfahren weiterverarbeitet werden.The composite plastic thus obtained can by means of the usual methods such. B. the extrusion, the injection molding, the heating press or the extrusion process.
Für besondere Anwendungsfälle kann es von Vorteil sein, daß als elektrisch leitfähiges Material ein gefülltes Polymer verwendet wird und die Matrix aus dem gleichen aber ungefüllten Polymer gebildet wird. Dadurch ist eine besonders gute Vermischung zwischen elektrisch leitfähiger Schicht und Matrix möglich.For special applications it can be advantageous that a filled polymer is used as the electrically conductive material and the matrix is formed from the same but unfilled polymer. This enables particularly good mixing between the electrically conductive layer and the matrix.
Insbesondere durch die Verwendung von Fasern als Trägermaterial lassen sich die mechanischen Eigenschaften des elektrisch leitfähigen Verbundkunststoffs deutlich verbessern, ohne daß die elektrischen Eigenschaften negativ beeinflußt werden.The mechanical properties of the electrically conductive composite plastic can be significantly improved in particular through the use of fibers as the carrier material without the electrical properties being adversely affected.
Eine weitere Reduzierung des Anteils an metallischen Elementen kann auch dadurch erreicht werden, daß die Materialien des Verbundkunststoffs derart ausgewählt werden, daß die leitfähige netzartige Struktur auf dem Trägermaterial zumindest zum Teil auch in die Matrix diffundiert. Die so entstehenden freien leitfähigen Teilchen können dann für die elektrische Verbindung zwischen zwei eng benachbart liegenden aber nicht überlappenden Trägermaterialteilchen sorgen.A further reduction in the proportion of metallic elements can also be achieved in that the materials of the composite plastic are selected in such a way that the conductive mesh-like structure on the carrier material also diffuses at least partially into the matrix. The resulting free conductive particles can then provide the electrical connection between two closely adjacent but not overlapping carrier material particles.
Mit Hilfe der vorliegenden Erfindung lassen sich daher Verbundkunststoffe elektrisch leitfähig machen, ohne daß die mechanischen Eigenschaften negativ beeinflußt werden. Überdies kann selbstverständlich auch die elektrische Leitfähigkeit von bekannten elektrisch leitfähigen Verbundkunststoffen weiter erhöht werden. Insbesondere bei der Verwendung von Fasern als Trägermaterial können die mechanischen Eigenschaften dieser Verbundkunststoffe deutlich verbessert werden.With the help of the present invention, composite plastics can therefore be made electrically conductive without the mechanical properties being adversely affected. In addition, the electrical conductivity of known electrically conductive composite plastics can of course also be increased further. The mechanical properties of these composite plastics can be significantly improved, in particular when fibers are used as carrier material.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung werden deutlich anhand der folgenden Beschreibung einer bevorzugten Ausführungsform sowie der dazugehörigen Figuren. Es zeigen:Further advantages, features and possible uses of the present invention will become clear from the following description of a preferred embodiment and the associated figures. Show it:
Figur 1 einen Abschnitt einer Faser als Trägermaterial und1 shows a section of a fiber as a carrier material and
Figur 2 eine schematische Darstellung der in die Matrix eingebrachten Fasern.Figure 2 is a schematic representation of the fibers introduced into the matrix.
In Figur 1 ist eine Faser 2 gezeigt. Neben elektrisch leitfähigen Kohlenstoffasern kommen beson- ders bevorzugt Glasfasern zur Anwendung. Dabei können sowohl Kurz- als auch diskontinuierliche Lang-E-Glasfasern verwendet werden. Als Kurzfasern sind mit Erfolg Kurzfasern vom Typ SGF 4242 der Firma PGG Industries eingesetzt worden, die eine Dichte von 2,5 g/cm3 aufweisen. Die Fasern sind vorzugsweise mit einer Silanschlichte versehen, so daß eine gute Haftung zwischen Fasern und Matrix erreicht wird, und somit eine gute Verarbeitbarkeit der Fasern beispielsweise mittels eines Zweischneckenextruders ermöglicht wird.A fiber 2 is shown in FIG. In addition to electrically conductive carbon fibers, glass fibers are particularly preferred. Both short and discontinuous long E glass fibers can be used. Short fibers of the type SGF 4242 from PGG Industries, which have a density of 2.5 g / cm 3 , have been successfully used as short fibers. The fibers are preferably provided with a silane size, so that good adhesion between the fibers and the matrix is achieved, and thus good processability of the fibers is made possible, for example by means of a twin-screw extruder.
Als Langfasem wurden mit Erfolg ein Langglasfaserverbund der Firma FACT GmbH, Kaiserlautem (FACTOR PP-GF-40) mit einer Dichte von 1 ,2 g/cm3 eingesetzt.A long glass fiber composite from FACT GmbH, Kaiserlautem (FACTOR PP-GF-40) with a density of 1.2 g / cm 3 was successfully used as long fibers.
Wie bereits erwähnt, können auch leitfähige Fasern, wie z. B. Kunststoffasem als Trägermaterial eingesetzt werden. Auch hier ist die Herstellung von Lang- als auch Kurzfaserverbunde möglich.As already mentioned, conductive fibers, such as. B. Kunststoffasem can be used as a carrier material. The production of long and short fiber composites is also possible here.
Im allgemeinen werden durch die Verwendung von Langfasern als Trägermaterial bessere mechanische Eigenschaften des Verbundkunststoffes erreicht.In general, better mechanical properties of the composite plastic are achieved by using long fibers as the carrier material.
Die Fasern werden dann vorzugsweise in einem Schmelzimprägnierverfahren mit dem leitfähigen Material beschichtet, so daß sich ein netzwerkartiges leitfähiges Gebilde 3 auf der Oberfläche der Faser 2 bildet, wie schematisch in Figur 1 angedeutet. Diese Fasern 1 werden schließlich in einer Matrix eingebettet. Als leitfähiges Material hat sich ein Polyanilin-Komplex (PANI) besonders bewährt. Da PANI im allgemeinen nur eine schlechte Verarbeitbarkeit zeigt, kann es von Verteil sein als leitfähiges Material eine Mischung aus einem gut verarbeitbaren Polymer und PANI zu verwenden, wobei PANI vorzugsweise hochkonzentriert vorliegt.The fibers are then preferably coated in a melt impregnation process with the conductive material, so that a network-like conductive structure 3 forms on the surface of the fiber 2, as indicated schematically in FIG. These fibers 1 are finally embedded in a matrix. A polyaniline complex (PANI) has proven particularly useful as a conductive material. Since PANI generally shows only poor processability, it can be of distribution to use a mixture of a readily processable polymer and PANI as the conductive material, PANI preferably being present in highly concentrated form.
Wie in Figur 2 schematisch dargestellt, überlappen die Fasern 1 mit netzwerkartiger leitfähiger Oberfläche im Verbund derart, daß sie leitfähige Pfade bilden. Auf diese Art und Weise entsteht ein Verbundkunststoff 4, der sowohl eine gute elektrische Leitfähigkeit als auch eine gute mechanische Verarbeitbarkeit zeigt. Als Matrix kann beispielsweise Polypropylen verwendet werden. Polypropylen, z. B. ein Ethylen-Propylen-Blockcopolymer (Typbezeichnung BC 145 B der Firma Borealis, Dänemark) hat auch bei tiefen Temperaturen eine hohe Schlagzähigkeit und ist ein für das Spritz- gießen besonders geeignetes Material. Dieses Material hat eine Dichte von 0,9 g/cm3 und einen Verarbeitungsbereich zwischen etwa 230° und etwa 260° C. As shown schematically in FIG. 2, the fibers 1 with a network-like conductive surface overlap in the composite in such a way that they form conductive paths. In this way, a composite plastic 4 is produced which shows both good electrical conductivity and good mechanical processability. Polypropylene, for example, can be used as the matrix. Polypropylene, e.g. B. an ethylene-propylene block copolymer (type designation BC 145 B from Borealis, Denmark) has high impact strength even at low temperatures and is a particularly suitable material for injection molding. This material has a density of 0.9 g / cm 3 and a processing range between about 230 ° and about 260 ° C.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Komponente (1 ) eines Verbundkunststoffs bestehend aus einem Trägermaterial (2), das mit einem elektrisch leitfähigen Kunststoff (3) beschichtet bzw. benetzt ist.1. Component (1) of a composite plastic consisting of a carrier material (2) which is coated or wetted with an electrically conductive plastic (3).
2. Komponente (1) nach Anspruch 1, dadurch gekennzeichnet, daß das Trägermaterial (2) eine Faser, Kugel oder ein Partikel ist.2. Component (1) according to claim 1, characterized in that the carrier material (2) is a fiber, ball or a particle.
3. Komponente (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Trägermaterial (2) mit dem elektrisch leitfähigen Kunststoff (3) imprägniert ist.3. Component (1) according to claim 1 or 2, characterized in that the carrier material (2) with the electrically conductive plastic (3) is impregnated.
4. Komponente (1) nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, daß das Trägermaterial (2) eine Glasfaser oder eine Kohlenstoffaser ist.4. Component (1) according to any one of claims 2 to 3, characterized in that the carrier material (2) is a glass fiber or a carbon fiber.
5. Komponente (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der elektrisch leitfähige Kunststoff (3) ein intrinsisch elektrisch leitender Kunststoff ist.5. Component (1) according to one of claims 2 to 4, characterized in that the electrically conductive plastic (3) is an intrinsically electrically conductive plastic.
6. Komponente (1 ) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der elektrisch leitfähige Kunststoff (3) ein elektrisch isolierendes Polymer ist, das mit elektrisch leit- fähigen Partikeln gefüllt ist.6. Component (1) according to one of claims 2 to 4, characterized in that the electrically conductive plastic (3) is an electrically insulating polymer which is filled with electrically conductive particles.
7. Komponente (1) nach Anspruch 4, dadurch gekennzeichnet, daß die durchschnittliche Faserlänge mindestens 4mm, vorzugsweise mindestens 8 mm beträgt.7. Component (1) according to claim 4, characterized in that the average fiber length is at least 4mm, preferably at least 8mm.
8. Komponente (1) nach Anspruch 5 oder 7, dadurch gekennzeichnet, daß der leitfähige8. Component (1) according to claim 5 or 7, characterized in that the conductive
Kunststoff (3) ein Polyanilin-Komplex, d. h. eine Lösung von Polyanilin und einem weiteren Stoff ist.Plastic (3) a polyaniline complex, i.e. H. is a solution of polyaniline and another substance.
9. Komponente (1) nach Anspruch 8, dadurch gekennzeichnet, daß der weitere Stoff eine Metallverbindung, vorzugsweise eine organometallische Verbindung ist.9. Component (1) according to claim 8, characterized in that the further substance is a metal compound, preferably an organometallic compound.
10. Verbundkunststoff (4) bestehend aus einer Matrix (5) und einer Komponente (1) nach einem der Ansprüche 1 bis 9.10. Composite plastic (4) consisting of a matrix (5) and a component (1) according to one of claims 1 to 9.
11. Verbundkunststoff (4) nach Anspruch 10, dadurch gekennzeichnet, daß die Matrix (5) aus Polypropylen besteht.11. Composite plastic (4) according to claim 10, characterized in that the matrix (5) consists of polypropylene.
12. Verbundkunststoff (4) nach Anspruch 10, dadurch gekennzeichnet, daß die Matrix (5) aus Polyethylen, Polyamid, Polystyrol, Epoxid oder Polyester besteht. 12. Composite plastic (4) according to claim 10, characterized in that the matrix (5) consists of polyethylene, polyamide, polystyrene, epoxy or polyester.
13. Verfahren zur Herstellung eines leitfähigen Verbundkunststoffs (4), dadurch gekennzeichnet, daß es die Schritte aufweist:13. A method for producing a conductive composite plastic (4), characterized in that it has the steps:
Imprägnieren der Oberfläche eines Trägermaterials (2) mit einem elektrisch leitfähigenImpregnating the surface of a carrier material (2) with an electrically conductive
Kunststoff (3) undPlastic (3) and
Einbringen des imprägnierten Trägermaterials (2) in eine Matrix (5).Introducing the impregnated carrier material (2) into a matrix (5).
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß das Verfahren zusätzlich den Schritt aufweist:14. The method according to claim 13, characterized in that the method additionally comprises the step:
Fertigen des Verbundkunststoffs bzw. des Verbundkunststoffteils (4) mit Hilfe des Extrusi- ons-, des Spritzgieß-, des Heizpreß- oder des Fließpreßverfahrens. Manufacture of the composite plastic or the composite plastic part (4) with the help of the extrusion, the injection molding, the heating press or the extrusion process.
PCT/DE2000/003745 1999-11-23 2000-10-21 Electroconductive composite plastic, component of such a composite plastic and method for producing the same WO2001038084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16927/01A AU1692701A (en) 1999-11-23 2000-10-21 Electroconductive composite plastic, component of such a composite plastic and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19956331.4 1999-11-23
DE19956331A DE19956331A1 (en) 1999-11-23 1999-11-23 Composite material component is based on a carrier and electrically conductive plastic

Publications (1)

Publication Number Publication Date
WO2001038084A1 true WO2001038084A1 (en) 2001-05-31

Family

ID=7930040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003745 WO2001038084A1 (en) 1999-11-23 2000-10-21 Electroconductive composite plastic, component of such a composite plastic and method for producing the same

Country Status (3)

Country Link
AU (1) AU1692701A (en)
DE (1) DE19956331A1 (en)
WO (1) WO2001038084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130699A1 (en) * 2017-01-14 2018-07-19 Heka Graphit.Technology Gmbh Building material mixture for shielding against electromagnetic radiation
WO2020030753A1 (en) * 2018-08-10 2020-02-13 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Material for controlling an electric field according to the direction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009865A1 (en) * 2008-02-19 2009-08-20 FRÖTEK Kunststofftechnik GmbH Pole connector for batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118097A (en) * 1982-04-15 1983-10-26 Bondina Limited Conductive sheets and products incorporating them
EP0348795A2 (en) * 1988-06-29 1990-01-03 BASF Aktiengesellschaft Composite materials comprising a carrier material and electrically conducting polymeric films
EP0655749A2 (en) * 1990-05-10 1995-05-31 Tomoegawa Paper Co. Ltd. Composite comprising paper and electroconducting polymers and its producing process
EP0694926A1 (en) * 1994-07-29 1996-01-31 DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung Electrically conductive glass-fibre composite material
US5494609A (en) * 1992-04-15 1996-02-27 Kulkarni; Vaman G. Electrically conductive coating compositions and method for the preparation thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635362A1 (en) * 1986-10-17 1988-04-21 Basf Ag SHAPED BODIES MADE OF FOAM PLASTICS CONTAINING ELECTRICALLY CONDUCTIVE MATERIALS
EP0298746A2 (en) * 1987-07-10 1989-01-11 COOKSON GROUP plc Coated inorganic materials
US5130216A (en) * 1988-09-22 1992-07-14 Canon Kabushiki Kaisha Photosensitive member for electrophotography
GB8913512D0 (en) * 1989-06-13 1989-08-02 Cookson Group Plc Coated particulate metallic materials
DE69113529T2 (en) * 1990-07-02 1996-04-11 Canon Kk Element for imaging.
JP2875419B2 (en) * 1991-08-01 1999-03-31 キヤノン株式会社 Transfer material carrying member and image forming apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2118097A (en) * 1982-04-15 1983-10-26 Bondina Limited Conductive sheets and products incorporating them
EP0348795A2 (en) * 1988-06-29 1990-01-03 BASF Aktiengesellschaft Composite materials comprising a carrier material and electrically conducting polymeric films
EP0655749A2 (en) * 1990-05-10 1995-05-31 Tomoegawa Paper Co. Ltd. Composite comprising paper and electroconducting polymers and its producing process
US5494609A (en) * 1992-04-15 1996-02-27 Kulkarni; Vaman G. Electrically conductive coating compositions and method for the preparation thereof
EP0694926A1 (en) * 1994-07-29 1996-01-31 DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung Electrically conductive glass-fibre composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130699A1 (en) * 2017-01-14 2018-07-19 Heka Graphit.Technology Gmbh Building material mixture for shielding against electromagnetic radiation
EA038281B1 (en) * 2017-01-14 2021-08-04 Хека Графит.Текнолоджи Гмбх Building material mixture for shielding against electromagnetic radiation
WO2020030753A1 (en) * 2018-08-10 2020-02-13 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Material for controlling an electric field according to the direction

Also Published As

Publication number Publication date
DE19956331A1 (en) 2001-05-31
AU1692701A (en) 2001-06-04

Similar Documents

Publication Publication Date Title
EP2243145B1 (en) Field-controlled composite insulator
DE2536361C2 (en)
EP0755058B1 (en) Electrically and thermically conductive plastics material and the application thereof
DE102006046002A1 (en) Layer system for lightning protection of components, especially, e.g. plastic components in aircraft, spacecraft or cars, has an outer layer containing polarisable particles, e.g. longish particles of metal or carbon
DE19524526A1 (en) Coaxial cable
EP2716437A1 (en) Compound material with electric conductors
DE102011083214A1 (en) Electrical conduit means, end corona shielding assembly, and method of making an end corona shield
EP1813419A1 (en) Electroinsulating material
EP2724351B1 (en) Body with voltage-limiting composition
WO2001038084A1 (en) Electroconductive composite plastic, component of such a composite plastic and method for producing the same
DE4024268A1 (en) Electroconductive plastics element for heater or electronic device - contains synergistic mixt. of carbon or graphite powder and fibres and opt. metal fibres
EP3035771B1 (en) Electrically conductive polymeric fabric
DE10235598B4 (en) Bipolar plate and method for coating the same
EP0206254A2 (en) Electrically insulating, heat-conducting polymer composition containing a filler
EP1698372B1 (en) Process for the formation of electrical contactable conductors on conductive polymer and electrodes obtainable therewith
WO2015074776A1 (en) Heatable hollow body
EP1045627B1 (en) Method for making conductor tracks with a laser on plastics materials
DE102007030861A1 (en) Metal coated electrical conductive glass fiber for imbedding in a plastic- and/or rubber mass as initial product useful for housing parts of electronic devices e.g. computer and mobile phone
DE2152546A1 (en) COMPRESSIBLE, ELECTRICALLY CONDUCTIVE AND / OR MAGNETIC MATERIAL MADE FROM ELASTIC, CELLULAR POLYMER AND PROCESS FOR ITS MANUFACTURING
DE102015206730B4 (en) Deflection element for a seat belt
DE102007039904A1 (en) Heat-conductive material layer manufacturing method, involves inserting fibers in field area and transporting towards carrier layer, where fibers have large heat-conductivity toward fiber longitudinal direction than other direction
DE2838720C2 (en) Electrically insulating synthetic resin compound
DE10222459A1 (en) Composite material for ultrahigh frequency screening, e.g. to protect electronics, contains ferrite powder modified with conductive polymer, electrically-conductive non-metallic particles and organic binder
DE102015116606B4 (en) Process for producing a plastic component and plastic component
EP0432426A2 (en) Thin layer absorber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP