WO2001038036A1 - Method and device for treating substrates by means of laser beams - Google Patents

Method and device for treating substrates by means of laser beams Download PDF

Info

Publication number
WO2001038036A1
WO2001038036A1 PCT/DE2000/004240 DE0004240W WO0138036A1 WO 2001038036 A1 WO2001038036 A1 WO 2001038036A1 DE 0004240 W DE0004240 W DE 0004240W WO 0138036 A1 WO0138036 A1 WO 0138036A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
spot width
structures
laser beams
imaging device
Prior art date
Application number
PCT/DE2000/004240
Other languages
German (de)
French (fr)
Inventor
Stefan Dietrich
Hans Jürgen MAYER
Eddy Roelants
Udo Wiggermann
Alex Schreiner
Leo Higgins
Original Assignee
Siemens Production And Logistics Systems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Production And Logistics Systems Ag filed Critical Siemens Production And Logistics Systems Ag
Publication of WO2001038036A1 publication Critical patent/WO2001038036A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • H05K2203/108Using a plurality of lasers or laser light with a plurality of wavelengths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/027Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles

Definitions

  • V ent and device for processing substrates with ⁇ means laser beams
  • the invention relates to a method for processing of S ubstraten with laser beams, and an apparatus for processing substrates according to the preamble of the patent applica ⁇ entitlement. 5
  • standard lasers such as Nd: YAG, Nd: YV0 4 , C0 2 , argon ion or other lasers known per se are generally used.
  • the output beams of these lasers are imaged onto the substrate to be processed via a beam expander, a deflection unit and an optical imaging device, usually an f-theta lens with a focal length between 400 mm and 40 mm.
  • the laser beam is focused on the smallest possible spot width (hereinafter the beam diameter and thus the translation of the English term: * spot size w ) in order to be able to produce the finest possible structures on the substrate.
  • spot size w the translation of the English term
  • the T ASK is inventively achieved by a method having the features of claim 1 and a device of the initially mentioned type with the characterizing features of claim. 5
  • the structuring of larger areas with a larger spot width is used.
  • the larger spot width means that a larger area is removed per laser pulse, which means fewer lines are structured and processing time is reduced.
  • the distance between the laser and the processing surface is changed in order to realize the different spot width.
  • the processing surface comes out of the focal plane of the optical imaging device and the spot width increases.
  • the complex change in distance between the optical imaging device and the processing surface can be avoided in an advantageous manner by using a zoom telescope as the optical imaging device.
  • a further advantageous embodiment of the method according to claim 4 provides that the distance between the lenses of the beam expander is changed from one another. This shifts the focus point with respect to the processing area.
  • FIG. 1 shows a schematic side view of a device according to the invention
  • Figure 2a shows a schematic beam path of the laser beam with C hange of the relative position of processing surface an d optical imaging device
  • FIG. 2 b shows a schematic beam path of the laser beam using a zoom telescope
  • Figure 2c shows a schematic beam path of the laser beam with misaligned beam expander
  • Figure 3 is a schematic plan view of a substrate with fine structures and with flat structures.
  • FIG. 1 shows a schematic side view of a laser source 1 that generates a laser beam 2.
  • the laser beam 2 is expanded by a beam expander 3 and focused on a substrate 7 to be processed by a deflection unit 5 and an optical imaging device 6.
  • the laser beam is focused as much as possible to a minimum spot width 8, so that the processing surface of the substrate lies in the focal plane of the optical imaging device 6.
  • the optical conditions are shown in more detail in the associated beam path in FIG. 2a.
  • the beam 26 emanating from the laser source is widened to a wider beam 27 by a first lens 24 and a second lens 25 of the beam expander 3.
  • the first lens 24 has a focal length fl
  • the second lens 25 a focal length f2.
  • the two lenses 24, 25 are constructed like a Kepler telescope, that is, the focal points of both lenses coincide.
  • the optical imaging device 6 with a focal length f3 focuses the wide beam 27 on a minimum spot width 8 (represented schematically by the waist) in the focal plane of the optical imaging device.
  • the spot width is increased to a second spot width 11, in which the processing surface 9 is in a second position 10 in the beam direction z is moved. As a result, the processing surface 10 is no longer in the focal plane.
  • FIG. 2 b A further beam path for changing the spot width is shown in FIG. 2 b .
  • a zoom telescope 30 is used as trahlaufweiter S.
  • the expansion factor is varied by the zoom telescope 30.
  • This is shown schematically by the smaller focal length f4 of the second lens 31 of the zoom telescope 30, which causes the beam 27 after the zoom telescope 30 to have a smaller diameter than the beam after the beam expander 3 in FIG. 2a.
  • the narrower beam 27 results in an enlarged spot width 11 in the processing area 9 in the focal plane of the optical imaging device 6 according to the rules of Gaussian optics (which cannot be shown in this simple schematic, radiation-optical representation).
  • FIG. 2c Another possibility of changing the spot width is shown in FIG. 2c in the beam path.
  • the distance between the two lenses 24, 25 of the beam expander is changed so that the beam 28 emerging from the beam expander diverges. If the optical imaging device 6 remains the same, this change leads to a displacement of the image point out of the focal plane, which likewise leads to an enlarged spot width 11 in the processing surface 9.
  • the structuring of substrates can be designed more quickly if both fine structures 20 and structures 21 that have a flat structure are to be processed.
  • Fine structures 20 are processed with the smallest spot width 8, while the flat structures 21 with the larger spot width 11 are removed.
  • conductor tracks with connection pads are shown as fine structures 20, which must be separated from one another by structuring with the laser.

Abstract

The invention relates to a method and to a device for treating substrates by means of laser beams. When large-surface structures (21) and fine structures (20) on a substrate (7) are treated at the same time, the large-surface structures (21) are usually treated in fine lines, which is a very time-consuming process. According to the inventive method, the fine structures (20) are treated with a smaller spot size (8) than the structures (21) that have a large surface.

Description

Beschreibungdescription
Verfahren und Vorrichtung zum Bearbeiten von Substraten mit¬ tels Laserstrahlen V ent and device for processing substrates with ¬ means laser beams
Die Erfindung bezieht sich auf ein Verfahren zum Bearbeiten von Substraten mit Laserstrahlen sowie eine Vorrichtung zum Bearbeiten von Substraten gemäß dem Oberbegriff des Patentan¬ spruchs 5.The invention relates to a method for processing of S ubstraten with laser beams, and an apparatus for processing substrates according to the preamble of the patent applica ¬ entitlement. 5
Beim Bearbeiten von Substraten mittels Laserstrahlen, beispielsweise dem Strukturieren von metallisierten Substratoberflächen oder dem Bohren von Kontaktierungslöchern in Mehrlagensubstraten, werden in der Regel Standardlaser wie Nd:YAG-, Nd:YV04-, C02-, Argonionen- oder andere an sich bekannte Laser eingesetzt. Die Ausgangsstrahlen dieser Laser werden über einen Strahlaufweiter, eine Ablenkeinheit und eine optische Abbildungsvorrichtung, meistens eine f-Theta- Linse mit einer Brennweite zwischen 400 mm und 40 mm auf das zu bearbeitende Substrat abgebildet.When processing substrates by means of laser beams, for example the structuring of metallized substrate surfaces or the drilling of contact holes in multi-layer substrates, standard lasers such as Nd: YAG, Nd: YV0 4 , C0 2 , argon ion or other lasers known per se are generally used used. The output beams of these lasers are imaged onto the substrate to be processed via a beam expander, a deflection unit and an optical imaging device, usually an f-theta lens with a focal length between 400 mm and 40 mm.
Dabei wird der Laserstrahl auf eine möglichst geringe Fleckweite (worunter im folgenden der Strahldurchmesser und damit die Übersetzung des englischen Begriffs : *spot sizew verstan- den wird) fokussiert, um möglichst feine Strukturen auf dem Substrat herstellen zu können. Bei der Strukturierung von Leiterplatten als Substrat werden jedoch nicht nur einzelne Leiterbahnen untereinander isoliert, sondern auch große Flächen abgetragen. Zum Abtragen der Flächen werden dabei dicht nebeneinanderliegende Linien abgetragen, da mit konstanterThe laser beam is focused on the smallest possible spot width (hereinafter the beam diameter and thus the translation of the English term: * spot size w ) in order to be able to produce the finest possible structures on the substrate. When structuring printed circuit boards as substrates, however, not only are individual conductor tracks insulated from one another, but large areas are also removed. To remove the areas, lines lying close together are removed, since with constant
Fleckweite gearbeitet wird. Bei einer kleinen Fleckweite und einer im allgemeinen begrenzten Ablenkgeschwindigkeit ist die Bearbeitungszeit entsprechend hoch.Is worked. With a small spot width and a generally limited deflection speed, the processing time is correspondingly long.
Es ist daher die Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung anzugeben, mit der Feinstrukturen als auch flächig aufgebaute Strukturen schnell bearbeitet werden kön¬ nen.It is therefore the object of the invention to provide a method and a device with which fine structures as well fläc h ig built structures are processed quickly nen Kings ¬.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie eine Vorrichtung der eingangs genannten Art mit den kennzeichnenden Merkmalen des Anspruchs 5.The T ASK is inventively achieved by a method having the features of claim 1 and a device of the initially mentioned type with the characterizing features of claim. 5
Dabei wird beim Strukturieren von größeren Flächen mit einer größeren Fleckweite gearbeitet. Durch die größere Fleckweite wird pro Laserpuls eine größere Fläche abgetragen, und somit werden weniger Linien strukturiert und die Bearbeitungszeit sinkt .The structuring of larger areas with a larger spot width is used. The larger spot width means that a larger area is removed per laser pulse, which means fewer lines are structured and processing time is reduced.
In der bevorzugten Ausgestaltung des Verfahrens nach Anspruch 2 wird der Abstand zwischen dem Laser und der Bearbeitungsfläche verändert, um die unterschiedliche Fleckweite zu realisieren. Durch die Abstandsveränderung gelangt die Bearbeitungsfläche aus der Brennebene der optischen Abbildungsvor- richtung und die Fleckweite vergrößert sich.In the preferred embodiment of the method according to claim 2, the distance between the laser and the processing surface is changed in order to realize the different spot width. As a result of the change in distance, the processing surface comes out of the focal plane of the optical imaging device and the spot width increases.
Gemäß Anspruch 3 kann die aufwendige Abstandsveränderung zwischen optischer Abbildungsvorrichtung und Bearbeitungsfläche durch die Verwendung eines Zoomteleskops als optischer Abbil- dungsvorrichtung in vorteilhafter Weise vermieden werden.According to claim 3, the complex change in distance between the optical imaging device and the processing surface can be avoided in an advantageous manner by using a zoom telescope as the optical imaging device.
Eine weitere vorteilhafte Ausgestaltung des Verfahrens nach Anspruch 4 sieht vor, daß der Abstand der Linsen des Strahl- aufweiters zueinander verändert wird. Damit wird der Fokus- punkt bezüglich der Bearbeitungsflache verschoben.A further advantageous embodiment of the method according to claim 4 provides that the distance between the lenses of the beam expander is changed from one another. This shifts the focus point with respect to the processing area.
Anhand eines Ausführungsbeispiels wird die Erfindung in den Figuren der Zeichnung näher erläutert.Using an exemplary embodiment, the invention is explained in more detail in the figures of the drawing.
Dabei zeigenShow
Figur 1 eine schematische Seitenansicht einer erfindungsgemäßen Vorrichtung, Figur 2a einen schematischen Strahlengang des Laserstrahls mit Veränderung der relativen Position von Bearbeitungsfläche und optischer Abbildungsvorrichtung,FIG. 1 shows a schematic side view of a device according to the invention, Figure 2a shows a schematic beam path of the laser beam with C hange of the relative position of processing surface an d optical imaging device,
Figur 2b einen schematischen Strahlengang des Laserstrahls mit Verwendung eines Zoomteleskops,FIG. 2 b shows a schematic beam path of the laser beam using a zoom telescope,
Figur 2c einen schematischen Strahlengang des Laserstrahls mit dejustiertem Strahlaufweiter undFigure 2c shows a schematic beam path of the laser beam with misaligned beam expander and
Figur 3 eine schematische Draufsicht auf ein Substrat mit Feinstrukturen und mit flächig aufgebauten Strukturen.Figure 3 is a schematic plan view of a substrate with fine structures and with flat structures.
In Figur 1 ist in einer schematischen Seitenansicht eine La- serquelle 1 gezeigt, die einen Laserstrahl 2 erzeugt. Der Laserstrahl 2 wird durch einen Strahlaufweiter 3 aufgeweitet und durch eine Ablenkeinheit 5 und eine optische Abbildungs- Vorrichtung 6 auf ein zu bearbeitendes Substrat 7 fokussiert. Zur Bearbeitung von Feinstrukturen wird der Laserstrahl dabei möglichst stark bis auf eine minimale Fleckweite 8 fokussiert, so daß die Bearbeitungsfläche des Substrats in der Brennebene der optischen Abbildungsvorrichtung 6 liegt.FIG. 1 shows a schematic side view of a laser source 1 that generates a laser beam 2. The laser beam 2 is expanded by a beam expander 3 and focused on a substrate 7 to be processed by a deflection unit 5 and an optical imaging device 6. To process fine structures, the laser beam is focused as much as possible to a minimum spot width 8, so that the processing surface of the substrate lies in the focal plane of the optical imaging device 6.
Im zugehörigen Strahlengang in Figur 2a sind die optischen Verhältnisse detaillierter dargestellt. Das von der Laserquelle ausgehende Strahlenbündel 26 wird durch eine erste Linse 24 und eine zweite Linse 25 des Strahlaufweiters 3 auf ein breiteres Strahlenbündel 27 aufgeweitet. Die erste Linse 24 hat eine Brennweite fl, die zweite Linse 25 eine Brennweite f2. Im Strahlaufweiter sind die beiden Linsen 24,25 dabei wie bei einem Kepler-Fernrohr aufgebaut, das heißt die Brennpunkte beider Linsen fallen zusammen. Die optische Abbil- dungsvorrichtung 6 mit einer Brennweite f3 fokussiert das breite Strahlenbündel 27 auf eine minimale Fleckweite 8 (durch die Taille schematisch dargestellt) in der Brennebene der optischen Abbildungsvorrichtung. Für das Bearbeiten von Strukturen, die flächig aufgebaut sind, wird die Fleckweite auf eine zweite Fleckweite 11 vergrößert, in dem die Bearbeitungsfläche 9 in eine zweite Position 10 in Strahlrichtung z verschoben wird. Dadurch befindet sich die Bearbeitungsfläche 10 nicht mehr in der Brennebene.The optical conditions are shown in more detail in the associated beam path in FIG. 2a. The beam 26 emanating from the laser source is widened to a wider beam 27 by a first lens 24 and a second lens 25 of the beam expander 3. The first lens 24 has a focal length fl, the second lens 25 a focal length f2. In the beam expander, the two lenses 24, 25 are constructed like a Kepler telescope, that is, the focal points of both lenses coincide. The optical imaging device 6 with a focal length f3 focuses the wide beam 27 on a minimum spot width 8 (represented schematically by the waist) in the focal plane of the optical imaging device. For the processing of structures that have a flat structure, the spot width is increased to a second spot width 11, in which the processing surface 9 is in a second position 10 in the beam direction z is moved. As a result, the processing surface 10 is no longer in the focal plane.
In Figur 2b ist ein weiterer Strahlengang zur Veränderung der Fleckweite dargestellt. Dabei wird ein Zoomteleskop 30 als Strahlaufweiter benutzt. Durch das Zoomteleskop 30 wird der Aufweitungsfaktor variiert. Schematisch ist das durch die geringere Brennweite f4 der zweiten Linse 31 des Zoomteleskops 30 dargestellt, die bewirkt, daß das Strahlbündel 27 nach dem Zoomteleskop 30 einen geringeren Durchmesser als das Strahlenbündel nach dem Strahlaufweiter 3 in Figur 2a aufweist. Aus dem schmaleren Strahlenbündel 27 resultiert nach den Regeln der Gaußschen Optik (die sich nicht in dieser einfachen schematischen, strahlenoptischen Darstellung zeigen lassen) eine vergrößerte Fleckweite 11 in der Bearbeitungsfläche 9 in der Brennebene der optischen Abbildungsvorrichtung 6.A further beam path for changing the spot width is shown in FIG. 2 b . Here, a zoom telescope 30 is used as trahlaufweiter S. The expansion factor is varied by the zoom telescope 30. This is shown schematically by the smaller focal length f4 of the second lens 31 of the zoom telescope 30, which causes the beam 27 after the zoom telescope 30 to have a smaller diameter than the beam after the beam expander 3 in FIG. 2a. The narrower beam 27 results in an enlarged spot width 11 in the processing area 9 in the focal plane of the optical imaging device 6 according to the rules of Gaussian optics (which cannot be shown in this simple schematic, radiation-optical representation).
Eine weitere Möglichkeit der Fleckweitenveränderung ist in Figur 2c im Strahlengang dargestellt. Dabei wird der Abstand der beiden Linsen 24,25 des Strahlaufweiters verändert, so daß das aus dem Strahlaufweiter heraustretende Strahlenbündel 28 divergiert. Bei gleichbleibender optischer Abbildungsvorrichtung 6 führt diese Veränderung zu einer Verschiebung des Bildpunktes aus der Brennebene heraus, was ebenfalls zu einer vergrößerten Fleckweite 11 in der Bearbeitungsfläche 9 führt.Another possibility of changing the spot width is shown in FIG. 2c in the beam path. The distance between the two lenses 24, 25 of the beam expander is changed so that the beam 28 emerging from the beam expander diverges. If the optical imaging device 6 remains the same, this change leads to a displacement of the image point out of the focal plane, which likewise leads to an enlarged spot width 11 in the processing surface 9.
Durch die beschriebenen Verfahren läßt sich die Strukturierung von Substraten , wie sie in Figur 3 schematisch in Draufsicht und in einer Ausschnittsvergrößerung gezeigt sind, schneller gestalten, wenn sowohl Feinstrukturen 20 als auch Strukturen 21, die flächig aufgebaut sind, zu bearbeiten sind. Feinstrukturen 20 werden mit der kleinsten Fleckweite 8 bearbeitet, während die flächig aufgebauten Strukturen 21 mit der größeren Fleckweite 11 abgetragen werden. Als Feinstruk- turen 20 sind hier beispielsweise Leiterbahnen mit Anschluß- pads dargestellt, die untereinander durch die Strukturierung mit dem Laser getrennt werden müssen. By means of the described methods, the structuring of substrates, as shown schematically in FIG. 3 in a top view and in an enlarged detail, can be designed more quickly if both fine structures 20 and structures 21 that have a flat structure are to be processed. Fine structures 20 are processed with the smallest spot width 8, while the flat structures 21 with the larger spot width 11 are removed. Here, for example, conductor tracks with connection pads are shown as fine structures 20, which must be separated from one another by structuring with the laser.

Claims

Patentansprüche claims
1. Verfahren zum Bearbeiten von Substraten (7) mittels Laser¬ strahlen (2) , bei dem der Laserstrahl (2) über eine Ablenkeinheit (5) und eine optische Abbildungseinrichtung (6) auf das Substrat (7) abgebildet wird, wobei Feinstrukturen (20) mit geringerer Fleckweite (8) bearbeitet werden als Strukturen (21), die flächig aufgebaut sind.1. V out for processing substrates (7) ¬ radiation by means of laser (2), wherein d is the laser beam (2) via a deflection unit (5) and an optical imaging device (6) on the substrate (7) em A is formed b , where fine structures (20) with a smaller spot width (8) are processed than structures (21) which are built up flat.
2. Verfahren zum Bearbeiten von Substraten (7) mittels Laserstrahlen (2) nach Anspruch 1, dadurch gekennzeichnet, daß die unterschiedliche Fleckweite (8,11) durch eine Ver- Schiebung des Substrates (7) in Richtung (z) des Laserstrahls (2) realisiert wird.2. A method for processing substrates (7) by means of laser beams (2) according to claim 1, characterized in that the different spot width (8, 11) by shifting the substrate (7) in the direction (z) of the laser beam (2 ) is realized.
3. Verfahren zum Bearbeiten von Substraten (7) mittels Laserstrahlen (2) nach Anspruch 1, dadurch gekennzeichnet, daß die unterschiedliche Fleckweite (8,11) durch die Verwendung eines Zoomteleskops (30) als im Strahlengang befindlicher Strahlaufweiter (3) realisiert wird.3. A method for processing substrates (7) by means of laser beams (2) according to claim 1, characterized in that the different spot width (8, 11) is realized by using a zoom telescope (30) as a beam expander (3) located in the beam path.
4. Verfahren zum Bearbeiten von Substraten (7) mittels Laserstrahlen (2) nach Anspruch 1, dadurch gekennzeichnet, daß die unterschiedliche Fleckweite (8,11) durch eine Veränderung des Abstandes der Linsen (24,25) eines im Strahlengang befindlichen Strahlaufweiters (3) realisiert wird.4. A method for processing substrates (7) by means of laser beams (2) according to claim 1, characterized in that the different spot width (8, 11) by changing the distance between the lenses (24, 25) of a beam expander in the beam path (3 ) is realized.
5. Vorrichtung zum Bearbeiten von Substraten (7) mittels Laserstrahlen (2) mit einer Laserquelle (1), einer Ablenkeinheit (5) und einer optischen Abbildungseinrichtung (6), dadurch gekennzeichnet, daß die Fleckweite (8,11) des Laserstrahls (2) auf der Bearbeitungsfläche (9,10) verstellbar ist. 5. Device for processing substrates (7) by means of laser beams (2) with a laser source (1), a deflection unit (5) and an optical imaging device (6), characterized in that the spot width (8, 11) of the laser beam (2 ) on the processing surface (9, 10) is adjustable.
PCT/DE2000/004240 1999-11-29 2000-11-28 Method and device for treating substrates by means of laser beams WO2001038036A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16792199P 1999-11-29 1999-11-29
US60/167,921 1999-11-29
DE19957733.1 1999-12-01
DE19957733 1999-12-01

Publications (1)

Publication Number Publication Date
WO2001038036A1 true WO2001038036A1 (en) 2001-05-31

Family

ID=26055685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004240 WO2001038036A1 (en) 1999-11-29 2000-11-28 Method and device for treating substrates by means of laser beams

Country Status (1)

Country Link
WO (1) WO2001038036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100137A1 (en) * 2001-06-06 2002-12-12 Siemens Aktiengesellschaft Method and device for structuring printed circuit boards
WO2011131541A1 (en) * 2010-04-22 2011-10-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Beam-forming unit for focussing a laser beam and method for the activation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088864A (en) * 1974-11-18 1978-05-09 Alza Corporation Process for forming outlet passageways in pills using a laser
US4667080A (en) * 1984-03-26 1987-05-19 Bias Forschungs- Und Entwicklungslabor Fur Angewandte Strahltechnik Device for processing workpieces using an energy beam of high power density, in particular a laser beam from a CO2 laser
US5092350A (en) * 1983-11-11 1992-03-03 Molins, Plc Cigarette manufacture
FR2689254A1 (en) * 1992-03-31 1993-10-01 Commissariat Energie Atomique Light beam focussing device for precise impact point observation on component - comprises prim. optical assembly contg. optical fibre, collimating and sec. focussing lenses and reflecting mirror, and display, for mechanical component welding, cutting and marking
US5494781A (en) * 1993-08-26 1996-02-27 Matsushita Electric Works, Ltd. Method for manufacturing printed circuit board
US5811754A (en) * 1994-06-02 1998-09-22 Mitsubishi Denki Kabushiki Kaisha Optical processing method and apparatus for carrying out the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088864A (en) * 1974-11-18 1978-05-09 Alza Corporation Process for forming outlet passageways in pills using a laser
US5092350A (en) * 1983-11-11 1992-03-03 Molins, Plc Cigarette manufacture
US4667080A (en) * 1984-03-26 1987-05-19 Bias Forschungs- Und Entwicklungslabor Fur Angewandte Strahltechnik Device for processing workpieces using an energy beam of high power density, in particular a laser beam from a CO2 laser
FR2689254A1 (en) * 1992-03-31 1993-10-01 Commissariat Energie Atomique Light beam focussing device for precise impact point observation on component - comprises prim. optical assembly contg. optical fibre, collimating and sec. focussing lenses and reflecting mirror, and display, for mechanical component welding, cutting and marking
US5494781A (en) * 1993-08-26 1996-02-27 Matsushita Electric Works, Ltd. Method for manufacturing printed circuit board
US5811754A (en) * 1994-06-02 1998-09-22 Mitsubishi Denki Kabushiki Kaisha Optical processing method and apparatus for carrying out the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"METHOD FOR PRODUCING HOLES OF DIFFERENT SIZES BY A LASER", RESEARCH DISCLOSURE,KENNETH MASON PUBLICATIONS, HAMPSHIRE,GB, no. 395, 1 March 1997 (1997-03-01), pages 195 - 196, XP000698585, ISSN: 0374-4353 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100137A1 (en) * 2001-06-06 2002-12-12 Siemens Aktiengesellschaft Method and device for structuring printed circuit boards
US6783688B2 (en) 2001-06-06 2004-08-31 Siemens Aktiengesellschaft Method and apparatus for structuring printed circuit boards
WO2011131541A1 (en) * 2010-04-22 2011-10-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Beam-forming unit for focussing a laser beam and method for the activation thereof
CN102985214A (en) * 2010-04-22 2013-03-20 通快机床两合公司 Beam-forming unit for focussing a laser beam and method for the activation thereof
US8804238B2 (en) 2010-04-22 2014-08-12 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Beam shaping unit for focusing a laser beam
US9329368B2 (en) 2010-04-22 2016-05-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Beam shaping unit for focusing a laser beam

Similar Documents

Publication Publication Date Title
DE19506522C5 (en) Method for laser beam cutting
EP1097022B1 (en) Method and device for calibrating a workpiece laser-processing machine
EP0135851B1 (en) Process and device for marking parts, especially electronic components
DE60008732T2 (en) BEAM FORMING AND PROJECTION IMAGING BY means of UV GAUSSIAN SOLID-BODY LASER BEAM FOR THE PRODUCTION OF HOLES
DE60030195T2 (en) Laser process for machining holes in a ceramic green sheet
DE3047822C2 (en) Device for processing optical information
DE10131610C1 (en) Method for calibrating the optical system of a laser machine for processing electrical circuit substrates
EP1276587A1 (en) Device for processing substrates and method therefor which entails the use of such a device
DE19534165A1 (en) Method and appts. for irradiating a workpiece surface using laser light
DE3902158A1 (en) METHOD FOR REMOVING AN INSULATING COVER OF AN ELECTRICAL LINE WIRE, AND DEVICE FOR IMPLEMENTING THE METHOD
DE19513354A1 (en) Surface processing equipment
DE2458370A1 (en) ENERGY BEAM ENGRAVING METHOD AND DEVICE FOR ITS IMPLEMENTATION
DE2725959C3 (en) Electron beam processing equipment
DE1690575A1 (en) Method and device for the automatic centering of an electron beam
EP0223066B1 (en) Device for soldering electronic components on a printed-circuit board
DE1690626A1 (en) Method and arrangement for controlling the electron beam of an electron beam system
EP0743128A1 (en) Process and device for marking products of transparent (solid) material with a laser
DE10307309B4 (en) Apparatus and method for processing electrical circuit substrates by means of laser
WO2006018370A1 (en) Method for machining a workpiece by using pulse laser radiation with controllable energy of individual laser pulses and time intervals between two successive laser pulses, and a laser machining system therefor
DE3147355C2 (en) Method for adjusting the reference system of a pre-programmable beam deflection system of a laser device operating in giant pulse mode
EP1097023B1 (en) Device for the laser processing of workpieces
WO2001038036A1 (en) Method and device for treating substrates by means of laser beams
DE102015112151A1 (en) Method and device for laser processing of a substrate with multiple deflection of a laser radiation
EP1558422B1 (en) Method for boring holes in a substrate, especially in an electrical circuit substrate, by means of a laser beam
EP0683007B1 (en) Machining device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP