WO2001035849A1 - Secure videoscopic apparatus with laser profilometer for computer-assisted surgery - Google Patents

Secure videoscopic apparatus with laser profilometer for computer-assisted surgery Download PDF

Info

Publication number
WO2001035849A1
WO2001035849A1 PCT/FR2000/003181 FR0003181W WO0135849A1 WO 2001035849 A1 WO2001035849 A1 WO 2001035849A1 FR 0003181 W FR0003181 W FR 0003181W WO 0135849 A1 WO0135849 A1 WO 0135849A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
laser
imaging
line
scanner
Prior art date
Application number
PCT/FR2000/003181
Other languages
French (fr)
Inventor
François Allouche
René Farcy
Original Assignee
Allouche Francois
Farcy Rene
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allouche Francois, Farcy Rene filed Critical Allouche Francois
Priority to AU20140/01A priority Critical patent/AU2014001A/en
Publication of WO2001035849A1 publication Critical patent/WO2001035849A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/3945Active visible markers, e.g. light emitting diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the invention is an image fusion device in the field of computer-assisted surgery. It concerns a new generation of secure endoscopes with integrated laser profilometer allowing a first 3D registration of video images and scanner (“Contactless Matching” method), an enrichment of video images from information from preoperative imaging (Principle of "Augmented Reality”), as well as an update of the preoperative scanner (Principle of "Surgically Modified Imaging”).
  • Stereotaxic neurosurgery initially planned for the selective destruction of brain tumors, generated the first devices capable of such localization by inlaying a cross representing the active end of an instrument on preoperative CT sections (see for example Patent WO-A6-88 09151, US Patent 5,186,174).
  • the main constraint of these stereotaxic techniques was the need for a fixed and invasive anchoring of the head in a rigid frame.
  • Unframed Stereotaxis is a fairly recent concept, the emergence of which has been favored by the unacceptable nature of conventional stereotaxis in functional surgery.
  • the main idea of this technology is based on the fact that the rigid frame is replaced by a positional sensor capable of canceling the movements of the head by calculation; it no longer needs to be fixed (patent FR 94 05905).
  • these technologies have revealed many imperfections in the registration methods, and in general ergonomics, in particular the readability of the information by the surgeon: - Registration is the point-to-point mapping of one or more several independent objects with their digitized three-dimensional imagery.
  • the device according to the invention is a rigid videoendoscope in which a triangulation laser profilometer is integrated.
  • the profilometer projects a laser line on the visualized surface.
  • This laser line is seen distorted in video imaging due to the offset of the axis of the laser line relative to the optical axis of the video imaging system.
  • This deformation, according to the geometrical parameters of the device allows, by calculation, to know the distance from each point of the laser line to the end of the endoscope.
  • This profile information is obtained at the video rate.
  • the endoscope is positioned in space and readjusted in relation to preoperative scanner imaging according to the principles of stereotaxis. The position of the laser points of the line are therefore identified in the preoperative scanner image at the video rate (real time).
  • the endoscope equipped with the laser profilometer thus makes it possible to know the position of the laser line projected on the intervention area both in the image of the endoscope and in the preoperative scanner imaging.
  • a slight movement of the endoscope makes it possible to sweep the laser line over a chosen area which will give the correspondence between its endoscopic image and its preoperative scanner imaging.
  • the video endoscope located in space and equipped with its laser profilometer forms, using appropriate software, a device for merging information in the various imaging systems: - On 2D (two-dimensional) scanner slices, the center of the laser line will result in a virtual laser spot, according to the same principles of "Stereotaxis without frame", except that the optical pointer can be neither distorting nor invasive.
  • Safety corridors defined preoperatively by the surgeon, will appear in the form of a tight mesh screen behind a wall made transparent. Audible or vocal alarms are also triggered regardless of the video image if the instrument leaves a safety corridor.
  • the instruments and anatomical structures normally visible may no longer be visible in the event of temporary unavailability of the video image (Bleeding poorly controlled or transient interposition of a displaced polyp).
  • the profilometer then indicates shorter distances than those which should exist at this location according to the scanner data.
  • the software will then give priority to the virtual images of the instruments and walls directly in contact, and will embed them in the video image momentarily blinded, according to the same position and orientation, as if they were actually seen by the endoscope. This makes it possible to know whether the instrument can intervene on the wall on which it is physically in contact.
  • this Augmented Reality device with its associated visual and / or audible alarms is self-sufficient, without the need to consult the scanner imagery, for a surgeon who only wishes to view during the intervention the video images to which he is accustomed. In this way, the surgeon is confronted with only one information support, that of video imagery on which is encrusted on demand, additional information coming from scanner imagery.
  • Surgically Modified Imaging is a new field made possible by the laser profilometer integrated into the endoscope which provides a real mapping of the reliefs encountered.
  • the software can interpret short distances by triggering alarms.
  • the topographic survey indicates a longer distance, this will be interpreted as a missing part of the preoperative architecture and will be translated as the result of a surgical excision.
  • the scanning of a missing area will make it possible to modify the preoperative scanner imagery in real time and update it as the surgery progresses.
  • the result of an excision is calculated intraoperatively from preoperative imaging, and the surgeon can then go and look at the imaging scanner during the operation for the results of his actions.
  • the videoendoscope with an integrated laser profilometer positioned in space is made up as follows:
  • the rigid videoendoscope used as a basis for the system used to visualize the operating area on a video screen during the operation is for example of the type of those marketed by the companies Wolf, Storz ...
  • the integration of the laser profilometer is done in the following way:
  • the laser profilometer integrated into the videoendoscope consists of a single mode optical fiber placed along the tube of the rigid endoscope conveying a laser beam.
  • the single-mode optical fiber ends a few millimeters before the end of the endoscopic tube facing the area to be observed.
  • the diverging laser beam leaving the single-mode fiber is collimated by a spherically symmetrical lens, preferably with an index gradient.
  • the single-mode optical fiber and the index gradient lens are arranged so that the axis of the laser beam thus formed is coplanar and makes a fixed angle ⁇ with the optical axis of the endoscope, the plane thus formed will be called plane P.
  • a prism deflecting the laser beam is placed against the beam collimating lens, the edge of the prism is perpendicular to the plane defined by the optical axis of the endoscope and l axis of the laser beam in order to keep them coplanar.
  • the base of the profilometer is defined by the distance B from the point O of the optical axis belonging to the exit face of the endoscope to the axis of the laser beam.
  • a cylindrical lens placed at the end of the endoscopic tube against the prism spreads the laser beam in a line perpendicular to the plane P defined by the optical axis of the videoendoscope and the axis of the laser beam.
  • the axis of the cylinder of the cylindrical lens belongs to the plane P.
  • the assembly consisting of the single-mode fiber, and the lenses and prisms can be inserted in place of part of the illumination fibers of the endoscope , or inserted into a thin tube welded along the endoscope.
  • Laser radiation is injected at the input of the single-mode fiber, the length of the fiber of approximately two meters makes it possible to offset the source of laser radiation, advantageously consisting of a laser diode.
  • a connector for singlemode fiber - singlemode fiber located on the endoscope makes it possible to connect the section of fiber coming from the remote laser source to the section of fiber internal to the previously described endoscope bringing the laser light to its end.
  • the deformation of the laser line seen on the video camera makes it possible to calculate for each video image, the distance and l orientation each point of the line relative to the center of the endoscope head.
  • the first requirement is a positioning of the part of the patient's body being worked on, the endoscope and surgical instruments, the second a non-invasive registration with a bone anchor, the third requirement is a drift detector preventing malfunctions of the device.
  • the positioning of the patient's body part, the endoscope and the instruments is done by known 3D sensors for optical, mechanical or magnetic positioning as described for example in the references US Pat. No. 5,230,623 for a technique optical, US patents 5,891,034 or US 5,921,992 for a mechanical technique, PCT / US patent 95/11611 for a magnetic technique.
  • the endoscope with integrated profilometer also makes it possible to facilitate the registration procedure in combination or substitution with known means of registration as described for example in the reference: Thippoe Paris VT France [1996 S30] Elisabeth Cuchet, Stereotaxis without frame: application to surgery and radiotherapy.
  • Thèse Paris VT France 1996 S30
  • Elisabeth Cuchet, Stereotaxis without frame application to surgery and radiotherapy.
  • the registration is done by making the shape from its profiles coincide with those from preoperative CT imaging.
  • the position of coincidence of the shapes obtained by minimizing the distances between the surfaces from scanner imaging and laser profilometry, performed by the computer, provides the reference data for registration.
  • an atraumatic bone anchor for the 3D position sensors of the head, in order to make the maintenance of registration more reliable.
  • This anchoring is done from a personalized dental gutter, supplied to the surgeon for each patient who is to undergo surgery assisted by the system described. On its upper face, an impression-taking paste is spread. In the operating room, the surgeon will place the splint on the dental arch and clip the 3D sensor onto its anterior surface.
  • the whole system can advantageously be supplemented by a drift detector warning of a system malfunction. It is an additional laser profilometer called monitoring and independent of the endoscope. It allows from a support secured to the operating table to project a laser line on the patient's face filmed by an observation video camera whose optical axis is offset from the axis of the laser line. The distortion of the line makes it possible to reconstruct the profile of the face.
  • the different points of the head identified by the profilometer must coincide with the surface of the head on the scanner imagery if the system works correctly.
  • the preoperative scanner imaging can be replaced by any other digital medical imaging method (MRI, 3D Echo ). Updating the preoperative imagery with information from the endoscope can be used in medical fields other than endonasal surgery (Traumatology, neurosurgery, implantology ).
  • the laser line projected by the integrated profilometer of the endoscope can be automatically displaced by means of a mirror actuated by a micro motor incorporated in the handle of the endoscope.
  • the entire profile of the video image is therefore matched with scanner imaging with a stationary endoscope.
  • FIG. 1 shows the triangulation laser profilometer integrated into the endoscope.
  • FIG. 2 represents the deformation of the laser line, the relief of a wall.
  • FIG. 3 represents the dental gutter for anchoring the 3D position sensor.
  • a preferred embodiment of the device is as follows:
  • the support of the device is a rigid videoendoscope (1) for viewing the operating area (2) consisting of an endoscopic tube (3), an outlet face comprising an objective (4) of optical axis (5).
  • the videoendoscope camera (6) being located at the other end of the endoscope (1).
  • the triangulation laser profilometer uses the principle of the projection of a laser line (7) on the displayed surface.
  • the laser line may be red with a wavelength of the order of 670 nm with a total power of the order of a few mW. This laser line is seen deformed (8) in video imaging due to the offset of the axis of the laser line (9) relative to the optical axis (5) of the endoscope.
  • This deformation makes it possible, by calculation, to know the distance from each point of the laser line (7) to the end O of the endoscope.
  • This profile information is obtained at the video rate.
  • the endoscope is positioned in space by the transmitter (10) and receiver (11) positioning devices belonging to the state of the art, and readjusted with respect to preoperative scanner imaging according to the principles of stereotaxis.
  • the position of the laser points of the line (7) are therefore identified in the preoperative scanner image at the video rate (real time).
  • the endoscope (1) fitted with the laser profilometer thus makes it possible to know the position of the laser line (7) projected onto the intervention area both in the image of the camera (6) of the endoscope (1) and in preoperative CT imaging.
  • a slight movement of the endoscope (1) makes it possible to sweep the laser line (7) over a chosen area which will give the correspondence between its endoscopic image and its preoperative scanner imaging.
  • the laser beam is conveyed by a single mode fiber (12) placed along the tube (3) of the rigid endoscope conveying a laser beam.
  • the single mode optical fiber (12) ends a few millimeters before the end of the endoscopic tube facing the area to be observed.
  • the diverging laser beam leaving the single-mode fiber (12) is collimated by a spherically symmetrical lens (13), preferably with an index gradient.
  • the single-mode optical fiber (12) and the index gradient lens (13) are arranged so that the axis of the laser beam (14) thus formed is coplanar and makes a fixed angle ⁇ with the optical axis ( 5) of the endoscope, the plane thus formed will be called plane P.
  • the axis of the fiber (12) and that of the lens (13) are coincident and coplanar with the optical axis of the endoscope (5 ).
  • a prism (15) deflecting the laser beam is placed against the collimating lens (13) of the beam, the edge of the prism (15) is perpendicular to the plane defined by l optical axis (5) of the endoscope and the axis of the laser beam (14) in order to keep them coplanar.
  • the base of the profilometer is defined by the distance B from the point O of the optical axis belonging to the face. output (4) of the endoscope to the axis (14) of the laser beam. This base B is typically of the order of a few millimeters.
  • the axis of the cylinder of the cylindrical lens (16) belongs to the plane P.
  • the position between the output of the single mode fiber (12) and the index gradient lens (13) is adjusted so as to optimize the fineness of the laser line (7) at the end of the measurement range which is typically between 5 cm and 15 cm depending on the type of surgery performed.
  • the assembly consisting of the single-mode fiber (12), the lenses (13), (16) and the prism (15) can be inserted in place of part of the illumination fibers of the endoscope (1), or inserted into a thin tube welded along the endoscope (1).
  • the length of the fiber At the entrance of the single mode fiber (12) is injected with laser radiation, the length of the fiber of about two meters makes it possible to offset the source of laser radiation, advantageously consisting of a laser diode.
  • a connector for singlemode fiber - singlemode fiber located on the endoscope makes it possible to connect the section of fiber coming from the remote laser source to the section of fiber internal to the previously described endoscope bringing the laser light to its end.
  • the deformation of the laser line seen on the video camera makes it possible to calculate for each video image, the distance and l orientation of each point of the line relative to the center of the endoscope head.
  • the digital acquisition of the line deformation (8) is done by measuring for each point the distance (17) from the left edge of the camera to the point of the deformed laser line of the same height.
  • Each distance (17) corresponds to a unilateral value of the distance from point O of the exit face of the endoscope to the corresponding point of the laser line as a function of B, ⁇ , and of the characteristics of the video camera.
  • the positioning of the head ( Figure 3) is done using a 3D sensor (19) of the same type as those used for the instruments, secured to a personalized dental tray (18) which guarantees solidarity with the bone walls of the head.
  • the dental tray consists of an impression tray with paste.

Abstract

The invention concerns a rigid videoscopic apparatus (1) spatially located and comprising a triangulation laser profilometer for computer-assisted surgery. A laser beam coplanar with the videoscope (1) optical axis is spread out in a line (7). The deformation of the line viewed by the videoscope camera enables to know the distance of the points illuminated by the laser line relative to the videoscope. The videoscope being positioned by sensors (10, 11) in the preoperative scanner imaging, the position of the points illuminated by the laser line (7) is known both in the preoperative scanner imaging and in the video imaging. Said real-time image blending enables to produce a first image registration of the medical imaging with the video images (contactless matching), and to enhance the video image with the data of the scanner (augmented reality), and to update the scanner by the result of the surgical resection through the data derived from the videoscope (surgically modified imagery).

Description

Vidéo endoscope sécurisé à profilomètre laser intégré pour la chirurgie assistée par ordinateur. Secure video endoscope with integrated laser profilometer for computer-assisted surgery.
L'invention est un dispositif de fusion d'image dans le domaine de la chirurgie assistée par ordinateur. Elle concerne une nouvelle génération d'endoscopes sécurisés avec profilomètre laser intégré permettant un recalage 3D premier des images vidéo et scanner (méthode de « Matching sans contact »), un enrichissement des images vidéo à partir des informations de l'imagerie préopératoire (Principe de la « Réalité Augmentée »), ainsi qu'une réactualisation du scanner préopératoire (Principe de l'« Imagerie Chirurgicalement Modifiée »).The invention is an image fusion device in the field of computer-assisted surgery. It concerns a new generation of secure endoscopes with integrated laser profilometer allowing a first 3D registration of video images and scanner (“Contactless Matching” method), an enrichment of video images from information from preoperative imaging (Principle of "Augmented Reality"), as well as an update of the preoperative scanner (Principle of "Surgically Modified Imaging").
L'avènement de la chirurgie minimale invasive, évolution majeure de ces dernières années, est le moteur principal d'un essor sans précédent des techniques endoscopiques. En chirurgie rhinosinusienne par exemple, cet essor est à l'origine d'une recrudescence significative des accidents graves par effraction orbitaire ou cérébrale. Ces accidents s'expliquent par le fait que l'endoscopie endonasale, ne donne qu'une vision de l'intérieur d'un labyrinthe sans repérage topographique des organes sensibles de voisinage (nerf optique, cerveau, carotide interne). Le chirurgien n'a ainsi qu'une perception qualitative de l'endroit où il intervient, liée essentiellement à son expérience. Pour sécuriser ce type de chirurgie, il est apparu nécessaire de fournir une information topographique par localisation de l'instrument. Des problèmes similaires ont été rencontrés en neurochirurgie et en chirurgie rachidienne intra médullaire.The advent of minimally invasive surgery, a major development in recent years, is the main driver of an unprecedented boom in endoscopic techniques. In rhinosinusian surgery, for example, this boom is at the origin of a significant upsurge in serious accidents by orbital or cerebral intrusion. These accidents are explained by the fact that endonasal endoscopy, gives only a vision of the interior of a labyrinth without topographic location of the sensitive neighboring organs (optic nerve, brain, internal carotid). The surgeon thus has only a qualitative perception of the place where he intervenes, linked essentially to his experience. To secure this type of surgery, it appeared necessary to provide topographic information by location of the instrument. Similar problems have been encountered in neurosurgery and in intramedullary spinal surgery.
La neurochirurgie stéréotaxique, prévue initialement pour la destruction sélective de tumeurs cérébrales, a généré les premiers dispositifs capables d'une telle localisation par incrustation d'une croix représentant l'extrémité active d'un instrument sur des coupes scanner préopératoires (voir par exemple Brevet WO-A6-88 09151, Brevet US 5,186,174). La contrainte principale de ces techniques stéréotaxiques était la nécessité d'un ancrage fixe et invasif de la tête dans un cadre rigide.Stereotaxic neurosurgery, initially planned for the selective destruction of brain tumors, generated the first devices capable of such localization by inlaying a cross representing the active end of an instrument on preoperative CT sections (see for example Patent WO-A6-88 09151, US Patent 5,186,174). The main constraint of these stereotaxic techniques was the need for a fixed and invasive anchoring of the head in a rigid frame.
La Stéréotaxie Sans Cadre est un concept assez récent dont l'émergence a été favorisée par le caractère inacceptable de la stéréotaxie classique en chirurgie fonctionnelle. L'idée maîtresse de cette technologie, repose sur le fait que le cadre rigide est remplacé par un capteur positionnel capable d'annuler par calcul les mouvements de la tête ; celle-ci n'a ainsi plus besoin d'être fixée (brevet FR 94 05905). A l'usage, ces technologies ont révélé de nombreuses imperfections sur les méthodes de recalage, et sur l'ergonomie générale, notamment la lisibilité des informations par le chirurgien : - Le recalage est la mise en correspondance point à point, d'un ou plusieurs objets indépendants avec leur imagerie tridimensionnelle numérisée. En chirurgie, l'absence à ce jour, d'un procédé de recalage fiable, rapide et non invasif est un facteur limitant supplémentaire (Thèse Paris VI France [1996 S30] Elisabeth Cuchet, Stéréotaxie sans cadre : application à la chirurgie et à la radiothérapie). En effet, certaines méthodes de recalage sont fiables mais invasives car nécessitant un ancrage osseux préalable. D'autres sont atraumatiques car cutanées, mais restent imprécises et opérateur dépendantes en raison de l'élasticité de la peau. D'autres enfin, font appel à un recalage par imagerie peropératoire (IRM, écho), dont l'inertie est celle des infrastructures lourdes de la radiologie interventionnelle alors que la philosophie de la stéréotaxie sans cadre est justement d 'en proposer une alternative simplifiée.Unframed Stereotaxis is a fairly recent concept, the emergence of which has been favored by the unacceptable nature of conventional stereotaxis in functional surgery. The main idea of this technology is based on the fact that the rigid frame is replaced by a positional sensor capable of canceling the movements of the head by calculation; it no longer needs to be fixed (patent FR 94 05905). In use, these technologies have revealed many imperfections in the registration methods, and in general ergonomics, in particular the readability of the information by the surgeon: - Registration is the point-to-point mapping of one or more several independent objects with their digitized three-dimensional imagery. In surgery, the absence to date of a reliable, rapid and non-invasive registration process is an additional limiting factor (Thesis Paris VI France [1996 S30] Elisabeth Cuchet, Stereotaxis without frame: application to surgery and radiotherapy). Indeed, certain registration methods are reliable but invasive because they require prior bone anchoring. Others are atraumatic because cutaneous, but remain imprecise and operator dependent due to the elasticity of the skin. Others finally, use a retiming by intraoperative imagery (MRI, echo), whose inertia is that of the heavy infrastructures of interventional radiology while the philosophy of stereotaxis without frame is precisely to propose a simplified alternative .
- De plus, l'utilisation simultanée de la stéréotaxie sans cadre, couplée à l'imagerie vidéo endoscopique a fait apparaître une nécessaire simplification ergonomique. En effet, le chirurgien doit visualiser quasi simultanément et pendant toute l'intervention, deux sources juxtaposées d'information : celle de l'imagerie scanner en plusieurs coupes 2D, et celle de la caméra vidéo, également en 2D. Il doit lui-même faire mentalement la fusion de ces deux sources d'information pour les coordonner avec sa progression opératoire 3D.- In addition, the simultaneous use of frameless stereotaxis, coupled with endoscopic video imaging, revealed a necessary ergonomic simplification. In fact, the surgeon must visualize almost simultaneously and during the entire procedure, two juxtaposed sources of information: that of scanner imagery in several 2D sections, and that of the video camera, also in 2D. He must himself mentally merge these two sources of information to coordinate them with his 3D operational progression.
- Enfin, aucun des systèmes actuels proposés ne permet de réactualiser l'imagerie scanner préopératoire en fonction des modifications apportées par l'acte chirurgical sans faire appel à une imagerie IRM ou rayons X durant l'opération.- Finally, none of the current systems proposed allows updating the preoperative scanner imagery according to the modifications made by the surgical procedure without using MRI or X-ray imagery during the operation.
Le dispositif selon l'invention est un vidéoendoscope rigide dans lequel on intègre un profilomètre laser à triangulation. Le profilomètre projette un trait laser sur la surface visualisée. Ce trait laser est vu déformé dans l'imagerie vidéo à cause du décalage de l'axe du trait laser par rapport à l'axe optique du système d'imagerie vidéo. Cette déformation, en fonction des paramètres géométriques du dispositif permet, par calcul, de connaître la distance de chaque point du trait laser à l'extrémité de l'endoscope. Cette information de profil est obtenue à la cadence vidéo. L'endoscope est positionné dans l'espace et recalé par rapport à l'imagerie scanner préopératoire suivant les principes de la stéréotaxie. La position des points lasers du trait sont donc repérés dans l'image scanner préopératoire à la cadence vidéo (temps réel). L'endoscope muni du profilomètre laser permet ainsi de connaître la position du trait laser projeté sur la zone d'intervention à la fois dans l'image de l'endoscope et dans l'imagerie scanner préopératoire. Un léger mouvement de l'endoscope permet de balayer le trait laser sur une zone choisie ce qui donnera la correspondance entre son image endoscopique et son imagerie scanner préopératoire.The device according to the invention is a rigid videoendoscope in which a triangulation laser profilometer is integrated. The profilometer projects a laser line on the visualized surface. This laser line is seen distorted in video imaging due to the offset of the axis of the laser line relative to the optical axis of the video imaging system. This deformation, according to the geometrical parameters of the device allows, by calculation, to know the distance from each point of the laser line to the end of the endoscope. This profile information is obtained at the video rate. The endoscope is positioned in space and readjusted in relation to preoperative scanner imaging according to the principles of stereotaxis. The position of the laser points of the line are therefore identified in the preoperative scanner image at the video rate (real time). The endoscope equipped with the laser profilometer thus makes it possible to know the position of the laser line projected on the intervention area both in the image of the endoscope and in the preoperative scanner imaging. A slight movement of the endoscope makes it possible to sweep the laser line over a chosen area which will give the correspondence between its endoscopic image and its preoperative scanner imaging.
Le vidéo endoscope localisé dans l'espace et pourvu de son profilomètre laser, forme grâce à des logiciels appropriés, un dispositif de fusions d'informations dans les différents systèmes d'imagerie : - Sur les coupes scanner 2D (bidimensionnelle), le centre de la ligne laser se traduira par un spot laser virtuel, selon les mêmes principes de la « Stéréotaxie sans cadre », à la nuance près que le pointeur optique ne peut être ni déformant ni invasif.The video endoscope located in space and equipped with its laser profilometer, forms, using appropriate software, a device for merging information in the various imaging systems: - On 2D (two-dimensional) scanner slices, the center of the laser line will result in a virtual laser spot, according to the same principles of "Stereotaxis without frame", except that the optical pointer can be neither distorting nor invasive.
- Sur les coupes scanner 3D (constructions tridimensionnelles où les tranches de section apparaissent comme des coupes 2D en perspective ), c'est l'endoscope et le trait laser qu'on fait figurer en temps réel et en 3D, selon les principes de la « Réalité Virtuelle ».- On 3D scanner sections (three-dimensional constructions where the section slices appear as 2D sections in perspective), it is the endoscope and the laser line that are shown in real time and in 3D, according to the principles of " Virtual reality ".
- Sur l'image vidéo, on dispose d'un système de « Réalité Augmentée » avec plusieurs enrichissements possibles :- On the video image, we have an “Augmented Reality” system with several possible enhancements:
* Des couloirs de sécurité, définis en préopératoire par le chirurgien vont apparaître sous forme d'un grillage à maille serrée derrière une paroi rendue transparente. Des alarmes sonores ou vocales sont également declenchables indépendamment de l'image vidéo si l'instrument sort d'un couloir de sécurité.* Safety corridors, defined preoperatively by the surgeon, will appear in the form of a tight mesh screen behind a wall made transparent. Audible or vocal alarms are also triggered regardless of the video image if the instrument leaves a safety corridor.
* Des structures anatomiques normalement masquées derrière une paroi intacte, peuvent aussi apparaître en transparence et en 3D au besoin rehaussées d'une fausse couleur.* Anatomical structures normally hidden behind an intact wall, can also appear in transparency and in 3D if necessary enhanced with a false color.
* A l'opposé, les instruments et les structures anatomiques normalement visibles, peuvent ne plus l'être en cas d'indisponibilité temporaire de l'image vidéo (Saignement mal contrôlé ou interposition transitoire d'un polype déplacé). Le profilomètre indique alors des distances plus courtes que celles qui devraient exister à cet endroit en fonction des données scanner. Le logiciel donnera alors la priorité aux images virtuelles des instruments et des parois directement en contact, et viendra les incruster dans l'image vidéo momentanément aveuglée, selon la même position et orientation, comme si elles étaient réellement vues par l'endoscope. Ceci permet de savoir si l'instrument peut intervenir sur la paroi sur laquelle il est physiquement en contact.* In contrast, the instruments and anatomical structures normally visible, may no longer be visible in the event of temporary unavailability of the video image (Bleeding poorly controlled or transient interposition of a displaced polyp). The profilometer then indicates shorter distances than those which should exist at this location according to the scanner data. The software will then give priority to the virtual images of the instruments and walls directly in contact, and will embed them in the video image momentarily blinded, according to the same position and orientation, as if they were actually seen by the endoscope. This makes it possible to know whether the instrument can intervene on the wall on which it is physically in contact.
Au total, ce dispositif de Réalité Augmentée avec ses alarmes associées visuelles et/ou sonores est autosuffisant, sans nécessité de consulter l'imagerie scanner, pour un chirurgien qui ne désire visualiser en cours d'intervention que les images vidéo auxquelles il est habitué. De cette façon, le chirurgien n'est confronté qu'à un seul support d'information, celui de l'imagerie vidéo sur laquelle s'incruste à la demande, des informations complémentaires provenant de l'imagerie scanner.In total, this Augmented Reality device with its associated visual and / or audible alarms is self-sufficient, without the need to consult the scanner imagery, for a surgeon who only wishes to view during the intervention the video images to which he is accustomed. In this way, the surgeon is confronted with only one information support, that of video imagery on which is encrusted on demand, additional information coming from scanner imagery.
- L'« Imagerie Chirurgicalement Modifiée » est un nouveau domaine rendu possible par le profilomètre laser intégré à l'endoscope qui fournit une véritable cartographie des reliefs rencontrés. Nous avons déjà vu plus haut que le logiciel sait interpréter des distances trop courtes en déclenchant des alarmes. Par contre si le relevé topographique indique une distance plus longue, celle-ci sera interprétée comme une partie manquante de l'architecture préopératoire et sera traduite comme le résultat d'une exérèse chirurgicale. Le balayage d'une zone manquante, va permettre de modifier en temps réel, l'imagerie scanner préopératoire et la réactualiser au fur et à mesure de l'intervention. On aura par exemple, sur l'imagerie scanner, l'effacement progressif d'une grappe de polypes, l'effondrement d'une paroi trépanée, ou la constitution graduelle d'un couloir ethmoïdal. Ainsi le résultat d'une exérèse est calculé en peropératoire à partir d'une imagerie préopératoire, et le chirurgien peut alors aller regarder sur l'imagerie scanner en cours d'opération le bilan de ses actes.- “Surgically Modified Imaging” is a new field made possible by the laser profilometer integrated into the endoscope which provides a real mapping of the reliefs encountered. We have already seen above that the software can interpret short distances by triggering alarms. On the other hand, if the topographic survey indicates a longer distance, this will be interpreted as a missing part of the preoperative architecture and will be translated as the result of a surgical excision. The scanning of a missing area will make it possible to modify the preoperative scanner imagery in real time and update it as the surgery progresses. We will have, for example, on CT imaging, the gradual erasure of a cluster of polyps, the collapse of a trepan wall, or the gradual constitution of an ethmoidal corridor. Thus the result of an excision is calculated intraoperatively from preoperative imaging, and the surgeon can then go and look at the imaging scanner during the operation for the results of his actions.
Plus précisément le vidéoendoscope à profilomètre laser intégré et positionné dans l'espace est constitué de la façon suivante :More precisely, the videoendoscope with an integrated laser profilometer positioned in space is made up as follows:
- Le vidéoendoscope rigide servant de base au système servant à visualiser la zone opératoire sur un écran vidéo au cours de l'opération est par exemple du type de ceux commercialisés par les sociétés Wolf, Storz...- The rigid videoendoscope used as a basis for the system used to visualize the operating area on a video screen during the operation is for example of the type of those marketed by the companies Wolf, Storz ...
- L' intégration du profilomètre laser se fait de la façon suivante : Le profilomètre laser intégré au vidéoendoscope est constitué d'une fibre optique monomode placée le long du tube de l'endoscope rigide acheminant un faisceau laser. La fibre optique monomode se termine quelques millimètres avant l'extrémité du tube endoscopique en regard avec la zone à observer. Le faisceau laser divergeant sortant de la fibre monomode est collimaté par une lentille à symétrie sphérique de manière préférée à gradient d'indice. La fibre optique monomode et la lentille à gradient d'indice sont disposées de façon à ce que l'axe du faisceau laser ainsi constitué soit coplanaire et fasse un angle fixe α avec l'axe optique de l'endoscope, le plan ainsi constitué sera nommé plan P. Pour cela l'axe de la fibre et celui de la lentille sont confondus et coplanaires avec l'axe optique de l'endoscope. Afin de pouvoir ajuster l'angle α à la valeur souhaitée, on place un prisme déviant le faisceau laser contre la lentille de collimation du faisceau, l'arête du prisme est perpendiculaire au plan défini par l'axe optique de l'endoscope et l'axe du faisceau laser afin de les maintenir coplanaires. On définit la base du profilomètre par la distance B du point O de l'axe optique appartenant à la face de sortie de l'endoscope à l'axe du faisceau laser. Une lentille cylindrique placée à rextrémité du tube endoscopique contre le prisme étale le faisceau laser en un trait perpendiculaire au plan P défini par l'axe optique du vidéoendoscope et l'axe du faisceau laser. Pour cela, l'axe du cylindre de la lentille cylindrique appartient au plan P. L'ensemble constitué de la fibre monomode, et des lentilles et prismes peut être inséré à la place d'une partie des fibres d'illumination de l'endoscope, ou inséré dans un tube fin soudé le long de l'endoscope. A l'entrée de la fibre monomode est injecté du rayonnement laser, la longueur de la fibre d'environ deux mètres permet de déporter la source de rayonnement laser, avantageusement constituée d'une diode laser. Un connecteur raccord fibre monomode - fibre monomode situé sur l'endoscope permet de raccorder le tronçon de fibre issu de la source laser déportée au tronçon de fibre interne à l'endoscope précédemment décrit amenant la lumière laser jusqu'à son extrémité. En fonction de la valeur de la base B, de l'angle α, et des caractéristiques de la caméra vidéo de l'endoscope, la déformation du trait laser vu sur la caméra vidéo permet de calculer pour chaque image vidéo, la distance et l'orientation de chaque point du trait par rapport au centre de la tête de l'endoscope. Pour le bon fonctionnement du dispositif principal il faut remplir trois exigences concernant le positionnement, le recalage et le contrôle : la première exigence est un positionnement de la partie du corps du patient sur laquelle on intervient, de l'endoscope et des instruments de chirurgie, la deuxième un recalage non invasif avec un ancrage osseux, la troisième exigence est un détecteur de dérive prévenant des disfonctionements du dispositif.- The integration of the laser profilometer is done in the following way: The laser profilometer integrated into the videoendoscope consists of a single mode optical fiber placed along the tube of the rigid endoscope conveying a laser beam. The single-mode optical fiber ends a few millimeters before the end of the endoscopic tube facing the area to be observed. The diverging laser beam leaving the single-mode fiber is collimated by a spherically symmetrical lens, preferably with an index gradient. The single-mode optical fiber and the index gradient lens are arranged so that the axis of the laser beam thus formed is coplanar and makes a fixed angle α with the optical axis of the endoscope, the plane thus formed will be called plane P. For this the axis of the fiber and that of the lens are merged and coplanar with the optical axis of the endoscope. In order to be able to adjust the angle α to the desired value, a prism deflecting the laser beam is placed against the beam collimating lens, the edge of the prism is perpendicular to the plane defined by the optical axis of the endoscope and l axis of the laser beam in order to keep them coplanar. The base of the profilometer is defined by the distance B from the point O of the optical axis belonging to the exit face of the endoscope to the axis of the laser beam. A cylindrical lens placed at the end of the endoscopic tube against the prism spreads the laser beam in a line perpendicular to the plane P defined by the optical axis of the videoendoscope and the axis of the laser beam. For this, the axis of the cylinder of the cylindrical lens belongs to the plane P. The assembly consisting of the single-mode fiber, and the lenses and prisms can be inserted in place of part of the illumination fibers of the endoscope , or inserted into a thin tube welded along the endoscope. Laser radiation is injected at the input of the single-mode fiber, the length of the fiber of approximately two meters makes it possible to offset the source of laser radiation, advantageously consisting of a laser diode. A connector for singlemode fiber - singlemode fiber located on the endoscope makes it possible to connect the section of fiber coming from the remote laser source to the section of fiber internal to the previously described endoscope bringing the laser light to its end. Depending on the value of the base B, the angle α, and the characteristics of the endoscope video camera, the deformation of the laser line seen on the video camera makes it possible to calculate for each video image, the distance and l orientation each point of the line relative to the center of the endoscope head. For the proper functioning of the main device, three requirements regarding positioning, registration and control must be fulfilled: the first requirement is a positioning of the part of the patient's body being worked on, the endoscope and surgical instruments, the second a non-invasive registration with a bone anchor, the third requirement is a drift detector preventing malfunctions of the device.
- Pour la première exigence le positionnement de la partie du corps du patient, de l'endoscope et des instruments se fait par les capteurs 3D connus de positionnement optique, mécanique ou magnétiques tels que décrits par exemple dans les références brevet US 5,230,623 pour une technique optique, brevets US 5,891,034 ou US 5,921,992 pour une technique mécanique, brevet PCT/US 95/11611 pour une technique magnétique.- For the first requirement, the positioning of the patient's body part, the endoscope and the instruments is done by known 3D sensors for optical, mechanical or magnetic positioning as described for example in the references US Pat. No. 5,230,623 for a technique optical, US patents 5,891,034 or US 5,921,992 for a mechanical technique, PCT / US patent 95/11611 for a magnetic technique.
- Pour la seconde exigence l'endoscope à profilomètre intégré permet également de faciliter la procédure de recalage en combinaison ou substitution avec les moyens connus de recalage tels que décrits par exemple dans la référence : Thèse Paris VT France [1996 S30] Elisabeth Cuchet, Stéréotaxie sans cadre : application à la chirurgie et à la radiothérapie. Pour cela nous balayons le trait laser de l'endoscope positionné sur les parties externes et internes du corps du patient afin d'en relever les profils internes et externes. Le recalage s'effectue en faisant coïncider la forme issue de ses profils avec ceux issus de l'imagerie scanner préopératoire. La position de coïncidence des formes, obtenue par minimisation des distances entres les surfaces issues de l'imagerie scanner et de la profilométrie laser, effectuée par l'ordinateur, fournit les données de référence du recalage. Dans le cas particulier de la chirurgie de la tête en stéréotaxie sans cadre, on peut avantageusement utiliser un ancrage osseux atraumatique pour les capteurs de position 3D de la tête, afin de fiabiliser le maintien du recalage. Cet ancrage est fait à partir d'une gouttière dentaire personnalisée, fournie au chirurgien pour chaque patient devant subir une chirurgie assistée par le système décrit. Sur sa face supérieure est étalée une pâte de prise d'empreinte. Au bloc opératoire, le chirurgien va placer la gouttière sur l'arcade dentaire et y clipper le capteur 3D sur sa face antérieure. Cette méthode fiable et reproductible, car liée à des repères osseux est également non invasive, la denture étant le seul élément directement accessible du squelette.- For the second requirement, the endoscope with integrated profilometer also makes it possible to facilitate the registration procedure in combination or substitution with known means of registration as described for example in the reference: Thèse Paris VT France [1996 S30] Elisabeth Cuchet, Stereotaxis without frame: application to surgery and radiotherapy. For this we scan the laser line of the endoscope positioned on the external and internal parts of the patient's body in order to identify the internal and external profiles. The registration is done by making the shape from its profiles coincide with those from preoperative CT imaging. The position of coincidence of the shapes, obtained by minimizing the distances between the surfaces from scanner imaging and laser profilometry, performed by the computer, provides the reference data for registration. In the particular case of head surgery in unframed stereotaxis, it is advantageous to use an atraumatic bone anchor for the 3D position sensors of the head, in order to make the maintenance of registration more reliable. This anchoring is done from a personalized dental gutter, supplied to the surgeon for each patient who is to undergo surgery assisted by the system described. On its upper face, an impression-taking paste is spread. In the operating room, the surgeon will place the splint on the dental arch and clip the 3D sensor onto its anterior surface. This reliable method and reproducible, because linked to bony landmarks is also non-invasive, the teeth being the only directly accessible element of the skeleton.
- Pour la troisième exigence l'ensemble du système peut être avantageusement complété par un détecteur de dérive prévenant d'un disfonctionnement du système. Il s'agit d'un profilomètre laser supplémentaire dit de surveillance et indépendant de l'endoscope. Il permet à partir d'un support solidaire de la table opératoire de projeter une ligne laser sur le visage du patient filmée par une caméra vidéo d'observation dont l'axe optique est décalé par rapport à l'axe de la ligne laser. La distorsion du trait permet de reconstituer le profil du visage. L'ensemble du système étant recalé, les différents points de la tête relevés par le profilomètre doivent coïncider avec la surface de la tête sur l'imagerie scanner si le système fonctionne correctement.- For the third requirement, the whole system can advantageously be supplemented by a drift detector warning of a system malfunction. It is an additional laser profilometer called monitoring and independent of the endoscope. It allows from a support secured to the operating table to project a laser line on the patient's face filmed by an observation video camera whose optical axis is offset from the axis of the laser line. The distortion of the line makes it possible to reconstruct the profile of the face. The whole system being readjusted, the different points of the head identified by the profilometer must coincide with the surface of the head on the scanner imagery if the system works correctly.
Dans le dispositif selon l'invention, l'imagerie scanner préopératoire peut être remplacée par tout autre procédé d'imagerie médicale numérisée (IRM, Echo 3D...). La réactualisation de l'imagerie préopératoire par les informations venant de l'endoscope, peut servir dans des domaines médicaux autres que la chirurgie endonasale (Traumatologie, neurochirurgie, implantologie...)In the device according to the invention, the preoperative scanner imaging can be replaced by any other digital medical imaging method (MRI, 3D Echo ...). Updating the preoperative imagery with information from the endoscope can be used in medical fields other than endonasal surgery (Traumatology, neurosurgery, implantology ...)
Selon une variante du dispositif, le trait laser projeté par le profilomètre intégré de l'endoscope peut être automatiquement déplacé grâce à un miroir actionné par un micro moteur incorporé à la poignée de l'endoscope. La correspondance de la totalité du profil de l'image vidéo est ainsi faite avec l'imagerie scanner avec un endoscope immobile.According to a variant of the device, the laser line projected by the integrated profilometer of the endoscope can be automatically displaced by means of a mirror actuated by a micro motor incorporated in the handle of the endoscope. The entire profile of the video image is therefore matched with scanner imaging with a stationary endoscope.
La figure 1 représente le profilomètre laser à triangulation intégré à l'endoscope. La figure 2 représente la déformation du trait laser le relief d'une paroi. La figure 3 représente la gouttière dentaire d'ancrage du capteur 3D de position.Figure 1 shows the triangulation laser profilometer integrated into the endoscope. FIG. 2 represents the deformation of the laser line, the relief of a wall. FIG. 3 represents the dental gutter for anchoring the 3D position sensor.
En référence à ces dessins un mode de réalisation préféré du dispositif est le suivant :With reference to these drawings, a preferred embodiment of the device is as follows:
Le support du dispositif est un vidéoendoscope rigide (1) de visualisation de la zone opératoire (2) constitué d'un tube endoscopique (3), d'une face de sortie comportant un objectif (4) d'axe optique (5). La caméra du vidéoendoscope (6) étant située à l'autre extrémité de l'endoscope (1). Le profilomètre laser à triangulation utilise le principe de la projection d'un trait laser (7) sur la surface visualisée. Le trait laser pourra être rouge de longueur d'onde de l'ordre de 670 nm avec une puissance totale de l'ordre de quelques mW. Ce trait laser est vu déformé (8) dans l'imagerie vidéo à cause du décalage de l'axe du trait laser (9) par rapport à l'axe optique (5) de l'endoscope. Cette déformation, en fonction des paramètres géométriques du dispositif permet, par calcul, de connaître la distance de chaque point du trait laser (7) à l'extrémité O de l'endoscope. Cette information de profil est obtenue à la cadence vidéo. L'endoscope est positionné dans l'espace par les dispositifs émetteurs (10) et récepteurs (11) de positionnement appartenant à l'état de l'art, et recalé par rapport à l'imagerie scanner préopératoire suivant les principes de la stéréotaxie. La position des points lasers du trait (7) sont donc repérés dans l'image scanner préopératoire à la cadence vidéo (temps réel). L'endoscope (1) muni du profilomètre laser permet ainsi de connaître la position du trait laser (7) projeté sur la zone d'intervention à la fois dans l'image de la caméra (6) de l'endoscope (1) et dans l'imagerie scanner préopératoire. Un léger mouvement de l'endoscope (1) permet de balayer le trait laser (7) sur une zone choisie ce qui donnera la correspondance entre son image endoscopique et son imagerie scanner préopératoire. Le faisceau laser est acheminé par une fibre monomode (12) placée le long du tube (3) de l'endoscope rigide acheminant un faisceau laser. La fibre optique monomode (12) se termine quelques millimètres avant l'extrémité du tube endoscopique en regard avec la zone à observer. Le faisceau laser divergeant sortant de la fibre monomode (12) est collimaté par une lentille à symétrie sphérique (13) de manière préférée à gradient d'indice. La fibre optique monomode (12) et la lentille à gradient d'indice (13) sont disposées de façon à ce que l'axe du faisceau laser (14) ainsi constitué soit coplanaire et fasse un angle fixe α avec l'axe optique (5) de l'endoscope, le plan ainsi constitué sera nommé plan P. Pour cela l'axe de la fibre (12) et celui de la lentille (13) sont confondus et coplanaires avec l'axe optique de l'endoscope (5). Afin de pouvoir ajuster l'angle α à la valeur souhaitée, on place un prisme (15) déviant le faisceau laser contre la lentille de collimation (13) du faisceau, l'arête du prisme (15) est perpendiculaire au plan défini par l'axe optique (5) de l'endoscope et l'axe du faisceau laser (14) afin de les maintenir coplanaires. On définit la base du profilomètre par la distance B du point O de l'axe optique appartenant à la face de sortie (4) de l'endoscope à l'axe (14) du faisceau laser. Cette base B vaut typiquement de l'ordre de quelques millimètres. Une lentille cylindrique (16) placée à l'extrémité du tube endoscopique (1) contre le prisme (15) étale le faisceau laser en un trait perpendiculaire (7) au plan P défini par Taxe optique (5) du vidéoendoscope et l'axe du faisceau laser (14). Pour cela, l'axe du cylindre de la lentille cylindrique (16) appartient au plan P. La position entre la sortie de la fibre mono mode (12) et la lentille à gradient d'indice (13) est ajustée de façon à optimiser la finesse du trait laser (7) en fin de plage de mesure qui est typiquement comprise entre 5cm et 15cm suivant le type de chirurgie pratiqué. L'ensemble constitué de la fibre monomode (12), des lentilles (13), (16) et du prisme (15) peut être inséré à la place d'une partie des fibres d'illumination de l'endoscope (1), ou inséré dans un tube fin soudé le long de l'endoscope (1). A l'entrée de la fibre monomode (12) est injecté du rayonnement laser, la longueur de la fibre d'environ deux mètres permet de déporter la source de rayonnement laser, avantageusement constituée d'une diode laser. Un connecteur raccord fibre monomode - fibre monomode situé sur l'endoscope permet de raccorder le tronçon de fibre issu de la source laser déportée au tronçon de fibre interne à l'endoscope précédemment décrit amenant la lumière laser jusqu'à son extrémité. En fonction de la valeur de la base B, de l'angle α, et des caractéristiques de la caméra vidéo de l'endoscope, la déformation du trait laser vu sur la caméra vidéo permet de calculer pour chaque image vidéo, la distance et l'orientation de chaque point du trait par rapport au centre de la tête de l'endoscope. L'acquisition numérique de la déformation du trait (8) se fait par la mesure pour chaque point de la distance (17) du bord gauche de la caméra au point du trait laser déformé de même hauteur. A chaque distance (17) correspond une valeur unilatérale de la distance du point O de la face de sortie de l'endoscope au point correspondant du trait laser en fonction de B,α, et des caractéristiques de la caméra vidéo.The support of the device is a rigid videoendoscope (1) for viewing the operating area (2) consisting of an endoscopic tube (3), an outlet face comprising an objective (4) of optical axis (5). The videoendoscope camera (6) being located at the other end of the endoscope (1). The triangulation laser profilometer uses the principle of the projection of a laser line (7) on the displayed surface. The laser line may be red with a wavelength of the order of 670 nm with a total power of the order of a few mW. This laser line is seen deformed (8) in video imaging due to the offset of the axis of the laser line (9) relative to the optical axis (5) of the endoscope. This deformation, as a function of the geometrical parameters of the device, makes it possible, by calculation, to know the distance from each point of the laser line (7) to the end O of the endoscope. This profile information is obtained at the video rate. The endoscope is positioned in space by the transmitter (10) and receiver (11) positioning devices belonging to the state of the art, and readjusted with respect to preoperative scanner imaging according to the principles of stereotaxis. The position of the laser points of the line (7) are therefore identified in the preoperative scanner image at the video rate (real time). The endoscope (1) fitted with the laser profilometer thus makes it possible to know the position of the laser line (7) projected onto the intervention area both in the image of the camera (6) of the endoscope (1) and in preoperative CT imaging. A slight movement of the endoscope (1) makes it possible to sweep the laser line (7) over a chosen area which will give the correspondence between its endoscopic image and its preoperative scanner imaging. The laser beam is conveyed by a single mode fiber (12) placed along the tube (3) of the rigid endoscope conveying a laser beam. The single mode optical fiber (12) ends a few millimeters before the end of the endoscopic tube facing the area to be observed. The diverging laser beam leaving the single-mode fiber (12) is collimated by a spherically symmetrical lens (13), preferably with an index gradient. The single-mode optical fiber (12) and the index gradient lens (13) are arranged so that the axis of the laser beam (14) thus formed is coplanar and makes a fixed angle α with the optical axis ( 5) of the endoscope, the plane thus formed will be called plane P. For this the axis of the fiber (12) and that of the lens (13) are coincident and coplanar with the optical axis of the endoscope (5 ). In order to be able to adjust the angle α to the desired value, a prism (15) deflecting the laser beam is placed against the collimating lens (13) of the beam, the edge of the prism (15) is perpendicular to the plane defined by l optical axis (5) of the endoscope and the axis of the laser beam (14) in order to keep them coplanar. The base of the profilometer is defined by the distance B from the point O of the optical axis belonging to the face. output (4) of the endoscope to the axis (14) of the laser beam. This base B is typically of the order of a few millimeters. A cylindrical lens (16) placed at the end of the endoscopic tube (1) against the prism (15) spreads the laser beam in a line perpendicular (7) to the plane P defined by Optical charge (5) of the videoendoscope and the axis of the laser beam (14). For this, the axis of the cylinder of the cylindrical lens (16) belongs to the plane P. The position between the output of the single mode fiber (12) and the index gradient lens (13) is adjusted so as to optimize the fineness of the laser line (7) at the end of the measurement range which is typically between 5 cm and 15 cm depending on the type of surgery performed. The assembly consisting of the single-mode fiber (12), the lenses (13), (16) and the prism (15) can be inserted in place of part of the illumination fibers of the endoscope (1), or inserted into a thin tube welded along the endoscope (1). At the entrance of the single mode fiber (12) is injected with laser radiation, the length of the fiber of about two meters makes it possible to offset the source of laser radiation, advantageously consisting of a laser diode. A connector for singlemode fiber - singlemode fiber located on the endoscope makes it possible to connect the section of fiber coming from the remote laser source to the section of fiber internal to the previously described endoscope bringing the laser light to its end. Depending on the value of the base B, the angle α, and the characteristics of the endoscope video camera, the deformation of the laser line seen on the video camera makes it possible to calculate for each video image, the distance and l orientation of each point of the line relative to the center of the endoscope head. The digital acquisition of the line deformation (8) is done by measuring for each point the distance (17) from the left edge of the camera to the point of the deformed laser line of the same height. Each distance (17) corresponds to a unilateral value of the distance from point O of the exit face of the endoscope to the corresponding point of the laser line as a function of B, α, and of the characteristics of the video camera.
Le positionnement de la tête (figure 3) se fait grâce à un capteur 3D (19) du même type de ceux utilisés pour les instruments, solidaire d'une gouttière dentaire personnalisée (18) ce qui garantit la solidarité avec les parois osseuses de la tête. La gouttière dentaire est composée d'un porte empreinte avec pâte. The positioning of the head (Figure 3) is done using a 3D sensor (19) of the same type as those used for the instruments, secured to a personalized dental tray (18) which guarantees solidarity with the bone walls of the head. The dental tray consists of an impression tray with paste.

Claims

REVENDICATIONS
1) Dispositif endoscopique (1) pour la chirurgie assistée par ordinateur caractérisé en ce qu'il intègre un profilomètre laser à triangulation, utilisant le principe de la projection d'un trait laser (7) sur la surface visualisée (2), ce trait laser est vu déformé (8) dans l'imagerie vidéo, cette déformation, fonction des paramètres géométriques du dispositif permet, par calcul, de connaître la distance de chaque point du trait laser à l'extrémité de l'endoscope, l'endoscope étant positionné dans l'espace et recalé par rapport à l'imagerie scanner préopératoire par les moyens de l'état de l'art (10),(11), la position des points lasers du trait (7) sont donc repérés dans l'image scanner préopératoire à la cadence vidéo, l'endoscope (1) muni du profilomètre laser permet ainsi de connaître la position du trait laser (7) projeté sur la zone d'intervention à la fois dans l'image de l'endoscope et dans l'imagerie scanner préopératoire, un léger mouvement de l'endoscope permet de balayer le trait laser (7) sur une zone choisie ce qui donne la correspondance entre son image endoscopique et son imagerie scanner préopératoire, ce qui forme un dispositif de fusion d'informations dans les différents systèmes d'imagerie : Apport des informations scanner dans l'imagerie vidéo, et modification du scanner préopératoire en fonction de l'exérèse chirurgicale.1) Endoscopic device (1) for computer-assisted surgery characterized in that it incorporates a triangulation laser profilometer, using the principle of the projection of a laser line (7) on the visualized surface (2), this line laser is seen deformed (8) in video imaging, this deformation, depending on the geometrical parameters of the device allows, by calculation, to know the distance from each point of the laser line to the end of the endoscope, the endoscope being positioned in space and readjusted in relation to preoperative scanner imaging by means of state of the art (10), (11), the position of the laser points of the line (7) are therefore identified in the preoperative image scanner at video rate, the endoscope (1) fitted with the laser profilometer thus makes it possible to know the position of the laser line (7) projected onto the intervention area both in the image of the endoscope and in preoperative CT imaging, slight movement of the endoscope makes it possible to scan the laser line (7) over a chosen area which gives the correspondence between its endoscopic image and its preoperative scanner imaging, which forms a device for merging information in the various imaging systems: Provision of scanner information in video imaging, and modification of the preoperative scanner depending on the surgical excision.
2) Dispositif selon la revendication 1 caractérisé en ce que le profilomètre laser intégré au vidéoendoscope est constitué d'une fibre optique monomode (12) placée le long du tube de l'endoscope rigide acheminant le faisceau laser, le faisceau laser divergeant sortant de la fibre monomode (12) étant collimaté par une lentille à symétrie sphérique (13) de manière préférée à gradient d'indice.2) Device according to claim 1 characterized in that the laser profilometer integrated into the videoendoscope consists of a single-mode optical fiber (12) placed along the rigid endoscope tube carrying the laser beam, the diverging laser beam leaving the single-mode fiber (12) being collimated by a spherically symmetrical lens (13), preferably with an index gradient.
3) Dispositif selon les revendications 1 et 2 caractérisé en ce que l'axe de la fibre (12) et celui de la lentille (13) sont confondus et coplanaires avec l'axe optique (5) de l'endoscope.3) Device according to claims 1 and 2 characterized in that the axis of the fiber (12) and that of the lens (13) are coincident and coplanar with the optical axis (5) of the endoscope.
4) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que la fibre optique monomode (12) et la lentille à gradient d'indice (13) sont disposées de façon à ce que l'axe du faisceau laser (14) ainsi constitué soit coplanaire et fasse un angle fixe α avec l'axe optique (5) de l'endoscope, et que l'on puisse ajuster l'angle α à la valeur souhaitée en plaçant un prisme (15) déviant le faisceau laser contre la lentille de collimation du faisceau, l'arête du prisme étant perpendiculaire au plan défini par l'axe optique (5) de l'endoscope et l'axe (14) du faisceau laser.4) Device according to any one of the preceding claims, characterized in that that the single-mode optical fiber (12) and the index gradient lens (13) are arranged so that the axis of the laser beam (14) thus formed is coplanar and makes a fixed angle α with the optical axis (5) of the endoscope, and that the angle α can be adjusted to the desired value by placing a prism (15) deflecting the laser beam against the beam collimating lens, the edge of the prism being perpendicular to the plane defined by the optical axis (5) of the endoscope and the axis (14) of the laser beam.
5) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que une lentille cylindrique (16) placée à l'extrémité du tube endoscopique contre le prisme (15) étale le faisceau laser en un trait perpendiculaire (7) au plan P défini par l'axe optique du vidéoendoscope (5) et l'axe du faisceau laser (14), l'axe du cylindre de la lentille cylindrique (16) appartenant au plan P.5) Device according to any one of the preceding claims, characterized in that a cylindrical lens (16) placed at the end of the endoscopic tube against the prism (15) spreads the laser beam in a line perpendicular (7) to the defined plane P by the optical axis of the videoendoscope (5) and the axis of the laser beam (14), the axis of the cylinder of the cylindrical lens (16) belonging to the plane P.
6) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que l'ensemble constitué de la fibre monomode (12), et des lentilles (13), (16) et prismes (15) peut être inséré à la place d'une partie des fibres d'illumination de l'endoscope, ou inséré dans un tube fin soudé le long de l'endoscope (1).6) Device according to any one of the preceding claims, characterized in that the assembly consisting of the single-mode fiber (12), and the lenses (13), (16) and prisms (15) can be inserted in place of part of the illumination fibers of the endoscope, or inserted into a thin tube welded along the endoscope (1).
7) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que en fonction de la valeur de la base B, de l'angle α, et des caractéristiques de la caméra vidéo (6) de l'endoscope, la déformation du trait laser (8) vue sur la caméra vidéo permet de calculer pour chaque image vidéo, la distance et l'orientation de chaque point du trait par rapport au centre de la tête de l'endoscope.7) Device according to any one of the preceding claims, characterized in that as a function of the value of the base B, of the angle α, and of the characteristics of the video camera (6) of the endoscope, the deformation of the line laser (8) view on the video camera makes it possible to calculate for each video image, the distance and the orientation of each point of the line with respect to the center of the endoscope head.
8) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que l'endoscope à profilomètre intégré permet de faciliter la procédure de recalage en combinaison ou substitution avec les moyens connus de recalage en balayant le trait laser (7) de l'endoscope positionné sur les parties externes et internes du corps du patient afin d'en relever les profils internes et externes, le recalage s'effectue en faisant coïncider la forme issue de ces profils avec ceux issus de l'imagerie scanner préopératoire, la position de coïncidence des formes, obtenue par minimisation des distances entres les surfaces issues de l'imagerie scanner et de la profilométrie laser, effectuée par l'ordinateur, fournit les données de référence du recalage.8) Device according to any one of the preceding claims, characterized in that the endoscope with integrated profilometer makes it possible to facilitate the registration procedure in combination or substitution with the known registration means by scanning the laser line (7) of the endoscope. positioned on the external and internal parts of the patient's body in order to raise the internal and external profiles, the registration is carried out in making the shape from these profiles coincide with those from preoperative scanner imaging, the position of coincidence of the shapes, obtained by minimizing the distances between the surfaces from scanner imaging and laser profilometry, performed by the computer , provides reference data for registration.
9) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que le système est complété par un détecteur de dérive prévenant d'un disfonctionnement du système, constitué d'un profilomètre laser supplémentaire dit de surveillance et indépendant de l'endoscope, il permet à partir d'un support solidaire de la table opératoire de projeter une ligne laser sur le visage du patient filmée par une caméra vidéo d'observation dont l'axe optique est décalé par rapport à l'axe de la ligne laser, la distorsion du trait permet de reconstituer le profil du visage, l'ensemble du système étant recalé, les différents points de la tête relevés par le profilomètre doivent coïncider avec la surface de la tête sur l'imagerie scanner si le système fonctionne correctement.9) Device according to any one of the preceding claims, characterized in that the system is completed by a drift detector warning of a malfunction of the system, consisting of an additional laser profilometer called monitoring independent of the endoscope, it allows from a support integral with the operating table to project a laser line on the patient's face filmed by an observation video camera whose optical axis is offset from the axis of the laser line, the distortion of the line allows to reconstitute the profile of the face, the whole system being readjusted, the different points of the head noted by the profilometer must coincide with the surface of the head on the imaging scanner if the system works correctly.
10) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que le positionnement de la tête du patient opéré est obtenu grâce à un capteur 3D solidaire d'une gouttière dentaire personnalisée assurant un ancrage osseux non invasif.10) Device according to any one of the preceding claims, characterized in that the positioning of the head of the operated patient is obtained by means of a 3D sensor secured to a personalized dental tray ensuring non-invasive bone anchoring.
11) Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que l'imagerie scanner préopératoire puisse être remplacée par tout autre procédé d'imagerie médicale numérisée ( IRM, écho 3D). 11) Device according to any one of the preceding claims, characterized in that the preoperative scanner imaging can be replaced by any other digital medical imaging process (MRI, 3D echo).
PCT/FR2000/003181 1999-11-18 2000-11-16 Secure videoscopic apparatus with laser profilometer for computer-assisted surgery WO2001035849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20140/01A AU2014001A (en) 1999-11-18 2000-11-16 Secure videoscopic apparatus with laser profilometer for computer-assisted surgery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9914483A FR2801185A1 (en) 1999-11-18 1999-11-18 SECURE VIDEO ENDOSCOPE WITH INTEGRATED LASER PROFILOMETER FOR COMPUTER-ASSISTED SURGERY
FR99/14483 1999-11-18

Publications (1)

Publication Number Publication Date
WO2001035849A1 true WO2001035849A1 (en) 2001-05-25

Family

ID=9552241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003181 WO2001035849A1 (en) 1999-11-18 2000-11-16 Secure videoscopic apparatus with laser profilometer for computer-assisted surgery

Country Status (3)

Country Link
AU (1) AU2014001A (en)
FR (1) FR2801185A1 (en)
WO (1) WO2001035849A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077272A1 (en) * 2004-02-11 2005-08-25 Karl Storz Gmbh & Co. Kg Method and device for creating at least one section of a virtual 3d model of a body cavity
EP1857070A1 (en) * 2006-05-18 2007-11-21 BrainLAB AG Contactless medical registration with distance measurement
WO2007068017A3 (en) * 2005-12-14 2008-05-08 Univ Innsbruck Medical navigation system
EP2148630A1 (en) * 2007-04-24 2010-02-03 Medtronic, Inc. Navigated soft tissue penetrating laser system
WO2012049326A3 (en) * 2010-10-15 2012-08-16 Scopis Gmbh Method and device for calibrating an optical system, distance determining device, and optical system
WO2012113484A1 (en) * 2011-02-25 2012-08-30 Hicat Gmbh Surgical instrument having integrated navigation control
EP2976015A4 (en) * 2014-02-21 2016-03-09 3Dintegrated Aps A set comprising a surgical instrument

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009151A1 (en) 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
FR2719760A1 (en) 1994-05-13 1995-11-17 Francois Allouche Process of computer simulated radioscopy and aid to surgery.
WO1996008209A2 (en) 1994-09-15 1996-03-21 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patient's head
US5669871A (en) * 1994-02-21 1997-09-23 Olympus Optical Co., Ltd. Endoscope measurement apparatus for calculating approximate expression of line projected onto object to measure depth of recess or the like
US5704897A (en) * 1992-07-31 1998-01-06 Truppe; Michael J. Apparatus and method for registration of points of a data field with respective points of an optical image
US5795294A (en) * 1994-05-21 1998-08-18 Carl-Zeiss-Stiftung Procedure for the correlation of different coordinate systems in computer-supported, stereotactic surgery
US5823958A (en) * 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5891034A (en) 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
WO1999038449A1 (en) * 1998-01-28 1999-08-05 Cosman Eric R Optical object tracking system
US5954647A (en) * 1995-02-14 1999-09-21 University Of Florida Research Foundation, Inc. Marker system and related stereotactic procedure

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186174A (en) 1987-05-21 1993-02-16 G. M. Piaff Process and device for the reproducible optical representation of a surgical operation
WO1988009151A1 (en) 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US5891034A (en) 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5823958A (en) * 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5704897A (en) * 1992-07-31 1998-01-06 Truppe; Michael J. Apparatus and method for registration of points of a data field with respective points of an optical image
US5669871A (en) * 1994-02-21 1997-09-23 Olympus Optical Co., Ltd. Endoscope measurement apparatus for calculating approximate expression of line projected onto object to measure depth of recess or the like
FR2719760A1 (en) 1994-05-13 1995-11-17 Francois Allouche Process of computer simulated radioscopy and aid to surgery.
US5795294A (en) * 1994-05-21 1998-08-18 Carl-Zeiss-Stiftung Procedure for the correlation of different coordinate systems in computer-supported, stereotactic surgery
WO1996008209A2 (en) 1994-09-15 1996-03-21 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patient's head
US5954647A (en) * 1995-02-14 1999-09-21 University Of Florida Research Foundation, Inc. Marker system and related stereotactic procedure
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
WO1999038449A1 (en) * 1998-01-28 1999-08-05 Cosman Eric R Optical object tracking system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADAMS L ET AL: "AN OPTICAL NAVIGATOR FOR BRAIN SURGERY", COMPUTER,US,IEEE COMPUTER SOCIETY, LONG BEACH., CA, US, vol. 29, no. 1, 1996, pages 48 - 54, XP000551491, ISSN: 0018-9162 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005077272A1 (en) * 2004-02-11 2005-08-25 Karl Storz Gmbh & Co. Kg Method and device for creating at least one section of a virtual 3d model of a body cavity
US7794388B2 (en) 2004-02-11 2010-09-14 Karl Storz Gmbh & Co. Kg Method and apparatus for generating at least one section of a virtual 3D model of a body interior
WO2007068017A3 (en) * 2005-12-14 2008-05-08 Univ Innsbruck Medical navigation system
EP1857070A1 (en) * 2006-05-18 2007-11-21 BrainLAB AG Contactless medical registration with distance measurement
EP2148630A1 (en) * 2007-04-24 2010-02-03 Medtronic, Inc. Navigated soft tissue penetrating laser system
WO2012049326A3 (en) * 2010-10-15 2012-08-16 Scopis Gmbh Method and device for calibrating an optical system, distance determining device, and optical system
US9068820B2 (en) 2010-10-15 2015-06-30 Scopis Gmbh Method and device for calibrating an optical system, distance determining device, and optical system
WO2012113484A1 (en) * 2011-02-25 2012-08-30 Hicat Gmbh Surgical instrument having integrated navigation control
EP2976015A4 (en) * 2014-02-21 2016-03-09 3Dintegrated Aps A set comprising a surgical instrument

Also Published As

Publication number Publication date
FR2801185A1 (en) 2001-05-25
AU2014001A (en) 2001-05-30

Similar Documents

Publication Publication Date Title
US20240102795A1 (en) Generation of one or more edges of luminosity to form three-dimensional models of scenes
US11617492B2 (en) Medical three-dimensional (3D) scanning and mapping system
US20210113309A1 (en) Intraoral scanning system with registration warnings
JP6776327B2 (en) Cannula Assembly Kit, Needle Assembly Kit, Sleeve Assembly, Minimally Invasive Surgical System and Methods
CN108289598B (en) Drawing system
US20190046276A1 (en) Guided surgery apparatus and method
ES2341079B1 (en) EQUIPMENT FOR IMPROVED VISION BY INFRARED VASCULAR STRUCTURES, APPLICABLE TO ASSIST PHYTOSCOPIC, LAPAROSCOPIC AND ENDOSCOPIC INTERVENTIONS AND SIGNAL TREATMENT PROCESS TO IMPROVE SUCH VISION.
CA2691042C (en) Multi-application robotised platform for neurosurgery and resetting method
Fuchs et al. Augmented reality visualization for laparoscopic surgery
ES2292593T3 (en) GUIDING SYSTEM
US20170215971A1 (en) System and method for 3-d tracking of surgical instrument in relation to patient body
US6975898B2 (en) Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US20050033142A1 (en) Method of indexing biological imaging data using a three-dimensional body representation
EP2207482A1 (en) Imaging system using infrared light
WO2020045015A1 (en) Medical system, information processing device and information processing method
WO2000052643A1 (en) Endoscopic observation device
WO2013175827A1 (en) Image capture device and image capture method
US11698535B2 (en) Systems and methods for superimposing virtual image on real-time image
WO2001035849A1 (en) Secure videoscopic apparatus with laser profilometer for computer-assisted surgery
CA3212798A1 (en) Medical robot for placement of medical instruments under ultrasound guidance
JP2016158911A (en) Surgical operation method using image display device, and device using in surgical operation
Deliyski et al. Laser-calibrated system for transnasal fiberoptic laryngeal high-speed videoendoscopy
Van der Jeught et al. Real-time structured light-based otoscopy for quantitative measurement of eardrum deformation
EP4230168A1 (en) Robotic spinal surgery system
US20230222740A1 (en) Medical image processing system, surgical image control device, and surgical image control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase