WO2001035503A1 - Fibre laser - Google Patents

Fibre laser Download PDF

Info

Publication number
WO2001035503A1
WO2001035503A1 PCT/FR2000/003103 FR0003103W WO0135503A1 WO 2001035503 A1 WO2001035503 A1 WO 2001035503A1 FR 0003103 W FR0003103 W FR 0003103W WO 0135503 A1 WO0135503 A1 WO 0135503A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
section
doped
multimode
order
Prior art date
Application number
PCT/FR2000/003103
Other languages
French (fr)
Inventor
David Pureur
Benoît Cadier
Brice Kerrinckx
Jean-François Bayon
Original Assignee
Highwave Optical Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Highwave Optical Technologies filed Critical Highwave Optical Technologies
Priority to AU14007/01A priority Critical patent/AU1400701A/en
Publication of WO2001035503A1 publication Critical patent/WO2001035503A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2303/00Pumping wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Definitions

  • the present invention relates to the field of power fiber lasers. More specifically, the present invention aims to develop a power fiber laser capable of emitting transverse single mode radiation at 980 nm.
  • Lasers in particular at 980 nm, have already been produced in ytterbium-doped single-mode fibers with a power of a few tens of milliwatts [3].
  • the small size of the fiber core and its low numerical aperture do not allow the energy delivered by power pump diodes to be collected.
  • Double-clad fiber technology was developed in the 1990s to improve the available power of fiber lasers (up to several tens of Watts).
  • the pump wave is guided in the multimode structure of the fiber while the laser wave is generated only in the single-mode core.
  • the laser radiation thus has all the properties of spatial coherence of a single-mode fiber laser however with high power due to multimode pumping.
  • Such power lasers exist in the emission band [1.01 ⁇ m-1.162 ⁇ m] of the ytterbium ion but not in the second band [0.975 ⁇ m, 0.985 ⁇ m].
  • the object of the present invention is to remedy this difficulty.
  • a section of sheathed amplifying optical fiber consisting of a double cladding fiber comprising a core surrounded by two successive claddings, the refractive indices of which are suitable for defining a multimode optical guide, so that the pump wave is guided in the multimode structure of the fiber formed by the two sheaths,
  • FIG. 1 represents the general structure of a device according to the present invention forming a fiber laser cavity at 980 nm using a double clad fiber,
  • FIG. 2 represents a schematic view in cross section of a double-clad fiber comprising a multimode rectangular guide according to a first variant of the invention
  • FIG. 3 shows a similar schematic view in cross section of a double clad fiber comprising an undoped core surrounded by a doped ring in accordance with another alternative embodiment of the present invention
  • FIG. 4 represents the general structure of a device according to the present invention corresponding to a variant of FIG. 1 in which reflectors framing the laser cavity are located outside the double-clad fiber,
  • FIG. 5 represents the spectrum of the fluorescence of the fibers illustrated in FIGS. 2 and 3 in the spectral band [876 nm, 1076 nm], and
  • FIG. 6 shows the emission spectrum of the laser device according to the present invention emitting radiation at 978 nm.
  • FIG. 1 shows the general structure of a device according to the present invention.
  • At least one or more reflectors 20, 25 disposed respectively on the ends of this section 10 of fiber
  • a filter 30 forming a band cut beyond 1030 nm integrated in the fiber 10 between the reflectors 20, 25, and - a system of pump diodes 40 emitting from 915 nm to 930 nm placed opposite a first end of said fiber 10.
  • An injection device 50 can be placed between this pump diode system 40 and the fiber 10.
  • the injection device 50 can be longitudinal or transverse relative to the axis of the fiber.
  • the radiation at 980 nm coming from the fiber laser cavity thus formed can be recovered for example in a single mode fiber 60 at 950 nm welded at 62 on the second end of the sheathed fiber section 10.
  • g P [- ⁇ a p (1-x)] r p NL (1)
  • g s [ ⁇ e s x- ⁇ a S (1-x)] r s NL (2)
  • g denotes the linear gain (g In (P 0 u t / Pin) with P in and P or t the input and output powers)
  • ⁇ a and ⁇ e the absorption and emission cross sections
  • r the overlap factor between the optical wave and the doped region
  • N density of ytterbium ions
  • L the fiber length and x the fraction of excited ions (or population inversion rate).
  • the indices p and s differentiate the pump wave (915 nm) from the emitted laser wave (980 nm).
  • x - ⁇ ln (R ⁇ R 2 ) 1/2 ⁇ / ⁇ ( ⁇ e s + ⁇ a s ) T s NL ⁇ + ⁇ a s / ( ⁇ e s + ⁇ a s ) ⁇ (3)
  • Ri and R 2 denote the reflection coefficients of the two reflectors which close the cavity at each fiber end.
  • P se uii - ANL x / ⁇ for long cavity lengths (4) ⁇ is the lifetime of the upper level of the laser transition.
  • the fluorescence spectrum of a ytterbium-doped fiber 10 optically pumped by a laser 40 emitting radiation at 915 nm is shown in FIG. 5.
  • the competition between the absorption ⁇ a and emission ⁇ e cross sections gives fluorescence important centered at 980 nm and 1030 nm.
  • the shape of this spectrum depends on the formers and modifiers of the vitreous matrix such as germanium and aluminum. It also depends on the length of amplifying fiber 10.
  • a high concentration of aluminum will, for example, smooth the fluorescence peak at 1030 nm without modifying the spectrum at 980 nm.
  • a long length of fiber 10 will decrease the inversion of average population x and shift the spectrum towards the long wavelengths.
  • the configuration of the laser in accordance with the present invention makes it possible to obtain a single mode guided laser emission from a few milliwatts to several hundred milliwatts around 980 nm, with a system of multimode pump diodes 40 delivering a power of 1 to 10 Watts towards 915. nm.
  • Two geometries of laser fiber 10 (respectively with a heart or a doped ring) have been developed by the Applicant with ytterbium ion concentrations, mode overlays and optimal guided structures.
  • the fiber 10 used in the context of the present invention comprises a core 12 (simple according to Figure 2, surrounded by a ring 14 according to Figure 3) placed in a multimode sheath 15 , itself surrounded by a polymer sheath 18.
  • the multimode optical sheath 15 has an asymmetrical shape (rectangular with small rounded or non-rounded sides) to eliminate the helical modes. These modes indeed have a spatial distribution in minimum intensity in the region of the core and maximum on the edges of the multimode fiber. To obtain a rectangular shape, the preform is first machined before being fiberized and then protected by the polymer sheath 18.
  • the core 12 of the fiber 10 is doped with germanium or aluminum and ytterbium ions. It should be noted that this is not true for commercially available double clad fibers, exclusively doped with aluminum which, by virtue of its trivalent structure, makes it possible to incorporate a high concentration of ytterbium.
  • the guided propagation theory in a single-mode fiber gives an overlap factor r s (between the laser wave and the doped core) of the order of 0.8.
  • A area of the rectangle corresponding to the section of the multimode sheath 15 and B the area of the doped zone (here the heart 12).
  • r p is therefore 400 times lower here than in single-mode propagation regime.
  • N and L the terms that tends to disturb the linear gains g s at 1030 nm and at 980 nm.
  • the laser threshold at 1030 nm is thus reduced while that at 980 nm is increased, which is detrimental for the application intended in the context of the present invention.
  • the present invention nevertheless makes it possible to produce a laser at 980 nm by placing an attenuating filter 30 at 1030 nm on the fiber section 10, in order to eliminate the disturbing fluorescence.
  • Such an intra-cavity component 30 can be a dissipative Bragg grating.
  • the network type with lines inclined with respect to the axis of the fiber.
  • Such a network couples the energy from the guided mode in the heart to the radiative modes.
  • the fiber then has a transmission drop at the desired wavelength.
  • the heart 12 of the fiber 10 is doped only with germanium while a ring 14 centered around the heart 12 is itself doped with ytterbium.
  • the vitreous matrix, at the location of the ring 14, is codoped with either germanium or aluminum (depending on the concentration of ytterbium ions).
  • the second doping profile thus makes it possible to keep a linear gain g s at 1030nm lower than at 980nm while increasing the fiber length to obtain sufficient absorption.
  • the polymer or silicone material 18 which covers the optical sheath 15 is a product whose refractive index (n ⁇ 1.4) makes it possible to have a multimode optical guide with a large digital aperture.
  • the power emitted by the diode 40 is thus more effectively captured by the guiding structure.
  • the parameters of the core 12 of the fiber are further adapted so that the diameter of the fundamental mode is identical to that of a standard single-mode fiber at 980 nm.
  • the double-clad fiber illustrated in FIGS. 2 or 3 preferably meets the following characteristics:
  • the laser cavity can consist of two Bragg gratings 20, 25, a few meters apart, photoinscribed in the single-mode core 12 of the double clad fiber. Photo-registration is made possible with UV radiation at 244 nm thanks to doping of the heart 12 with germanium. Indeed, with doping of the aluminum core 12, photo-registration at 244 nm is made impossible.
  • a standard photo-registration bench consisting of a UV laser and an interferometric device can be used for this purpose. To increase the photosensitivity of the fiber, it is preferably placed in a hydrogen tank under high pressure. Saturated reflectors have thus been manufactured in order to obtain a cavity with a high quality coefficient and therefore a low laser threshold.
  • Dielectric layers deposited at the end of double-clad fiber can also be used with fibers doped with aluminum.
  • the spectral selectivity of the reflectors makes it possible to obtain widths of laser line ranging from a few gigahertz up to several nanometers.
  • FIG. 4 illustrates another configuration of cavity which includes reflectors 20, 25 produced respectively on sections of a standard single-mode fiber 64, 66 (and not on the double clad fiber as described for FIG. 1) . These pieces of fiber 64, 66 are then welded to each end of the double sheath fiber 10 at 63, 65.
  • FIG. 4 The structure of the device illustrated in FIG . 4 is for the rest in accordance with the architecture illustrated in FIG. 1.
  • FIG. 4 indeed shows: the pump diode 40 associated with an injection device 50 and a fiber 10 with double sheath comprising a band cutting filter 30.
  • Reflectivity Ri for the reflector 20 99.9%
  • Reflectivity R 2 for the reflector 25 from 4 to 90% Length of the cavity: a few meters
  • the diode 40 is mounted on a Peltier device.
  • the dimensions of the mechanical housing grouping the entire system, namely the double gain fiber 10, the reflectors 20, 25, the filter 30, the pump diode 40 and the system 50 for injection into the multimode part of the fiber are typically of the order of 100 * 50 * 30 mm 3 .
  • the output fiber 60, 66 can be a standard Flexcor 1060 single mode fiber at 950 nm.
  • a version of the device according to the invention may contain a fiber isolator at 980 nm located at the output of the laser diode and an integrated modulator.
  • Such a single mode power laser is particularly intended for the telecommunications market.
  • it makes it possible to pump erbium-doped fiber amplifiers with greater efficiency than previous systems.
  • These amplifiers are the key elements of optical transmission and are currently limited by the low power (200 mW maximum) of the pump laser diodes at 980 nm. Higher power laser diodes are also available on the market but at much higher cost.
  • Another application of such power lasers is Raman amplification. This type of optical regeneration does not require population inversion and is therefore not limited by the absorption bands accessible to rare earth ions.
  • Raman amplification which is currently booming, makes it possible to widen the bandwidth of optical telecommunications towards low wavelengths (up to 1455 nm).
  • the industrial outcome of these lasers is thus compatible with telecommunications but also more generally with industrial control techniques by laser, medical, and research.
  • the present invention is not limited to the particular embodiment which has just been described, but extends to all variants in accordance with its spirit.

Abstract

The invention concerns a device forming a fibre power laser emitting a controlled transverse monomode radiation. The invention is characterised in that it comprises: a pump source (40), a clad amplifying optical fibre section (10) consisting of a double-clad fibre comprising a core (12) enclosed in two successive sheaths (15, 18), whereof the refractive indices are suited for defining a multimode optical structure, such that the pump wave is guided in the multimode structure of the fibre formed by the two sheaths (15, 18), two reflectors (20, 25) arranged on the ends of said section (10), consisting of diffraction gratings selected in the group comprising Bragg grating or reflecting dielectric filters, and a bandstop filter (30) capable of emitting a laser radiation centred at about 980 nm in the section.

Description

LASER A FIBREFIBER LASER
La présente invention concerne le domaine des lasers à fibre de puissance. Plus précisément, la présente invention a pour but de développer un laser à fibre de puissance apte à émettre un rayonnement monomode transverse à 980 nm.The present invention relates to the field of power fiber lasers. More specifically, the present invention aims to develop a power fiber laser capable of emitting transverse single mode radiation at 980 nm.
Le domaine des lasers à fibre de puissance a déjà donné lieu à une littérature abondante. A titre d'exemples non limitatifs, l'on pourra se reporter aux référencesThe field of power fiber lasers has already given rise to an abundant literature. By way of nonlimiting examples, reference may be made to the references
[1] L. Zenteno, "High power double-clad fiber lasers", Journal of Lightwave[1] L. Zenteno, "High power double-clad fiber lasers", Journal of Lightwave
Optical Technology, 11 , 1993.Optical Technology, 11, 1993.
[2] G. Mitchard et al. "Double-clad fibers enable lasers to handle high power", Laser Focus World, Jan. , 1999.[2] G. Mitchard et al. "Double-clad fibers enable lasers to handle high power", Laser Focus World, Jan. , 1999.
[3] R. Paschotta et al., "ytterbium-doped fiber amplifiers", IEEE Journal of[3] R. Paschotta et al., "Ytterbium-doped fiber amplifiers", IEEE Journal of
Quantum Electronics 33, 1997.Quantum Electronics 33, 1997.
[4] B. J. Ainslie et al., "the absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber", Journal of Lightwave optical Technology 6, 1998.[4] B. J. Ainslie et al., "The absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber", Journal of Lightwave optical Technology 6, 1998.
[5] A. Bertoni et al., "A model for the optimization of double-clad fiber laser opération", Applied Physics B66, 1988.[5] A. Bertoni et al., "A model for the optimization of double-clad fiber laser operation", Applied Physics B66, 1988.
Des lasers notamment à 980 nm ont déjà été réalisés dans des fibres monomodes dopées ytterbium avec une puissance de quelques dizaines de milliwatts [3]. Néanmoins, la petite dimension du cœur de la fibre et sa faible ouverture numérique ne permettent pas de collecter l'énergie délivrée par des diodes de pompe de puissance. La technologie des fibres à double gaine a été développée dans les années 1990 pour améliorer la puissance disponible des lasers à fibre (jusqu'à plusieurs dizaines de Watts). Dans cette configuration, l'onde de pompe est guidée dans la structure multimode de la fibre tandis que l'onde laser est générée uniquement dans le coeur monomode. Le rayonnement laser possède ainsi toutes les propriétés de cohérence spatiale d'un laser à fibre monomode avec toutefois une forte puissance due au pompage multimode. De tels lasers de puissance existent dans la bande d'émission [1.01 μm-1.162 μm] de l'ion ytterbium mais pas dans la seconde bande [0.975 μm, 0.985 μm].Lasers, in particular at 980 nm, have already been produced in ytterbium-doped single-mode fibers with a power of a few tens of milliwatts [3]. However, the small size of the fiber core and its low numerical aperture do not allow the energy delivered by power pump diodes to be collected. Double-clad fiber technology was developed in the 1990s to improve the available power of fiber lasers (up to several tens of Watts). In this configuration, the pump wave is guided in the multimode structure of the fiber while the laser wave is generated only in the single-mode core. The laser radiation thus has all the properties of spatial coherence of a single-mode fiber laser however with high power due to multimode pumping. Such power lasers exist in the emission band [1.01 μm-1.162 μm] of the ytterbium ion but not in the second band [0.975 μm, 0.985 μm].
En effet, malgré les nombreuses recherches conduites dans le domaine, à la connaissance de la Demanderesse, jusqu'ici l'on n'a pas su développer des lasers à fibre de puissance émettant un rayonnement centré vers 980nm.In fact, despite the numerous researches carried out in the field, to the knowledge of the Applicant, so far we have not been able to develop power fiber lasers emitting radiation centered around 980nm.
La présente invention a pour but de remédier à cette difficulté.The object of the present invention is to remedy this difficulty.
Ce but est atteint dans le cadre de la présente invention, grâce à un dispositif comprenant :This object is achieved in the context of the present invention, thanks to a device comprising:
- une source de pompe,- a pump source,
- un tronçon de fibre optique amplificatrice gainée constituée d'une fibre à double gaine comportant un cœur entouré de deux gaines successives, dont les indices de réfraction sont propres à définir un guide optique multimode, de sorte que l'onde de pompe soit guidée dans la structure multimode de la fibre formée par les deux gaines,- a section of sheathed amplifying optical fiber consisting of a double cladding fiber comprising a core surrounded by two successive claddings, the refractive indices of which are suitable for defining a multimode optical guide, so that the pump wave is guided in the multimode structure of the fiber formed by the two sheaths,
- deux réflecteurs disposés sur les extrémités de ce tronçon, constitués de réseaux de diffraction choisis dans le groupe comprenant des réseaux de Bragg ou des filtres diélectriques réflecteurs, et - un filtre coupe bande apte à émettre un rayonnement laser centré vers 980 nm dans ledit tronçon.- two reflectors arranged on the ends of this section, made up of diffraction gratings chosen from the group comprising Bragg gratings or reflective dielectric filters, and - a band-cut filter capable of emitting laser radiation centered around 980 nm in said section .
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et en regard des dessins annexés, donnés à titre d'exemple non limitatif et sur lesquels :Other characteristics, aims and advantages of the present invention will appear on reading the detailed description which follows and with reference to the appended drawings, given by way of nonlimiting example and in which:
- la figure 1 représente la structure générale d'un dispositif conforme à la présente invention formant une cavité laser à fibre à 980 nm à l'aide d'une fibre à double gaine,FIG. 1 represents the general structure of a device according to the present invention forming a fiber laser cavity at 980 nm using a double clad fiber,
- la figure 2 représente une vue schématique en coupe transversale d'une fibre à double gaine comportant un guide rectangulaire multimode conforme à une première variante de l'invention,FIG. 2 represents a schematic view in cross section of a double-clad fiber comprising a multimode rectangular guide according to a first variant of the invention,
- la figure 3 représente une vue schématique similaire en coupe transversale d'une fibre à double gaine comprenant un cœur non dopé entouré d'un anneau dopé conforme à une autre variante de réalisation de la présente invention,- Figure 3 shows a similar schematic view in cross section of a double clad fiber comprising an undoped core surrounded by a doped ring in accordance with another alternative embodiment of the present invention,
- la figure 4 représente la structure générale d'un dispositif conforme à la présente invention correspondant à une variante de la figure 1 dans laquelle des réflecteurs encadrant la cavité laser sont situés en dehors de la fibre à double gaine,FIG. 4 represents the general structure of a device according to the present invention corresponding to a variant of FIG. 1 in which reflectors framing the laser cavity are located outside the double-clad fiber,
- la figure 5 représente le spectre de la fluorescence des fibres illustrées sur les figures 2 et 3 dans la bande spectrale [876 nm, 1076 nm], etFIG. 5 represents the spectrum of the fluorescence of the fibers illustrated in FIGS. 2 and 3 in the spectral band [876 nm, 1076 nm], and
- la figure 6 représente le spectre d'émission du dispositif laser conforme à la présente invention émettant un rayonnement à 978 nm.- Figure 6 shows the emission spectrum of the laser device according to the present invention emitting radiation at 978 nm.
On a représenté sur la figure 1 la structure générale d'un dispositif conforme à la présente invention.FIG. 1 shows the general structure of a device according to the present invention.
On aperçoit sur cette figure 1 :We can see in this figure 1:
- un tronçon 10 de fibre à double gaine (cœur monomode 12 et gaine polymère 18 dont la structure sera décrite plus en détail par la suite),a section 10 of double-clad fiber (single-mode core 12 and polymer sheath 18, the structure of which will be described in more detail below),
- au moins un ou plusieurs réflecteurs 20, 25 disposés respectivement sur les extrémités de ce tronçon 10 de fibre,at least one or more reflectors 20, 25 disposed respectively on the ends of this section 10 of fiber,
- un filtre 30 formant coupe bande au-delà de 1030 nm intégré dans la fibre 10 entre les réflecteurs 20, 25, et - un système de diodes de pompe 40 émettant de 915 nm à 930 nm placée en regard d'une première extrémité de ladite fibre 10.- a filter 30 forming a band cut beyond 1030 nm integrated in the fiber 10 between the reflectors 20, 25, and - a system of pump diodes 40 emitting from 915 nm to 930 nm placed opposite a first end of said fiber 10.
Un dispositif d'injection 50 peut être placé entre ce système de diodes de pompe 40 et la fibre 10. Le dispositif d'injection 50 peut être longitudinal ou transverse par rapport à l'axe de la fibre. Le rayonnement à 980 nm issu de la cavité laser à fibre ainsi formée peut être récupéré par exemple dans une fibre monomode 60 à 950 nm soudée en 62 sur la seconde extrémité du tronçon de fibre gainée 10.An injection device 50 can be placed between this pump diode system 40 and the fiber 10. The injection device 50 can be longitudinal or transverse relative to the axis of the fiber. The radiation at 980 nm coming from the fiber laser cavity thus formed can be recovered for example in a single mode fiber 60 at 950 nm welded at 62 on the second end of the sheathed fiber section 10.
Dans le cas d'un laser à fibre à 3 niveaux d'énergie (cas de rytterbium à 980 nm), les expressions des gains linéiques aux fréquences de pompe et de signal prennent les formes suivantes :In the case of a fiber laser with 3 energy levels (case of rytterbium at 980 nm), the expressions of the linear gains at pump and signal frequencies take the following forms:
gP = [- σa p (1-x)] rp N L (1) gs = [σe s x- σa S (1-x)] rs N L (2) où g désigne le gain linéique (g = In (P0ut/Pin) avec Pin et Pout les puissances d'entrée et de sortie), σa et σe les sections efficaces d'absorption et d'émission, r le facteur de recouvrement entre l'onde optique et la région dopée, N la densité d'ions ytterbium, L la longueur de fibre et x la fraction d'ions excités (ou taux dinversion de population). Les index p et s différencient l'onde de pompe (915 nm) de l'onde laser émise (980 nm). Dans le cas d'un laser à fibre, x s'exprime par la relation : x=- {ln(Rι R2)1/2 } / {(σe s + σa s) Ts N L} + {σa s / (σe s + σa s)} (3) où Ri et R2 désignent les coefficients de réflexion des deux réflecteurs qui ferment la cavité à chaque extrémité de fibre. Le seuil laser Pseuil s'écrit quant à lui :g P = [- σ a p (1-x)] r p NL (1) g s = [σ e s x- σ a S (1-x)] r s NL (2) where g denotes the linear gain (g = In (P 0 u t / Pin) with P in and P or t the input and output powers), σ a and σ e the absorption and emission cross sections , r the overlap factor between the optical wave and the doped region, N the density of ytterbium ions, L the fiber length and x the fraction of excited ions (or population inversion rate). The indices p and s differentiate the pump wave (915 nm) from the emitted laser wave (980 nm). In the case of a fiber laser, x is expressed by the relation: x = - {ln (Rι R 2 ) 1/2 } / {(σ e s + σ a s ) T s NL} + {σ a s / (σ e s + σ a s )} (3) where Ri and R 2 denote the reflection coefficients of the two reflectors which close the cavity at each fiber end. The Pseuil laser threshold is written:
Pseuii - A N L x /τ pour les grandes longueurs de cavité (4) τ est la durée de vie du niveau supérieur de la transition laser.P se uii - ANL x / τ for long cavity lengths (4) τ is the lifetime of the upper level of the laser transition.
Le spectre de fluorescence d'une fibre 10 dopée ytterbium optiquement pompée par un laser 40 émettant un rayonnement à 915 nm est représenté sur la figure 5. La compétition entre les sections efficaces d'absorption σa et d'émission σe donne une fluorescence importante centrée à 980 nm et 1030 nm. La forme de ce spectre dépend des formateurs et des modificateurs de la matrice vitreuse tels que le germanium et l'aluminium. Il dépend également de la longueur de fibre amplificatrice 10. Une forte concentration en aluminium va par exemple aplanir le pic de fluorescence à 1030 nm sans modifier le spectre à 980 nm. De même, une grande longueur de fibre 10 va diminuer l'inversion de population moyenne x et décaler le spectre vers les grandes longueurs d'onde. La configuration du laser conforme à la présente invention permet d'obtenir une émission laser guidée monomode de quelques milliwatts à plusieurs centaines de milliwatts autour de 980 nm, avec un système de diodes de pompe multimode 40 délivrant une puissance de 1 à 10 Watts vers 915 nm. Deux géométries de fibre laser 10 (respectivement à cœur ou anneau dopé) ont été développées par la Demanderesse avec des concentrations en ions ytterbium, des recouvrements de modes et des structures guidées optimales.The fluorescence spectrum of a ytterbium-doped fiber 10 optically pumped by a laser 40 emitting radiation at 915 nm is shown in FIG. 5. The competition between the absorption σ a and emission σ e cross sections gives fluorescence important centered at 980 nm and 1030 nm. The shape of this spectrum depends on the formers and modifiers of the vitreous matrix such as germanium and aluminum. It also depends on the length of amplifying fiber 10. A high concentration of aluminum will, for example, smooth the fluorescence peak at 1030 nm without modifying the spectrum at 980 nm. Similarly, a long length of fiber 10 will decrease the inversion of average population x and shift the spectrum towards the long wavelengths. The configuration of the laser in accordance with the present invention makes it possible to obtain a single mode guided laser emission from a few milliwatts to several hundred milliwatts around 980 nm, with a system of multimode pump diodes 40 delivering a power of 1 to 10 Watts towards 915. nm. Two geometries of laser fiber 10 (respectively with a heart or a doped ring) have been developed by the Applicant with ytterbium ion concentrations, mode overlays and optimal guided structures.
Comme on le voit sur les figures 2 et 3, la fibre 10 utilisée dans le cadre de la présente invention comprend un cœur 12 (simple selon la figure 2, entouré d'un anneau 14 selon la figure 3) placé dans une gaine multimode 15, elle-même entourée d'une gaine polymère 18.As seen in Figures 2 and 3, the fiber 10 used in the context of the present invention comprises a core 12 (simple according to Figure 2, surrounded by a ring 14 according to Figure 3) placed in a multimode sheath 15 , itself surrounded by a polymer sheath 18.
La gaine optique multimode 15 a une forme dissymétrique (rectangulaire avec petits côtés arrondis ou non) pour éliminer les modes hélicoïdaux. Ces modes présentent en effet une distribution spatiale en intensité minimale dans la région du cœur et maximale sur les bords de la fibre multimode. Pour obtenir une forme rectangulaire, la préforme est d'abord usinée avant d'être fibrée puis protégée par la gaine polymère 18.The multimode optical sheath 15 has an asymmetrical shape (rectangular with small rounded or non-rounded sides) to eliminate the helical modes. These modes indeed have a spatial distribution in minimum intensity in the region of the core and maximum on the edges of the multimode fiber. To obtain a rectangular shape, the preform is first machined before being fiberized and then protected by the polymer sheath 18.
Selon la première géométrie illustrée sur la figure 2, le cœur 12 de la fibre 10 est dopée avec du germanium ou de l'aluminium et des ions ytterbium. Il est à noter que ceci n'est pas vrai pour les fibres à double gaine disponibles dans le commerce, exclusivement dopées avec de l'aluminium qui de par sa structure trivalente permet d'incorporer une forte concentration d'ytterbium.According to the first geometry illustrated in FIG. 2, the core 12 of the fiber 10 is doped with germanium or aluminum and ytterbium ions. It should be noted that this is not true for commercially available double clad fibers, exclusively doped with aluminum which, by virtue of its trivalent structure, makes it possible to incorporate a high concentration of ytterbium.
Dans cette configuration, la théorie de propagation guidée dans une fibre monomode donne un facteur de recouvrement rs (entre l'onde laser et le cœur dopé) de l'ordre de 0.8. Par contre le facteur de recouvrement rp (onde pompe/cœur dopé) s'écrit en première approximation et en régime multimode : rp = B/A ~ 0.002 (5) avec A l'aire du rectangle correspondant à la section de la gaine multimode 15 et B l'aire de la zone dopée (ici le cœur 12). Une telle approximation est justifiée par les modélisations retenues qui démontrent une structure en speckle (répartition uniforme de l'intensité perpendiculairement à l'axe de la fibre) après seulement quelques millimètres de propagation. rp est donc ici 400 fois plus faible qu'en régime de propagation monomode. Pour compenser la faible valeur de rp et garder une absorption (gp) suffisante (voir (1)), il faut en principe accroître les termes N et L. Néanmoins, augmenter l'un ou l'autre de ces 2 termes tend à perturber les gains linéiques gs à 1030 nm et à 980 nm (voir (2)). Le seuil laser à 1030 nm est ainsi diminué tandis que celui à 980 nm est augmenté, ce qui est néfaste pour l'application visée dans le cadre de la présente invention. La présente invention permet néanmoins de réaliser un laser à 980 nm en plaçant un filtre 30 atténuateur à 1030 nm sur le tronçon de fibre 10, pour éliminer la fluorescence perturbatrice. Un tel composant intra-cavité 30 peut être un réseau de Bragg dissipatif. Le type réseau à traits inclinés par rapport à l'axe de la fibre. Un tel réseau couple l'énergie du mode guidé dans le cœur vers les modes radiatifs. La fibre présente alors une chute de transmission à la longueur d'onde souhaitée.In this configuration, the guided propagation theory in a single-mode fiber gives an overlap factor r s (between the laser wave and the doped core) of the order of 0.8. On the other hand, the recovery factor r p (pump wave / doped heart) is written as a first approximation and in multimode mode: r p = B / A ~ 0.002 (5) with A the area of the rectangle corresponding to the section of the multimode sheath 15 and B the area of the doped zone (here the heart 12). Such an approximation is justified by the models used which demonstrate a speckle structure (uniform distribution of the intensity perpendicular to the axis of the fiber) after only a few millimeters of propagation. r p is therefore 400 times lower here than in single-mode propagation regime. To compensate for the low value of r p and keep sufficient absorption (g p ) (see (1)), it is in principle necessary to increase the terms N and L. Nevertheless, increasing one or the other of these 2 terms tends to disturb the linear gains g s at 1030 nm and at 980 nm (see (2)). The laser threshold at 1030 nm is thus reduced while that at 980 nm is increased, which is detrimental for the application intended in the context of the present invention. The present invention nevertheless makes it possible to produce a laser at 980 nm by placing an attenuating filter 30 at 1030 nm on the fiber section 10, in order to eliminate the disturbing fluorescence. Such an intra-cavity component 30 can be a dissipative Bragg grating. The network type with lines inclined with respect to the axis of the fiber. Such a network couples the energy from the guided mode in the heart to the radiative modes. The fiber then has a transmission drop at the desired wavelength.
Selon la seconde configuration illustrée sur la figure 3, le cœur 12 de la fibre 10 est dopé uniquement en germanium tandis qu'un anneau 14 centré autour du cœur 12 est lui dopé avec de l'ytterbium. La matrice vitreuse, à l'endroit de l'anneau 14, est codopée avec soit du germanium soit de l'aluminium (selon la concentration en ions ytterbium). Dans cette configuration, rp est quasiment inchangé (rp = 0.002) tandis que rs (recouvrement onde laser centré dans le cœur/anneau dopé) est diminué (rs < 0.1). Le second profil de dopage permet ainsi de conserver un gain linéique gs à 1030nm plus faible qu'à 980nm tout en augmentant la longueur de fibre pour obtenir une absorption suffisante.According to the second configuration illustrated in FIG. 3, the heart 12 of the fiber 10 is doped only with germanium while a ring 14 centered around the heart 12 is itself doped with ytterbium. The vitreous matrix, at the location of the ring 14, is codoped with either germanium or aluminum (depending on the concentration of ytterbium ions). In this configuration, r p is almost unchanged (r p = 0.002) while r s (overlapping laser wave centered in the heart / doped ring) is reduced (r s <0.1). The second doping profile thus makes it possible to keep a linear gain g s at 1030nm lower than at 980nm while increasing the fiber length to obtain sufficient absorption.
Le polymère ou le matériau silicone 18 qui recouvre la gaine optique 15 est un produit dont l'indice de réfraction (n { 1.4) permet d'avoir un guide optique multimode avec une grande ouverture numérique. La puissance émise par la diode 40 est ainsi captée plus efficacement par la structure guidante. Les paramètres du cœur 12 de la fibre sont en outre adaptés de façon à ce que le diamètre du mode fondamental soit identique à celui d'une fibre standard monomode à 980 nm.The polymer or silicone material 18 which covers the optical sheath 15 is a product whose refractive index (n {1.4) makes it possible to have a multimode optical guide with a large digital aperture. The power emitted by the diode 40 is thus more effectively captured by the guiding structure. The parameters of the core 12 of the fiber are further adapted so that the diameter of the fundamental mode is identical to that of a standard single-mode fiber at 980 nm.
Plus précisément la fibre à double gaine illustrée sur les figures 2 ou 3 répond de préférence aux caractéristiques suivantes :More specifically, the double-clad fiber illustrated in FIGS. 2 or 3 preferably meets the following characteristics:
Dimension de la gaine optique rectangulaire 15 : a x b ≈ (de 80 à 180) x (de 50 à 120) μm2 Dimension de l'anneau 14 : diamètre externe RM ≈ 4 à 30 μm et diamètre interne Rm ≈ 4 à 15 μm (dans le cas de la figure 3) ouverture numérique gaine/polymère : de 0.35 à 0.45 indice du polymère 18 : entre 1.36 et 1.40 mesuré à 1 μm diamètre du cœur 12 de la fibre : de 4 à 6 μm différence d'indice coeur/gaine : ≈ de 5 à 10.10"3 ouverture numérique coeur/gaine : de 0.1 à 0.2 concentration du coeur en germanium ou en aluminium : quelques % molaire concentration du cœur ou de l'anneau en ytterbium : ≈ plusieurs milliers de ppm perte dans la partie monomode à 1.3 μm : ≈ 1 à 20 dB/kmDimension of the rectangular optical sheath 15: axb ≈ (from 80 to 180) x (from 50 to 120) μm 2 Ring size 14: external diameter R M ≈ 4 to 30 μm and internal diameter R m ≈ 4 to 15 μm (in the case of Figure 3) sheath / polymer numerical aperture: from 0.35 to 0.45 polymer index 18: between 1.36 and 1.40 measured at 1 μm diameter of the core 12 of the fiber: from 4 to 6 μm difference in index core / cladding: ≈ from 5 to 10.10 "3 numerical aperture heart / cladding: from 0.1 to 0.2 concentration of the core in germanium or aluminum: a few molar% concentration of the core or the ring in ytterbium: ≈ several thousand ppm loss in the single mode part at 1.3 μm: ≈ 1 to 20 dB / km
La cavité laser peut être constituée de deux réseaux de Bragg 20, 25, distants de quelques mètres, photoinscrits dans le cœur monomode 12 de la fibre double gaine. La photoinscription est rendue possible avec un rayonnement UV à 244 nm grâce au dopage du cœur 12 avec du germanium. En effet, avec un dopage du cœur 12 en aluminium, la photoinscription à 244 nm est rendue impossible. Un banc de photoinscription standard constitué d'un laser UV et d'un dispositif interférométrique peut être utilisé à cet effet. Pour augmenter la photosensibilité de la fibre, celle-ci est placée de préférence dans une cuve à hydrogène sous haute pression. Des réflecteurs saturés ont ainsi été fabriqués afin d'obtenir une cavité avec un grand coefficient de qualité et donc un faible seuil laser. Des couches diélectriques déposées en extrémité de fibre double gaine peuvent également être utilisées avec des fibres dopée à l'aluminium. La sélectivité spectrale des réflecteurs permet d'obtenir des largeurs de raie laser allant de quelques gigahertz jusqu'à plusieurs nanomètres.The laser cavity can consist of two Bragg gratings 20, 25, a few meters apart, photoinscribed in the single-mode core 12 of the double clad fiber. Photo-registration is made possible with UV radiation at 244 nm thanks to doping of the heart 12 with germanium. Indeed, with doping of the aluminum core 12, photo-registration at 244 nm is made impossible. A standard photo-registration bench consisting of a UV laser and an interferometric device can be used for this purpose. To increase the photosensitivity of the fiber, it is preferably placed in a hydrogen tank under high pressure. Saturated reflectors have thus been manufactured in order to obtain a cavity with a high quality coefficient and therefore a low laser threshold. Dielectric layers deposited at the end of double-clad fiber can also be used with fibers doped with aluminum. The spectral selectivity of the reflectors makes it possible to obtain widths of laser line ranging from a few gigahertz up to several nanometers.
En sortie de cavité, la fibre standard monomode 60 à 950 nm est soudée sur la fibre à double gaine 10 avec des pertes inférieures à 0.4 dB. Le spectre d'émission laser est présenté dans la figure 6. On a illustré sur la figure 4, une autre configuration de cavité qui comprend des réflecteurs 20, 25 réalisés respectivement sur des tronçons d'une fibre monomode standard 64, 66 (et non pas sur la fibre double gaine comme décrit pour la figure 1). Ces morceaux de fibre 64, 66 sont ensuite soudées à chaque extrémité de la fibre double gaine 10 en 63, 65.At the outlet of the cavity, the standard single-mode fiber 60 at 950 nm is welded to the double-clad fiber 10 with losses less than 0.4 dB. The laser emission spectrum is presented in Figure 6. FIG. 4 illustrates another configuration of cavity which includes reflectors 20, 25 produced respectively on sections of a standard single-mode fiber 64, 66 (and not on the double clad fiber as described for FIG. 1) . These pieces of fiber 64, 66 are then welded to each end of the double sheath fiber 10 at 63, 65.
La structure du dispositif illustré sur la figure '4 est pour le reste conforme à l'architecture illustrée sur la figure 1. On retrouve en effet sur la figure 4 : la diode de pompe 40 associée à un dispositif d'injection 50 et une fibre 10 à double gaine comportant un filtre coupe bande 30.The structure of the device illustrated in FIG . 4 is for the rest in accordance with the architecture illustrated in FIG. 1. FIG. 4 indeed shows: the pump diode 40 associated with an injection device 50 and a fiber 10 with double sheath comprising a band cutting filter 30.
La cavité laser obtenue dans le cadre de la présente invention présente les caractéristiques suivantes :The laser cavity obtained in the context of the present invention has the following characteristics:
Réflectivité Ri pour le réflecteur 20 = 99.9 % Réflectivité R2 pour le réflecteur 25 = de 4 à 90 % Longueur de la cavité : quelques mètresReflectivity Ri for the reflector 20 = 99.9% Reflectivity R 2 for the reflector 25 = from 4 to 90% Length of the cavity: a few meters
Longueur d'onde de pompe : de 915 à 930 nm Puissance de pompe disponible : de 0.001 à 10 Watts De préférence, la diode 40 est montée sur un dispositif Peltier. Les dimensions du boîtier mécanique regroupant l'ensemble du système, à savoir la fibre à double gain 10, les réflecteurs 20, 25, le filtre 30, la diode de pompe 40 et le système 50 d'injection dans la partie multimode de la fibre sont typiquement de l'ordre de 100*50*30 mm3. La fibre de sortie 60, 66 peut être une fibre standard Flexcor 1060 monomode à 950 nm. Une version du dispositif conforme à l'invention peut contenir un isolateur fibre à 980 nm situé en sortie de la diode laser et un modulateur intégré.Pump wavelength: from 915 to 930 nm Available pump power: from 0.001 to 10 Watts Preferably, the diode 40 is mounted on a Peltier device. The dimensions of the mechanical housing grouping the entire system, namely the double gain fiber 10, the reflectors 20, 25, the filter 30, the pump diode 40 and the system 50 for injection into the multimode part of the fiber are typically of the order of 100 * 50 * 30 mm 3 . The output fiber 60, 66 can be a standard Flexcor 1060 single mode fiber at 950 nm. A version of the device according to the invention may contain a fiber isolator at 980 nm located at the output of the laser diode and an integrated modulator.
Un tel laser de puissance monomode est particulièrement destiné au marché des télécommunications. Il permet notamment de pomper avec une plus grande efficacité que les systèmes antérieurs, des amplificateurs à fibre dopée à l'erbium. Ces amplificateurs sont les éléments clef des transmissions par voie optique et sont actuellement limités par la faible puissance (200 mW maximum) des diodes laser de pompe à 980 nm. Des diodes laser de puissance supérieure sont également disponibles sur le marché mais avec des coûts bien plus élevés. Une autre application de tels lasers de puissance est l'amplification Raman. Ce type de régénération optique ne nécessite pas une inversion de population et n'est donc pas limité par les bandes d'absorption accessibles aux ions de terres rares. L'amplification Raman, en plein essor actuellement, permet d'élargir vers les faibles longueurs d'onde (jusque 1455 nm) la bande passante des télécommunications optiques. L'aboutissement industriel de ces lasers est ainsi compatible avec les télécommunications mais aussi plus généralement aux techniques de contrôle industriel par laser, du médical, et de la recherche. Bien entendu la présente invention n'est pas limitée au mode de réalisation particulier qui vient d'être décrit, mais s'étend à toutes variantes conformes à son esprit. Such a single mode power laser is particularly intended for the telecommunications market. In particular, it makes it possible to pump erbium-doped fiber amplifiers with greater efficiency than previous systems. These amplifiers are the key elements of optical transmission and are currently limited by the low power (200 mW maximum) of the pump laser diodes at 980 nm. Higher power laser diodes are also available on the market but at much higher cost. Another application of such power lasers is Raman amplification. This type of optical regeneration does not require population inversion and is therefore not limited by the absorption bands accessible to rare earth ions. Raman amplification, which is currently booming, makes it possible to widen the bandwidth of optical telecommunications towards low wavelengths (up to 1455 nm). The industrial outcome of these lasers is thus compatible with telecommunications but also more generally with industrial control techniques by laser, medical, and research. Of course the present invention is not limited to the particular embodiment which has just been described, but extends to all variants in accordance with its spirit.

Claims

REVENDICATIONS
1. Dispositif formant laser à fibre de puissance émettant un rayonnement monomode transverse contrôlé, caractérisé par le fait qu'il comprend :1. Device forming a power fiber laser emitting controlled transverse monomode radiation, characterized in that it comprises:
- une source de pompe (40),- a pump source (40),
- un tronçon (10) de fibre optique amplificatrice gainée constituée d'une fibre à double gaine comportant un cœur (12) entouré de deux gaines successives (15, 18), dont les indices de réfraction sont propres à définir un guide optique multimode, de sorte que l'onde de pompe soit guidée dans la structure multimode de la fibre formée par les deux gaines (15, 18),a section (10) of sheathed amplifying optical fiber constituted by a double cladding fiber comprising a core (12) surrounded by two successive claddings (15, 18), the refractive indices of which are suitable for defining a multimode optical guide, so that the pump wave is guided in the multimode structure of the fiber formed by the two sheaths (15, 18),
- deux réflecteurs (20, 25) disposés sur les extrémités de ce tronçon (10), constitués de réseaux de diffraction choisis dans le groupe comprenant des réseaux de Bragg ou des filtres diélectriques réflecteurs, et - un filtre (30) coupe bande apte à émettre un rayonnement laser centré vers 980 nm dans ledit tronçon.- two reflectors (20, 25) arranged on the ends of this section (10), made up of diffraction gratings chosen from the group comprising Bragg gratings or reflective dielectric filters, and - a strip cut filter (30) suitable for emit laser radiation centered around 980 nm in said section.
2. Dispositif selon la revendication 1 , caractérisé par le fait que le tronçon (10) de fibre optique gainée est constitué d'une fibre à double gaine dopée avec des ions ytterbium. 2. Device according to claim 1, characterized in that the section (10) of sheathed optical fiber consists of a double clad fiber doped with ytterbium ions.
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé par le fait que le tronçon (10) de fibre optique gainée comprend un cœur (12) dopé.3. Device according to one of claims 1 or 2, characterized in that the section (10) of sheathed optical fiber comprises a doped core (12).
4. Dispositif selon l'une des revendications 1 ou 2, caractérisé par le fait que le tronçon (10) de fibre optique gainée comprend un anneau (14) dopé centré autour du cœur (12).4. Device according to one of claims 1 or 2, characterized in that the section (10) of sheathed optical fiber comprises a ring (14) doped centered around the heart (12).
5. Dispositif selon l'une des revendications 1 à 4, caractérisé par le fait que la concentration en dopant ytterbium est de l'ordre de plusieurs milliers de ppm.5. Device according to one of claims 1 to 4, characterized in that the concentration of dopant ytterbium is of the order of several thousand ppm.
6. Dispositif selon l'une des revendications 1 à 3 et 5, caractérisé par le fait que le cœur (12) de la fibre (10) est dopé avec du germanium ou de l'aluminium et des ions ytterbium.6. Device according to one of claims 1 to 3 and 5, characterized in that the heart (12) of the fiber (10) is doped with germanium or aluminum and ytterbium ions.
7. Dispositif selon l'une des revendications 1 , 2, 4 et 5, caractérisé par le fait que le cœur (12) de la fibre (10) est dopé uniquement en germanium tandis que l'anneau (14) centré autour du cœur est dopé avec de l'ytterbium.7. Device according to one of claims 1, 2, 4 and 5, characterized in that the heart (12) of the fiber (10) is doped only in germanium while the ring (14) centered around the heart is doped with ytterbium.
8. Dispositif selon la revendication 7, caractérisé par le fait que la matrice vitreuse de la fibre (10), à l'endroit de l'anneau (14), est codopée avec soit du germanium, soit de l'aluminium.8. Device according to claim 7, characterized in that the vitreous matrix of the fiber (10), at the location of the ring (14), is codoped with either germanium or aluminum.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé par le fait que le filtre (30) est formé d'un réseau de Bragg à traits inclinés par rapport à l'axe de la fibre.9. Device according to one of claims 1 to 8, characterized in that the filter (30) is formed of a Bragg grating with lines inclined with respect to the axis of the fiber.
10. Dispositif selon l'une des revendications 1 à 9, caractérisé par le fait que les réflecteurs sont photoinscrits ou déposés sur les extrémités du tronçon (10) de fibre optique gainée.10. Device according to one of claims 1 to 9, characterized in that the reflectors are photo-registered or deposited on the ends of the section (10) of sheathed optical fiber.
11. Dispositif selon l'une des revendications 1 à 9, caractérisé par le fait que les réflecteurs (20, 25) sont photoinscrits ou déposés sur des tronçons de fibre (64, 66) rapportés et soudés sur les extrémités du tronçon (10) de fibre optique gainée.11. Device according to one of claims 1 to 9, characterized in that the reflectors (20, 25) are photo-registered or deposited on fiber sections (64, 66) attached and welded to the ends of the section (10) sheathed optical fiber.
12. Dispositif selon l'une des revendications 1 à 11 , caractérisé par le fait que le tronçon de fibre optique gainé (10) comprend une gaine optique multimode (15) de forme dissymétrique, de préférence à section globalement rectangulaire. 12. Device according to one of claims 1 to 11, characterized in that the sheathed optical fiber section (10) comprises a multimode optical sheath (15) of asymmetrical shape, preferably of generally rectangular section.
13. Dispositif selon l'une des revendications 1 à 12, caractérisé par le fait que le filtre coupe bande (30) est un filtre atténuateur à 1030 nm.13. Device according to one of claims 1 to 12, characterized in that the band-cutting filter (30) is an attenuating filter at 1030 nm.
14. Dispositif selon l'une des revendications 1 à 13, caractérisé par le fait que le filtre coupe bande (13) est formé d'un filtre diélectrique ou d'un réseau de Bragg dissipatif. 14. Device according to one of claims 1 to 13, characterized in that the band-cutting filter (13) is formed by a dielectric filter or a dissipative Bragg grating.
15. Dispositif selon l'une des revendications 1 à 14, caractérisé par le fait que le tronçon (10) de fibre optique gainé comprend une gaine optique multimode (15) de section générale rectangulaire dont les dimensions sont de l'ordre de 80 à 180 μm sur 50 à 120 μm.15. Device according to one of claims 1 to 14, characterized in that the section (10) of sheathed optical fiber comprises a multimode optical sheath (15) of generally rectangular section whose dimensions are of the order of 80 to 180 μm on 50 to 120 μm.
16. Dispositif selon l'une des revendications 1 et 2 et 4 à 15, caractérisé par le fait que le tronçon (10) de fibre optique gainé comprend un anneau dopé (14) entourant le cœur (12) dont le diamètre externe est compris entre 4 à 30 μm et le diamètre interne est compris entre 4 à 15 μm. 16. Device according to one of claims 1 and 2 and 4 to 15, characterized in that the section (10) of sheathed optical fiber comprises a doped ring (14) surrounding the heart (12) whose external diameter is included between 4 to 30 μm and the internal diameter is between 4 to 15 μm.
17. Dispositif selon l'une des revendications 1 à 16, caractérisé par le fait que l'ouverture numérique gaine multimode (15)/polymère formant gaine externe (18) est de l'ordre de 0,35 à 0,45.17. Device according to one of claims 1 to 16, characterized in that the digital aperture multimode sheath (15) / polymer forming external sheath (18) is of the order of 0.35 to 0.45.
18. Dispositif selon l'une des revendications 1 à 17, caractérisé par le fait que l'indice du polymère formant la gaine externe du tronçon (10) de fibre optique gainé est de l'ordre de 1 ,36 à 1 ,40, mesuré à 1 μm.18. Device according to one of claims 1 to 17, characterized in that the index of the polymer forming the outer sheath of the section (10) of sheathed optical fiber is of the order of 1.36 to 1.40, measured at 1 μm.
19. Dispositif selon l'une des revendications 1 a 18, caractérisé par le fait que le diamètre du cœur (12) de la fibre (10) est de l'ordre de 4 à 6 μm. 19. Device according to one of claims 1 to 18, characterized in that the diameter of the core (12) of the fiber (10) is of the order of 4 to 6 μm.
20. Dispositif selon l'une des revendications 1 à 19, caractérisé par le fait que la différence d'indice entre le cœur (12) et la gaine multimode (15) qui l'entoure est de l'ordre de 5 à 10.10"3.20. Device according to one of claims 1 to 19, characterized in that the difference in index between the heart (12) and the multimode sheath (15) which surrounds it is of the order of 5 to 10.10 " 3 .
21. Dispositif selon l'une des revendications 1 à 20, caractérisé par le fait que l'ouverture numérique cœur (12)/gaine multimode (15) est de l'ordre de 0,1 à 0,2.21. Device according to one of claims 1 to 20, characterized in that the digital aperture core (12) / multimode sheath (15) is of the order of 0.1 to 0.2.
22. Dispositif selon l'une des revendications 1 à 21 , caractérisé par le fait que la concentration du cœur (12) en germanium ou en aluminium est de l'ordre de quelques % molaire.22. Device according to one of claims 1 to 21, characterized in that the concentration of the core (12) in germanium or aluminum is of the order of a few molar%.
23. Dispositif selon l'une des revendications 1 à 22, caractérisé par le fait que la longueur de la cavité définie entre les deux réflecteurs (20, 25) est de l'ordre de quelques mètres.23. Device according to one of claims 1 to 22, characterized in that the length of the cavity defined between the two reflectors (20, 25) is of the order of a few meters.
24. Dispositif selon l'une des revendications 1 à 22, caractérisé par le fait que la longueur d'onde de pompe émis par la source (40) est de l'ordre de 915 à 930 nm. 24. Device according to one of claims 1 to 22, characterized in that the pump wavelength emitted by the source (40) is of the order of 915 to 930 nm.
PCT/FR2000/003103 1999-11-09 2000-11-08 Fibre laser WO2001035503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14007/01A AU1400701A (en) 1999-11-09 2000-11-08 Fibre laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/14048 1999-11-09
FR9914048A FR2800926B1 (en) 1999-11-09 1999-11-09 POWER FIBER LASER EMITTING CENTER-TRANSVERSE SINGLE-MODE RADIATION TOWARDS 980 NM

Publications (1)

Publication Number Publication Date
WO2001035503A1 true WO2001035503A1 (en) 2001-05-17

Family

ID=9551893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003103 WO2001035503A1 (en) 1999-11-09 2000-11-08 Fibre laser

Country Status (3)

Country Link
AU (1) AU1400701A (en)
FR (1) FR2800926B1 (en)
WO (1) WO2001035503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394168B1 (en) * 2019-06-05 2022-07-19 United States Of America As Represented By The Administrator Of Nasa Micro non-planar ring oscillator with optimized output power and minimized noise in a reduced size package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166940A (en) * 1991-06-04 1992-11-24 The Charles Stark Draper Laboratory, Inc. Fiber laser and method of making same
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier
US5710786A (en) * 1995-08-25 1998-01-20 Sdl, Inc. Optical fibre laser pump source for fibre amplifiers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166940A (en) * 1991-06-04 1992-11-24 The Charles Stark Draper Laboratory, Inc. Fiber laser and method of making same
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier
US5710786A (en) * 1995-08-25 1998-01-20 Sdl, Inc. Optical fibre laser pump source for fibre amplifiers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALLAIN J Y ET AL: "YTTERBIUM-DOPED SILICA FIBRE LASER WITH INTRACORE BRAGG GRATINGS OPERATING AT 1.02 UM", ELECTRONICS LETTERS,GB,IEE STEVENAGE, vol. 29, no. 3, 4 February 1993 (1993-02-04), pages 309 - 310, XP000336809, ISSN: 0013-5194 *
LOH W H ET AL: "INTRACAVITY PUMPING FOR INCREASED OUTPUT POWER FROM A DISTRIBUTED FEEDBACK ERBIUM FIBRE LASER", ELECTRONICS LETTERS,GB,IEE STEVENAGE, vol. 32, no. 13, 20 June 1996 (1996-06-20), pages 1204 - 1205, XP000599192, ISSN: 0013-5194 *
NILSSON J ET AL: "RING-DOPED CLADDING-PUMPED SINGLE-MODE THREE-LEVEL FIBER LASER", OPTICS LETTERS,US,OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 5, 1 March 1998 (1998-03-01), pages 355 - 357, XP000740627, ISSN: 0146-9592 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394168B1 (en) * 2019-06-05 2022-07-19 United States Of America As Represented By The Administrator Of Nasa Micro non-planar ring oscillator with optimized output power and minimized noise in a reduced size package

Also Published As

Publication number Publication date
AU1400701A (en) 2001-06-06
FR2800926A1 (en) 2001-05-11
FR2800926B1 (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US9158070B2 (en) Active tapers with reduced nonlinearity
US6944192B2 (en) Planar laser
EP1482606B1 (en) Optical fibre for amplification or laser emission
EP2103971B1 (en) Photonic bandgap fiber
JP5977215B2 (en) Fiber that provides double-clad gain with increased cladding absorption while maintaining single-mode operation
US20030063629A1 (en) Multimode fiber laser gratings
US7542488B2 (en) Fiber laser
FR2784809A1 (en) Optical power amplifier comprises mono-mode waveguide and outer multi-mode waveguide providing energy for optical pumping
EP2018687B1 (en) High-power fiberoptic pulsed laser device
EP2208262B1 (en) Rare-earth-doped fibre-optice device for the emission or amplification of a signal in the s-band
EP2497165B1 (en) Optical source implementing a doped fibre, fibre for such an optical source and method for manufacturing such a fibre
EP2041848B1 (en) Fiber optic power laser device
EP1455425A1 (en) Amplifying optical fibre with a ring shaped doping and amplifier using the same
FR2935554A1 (en) HIGH POWER FIBER LASER DEVICE
JP2960674B2 (en) Optical fiber for amplification
WO2001035503A1 (en) Fibre laser
EP1966856B1 (en) Device with optical guide for producing an optical signal by optical pumping and uses of the device
EP3649707B1 (en) Moderately multimodal amplifying fibre
CA2827445C (en) High-power optical fibre laser
EP1289077A1 (en) Dual core fiber with rare earth doped ring
RU2803143C1 (en) Active fibre light guide with various cross-section area, method for its manufacture (versions) and optical signal amplifier on its basis
Ahmed et al. Numerical modeling and experimental confirmation of an efficient phosphosilicate-fiber Raman laser
Funk et al. Erbium and ytterbium waveguide lasers in phosphate glass
Prabhu et al. High-power cw Raman fiber laser using phosphosilicate fiber pumped by Yb-doped double-clad fiber laser
Lai et al. Glass-clad single crystalline fiber lasers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase