WO2001028144A1 - Synchronizing device and synchronizing system - Google Patents

Synchronizing device and synchronizing system Download PDF

Info

Publication number
WO2001028144A1
WO2001028144A1 PCT/JP1999/005715 JP9905715W WO0128144A1 WO 2001028144 A1 WO2001028144 A1 WO 2001028144A1 JP 9905715 W JP9905715 W JP 9905715W WO 0128144 A1 WO0128144 A1 WO 0128144A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
line
quality
synchronization signal
external
Prior art date
Application number
PCT/JP1999/005715
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Fujii
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP1999/005715 priority Critical patent/WO2001028144A1/en
Publication of WO2001028144A1 publication Critical patent/WO2001028144A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET

Definitions

  • the present invention relates to a synchronization device, and in particular, to a transmission device capable of configuring various synchronization networks by preventing the occurrence of a synchronization loop between SDH (Synchronous Digital Hierarchy) transmission devices including SONET (Synchronous Optica 1 Network).
  • SDH Serial Digital Hierarchy
  • SONET Synchronous Optica 1 Network
  • SDH transmission has become widespread with the digitization, diversification, and high speed of information.
  • signals are transmitted and received while synchronizing with each other between transmission devices.
  • the transmission device detects an external clock signal input from a clock device inside the office or a synchronization signal in a timing signal distributed from another transmission device by a transmission line, and detects those clock signals.
  • the highest quality clock source is selected and synchronized.
  • the entire transmission network is synchronized with the reference timing.
  • the SDH transmission equipment uses STM (Synchronous Transfer Mode) —frame synchronization signals (A1 and A2 bytes in the section overhead) from the n-line or external signals from the clock equipment. It operates in synchronization with the timing and distributes it to other devices via the STM-n line. Synchronizers are very important for SDH devices. Normally, multiple synchronizing signals are input to the synchronizer, and the synchronizer is used as an operating synchronization source. When an error occurs, a redundant configuration is used to switch to another source. When selecting a source, the STM-n line is a 4-bit information called SS MB (Synchronization Management Half Byte) added to the external signal itself. Use to compare the quality of the input clock sources and select the highest quality source to use.
  • the SDH has five qualities specified by the International Telecommunication Union (ITU-T), and the following qualities are specified in order of higher quality.
  • Figures 1 and 2 show an example of the synchronization sequence.
  • the external input ( ⁇ ⁇ ⁇ ) 23 and the STM- ⁇ line (LINE a) 21 are set as the source of the device 11, and the source of the other device 12 is set as the source.
  • STM-n line (LINE b) 25 is set.
  • the device 11 receives the external clock of the quality PRC by the clock device 10 from the external input 23, and receives the timing information of the quality SSU-A from the line 21. I do. Based on these quality comparisons, the device 11 synchronizes with the higher-quality PRC side, and sends a SYNC message to the STM-n lines 22 and 24 with the synchronization quality of its own device as PRC. As a result, the opposing device 12 is synchronized with the quality PRC.
  • FIG. 2 shows a case in which the clock device 10 in FIG. 1 has failed and the clock quality from the external input 23 has dropped to SSU-B.
  • the device 11 synchronizes with the clock quality SSU—A side from the STM—n line 21, and the SSU—to the opposing device 12 via the STM—n line 24. Send the SYNC message changed to A.
  • the synchronization quality of the device 12 also deteriorates to SSU-A.
  • DNU Do Not Use
  • Figures 3 and 4 show the operating principle of such a conventional timing group prevention measure.
  • Figure 3 operates as follows. In other words, “The device that synchronizes with the receiving STM-n line sends DNU to the synchronized STM-n line.” (Hereafter, this is referred to as “timing group prevention method 1”.) ).
  • the STM-n lines 21 and 25 are set as the source of the device 11, and the STM-n lines 24 and 27 are set as the source of the device 12. ing. Therefore, the device 11 having the quality SSU-A synchronizes with the quality PRC from the STM-n line 21 and sends the DNU to the output line 22 thereof. Also, the device 12 synchronizes with the quality PRC of the STM-n line 24 and sends out DNU to the output line 25 thereof.
  • Fig. 4 shows an example of the case in Fig. 3 in which synchronization is performed only by a simple comparison of synchronization quality without performing the above-mentioned preventive measure 1 of the timing group.
  • the device 11 synchronized with the quality PRC in FIG. 3 also sends the PRC to the STM-n line 22.
  • device 1 2 sends a PRC to STM-n line 25.
  • the quality of the STM-n line 21 input to the device 11 degrades to DNU, the quality of the STM- ⁇ line 25 is PRC.
  • device 11 continues to send PRC to STM-n line 24.
  • FIG. 5 shows another time-group prevention measure.
  • a device that temporarily outputs the timing signal of the STM_n line to the EXTOUT line, which is synchronized with the timing signal from the EXT IN line and outputs the EXT IN signal. If the quality of the STM-n line is equal to the quality of the STM-n line, the DNU is sent to that STM-n line. "(Hereinafter, this is referred to as” timing group prevention measure 2 ").
  • the PRC-quality timing signal given to the device 12 from the STM-n line 24 is output to the EXTOUT line 28 once, and the signal at the output destination is reproduced.
  • the same PRC quality timing signal whose waveform has been shaped by the device (SCU) 13 is input to the EXT IN line 29 of the device 12.
  • Device 12 compares the quality of the STM-n line 24 and the EXT IN line 29 and, in this case, the same quality PRC, the EXT IN line according to the priority level (EXT> LINE b). Synchronize with the PRC quality from pin 29 and send the DNU to the output of the STM-n line 24.
  • the device 12 is not directly synchronized with the STM-n line 24, the STM-n is indirectly connected via the signal reproducing device 13.
  • the DNU is sent to the output side of the STM-n line 24 in the same way as the timing group prevention measure 1 described above, so that the timing shown in FIG. Prevent the occurrence of mining loops.
  • FIG. 6 shows an example of a transmission network in which a clock source is made redundant by two clock devices 10 and 16 for supplying a clock of PRC quality.
  • the device 11 is synchronized with the EXT line 23 or the STM-n line 25, and if both have the same quality, the EXT line 23 side has priority.
  • device 15 synchronizes to EXT line 35 or STM-n line 34. However, if the EXT line 35 and the STM-n line 34 have the same quality, the STM-n line 34 side has priority.
  • the device 12 is synchronized with the EXTIN line 29 or the STM-n line 24 and outputs the synchronization timing of the STM-n line 24 to the EXTOUT line 28. . If the EXTIN line 29 and the STMn line 24 have the same quality, the EXTIN line 29 has priority.
  • the device 14 synchronizes with the EXTIN line 31 or the STM-n line 33, and gives priority to the EXTIN line 31.
  • the signal reproducing device 13 receives the timing from the EXTOUT lines 28 and 32 from the devices 12 and 14, selects the high-quality side, performs waveform shaping, and performs the waveform shaping. Output to EXTIN lines 29 and 31 of 12 and 14. If both are of the same quality, the line 28 side has priority.
  • both of the two clock devices 10 and 16 supply a clock of PRC quality
  • the device 11 side gives priority to the EXT line 23 while the other device
  • the devices 12 and 14 are based on the timing group prevention measure 2 described above
  • the device 15 is based on the timing group prevention measure. Synchronize with the PRC quality of the clock device 10 side by 1. Therefore, the entire network is synchronized with the PRC quality of the clock device 10.
  • FIG. 7 shows a case where a failure has occurred in the clock device 10 in this state, and the quality of the clock device 10 has been degraded to DNU.
  • the device 11 transits to the holdover which is in the free-running state, and sends SEC, which is the synchronization quality, to the STM-n line 24. I do. Since the SEC has only one higher quality than the DNU, it reaches the STM-n line 34 of the device 15 without changing the synchronization destination based on the previous PRC quality.
  • the side of the higher-quality clock device 16 is selected by the device 15, and the device 14 receives the PRC quality from the STM-n line 33.
  • Synchronize with Group Prevention Measure No.2 Device 1 and 2 also synchronize with PRC, and finally Device 11 synchronizes with Time Group Prevention Measure No.1 with PRC quality of STM-n line 25 .
  • the entire network is synchronized with the PRC quality of the clock device 16.
  • the signal source of the EXT IN line 31 supplied from the signal reproducing device 13 to the device 14 is the signal from the EX TOUT line 28 of the device 12.
  • the device 14 itself could not determine whether the signal was from the EXTOUT line 32 of the device 14.
  • the device 14 cannot detect a change such that the quality of the EXT OUT line 28 becomes equal to the quality of the existing EXT IN line 31, and the STM-n Line 34 continued sending DNU. Disclosure of the invention
  • This provides an SDH network that synchronizes the entire network with a single reference clock.
  • a synchronization processing unit a line input / output unit for inputting / outputting a synchronization signal on a line, an external output unit for externally outputting a synchronization signal input to the line input / output unit, An external input unit to which an external synchronization signal is input; and an opposite input unit to which a synchronization signal of an opposite device is input, wherein the synchronization processing unit is configured to control the quality of the external synchronization signal of the external input unit and the license.
  • the line A synchronizer is provided for outputting an external synchronization signal of the external input means onto the line via an input / output means.
  • the synchronization processing means when the quality of the external synchronization signal of the external input means and the quality of the input synchronization signal of the line input / output means are equal and different from the quality of the synchronization signal of the opposite input means, A synchronization signal of synchronization quality DNU is output onto the line via a line input / output unit.
  • the synchronization processing unit is set to switch between normal / slave, The set device is provided with opposed output means for outputting a synchronizing signal to be applied thereto, instead of the opposed input means of the device (corresponding to a slave device).
  • FIG. 1 is a diagram showing an example (1) of a synchronization sequence.
  • FIG. 2 is a diagram showing an example (2) of the synchronization sequence.
  • FIG. 3 is a diagram showing the operating principle (1) of the conventional timing group prevention measure No. 1.
  • Figure 4 is a diagram showing the operation principle (2) of the conventional timing group prevention measure No. 1.
  • FIG. 5 is a diagram showing the operation principle of the conventional timing group prevention measure 2.
  • Figure 6 is a diagram showing an example (1) of a conventional transmission network operation with a redundant clock source.
  • Figure 7 shows an example (2) of a conventional transmission network operation with a redundant clock source.
  • Fig. 8 is a diagram showing an example (3) of a conventional transmission network operation with a redundant clock source.
  • Fig. 9 is a diagram showing an example (4) of a conventional transmission network operation in which a clock source is made redundant.
  • FIG. 10 is a diagram showing an example (1) of a transmission network operation in which a clock source according to the present invention is made redundant.
  • FIG. 11 is a diagram showing an example (2) of a transmission network operation in which a clock source according to the present invention is made redundant.
  • FIG. 12 is a diagram showing an example (3) of a transmission network operation in which a clock source according to the present invention is made redundant.
  • FIG. 13 is a diagram showing an example (4) of a transmission network operation according to the present invention in which a clock source is made redundant.
  • Fig. 14 is an example (5) of a transmission network operation in which a clock source is redundant according to the present invention (5), and is a diagram showing an operation result of the timing group prevention measure 3 of the present invention. is there.
  • FIG. 15 is a diagram illustrating an example of the SDH transmission device.
  • FIG. 16 is a diagram showing an outline of a processing process of the control processing unit.
  • FIG. 17 is a diagram showing an example of a main processing routine of the SYNC processing process.
  • FIG. 18 is a diagram showing an example of the SYNC table.
  • FIG. 19 is a diagram illustrating an example of the synchronization source determination step process.
  • FIG. 20 is a diagram illustrating an example of the EXTOUT-P determination step process.
  • Figure 21 shows an example of the EXTOUT-S confirmation step process.
  • FIG. 22 shows an example of the step processing of loop prevention measure # 1.
  • FIG. 23 is a diagram showing an example of the step processing of loop prevention measures 2 and 3.
  • FIGS. 10 to 14 show an example of the basic operation of the synchronizer according to the present invention and a system using the synchronizer.
  • Figs. 10 to 13 correspond to the conventional operations of Figs. 6 to 9 described above, respectively. Therefore, the same portions are denoted by the same reference symbols, and will not be described repeatedly below.
  • the EXTOUT and EXTIN lines 28 and 29 and the devices 12 and 14 containing the 31 and 32 lines are used as the modes when they synchronize with the EXTIN.
  • device 12 is set to normal and device 14 is set to slave.
  • the normal equipment Connect a new monitor line 41 between the output port of 1 2 and the input port of the slave device 14.
  • the normal device 12 outputs the timing information of the STM-n line 24 to the monitor line 41.
  • the normal device 12 has an existing EXTOUT port, an EXTOUT primary port (EXTOUT-P) and a spare EXTOUT secondary port (EXTOUT-S), and the slave device 14 has an existing EXTOUT port. It has an existing EXTIN port, an EXTIN primary port (EXTIN-P) and a spare EXTIN secondary port (EXTIN-S).
  • the input to the EXTIN-P port of the slave device 14 is from the signal reproducing device 13 and to the EXTIN-S port is to the signal reproducing device 13 E
  • the XTOUT signal of the normal device 12 is input.
  • the slave device 14 adds the following processing to the conventional timing group prevention measure 2. In other words, "If the quality from £ chome 1 ⁇ -3 is the same as the quality from EXTIN-P, do not perform loop prevention measure 2" (hereinafter referred to as "timing group prevention measure 3"). ).
  • the slave device 14 sends the EXTIN-P clock information to the STM-n line 34, and the device 15 synchronizes with it.
  • the slave device 14 does not become a target of the loop prevention measure No. 2, and thus operates exactly the same as the conventional example of FIG.
  • FIG. 11 As in the case of FIG. 7, a failure occurs in the clock device 10 and its quality is degraded to DNU. As a result, the device 11 that has transited to the holdover sends the synchronization quality SEC to the STM_n line 24.
  • the operation here is exactly the same as in Fig. 7.
  • FIG. 12 below the entire network is synchronized with the PRC quality of the higher-quality clock device 16 in exactly the same manner as in FIG.
  • the clock device 10 recovers from the failure as in FIG. 9 described above.
  • the DNU continues to be provided from the device 14 to the device 15 by the timing group prevention measure 2 regardless of whether or not the clock device 10 is restored.
  • the quality of the monitor line 41 of the EXTIN-S of the slave device 14 becomes PRC, which coincides with the quality PRC of the EXTIN-P line 31. Therefore, the timing group prevention measure 3 is applied.
  • the slave device 14 stops sending DNU to the STM-n line 34, and instead, the PRC-quality clock from the EXTIN-P line 31 is stopped. Data to the STM-n line 34.
  • equipment 15 is a measure to prevent The clock is synchronized with the PRC of the clock device 10 by the 1st.
  • the entire network is resynchronized with the PRC quality of the clock device 16.
  • FIG. 15 shows an example of an SDH transmission device 51 including one or a plurality of shelves and a unit mounted in the shelves.
  • control processing unit 52 receives a command from a transmission monitoring device (not shown), and controls the main signal unit 53 and the clock processing unit 54 in its own device according to the command. It also monitors the status of each unit and notifies the transmission monitoring device of fault information.
  • the main signal unit 53 performs the transmission device's original functions such as transmission, reception, multiplexing, demultiplexing, cross-connect, and switching of the transmission main signal.
  • the clock processing unit 54 executes the synchronization processing of the transmission device.
  • STM A timing signal from the n-line or an external EXT signal is input to this clock processing unit 54, and SDH transmission synchronized with one of the selected timing signals is performed there.
  • Device 51 Generates its own timing. The generated timing is distributed to each unit 52, 53 inside the device, and the entire device is synchronized.
  • the SDH transmission device 51 originally has a redundant configuration.
  • an EXTERNAL-OUT-PRIMA is used to output a synchronization signal.
  • Two output ports are available: RY (EXTOUT—P) and EXTERNAL— ⁇ UT—SEC 0 NDARY (EXTOUT-S).
  • RY EXTOUT—P
  • EXTERNAL— ⁇ UT—SEC 0 NDARY EXTOUT-S
  • EXTERNAL-IN-PRIMARY EXTI-P
  • EXTERNAL-IN-SECONDARY EXTIN-S
  • SCU signal reproduction device
  • FIG. 16 shows an overview of the processing process of the control processing unit 52.
  • 2 3 2 C processing, X.25 communication, and LAN communication processing processes 61 1, 62, and 63 are respectively performed by a personal computer (PC), bucket device, or bucket network for remote login. Performs interface processing with the network and hub devices in the campus network.
  • the user management process 64 performs authentication processing for the user who logs in.
  • the TL1 processing process 65 processes messages and commands input through the respective interfaces, thereby setting the normal Z slave setting in the present invention to the SYNC processing process 6. Notify 6.
  • the change detection process 69 is used as another processing flow.
  • the content of detection of a change in synchronization quality or an abnormality in the processing unit 54 is notified.
  • the SYNC processing process 66 requests the alarm processing process 68 to perform the alarm processing based on the notification.
  • the alarm processing process 68 performs an alarm process based on the notification content, and passes the process content to the report communication process 67.
  • the report communication process 67 transforms it into a predetermined form. By converting and adjusting the format, the report is compiled into a report, and the contents of the report are reported to a predetermined administrator or the like via the interfaces 61 to 63.
  • FIG. 17 shows an example of the main processing routine in the SYNC processing process 66.
  • FIGS. 18 to 23 show an example of a detailed processing flow executed in each processing routine in the main processing routine.
  • the SYNC processing process 66 receives a command from each of the interfaces 61 to 63 or a synchronization status change notification from the change detection process 69 (S101), it determines which one it is. (S102), in the case of command reception, the table contents are updated in the setting change table creation step (S103), and in the case of change notification, the LIN EZ EXTERNAL change step (S102) In 104), the contents of change in the synchronization state of the STM-n line or EXT line are determined.
  • FIG. 18 shows an example of the SYNC table created in the step (S103) of creating the setting change table.
  • the normal Z slave status setting, the number of registered synchronization sources, and the current setting value are given by a command from an operator or the like who has logged in remotely.
  • EXTOUT-P registration number and current setting value (each current quality value), EXTOUT-S registration and current setting value (each current quality value) are written in the corresponding data areas.
  • the priority order is determined according to the registration order of each registered number.
  • the variable M is set to the minimum synchronization quality DNU as an initial value
  • the variable MS is set to the value of FIG. Set the start source identification value of the synchronization source registration data area of (S201).
  • the processes in steps S202 to S207 are repeated by the number of synchronization source registrations in FIG. This
  • the contents of the variables M and MS are updated to those of a higher quality source.
  • the synchronization quality (M) of the device and the corresponding synchronization source (MS) are selected ( S205 and 206).
  • the data of the current apparatus synchronization source and its current quality value are updated with the value (S208).
  • EXTOUT-P determination step S106 in Fig. 17
  • EXTOUT-S determination step S106 in Fig. 17
  • D NU is set as the initial value
  • O PMS and O SMS the EXT E RNA L OUT—P registration data area
  • EX T E The head source identification value of the RNA L OUT-S registration data area is set (S301, S401).
  • the normal setting is the same as the conventional setting.
  • the highest priority source which is the default value in EXTOUT-PZS Is set, and in either case, the output as the source of EXT IN-S is prohibited.
  • step 1 (S108 in Fig. 17), as shown in Fig. 22, when synchronizing to LINE, DNU is set to that synchronization line quality (S50) 1 and 502)).
  • LINE It is determined whether or not the synchronization has been performed with the result of the LIN EZE XTE RNA L change step (S104). If synchronized with other than LINE, skip the processing of step S502 and do not perform the processing of loop prevention measure No. 1.
  • loop prevention steps 2 and 3 (S109 in Fig. 17), first, as shown in Fig. 23, it is determined whether or not synchronization with EXTIN-P / S is performed.
  • EXTE RNA LIN If not synchronized with PZS, end this process (S109). That is, loop prevention measures 2 or 3 are not performed. Even if the slave is synchronized with EXT IN-P / S and the synchronization quality of EXT IN-S is the same as EXT IN-P, loop prevention measure 2 is not performed (S601) ⁇ 603). This means that loop prevention measure 3 itself was implemented.
  • the output of EXTOUT-P of the normal device determined in step S106 of FIG. 17 is from the STM-n line, and the quality of the STM-n line is the normal device's output. If it is the same as the synchronization quality (EXTIN-P quality), the DNU is transmitted to the STM-n line (S604 to 606).
  • the output of EXTOUT-S of the normal device determined in step S107 of Fig. 17 is also from the STM-n line, and the quality of the STM-n line is the same as that of the normal device. If the synchronization quality (EXTIN-P quality) is the same, the DNU is sent to the STM-n line (S607-609).
  • step S110 the hardware for executing the contents of the determination in the above-described steps is set.
  • the synchronization source switching switch is set.
  • the new status is notified to the administrator or the like via the report communication process (FIG. 16) or the like (S111).
  • a normal z-slave setting is provided in a synchronization device, and the slave device detects the synchronization quality of the normal device, so that it can be used simply in the event of a failure recovery which has conventionally been a problem. It is possible to provide a synchronization device and a synchronization system that enable re-synchronization to one clock, and as a result, achieve both loop prevention and synchronization with a single reference clock.

Abstract

A synchronizing device capable of preventing generation of a synchronous loop between SDH transmission devices including an SONET and of being synchronized with one reference clock in any case, and a system for the synchronizing device. This device comprises synchronizing means, line input/output means for inputting/outputting synchronizing signals on a line, external output means for outputting the synchronizing signal inputted to the line input/output means to the outside, external input means to which an external synchronizing signal is inputted, and opposition input means to which a synchronizing signal of an opposed device is inputted. The synchronizing means outputs the external synchronizing signal of the external input means to the line through the line input/output means when the quality of the external synchronizing signal of the external input means is identical to that of the input synchronizing signal of the line input/output means and to that of the synchronizing signal of the opposition input means.

Description

明 細 書 同期装置及び同期システム 技術分野  Description Synchronizer and Synchronous System Technical Field
本発明は同期装置に関し、 特に S O N E T (Synchronous Optica 1 Network)を含む S D H (Synchronous Digital Hi erarchy)伝送装 置間の同期ループの発生を防止することで様々な同期網の構成を可 能と した伝送装置の同期装置及びそのシステムに関する ものである  The present invention relates to a synchronization device, and in particular, to a transmission device capable of configuring various synchronization networks by preventing the occurrence of a synchronization loop between SDH (Synchronous Digital Hierarchy) transmission devices including SONET (Synchronous Optica 1 Network). The present invention relates to a device synchronization device and its system.
背景技術 Background art
近年、 情報のデジタル化、 多様化、 及び高速化等に伴って S D H 伝送が普及してきている。 S D H伝送では、 各伝送装置間で互いに 同期をと り合いながら信号を送受信する。 伝送装置は、 局舎内ク ロ ッ ク装置から入力される外部ク ロ ッ ク信号や伝送ライ ンによって他 の伝送装置から分配されるタイ ミ ング信号内の同期信号を検出 し、 それらのク ロ ッ ク ソース品質を相互比較する こ とで、 その中から最 も品質の良いク ロ ッ ク ソースを選別し、 それに同期する。 その結果 、 伝送ネ ッ ト ワーク全体が基準となるタイ ミ ングに同期するこ とに なる。  In recent years, SDH transmission has become widespread with the digitization, diversification, and high speed of information. In SDH transmission, signals are transmitted and received while synchronizing with each other between transmission devices. The transmission device detects an external clock signal input from a clock device inside the office or a synchronization signal in a timing signal distributed from another transmission device by a transmission line, and detects those clock signals. By comparing the clock source qualities with each other, the highest quality clock source is selected and synchronized. As a result, the entire transmission network is synchronized with the reference timing.
S D H伝送装置は、 S TM (Synchronous Transfer Mode)— nラ イ ンからのフ レーム同期信号 (セク シ ョ ンオーバへッ ドの A 1 及び A 2バイ ト) 又はク ロ ッ ク装置からの外部信号タイ ミ ングに同期し て動作し、 S TM— nライ ンを介してそれを対向する他の装置へ分 配する。 同期装置は S D H装置にとって大変重要なものであり、 通 常は同期装置に複数の同期信号が入力され、 運用中の同期ソースに 異常が発生すると他のソースに切り換えられる冗長構成がと られる ソースの選択にあたっては、 S TM— nライ ンゃ外部信号自身に 付加された S S MB (Synchronization Management Half Byte) と 呼ばれる 4 ビッ 卜の情報を使って入力ク ロ ッ ク ソース間の品質比較 を行い、 その中から最も高品質のソースを選択して使用する。 S D Hには I T U— T (International Telecommunication Union - T) が規定する 5つの品質があり、 品質の高い方から順に以下のよう に 規定されている。 The SDH transmission equipment uses STM (Synchronous Transfer Mode) —frame synchronization signals (A1 and A2 bytes in the section overhead) from the n-line or external signals from the clock equipment. It operates in synchronization with the timing and distributes it to other devices via the STM-n line. Synchronizers are very important for SDH devices. Normally, multiple synchronizing signals are input to the synchronizer, and the synchronizer is used as an operating synchronization source. When an error occurs, a redundant configuration is used to switch to another source. When selecting a source, the STM-n line is a 4-bit information called SS MB (Synchronization Management Half Byte) added to the external signal itself. Use to compare the quality of the input clock sources and select the highest quality source to use. The SDH has five qualities specified by the International Telecommunication Union (ITU-T), and the following qualities are specified in order of higher quality.
P R CZ S S U - A/ S S U - BZ S E C ZD N U  P R CZ S S U-A / S S U-BZ S E C ZD N U
図 1及び 2 には、 同期シーケンスの一例を示している。  Figures 1 and 2 show an example of the synchronization sequence.
図 1 の例では、 装置 1 1 のソースと して外部入力 ( Ε Χ Τ) 2 3 と S TM— ηライ ン (L I N E a ) 2 1 が設定され、 一方の装置 1 2 にはソースと して S TM— nライ ン ( L I N E b ) 2 5が設定し てある。 この場合、 装置 1 1 はク ロ ッ ク装置 1 0 による品質 P R C の外部ク ロ ッ クを外部入力 2 3から受信し、 またライ ン 2 1 からは 品質 S S U— Aのタイ ミ ング情報を受信する。 それらの品質比較に よって装置 1 1 はより最高品質の P R Cの側に同期し、 自装置の同 期品質を P R Cと した S Y N Cメ ッセージを S TM— nライ ン 2 2 及び 2 4 に送出する。 その結果、 対向装置 1 2 は品質 P R Cで同期 する。  In the example of Fig. 1, the external input (Ε Χ Τ) 23 and the STM-η line (LINE a) 21 are set as the source of the device 11, and the source of the other device 12 is set as the source. STM-n line (LINE b) 25 is set. In this case, the device 11 receives the external clock of the quality PRC by the clock device 10 from the external input 23, and receives the timing information of the quality SSU-A from the line 21. I do. Based on these quality comparisons, the device 11 synchronizes with the higher-quality PRC side, and sends a SYNC message to the STM-n lines 22 and 24 with the synchronization quality of its own device as PRC. As a result, the opposing device 12 is synchronized with the quality PRC.
図 2 は、 図 1 でク ロ ッ ク装置 1 0 に障害が発生し、 外部入力 2 3 からのク ロ ッ ク品質が S S U— Bに低下した場合を示している。 こ の場合、 装置 1 1 は S TM— nライ ン 2 1 からのク ロ ッ ク品質 S S U— Aの側に同期し、 S TM— nライ ン 2 4を介して対向装置 1 2 へ S S U— Aに変更した S Y N Cメ ッセージを送出する。 これによ り、 装置 1 2の同期品質も S S U— Aに劣化する。 図 1及び 2の例で注目すべきは、 ある S TM— nライ ン入力のク 口 ッ ク品質に同期した装置は、 同一ライ ンの出力側に最低品質であ る D N U (Do Not Use)を付した S YN Cメ ッセージを送出 している 点である (図 1 の装置 1 2、 及び図 2の装置 1 1及び 1 2 ) 。 これ により、 装置自 らが送出 した同期品質にその装置自身が再同期する タイ ミ ングループの発生が回避される。 FIG. 2 shows a case in which the clock device 10 in FIG. 1 has failed and the clock quality from the external input 23 has dropped to SSU-B. In this case, the device 11 synchronizes with the clock quality SSU—A side from the STM—n line 21, and the SSU—to the opposing device 12 via the STM—n line 24. Send the SYNC message changed to A. As a result, the synchronization quality of the device 12 also deteriorates to SSU-A. It should be noted in the examples of Figs. 1 and 2 that a device synchronized to the quality of a certain STM-n line input has the lowest quality DNU (Do Not Use) at the output side of the same line. This is the point of sending SYNC messages marked with (apparatus 12 in FIG. 1 and apparatuses 11 and 12 in FIG. 2). This avoids the occurrence of a timing group in which the device itself resynchronizes with the synchronization quality sent by the device itself.
図 3及び 4 には、 従来のこのようなタイ ミ ングループ防止策の動 作原理を示している。  Figures 3 and 4 show the operating principle of such a conventional timing group prevention measure.
図 3 は次のように動作する。 すなわち、 「受信する S TM— nラ イ ンに同期する装置は、 同期した S TM— nライ ンに対して D N U 送出する」 (以降では、 これを 「タイ ミ ングループの防止策その 1 」 と称する) 。 本例では、 装置 1 1 のソースと して S TM— nライ ン 2 1及び 2 5が設定され、 装置 1 2のソースと して S TM— nラ イ ン 2 4及び 2 7が設定されている。 従って、 品質 S S U— Aであ つた装置 1 1 は S TM— nライ ン 2 1 からの品質 P R Cに同期し、 その出力側ライ ン 2 2 に D N Uを送出する。 また、 装置 1 2 は S T M— nライ ン 2 4の品質 P R Cに同期し、 その出力側ライ ン 2 5へ D N Uを送出する。  Figure 3 operates as follows. In other words, “The device that synchronizes with the receiving STM-n line sends DNU to the synchronized STM-n line.” (Hereafter, this is referred to as “timing group prevention method 1”.) ). In this example, the STM-n lines 21 and 25 are set as the source of the device 11, and the STM-n lines 24 and 27 are set as the source of the device 12. ing. Therefore, the device 11 having the quality SSU-A synchronizes with the quality PRC from the STM-n line 21 and sends the DNU to the output line 22 thereof. Also, the device 12 synchronizes with the quality PRC of the STM-n line 24 and sends out DNU to the output line 25 thereof.
一方、 図 4 には図 3 において上記タイ ミ ングループの防止策その 1 を行わず、 単純な同期品質の比較だけで同期する場合の一例を示 している。 この場合、 図 3で品質 P R Cに同期した装置 1 1 は S T M— nライ ン 2 2へも P R Cを送出する。 同様に、 装置 1 2 も S T M— nライ ン 2 5へ P R Cを送出する。 次に、 図 4 に示すように装 置 1 1 へ入力される S TM— nライ ン 2 1 の品質が D N Uに劣化し た場合、 S TM— ηライ ン 2 5の品質が P R Cであるため依然と し て装置 1 1 は S TM— nライ ン 2 4へ P R Cを送出 し続ける。 その 結果、 実際には P R C品質の信号元が存在しないのにも係わらず装 置 1 1及び 1 2の間で P R Cのループが発生する。 このよう に、 最 高品質の P R Cループが発生するとそれを停止するすべはな く なる 図 5にはもう 1つのタイ ミ ングループ防止策を示している。 すな わち、 「 S TM_ nライ ンのタイ ミ ング信号を一旦 E XTOUTラ イ ンへ出力する装置であって、 E XT I Nライ ンからのタイ ミ ング 信号に同期し且つ E XT I N信号の品質と S TM— nライ ンの品質 とが等しい場合は、 その S TM— nライ ンへ DNUを送出する」 ( 以降では、 これを 「タイ ミ ングループ防止策その 2」 と称する) 。 On the other hand, Fig. 4 shows an example of the case in Fig. 3 in which synchronization is performed only by a simple comparison of synchronization quality without performing the above-mentioned preventive measure 1 of the timing group. In this case, the device 11 synchronized with the quality PRC in FIG. 3 also sends the PRC to the STM-n line 22. Similarly, device 1 2 sends a PRC to STM-n line 25. Next, as shown in Fig. 4, if the quality of the STM-n line 21 input to the device 11 degrades to DNU, the quality of the STM-η line 25 is PRC. Still, device 11 continues to send PRC to STM-n line 24. As a result, even though there is no actual PRC quality signal source, A PRC loop occurs between units 11 and 12. Thus, when the highest quality PRC loop occurs, there is no way to stop it. Figure 5 shows another time-group prevention measure. In other words, "a device that temporarily outputs the timing signal of the STM_n line to the EXTOUT line, which is synchronized with the timing signal from the EXT IN line and outputs the EXT IN signal. If the quality of the STM-n line is equal to the quality of the STM-n line, the DNU is sent to that STM-n line. "(Hereinafter, this is referred to as" timing group prevention measure 2 ").
図 5の例でいえば、 S TM— nライ ン 2 4から装置 1 2に与えら れる P R C品質のタイ ミ ング信号は一旦 E X TOU Tライ ン 2 8へ 出力され、 その出力先の信号再生装置 (S C U) 1 3によって波形 整形された同じ P R C品質のタイ ミ ング信号が同装置 1 2の E XT I Nライ ン 2 9に入力される。 装置 1 2は S TM— nライ ン 2 4 と E XT I Nライ ン 2 9 との品質を比較し、 この場合同じ品質 P R C であるから、 優先レベル (E XT〉 L I N E b) に従って E XT I Nライ ン 2 9からの P R C品質に同期し、 そ して S TM— nライ ン 2 4の出力側へは DNUを送出する。  In the example of FIG. 5, the PRC-quality timing signal given to the device 12 from the STM-n line 24 is output to the EXTOUT line 28 once, and the signal at the output destination is reproduced. The same PRC quality timing signal whose waveform has been shaped by the device (SCU) 13 is input to the EXT IN line 29 of the device 12. Device 12 compares the quality of the STM-n line 24 and the EXT IN line 29 and, in this case, the same quality PRC, the EXT IN line according to the priority level (EXT> LINE b). Synchronize with the PRC quality from pin 29 and send the DNU to the output of the STM-n line 24.
上述したタイ ミ ングループ防止策その 2では、 装置 1 2が直接 S TM— nライ ン 2 4に同期しているわけではないが、 信号再生装置 1 3を介して間接的に S TM— nライ ン 2 4に同期するため、 先に 述べたタイ ミ ングループ防止策その 1 と同様に S TM— nライ ン 2 4の出力側へは D N Uを送出するこ とで図 4に例示したタイ ミ ング ループの発生を防止する。  In the above timing group prevention measure No. 2, although the device 12 is not directly synchronized with the STM-n line 24, the STM-n is indirectly connected via the signal reproducing device 13. In order to synchronize with line 24, the DNU is sent to the output side of the STM-n line 24 in the same way as the timing group prevention measure 1 described above, so that the timing shown in FIG. Prevent the occurrence of mining loops.
しかしながら、 上述した従来のタイ ミ ングループ防止策その 1及 びその 2を用いてもある特定の場合にはタイ ミ ングループの発生を どう しても回避できない場合が生じていた。 以下、 その例について 図 6〜 9 を参照しながら説明する。 However, in some specific cases, the occurrence of the timing group cannot be avoided in some specific cases even if the conventional timing group prevention measures 1 and 2 described above are used. Below, about the example This will be described with reference to FIGS.
図 6では、 P R C品質のク ロ ッ クを供給する 2つのク ロ ッ ク装置 1 0及び 1 6 によってク ロ ッ ク源を冗長した伝送ネ ッ 卜 ワークの一 例を示している。 こ こで、 装置 1 1 は E X Tライ ン 2 3か S TM— nライ ン 2 5 に同期し、 両方と も同じ品質の場合には E X Tライ ン 2 3側が優先する。 同様に、 装置 1 5 は E X Tライ ン 3 5か S TM — nラ イ ン 3 4 に同期する。 但し、 E X Tラ イ ン 3 5 と S TM— n ライ ン 3 4 とが同じ品質の場合には S T M— nライ ン 3 4側が優先 する。  FIG. 6 shows an example of a transmission network in which a clock source is made redundant by two clock devices 10 and 16 for supplying a clock of PRC quality. Here, the device 11 is synchronized with the EXT line 23 or the STM-n line 25, and if both have the same quality, the EXT line 23 side has priority. Similarly, device 15 synchronizes to EXT line 35 or STM-n line 34. However, if the EXT line 35 and the STM-n line 34 have the same quality, the STM-n line 34 side has priority.
また、 装置 1 2 は E X T I Nラ イ ン 2 9か S TM— nラ イ ン 2 4 に同期し、 且つ S TM— nラ イ ン 2 4の同期タイ ミ ングを E X T O U Tライ ン 2 8へ出力する。 そ して、 E X T I Nライ ン 2 9 と S T M— nラ イ ン 2 4 とが同じ品質の場合には E X T I Nラ イ ン 2 9側 が優先する。 同様に、 装置 1 4 は E X T I Nラ イ ン 3 1 か S TM— nライ ン 3 3 に同期し、 E X T I Nライ ン 3 1側を優先させる。 信号再生装置 1 3 は、 前記装置 1 2及び 1 4からの E X T O U T ラ イ ン 2 8及び 3 2からのタイ ミ ングを受け、 品質の高い側を選択 して波形整形を行い、 それを同装置 1 2及び 1 4の E X T I Nラ イ ン 2 9及び 3 1 へ出力する。 両方が同じ品質の場合はラ イ ン 2 8の 側を優先させる。  Also, the device 12 is synchronized with the EXTIN line 29 or the STM-n line 24 and outputs the synchronization timing of the STM-n line 24 to the EXTOUT line 28. . If the EXTIN line 29 and the STMn line 24 have the same quality, the EXTIN line 29 has priority. Similarly, the device 14 synchronizes with the EXTIN line 31 or the STM-n line 33, and gives priority to the EXTIN line 31. The signal reproducing device 13 receives the timing from the EXTOUT lines 28 and 32 from the devices 12 and 14, selects the high-quality side, performs waveform shaping, and performs the waveform shaping. Output to EXTIN lines 29 and 31 of 12 and 14. If both are of the same quality, the line 28 side has priority.
本例では、 2つのク ロ ッ ク装置 1 0及び 1 6のいずれも P R C品 質のク ロ ッ クを供給しており、 装置 1 1 側が E X Tラ イ ン 2 3を優 先させ、 一方装置 1 5側は S TM— nラ イ ン 3 4を優先させるため 、 装置 1 2及び 1 4 は前述したタイ ミ ングループ防止策その 2 によ り、 また装置 1 5 はタイ ミ ングループ防止策その 1 によってり ク ロ ッ ク装置 1 0側の P R C品質に同期する。 従って、 ネ ッ ト ワーク全 体がク ロ ッ ク装置 1 0側の P R C品質に同期する。 図 7 は、 この状態でク ロ ッ ク装置 1 0 に障害が発生し、 その品質 が D N Uに劣化した場合を示している。 この時点で、 装置 1 1 は 2 つの入力がと もに D N Uとなるため、 自走状態であるホール ドォ一 バに遷移 し、 その同期品質である S E Cを S TM— n ライ ン 2 4へ 送出する。 S E Cは D N Uより 1 つだけ品質が高いため、 これまで の P R C品質による同期先を変えるこ とな く 装置 1 5 の S TM— n ライ ン 3 4 に到達する。 In this example, both of the two clock devices 10 and 16 supply a clock of PRC quality, and the device 11 side gives priority to the EXT line 23 while the other device In order to give priority to the STM-n line 34 on the 15 side, the devices 12 and 14 are based on the timing group prevention measure 2 described above, and the device 15 is based on the timing group prevention measure. Synchronize with the PRC quality of the clock device 10 side by 1. Therefore, the entire network is synchronized with the PRC quality of the clock device 10. FIG. 7 shows a case where a failure has occurred in the clock device 10 in this state, and the quality of the clock device 10 has been degraded to DNU. At this point, since the two inputs become DNU at the same time, the device 11 transits to the holdover which is in the free-running state, and sends SEC, which is the synchronization quality, to the STM-n line 24. I do. Since the SEC has only one higher quality than the DNU, it reaches the STM-n line 34 of the device 15 without changing the synchronization destination based on the previous PRC quality.
その結果、 図 8 に示すよう に装置 1 5 でより品質の高いク ロ ッ ク 装置 1 6 の側が選択され、 その S TM— n ライ ン 3 3 からの P R C 品質に装置 1 4 はタイ ミ ングループ防止策その 2で同期し、 装置 1 2 も同様に P R Cに同期し、 最後に装置 1 1 がタイ ミ ングループ防 止策その 1 で S TM— n ライ ン 2 5 の P R C品質で同期する。 これ により、 ネ ッ トワーク全体がク ロ ッ ク装置 1 6側の P R C品質に同 期するこ とになる。  As a result, as shown in FIG. 8, the side of the higher-quality clock device 16 is selected by the device 15, and the device 14 receives the PRC quality from the STM-n line 33. Synchronize with Group Prevention Measure No.2, Device 1 and 2 also synchronize with PRC, and finally Device 11 synchronizes with Time Group Prevention Measure No.1 with PRC quality of STM-n line 25 . Thus, the entire network is synchronized with the PRC quality of the clock device 16.
こ こまでは、 従来の夕イ ミ ングループ防止策その 1 及びその 2が 有効に機能しているが、 問題は次の図 9 に示すよう に一旦障害とな つたク ロ ッ ク装置 1 0 が復旧した場合である。 ク ロ ッ ク装置 1 0が 復旧すると、 装置 1 1 はその P R C品質に同期して S TM _ n ライ ン 2 4へ P R Cを出力する。 それにより、 装置 1 2及び 1 4 はタイ ミ ングループ防止策その 2で共にク ロ ッ ク装置 1 0 の P R Cに同期 する。 しかしながら、 図 8及び 9 から明らかなよう に、 この時点で も S TM— n ライ ン 3 4 の品質は D N Uのままで変化しない。 その ため、 装置 1 5 は依然と してク ロ ッ ク装置 1 6 の P R C品質に同期 し続け、 ネ ッ ト ワーク内にはク ロ ッ ク装置 1 0 に同期する装置 1 1 、 1 2及び 1 4 とク ロ ッ ク装置 1 6 に同期する装置 1 5 とが並存す る こ とになる。 このこ とは、 ネ ッ ト ワーク全体を 1 つの基準ク ロ ッ クに同期させるこ とが必要な S D Hネ ッ ト ワークにおいて大きな問 題であった。 Up to now, the existing evening group preventive measures No. 1 and No. 2 have been functioning effectively, but the problem is that the clock device 10, which once failed, as shown in Figure 9 below. This is the case when it is restored. When the clock device 10 recovers, the device 11 outputs a PRC to the STM_n line 24 in synchronization with its PRC quality. As a result, the devices 12 and 14 are both synchronized with the clock device 10 PRC in the timing group prevention measure 2. However, as is evident from FIGS. 8 and 9, even at this point, the quality of the STM-n line 34 remains DNU. Therefore, device 15 still synchronizes with the PRC quality of clock device 16 and within the network devices 11, 12, and 12 that synchronize with clock device 10. The device 14 and the device 15 synchronized with the clock device 16 coexist. This is a major problem in SDH networks where it is necessary to synchronize the entire network to one reference clock. It was a title.
本問題の原因は、 図 9の例でいえば信号再生装置 1 3から装置 1 4へ与えられる E XT I Nライ ン 3 1の信号の源が装置 1 2の E X TOUTライ ン 2 8からの信号なのか又は装置 1 4の E XTOUT ラ イ ン 3 2からの信号なのかを装置 1 4 自身が判断できなかった点 にある。 その結果、 装置 1 4は E X T OU Tライ ン 2 8の品質が既 存の E XT I Nライ ン 3 1の品質に等しく なるような変化を検出で きず、 ループ防止策その 2によって S TM— nライ ン 3 4へは DN Uを送出し続けていた。 発明の開示  The cause of this problem is that, in the example of FIG. 9, the signal source of the EXT IN line 31 supplied from the signal reproducing device 13 to the device 14 is the signal from the EX TOUT line 28 of the device 12. The point is that the device 14 itself could not determine whether the signal was from the EXTOUT line 32 of the device 14. As a result, the device 14 cannot detect a change such that the quality of the EXT OUT line 28 becomes equal to the quality of the existing EXT IN line 31, and the STM-n Line 34 continued sending DNU. Disclosure of the invention
そこで本発明の目的は、 上記問題に鑑み、 E X TOU T及び E X T I Nライ ンを収容する装置に対して新たにノ ーマル Zス レーブの 設定を設け、 ス レーブ装置は既存又は新設の予備 Zモニタポー ト等 を介してノーマル装置の同期品質を検出し、 スレーブ装置の既存の 同期品質がノ ーマル装置の同期品質に等しい場合はループ防止策そ の 2を実行させないことで上記問題を解消した同期装置及び同期シ ステムを提供することにある。  In view of the above problems, it is an object of the present invention to provide a new normal Z-slave setting for a device accommodating the EX TOUT and EXTIN lines, and to provide an existing or new spare Z monitor port for the slave device. If the existing synchronization quality of the slave device is equal to the synchronization quality of the normal device, the synchronization device that solves the above problem by not executing loop prevention measure 2 is used. It is to provide a synchronization system.
これにより、 ネッ トワーク全体を唯一の基準クロ ッ クに同期させ た S DHネッ トワークが実現される。  This provides an SDH network that synchronizes the entire network with a single reference clock.
本発明によれば、 同期処理手段と、 ラ イ ン上の同期信号を入出力 するライ ン入出力手段と、 前記ライ ン入出力手段に入力された同期 信号を外部出力する外部出力手段と、 外部同期信号が入力される外 部入力手段と、 対向装置の同期信号が入力される対向入力手段と、 を有し、 前記同期処理手段は、 前記外部入力手段の外部同期信号の 品質と前記ライ ン入出力手段の入力同期信号の品質とが等しく、 且 つ前記対向入力手段の同期信号の品質と等しい場合は、 前記ラ イ ン 入出力手段を介して前記外部入力手段の外部同期信号を前記ラ イ ン 上へ出力する同期装置が提供される。 According to the present invention, a synchronization processing unit, a line input / output unit for inputting / outputting a synchronization signal on a line, an external output unit for externally outputting a synchronization signal input to the line input / output unit, An external input unit to which an external synchronization signal is input; and an opposite input unit to which a synchronization signal of an opposite device is input, wherein the synchronization processing unit is configured to control the quality of the external synchronization signal of the external input unit and the license. If the quality of the input synchronization signal of the input / output means is equal and the quality of the synchronization signal of the opposite input means is equal, the line A synchronizer is provided for outputting an external synchronization signal of the external input means onto the line via an input / output means.
前記同期処理手段は、 前記外部入力手段の外部同期信号の品質と 前記ラ イ ン入出力手段の入力同期信号の品質とが等しく、 且つ前記 対向入力手段の同期信号の品質と異なる場合は、 前記ラ イ ン入出力 手段を介して同期品質 D N Uの同期信号を前記ラ イ ン上へ出力する また、 本発明によれば前記同期処理手段は、 ノ一マル/ス レーブ の切換設定がなされ、 ノーマル設定された装置には前記装置 (ス レ ーブ装置に相当) の対向入力手段に代えて、 それに与える同期信号 を出力するための対向出力手段が備えられる。 図面の簡単な説明  The synchronization processing means, when the quality of the external synchronization signal of the external input means and the quality of the input synchronization signal of the line input / output means are equal and different from the quality of the synchronization signal of the opposite input means, A synchronization signal of synchronization quality DNU is output onto the line via a line input / output unit. According to the present invention, the synchronization processing unit is set to switch between normal / slave, The set device is provided with opposed output means for outputting a synchronizing signal to be applied thereto, instead of the opposed input means of the device (corresponding to a slave device). BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 同期シーケ ンスの一例 ( 1 ) を示した図である。  FIG. 1 is a diagram showing an example (1) of a synchronization sequence.
図 2 は、 同期シーケ ンスの一例 ( 2 ) を示した図である。  FIG. 2 is a diagram showing an example (2) of the synchronization sequence.
図 3 は、 従来のタイ ミ ングループ防止策その 1 の動作原理 ( 1 ) を示した図である。  Figure 3 is a diagram showing the operating principle (1) of the conventional timing group prevention measure No. 1.
図 4 は、 従来のタイ ミ ングループ防止策その 1 の動作原理 ( 2 ) を示した図である。  Figure 4 is a diagram showing the operation principle (2) of the conventional timing group prevention measure No. 1.
図 5 は、 従来のタイ ミ ングループ防止策その 2の動作原理を示し た図である。  FIG. 5 is a diagram showing the operation principle of the conventional timing group prevention measure 2.
図 6 は、 従来のクロ ッ ク源を冗長した伝送ネッ トワーク動作の一 例 ( 1 ) を示した図である。  Figure 6 is a diagram showing an example (1) of a conventional transmission network operation with a redundant clock source.
図 7 は、 従来のクロ ッ ク源を冗長した伝送ネッ トワーク動作の一 例 ( 2 ) を示した図である。  Figure 7 shows an example (2) of a conventional transmission network operation with a redundant clock source.
図 8 は、 従来のクロ ッ ク源を冗長した伝送ネッ トワーク動作の一 例 ( 3 ) を示した図である。 図 9 は、 従来のク ロ ッ ク源を冗長した伝送ネ ッ ト ワーク動作の一 例 ( 4 ) を示した図である。 Fig. 8 is a diagram showing an example (3) of a conventional transmission network operation with a redundant clock source. Fig. 9 is a diagram showing an example (4) of a conventional transmission network operation in which a clock source is made redundant.
図 1 0 は、 本発明によるク ロ ッ ク源を冗長した伝送ネ ッ ト ワーク 動作の一例 ( 1 ) を示した図である。  FIG. 10 is a diagram showing an example (1) of a transmission network operation in which a clock source according to the present invention is made redundant.
図 1 1 は、 本発明によるク ロ ッ ク源を冗長した伝送ネ ッ ト ワーク 動作の一例 ( 2 ) を示した図である。  FIG. 11 is a diagram showing an example (2) of a transmission network operation in which a clock source according to the present invention is made redundant.
図 1 2 は、 本発明によるク ロ ッ ク源を冗長した伝送ネ ッ ト ワーク 動作の一例 ( 3 ) を示した図である。  FIG. 12 is a diagram showing an example (3) of a transmission network operation in which a clock source according to the present invention is made redundant.
図 1 3 は、 本発明によるク ロ ッ ク源を冗長した伝送ネ ッ ト ワーク 動作の一例 ( 4 ) を示した図である。  FIG. 13 is a diagram showing an example (4) of a transmission network operation according to the present invention in which a clock source is made redundant.
図 1 4 は、 本発明によるク ロ ッ ク源を冗長した伝送ネ ッ ト ワーク 動作の一例 ( 5 ) でって、 本発明のタイ ミ ングループ防止策その 3 の動作結果を示した図である。  Fig. 14 is an example (5) of a transmission network operation in which a clock source is redundant according to the present invention (5), and is a diagram showing an operation result of the timing group prevention measure 3 of the present invention. is there.
図 1 5 は、 S D H伝送装置の一例を示した図である。  FIG. 15 is a diagram illustrating an example of the SDH transmission device.
図 1 6 は、 制御処理ュニッ 卜の処理プロセス概要を示した図であ 図 1 7 は、 S Y N C処理プロセスのメ イ ン処理ルーチ ンの一例を 示した図である。  FIG. 16 is a diagram showing an outline of a processing process of the control processing unit. FIG. 17 is a diagram showing an example of a main processing routine of the SYNC processing process.
図 1 8 は、 S Y N Cテーブルの一例を示した図である。  FIG. 18 is a diagram showing an example of the SYNC table.
図 1 9 は、 同期ソース確定ステップ処理の一例を示した図である 図 2 0 は、 E X T O U T— P確定ステップ処理の一例を示した図 であな。  FIG. 19 is a diagram illustrating an example of the synchronization source determination step process. FIG. 20 is a diagram illustrating an example of the EXTOUT-P determination step process.
図 2 1 は、 E X T O U T— S確定ステップ処理の一例を示した図 乙、、のる。  Figure 21 shows an example of the EXTOUT-S confirmation step process.
図 2 2 は、 ループ防止策その 1 のステップ処理の一例を示した図 こ"のる。 図 2 3 は、 ループ防止策その 2及び 3 のステップ処理の一例を示 した図である。 発明を実施するための最良の形態 Figure 22 shows an example of the step processing of loop prevention measure # 1. FIG. 23 is a diagram showing an example of the step processing of loop prevention measures 2 and 3. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 0 〜 1 4 は、 本願発明による同期装置及びそれを用いたシス テムの基本動作の一例を示したものである。 図 1 0 〜 1 3 は先に説 明した図 6 〜 9 の従来動作とそれぞれ対応している。 従って、 同一 部分には同一符号を付しており、 それらについて以降では重複した 説明を行わない。  FIGS. 10 to 14 show an example of the basic operation of the synchronizer according to the present invention and a system using the synchronizer. Figs. 10 to 13 correspond to the conventional operations of Figs. 6 to 9 described above, respectively. Therefore, the same portions are denoted by the same reference symbols, and will not be described repeatedly below.
図 1 0 において、 E X T O U T及びE X T I Nの各ラィ ン 2 8 、 2 9 と 3 1 、 3 2 を収容する装置 1 2及び 1 4 に対し、 それらが E X T I Nに同期する際のモー ドと してノ 一マルとス レーブとを設け る (MO D E = N O RMA LZ S L A V E ) 。 本例では、 装置 1 2 がノ ーマルそ して装置 1 4がス レーブに設定される。 さ らに、 既存 の装置に予め予備 Zモニタ用と して用意されている S TM— nライ ンの入出力ポー トを利用 して (これらを新設してもよい) 、 ノ ーマ ル装置 1 2 の出力ポー ト とス レーブ装置 1 4 の入力ポー ト との間を 新規のモニタライ ン 4 1 で接続する。 ノ 一マル装置 1 2 はモニタラ イ ン 4 1 に S TM— nライ ン 2 4 のタイ ミ ング情報を出力する。 従って、 ノ ーマル装置 1 2 は既存の E X T O U Tポー トである E X T O U Tプライマリ ポー ト ( E X T O U T— P ) と予備の E X T O U Tセカ ンダリ ポー ト ( E X T O U T— S ) とを備え、 またス レ 一ブ装置 1 4 は既存の E X T I Nポー トである E X T I Nプライマ リ ポー ト ( E X T I N— P ) と予備の E X T I Nセカ ンダリ ポー ト ( E X T I N— S ) とを備える。  In FIG. 10, the EXTOUT and EXTIN lines 28 and 29 and the devices 12 and 14 containing the 31 and 32 lines are used as the modes when they synchronize with the EXTIN. A circle and a slave are provided (MO DE = NO RMA LZ SLAVE). In this example, device 12 is set to normal and device 14 is set to slave. Furthermore, by using the input / output ports of the STM-n line which is prepared in advance for the existing equipment as a spare Z monitor (these may be newly installed), the normal equipment Connect a new monitor line 41 between the output port of 1 2 and the input port of the slave device 14. The normal device 12 outputs the timing information of the STM-n line 24 to the monitor line 41. Therefore, the normal device 12 has an existing EXTOUT port, an EXTOUT primary port (EXTOUT-P) and a spare EXTOUT secondary port (EXTOUT-S), and the slave device 14 has an existing EXTOUT port. It has an existing EXTIN port, an EXTIN primary port (EXTIN-P) and a spare EXTIN secondary port (EXTIN-S).
ス レーブ装置 1 4 の E X T I N— Pポー トへの入力は信号再生装 置 1 3 から、 また E X T I N— Sポー 卜へは信号再生装置 1 3へ E X T O U Tされるノーマル装置 1 2の信号がそれぞれ入力される。 さ らに、 スレーブ装置 1 4 は従来のタイ ミ ングループ防止策その 2 に次のような処理を追加する。 すなわち、 「 £ 丁 1 ^^ー 3からの 品質が E X T I N— Pからの品質と同じであればループ防止策その 2 を行わない」 (以降では、 これを 「タイ ミ ングループ防止策その 3 」 と称する) 。 その結果、 スレーブ装置 1 4 は E X T I N— Pの クロ ッ ク情報を S TM— nライ ン 3 4へ送出し、 装置 1 5がそれに 同期する。 なお、 図 1 0の例では、 スレーブ装置 1 4 はループ防止 策その 2の対象にもならないため、 図 6の従来例と全く 同一に動作 する。 The input to the EXTIN-P port of the slave device 14 is from the signal reproducing device 13 and to the EXTIN-S port is to the signal reproducing device 13 E The XTOUT signal of the normal device 12 is input. Further, the slave device 14 adds the following processing to the conventional timing group prevention measure 2. In other words, "If the quality from £ chome 1 ^^-3 is the same as the quality from EXTIN-P, do not perform loop prevention measure 2" (hereinafter referred to as "timing group prevention measure 3"). ). As a result, the slave device 14 sends the EXTIN-P clock information to the STM-n line 34, and the device 15 synchronizes with it. In the example of FIG. 10, the slave device 14 does not become a target of the loop prevention measure No. 2, and thus operates exactly the same as the conventional example of FIG.
次に、 図 1 1では先の図 7 と同様にクロ ック装置 1 0 に障害が発 生してその品質が D N Uに劣化する。 その結果、 ホールドオーバに 遷移した装置 1 1 はその同期品質である S E Cを S TM_ nライ ン 2 4へ送出する。 ここでの動作は図 7 と全く同じである。 また、 次 の図 1 2でネッ トワーク全体がより品質の高いクロ ッ ク装置 1 6の 側の P R C品質に同期するのも先の図 8 と全く 同様である。  Next, in FIG. 11, as in the case of FIG. 7, a failure occurs in the clock device 10 and its quality is degraded to DNU. As a result, the device 11 that has transited to the holdover sends the synchronization quality SEC to the STM_n line 24. The operation here is exactly the same as in Fig. 7. Also, in FIG. 12 below, the entire network is synchronized with the PRC quality of the higher-quality clock device 16 in exactly the same manner as in FIG.
次の図 1 3では、 先の図 9 と同様にクロ ッ ク装置 1 0が障害から 復旧する。 この場合、 スレーブ装置 1 4 についてみれば従来はクロ ッ ク装置 1 0の復旧の有無に係わらずタイ ミ ングループ防止策その 2 により装置 1 4から装置 1 5へ D N Uが与えられ続けるが、 本発 明構成ではスレーブ装置 1 4の E X T I N— Sのモニタライ ン 4 1 の品質が P R Cとなり、 それが E X T I N— Pライ ン 3 1 の品質 P R Cと一致するためタイ ミ ングループ防止策その 3が適用される。 従って、 図 1 4 に示すように、 スレーブ装置 1 4 は S TM— nラ ィ ン 3 4へ D N Uを送出するのを停止し、 それに代えて E X T I N 一 Pライ ン 3 1 からの P R C品質のクロ ッ ク情報を S TM— nライ ン 3 4へ送出する。 その結果、 装置 1 5 はタイ ミ ングループ防止策 その 1 によってク ロ ッ ク装置 1 0力ヽらの P R Cに同期する。 これに より、 ネ ッ ト ワーク全体がク ロ ッ ク装置 1 6側の P R C品質に再同 期するこ とになる。 In the following FIG. 13, the clock device 10 recovers from the failure as in FIG. 9 described above. In this case, regarding the slave device 14, the DNU continues to be provided from the device 14 to the device 15 by the timing group prevention measure 2 regardless of whether or not the clock device 10 is restored. In the present invention, the quality of the monitor line 41 of the EXTIN-S of the slave device 14 becomes PRC, which coincides with the quality PRC of the EXTIN-P line 31. Therefore, the timing group prevention measure 3 is applied. You. Therefore, as shown in FIG. 14, the slave device 14 stops sending DNU to the STM-n line 34, and instead, the PRC-quality clock from the EXTIN-P line 31 is stopped. Data to the STM-n line 34. As a result, equipment 15 is a measure to prevent The clock is synchronized with the PRC of the clock device 10 by the 1st. As a result, the entire network is resynchronized with the PRC quality of the clock device 16.
次に、 上述した本願本発明構成を備えた S D H伝送装置の一実施 例を図 1 5 ~ 2 3を参照しながら説明する。  Next, an embodiment of an SDH transmission apparatus having the above-described configuration of the present invention will be described with reference to FIGS.
図 1 5 は、 一つ又は複数のシヱルフとそのシヱルフ内に実装され るュニッ 卜で構成される S D H伝送装置 5 1 の一例を示したもので め 。  FIG. 15 shows an example of an SDH transmission device 51 including one or a plurality of shelves and a unit mounted in the shelves.
図 1 5 において、 制御処理ュニッ ト 5 2 は、 図示しない伝送監視 装置からコマン ドを受け、 それに従って自装置内の各主信号ュニッ ト 5 3やク ロ ッ ク処理ュニッ ト 5 4の制御を行い、 また各ュニッ ト の状態を監視してその障害情報を前記伝送監視装置へ通知する。 主 信号ュニッ ト 5 3 は、 伝送主信号の送信、 受信、 多重、 逆多重、 ク ロスコネク ト、 切り換え等の伝送装置本来の機能を実行する。  In FIG. 15, the control processing unit 52 receives a command from a transmission monitoring device (not shown), and controls the main signal unit 53 and the clock processing unit 54 in its own device according to the command. It also monitors the status of each unit and notifies the transmission monitoring device of fault information. The main signal unit 53 performs the transmission device's original functions such as transmission, reception, multiplexing, demultiplexing, cross-connect, and switching of the transmission main signal.
ク ロ ッ ク処理ュニッ ト 5 4 は、 伝送装置の同期処理を実行する。 S TM— nライ ンからのタイ ミ ング信号や外部からの E X T信号が このク ロ ッ ク処理ュニッ ト 5 4へ入力され、 そこで選択されたいず れかのタイ ミ ング信号に同期した S D H伝送装置 5 1 自身のタイ ミ ングを生成する。 生成したタイ ミ ングは装置内部の各ュニッ ト 5 2 、 5 3 に分配され装置全体の同期がと られる。  The clock processing unit 54 executes the synchronization processing of the transmission device. STM—A timing signal from the n-line or an external EXT signal is input to this clock processing unit 54, and SDH transmission synchronized with one of the selected timing signals is performed there. Device 51 Generates its own timing. The generated timing is distributed to each unit 52, 53 inside the device, and the entire device is synchronized.
上述したよう に、 S D H伝送装置 5 1 は本来冗長構成を有してお り、 本発明との関連でいえばノ ーマル装置と した場合に、 同期信号 の出力のために E X T E R N A L— O U T— P R I MA R Y ( E X T O U T— P) と E X T E R N A L—〇 U T— S E C 0 N D A R Y (E X T O U T - S ) の 2つの出力ポー トが利用可能である。 それ ぞれは別々 なソースからの信号を出力でき、 S TM— nライ ンのタ ィ ミ ングに同期した 2 Mビッ ト又は 2 M H zの信号がク ロ ッ ク処理 ュニッ ト 5 4力、ら出力される。 As described above, the SDH transmission device 51 originally has a redundant configuration. In the context of the present invention, when a normal device is used, an EXTERNAL-OUT-PRIMA is used to output a synchronization signal. Two output ports are available: RY (EXTOUT—P) and EXTERNAL—〇UT—SEC 0 NDARY (EXTOUT-S). Each can output signals from different sources, and clock processing of 2 Mbits or 2 MHz signals synchronized with the timing of the STM-n line Unit 4 output.
一方、 ス レーブ装置と した場合には、 同期信号の入力のために E X T E R N A L— I N— P R I MA R Y (E X T I - P ) と E X T E R N A L— I N— S E C O N D A R Y ( E X T I N - S ) と呼 ばれる 2つの入力ポー トが利用可能である。 同期に際しては、 E X T I N - P/ S信号を独立して監視し、 品質の高いものをタイ ミ ン グソースと して使用する。 同期信号には信号再生装置 ( S C U) か らの 2 Mビッ ト又は 2 M H zの信号が用いられる。  On the other hand, in the case of a slave device, two input ports called EXTERNAL-IN-PRIMARY (EXTI-P) and EXTERNAL-IN-SECONDARY (EXTIN-S) are used to input the synchronization signal. Available. During synchronization, the EXTIN-P / S signal is monitored independently, and a high-quality signal is used as the timing source. For the synchronization signal, a 2 Mbit or 2 MHz signal from a signal reproduction device (SCU) is used.
図 1 6 には制御処理ュニッ ト 5 2の処理プロセス概要を示してい Figure 16 shows an overview of the processing process of the control processing unit 52.
O o O o
2 3 2 C通信、 X. 2 5通信、 及び L A N通信の各処理プロセス 6 1 、 6 2、 6 3 は、 それぞれリ モー ト ログイ ンするパーソナルコ ンピュー夕 ( P C) 、 バケツ ト装置又はバケツ トネ ッ ト ワーク、 及 び構内ネ ッ ト ワーク内のハブ装置等とのィ ンタフ エース処理を行う 。 ユーザ管理プロセス 6 4 はログイ ンするユーザの認証処理等を行 う。 T L 1 処理プロセス 6 5 は前記各イ ンタ一フ ヱースを介して入 力されるメ ッセージやコマ ン ドの処理を行い、 それにより本発明に おけるノ ーマル Zス レーブの設定を S Y N C処理プロセス 6 6 に通 知する。  2 3 2 C processing, X.25 communication, and LAN communication processing processes 61 1, 62, and 63 are respectively performed by a personal computer (PC), bucket device, or bucket network for remote login. Performs interface processing with the network and hub devices in the campus network. The user management process 64 performs authentication processing for the user who logs in. The TL1 processing process 65 processes messages and commands input through the respective interfaces, thereby setting the normal Z slave setting in the present invention to the SYNC processing process 6. Notify 6.
S Y N C処理プロセス 6 6 における詳細な処理内容は以降の図 1 7〜 2 3で詳細に説明すると して、 こ こではもう一つの処理の流れ と して変化検出プロセス 6 9力、らク ロ ッ ク処理ュニッ ト 5 4 におけ る同期品質の変化や異常等を検出 した内容が通知される。 S Y N C 処理プロセス 6 6 はその通知によりアラーム処理プロセス 6 8 にァ ラーム処理を依頼する。 アラーム処理プロセス 6 8 は通知内容に基 づく アラーム処理を行い、 その処理内容をレポ一 ト通信プロセス 6 7へ渡す。 レポー ト通信プロセス 6 7 は、 それを所定のフ ォ ームに 変換したり書式調整を行う こ とでレポー トにま とめ、 そのレポー ト 内容を前記各イ ンタ一フ ヱース 6 1 〜 6 3 を介して所定の管理者等 に報告する。 The details of the SYNC processing process 66 will be described in detail with reference to FIGS. 17 to 23 below. In this example, the change detection process 69 is used as another processing flow. The content of detection of a change in synchronization quality or an abnormality in the processing unit 54 is notified. The SYNC processing process 66 requests the alarm processing process 68 to perform the alarm processing based on the notification. The alarm processing process 68 performs an alarm process based on the notification content, and passes the process content to the report communication process 67. The report communication process 67 transforms it into a predetermined form. By converting and adjusting the format, the report is compiled into a report, and the contents of the report are reported to a predetermined administrator or the like via the interfaces 61 to 63.
図 1 7 は、 S Y N C処理プロセス 6 6 におけるメ イ ン処理ル一チ ンの一例を示したものである。 また、 図 1 8〜 2 3 には前記メ イ ン 処理ルーチン内の各処理ルーチンで実行される詳細処理フ ローの一 例を示している。 S Y N C処理プロセス 6 6 は、 各イ ンタ フ ェース 6 1 〜 6 3からのコマン ド又は変化検出プロセス 6 9から同期状態 の変化通知を受信すると ( S 1 0 1 ) それがいずれであるかを判断 し ( S 1 0 2 ) 、 コマ ン ド受信の場合には設定変更テーブルの作成 ステップ ( S 1 0 3 ) でテーブル内容の更新を行い、 また変化通知 の場合には L I N EZ E X T E R N A L変化ステップ ( S 1 0 4 ) で S TM— nライ ン又は E X Tライ ンの同期状態の変化内容を判断 する。  FIG. 17 shows an example of the main processing routine in the SYNC processing process 66. FIGS. 18 to 23 show an example of a detailed processing flow executed in each processing routine in the main processing routine. When the SYNC processing process 66 receives a command from each of the interfaces 61 to 63 or a synchronization status change notification from the change detection process 69 (S101), it determines which one it is. (S102), in the case of command reception, the table contents are updated in the setting change table creation step (S103), and in the case of change notification, the LIN EZ EXTERNAL change step (S102) In 104), the contents of change in the synchronization state of the STM-n line or EXT line are determined.
図 1 8 には、 設定変更テ一ブルの作成ステップ ( S 1 0 3 ) で作 成される S Y N Cテーブルの一例を示している。 本テーブルには例 えばリ モ一 ト ログイ ンしたオペレータ等からのコマ ン ド指示によ り 、 ノ ーマル Zス レーブ状態の設定、 同期ソースの登録数と現設定値 (各々 の現品質値) 、 E X T O U T— Pの登録数と現設定値 (各々 の現品質値) 、 E X T O U T— Sの登録と現設定値 (各々 の現品質 値) の各データが各々対応するデータ領域に書き込まれる。 また、 各登録数の登録順によ り優先順位が決定される。  FIG. 18 shows an example of the SYNC table created in the step (S103) of creating the setting change table. In this table, the normal Z slave status setting, the number of registered synchronization sources, and the current setting value (each current quality value) are given by a command from an operator or the like who has logged in remotely. , EXTOUT-P registration number and current setting value (each current quality value), EXTOUT-S registration and current setting value (each current quality value) are written in the corresponding data areas. The priority order is determined according to the registration order of each registered number.
次に、 図 1 7の同期ソース確定ステップ ( S 1 0 5 ) では、 図 1 9 に示すよう に初期値と して変数 Mに最低同期品質の D N Uを設定 し、 変数 M Sには図 1 8の同期ソース登録データ領域の先頭ソース 識別値を設定する ( S 2 0 1 ) 。 そ して図 1 8の同期ソース登録の 数だけステップ S 2 0 2〜 2 0 7の各処理を繰り返えす。 これによ り、 ノーマル設定の場合には変数 M及び M Sの内容はより高品質な ソースのものに更新され、 処理の終了時点で本装置の同期品質 (M ) と対応同期ソース (MS) が選ばれる ( S 2 0 5及び 2 0 6 ) 。 そ して、 その値で現装置同期ソース及びその現品質値の各データが 更新される (S 2 0 8 ) 。 Next, in the synchronization source determination step (S105) of FIG. 17, as shown in FIG. 19, the variable M is set to the minimum synchronization quality DNU as an initial value, and the variable MS is set to the value of FIG. Set the start source identification value of the synchronization source registration data area of (S201). Then, the processes in steps S202 to S207 are repeated by the number of synchronization source registrations in FIG. This In the case of the normal setting, the contents of the variables M and MS are updated to those of a higher quality source. At the end of the processing, the synchronization quality (M) of the device and the corresponding synchronization source (MS) are selected ( S205 and 206). Then, the data of the current apparatus synchronization source and its current quality value are updated with the value (S208).
上記処理内容は従来と変わりないが、 本発明ではさ らにスレーブ の判定 (S 2 0 3 ) と E XT I N— Sの同期によるものかが判断さ れる。 前者は図 1 8の S L AV EZNORMA L状態データにより 、 そして後者は図 1 7の L I N E/E XT E RNA L変化 (S 1 0 4 ) の結果によって判断される。 これにより、 S L AV Eであって E X T I N— Sが Y E Sの場合の同期品質 Mには最低の D N Uが与 えられ、 その結果スレーブ装置は E XT I N— Sへの同期が禁止さ れる。  Although the above processing contents are the same as the conventional processing, in the present invention, it is further determined whether the determination of the slave (S203) and the synchronization of EXTINS are performed. The former is determined by the SLAV EZNORMAL status data in FIG. 18 and the latter is determined by the result of the LINE / EXTERNAL change (S104) in FIG. As a result, the lowest DNU is given to the synchronization quality M in the case of SLAVE and EXTIN-S is YESS, so that the slave device is prohibited from synchronizing to EXTIN-S.
続く E XT OUT— P確定ステップ (図 1 7の S 1 0 6 ) 及び E XTOUT— S確定ステップ (図 1 7の S 1 0 6 ) でも、 図 2 0及 び図 2 1 に示すように始めにそれぞれの変数 0 P M、 0 S Mには初 期値と して D NUが設定され、 変数 O PMS、 O SMSには図 1 8 の E XT E RNA L OUT— P登録データ領域及び E XT E RNA L OUT- S登録データ領域の先頭ソース識別値が設定される (S 3 0 1、 S 4 0 1 ) 。 以降の処理内容も図 1 8の場合とほぼ同様で あってノーマル設定の場合は従来と変わりないが、 スレーブ設定の 場合には E XTOUT— PZSに初期値である最も優先度の高いソ ースが設定され、 その結果いずれの場合にも E XT I N— Sのソ一 スと しての出力が禁止される。  In the following EXTOUT-P determination step (S106 in Fig. 17) and EXTOUT-S determination step (S106 in Fig. 17), start as shown in Figs. 20 and 21. In each of the variables 0 PM and 0 SM, D NU is set as the initial value, and in the variables O PMS and O SMS, the EXT E RNA L OUT—P registration data area and EX T E The head source identification value of the RNA L OUT-S registration data area is set (S301, S401). Subsequent processing is almost the same as that in Fig. 18; the normal setting is the same as the conventional setting. However, in the case of slave setting, the highest priority source, which is the default value in EXTOUT-PZS Is set, and in either case, the output as the source of EXT IN-S is prohibited.
次のループ防止策その 1のステップ (図 1 7の S 1 0 8 ) では、 図 2 2に示すように L I N Eに同期した場合には D NUをその同期 ライ ン品質に設定する (S 5 0 1及び 5 0 2 ) 。 こ こで、 L I N E に同期したか否かは L I N EZE XT E RNA L変化ステップ (S 1 0 4 ) の結果で判断する。 L I N E以外に同期した場合はステツ プ S 5 0 2の処理をスキップしてループ防止策その 1の処理を行わ ない。 In the next loop prevention measure, step 1 (S108 in Fig. 17), as shown in Fig. 22, when synchronizing to LINE, DNU is set to that synchronization line quality (S50) 1 and 502)). Here, LINE It is determined whether or not the synchronization has been performed with the result of the LIN EZE XTE RNA L change step (S104). If synchronized with other than LINE, skip the processing of step S502 and do not perform the processing of loop prevention measure No. 1.
次のループ防止策その 2及び 3のステップ (図 1 7の S 1 0 9 ) では、 図 2 3に示すように先ず E XT I N— P/Sに同期している か否かを判断する。 E X T E RNA L I N— PZSに同期していな い場合は本処理 (S 1 0 9 ) を終了する。 すなわち、 ループ防止策 その 2又は 3を行わない。 E XT I N— P/Sに同期しておりスレ ーブ設定され且つ E XT I N— Sの同期品質が E XT I N— Pと同 じ場合もループ防止策その 2を行わない ( S 6 0 1〜 6 0 3 ) 。 こ れはループ防止策その 3そのものを実行したことになる。  In the next loop prevention steps 2 and 3 (S109 in Fig. 17), first, as shown in Fig. 23, it is determined whether or not synchronization with EXTIN-P / S is performed. EXTE RNA LIN— If not synchronized with PZS, end this process (S109). That is, loop prevention measures 2 or 3 are not performed. Even if the slave is synchronized with EXT IN-P / S and the synchronization quality of EXT IN-S is the same as EXT IN-P, loop prevention measure 2 is not performed (S601) ~ 603). This means that loop prevention measure 3 itself was implemented.
他のステップは全てマスタ設定に関するものであり、 従来と同様 である。 すなわち、 図 1 7のステップ S 1 0 6で確定したノーマル 装置の E XTOUT— Pの出力が、 S TM— nライ ンからのもので ありその S TM— nライ ンの品質がノ ーマル装置の同期品質 (E X T I N— Pの品質) と同じ場合には前記 S TM— nライ ンに DNU を送出する (S 6 0 4〜 6 0 6 ) 。 また、 図 1 7のステップ S 1 0 7で確定したノーマル装置の E XTOUT— Sの出力についても、 S TM— nライ ンからのものでありその S TM— nライ ンの品質が ノーマル装置の同期品質 (E XT I N— Pの品質) と同じ場合には 前記 S TM— nライ ンに DNUを送出する (S 6 0 7〜 6 0 9 ) 。  All other steps are related to master setting and are the same as before. That is, the output of EXTOUT-P of the normal device determined in step S106 of FIG. 17 is from the STM-n line, and the quality of the STM-n line is the normal device's output. If it is the same as the synchronization quality (EXTIN-P quality), the DNU is transmitted to the STM-n line (S604 to 606). The output of EXTOUT-S of the normal device determined in step S107 of Fig. 17 is also from the STM-n line, and the quality of the STM-n line is the same as that of the normal device. If the synchronization quality (EXTIN-P quality) is the same, the DNU is sent to the STM-n line (S607-609).
図 1 7に戻って、 ステップ S 1 1 0では、 上述したこれまでのス テツプにおける決定内容を実行するハ一 ドウエアの設定をおこなう 。 例えば、 同期ソース切換スィ ッチの設定等を行う。 最後にレポ一 ト通信プロセス (図 1 6 ) 等を介して新状態への以降を管理者等に 通知する ( S 1 1 1 ) 。 以上述べたように、 本発明によれば同期装置にノーマル zス レ一 ブの設定を設け、 ス レーブ装置がノーマル装置の同期品質を検出す ることで従来問題となっていた障害回復時に単一ク ロ ッ クへの再同 期を可能と し、 その結果ループの防止と単一基準ク ロ ッ クへの同期 とを両立させた同期装置及び同期システムが提供可能となる。 Returning to FIG. 17, in step S110, the hardware for executing the contents of the determination in the above-described steps is set. For example, the synchronization source switching switch is set. Finally, the new status is notified to the administrator or the like via the report communication process (FIG. 16) or the like (S111). As described above, according to the present invention, a normal z-slave setting is provided in a synchronization device, and the slave device detects the synchronization quality of the normal device, so that it can be used simply in the event of a failure recovery which has conventionally been a problem. It is possible to provide a synchronization device and a synchronization system that enable re-synchronization to one clock, and as a result, achieve both loop prevention and synchronization with a single reference clock.

Claims

請 求 の 範 囲 The scope of the claims
1 . 同期処理手段と、 1. Synchronization processing means,
ライ ン上の同期信号を入出力するライ ン入出力手段と、  A line input / output means for inputting / outputting a synchronization signal on the line;
前記ラ イ ン入出力手段に入力された同期信号を外部出力する外部 出力手段と、  External output means for externally outputting a synchronization signal input to the line input / output means,
外部同期信号が入力される外部入力手段と、  External input means for receiving an external synchronization signal,
対向装置の同期信号が入力される対向入力手段と、 を有し、 前記同期処理手段は、 前記外部入力手段の外部同期信号の品質と 前記ラ イ ン入出力手段の入力同期信号の品質とが等しく、 且つ前記 対向入力手段の同期信号の品質と等しい場合は、 前記ライ ン入出力 手段を介して前記外部入力手段の外部同期信号を前記ラ イ ン上へ出 力する、 ことを特徴とする同期装置。  Opposing input means to which a synchronizing signal of the opposing device is input, wherein the synchronization processing means is configured to determine the quality of the external synchronizing signal of the external input means and the quality of the input synchronizing signal of the line input / output means. If the quality of the synchronization signal is equal and the quality of the synchronization signal of the opposite input means is equal, an external synchronization signal of the external input means is output onto the line via the line input / output means. Synchronization device.
2 . 前記同期処理手段は、 前記外部入力手段の外部同期信号の品 質と前記ライ ン入出力手段の入力同期信号の品質とが等しく、 且つ 前記対向入力手段の同期信号の品質と異なる場合は、 前記ラ イ ン入 出力手段を介して同期品質 D N Uの同期信号を前記ラ イ ン上へ出力 する、 請求項 1記載の装置。  2. The synchronization processing means, when the quality of the external synchronization signal of the external input means and the quality of the input synchronization signal of the line input / output means are equal and different from the quality of the synchronization signal of the opposite input means. The apparatus according to claim 1, wherein a synchronization signal of synchronization quality DNU is output onto the line via the line input / output means.
3 . ノーマル Zス レーブの設定がなされる同期処理手段と、 ライ ン上の同期信号を入出力するライ ン入出力手段と、  3. Synchronization processing means for setting the normal Z slave, line input / output means for inputting / outputting a synchronization signal on the line,
前記ラ イ ン入出力手段に入力された同期信号を外部出力する外部 出力手段と、  External output means for externally outputting a synchronization signal input to the line input / output means,
前記ライ ン入出力手段に入力された同期信号を対向装置へモニタ 出力する対向出力手段と、  Opposing output means for monitoring and outputting the synchronization signal input to the line input / output means to the opposing device;
外部同期信号が入力される外部入力手段と、  External input means for receiving an external synchronization signal,
対向装置の前記モニタ出力が入力される対向入力手段と、 を有し 前記同期処理手段は、 ス レーブ設定時、 前記外部入力手段の外部 同期信号の品質と前記ラ イ ン入出力手段の入力同期信号の品質とが 等しく、 且つ前記対向入力手段の同期信号の品質と等しい場合は、 前記ライ ン入出力手段を介して前記外部入力手段の外部同期信号を 前記ラ イ ン上へ出力する、 ことを特徴とする同期装置。 Opposing input means for receiving the monitor output of the opposing device, When the slave is set, when the slave is set, the quality of the external synchronization signal of the external input means is equal to the quality of the input synchronization signal of the line input / output means, and the quality of the synchronization signal of the opposite input means is the same. If they are equal, an external synchronization signal of the external input means is output onto the line via the line input / output means.
4 . 前記同期処理手段は、 ス レーブ設定時、 前記外部入力手段の 外部同期信号の品質と前記ラ イ ン入出力手段の入力同期信号の品質 とが等しく、 且つ前記対向入力手段の同期信号の品質と異なる場合 は、 前記ライ ン入出力手段を介して同期品質 D N Uの同期信号を前 記ライ ン上へ出力する、 請求項 3記載の装置。  4. The synchronization processing means, when the slave is set, the quality of the external synchronization signal of the external input means is equal to the quality of the input synchronization signal of the line input / output means, and the synchronization signal of the opposite input means is 4. The apparatus according to claim 3, wherein when the quality is different, a synchronization signal of a synchronization quality DNU is output onto the line via the line input / output means.
5 . 同期処理手段と、  5. Synchronous processing means,
ライ ン上の同期信号を入出力するラ イ ン入出力手段と、  A line input / output means for inputting / outputting a synchronization signal on the line;
前記ラ イ ン入出力手段に入力された同期信号を外部出力する外部 出力手段と、  External output means for externally outputting a synchronization signal input to the line input / output means,
前記ラ イ ン入出力手段に入力された同期信号を対向ス レーブ装置 へ出力する対向出力手段と、  Facing output means for outputting a synchronization signal input to the line input / output means to a facing slave device;
外部同期信号が入力される外部入力手段と、 を有するノ ーマル同 期装置と、  A normal synchronization device having an external input means to which an external synchronization signal is input; and
同期処理手段と、  Synchronous processing means;
ライ ン上の同期信号を入出力するラ イ ン入出力手段と、  A line input / output means for inputting / outputting a synchronization signal on the line;
前記ライ ン入出力手段に入力された同期信号を外部出力する外部 出力手段と、  External output means for externally outputting a synchronization signal input to the line input / output means,
外部同期信号が入力される外部入力手段と、  External input means for receiving an external synchronization signal,
対向ノーマル装置の同期信号が入力される対向入力手段と、 を有 するス レーブ同期装置と、  Opposing input means for receiving a synchronizing signal of the opposing normal device; a slave synchronizing device having:
前記ノ ーマル及びス レーブ同期装置から外部出力された同期信号 の内でより高品質な同期信号の側を再生して前記各装置の外部入力 手段に与える信号再生装置と、 で構成される同期ネッ トワークであ つて、 A higher-quality synchronization signal is reproduced from the synchronization signal output from the normal and slave synchronization device to the external input of each device. And a signal reproducing apparatus for providing the means, and a synchronous network comprising:
前記スレーブ同期装置の同期処理手段は、 その外部入力手段の外 部同期信号の品質とラ イ ン入出力手段の入力同期信号の品質とが等 しく、 且つ対向入力手段の同期信号の品質と等しい場合は、 そのラ イ ン入出力手段を介して外部入力手段の外部同期信号をライ ン上へ 出力する、 ことを特徴とする同期ネッ トワーク。  In the synchronization processing means of the slave synchronizer, the quality of the external synchronization signal of the external input means is equal to the quality of the input synchronization signal of the line input / output means, and is equal to the quality of the synchronization signal of the opposite input means. A synchronous network for outputting an external synchronization signal of the external input means to the line via the line input / output means.
6 . 前記ス レーブ同期装置の同期処理手段は、 その外部入力手段 の外部同期信号の品質とライ ン入出力手段の入力同期信号の品質と が等しく、 且つ対向入力手段の同期信号の品質と異なる場合は、 そ のライ ン入出力手段を介して同期品質 D N Uの同期信号をライ ン上 へ出力する、 請求項 5記載の装置。  6. The synchronization processing means of the slave synchronizer is such that the quality of the external synchronization signal of the external input means is equal to the quality of the input synchronization signal of the line input / output means, and is different from the quality of the synchronization signal of the opposite input means. 6. The apparatus according to claim 5, wherein in such a case, a synchronization signal of a synchronization quality DNU is output onto the line via the line input / output means.
PCT/JP1999/005715 1999-10-15 1999-10-15 Synchronizing device and synchronizing system WO2001028144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005715 WO2001028144A1 (en) 1999-10-15 1999-10-15 Synchronizing device and synchronizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005715 WO2001028144A1 (en) 1999-10-15 1999-10-15 Synchronizing device and synchronizing system

Publications (1)

Publication Number Publication Date
WO2001028144A1 true WO2001028144A1 (en) 2001-04-19

Family

ID=14237020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005715 WO2001028144A1 (en) 1999-10-15 1999-10-15 Synchronizing device and synchronizing system

Country Status (1)

Country Link
WO (1) WO2001028144A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9011532B2 (en) 2009-06-26 2015-04-21 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US9504560B2 (en) 2002-01-14 2016-11-29 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US9603703B2 (en) 2009-08-03 2017-03-28 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US9968441B2 (en) 2008-03-28 2018-05-15 Johnson & Johnson Surgical Vision, Inc. Intraocular lens having a haptic that includes a cap
US9987125B2 (en) 2012-05-02 2018-06-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US11707354B2 (en) 2017-09-11 2023-07-25 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687015A (en) * 1995-07-03 1997-11-11 Fujitsu Limited Radio apparatus
JPH1051411A (en) * 1996-07-31 1998-02-20 Fujitsu Ltd Synchronization message transmission device
JPH10136000A (en) * 1996-10-29 1998-05-22 Fujitsu Ltd Switching device for active reference by synchronization message
JPH10271100A (en) * 1996-12-20 1998-10-09 Alcatel Alsthom Co General Electricite Synchronization digital communication system, controller, network element and central clock generator
JPH11127128A (en) * 1997-10-20 1999-05-11 Fujitsu Ltd Synchronizing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687015A (en) * 1995-07-03 1997-11-11 Fujitsu Limited Radio apparatus
JPH1051411A (en) * 1996-07-31 1998-02-20 Fujitsu Ltd Synchronization message transmission device
JPH10136000A (en) * 1996-10-29 1998-05-22 Fujitsu Ltd Switching device for active reference by synchronization message
JPH10271100A (en) * 1996-12-20 1998-10-09 Alcatel Alsthom Co General Electricite Synchronization digital communication system, controller, network element and central clock generator
JPH11127128A (en) * 1997-10-20 1999-05-11 Fujitsu Ltd Synchronizing device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9814570B2 (en) 1999-04-30 2017-11-14 Abbott Medical Optics Inc. Ophthalmic lens combinations
US8425597B2 (en) 1999-04-30 2013-04-23 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9504560B2 (en) 2002-01-14 2016-11-29 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US10206773B2 (en) 2002-12-05 2019-02-19 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lens and method of manufacture thereof
US9271830B2 (en) 2002-12-05 2016-03-01 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US9198752B2 (en) 2003-12-15 2015-12-01 Abbott Medical Optics Inc. Intraocular lens implant having posterior bendable optic
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US9039760B2 (en) 2006-12-29 2015-05-26 Abbott Medical Optics Inc. Pre-stressed haptic for accommodating intraocular lens
US9968441B2 (en) 2008-03-28 2018-05-15 Johnson & Johnson Surgical Vision, Inc. Intraocular lens having a haptic that includes a cap
US10052194B2 (en) 2009-06-26 2018-08-21 Johnson & Johnson Surgical Vision, Inc. Accommodating intraocular lenses
US9011532B2 (en) 2009-06-26 2015-04-21 Abbott Medical Optics Inc. Accommodating intraocular lenses
US9603703B2 (en) 2009-08-03 2017-03-28 Abbott Medical Optics Inc. Intraocular lens and methods for providing accommodative vision
US10105215B2 (en) 2009-08-03 2018-10-23 Johnson & Johnson Surgical Vision, Inc. Intraocular lens and methods for providing accommodative vision
US9987125B2 (en) 2012-05-02 2018-06-05 Johnson & Johnson Surgical Vision, Inc. Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity
US11707354B2 (en) 2017-09-11 2023-07-25 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability

Similar Documents

Publication Publication Date Title
US7620074B2 (en) Communication system, master communication device, and slave communication device
JP4358397B2 (en) Network element synchronization in synchronous digital communication networks.
JP3460118B2 (en) Clock management method and transmission apparatus for synchronous network system
JP3130989B2 (en) Method for always synchronizing nodes of a private telecommunications network to the best available clock and private telecommunications network
JP3414627B2 (en) Synchronizer
JP3791983B2 (en) Switching device of active reference by synchronization message
WO2001028144A1 (en) Synchronizing device and synchronizing system
US8565270B2 (en) Phase and frequency re-lock in synchronous ethernet devices
US6839858B1 (en) System for clock synchronization
JP2000209245A (en) Network synchronizing controller and method for preventing occurrence of timing loop
JP4651646B2 (en) Master communication device and subordinate communication device
JP3197793B2 (en) Wireless device
US6560245B1 (en) Telecommunications system
JPH09261210A (en) Synchronization clock distribution system for synchronization transmission system
EP0746914A1 (en) Hierarchical synchronization method
KR100608894B1 (en) TDM/IP data convergence transfer system and network synchronization control method thereof
JPH07107105A (en) Subordinate synchronization control method for duplex loop lan
JP4679090B2 (en) Transmission end switching method and set spare terminal equipment
JP5482545B2 (en) Communication apparatus and path switching method
KR100487561B1 (en) Apparatus and Therefor Controlling Method for Duplicating Network Block In Synchronous Transmission System
JP2636936B2 (en) Clock path configuration method in duplex ring network
JP3842534B2 (en) Transmission equipment
JPH05227185A (en) Master station backup system
JP4187480B2 (en) Clock synchronous switching device
JP3947081B2 (en) Transmission system, node device thereof, and communication path setting method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP