WO2001026101A1 - Patterned high density magnetic recording medium and production method therefor - Google Patents

Patterned high density magnetic recording medium and production method therefor Download PDF

Info

Publication number
WO2001026101A1
WO2001026101A1 PCT/JP2000/006964 JP0006964W WO0126101A1 WO 2001026101 A1 WO2001026101 A1 WO 2001026101A1 JP 0006964 W JP0006964 W JP 0006964W WO 0126101 A1 WO0126101 A1 WO 0126101A1
Authority
WO
WIPO (PCT)
Prior art keywords
patterned
thin film
magnetic
resist
media
Prior art date
Application number
PCT/JP2000/006964
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Nakatani
Original Assignee
Japan Science And Technology Corporation
Japan As Represented By Director General Of National Research Institute For Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, Japan As Represented By Director General Of National Research Institute For Metals filed Critical Japan Science And Technology Corporation
Publication of WO2001026101A1 publication Critical patent/WO2001026101A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers

Definitions

  • the invention of this application relates to a magnetic recording medium, and more particularly, to a magnetic recording medium called a patterned medium.
  • Patterned media is considered as a rigid magnetic disk for computers, and has a storage capacity per unit area several times larger than that of continuous thin-film media currently used. Needless to say, as a large-capacity storage device for a computer, it contributes to improving the performance of the computer, but because of its small size and light weight, it is useful as a storage device built into a portable computer. . It is also used as an ic-type rigid magnetic disk drive by inserting it into the body of a computer.In the video field, it replaces video tapes and DVDNs, and records and plays back high-definition TV images, and records, saves, and plays back digital images.
  • FIG. 3 a basic structure of a patterned medium in which ferromagnetic fine particles are regularly arranged at equal intervals along a track and one bit is recorded in each ferromagnetic fine particle is disclosed.
  • I have.
  • ⁇ ⁇ ⁇ Detailed technology on the shape, size, and arrangement of fine particles required for the bit to be stable and held for a long period of time is also disclosed. The technology lift-off method is applied.
  • a resist film (2) is coated on a glass substrate (2) as a base of a rigid magnetic disk by coating, and (b) A patterned mask (3) is formed by an electron beam exposure or an ultraviolet exposure and a development process.
  • a magnetic thin film ⁇ ⁇ serving as a magnetic recording bit is formed on the glass substrate ⁇ ⁇ on which the patterned mask 3 is formed by vacuum evaporation.
  • the J-patterned mask 3 is removed by dissolution with an organic solvent, the unnecessary magnetic thin film 5 is removed together with the patterned mask 3, and the magnetic material bit array attached to the glass substrate 1 Leave only 6. This process is called lift-off. In this way, an array of magnetic particles is formed.
  • a lubricating and durable protective layer ⁇ made of, for example, diamond-like carbon is formed thereon as necessary.
  • inlay method (damascene method), as shown in Fig. 5, magnetic particles are embedded in the substrate surface, and the substrate surface and the magnetic material bit array and the surface are flattened so as to be on the same plane.
  • Such a form of patterned media having a flat surface as a whole is an ideal structure from the viewpoint of magnetic head scanning.
  • step (c) reactive ion etching is performed in accordance with the patterned mask 3, and then, in step (d), the patterned mask 3 is removed and the resist film is removed to form a trench arrangement 4. ing.
  • a magnetic thin film ⁇ is formed as a step (e) by burying a magnetic substance in a trench array ⁇ , and in a step (f), the magnetic substance is flattened by chemical mechanical polishing.
  • the bit arrangement 6 is formed, and if necessary, the step (g) is covered with a surface lubrication layer.
  • this damascene method requires a chemical mechanical polishing (CMP) polishing step, which requires advanced technology for surface flattening, at the end of the manufacturing process ((e) ⁇ (f)).
  • CMP chemical mechanical polishing
  • Media productivity is compromised by its cumbersome and sophisticated chemical-mechanical polishing processes, driving up production costs.
  • the polishing agent was consumed, and at the same time, polishing wastewater containing heavy metals and polishing sludge were discharged. Therefore, a technology that does not require chemical mechanical polishing has been demanded.
  • the surface must not be polished by a chemical mechanical polishing method such as the damascene method. ⁇ To achieve a buried structure with a flat surface morphology only by dry processing, Realization of a new method was required. Disclosure of the invention
  • the invention of this application relates to a high-density magnetic recording medium patterned media, in which a matrix thin film coated on a media substrate or a media substrate is formed with a concave trench array by etching.
  • a high-density magnetic recording medium is provided, in which a magnetic material is buried up to the height of the surface of the matrix thin film or the media substrate to form a magnetic bit array.
  • a patterned medium having an amorphous carbon thin film as a matrix thin film is provided, and a patterned medium in which the surface of a magnetic bit array is covered with a surface lubricating layer is provided by adding an additional configuration.
  • the invention of this application also relates to a method for manufacturing a high-density magnetic recording medium patterned medium, comprising the steps of: coating a media substrate with a matrix thin film; and etching the coated matrix according to a mask pattern to form a concave trench arrangement.
  • Forming a magnetic bit array by burying a magnetic material up to the surface height of a matrix thin film in a trench recess to provide a magnetic bit array.
  • a method for manufacturing patterned media including:
  • the invention of this application is a method for manufacturing a patterned medium of a high-density magnetic recording medium, wherein the medium substrate is patterned according to a mask pattern. Forming a concave trench array on the media substrate by touching, and forming a magnetic bit array by embedding a magnetic material in the trench recess up to the surface height of the media substrate.
  • a method for manufacturing a patterned medium of a high-density magnetic recording medium a step of coating a resist on a media substrate, a step of exposing and developing the coated resist to form a resist mask pattern, and a magnetic material.
  • a method for manufacturing a high-density magnetic recording medium patterned medium including steps.
  • the invention of this application solves the conventional problems by providing a patterned high-density magnetic recording medium having a flat surface form without protrusions or depressions and requiring no chemical mechanical polishing. It provides the structure of the media and its manufacturing method.
  • FIG. 1 is a schematic diagram of a process for producing an embedded structure without using a chemical mechanical polishing (CMP) process according to the present invention.
  • CMP chemical mechanical polishing
  • FIG. 2 is a schematic diagram of a process for producing patterned media according to the present invention.
  • FIG. 3 is a conceptual diagram of a patterned media type rigid magnetic disk.
  • FIG. 4 is a schematic diagram of a conventional patterned media manufacturing process by a lift-off method.
  • FIG. 5 is a schematic view of a conventional embedded structure fabrication process (damascene method) using a CMP process.
  • FIG. 1 of the attached drawings illustrates a process of a first method for manufacturing a patterned medium according to the present invention.
  • the magnetic material to be vapor-deposited is a substance that plays a role in memory in a recording medium, such as a Co-Cr alloy, a Co-Cr-Pt alloy, or the like.
  • the vacuum deposition process (d: step) of the active substance is performed after the reactive ion etching process (c: step) without being taken out to the atmosphere, in each of two connected vacuum vessels. Since it can be transported and carried out successively in chronological order, it is possible to avoid contamination of the target substance and at the same time it is excellent in the simplicity of the process.
  • the waste liquid of the organic solvent used at this time is filtered to remove the magnetic thin film residue which is separated and suspended, then purified by fractionation treatment, and can be reused any number of times.
  • the protective layer of the lubricating layer 7 is desirable from the viewpoint of protection of the magnetic bit arrangement, as in the case of the lift-off method.
  • the magnetic bit array (1) has a structure embedded in the matrix thin film (2), and the surface is compared with the matrix surface. A patterned media equivalent to the existing damascene structure can be obtained.
  • Carbon-based binary or multi-element alloy with various impurities added to carbon, such as silicon, nitrogen, hydrogen, germanium, selenium, tellurium, etc.
  • germanium element or multi-element alloy in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and tellurium are added to germanium, and the components are adjusted so as to easily become amorphous.
  • a thin film of the following substances formed by sputtering, for example, is particularly preferable as the material of the matrix thin film.
  • Silicon-based binary or multi-element alloy in which impurities such as carbon, nitrogen, hydrogen, germanium, selenium, and tellurium are added to silicon and the components are adjusted so that they are likely to become amorphous.
  • Germanium binary or multi-element alloys in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and perulum are added to germanium, and the components are adjusted to be easily amorphous.
  • a thin film of the following substances formed by sputtering is particularly preferable.
  • Silicon-based binary or multi-element alloy in which impurities such as carbon, nitrogen, hydrogen, germanium, selenium, and perul are added to silicon and the components are adjusted so that they are likely to become amorphous.
  • Germanium element or multi-element alloy in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and perulum are added to germanium and the components are adjusted to be easily amorphous.
  • a thin film of the following substances formed by sputtering is particularly preferable.
  • Germanium binary or multi-element alloys in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and tellurium are added to germanium, and the components are adjusted to be easily amorphous.
  • the manufacturing method described with reference to FIG. 1 is a method of transferring a bit pattern to a rematrix by reactive ion etching (d). Since the etching reaction stops automatically due to the nature, there is an advantage that it is not necessary to control the depth of the reactive ion etching. However, it is considered that the matrix thin film 8 must be interposed in advance.
  • FIG. 2 illustrates a process of a second method for manufacturing patterned media.
  • the starting form is, for example, a form in which a resist is applied to a glass substrate ⁇ as a substrate of a rigid magnetic disk and a resist film 2 is covered.
  • the material of the glass substrate is a rigid magnetic disk substrate
  • a borosilicate glass generally used as a substrate may be used, and a substrate may be aluminum, an aluminum alloy, amorphous carbon, silicon single crystal, or the like.
  • a magnetic material is deposited by a method having a strong directivity, such as vacuum evaporation, ion beam sputtering, or long throw sputtering, with a small amount of retraction, and a magnetic thin film ⁇ ⁇ covering the entire surface is formed.
  • the magnetic material to be deposited is a substance that plays a role in memory in the recording medium, such as a Co—Cr alloy, a Co—Cr—Pt alloy, and a Co—Fe alloy.
  • the thickness of the deposited film was measured using a
  • the vacuum deposition process (d) of the magnetic material is generally performed after the reactive ion etching process (c) without removing it to the atmosphere. Since it can be conveyed through each of the vacuum chambers that have been set and can be performed successively in time series, it is possible to avoid contamination of the target substance and at the same time, it is excellent in the simplicity of the process.
  • the surface lubrication layer ⁇ may be formed by, for example, a sputtering method, as in the prior art.
  • the bit array ⁇ of the magnetic material is embedded in the substrate, and the surface is compared with the substrate surface.
  • a patterned medium having a smooth flat surface can be manufactured.
  • the manufacturing method described here is simpler than the manufacturing method described with reference to FIG. 1 because it does not require the interposition of the matrix layer ⁇ , but the reactive ion etching process (c) In this regard, it is important to control the etching depth to be uniform and appropriate over a large area of the entire disk.
  • This oxygen gas reactive ion etching process also eliminated the organic resist mask and reduced its thickness to about 250 nm.
  • (e) process immersing it in isoaluminum acetate and irradiating ultrasonic waves to dissolve and remove the patterned mask 3 as a resist mask, and at the same time, remove the Co-Cr alloy adhering to it.
  • the magnetic thin film 5 was also removed. In this way, a magnetic bit array ⁇ buried in the amorphous carbon matrix and irradiated with a flat surface was produced.
  • an amorphous carbon layer having a thickness of about 20 nm was formed on the surface of the magnetic bits by sputtering.
  • Step 1 A barium borosilicate glass (coming 7059 glass, the same name as in Example 1) was directly coated on one surface of a substrate ⁇ with an electron beam resist film having a thickness of 570 nm by spin coating.
  • the resist film 2 used here is the same as that used in Example 1
  • Step 2 The shape of the patterned mask 3 produced by the electron beam lithography is the same as that used in Example 1. Are identical.
  • step (c) using the patterned mask 3 as a mask, reactive ion etching of the glass substrate ⁇ is performed using CF4-C12 mixed plasma, and the mask pattern is transferred to the glass substrate ⁇ to form a trench arrangement. 4 was prepared. The depth of the trench was reduced to 150 nm as in the first embodiment. The shape of the torch was trapezoidal in cross section, and the slope angle was about 75 degrees.
  • the subsequent steps (d), (e), and (f) were the same as in Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

A patterned high density magnetic recording medium which is characterized in that the arrangement of recessed trenches are formed in a matrix thin film covering a medium substrate or in the medium substrate by etching, and the recessed in the trench arrangement are filled with a magnetic material up to the height of the matrix thin film surface or the medium substrate surface to form the arrangement of magnetic bits; and a streamlined manufacturing process of the patterned medium which is excellent in productivity, has a streamlined construction and has little environmental load.

Description

明 細 書 高密度磁気記録媒体パターンドメディアとその製造方法 技術分野  Description High-density magnetic recording medium Patterned media and its manufacturing method
この出願の発明は、 磁気記録媒体に関し、 さらに詳しくはパターン ドメディアと呼ばれる磁気記録媒体に関するものである。 背景技術  The invention of this application relates to a magnetic recording medium, and more particularly, to a magnetic recording medium called a patterned medium. Background art
パターンドメディアは、 コンピュータのリジッド磁気ディスクとして考え られているものであって、 このパターンドメディアは現在用いられている 連続薄膜メディアと比較して、 単位面積当 たりの記憶容量が数倍 大きいので、コンピュータの大容量記憶装置として、 コンピュータの性 能向上に寄与することはいうまでもないが、 小型軽量という特徴を有 することにより、 携帯型コンピュータに内蔵される記憶装置として有用 なものである。また、 i c力一ド型リジッド磁気ディスク装置としてコンビ ユータの本体に差し込んで用いられ、 映像分野ではビデオテープや D V D Nに代わって、 高品位 TV画像の記錄再生、 その他デジタル映像 の記錄、 保存、 再生に使用されることが期待されているものである。 このようなパターンドメディアの研究は、 この出願の発明者等により 1 9 8 0年代終わり頃から開始され、 特許出願もされており、 1 9 9 3年 に登録されたパターンメディア発明の特許(特許第 1 8 8 8 3 6 3号)が 最初のものとしてパターンドメディアの基本特許となっている。  Patterned media is considered as a rigid magnetic disk for computers, and has a storage capacity per unit area several times larger than that of continuous thin-film media currently used. Needless to say, as a large-capacity storage device for a computer, it contributes to improving the performance of the computer, but because of its small size and light weight, it is useful as a storage device built into a portable computer. . It is also used as an ic-type rigid magnetic disk drive by inserting it into the body of a computer.In the video field, it replaces video tapes and DVDNs, and records and plays back high-definition TV images, and records, saves, and plays back digital images. It is expected to be used for Research on such patterned media started in the late 1980s by the inventors of this application, and a patent application has been filed. A patent for a patterned media invention registered in 1993 ( (Patent No. 1 888 833) is the first basic patent for patterned media.
上記特許によれば、 図 3に示すように、 トラックに沿つて等間隔に強 磁気微粒子を整然と配列させ、 強磁気微粒子 1個に 1ビットを記録 するというパターンドメディアの基本構造が開示されている。また、 記 錄ビットが安定で長期間保持されるために必要な微粒子の形状や 大きさ、 配置などについての詳しい技術も開示されており、 実施例で は、 パターンドメディアの製造方法として、 公知の微細加工技術であ るリフトオフ法が適用されている。 According to the above patent, as shown in FIG. 3, a basic structure of a patterned medium in which ferromagnetic fine particles are regularly arranged at equal intervals along a track and one bit is recorded in each ferromagnetic fine particle is disclosed. I have. Also, 詳 し い Detailed technology on the shape, size, and arrangement of fine particles required for the bit to be stable and held for a long period of time is also disclosed. The technology lift-off method is applied.
そのプロセスを図 4に従って順に説明すると以下のとおりである。 The process is described below in order with reference to FIG.
(a) リジッド磁気ディスクの基盤となるガラス基板①に塗布によりレ ジスト膜②を被覆し、 (b) 電子線露光あるいは紫外線露光した後、 現像処理によりパターンドマスク③を形成する。 (a) A resist film (2) is coated on a glass substrate (2) as a base of a rigid magnetic disk by coating, and (b) A patterned mask (3) is formed by an electron beam exposure or an ultraviolet exposure and a development process.
続いて、 (c) パターンドマスク③の形成されたガラス基板①上に真 空蒸着法により磁気記録ビットとなる磁性体薄膜⑤を形成する。 その後、 (d) 有機溶剤による溶解によし Jパターンドマスク③を除去 し、 不要な磁性体薄膜⑤をパターンドマスク③と一緒に除去し、ガラ ス基板①に付着している磁性体ビット配列⑥のみを残すようにする。 このプロセスがリフトオフと呼ばれる。 このようにして、 磁性体の微粒 子の配列系が形成される。  Subsequently, (c) a magnetic thin film な る serving as a magnetic recording bit is formed on the glass substrate さ れ on which the patterned mask ③ is formed by vacuum evaporation. After that, (d) the J-patterned mask ③ is removed by dissolution with an organic solvent, the unnecessary magnetic thin film ⑤ is removed together with the patterned mask ③, and the magnetic material bit array attached to the glass substrate ① Leave only ⑥. This process is called lift-off. In this way, an array of magnetic particles is formed.
( e ) 磁性体微粒子の配列を保護するために、 必要に応じてその 上から、 例えばダイヤモンドライク炭素などの潤滑性に富み、 丈夫な 保護層⑥を形成する。  (e) In order to protect the arrangement of the magnetic fine particles, a lubricating and durable protective layer の made of, for example, diamond-like carbon is formed thereon as necessary.
また、 Ch 0 等 によるメツキ法によりパターンドメディアの製造法 (S. Y. Cho, M. S. Wei , P. R. Krauss, and. B. Fisher : J. Appl . Phys., 76, 66731 ( 1994) - )も公知である。 Also, a method for producing patterned media by the plating method using Ch 0 or the like (SY Cho, MS Wei, PR Krauss, and B. Fisher: J. Appl. Phys., 76, 66731 (1994)-) is known. .
しかしながら、 以上のような公知の技術により作製されるパターンド メディアは、 いずれもビットが基板から突出した形状で形成されること から、 ビットが基板から突出する形態は磁気ヘッドがメディア表面を 疑似接触しながら走査することを考えると好ましい構造とはいえない という問題がある。 このような問題を解決するものとして象嵌磁気構造体という新しい 構造がこの出願の発明者による発明として特許出願されている( 特 願平 1 1 - 86 1 1 8号 )。 However, in any of the patterned media manufactured by the above-described known techniques, the bits are formed in a shape protruding from the substrate. There is a problem that it is not a preferable structure when scanning while scanning. To solve such a problem, a new structure called an inlaid magnetic structure has been patented as an invention by the inventor of this application (Japanese Patent Application No. 11-86118).
象嵌法 ( ダマシン法 )では、 図 5に示すように、 基板表面に磁性 体粒子が埋め込まれ、 基板表面と磁性体ビット配列⑥表面が同一 平面となるように平坦化されている。 このような全体が平坦な面を有 するパターンドメディアの形態は磁気ヘッドの走査の点から理想的な 構造である。  In the inlay method (damascene method), as shown in Fig. 5, magnetic particles are embedded in the substrate surface, and the substrate surface and the magnetic material bit array and the surface are flattened so as to be on the same plane. Such a form of patterned media having a flat surface as a whole is an ideal structure from the viewpoint of magnetic head scanning.
ダマシン法では、 工程 ( c ) において、 パターンドマスク③に従って反 応性イオンエッチングを行い、 次いで工程( d ) においてパターンドマス ク③ろしてのレジスト膜を除去して、 トレンチ配列④を形成している。 そしてこのダマシン法では、 工程 (e ) としてトレンチ配列④に磁性 体を埋設するようにして磁性体薄膜⑤を形成し、 さらに工程 (f ) に おいて、 化学機械研磨して平坦化し、磁性体ビット配列⑥を形成し、 必要に応じて、 工程 (g ) において、 表面潤滑層を被覆するようにし ている。  In the damascene method, in step (c), reactive ion etching is performed in accordance with the patterned mask ③, and then, in step (d), the patterned mask ③ is removed and the resist film is removed to form a trench arrangement ④. ing. In this damascene method, a magnetic thin film 形成 is formed as a step (e) by burying a magnetic substance in a trench array 、, and in a step (f), the magnetic substance is flattened by chemical mechanical polishing. The bit arrangement ⑥ is formed, and if necessary, the step (g) is covered with a surface lubrication layer.
しかしながら、 このダマシン法では、 その作製工程の最後 (( e )→ ( f ) )に化学機械研磨(C M P )という表面平坦化のための高度の技 術を要する研磨工程を必要とすることから、 メディアの生産性は、 そ の煩雑で高度な化学機械研磨プロセスにより損なわれ、 生産コスト を押し上げることなる。またその研磨工程では、 研磨剤を消耗し、 同 時に重金属を含む研磨廃液並びに研磨汚泥を排出するなど環境 負荷の問題を有していた。そのため化学機械研磨を必要としない技 術が要望されていた。 この問題を解決するために、 ダマシン法のよう な化学機械研磨法等による表面研磨処理を行うことな〈、 乾式処 理のみで平坦な表面形態をもった埋め込み構造を実現するための 新しい方法の実現が求められていた。 発明の開示 However, this damascene method requires a chemical mechanical polishing (CMP) polishing step, which requires advanced technology for surface flattening, at the end of the manufacturing process ((e) → (f)). Media productivity is compromised by its cumbersome and sophisticated chemical-mechanical polishing processes, driving up production costs. In the polishing process, the polishing agent was consumed, and at the same time, polishing wastewater containing heavy metals and polishing sludge were discharged. Therefore, a technology that does not require chemical mechanical polishing has been demanded. In order to solve this problem, the surface must not be polished by a chemical mechanical polishing method such as the damascene method. <To achieve a buried structure with a flat surface morphology only by dry processing, Realization of a new method was required. Disclosure of the invention
この出願の発明は、 高密度磁気記錄媒体パターンドメディアであつ て、 メディア基板上に被覆されたマトリックス薄膜もしくはメディア基板 には凹状のトレンチ配列がエッチングにより形成されており '、 このトレ ンチ配列の凹部には、 マトリックス薄膜もしくはメディア基板表面高さ まで磁性材料が埋設されて磁気ビット配列が形成されていることを 特徴とする高密度磁気記錄媒体パターンドメディアを提供し、 そのマ トリックス薄膜材料の特定によって、 マトリクス薄膜を非晶質炭素薄 膜としたパターンドメディアを提供し、さらに付加構成の追加によって、 磁気ビット配列の表面を表面潤滑層で被覆したパターンドメディアを 提供する。  The invention of this application relates to a high-density magnetic recording medium patterned media, in which a matrix thin film coated on a media substrate or a media substrate is formed with a concave trench array by etching. In the recesses, a high-density magnetic recording medium is provided, in which a magnetic material is buried up to the height of the surface of the matrix thin film or the media substrate to form a magnetic bit array. According to the specification, a patterned medium having an amorphous carbon thin film as a matrix thin film is provided, and a patterned medium in which the surface of a magnetic bit array is covered with a surface lubricating layer is provided by adding an additional configuration.
また、 この出願の発明は、高密度磁気記錄媒体パターンドメディア の製造方法であって、 メディア基板にマトリックス薄膜を被覆するェ 程と、 被覆したマトリックスをマスクパターンに従ってエッチングして凹 状のトレンチ配列を形成する工程と、 トレンチ凹部にマトリックス薄膜 の表面高さまで磁性材料を埋設して磁気ビット配列を形成する工程 とを含むことを特徴とする高密度磁気記錄媒体パターンドメディアの 製造方法を提供し、 さらに、 マトリックス薄膜上へレジストを被覆する 工程と、 被覆したレジストを露光 '現像してレジストのマスクパターンを 形成する工程と、 磁性材料のトレンチ凹部への埋設後にレジストの パターンマスクを除去する工程とを含むパターンドメディアの製造方 法を提供する。  The invention of this application also relates to a method for manufacturing a high-density magnetic recording medium patterned medium, comprising the steps of: coating a media substrate with a matrix thin film; and etching the coated matrix according to a mask pattern to form a concave trench arrangement. Forming a magnetic bit array by burying a magnetic material up to the surface height of a matrix thin film in a trench recess to provide a magnetic bit array. A step of coating the resist on the matrix thin film; a step of exposing and developing the coated resist to form a resist mask pattern; and a step of removing the resist pattern mask after embedding the magnetic material in the trench recess. And a method for manufacturing patterned media including:
さらにまた、 この出願の発明は、 高密度磁気記錄媒体パターンドメ ディアの製造方法であって、 マスクパターンに従ってメディア基板をェ ツチングして凹状の卜レンチ配列をメディア基板に形成する工程と、 卜 レンチ凹部に、 メディア基板の表面高さまで磁性材料を埋設して磁 気ビット配列を形成する工程とを含むことを特徴とする高密度磁気 記録媒体パターンドメディアの製造方法を提供し、また、 メディア基板 上へレジストを被覆する工程と、 被覆したレジストを露光 ·現像してレ ジストのマスクパターンを形成する工程と、 磁性材料の卜レンチ凹部 への埋設後にレジストのパターンマスクを除去する工程とを含む高密 度磁気記録媒体パターンドメディアの製造方法を提供し、 製造方法 において、 磁気ビット配列の表面に表面潤滑層を被覆する工程を含 む高密度磁気記録媒体パターンドメディアの製造方法を提供する。 Still further, the invention of this application is a method for manufacturing a patterned medium of a high-density magnetic recording medium, wherein the medium substrate is patterned according to a mask pattern. Forming a concave trench array on the media substrate by touching, and forming a magnetic bit array by embedding a magnetic material in the trench recess up to the surface height of the media substrate. Provided is a method for manufacturing a patterned medium of a high-density magnetic recording medium, a step of coating a resist on a media substrate, a step of exposing and developing the coated resist to form a resist mask pattern, and a magnetic material. Removing the resist pattern mask after embedding in the recess of the wrench, and providing a method of manufacturing a patterned medium of a high-density magnetic recording medium, wherein the surface of the magnetic bit array is coated with a surface lubricating layer. Provided is a method for manufacturing a high-density magnetic recording medium patterned medium including steps.
以上のように、 この出願の発明は、従来の問題点を解決するもの として、 突出や凹みのない平坦な表面形態を有し、 また化学機械研 磨を必要としない高密度磁気記録媒体パターンドメディアの構造と その製造方法を提供するものである。 図面の簡単な説明  As described above, the invention of this application solves the conventional problems by providing a patterned high-density magnetic recording medium having a flat surface form without protrusions or depressions and requiring no chemical mechanical polishing. It provides the structure of the media and its manufacturing method. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明による化学機械研磨(C M P )プロセスを用いない 埋込み構造作製プロセスの概略図である。  FIG. 1 is a schematic diagram of a process for producing an embedded structure without using a chemical mechanical polishing (CMP) process according to the present invention.
図 2は、 この発明によるパターンドメディアの作製プロセスの概略図 である。  FIG. 2 is a schematic diagram of a process for producing patterned media according to the present invention.
図 3は、 パターンドメディア型のリジッド磁気ディスクの概念図であ る。  FIG. 3 is a conceptual diagram of a patterned media type rigid magnetic disk.
図 4は、 リフトオフ法による従来のパターンドメディアの製造プロセス 概略図である。  FIG. 4 is a schematic diagram of a conventional patterned media manufacturing process by a lift-off method.
図 5は、 C M Pプロセスを用いた従来の埋込み構造作製プロセス(ダ マシン法)の概略図である。 発明を実施するための最良の形態 FIG. 5 is a schematic view of a conventional embedded structure fabrication process (damascene method) using a CMP process. BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は上記のとおりの特徴をもつものであるが、 以下に その実施の形態について説明する。  The invention of this application has the features as described above, and embodiments thereof will be described below.
添付した図面の図 1は、 この発明のパターンドメディアの第 1の製造 方法のプロセスに例示したものである。  FIG. 1 of the attached drawings illustrates a process of a first method for manufacturing a patterned medium according to the present invention.
まず、 (a ) 工程: 従来法と異なり、ガラス基板①等の基板とレジス ト膜②の間に磁性体ビットを取り囲むマトリックスの役割をなすマトリ ックス薄膜⑧を介在させた構造から出発する。  First, step (a): Unlike the conventional method, the process starts with a structure in which a matrix thin film を serving as a matrix surrounding magnetic bits is interposed between a substrate such as a glass substrate ① and a resist film ②.
そこで、 (b ) 工程: ビットパターンにしたがって電子線露光、 あるい は光露光を行い、 現像処理を行うことにより、 ビットパターン配列を有 するパターンドマスク③を形成する。  Therefore, step (b): a patterned mask ③ having a bit pattern arrangement is formed by performing electron beam exposure or light exposure according to the bit pattern and performing development processing.
続いて、 (c ) 工程 : 基本材料のガラス基板①等をエッチングする ことなく、 マトリックス薄膜⑧のみを選択的にエッチングする反応性ィ オンエッチング法を用いて、 レジストマスクに作リ込んだビット配列パタ ーンをマトリックス薄膜に転写する。 このようにしてマトリックス薄膜は トレンチ配列④のパターン形態に加工される。 重要なことは、 マトリツ クス薄膜⑧の厚さを磁性体ビットが必要とする厚さと同一になるよう にあらかじめ調整しておくことであり、さらに反応性イオンエッチングに より基板材料の表面が露出するまでエッチングを行うことである。  Subsequently, step (c): a bit array formed in a resist mask using a reactive ion etching method that selectively etches only the matrix thin film な く without etching the glass substrate の as a basic material. Transfer the pattern to the matrix thin film. In this way, the matrix thin film is processed into a pattern of the trench arrangement II. What is important is that the thickness of the matrix thin film 調整 is adjusted in advance to be the same as the thickness required by the magnetic bits, and the surface of the substrate material is exposed by reactive ion etching. Is to perform etching up to that point.
次に、 (d )工程 : 例えば真空蒸着、 イオンビームスパッタ法、 ロン グスロースパッタ法のような指向性が強く、 回リ込みが少ない方法で、 磁性材料を蒸着し、 全面を覆う磁性体薄膜⑤を形成する。 蒸着す る磁性材料は、 記録メディアにおいて記憶を担う物質であり、例えば C o - C r 合金、 C o - C r - P t 合金などである。なおこのとき、 蒸着膜の厚 さは蒸着時膜厚モニターを用いて、 マトリックス薄膜に刻み込んだトレ ンチ配列④のトレンチ深さと厳密に合わせることが望ましい。 この磁 性体の真空蒸着プロセス(d :工程) は、 一般的には反応性イオンェ ツチングプロセス(c:工程) の後、 大気中 に取り出すことなく、 2 個 の連結されたそれぞれの真空容器の中を搬送し、 時系列的に引き 続いて行うことができるので、 対象物質の汚染から逃れることができ ると同時に、プロセスの簡便性において優れている。 Next, step (d): a magnetic thin film covering the entire surface by depositing a magnetic material by a method having a strong directivity such as vacuum evaporation, ion beam sputtering, or long throw sputtering and having a small amount of reentrant. Form ⑤. The magnetic material to be vapor-deposited is a substance that plays a role in memory in a recording medium, such as a Co-Cr alloy, a Co-Cr-Pt alloy, or the like. At this time, it is desirable that the thickness of the vapor-deposited film be strictly adjusted to the trench depth of the trench arrangement だ inscribed in the matrix thin film using a film-thickness monitor during vapor deposition. This magnet In general, the vacuum deposition process (d: step) of the active substance is performed after the reactive ion etching process (c: step) without being taken out to the atmosphere, in each of two connected vacuum vessels. Since it can be transported and carried out successively in chronological order, it is possible to avoid contamination of the target substance and at the same time it is excellent in the simplicity of the process.
( e )工程: 適当な有機溶剤を用いて、 レジストマスクとしてのバタ ーンドマスク③を溶解除去すると、 レジストマスクを覆っていた磁性体 は剥ぎ取られ、 マトリックスに埋まり込んで一様な平坦な表面構造を 有する磁性体ビット配列⑥が形成される。  Step (e): When the pattern mask ③ as a resist mask is dissolved and removed using an appropriate organic solvent, the magnetic material covering the resist mask is peeled off and buried in the matrix to form a uniform flat surface structure. Is formed.
このとき用いた有機溶剤の廃液は、 濾過により分離浮遊している 磁性体薄膜残滓を除去した後、 分留処理により純化し、 何回でも 再利用することができる。  The waste liquid of the organic solvent used at this time is filtered to remove the magnetic thin film residue which is separated and suspended, then purified by fractionation treatment, and can be reused any number of times.
( f )工程: 最後に磁性体ビット配列⑥の表面を保護すると同時に、 表面を走査する磁気ヘッドによる付着損傷を防ぐために低表面エネ ルギ一の表面潤滑層⑦で被覆する。なお、 この潤滑層⑦の保護層は. 前記リフトオフ法の場合同様、 磁性体ビット配列の保護の上から望 ましいものである。  Step (f): Finally, at the same time as protecting the surface of the magnetic material bit array ⑥, it is coated with a surface lubricating layer の of low surface energy to prevent adhesion damage by a magnetic head scanning the surface. The protective layer of the lubricating layer ⑦ is desirable from the viewpoint of protection of the magnetic bit arrangement, as in the case of the lift-off method.
以上 (a ) 〜(e ) 工程望ましくは(f ) 工程を含む製造方法によつ て、 磁性体ビット配列⑥がマトリックス薄膜⑧表面に埋まり込んだ構 造をもち、 表面がマトリックス表面と対照されているダマシン構造と等 価なパターンドメディアが得られる。  According to the manufacturing method including the steps (a) to (e), preferably the step (f), the magnetic bit array (1) has a structure embedded in the matrix thin film (2), and the surface is compared with the matrix surface. A patterned media equivalent to the existing damascene structure can be obtained.
なお、 上記 (c ) 工程におけるリジッド磁気ディスクの基板材料とマ トリックス薄膜⑧の材質については、 次の組み合わせが好適である。 < A > リジッド磁気ディスクの基板材料力 通常用いられているよう なホウ珪酸系ガラスのときは、 マトリックス薄膜⑧の材質として、 例え ばスパッタリングにより形成した以下に掲げる物質の薄膜が特に好 適である。 The following combinations are suitable for the substrate material of the rigid magnetic disk and the material of the matrix thin film に お け る in the above step (c). <A> Substrate material strength of rigid magnetic disk In the case of borosilicate glass, which is usually used, as the material of the matrix thin film, for example, a thin film of the following substances formed by sputtering is particularly preferable. Suitable.
-非晶質炭素  -Amorphous carbon
-非晶質シリコン  -Amorphous silicon
その他、 以下の物質も用いることができる。  In addition, the following substances can be used.
-非晶質ゲルマニウム  -Amorphous germanium
•非晶質セレン  • Amorphous selenium
-非晶質テルル  -Amorphous tellurium
-炭素にシリコン、 窒素、 水素、 ゲルマニウム、 セレン、テルルなど 種々の不純物を添加し、 非晶質になりやすいように成分を調整し た炭素基二元あるいは多元合金  -Carbon-based binary or multi-element alloy with various impurities added to carbon, such as silicon, nitrogen, hydrogen, germanium, selenium, tellurium, etc.
-シリコンに炭素、 窒素、 水素、 ゲルマニウム、セレン、亍ルルなど不 純物を添加し、 非晶質になりやすいように成分を調整したシリコン基 二元あるいは多元合金  -Silicon-based binary or multi-element alloy containing silicon, carbon, nitrogen, hydrogen, germanium, selenium, perul, etc.
-ゲルマニウムにシリコン、 炭素、 窒素、水素、 セレン、テルルなど不 純物を添加し、 非晶質になりやすいように成分を調整したゲルマ二 ゥ厶ニ元あるいは多元合金。  -A germanium element or multi-element alloy in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and tellurium are added to germanium, and the components are adjusted so as to easily become amorphous.
< B > リジッド磁気ディスクの基板材料が、アルミニウムあるいはァ ルミニゥム合金のときは、 マトリックス薄膜⑧の材質として、 例えばス パッタリングにより形成した以下に掲げる物質の薄膜が特に好適で ある。 <B> When the substrate material of the rigid magnetic disk is aluminum or an aluminum alloy, a thin film of the following substances formed by sputtering, for example, is particularly preferable as the material of the matrix thin film.
-石英あるいは硼酸系ガラス  -Quartz or boric glass
-非晶質炭素  -Amorphous carbon
-非晶質シリコン  -Amorphous silicon
その他、 以下の物質も用いることができる。  In addition, the following substances can be used.
-非晶質ゲルマニウム  -Amorphous germanium
-非晶質セレン -非晶質亍 -Amorphous selenium -Amorphous
•炭素にシリコン、窒素、水素、ゲルマニウム、 セレン、テルルなど 種々の不純物を添加し、 非晶質になりやすいように成分を調整し た炭素基二元あるいは多元合金  • Carbon-based binary or multi-element alloys containing various impurities, such as silicon, nitrogen, hydrogen, germanium, selenium, and tellurium, added to carbon to adjust its composition to make it amorphous
■シリコンに炭素、窒素、 水素、 ゲルマニウム、 セレン、テルルなど 不純物を添加し、 非晶質になりやすいように成分を調整したシリ コン基二元あるいは多元合金  ■ Silicon-based binary or multi-element alloy in which impurities such as carbon, nitrogen, hydrogen, germanium, selenium, and tellurium are added to silicon and the components are adjusted so that they are likely to become amorphous.
■ゲルマニウムにシリコン、 炭素、 窒素、 水素、 セレン、亍ルルなど 不純物を添加し、 非晶質になりやすいように成分を調整したゲル マニウムニ元あるいは多元合金。  ■ Germanium binary or multi-element alloys in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and perulum are added to germanium, and the components are adjusted to be easily amorphous.
く c > リジッド磁気ディスクの基板材料力 非晶質炭素のときは、マ 卜リックス薄膜⑧の材質として、 例えばスパッタリングにより形成した 以下に掲げる物質の薄膜が特に好適である。 In the case of amorphous carbon, as the material of the matrix thin film 例 え ば, for example, a thin film of the following substances formed by sputtering is particularly preferable.
-石英あるいは硼酸系ガラス  -Quartz or boric glass
■非晶質シリコン  ■ Amorphous silicon
その他、 以下の物質も用いることができる。  In addition, the following substances can be used.
■非晶質ゲルマニウム  ■ Amorphous germanium
-非晶質セレン  -Amorphous selenium
-非晶質亍ルル  -Amorphous plastic
■シリコンに炭素、窒素、水素、ゲルマニウム、 セレン、亍ルルなど 不純物を添加し、 非晶質になりやすいように成分を調整したシリ コン基二元あるいは多元合金  ■ Silicon-based binary or multi-element alloy in which impurities such as carbon, nitrogen, hydrogen, germanium, selenium, and perul are added to silicon and the components are adjusted so that they are likely to become amorphous.
-ゲルマニウムにシリコン、 炭素、 窒素、 水素、 セレン、亍ルルなど 不純物を添加し、 非晶質になりやすいように成分を調整したゲル マニウ厶ニ元あるいは多元合金。  -Germanium element or multi-element alloy in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and perulum are added to germanium and the components are adjusted to be easily amorphous.
< D > リジッド磁気ディスクの基板材料力 単結晶シリコンや非晶 質シリコンのときは、 マトリックス薄膜⑧の材質として、 例えばスパッタ リングにより形成した以下に掲げる物質の薄膜が特に好適である。 <D> Material strength of rigid magnetic disk substrate Single crystal silicon or amorphous In the case of high quality silicon, as the material of the matrix thin film ⑧, for example, a thin film of the following substances formed by sputtering is particularly preferable.
-石英あるいは碉酸系ガラス  -Quartz or acid-based glass
■非 g¾ ¾灰  ■ Non-g¾ ash
その他、 以下の物質も用いることができる。  In addition, the following substances can be used.
-非晶質ゲルマニウム  -Amorphous germanium
-非晶質セレン  -Amorphous selenium
-非晶質亍ルル  -Amorphous plastic
-炭素にシリコン、 窒素、 水素、ゲルマニウム、 セレン、亍ルルなど 種々の不純物を添加し、 非晶質になりやすいように成分を調整し た炭素基 2 元あるいは多元合金。  -A carbon-based binary or multi-element alloy in which various impurities such as silicon, nitrogen, hydrogen, germanium, selenium, and purl are added to carbon, and the components are adjusted so as to easily become amorphous.
•ゲルマニウムにシリコン、 炭素、 窒素、 水素、 セレン、テルルなど 不純物を添加し、 非晶質になりやすいように成分を調整したゲル マニウムニ元あるいは多元合金。  • Germanium binary or multi-element alloys in which impurities such as silicon, carbon, nitrogen, hydrogen, selenium, and tellurium are added to germanium, and the components are adjusted to be easily amorphous.
以上のとおりの図 1に沿つて説明した製造方法は、 反応性イオン エッチングによリマトリックスにビットパターンを転写するプロセス(d ) に おいて、 トレンチ配列④パターンが形成されると、 エッチングの選択性 のためにエッチング反応が自動的に止まるので、 反応性イオンエッチ ングの深さを制御をする必要がないという長所を有している。 しかし、 マトリックス薄膜⑧を予め介在させておかなければならないという点が 考慮される。  As described above, the manufacturing method described with reference to FIG. 1 is a method of transferring a bit pattern to a rematrix by reactive ion etching (d). Since the etching reaction stops automatically due to the nature, there is an advantage that it is not necessary to control the depth of the reactive ion etching. However, it is considered that the matrix thin film ⑧ must be interposed in advance.
図 2は、 パターンドメディアの第 2の製造方法のプロセスを例示した ものである。  FIG. 2 illustrates a process of a second method for manufacturing patterned media.
( a ) 工程:出発形態は従来技術と同じく、 たとえばりジッド磁気デ イスクの基板たるガラス基板①にレジストを塗布してレジスト膜②を被 覆した形態である。 ガラス基板①の材料はリジッド磁気ディスク基板 として一般に用いられているホウ珪酸系ガラスでもよいし、 また、 基板 としては、アルミニウムまたはアルミニウム合金、 非晶質炭素、 あるい はシリコン単結晶等であってもよい。 (a) Step: As in the prior art, the starting form is, for example, a form in which a resist is applied to a glass substrate る as a substrate of a rigid magnetic disk and a resist film ② is covered. The material of the glass substrate is a rigid magnetic disk substrate A borosilicate glass generally used as a substrate may be used, and a substrate may be aluminum, an aluminum alloy, amorphous carbon, silicon single crystal, or the like.
( b ) 工程 :レジスト膜②表面にパターンデータにしたがって電子線 露光、 あるいは光露光を行い現像処理を施して、 レジスト膜②によつ てパターンドマスク③を形成することは、 先に述べた方法と同様であ る。  (b) Step: As described above, the resist film ② is subjected to electron beam exposure or light exposure in accordance with the pattern data and subjected to development processing to form a patterned mask ③ by the resist film ②. Same as the method.
次に、  next,
( c ) 工程:このパターンドマスク③をマスクとし、 反応性イオンエッチ ングにより基板①を直接エッチングし、基板表面にレジストパターンを 転写し、 トレンチ配列④パターンを形成する。 このとき、 磁性体ビット の厚さとして必要な最適な深さになるように、 反応性イオンエッチング の速さと時間を制御し、 全面がー様な深さのトレンチ配列ができるよ うにする。そのような反応性イオンエッチングは、 使用するそれぞれの 基板①の材質に合わせて、従来技術により適宜プラズマの組成を選 択することにより可能である。  (c) Process: Using this patterned mask ③ as a mask, the substrate ① is directly etched by reactive ion etching, the resist pattern is transferred to the substrate surface, and a trench arrangement ④ pattern is formed. At this time, the speed and time of the reactive ion etching are controlled so as to obtain the optimum depth required for the thickness of the magnetic bit, so that a trench arrangement having a uniform depth can be formed on the entire surface. Such reactive ion etching can be performed by appropriately selecting the composition of the plasma according to a conventional technique in accordance with the material of each substrate to be used.
続いて、  continue,
( d ) 工程 :例えば例えば真空蒸着、 イオンビームスパッタ法、 ロン グスロースパッタ法のような指向性が強く、 回リ込みが少ない方法で、 磁性材料を蒸着し、 全面を覆う磁性体薄膜⑤を形成する。 蒸着す る磁性体は、 記錄メディアにおいて記憶を担う物質であり、 例えば C o - C r 合金、 C o— C r - P t 合金、 C o - F e 合金などである。なおこのとき、 蒸着膜の厚さは蒸着時に膜厚モニタ一を用いて、マトリック  (d) Process: For example, a magnetic material is deposited by a method having a strong directivity, such as vacuum evaporation, ion beam sputtering, or long throw sputtering, with a small amount of retraction, and a magnetic thin film 覆 う covering the entire surface is formed. Form. The magnetic material to be deposited is a substance that plays a role in memory in the recording medium, such as a Co—Cr alloy, a Co—Cr—Pt alloy, and a Co—Fe alloy. At this time, the thickness of the deposited film was measured using a
ス薄膜に刻み込んだトレンチの深さと厳密に合わせることが必要であ る。 この磁性体の真空蒸着プロセス(d ) は、 一般には反応性イオン エッチングプロセス(c )の後、 大気中に取り出すことなく、 2 個の連結 されたそれぞれの真空容器の中を搬送し、 時系列的に引き続いて行 うことができるので、 対象物質の汚染から逃れることができると同時 に、プロセスの簡便性において優れている。 It is necessary to closely match the depth of the trench cut in the thin film. The vacuum deposition process (d) of the magnetic material is generally performed after the reactive ion etching process (c) without removing it to the atmosphere. Since it can be conveyed through each of the vacuum chambers that have been set and can be performed successively in time series, it is possible to avoid contamination of the target substance and at the same time, it is excellent in the simplicity of the process.
( e ) 工程 :先に図 1で述ベた方法と同様の手法により、 パターンド マスク③を有機溶剤により溶解除去し、 磁性体ビット酉 S列⑥を得るこ とができる。 有機溶剤のリサイクルに関しても先と同様に行うことがで きる。  (e) Process: The patterned mask ③ is dissolved and removed with an organic solvent by the same method as described above with reference to Fig. 1 to obtain the magnetic material bit S row ⑥. Organic solvent can be recycled in the same manner as above.
( f ) 工程:最後に表面潤滑層⑦を、例えばスパッタリング法により 形成してもよいことは従来技術と同様である。  (f) Step: Lastly, the surface lubrication layer 表面 may be formed by, for example, a sputtering method, as in the prior art.
以上 (a ) 〜(e ) 工程、 望ましくは(f ) 工程を含めた製造方法を 用いても、 磁性体のビット配列⑥が基板に埋まり込んで、 表面が基 板表面に対照された一様な平坦な表面を有するパターンドメディアを 製造することができる。  Even when the manufacturing method including the steps (a) to (e), preferably the step (f), is used, the bit array の of the magnetic material is embedded in the substrate, and the surface is compared with the substrate surface. A patterned medium having a smooth flat surface can be manufactured.
ここで説明している製造方法は、 図 1で説明した製造方法と比較 して、 マ卜リックス層⑧を介在させる必要がなく、 簡便であるが、 その 反面、 反応性イオンエッチング過程 (c ) に於いて、 エッチング深さを ディスク全体の広い面積に渡って一様かつ適正な深さに制御するこ とが肝要となる。  The manufacturing method described here is simpler than the manufacturing method described with reference to FIG. 1 because it does not require the interposition of the matrix layer 、, but the reactive ion etching process (c) In this regard, it is important to control the etching depth to be uniform and appropriate over a large area of the entire disk.
以下、 実施例を示し、 さらに詳しくこの出願の発明の磁気記錄憶 媒体の構造及び製造方法を説明する。 実施例  Hereinafter, examples will be shown, and the structure and manufacturing method of the magnetic storage medium of the invention of this application will be described in more detail. Example
(実施例 1 ) (Example 1)
図 1に例示したバタ一ンドメディアの構造、 並びにその製造プロセス の実施例を説明する。  An example of the structure of the buttered media illustrated in FIG. 1 and a manufacturing process thereof will be described.
( a ) 工程 :バリウムホウ珪酸系ガラス(商品名 コ一ニング 7 0 5 9 ガラス) 基板①の片面に焼結炭素板をターゲットとして用いた容量 結合型スパッタ法により、 I50nm の非晶質炭素マトリックス薄膜⑧を 形成し、 その上に重ねて厚さ 570nm の電子線レジストをスピンコート 法によし J塗布した。なお電子線レジストはなメチルスチレン- αクロル メチルスチレン共重合体 ( 平均分子量 75000)である。 (a) Process: Barium borosilicate glass (trade name: Corning 7 0 5 9 Glass) An amorphous carbon matrix thin film of I50nm is formed on one side of the substrate ① by a capacitively coupled sputtering method using a sintered carbon plate as a target, and a 570nm thick electron beam resist is spun on it. J was applied by a coating method. The electron beam resist is a na-methylstyrene-α-chloromethylstyrene copolymer (average molecular weight 75,000).
(b) 工程:電子線描画法によりレジストに幅 150nm 、長さ 1. 2 ju m、 深さ 570 n m の矩形の微小な穴を等間隔に 1 mm2 当たり L 67 X 106 個の密度で形成し、 パターンドマスク③とした。  (b) Process: A rectangular small hole with a width of 150 nm, a length of 1.2 jum, and a depth of 570 nm is formed in the resist at equal intervals with a density of L67 X 106 per mm2 by electron beam lithography. , And patterned mask ③.
その後、 (c) 工程:酸素ガスを用いた反応性イオンエッチング法に より、 パターンドマスク③をマスクとし非晶質炭素マトリックス薄膜⑧に パターンを転写し、 トレンチ配列④を形成した。 この酸素ガス反応性 イオンエッチングプロセスにより、 有機物であるレジストマスクも消滅し、 厚さは約 250nm まで減少した。  Step (c): The pattern was transferred to the amorphous carbon matrix thin film (2) using the patterned mask (3) as a mask by a reactive ion etching method using oxygen gas to form a trench arrangement (2). This oxygen gas reactive ion etching process also eliminated the organic resist mask and reduced its thickness to about 250 nm.
続いて、 (d) 工程:タングステン抵抗加熱螺旋型ヒーターを蒸発源 とした真空蒸着法により、 Co- 9. 8atCr 合金を厚さ 150nm まで蒸着 した。 得られた磁性体薄膜⑤の膜厚は水晶振動子膜厚計によリコ ントロールした。  Step (d): Co-9.8atCr alloy was deposited to a thickness of 150 nm by vacuum deposition using a tungsten resistance heating spiral heater as an evaporation source. The thickness of the obtained magnetic thin film ⑤ was controlled by a quartz crystal film thickness meter.
続いて、 (e) ェ程 :それを酢酸イソアルミに浸潰し、 超音波を照射 することによりレジストマスクとしてのパターンドマスク③を溶解除去し、 同時にその上に付着している Co-Cr 合金の磁性薄膜⑤も除去した。 このようにして、 非晶質炭素マトリックスに埋まり込んで、表面が平坦 に照射された、 磁性体ビット配列⑥を作製した。  Then, (e) process: immersing it in isoaluminum acetate and irradiating ultrasonic waves to dissolve and remove the patterned mask ③ as a resist mask, and at the same time, remove the Co-Cr alloy adhering to it. The magnetic thin film ⑤ was also removed. In this way, a magnetic bit array た buried in the amorphous carbon matrix and irradiated with a flat surface was produced.
さらに、 (f ) 表面潤 滑層⑦として、 スパッタリング法により厚さ約 20nm の非晶質炭素層を磁性体ビット酉己列⑥面に形成した。  (F) As a surface lubricating layer, an amorphous carbon layer having a thickness of about 20 nm was formed on the surface of the magnetic bits by sputtering.
(実施例 2)  (Example 2)
図 2に示したパターンドメディアの構造、 並びにその製造プロセスの 実施例を説明する。 The structure of the patterned media shown in Fig. 2 and the manufacturing process An embodiment will be described.
(a) 工程 .実施例 1と同様なバリウムホウ珪酸系ガラス(商品名 コ一ニング 7059 ガラス) 基板①の片面に、 直接厚さ 570nm の電子 線レジスト膜②をスピンコート法により塗布した。なおここで用いたレジ スト膜②は実施例 1で用いたものと同一であり、 また(b) 工程:電子 線描画法により作製したパターンドマスク③の形状も実施例 1で用い たものと同一である。  (a) Step: A barium borosilicate glass (coming 7059 glass, the same name as in Example 1) was directly coated on one surface of a substrate 電子 with an electron beam resist film having a thickness of 570 nm by spin coating. The resist film ② used here is the same as that used in Example 1, and (b) Step: The shape of the patterned mask ③ produced by the electron beam lithography is the same as that used in Example 1. Are identical.
次に、 (c) 工程:パターンドマスク③をマスクとし、 CF4- C12 の混合 プラズマを用いて、ガラス基板①の反応性イオンエッチングを行い、ガ ラス基板①にマスクパターンを転写し、 トレンチ配列④を作製した。な おトレンチの深さも先の実施例 1と同様に 150nm まで消耗した。 トレ ンチの形状は断面が台形であり、斜面の角度は約 75 度であった。 これ以降の過程 (d) (e) (f) は実施例 1と同一とした。  Next, in the step (c), using the patterned mask ③ as a mask, reactive ion etching of the glass substrate て is performed using CF4-C12 mixed plasma, and the mask pattern is transferred to the glass substrate 、 to form a trench arrangement. ④ was prepared. The depth of the trench was reduced to 150 nm as in the first embodiment. The shape of the torch was trapezoidal in cross section, and the slope angle was about 75 degrees. The subsequent steps (d), (e), and (f) were the same as in Example 1.
このようにして、 (e) 工程:ガラス基板①自身をマトリクスとして、 そ れに埋まり込んで、 表面がガラス基板表面に平坦に対照された磁性 体ビット配列⑥を作製した。 また( f) 工程 :実施例 1と同一の非晶 質炭素表面潤滑層⑦で磁性体ビット酉己列⑥表面全体を被覆し、 パ ターンドメディアとした。 産業上の利用可能性  Thus, step (e): the glass substrate {itself was used as a matrix and was buried in the matrix to produce a magnetic bit array whose surface was flatly contrasted with the glass substrate surface. Step (f): The entire surface of the magnetic bits was covered with the same amorphous carbon surface lubricating layer と as in Example 1 to obtain a patterned medium. Industrial applicability
以上詳しく説明したように、 この出願の発明により、コンピュータ用 リジッド磁気ディスクの大容量化と小型軽量化を図るこてができるこ とはもちろん、 パターンドメディアの構造および製造プロセスの改善に より、 パターンドメディアの生産性に富む合理的な構造と環境負荷の 少ない合理的な製造プロセスの提供を容易に可能とする。  As described in detail above, according to the invention of this application, it is possible not only to increase the capacity and reduce the size and weight of a rigid magnetic disk for a computer, but also to improve the structure and manufacturing process of patterned media. It is possible to easily provide a rational structure with high productivity of patterned media and a rational manufacturing process with low environmental impact.

Claims

請求の範囲 The scope of the claims
1 . 高密度磁気記録媒体パターンドメディアであって、 メディア基 板上に被覆されたマトリックス薄膜もしくはメディア基板には凹状のト レンチ配列がエッチングにより形成されており、 このトレンチ配列の凹 部には、 マトリックス薄膜もしくはメディア基板表面高さまで磁性材料 が埋設されて磁気ビット配列が形成されていることを特徴とする高密 度磁気記録媒体パターンドメディア。 1. A high-density magnetic recording medium patterned media, in which a concave trench array is formed by etching on a matrix thin film or a media substrate coated on a media substrate. A high-density magnetic recording medium patterned medium characterized in that a magnetic material is buried up to the height of a matrix thin film or a media substrate surface to form a magnetic bit array.
2 . 請求項 1において、 マトリックス薄膜を非晶質炭素薄膜とした パターンドメディア。  2. The patterned medium according to claim 1, wherein the matrix thin film is an amorphous carbon thin film.
3 . 請求項 1又は 2において、 磁気ビット配列の表面を表面潤滑 層で被覆したパターンドメディア。  3. The patterned media according to claim 1 or 2, wherein the surface of the magnetic bit array is covered with a surface lubricating layer.
4 . 高密度磁気記録媒体パターンドメディアの製造方法であって、 メディア基板にマトリックス薄膜を被覆する工程と、被覆したマトリック スをマスクパターンに従ってエッチングして凹状のトレンチ配列を形成 する工程と、 トレンチ凹部にマトリックス薄膜の表面高さまで磁性材 料を埋設して磁気ビット配列を形成する工程とを含むことを特徴とす る高密度磁気記録媒体パターンドメディアの製造方法。  4. A method of manufacturing a high-density magnetic recording medium patterned media, comprising: a step of coating a matrix substrate with a matrix thin film; a step of forming a concave trench array by etching the coated matrix according to a mask pattern; Forming a magnetic bit array by burying a magnetic material in the recesses up to the surface height of the matrix thin film, thereby forming a magnetic bit array.
5 . 請求項 4において、 マトリックス薄膜上へレジストを被覆するェ 程と、被覆したレジストを露光 '現像してレジストのマスクパターンを形 成する工程と、 磁性材料のトレンチ凹部への埋設後にレジストのバタ ーンマスクを除去する工程とを含むパターンドメディアの製造方法。 5. The method according to claim 4, wherein the step of coating the resist on the matrix thin film, the step of exposing and developing the coated resist to form a resist mask pattern, and the step of applying the resist after embedding the magnetic material in the trench recess. Removing the patterned mask.
6 . 高密度磁気記錄媒体パターンドメディアの製造方法であって、 マスクパターンに従ってメディア基板をエッチングして凹状のトレンチ配 列をメディア基板に形成する工程と、 トレンチ凹部に、 メディア基板の 表面高さまで磁性材料を埋設して磁気ビット配列を形成する工程と を含むことを特徴とする高密度磁気記録媒体パターンドメディアの製 造方法。 6. A method for manufacturing a high-density magnetic recording medium patterned media, comprising: etching a media substrate according to a mask pattern to form a concave trench array in the media substrate; Burying a magnetic material to form a magnetic bit array; A method for producing a high-density magnetic recording medium patterned media, comprising:
フ. 請求項 6において、 メディア基板上へレジストを被覆する工程 と、 被覆したレジストを露光 '現像してレジストのマスクパターンを形成 する工程と、磁性材料のトレンチ凹部への埋設後にレジストのバタ一 ンマスクを除去する工程とを含む高密度磁気記録媒体パターンドメ ディアの製造方法。 7. The method according to claim 6, wherein the step of coating the resist on the media substrate, the step of exposing and developing the coated resist to form a resist mask pattern, and the step of removing the resist after the magnetic material is buried in the trench recesses. Removing the mask from the patterned medium.
8 . 請求項 4ないし 7のいずれかの製造方法において、 磁気ビット 配列の表面に表面潤滑層を被覆する工程を含む高密度磁気記錄 媒体パターンドメディアの製造方法。  8. The method according to claim 4, further comprising a step of coating a surface lubrication layer on the surface of the magnetic bit array.
PCT/JP2000/006964 1999-10-05 2000-10-05 Patterned high density magnetic recording medium and production method therefor WO2001026101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/284946 1999-10-05
JP28494699A JP2001110050A (en) 1999-10-05 1999-10-05 High density magnetic recording medium patterned media and its production

Publications (1)

Publication Number Publication Date
WO2001026101A1 true WO2001026101A1 (en) 2001-04-12

Family

ID=17685126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006964 WO2001026101A1 (en) 1999-10-05 2000-10-05 Patterned high density magnetic recording medium and production method therefor

Country Status (2)

Country Link
JP (1) JP2001110050A (en)
WO (1) WO2001026101A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG102013A1 (en) * 2001-11-09 2004-02-27 Inst Data Storage Manufacturing method for high-density magnetic data storage media
US7741229B2 (en) 2004-12-13 2010-06-22 Tdk Corporation Method for manufacturing magnetic recording medium

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118240A (en) 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Heat sensitive recording material
KR100466740B1 (en) * 2002-09-23 2005-01-15 강신일 Fabrication of Patterned Media Using Ultra-Precision Injection Molding
KR20040034407A (en) 2002-10-15 2004-04-28 후지 샤신 필름 가부시기가이샤 Method of electron beam lithography, disk-shaped carrier for high density recording and magnetic disk medium
JP4109085B2 (en) 2002-11-06 2008-06-25 富士フイルム株式会社 Electron beam drawing method
CN100399514C (en) * 2003-01-07 2008-07-02 日立麦克赛尔株式会社 Press manufacturing method, its manufacturing device, manufacturing method of magnetic recording medium and its manufacturing device
JP4348253B2 (en) 2003-08-20 2009-10-21 富士フイルム株式会社 Conductive pattern material and method of forming conductive pattern
JP4128509B2 (en) 2003-09-26 2008-07-30 Tdk株式会社 Information recording medium manufacturing method
JP2005190624A (en) 2003-12-26 2005-07-14 Fujitsu Ltd Patterned media, its manufacturing method, and its evaluating method
JP4775806B2 (en) * 2004-02-10 2011-09-21 Tdk株式会社 Method for manufacturing magnetic recording medium
EP1612838A3 (en) 2004-06-30 2006-08-16 Fuji Photo Film Co., Ltd Electron beam lithography method
JP2006017782A (en) 2004-06-30 2006-01-19 Fuji Photo Film Co Ltd Electron beam drawing method
JP4008933B2 (en) 2005-05-16 2007-11-14 株式会社東芝 Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
KR100688861B1 (en) 2005-06-13 2007-03-02 삼성전기주식회사 Manufacturing method of magnetic storage element
JP4533809B2 (en) * 2005-06-28 2010-09-01 株式会社東芝 Method for manufacturing substrate for discrete track medium and method for manufacturing discrete track medium
JP4675722B2 (en) * 2005-09-02 2011-04-27 株式会社東芝 Magnetic recording medium
JP2008077795A (en) 2006-09-22 2008-04-03 Fujitsu Ltd Clock extraction method for patterned medium, clock extraction circuit for patterned medium and patterned medium
JP2008084395A (en) 2006-09-26 2008-04-10 Fujitsu Ltd Clock extraction method and circuit of patterned medium
JP4843825B2 (en) * 2007-09-21 2011-12-21 昭和電工株式会社 Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP4990817B2 (en) 2008-02-29 2012-08-01 株式会社日立製作所 Manufacturing method of hard disk recording device using pattern medium
JP2009245559A (en) 2008-03-31 2009-10-22 Fujifilm Corp Master carrier for magnetic transfer and magnetic recording medium
JP2010027157A (en) * 2008-07-22 2010-02-04 Ulvac Japan Ltd Magnetic recording medium manufacturing system
JP2010134977A (en) * 2008-12-02 2010-06-17 Toshiba Storage Device Corp Magnetic recording medium and magnetic storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201732A (en) * 1989-01-31 1990-08-09 Sony Corp Production of magnetic recording medium
JPH0340219A (en) * 1989-07-06 1991-02-21 Hitachi Ltd Magnetic disk and production thereof
JPH08203058A (en) * 1995-01-24 1996-08-09 Hitachi Ltd Perpendicular magnetic recording medium and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201732A (en) * 1989-01-31 1990-08-09 Sony Corp Production of magnetic recording medium
JPH0340219A (en) * 1989-07-06 1991-02-21 Hitachi Ltd Magnetic disk and production thereof
JPH08203058A (en) * 1995-01-24 1996-08-09 Hitachi Ltd Perpendicular magnetic recording medium and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG102013A1 (en) * 2001-11-09 2004-02-27 Inst Data Storage Manufacturing method for high-density magnetic data storage media
US6719841B2 (en) 2001-11-09 2004-04-13 Data Storage Institute Manufacturing method for high-density magnetic data storage media
US7741229B2 (en) 2004-12-13 2010-06-22 Tdk Corporation Method for manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JP2001110050A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
WO2001026101A1 (en) Patterned high density magnetic recording medium and production method therefor
JP3926360B2 (en) Pattern forming method and structure processing method using the same
US7670696B2 (en) Perpendicular magnetic recording medium with patterned magnetic islands and nonmagnetic trenches and manufacturing method for suppressing surface diffusion of trench material
US7629021B2 (en) Method for producing a stamper
JP4510796B2 (en) Method for manufacturing magnetic storage medium
US20030091865A1 (en) Manufacturing method for high-density magnetic data storage media
CN101038752A (en) Patterned media and method of manufacturing the same, and magnetic recording apparatus
US8298690B2 (en) Magnetic recording medium, method and apparatus for manufacturing magnetic recording apparatus
JP5814868B2 (en) Method for manufacturing magnetic recording medium
JP5651616B2 (en) Magnetic recording medium and manufacturing method thereof
JP4745307B2 (en) Magnetic recording medium and method for manufacturing magnetic recording medium
US20160071537A1 (en) Fabrication of bit patterned media using microcontact printing
JP4946500B2 (en) Nanohole structure and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof
JP3131595B2 (en) Mask for reactive ion etching
US7667929B2 (en) Apparatus, method and system for fabricating a patterned media imprint master
US20130081937A1 (en) Bit patterned magnetic media fabricated by templated growth from a printed topographic pattern
JP2013145611A (en) Magnetic recording medium and manufacturing method thereof
SG190634A1 (en) Ultra thin alignment walls for di-block copolymer
TW201324885A (en) Apparatus and methods to manufacture high density magnetic media (1)
JP4032056B2 (en) Method for forming porous alumina film
JP5808441B2 (en) Reduction of adjacent track error in bit pattern media
JP2009235553A (en) Nanohole structure and method for manufacturing the same
JP2006075946A (en) Nano-hole structural body and manufacturing method for this body, and magnetic recording medium and manufacturing method for this medium
JP4852179B2 (en) Magnetic recording medium and method for manufacturing magnetic recording medium
JPH0729227A (en) Recording and reproducing device and recording device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application
WA Withdrawal of international application