WO2001023303A1 - Verfahren zur herstellung einer nanotube-schicht auf einem substrat - Google Patents

Verfahren zur herstellung einer nanotube-schicht auf einem substrat Download PDF

Info

Publication number
WO2001023303A1
WO2001023303A1 PCT/AT2000/000213 AT0000213W WO0123303A1 WO 2001023303 A1 WO2001023303 A1 WO 2001023303A1 AT 0000213 W AT0000213 W AT 0000213W WO 0123303 A1 WO0123303 A1 WO 0123303A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reaction chamber
carbon
metal
nanotube layer
Prior art date
Application number
PCT/AT2000/000213
Other languages
English (en)
French (fr)
Inventor
Klaus Mauthner
Xinhe Tang
Roland Haubner
Original Assignee
Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. filed Critical Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H.
Priority to JP2001526462A priority Critical patent/JP4718742B2/ja
Priority to AT00952786T priority patent/ATE238968T1/de
Priority to EP00952786A priority patent/EP1227999B1/de
Priority to AU65483/00A priority patent/AU6548300A/en
Priority to DE50002017T priority patent/DE50002017D1/de
Publication of WO2001023303A1 publication Critical patent/WO2001023303A1/de
Priority to US10/101,650 priority patent/US7033650B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/102Fullerene type base or coating

Definitions

  • the invention relates to a method for producing a nanotube layer on a substrate by a CVD process, in which the substrate is introduced into a reaction chamber, this reaction chamber is flushed with a carbon-containing gas and the substrate is heated to a temperature which carbon is deposited from the gas phase on the substrate and forms nanotubes there.
  • Carbon nanotubes are honeycomb-shaped, cylindrical tubes made of sp 2 carbon. Depending on the manufacturing conditions, a distinction is made between SWNT (Single Wall Nanotubes) and MWNT (Multiwalled Nanotubes). The free ends of the nanotubes are closed under the usual synthesis conditions by hemispheres, which result from the installation of exactly six pentagonal units in the hexagonal graphite structure. The scientific and consequently industrial interest in such nanostructures is based on their excellent mechanical and electronic properties. The size of such structures is in the nm (diameter) / ⁇ m range (length), which promises technological applications particularly in the field of microelectronics. With a view to the relevant specialist literature, it is not difficult to see that the most violent activities of feeding carbon nanotubes to FED technology are underway.
  • the display variants for nanotubes range from arc discharge processes, which take place at temperatures around 3000 ° C, to decomposition reactions of SiC wafers at 1200 ° C under high vacuum, to CVD methods which, according to literature, generate generation temperatures for nanotubes up to a lower temperature limit of 650 ° Allow C.
  • One point that applies to all known manufacturing processes is the concept of catalyzed ⁇ -bond metathesis, which simply states that the formation mechanism of carbon nanotubes is still exclusively the subject of speculative considerations. Numerous experiments confirm transition metals, but also some elements from the lanthanide group, catalytic activity in fullerene / nanotube synthesis, whereby it can be assumed that the ideal catalyst / catalyst composition may not have been used yet.
  • Nanotube layers are generally produced by depositing carbon atoms from a carbon-containing carrier gas on the surface of a substrate.
  • reaction temperatures in the range between 400 and 2000 ° C must be used, the specific temperature value to be selected depends on the substrate material and the carbon source used. According to the prior art known to date, the entire interior of the reaction chamber has been heated in a manner similar to an oven for the purpose of heating the substrate.
  • a disadvantage of this procedure is in particular that not only the substrate itself but also all other objects located inside the reaction chamber, in particular the inner walls of the reaction chamber, are heated and thus made accessible to carbon separation. This leads to the formation of undesirable carbon deposits that pollute the reaction chamber.
  • that energy that is used to heat the objects other than the substrate is waste energy that reduces the efficiency of the method. It is an object of the present invention to provide a method of the type mentioned at the outset for producing a nanotube structure on a substrate, in which these problems are avoided, in which in particular the formation of undesired carbon layers on objects different from the substrate is largely avoided and which with significantly lower heat losses.
  • this is achieved in that the substrate is heated inductively. This means that only the substrate is brought to the temperature which is a prerequisite for the deposition of carbon atoms. All other areas of the reaction chamber remain at room temperature or are heated only very slightly by the thermal radiation emanating from the substrate, which heating is in any case not sufficient to enable carbon deposition on these other areas of the reaction chamber.
  • a CVD method is described in connection with large-area nanotube film deposition, whereby only and d. H. pyrolysis reactions and thus carbon deposits occur only on the desired and defined surfaces in the reactor.
  • the process ensures the formation of dense, homogeneous carbon nanotube layers under mild deposition conditions (pressure, temperature), and, specifically, it should be pointed out here that solid deposits are not formed on the unintended surfaces in the reactor by pyrolysis of gaseous carbon-containing reactants advanced automation for the production of assembled components for applications in microelectronics e.g. FED technology.
  • the substrate is placed on a substrate receptacle arranged within the reaction chamber, which is formed by a plate made of electrically conductive material, such as metal or graphite, and the substrate is heated by inductive heating of these Metal plate, optionally also carried out by inductive heating of metallic sections of the substrate.
  • Non-metallic substrates cannot be directly heated inductively because the eddy currents required for them cannot form in them.
  • a metal plate can be heated inductively, so that by providing such a metal plate in the reaction chamber and placing a non-metallic substrate thereon, inductive heating according to the invention also takes place in the case of non-metallic substrates, albeit only indirectly by transferring the heat from the metal plate to the substrate can.
  • the metal plate can have a relatively low mass, so that only small amounts of energy are required to heat it. Since other components of the reaction chamber are almost not heated at all, the energy used for this in the prior art is completely eliminated.
  • a substrate whose surface to be provided with the nanotube layer has a metal coating is used.
  • a metallic catalyst For the deposition of carbon atoms on the substrate surface (and thus the formation of the nanotube) to take place, a metallic catalyst must be present on the substrate surface. If the substrate has a metal coating, this catalyst is already present on the substrate surface and need not be applied to the substrate by a separate process step. In addition, this metal coating is heated directly by induction.
  • a substrate consisting entirely of a metal or a metal alloy is used.
  • the metallic catalyst necessary for the formation of a nanotube layer is already present on the substrate surface. Furthermore, such metallic substrates can be heated directly by induction, since the eddy currents necessary for inductive heating can be generated within the substrates themselves. Therefore, when using metallic substrates, the previously mentioned metal plate for receiving these substrates can be replaced by a non-metallic device.
  • a made of a non-metallic material such as e.g. Glass, ceramic, silicon, cermet, carbon or the like.
  • Existing substrate is used and that a metal-containing catalyst is applied to the surface of the substrate to be provided with the nanotube layer before the reaction chamber is flushed with a carbon-containing gas.
  • a transition organometallic complex such as ferrocene
  • Such substances can be applied to the surface of non-metallic substrates with particularly simple measures and catalyze the growth of carbon nanotubes particularly reliably.
  • ferrocene is dissolved in an acetone solution and this acetone solution is applied to the surface of the substrate to be provided with the nanotube layer.
  • the catalyst After evaporation of the solvent, the catalyst is evenly distributed as a microcrystalline layer on the substrate.
  • acetylene is used as the carbon-containing gas.
  • This gas particularly in combination with ferrocene as a catalyst, produces relatively rapid, good results, i.e. a very homogeneous nanotube layer providing deposition process.
  • Another object of the present invention is to provide a device for producing a nanotube layer, which device comprises a reaction chamber within which a substrate holder is arranged.
  • the device to be specified is intended to be suitable for carrying out a nanotube production process in which the formation of undesired carbon layers on objects different from the substrate within the reaction chamber is largely avoided and which works with low heat losses.
  • a device according to the invention is characterized by a coil to which an alternating voltage, preferably a high-frequency alternating voltage, can be applied, the turns of which lie outside the reaction chamber and enclose it in the area of the substrate holder.
  • an alternating voltage preferably a high-frequency alternating voltage
  • This component is structurally very simple and can be easily retrofitted to existing reaction chambers. Above all, the coil in question opens up the possibility of specifically heating only the substrate on which nanotubes are to be formed, as a result of which — as already mentioned above — carbon deposition on regions of the reaction chamber different from the substrate is effectively avoided.
  • the substrate holder by a plate made of an electrically conductive material, such as. Metal or graphite.
  • the device can be made suitable for the use of non-metallic substrates.
  • This metal plate is directly inductively heated here and the heat energy generated is transferred to the non-metallic substrate, so there is indirect inductive heating of the substrate.
  • the invention is described below with reference to the single drawing Fig. 1.
  • This Fig.l shows a preferred embodiment of a device according to the invention for producing a nanotube layer on a substrate in a schematic representation.
  • reaction chamber 1 denotes a reaction chamber within which the method according to the invention for producing a nanotube layer is carried out on a substrate 2.
  • This method is a principle known from the prior art CVD process, in which the substrate 2 is introduced into the reaction chamber 1, then the reaction chamber 1 is flushed with a carbon-containing gas and the substrate 2 is heated to such a temperature which carbon is deposited from the gas phase on the substrate 2 and forms nanotubes there.
  • the specific temperature to be used depends on the material of the substrate 2 and on the type of carbon-containing gas. However, the selection of this carbon-containing gas and the temperature selection are not essential to the invention but can be carried out by any person skilled in the field of CVD technology in accordance with the rules known for this in the prior art.
  • the process according to the invention allows the use of all carbon-containing gases and organic compounds (various solvents with a high carbon content) which can be kept in the gaseous state below the necessary pyrolysis temperature. Depending on the selected carbon-containing gas, separation temperatures in the range between 400 and 2000 ° C may be necessary.
  • the reaction chamber 1 shown in Fig.l is formed by a vertically extending quartz tube, the end faces of which are sealed gas-tight with metal flanges 3.
  • a gas inlet 4 and a gas outlet 5 are incorporated, through which the reaction chamber 1 gases can be supplied and removed.
  • P designates a pressure control device with which the gas pressure within the reaction chamber 1 is controlled.
  • the reference symbol R denotes a pump, by means of which a gas flow can be generated through the reaction chamber 1, should less volatile substances be used as a carbon source under normal conditions.
  • Gas cleaning devices C are also arranged within the gas lines 8.
  • the most important part of the device according to the invention is the coil 7, the turns of which lie outside the reaction chamber 1 and enclose the reaction chamber 1 in the region of the substrate receptacle 6.
  • This coil 7 can be connected to an AC voltage source 8, as a result of which it builds up an AC magnetic field passing through these two parts in the region of the substrate receptacle 6 and the substrate 2.
  • this alternating magnetic field is a prerequisite for the inventive method of heating the substrate, which is done inductively according to the invention.
  • These eddy currents generate heat in the substrate 2, in the substrate receptacle 6 or in both parts, with which the substrate 2 is heated to the temperature necessary for the nanotube deposition.
  • the effect of inductive heating is higher, the higher the frequency of the alternating magnetic field, because it is known that the level of an induced voltage (and thus also the level of the (heating) current driven by this voltage) is directly proportional to the frequency of the alternating magnetic field.
  • the AC voltage source 8 is therefore preferably a high-frequency voltage source, which generates frequencies of greater than 1 kHz.
  • Nanotubes can be deposited on both metallic and non-metallic substrates, so that the substrate 2 can be both conductive and non-conductive. If a metallic substrate 2 or a substrate 2 which is non-metallic per se but is provided with a metal coating is used, eddy currents can be generated in this substrate 2 itself or in its metal coating and the substrate 2 can thus be heated inductively.
  • the material of the substrate holder 6 can then be chosen as desired, in particular it can also be made of a non-metal, such as e.g. a ceramic.
  • a non-metallic substrate 2 e.g. Glass, ceramics, silicon, cermet, carbon or the like, on the other hand, can only be indirectly heated inductively by the substrate receptacle 6 being covered by a plate made of an electrically conductive material, e.g. Metal or graphite, and the substrate 2 is placed on this electrically conductive plate.
  • the alternating magnetic field built up by the coil 7 causes eddy currents only within this plate, the heat generated in this case must be transferred to the substrate 2.
  • a metallic substrate holder 6 can of course also be used, in which case both the substrate holder 6 and the metallic sections of the substrate 2 are then directly inductively heated.
  • a temperature control designated TC in FIG. 1 which measures the current substrate temperature and controls the AC voltage source 8 as a function thereof.
  • This control can be, for example, merely switching this voltage source 8 on and off (two-point control characteristic) or in the constant change of parameters (voltage and / or frequency) of the voltage source 8.
  • metal-containing catalysts can include, for example, metallocenes and transition organometallic complexes, e.g. Ferrocene.
  • a possible form of catalyst application is the impregnation of substrates with porous surfaces by placing them in concentrated metal complex solutions. The impregnation conditions (solvent, temperature, concentration) depend on the chemical properties of the respective metal complex. Porous surfaces can be obtained by simple etching techniques (e.g. exposure to acids, anodic oxidation of the substrates).
  • the reaction chamber 1 was here through a quartz tube with a length of 80 cm and 8cm diameter formed, the two end faces of which were closed by means of metal caps 3, which are provided with a gas inlet 4 or a gas outlet 5.
  • the PYREX® substrate 2 pretreated in this way was then placed on the substrate receptacle 6, which is located in the interior of the reaction chamber 1 and was made of molybdenum, and the reaction chamber 1 was flushed with nitrogen for 15 minutes. Thereafter, acetylene was introduced as the carbon-containing carrier gas into the reaction chamber 1, which was also carried out by flushing the reaction chamber 1 with this carrier gas has been.
  • the acetylene gas flow had a flow rate of about 15 sccm min "1.
  • the substrate 2 was heated to 650 ° C. as quickly as possible, which, according to the invention, was done inductively by applying an alternating voltage of 2 kV to the coil 7 at a current of 0.65mA.

Abstract

Verfahren zur Herstellung einer Nanotube-Schicht auf einem Substrat (2) durch einen CVD-Prozeß, bei welchem das Substrat (2) in eine Reaktionskammer (1) eingebracht wird, diese Reaktionskammer (1) mit einem kohlenstoffhältigen Gas gespült wird und das Substrat (2) auf eine Temperatur aufgeheizt wird, bei welcher Kohlenstoff aus der Gasphase am Substrat (2) abgeschieden wird und dort Nanotubes bildet und das Substrat (2) induktiv aufgeheizt wird.

Description

Verfahren zur Herstellung einer Nanotube-Schicht auf einem Substrat
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Nanotube-Schicht auf einem Substrat durch einen CVD-Prozeß, bei welchem das Substrat in eine Reaktionskammer eingebracht wird, diese Reaktionskammer mit einem kohlenstoffhaltigen Gas gespült wird und das Substrat auf eine Temperatur aufgeheizt wird, bei welcher Kohlenstoff aus der Gasphase am Substrat abgeschieden wird und dort Nanotubes bildet.
Carbon Nanotubes sind bienenwabenförmig aufgebaute, zylindrische Röhren aus sp2- Kohlenstoff. Je nach Herstellungsbedingungen unterscheidet man SWNT (Single Wall Nanotubes) oder MWNT (Multiwalled Nanotubes). Die freistehenden Enden der Nanoröhren sind unter den gebräuchlichen Synthesebedingungen durch Halbkugeln, welche durch den Einbau von genau sechs pentagonalen Einheiten in die hexagonale Graphit- Struktur entstehen, verschlossen. Das wissenschaftliche und in der Folge industrielle Interesse an solchen Nanostmkturen beruht auf ihren hervorragenden mechanischen und elektronischen Eigenschaften. Die Grössenordnung derartiger Strukturen bewegen sich im nm- (Durchmesser)/ μm-Bereich (Länge), welche besonders auf dem Gebiet der Mikroelektronik technologische Anwendungen versprechen. Mit Blick auf die einschlägige Fachliteratur ist es unschwer zu erkennen, dass heftigste Aktivitäten, Carbon Nanotubes der FED-Technologie zuzuführen, im Gange sind.
Obwohl schon viel über die Herstellung von Carbon Nanotubes in der Literatur berichtet wurde, scheint der Durchbruch, bezüglich industrieller Verwertbarkeit von Nanotube- Schichten in der Emissionstechnologie, noch immer ein heisses allerding erst zu schmiedendes Eisen zu sein. Die Darstellungsvarianten für Nanotubes reichen von Lichtbogenentladungsprozessen, welche bei Temperaturen um 3000°C stattfinden, über Zersetzungsreaktionen von SiC-Wafern bei 1200°C unter Hochvakuum, bis zu CVD- Methoden welche, laut Literatur, Generierungstemperaturen für Nanotubes bis zu einer Temperaturuntergrenze von 650°C erlauben. Ein auf alle bekannten Herstellungsprozesse zutreffender Punkt ist der Begriff der katalysierten σ-Bond Metathese, welche schlicht besagt, dass der Bildungsmechanismus von Carbon Nanotubes noch ausschliesslich Gegenstand spekulativer Überlegungen ist. Zahlreiche Experimente bestätigen Übergangsmetallen, aber auch einigen Elementen aus der Lanthanidengruppe katalytische Aktivität in der Fulleren/Nanotube Synthese, wobei angenommen werden darf, dass der ideale Katalysator/die ideale Katalysatorkomposition möglicherweise noch nicht zur Anwendung gekommen ist.
Ein wichtiger Punkt, ein Material technischen Anwendungen zugänglich zu machen, ist die vernünftig automatisierbare Verfahrenstechnik, welche, speziell im Falle der Mikroelektronik, hohen Reinraum-Prozesstechnik- Anforderungen genüge tun muss. Nanotube- Schichten werden in der Regel durch Abscheidung von Kohlenstoff-Atomen aus einem kohlenstoffhaltigen Trägergas auf die Oberfläche eines Substrates hergestellt. Damit diese Abscheidung stattfinden kann, müssen Reaktionstemperaturen im Bereich zwischen 400 und 2000°C angewendet werden, wobei der konkret zu wählende Temperaturwert vom Substratmaterial sowie von der eingesetzten Kohlenstoffquelle abhängt. Nach bisher bekanntem Stand der Technik hat man zwecks dieser Aufheizung des Substrates den gesamten Innenraum der Reaktionskammer ähnlich einem Backofen aufgeheizt. Nachteilig ist bei dieser Vorgangsweise insbesondere, daß dabei nicht nur das Substrat selbst sondern auch sämtliche andere, sich im Inneren der Reaktionskammer befindende Objekte, insbesondere die Innenwandungen der Reaktionskammer, aufgeheizt und damit einer Kohlenstoffabscheidung zugänglich gemacht werden. Es kommt daher zur Bildung von unerwünschten, die Reaktionskammer verschmutzenden Kohlenstoffablagerungen. Darüberhinaus ist natürlich jene Energie, die zur Aufheizung der vom Substrat verschiedenen Objekte verwendet wird, Verlustenergie, welche die Effizienz des Verfahrens herabsetzt. Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs angeführten Art zur Herstellung einer Nanotube-Struktur auf einem Substrat anzugeben, bei welchem diese Probleme vermieden sind, bei welchem also insbesondere die Bildung unerwünschter Kohlenstoffschichten auf vom Substrat verschiedenen Objekten weitgehend vermieden ist und welches mit deutlich geringeren Wärmeverlusten arbeitet.
Erfindungsgemäß wird dies dadurch erreicht, daß das Substrat induktiv aufgeheizt wird. Damit wird ausschließlich das Substrat auf jene Temperatur gebracht, welche Voraussetzung für die Abscheidung von Kohlenstoffatomen ist. Sämtliche anderen Bereiche der Reaktionskammer bleiben auf Raumtemperatur bzw. werden von der vom Substrat ausgehenden Wärmestrahlung nur sehr geringfügig erwärmt, welche Erwärmung jedenfalls nicht ausreicht, um eine Kohlenstoff-Abscheidung auf diesen anderen Bereichen der Reaktionskammer zu ermöglichen.
Zum ersten mal wird ein CVD-Verfahren im Zusammenhang mit großflächiger Nanotubefilmabscheidung beschrieben, wobei es nur und d. h. ausschließlich an den gewuenschten und definierten Oberflächen im Reaktor zu Pyrolysereaktionen und damit zu Kohlenstoffabscheidungen kommt. Das Verfahren gewährleistet die Ausbildung von dichten, homogenen Carbon-Nanotube- Schichten unter milden Abscheidungsbedingungen (Druck, Temperatur), und, darauf sei hier speziell hingewiesen, dadurch dass an keinen unbeabsichtigten Oberflaechen im Reaktor feste Ablagerungen durch Pyrolyse gasförmiger kohlenstoffhaeltiger Reaktanten gebildet werden, eine weiterführende Automatisierung zur Produktion von zusammengesetzten Bauteilen für Anwendungen in der Mikroelektronik z.B. FED-Technologie.
Gemäß einer besonders bevorzugten Weiterbildung der Erfindung kann vorgesehen sein, daß das Substrat auf eine innerhalb der Reaktionskammer angeordnete Substrat- Aufnahme gelegt wird, welche durch eine Platte aus elektrisch leitendem Material, wie z.B. Metall oder Graphit, gebildet ist, und das Aufheizen des Substrates durch induktives Beheizen dieser Metallplatte, gegebenenfalls zusätzlich durch induktives Beheizen von metallischen Abschnitten des Substrates erfolgt.
Nichtmetallische Substrate können nicht direkt induktiv aufgeheizt werden, weil sich in ihnen die dafür notwendigen Wirbelströme nicht ausbilden können. Eine Metallplatte hingegen kann induktiv beheizt werden, sodaß durch das Vorsehen einer solchen Metallplatte in der Reaktionskammer und das Plazieren eines nichtmetallischen Substrates auf derselben das erfindungsgemäße induktive Beheizen auch bei nichtmetallischen Substraten -wenngleich nur indirekt durch Übertragung der Wärme von der Metallplatte auf das Substrat- erfolgen kann. Die Metallplatte kann eine relativ geringe Masse aufweisend ausgebildet werden, womit zu ihrer Erwärmung nur geringe Energiemengen notwendig sind. Da andere Komponenten der Reaktionskammer nahezu überhaupt nicht aufgeheizt werden, entfallt die im Stand der Technik dafür verwendete Energie vollständig.
Gemäß einer Variante der Erfindung kann vorgesehen sein, daß ein Substrat, dessen mit der Nanotube-Schicht zu versehende Oberfläche eine Metallbeschichtung aufweist, verwendet wird.
Damit die Abscheidung von Kohlenstoffatomen auf der Substratoberfläche (und damit die Nanotube-Bildung) stattfinden kann, muß auf der Substratoberfläche ein metallischer Katalysator vorhanden sein. Trägt das Substrat eine Metallbeschichtung, so ist dieser Katalysator bereits auf der Substratoberfläche vorhanden und braucht nicht durch einen separaten Verfahrensschritt auf das Substrat aufgebracht werden. Darüberhinaus wird diese Metallbeschichtung direkt induktiv beheizt.
In diesem Zusammenhang kann vorgesehen sein, ein zur Gänze aus einem Metall oder einer Metallegierung bestehendes Substrat verwendet wird.
Auch hier ist der für die Bildung einer Nanotube-Schicht notwendige metallische Katalysator bereits auf der Substratoberfläche vorhanden. Weiters können solche metallische Substrate direkt induktiv beheizt werden, denn es können innerhalb der Substrate selbst die zur induktiven Beheizung notwendigen Wirbelströme erzeugt werden. Man kann daher bei Verwendung metallischer Substrate die bisher erwähnte Metallplatte zur Aufnahme dieser Substrate durch eine nichtmetallische Vorrichtung ersetzten.
Gemäß einer anderen Variante der Erfindung kann vorgesehen sein, daß ein aus einem nichtmetallischen Material, wie z.B. Glas, Keramik, Silizium, Cermet, Kohlenstoff od. dgl. bestehendes Substrat verwendet wird und daß vor dem Spülen der Reaktionskammer mit einem kohlenstoffhaltigen Gas ein metallhaltiger Katalysator auf die mit der Nanotube- Schicht zu versehende Oberfläche des Substrates aufgebracht wird.
Dies ermöglicht es, Nanotube-Schichten auch auf nichtmetallischen Substraten aufwachsen zu lassen.
Als besonders günstig hat es sich erwiesen, daß als Katalysator ein Übergangsorganometallkomplex, wie z.B. Ferrocen, verwendet wird. Derartige Substanzen lassen sich mit besonders einfachen Maßnahmen auf die Oberfläche von nichtmetallischen Substraten aufbringen und katalysieren das Wachstum von Kohlenstoff-Nanotubes besonders zuverlässig.
In diesem Zusammenhang kann nach einer bevorzugten Ausführungsform der Erfindung vorgesehen sein, daß Ferrocen in einer Aceton-Lösung aufgelöst wird und diese Aceton- Lösung auf die mit der Nanotube-Schicht zu versehende Oberfläche des Substrates aufgebracht wird.
Nach Verdampfung des Lösungsmittels liegt der Katalysator gleichmäßig verteilt als mikrokristalline Schicht auf dem Substrat vor.
In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daß als kohlenstoffhaltiges Gas Acetylen verwendet wird.
Dieses Gas bewirkt insbesondere in Verbindung mit Ferrocen als Katalysator einen relativ rasch ablaufenden, gute Ergebnisse, d.h. eine sehr homogene Nanotube-Schicht liefernden, Abscheidungsprozeß.
Eine weitere Aufgabe der vorliegenden Erfindung liegt darin, eine Vorrichtung zur Herstellung einer Nanotube-Schicht anzugeben, welche Vorrichtung eine Reaktionskammer umfaßt, innerhalb welcher eine Substrat-Aufnahme angeordnet ist. Die anzugebende Vorrichtung soll sich zur Durchführung eines Nanotube-Herstellungs-Verfahrens eignet, bei welchem die Bildung unerwünschter Kohlenstoffschichten auf vom Substrat verschiedenen Objekten innerhalb der Reaktionskammer weitgehend vermieden ist und welches mit geringen Wärmeverlusten arbeitet.
Eine erfindungsgemäße Vorrichtung zeichnet sich aus durch eine mit einer Wechselspannung, vorzugsweise einer hochfrequenten Wechselspannung, beaufschlagbare Spule, deren Windungen außerhalb der Reaktionskammer liegen und diese im Bereich der Substrat-Aufnahme umschließen.
Diese Komponente ist konstruktiv sehr einfach gehalten und kann sehr einfach bei bereits bestehenden Reaktionskammern nachgerüstet werden. Vor allem eröffnet die in Rede stehende Spule die Möglichkeit, gezielt nur das Substrat, auf welchem Nanotubes gebildet werden sollen, zu beheizen, wodurch -wie oben bereits angeführt- eine Kohlenstoff- Abscheidung auf vom Substrat verschiedenen Bereichen der Reaktionskammer effektiv vermieden wird.
Bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung kann vorgesehen sein, daß die Substrat-Aufnahme durch eine Platte aus einem elektrisch leitenden Material, wie z.B. Metall oder Graphit, gebildet ist.
Mit diesem konstruktiv ebenfalls sehr einfachen zusätzlichen Bauteil kann die Vorrichtung zur Verwendung von nichtmetallischen Substraten geeignet gemacht werden. Es wird hier diese Metallplatte direkt induktiv beheizt und die dabei entstehende Wärmeenergie auf das nichtmetallische Substrat übertragen, es erfolgt also eine indirekte induktive Beheizung des Substrates. Die Erfindung wird nachstehend unter Bezugnahme auf die einzige Zeichnung Fig. l beschrieben. Diese Fig.l zeigt eine bevorzugte Ausfuhrungsform einer erfindungsgemäßen Vorrichtung zur Herstellung einer Nanotube-Schicht auf einem Substrat in schematischer Darstellung.
Hier ist mit 1 eine Reaktionskammer bezeichnet, innerhalb welcher das erfindungsgemäße Verfahren zur Herstellung einer Nanotube-Schicht auf einem Substrat 2 durchgeführt wird. Dieses Verfahren ist ein seinem Prinzip nach im Stand der Technik bekannter CVD-Prozeß, bei welchem das Substrat 2 in die Reaktionskammer 1 eingebracht wird, danach die Reaktionskammer 1 mit einem kohlenstoffhaltigem Gas gespült wird und das Substrat 2 auf eine solche Temperatur aufgeheizt wird, bei welcher Kohlenstoff aus der Gasphase am Substrat 2 abgeschieden wird und dort Nanotubes bildet.
Die konkret zu verwendende Temperatur hängt vom Material des Substrates 2 sowie vom Typ des kohlenstoffhaltigen Gases ab. Die Auswahl dieses kohlenstoffhaltigen Gases sowie die Temperaturauswahl sind aber nicht erfindungswesentlich sondern können gemäß den hierfür im Stand der Technik bekannten Regeln von jedem Fachmann am Gebiet der CVD- Techniologie durchgeführt werden. Das erfindungsgemäße Verfahren erlaubt den Einsatz von allen Kohlenstoff-hältigen Gasen und organischen Verbindungen (diverse Lösungsmittel mit hohem Kohlenstoff-Anteil) welche sich unterhalb der notwendigen Pyrolysetemperatur im gasförmigen Zustand halten lassen. Abhängig vom gewählten kohlenstoffhaltigen Gas können Abscheidetemperaturen im Bereich zwischen 400 und 2000°C notwendig sein. Die in Fig.l dargestellte Reaktionskammer 1 ist durch ein vertikal verlaufendes Quarzrohr gebildet, dessen Stirnseiten mit Metallflanschen 3 gasdicht verschlossen sind. In diese Metallflansche 3 sind ein Gaseinlaß 4 und ein Gasauslaß 5 eingearbeitet, über welche der Reaktionskammer 1 Gase zu- und abgeführt werden können. Innerhalb der Reaktionskammer 1 ist eine Substrat-Aufnahme 6 in Gestalt einer ebenen Platte angeordnet, auf welche das Substrat 2 aufgelegt wird. Mit P ist eine Druckregelungs-Einrichtung bezeichnet, mit Hilfe welcher der Gasdruck innerhalb der Reaktionskammer 1 geregelt wird. Das Bezugszeichen R kennzeichnet eine Pumpe, mittels welcher ein Gasstrom durch die Reaktionskammer 1 erzeugt werden kann, sollten unter Normalbedingungen winiger flüchtige Substanzen als Kohlenstoffquelle zum Einsatz kommen. Innerhalb der Gasleitungen 8 sind weiters Gasreinigungs-Vorrichtungen C angeordnet.
Der wesentlichste Teil der erfindungsgemäßen Vorrichtung ist die Spule 7, deren Windungen außerhalb der Reaktionskammer 1 liegen und die Reaktionskammer 1 im Bereich der Substrat-Aufnahme 6 umschließen. Diese Spule 7 ist mit einer Wechselspannungsquelle 8 verbindbar, wodurch sie im Bereich der Substrat-Aufnahme 6 und des Substrates 2 ein diese beiden Teile durchsetzendes Wechsel-Magnetfeld aufbaut.
Der Aufbau dieses Wechsel-Magnetfeldes ist Voraussetzung für die erfindungsgemäße Weise der Beheizung des Substrates, diese erfolgt erfindungsgemäß nämlich induktiv. Das bedeutet, daß durch das Wechsel-Magnetfeld im Substrat 2 selbst, in der Substrat-Aufnahme 6 oder in beiden dieser Teile Wirbelspannungen induziert werden, die zur Ausbildung von Wirbelströmen innerhalb von Substrat 2, Substrat-Aufnahme 6 oder beiden Teilen führen. Diese Wirbelströme erzeugen Wärme im Substrat 2, in der Substrat-Aufnahme 6 oder beiden Teilen, womit das Substrat 2 auf die zur Nanotube-Abscheidung notwendige Temperatur geheizt wird.
Der Effekt der induktiven Beheizung ist umso höher, je höher die Frequenz des Wechsel- Magnetfeldes ist, denn bekanntlich verhält sich die Höhe einer induzierten Spannung (und damit auch die Höhe des von dieser Spannung getriebenen (Beheizungs-) Stromes) direkt proportional zur Frequenz des Wechsel-Magnetfeldes. Die Wechselspannungsquelle 8 ist daher vorzugsweise eine Hochfrequenz-Spannungsquelle, welche Frequenzen von größer 1 kHz erzeugt.
Ob nur im Substrat 2, nur in der Substrat-Aufnahme 6 oder in beiden Teilen Wirbelströme induziert werden können, hängt von den elektrischen Eigenschaften dieser Bauteile ab. Nanotubes können sowohl auf metallischen als auch auf nichtmetallischen Substraten abgeschieden werden, sodaß das Substrat 2 sowohl leitend als auch nichtleitend sein kann. Wird ein metallisches Substrat 2 oder ein an sich zwar nichtmetallisches aber mit einer Metallbeschichtung versehenes Substrat 2 verwendet, können in diesem Substrat 2 selbst bzw. in seiner Metallbeschichtung Wirbelströme erzeugt werden und damit das Substrat 2 direkt induktiv beheizt werden. Das Material der Substrat-Aufnahme 6 kann dann beliebig gewählt werden, insbesondere kann dieses auch aus einem Nichtmetall, wie z.B. einer Keramik, gebildet sein. Als Materialien zur Bildung von metallischen Substraten, worunter sowohl Substrate aus reinen Metallen als auch Substrate aus Metallegierungen zu verstehen sind, können angegeben werden: Fe, Co, Ni, Cr, Mo, Cu, Ru, Rh. Pd, Pt. Ein nichtmetallisches Substrat 2, wie z.B. Glas, Keramik, Silizium, Cermet, Kohlenstoff od. dgl.. kann hingegen nur indirekt induktiv beheizt werden, indem die Substrat-Aufnahme 6 durch eine Platte aus einem elektrisch leitenden Material, wie z.B. Metall oder Graphit, wird und das Substrat 2 auf diese elektrisch leitende Platte aufgelegt wird. Das von der Spule 7 aufgebaute Wechsel-Magnetfeld ruft dabei Wirbelströme nur innerhalb dieser Platte hervor, die dabei entstehende Wärme muß auf das Substrat 2 übertragen werden. Bei Verwendung von metallischen Substraten 2 bzw. von metallbeschichteten Nichtmetall- Substraten 2 kann natürlich ebenfalls eine metallische Substrat-Aufnahme 6 verwendet werden, hier werden dann sowohl die Substrat-Aufnahme 6 als auch die metallischen Abschnitte des Substrates 2 direkt induktiv beheizt.
Zur Einstellung der für das aktuell verwendete Substrat 2 und das aktuell verwendete kohlenstoffhaltige Gas notwendigen Temperatur ist eine in Fig.l mit TC bezeichnete Temperaturregelung vorgesehen, welche die aktuelle Substrattemperatur mißt und abhängig von dieser die Wechselspannungsquelle 8 ansteuert. Diese Ansteuerung kann z.B. im bloßen Ein- und Ausschalten dieser Spannungsquelle 8 liegen (Zweipunkt-Regel-Charakteristik) oder in der stetigen Veränderung von Parametern (Spannung und/oder Frequenz) der Spannungsquelle 8.
Ausgehend von der Tatsache, daß eine Abscheidung von Kohlenstoff aus dem kohlenstoffhaltigen Gas auf die Substratoberfläche nur dann stattfinden kann, wenn sich auf der Substratoberfläche in geeigneter metallhaltiger Katalysator befindet, ist bei Durchführung des erfindungsgemäßen Verfahrens unter Verwendung eines nichtmetallischen Substrates 2 vorgesehen, vor dem Spülen der Reaktionskammer 1 mit einem kohlenstoffhaltigen Gas einen solchen metallhaltigen Katalysator auf die mit der Nanotube-Schicht zu versehende Oberfläche des Substrates aufzubringen. Solche metallhaltigen Katalysatoren können beispielsweise Metallocene und Übergangsorganometallkomplexe, wie z.B. Ferrocen, sein. Eine mögliche Form der Katalysatoraufbringung stellt das Imprägnieren von Substraten mit porösen Oberflächen durch Einlegen selbiger in konzentrierte Metallkomplexlösungen dar. Die Imprägnierungsbedingungen (Lösungsmittel, Temperatur, Konzentration) richten sich nach den chemischen Eigenschaften des jeweiligen Metallkomplexes. Poröse Oberflaechen können durch einfache Ätztechniken (z.B. Einwirken von Säuren, anodische Oxidation der Substrate) erhalten werden.
Erfindungswesentlich ist -wie bereits erörtert- nicht der genaue Gesamt-Ablauf des CVD- Prozesses, sondern nur die Art und Weise der Beheizung des Substrates. Deshalb ist die Art und Weise der Vorbehandlung des Substrates 2, der vorbereitenden Spülungen der Reaktionskammer 1 mit Reinigungsgasen, die abschließende Abkühlung des Substrates 2 und dgl. beliebig gemäß den diesbezüglichen für sich bekannten Methoden wählbar. Ohne diese Erfindung in irgendeiner Weise einzuschränken wird abschließend der gesamte Ablauf einer tatsächlich durchgeführten Vorgangsweise zur Erzeugung einer Nanotube- Schicht auf einem Glassubstrat beschrieben, welcher Ablauf die erfindungsgemäße induktive Beheizung des Substrates 2 beinhaltete: Die Reaktionskammer 1 wurde hier durch ein Quarzrohr mit 80cm Länge und 8cm Durchmesser gebildet, dessen beide Stirnseiten mittels Metallkappen 3, die mit einem Gaseinlaß 4 bzw. einem Gasauslaß 5 versehen sind, verschlossen wurden. Das Substrat 2, auf welchem die Nanotube-Schicht abgeschieden wurde, war eine Platte aus PYREX®-Glas (=ein Borosilicat-Glas) mit einer Größe von 4cm x 2cm x 0.125cm. Diese Platte wurde mit Korund-Pulver aufgerauht, womit eine bessere Verteilung des als Katalysator verwendeten Ferrocen auf der Glasplatte erreichbar ist. Ferrocen wurde in Aceton aufgelöst und ein paar Tropfen dieser gesättigten Aceton-Lösung wurden auf die Substrat-Oberfläche aufgebracht. Das Aceton verdampfte langsam, was zur Bildung einer mikrokristallinen Ferrocen-Schicht auf der Substratoberfläche führte. Anschließend wurde das auf diese Weise vorbehandelte PYREX®-Substrat 2 auf die im Inneren der Reaktionskammer 1 befindliche und aus Molybdän bestehende Substrat- Aufnahme 6 gelegt und die Reaktionskammer 1 15min lang mit Stickstoff gespült. Danach wurde Acetylen als kohlenstoffhaltiges Trägergas in die Reaktionskammer 1 eingebracht, was ebenfalls durch Spülung der Reaktionskammer 1 mit diesem Trägergas durchgeführt wurde. Der Acetylen-Gasstrom wies dabei eine Strömungsgeschwindigkeit von etwa 15 sccm min"1 auf. Jetzt wurde das Substrat 2 so schnell als möglich auf 650°C aufgeheizt, was entsprechend der Erfindung auf induktivem Weg durch Beaufschlagung der Spule 7 mit einer Wechselspannung von 2 kV bei einem Strom von 0.65mA durchgeführt wurde. Nach wenigen Sekunden bildete sich Ferrocen-Dampf über dem Substrat aufgrund teilweiser Sublimation dieses Katalysators. Der Ferrocen-Dampf wurde vom Acetylen-Gasstrom langsam zur Substrat-Oberfläche zurückbewegt, wo er zersetzt wurde und das Wachstums der Kohlenstoff-Nanotubes startete. Der Beginn dieses Nanotube-Wachstums war erkennbar an der Bildung einer homogenen schwarzen Schicht auf der Substrat-Oberfläche. Die erörterten Prozeßbedingungen (Spülung mit Acetylen und Heizen des Substrates auf 650°C) wurden 40 Minuten lang aufrecht erhalten, danach wurde das mit der Nanotube-Schicht versehene Substrat mittels eines Stickstoff-Gasstromes auf Raumtemperatur abgekühlt.
Mit Hilfe der Raster-Elektronenmikroskopie (scanning electron microscopy (SEM) wurde die Morphologie der mit obigem Verfahren erzeugten Kohlenstoff-Nanotubes untersucht. Es wurden dabei isolierte, gerade Nanotube-Bündel im Bereich von Mikrometern sowie gekrümmte einzelne Nanotubes mit einigen hundert Mikrometern Länge entdeckt. Sowohl die einzelnen Nanotubes als auch die Nanotube-Bündel hatten Eisenpartikel auf ihren Spitzen. Der mittlere Durchmesser der einzelnen Nanotubes betrug in etwa 130nm, was beachtlich groß im Vergleich zu in der Literatur berichteten Durchmessern ist und mit der Größe der auf das Glassubstrat aufgebrachten Eisenpartikeln unter den erörterten Bedingungen zu erklären ist.

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zur Herstellung einer Nanotube-Schicht auf einem Substrat (2) durch einen CVD-Prozeß, bei welchem das Substrat (2) in eine Reaktionskammer (1) eingebracht wird, diese Reaktionskammer (1) mit einem kohlenstoffhaltigen Gas gespült wird und das Substrat (2) auf eine Temperatur aufgeheizt wird, bei welcher Kohlenstoff aus der Gasphase am Substrat (2) abgeschieden wird und dort Nanotubes bildet, dadurch gekennzeichnet, daß das Substrat (2) induktiv aufgeheizt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Substrat (2) auf eine innerhalb der Reaktionskammer (1) angeordnete Substrat- Aufnahme (6) gelegt wird, welche durch eine Platte aus elektrisch leitendem Material, wie z.B. Metall oder Graphit, gebildet ist, und das Aufheizen des Substrates (2) durch induktives Beheizen dieser Metallplatte, gegebenenfalls zusätzlich durch induktives Beheizen von metallischen Abschnitten des Substrates (2) erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Substrat (2), dessen mit der Nanotube-Schicht zu versehende Oberfläche eine Metallbeschichtung aufweist, verwendet wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein zur Gänze aus einem Metall oder einer Metallegierung bestehendes Substrat (2) verwendet wird.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein aus einem nichtmetallischen Material, wie z.B. Glas, Keramik, Silizium, Cermet, Kohlenstoff od. dgl. bestehendes Substrat (2) verwendet wird und daß vor dem Spülen der Reaktionskammer (1) mit einem kohlenstoffhaltigen Gas ein metallhaltiger Katalysator auf die mit der Nanotube- Schicht zu versehende Oberfläche des Substrates (2) aufgebracht wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als Katalysator ein Übergangsorganometallkomplex, wie z.B. Ferrocen, verwendet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß Ferrocen in einer Aceton- Lösung aufgelöst wird und diese Aceton-Lösung auf die mit der Nanotube-Schicht zu versehende Oberfläche des Substrates (2) aufgebracht wird.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als kohlenstoffhaltiges Gas Acetylen verwendet wird.
9. Vorrichtung zur Herstellung einer Nanotube-Schicht auf einem Substrat (2) umfassend eine Reaktionskammer (1), innerhalb welcher eine Substrat- Aufnahme (6) liegt, gekennzeichnet durch eine mit einer Wechselspannung, vorzugsweise einer hochfrequenten Wechselspannung, beaufschlagbare Spule (7), deren Windungen außerhalb der Reaktionskammer (1) liegen und diese im Bereich der Substrat- Aufnahme (6) umschließen.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Substrat- Aufnahme (6) durch eine Platte aus einem elektrisch leitenden Material, wie z.B. Metall oder Graphit, gebildet ist.
PCT/AT2000/000213 1999-09-29 2000-08-03 Verfahren zur herstellung einer nanotube-schicht auf einem substrat WO2001023303A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001526462A JP4718742B2 (ja) 1999-09-29 2000-08-03 基材上にナノチューブ層を生成する方法
AT00952786T ATE238968T1 (de) 1999-09-29 2000-08-03 Verfahren zur herstellung einer nanotube-schicht auf einem substrat
EP00952786A EP1227999B1 (de) 1999-09-29 2000-08-03 Verfahren zur herstellung einer nanotube-schicht auf einem substrat
AU65483/00A AU6548300A (en) 1999-09-29 2000-08-03 Method for producing a nanotube layer on a substrate
DE50002017T DE50002017D1 (de) 1999-09-29 2000-08-03 Verfahren zur herstellung einer nanotube-schicht auf einem substrat
US10/101,650 US7033650B2 (en) 1999-09-29 2002-03-20 Method of producing a nanotube layer on a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1667/99 1999-09-29
AT0166799A AT407754B (de) 1999-09-29 1999-09-29 Verfahren und vorrichtung zur herstellung einer nanotube-schicht auf einem substrat

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/101,650 Continuation US7033650B2 (en) 1999-09-29 2002-03-20 Method of producing a nanotube layer on a substrate

Publications (1)

Publication Number Publication Date
WO2001023303A1 true WO2001023303A1 (de) 2001-04-05

Family

ID=3518390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2000/000213 WO2001023303A1 (de) 1999-09-29 2000-08-03 Verfahren zur herstellung einer nanotube-schicht auf einem substrat

Country Status (7)

Country Link
US (1) US7033650B2 (de)
EP (1) EP1227999B1 (de)
JP (1) JP4718742B2 (de)
AT (2) AT407754B (de)
AU (1) AU6548300A (de)
DE (1) DE50002017D1 (de)
WO (1) WO2001023303A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1190987A1 (de) * 2000-09-22 2002-03-27 Iljin Nanotech Co., Ltd. Methode zur Herstellung von Kohlenstoff-Nanoröhren und Vorrichtung dafür
WO2002068323A1 (fr) * 2001-02-26 2002-09-06 Nanolight International Ltd. Procede pour former un revetement, constitue de nanotubes de carbone, sur la surface d'un substrat
WO2002081366A1 (en) * 2001-04-04 2002-10-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US6911767B2 (en) 2001-06-14 2005-06-28 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
AU2002245939B2 (en) * 2001-04-04 2006-05-11 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US7115305B2 (en) * 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
US7341498B2 (en) 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US7960904B2 (en) 2001-06-14 2011-06-14 Hyperion Catalysis International, Inc. Field emission devices using carbon nanotubes modified by energy, plasma, chemical or mechanical treatment

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US6889216B2 (en) 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US7412428B2 (en) 2002-03-12 2008-08-12 Knowmtech, Llc. Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks
US9269043B2 (en) 2002-03-12 2016-02-23 Knowm Tech, Llc Memristive neural processor utilizing anti-hebbian and hebbian technology
US7392230B2 (en) * 2002-03-12 2008-06-24 Knowmtech, Llc Physical neural network liquid state machine utilizing nanotechnology
US20040039717A1 (en) * 2002-08-22 2004-02-26 Alex Nugent High-density synapse chip using nanoparticles
US7398259B2 (en) 2002-03-12 2008-07-08 Knowmtech, Llc Training of a physical neural network
US8156057B2 (en) * 2003-03-27 2012-04-10 Knowm Tech, Llc Adaptive neural network utilizing nanotechnology-based components
US7752151B2 (en) * 2002-06-05 2010-07-06 Knowmtech, Llc Multilayer training in a physical neural network formed utilizing nanotechnology
US7827131B2 (en) * 2002-08-22 2010-11-02 Knowm Tech, Llc High density synapse chip using nanoparticles
CN1239387C (zh) * 2002-11-21 2006-02-01 清华大学 碳纳米管阵列及其生长方法
CN1286716C (zh) * 2003-03-19 2006-11-29 清华大学 一种生长碳纳米管的方法
KR100746311B1 (ko) * 2003-04-02 2007-08-06 한국화학연구원 액상법에 의한 탄소나노튜브의 제조방법
US7097906B2 (en) * 2003-06-05 2006-08-29 Lockheed Martin Corporation Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon
US7833580B2 (en) * 2003-07-04 2010-11-16 Samsung Electronics Co., Ltd. Method of forming a carbon nano-material layer using a cyclic deposition technique
US7426501B2 (en) 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
JP2005239504A (ja) * 2004-02-27 2005-09-08 National Institute For Materials Science 加熱体からの伝熱による繊維状炭素の製造方法および製造装置
US20050207964A1 (en) * 2004-03-22 2005-09-22 Dojin Kim Method for synthesizing carbon nanotubes
US7144563B2 (en) * 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
US7473873B2 (en) * 2004-05-18 2009-01-06 The Board Of Trustees Of The University Of Arkansas Apparatus and methods for synthesis of large size batches of carbon nanostructures
US7365289B2 (en) * 2004-05-18 2008-04-29 The United States Of America As Represented By The Department Of Health And Human Services Production of nanostructures by curie point induction heating
WO2005113854A2 (en) * 2004-05-18 2005-12-01 Board Of Trustees Of The University Of Arkansas Apparatus and methods of making nanostructures by inductive heating
CN100582033C (zh) * 2004-08-04 2010-01-20 鸿富锦精密工业(深圳)有限公司 陶瓷模仁
CN100582032C (zh) * 2004-12-08 2010-01-20 鸿富锦精密工业(深圳)有限公司 模造玻璃透镜模仁
US7502769B2 (en) * 2005-01-31 2009-03-10 Knowmtech, Llc Fractal memory and computational methods and systems based on nanotechnology
US7409375B2 (en) * 2005-05-23 2008-08-05 Knowmtech, Llc Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream
US20060198956A1 (en) * 2005-03-04 2006-09-07 Gyula Eres Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition
US7754183B2 (en) 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
US7420396B2 (en) * 2005-06-17 2008-09-02 Knowmtech, Llc Universal logic gate utilizing nanotechnology
US7599895B2 (en) 2005-07-07 2009-10-06 Knowm Tech, Llc Methodology for the configuration and repair of unreliable switching elements
CN100482585C (zh) * 2005-10-24 2009-04-29 鸿富锦精密工业(深圳)有限公司 碳纳米管制备装置
TWI320432B (en) * 2006-06-16 2010-02-11 Hon Hai Prec Ind Co Ltd Apparatus and method for synthesizing carbon nanotube film
US7930257B2 (en) * 2007-01-05 2011-04-19 Knowm Tech, Llc Hierarchical temporal memory utilizing nanotechnology
DE102007004953A1 (de) 2007-01-26 2008-07-31 Tesa Ag Heizelement
KR20080113805A (ko) * 2007-06-26 2008-12-31 주식회사 비코 고주파 가열로를 이용한 탄소나노튜브의 대량 합성 장치
KR100956352B1 (ko) * 2007-09-06 2010-05-07 세메스 주식회사 탄소나노튜브 제조장치 및 그 방법
CN101861282A (zh) * 2007-11-15 2010-10-13 纳幕尔杜邦公司 碳纳米管的保护
JP5246765B2 (ja) * 2008-10-29 2013-07-24 国立大学法人 東京大学 カーボンナノチューブ形成方法
JP5562188B2 (ja) * 2010-09-16 2014-07-30 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
CN104718170A (zh) 2012-09-04 2015-06-17 Ocv智识资本有限责任公司 碳强化的增强纤维在含水或非水介质内的分散
JP2016190780A (ja) * 2015-03-30 2016-11-10 日本電気硝子株式会社 カーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法
WO2016158286A1 (ja) * 2015-03-30 2016-10-06 日本電気硝子株式会社 カーボンナノチューブ製造用基材およびカーボンナノチューブ製造方法
US11447391B2 (en) * 2015-06-23 2022-09-20 Polyvalor, Limited Partnership Method of growing a graphene coating or carbon nanotubes on a catalytic substrate
KR101828491B1 (ko) * 2016-04-28 2018-03-29 연세대학교 산학협력단 마이크로 구조물을 위한 쿨롱 감쇠 기반 충격 방지 구조
FR3068028B1 (fr) * 2017-06-26 2021-06-11 Nawatechnologies Procede de fabrication de nanotubes de carbone fixes sur un substrat
US11555473B2 (en) 2018-05-29 2023-01-17 Kontak LLC Dual bladder fuel tank
US11638331B2 (en) 2018-05-29 2023-04-25 Kontak LLC Multi-frequency controllers for inductive heating and associated systems and methods
US11444053B2 (en) * 2020-02-25 2022-09-13 Yield Engineering Systems, Inc. Batch processing oven and method
EP3988207A1 (de) 2020-10-22 2022-04-27 Bestrong International Limited Geträgerte metallstruktur
US11688621B2 (en) 2020-12-10 2023-06-27 Yield Engineering Systems, Inc. Batch processing oven and operating methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892890A (en) * 1972-05-12 1975-07-01 Hitachi Ltd Process for forming carbon coatings
JPH1012364A (ja) * 1996-06-18 1998-01-16 Mitsubishi Electric Corp Cvd装置用サセプタ及び高周波誘導加熱装置を有するcvd装置
JPH11116218A (ja) * 1997-10-17 1999-04-27 Osaka Gas Co Ltd 単層ナノチューブの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089992A (en) * 1965-10-11 1978-05-16 International Business Machines Corporation Method for depositing continuous pinhole free silicon nitride films and products produced thereby
JPS53145832A (en) * 1977-05-26 1978-12-19 Central Glass Co Ltd Method of bending glass plate
GB2129018B (en) * 1982-08-30 1986-01-29 Ricoh Kk Vacuum evaporation apparatus
US4525375A (en) * 1983-03-28 1985-06-25 Rca Corporation Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor
US4545368A (en) * 1983-04-13 1985-10-08 Rand Robert W Induction heating method for use in causing necrosis of neoplasm
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US5707916A (en) * 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US5597611A (en) * 1990-10-01 1997-01-28 Fiber Materials, Inc. Reinforced carbon composites
JP2705447B2 (ja) * 1992-04-27 1998-01-28 日本電気株式会社 円筒状黒鉛繊維と製造方法
US5424054A (en) * 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process
FR2711647B1 (fr) * 1993-10-27 1996-01-19 Europ Propulsion Procédé d'infiltration chimique en phase vapeur d'un matériau au sein d'un substrat poreux à température de surface contrôlée.
IL108883A (en) * 1994-03-07 1998-03-10 Rotem Ind Ltd Process for the production of hollow carbon fiber membranes
CA2283502C (en) * 1997-03-07 2005-06-14 William Marsh Rice University Carbon fibers formed from singlewall carbon nanotubes
TW432419B (en) * 1998-06-18 2001-05-01 Matsushita Electric Ind Co Ltd Electron emitting element, electron emitting source, image display, and method for producing them
US7056479B2 (en) * 2000-05-11 2006-06-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Process for preparing carbon nanotubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892890A (en) * 1972-05-12 1975-07-01 Hitachi Ltd Process for forming carbon coatings
JPH1012364A (ja) * 1996-06-18 1998-01-16 Mitsubishi Electric Corp Cvd装置用サセプタ及び高周波誘導加熱装置を有するcvd装置
JPH11116218A (ja) * 1997-10-17 1999-04-27 Osaka Gas Co Ltd 単層ナノチューブの製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHENG H M ET AL: "LARGE-SCALE AND LOW-COST SYNTHESIS OF SINGLE-WALLED CARBON NANOTUBES BY THE CATALYTIC PYROLYSIS OF HYDROCARBONS", APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 72, no. 25, 22 June 1998 (1998-06-22), pages 3282 - 3284, XP000771129, ISSN: 0003-6951 *
DATABASE WPI Section Ch Week 199927, Derwent World Patents Index; Class E36, AN 1999-323246, XP002154696 *
HUANG S ET AL: "PATTERNED GROWTH AND CONTACT TRANSFER OF WELL-ALIGNED CARBON NANOTUBE FILMS", JOURNAL OF PHYSICAL CHEMISTRY. B, MATERIALS, SURFACES, INTERFACES AND BIOPHYSICAL,WASHINGTON, DC,US, vol. 103, no. 21, 27 May 1999 (1999-05-27), pages 4223 - 4227, XP000957804, ISSN: 1089-5647 *
LEE C J ET AL: "SYNTHESIS OF UNIFORMLY DISTRIBUTED CARBON NANOTUBES ON A LARGE AREAOF SI SUBSTRATES BY THERMAL CHEMICAL VAPOR DEPOSITION", APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 75, no. 12, 20 September 1999 (1999-09-20), pages 1721 - 1723, XP000868314, ISSN: 0003-6951 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 05 30 April 1998 (1998-04-30) *
SATISHKUMAR B C ET AL: "SINGLE-WALLED NANOTUBES BY THE PYROLYSIS OF ACETYLENE- ORGANOMETALLIC MIXTURES", CHEMICAL PHYSICS LETTERS,AMSTERDAM,NL, vol. 293, no. 1/02, August 1998 (1998-08-01), pages 47 - 52, XP000878960 *
SEN R ET AL: "CARBON NANOTUBES BY THE METALLOCENE ROUTE", CHEMICAL PHYSICS LETTERS,AMSTERDAM,NL, vol. 267, no. 3/04, March 1997 (1997-03-01), pages 276 - 280, XP000878963 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759025B2 (en) 2000-09-22 2004-07-06 Iljin Nanotech Co., Ltd. Method of synthesizing carbon nanotubes and apparatus used for the same
EP1190987A1 (de) * 2000-09-22 2002-03-27 Iljin Nanotech Co., Ltd. Methode zur Herstellung von Kohlenstoff-Nanoröhren und Vorrichtung dafür
WO2002068323A1 (fr) * 2001-02-26 2002-09-06 Nanolight International Ltd. Procede pour former un revetement, constitue de nanotubes de carbone, sur la surface d'un substrat
US7488455B2 (en) 2001-04-04 2009-02-10 Commonwealth Scientific And Industrial Research Organisation Apparatus for the production of carbon nanotubes
WO2002081366A1 (en) * 2001-04-04 2002-10-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
EP1373130A1 (de) * 2001-04-04 2004-01-02 Commonwealth Scientific And Industrial Research Organisation Verfahren und vorrichtung zur herstellung von kohlenstoffnanoröhren
EP1373130A4 (de) * 2001-04-04 2004-11-10 Commw Scient Ind Res Org Verfahren und vorrichtung zur herstellung von kohlenstoffnanoröhren
AU2002245939B2 (en) * 2001-04-04 2006-05-11 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US6911767B2 (en) 2001-06-14 2005-06-28 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
US7341498B2 (en) 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US7585199B2 (en) 2001-06-14 2009-09-08 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
US7880376B2 (en) 2001-06-14 2011-02-01 Hyperion Catalysis International, Inc. Field emission devices made with laser and/or plasma treated carbon nanotube mats, films or inks
US7960904B2 (en) 2001-06-14 2011-06-14 Hyperion Catalysis International, Inc. Field emission devices using carbon nanotubes modified by energy, plasma, chemical or mechanical treatment
US7115305B2 (en) * 2002-02-01 2006-10-03 California Institute Of Technology Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials

Also Published As

Publication number Publication date
JP2003510462A (ja) 2003-03-18
AT407754B (de) 2001-06-25
EP1227999A1 (de) 2002-08-07
JP4718742B2 (ja) 2011-07-06
AU6548300A (en) 2001-04-30
ATA166799A (de) 2000-10-15
US7033650B2 (en) 2006-04-25
DE50002017D1 (de) 2003-06-05
US20020102353A1 (en) 2002-08-01
ATE238968T1 (de) 2003-05-15
EP1227999B1 (de) 2003-05-02

Similar Documents

Publication Publication Date Title
AT407754B (de) Verfahren und vorrichtung zur herstellung einer nanotube-schicht auf einem substrat
DE60319508T2 (de) Verfahren und vorrichtung zur herstellung von kohlenstoffnanostrukturen
DE69908998T2 (de) Verfahren zur Herstellung von Kohlenstoff
AT409637B (de) Ein ccvd-verfahren zur herstellung von röhrenförmigen kohlenstoff-nanofasern
DE602004008958T2 (de) Herstellung von metallnanodrähten
EP0478909A1 (de) Verfahren zur Herstellung einer Diamantschicht und Anlage hierfür
EP1362931A1 (de) Verfahren und Vorrichtung zur Herstellung eines DLC-Schichtsystems
DE60201176T2 (de) Verfahren zur bildung einer kohlenstoffnanoröhren enthaltenden beschichtung auf einem substrat
EP1654397B1 (de) Verfahren und vorrichtung zur beschichtung oder modifizierung von oberflächen
DE19826681B4 (de) Verfahren zur Herstellung von neuartigen Getter-Werkstoffen in Form dünner metallischer und kohlenstoffhaltiger nanostrukturierter Schichten und Verwendung derselben zur Hochvakuumerzeugung und Gasspeicherung
EP3523466A1 (de) Vorrichtung und verfahren zum aufbringen einer kohlenstoffschicht
WO2017009359A1 (de) Verfahren zum abscheiden einer graphenbasierten schicht auf einem substrat mittels pecvd
DE102009015545B4 (de) Beschichtungsanlage mit Aktivierungselement, deren Verwendung sowie Verfahren zur Abscheidung einer Beschichtung
EP0425056A1 (de) Verfahren zur Abscheidung mikrokristalliner Festkörperpartikel aus der Gasphase mittels Chemical Vapour Deposition (CVD)
US20050207964A1 (en) Method for synthesizing carbon nanotubes
JP2003160322A (ja) カーボンナノチューブの製法
DE102017205417A1 (de) Verfahren zur Ausbildung einer mit poly- oder einkristallinem Diamant gebildeten Schicht
EP0682719B1 (de) Vorrichtung und verfahren zur ablagerung von festen stoffen, insbesondere von sehr feinkörnigen stoffen, sowie verwendung dieses verfahrens
EP0958241A1 (de) VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG VON STABILEN ENDOHEDRALEN FULLERENEN DER STRUKTUR Z C x? MIT x $m(G) 60
EP2186922A1 (de) Verfahren zum Abscheiden einer Nanokomposit-Schicht auf einem Substrat mittels chemischer Dampfabscheidung
DE102008045742A1 (de) Verfahren zur Herstellung von kohlenstoffbasierten Nonopartikeln
WO2023064972A1 (de) Vorrichtung und verfahren zur herstellung dotierter diamantschichten
DE102014009755A1 (de) Atomare Kohlenstoffquelle
Hosseini et al. A Facile Solution Based Nickel Deposition Method for the Formation of Vertically Aligned Carbon Nanotubes
DE10243841A1 (de) Hohlkörper und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000952786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10101650

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 526462

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: AT

Ref document number: 2000 9163

Date of ref document: 20010405

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 20009163

Country of ref document: AT

WWP Wipo information: published in national office

Ref document number: 2000952786

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000952786

Country of ref document: EP