WO2000062664A9 - Portable remote patient telemonitoring system - Google Patents

Portable remote patient telemonitoring system

Info

Publication number
WO2000062664A9
WO2000062664A9 PCT/US2000/009491 US0009491W WO0062664A9 WO 2000062664 A9 WO2000062664 A9 WO 2000062664A9 US 0009491 W US0009491 W US 0009491W WO 0062664 A9 WO0062664 A9 WO 0062664A9
Authority
WO
WIPO (PCT)
Prior art keywords
data
health parameter
parameter data
remote monitoring
communications link
Prior art date
Application number
PCT/US2000/009491
Other languages
French (fr)
Other versions
WO2000062664A1 (en
Inventor
Harpal S Kumar
Paul Johnson
Michael D Llewellyn
William J Mullarkey
William New Jr
Laurence J Nicolson
William G O'brien
John D Place
Peter M Relph
Original Assignee
Nexan Ltd
Harpal S Kumar
Paul Johnson
Michael D Llewellyn
William J Mullarkey
William New Jr
Laurence J Nicolson
William G O'brien
John D Place
Peter M Relph
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexan Ltd, Harpal S Kumar, Paul Johnson, Michael D Llewellyn, William J Mullarkey, William New Jr, Laurence J Nicolson, William G O'brien, John D Place, Peter M Relph filed Critical Nexan Ltd
Priority to JP2000611804A priority Critical patent/JP2002541893A/en
Priority to CA002365316A priority patent/CA2365316A1/en
Priority to AU46423/00A priority patent/AU4642300A/en
Priority to EP00928145A priority patent/EP1176905A4/en
Publication of WO2000062664A1 publication Critical patent/WO2000062664A1/en
Publication of WO2000062664A9 publication Critical patent/WO2000062664A9/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/903Radio telemetry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/904Telephone telemetry

Definitions

  • the present invention relates to a system and method for monitoring vital signs and capturing data from a patient remotely using radiotelemetry techniques.
  • the present invention is a low cost, patient-friendly, ambulatory monitoring system for remote electronic capture of noninvasive vital signs data including, e.g., full waveform ECG, respiration rate, skin temperature, and blood pressure.
  • the present invention also has the capability for real-time monitoring or recording of continuous or point-in-time information with the data presented to the user in a tailored form.
  • Monitoring software included in the system of the invention may also incorporate full ECG analysis as well as alarms for arrhythmias and other abnormalities determined from the measured vital signs.
  • An improved technique for testing the efficacy and safety of a drug and/or therapy is desired which does not require additional visits to the physician. It is desired to develop a technique for collecting data from a human subject at all times during a trial without requiring any visits to the physician's office, thereby eliminating the cost and inconvenience of visiting the physician's office for routine monitoring. Also, an improved remote patient monitoring/management system is generally desired whereby useful vital signs data may be obtained from a patient without requiring frequent visits to the physician's office. Such remote monitoring/management is particularly desirable for home patient monitoring of patients with chronic illnesses such as congestive heart failure or for post-operative or out-patient monitoring. Prior art patient telemetry systems have had limited commercial success for a variety of reasons such as difficulty of use and cost.
  • Remote patient monitoring techniques are generally known in which electrodes are placed on the patient to monitor the patient's vital signs and the captured data is transmitted to a remote display for monitoring the patient's condition.
  • Remote monitoring systems are l ⁇ iown which permit a doctor or nurse to monitor the conditions of several hospitalized patients from a central monitoring site in the hospital.
  • sophisticated patient monitoring equipment is used to collect data from the patient, and the collected data is transmitted via wire to the central monitoring site in the hospital.
  • wireless systems are problematic in the hospital setting because of the proximity of the respective patients and the amount of interference found in such a setting.
  • an early telemetry system is described in U.S. Patent No. 3,603,881 in which short transmission distances to a building's wiring system are covered using NHF transmission.
  • Physiologic data such as elecfrocardiographic (ECG) data is collected by a sensor and transmitted by a NHF transmitter to a fixed NHF receiver RF transmitter coupled to the wiring system in the building.
  • An RF receiver demodulator monitor is coupled to the building's wiring system at the nurse's station for receiving the physiologic data for patient monitoring and/or data recording.
  • ECG elecfrocardiographic
  • Ng therein describes a system for providing continuous ECG monitoring and analysis by means of a PC AT via wireless link.
  • the patient requires a transmitter which is carried by the patient for sensing and transmitting the patient's ECG signal to a central base station via wireless link.
  • a receiver recovers the original
  • Each of the above-described telemetry systems is designed primarily for hospital use and include relatively expensive sensor arrays and processing devices for realtime patient monitoring and diagnosis.
  • the real-time monitoring is generally used in an "alarm" mode to capture events, rather than to collect data over a period of time to determine trends which might indicate a more gradual deterioration or improvement in the patient's condition or to predict a forthcoming event.
  • these systems require the patient to remain in close proximity to the base stations including the receivers.
  • Segalowitz discloses a wireless vital signs monitoring system in U.S. Patent Nos. 4,981,141; 5,168,874; 5,307,818; and 5,511,553 including a precordial strip patch including a multi-layer flexible structure for telemetering data by radio frequency or single wire to hardware recording apparatus and a display monitor.
  • Microsensors and conductive contact elements (CCEs) are mounted on the strip patch so as to permit simultaneous and continuous detection, processing and transmission of 12-lead ECG, cardiac output, respiration rate, peripheral blood oximetry, temperature of the patient, and ECG fetal heart monitoring via a single wavelength of radio frequency transmission.
  • the precordial strip patch used by Segalowitz purportedly transmits vital signs data up to 50 meters, it requires a dual-stage operational amplifier chip, an encoder modulator chip, a wireless transmitter chip including an oscillator, and other costly components such as artificial intelligence software, sound and visual alarms, and a microprocessor.
  • the precordial strip patch is relatively expensive to manufacture and operate.
  • the emphasis of Segalowitz is on real-time monitoring and alerting of medical personnel to immediate medical needs of the patient.
  • Platt et al. also disclose a sensor patch for wireless physiological monitoring of patients in U.S. Patent No. 5,634,468.
  • Platt et al. describe a sensor and system for monitoring ECG signals remotely from patients located in non-hospital sites.
  • a sensor patch containing sensing electrodes, signal processing circuitry and radio or infra-red transmission circuitry is attached to the patient's body and preferably worn for at least a week before its power supply is exhausted and the sensor patch is thrown away.
  • a receiver at a primary site in the vicinity of the patient receives the data transmitted by the sensor patch and stores the sensed data.
  • the patient When the patient feels discomfort or concern, or if the portable unit sounds an alarm, the patient telephones the monitoring station and downloads the stored data from the portable unit via the standard voice telecommunications network.
  • the downloaded ECG data is then monitored and analyzed at the monitoring station.
  • the receiver in the proximity of the patient may be a portable unit carried around by the patient, where the portable unit includes a receiver, a processor for processing the received data to identify abnormalities, a memory for storing the sensed data, and circuitry for interfacing to a telephone line to send the ECG data signals to the monitoring station.
  • the monitoring station decodes the received ECG signals and performs beat and rhythm analysis for classification of the ECG data. If an abnormal condition is discovered, medical persomiel in the vicinity of the patient are contacted.
  • Platt et al. may collect ECG data from the patient and process it at a remote monitoring station, the data is only collected when the patient initiates the data download. Otherwise, data is lost once the memory in the portable unit is full. No mechanism is provided for continuously collecting data, at all times, in a way which requires no patient action.
  • U.S. Patent No. 5,522,396, Langer et al. disclose a telemetry system for monitoring the heart of a patient in which a patient station includes telemetering apparatus for transmitting the outputs of patient electrodes to a tele-link unit connected to a monitoring station by telephone lines. As in the Platt et al. system, Langer et al. transmit ECG data to a central location.
  • the Langer et al. system checks the ECG data for predetermined events and automatically calls the monitoring station when such events are detected.
  • a similar telemetry system is described by Davis et al. in U.S. Patent No. 5,544,661 which initiates a cellular phone link from the patient to the central monitoring location when an event is detected.
  • neither of these systems provides a mechanism for continuously collecting data without patient action.
  • a telemetry system is desired which collects vital signs data from a patient using an inexpensive device which permits the continuous collection of a patient's vital signs data without patient action.
  • a data management system is desired which permits the collected data to be reviewed and formatted for use in patient trials and the like. The present invention has been designed to meet these needs in the art.
  • the present invention meets the above-mentioned needs in the prior art by providing a portable remote patient telemonitoring system having four separate elements, each with different functions within the system.
  • the system of the invention is characterized by a first component, an adhesive, cordless, disposable sensor band with electrode patches, other sensors, and transmission circuitry for the detection and transmission of vital signs data.
  • the sensor band is easy-to-use and is positioned on the patient by the patient.
  • the sensor band is designed to be worn comfortably by the patient for 24 hours, at which time the sensor band may be discarded and replaced by a new sensor band.
  • the system of the invention is further characterized by a second component, a small signal transfer unit that can either be worn by the patient, e.g., on his or her belt, or positioned nearby (within approximately 1.5 meters), e.g., on a desk or chair or at the bedside.
  • the function of the signal transfer unit is to receive data from the sensor band, which it then forwards by, e.g., radio transmission to a base station that can be located up to 60 meters away.
  • the small signal transfer unit is designed to minimize the transmission requirements of the sensor band while also allowing the patient to move around freely while his or her vital signs are being monitored.
  • a third component receives data transmissions from the signal transfer unit and is designed to connect to conventional phone lines for transferring the collected data to a remote monitoring station.
  • the base station may also be designed to capture additional clinical data, such as blood pressure data, and to perform data checks.
  • additional clinical data such as blood pressure data
  • the base station connects the output of the sensor band, via modem and land or cellular telephone line, to the remote monitoring station.
  • Connections for auxiliary sensors such as a blood pressure cuff extend the number of clinical parameters that can be captured.
  • Patient safety is enhanced by the ability of the base station to compare clinical data, e.g. ECG, against given profiles and to raise alarms when appropriate or when the base station is programmed to do so. Such alarms could be indicated to the patient by reverse transmission to the signal transfer unit.
  • the fourth component a remote monitoring station, allows the presentation and review of data (including event flags) forwarded by the sensor band and other sensors and simply requires a standard PC running, e.g., Windows NT.
  • ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep.
  • the patient vital signs data collection and monitoring system of the invention is characterized by a sensor band having a sensor assembly for application to a patient.
  • the sensor assembly produces a data signal including vital signs data indicative of values of at least one vital sign of the patient
  • the sensor band further comprises a transmitter which transmits the data signal over a first communications link to a transceiver coupled to the first communications link so as to receive the vital signs data for retransmission of the data signal over a second, wireless communications link.
  • a remote monitoring station is also provided which is disposed so as to receive the retransmitted data signal from the transmitter via the second communications link, where the remote monitoring station is characterized by its ability to capture the vital signs data for display and subsequent access and processing of the vital signs data for medical diagnosis or analysis.
  • the transceiver includes a buffer which stores vital signs data received from the sensor band at least during times when the second communications link is disconnected, lost, or unreliable.
  • the sensor band preferably comprises a transmitter having a first antenna which transmits the data signal over the first wireless communications link to a transceiver having a second antenna inductively coupled to the first communications link so as to form a wireless inductive loop with the first antenna for reception of the vital signs data.
  • the remote monitoring station captures the vital signs data and stores it in a database with vital signs data from a plurality of other patients.
  • a user interface provides access to the vital signs data in the database for processing, medical diagnosis and/or analysis.
  • the sensor band measures full waveform single or multiple lead ECG, full waveform respiration, skin temperature, and motion and transmits the measured data to the signal transfer unit, where the data is retransmitted to the base station.
  • Auxiliary sensors may be provided at the base station including a blood pressure cuff, a spirometer, and weight scales.
  • the user interface at the remote monitoring station may contain full ECG analysis software covering waveform measurements, interval measurements, beat-typing and arrhythmia detection. "Event flags" also may be generated and indicated to the physician for high and low heart rate, high and low respiration rate, high and low temperature, high and low blood pressure or arrhythmias.
  • the remote telemetry system of the invention is also designed to reduce both the length and the cost of clinical drug trials by providing versatility in data collection with respect to site (in-clinic or domiciliary), time, and volume, and to provide direct, electronic data capture, which can be real-time if necessary. Additional applications include the monitoring of sleep apnea, diabetes, acute or sub-acute infection, asthma, and the like.
  • the system of the invention may be used in a clinic or hospital setting but, when used in such settings, must be designed to minimize interference between radio signals.
  • Co ⁇ esponding methods of collecting a patient's vital signs data using the remote telemetry system of the invention are also described and claimed herein.
  • FIGURE 1 illustrates a presently preferred embodiment of the remote patient monitoring system in accordance with the invention.
  • FIGURE 2 illustrates a sensor band including electrodes and sensors for attachment to the patient's body for measuring and transmitting vital signs data such as full waveform single or multiple lead ECG, full waveform chest respiration, skin temperature, and motion using the techniques of the invention.
  • FIGURE 3 illustrates the user interface to the signal transfer unit provided in accordance with the invention.
  • FIGURE 4 illustrates the user interface to the base station unit provided in accordance with the invention.
  • FIGURE 5 A illustrates a remote monitoring embodiment in which a server is used for data acquisition from a plurality of patients and providing the acquired data to client systems which are connected to access the acquired data for analysis.
  • FIGURE 5B illustrates a remote monitoring embodiment in which the end user has a server for data acquisition from a plurality of patients, where the end user accesses the server directly.
  • FIGURE 6 illustrates a general block diagram of the system transmission electronics.
  • FIGURE 7A illustrates waveform templates which begin with a state change and end with a period free of state changes.
  • FIGURE 7B illustrates the method by which idle periods between changes are converted into a sequence of no-operation instructions such that the conect time delays between changes are introduced.
  • FIGURE 8 illustrates the sixteen channels spaced at 6 kHz intervals used in the communications link between the sensor band and the signal transfer unit.
  • FIGURE 9 illustrates the format of the data packets transmitted in the communications link between the sensor band and the signal transfer unit.
  • FIGURE 10A illustrates schematically the registration mechanism by which the signal transfer unit and the base station unit acknowledge their mutual presence and confirm the performance of the radio link.
  • FIGURE 10B illustrates the data flow mechanism by which measurement data is transferred from the signal transfer unit to the base station unit to provide the opportunity for the base station unit to reconfigure control parameters within the signal transfer unit if required.
  • FIGURES IOC and 10D illustrate the ARQ behavior when a single erroneous packet is detected and no further e ⁇ ors occur on the link thereafter for transmission from the signal transfer unit to the base station (FIGURE IOC) and from the base station to the signal transfer unit (FIGURE 10D).
  • FIGURES 10E and 10F illustrate the ARQ behavior when two erroneous packets are detected consecutively and no further e ⁇ ors occur on the link thereafter for transmission from the signal transfer unit to the base station (FIGURE 10E) and from the base station to the signal transfer unit (FIGURE 10F).
  • FIGURES 10G and 1 OH illustrate the ARQ behavior when three enoneous packets are detected consecutively and no further e ⁇ ors occur on the link thereafter for transmission from the signal transfer unit to the base station (FIGURE 10G) and from the base station, to the signal transfer unit (FIGURE 10H).
  • FIGURE 101 illustrates the ARQ behavior when a correctly received packet lies between two enoneous packets as the receiving unit detects two consecutive erroneous data packets and considers the radio link to have failed.
  • FIGURE 11 illustrates the architecture of software of the remote monitoring station.
  • FIGURE 12 illustrates a diagram of the top level uses of the remote monitoring station of the invention.
  • FIGURE 13 illustrates the modify case properties process implemented by the monitoring station of the invention.
  • FIGURE 14 illustrates the "review downloaded data from a patient" process implemented by the monitoring station of the invention.
  • FIGURE 15 illustrates the "review events” process implemented by the monitoring station of the invention.
  • FIGURE 16A illustrates the case home screen with the sessions available for the selected patient.
  • FIGURE 16B illustrates the case home screen listing the events which occurred for the selected patient during the selected time interval.
  • FIGURE 16C illustrates the monitoring setup change screen available for the selected patient.
  • FIGURE 16D illustrates the patient information listing the patient data for the selected patient.
  • FIGURE 16E illustrates the auxiliary sensors setup screen available for the selected patient.
  • FIGURE 16F illustrates the trend data screen for displaying auxiliary sensor data available for the selected patient.
  • FIGURE 17 illustrates the summary graphs for heart rate, respiration and temperature when the summary button is selected.
  • FIGURE 1 A presently preferred embodiment of the remote patient telemonitoring system of the invention is illustrated in FIGURE 1.
  • the system of the invention comprises a disposable multi-parameter sensor band 10, preferably worn on the patient's chest, for measuring patient vital signs and transmitting the measured vital signs data, a signal transfer unit 20 in proximity to the sensor band 10 for storing and retransmitting the measured vital signs data, a base station unit 30 which receives the retransmitted vital signs data and transmits the vital signs data over a telecommunications link 40, and a remote monitoring station 50 which receives the vital signs data from the base station unit 30 via the telecommunications link 40.
  • a disposable multi-parameter sensor band preferably worn on the patient's chest
  • a signal transfer unit 20 in proximity to the sensor band 10 for storing and retransmitting the measured vital signs data
  • a base station unit 30 which receives the retransmitted vital signs data and transmits the vital signs data over a telecommunications link 40
  • a remote monitoring station 50 which receive
  • the sensor band 10 is designed to extend across the patient's chest and includes electrodes and other sensors (not shown) which are situated so as to measure full waveform single or multiple lead ECG, full waveform chest respiration (using impedance and/or resistance bend sensor), skin temperature, and motion.
  • ECG electronic cardiac record
  • full waveform chest respiration using impedance and/or resistance bend sensor
  • skin temperature skin temperature
  • motion e.g., acoustic temperature
  • other vital signs such as EEG and blood oxygenation
  • Conventional blood oxygenation sensors placed on the finger, wrist, or ear may also provide data through a wire or wireless link to the sensor band 10 or signal transfer unit 20.
  • the signal processing and transmission circuitry 12 receives the sensor data from traces 14 and a directly connected thermistor (not shown) and is powered by, e.g., a zinc-air battery pack (not shown) designed to permit the sensor band 10 collect and transmit vital signs data for approximately 30 hours.
  • the sensor band 10 is typically removed and disposed of every 24 hours and replaced by a new sensor band 10. Upon power up of the new sensor band 10, the serial number of that sensor band 10 is randomly generated and sent in a repeating cycle.
  • the transmission circuitry 12 in the sensor band 10 includes a transmission antenna 13 which transmits digitized signal samples continuously via a wireless link to signal transfer unit 20, which is preferably within 1.5 meters distance.
  • a back-up wire transmission link may be provided to the signal transfer unit 20; however, such a wire transmission link is not prefe ⁇ ed because of the inconvenience to the patient.
  • the sensor band 10 is designed such that the patient only has to prepare his or her skin, peel back a protective strip over the hydrogel and hydrocolloid adhesive layers which are, in turn, placed over the electrodes, signal processing and transmission circuitry 12, and battery, and stick the sensor band 10 to the prepared skin in a position for measurement of the vital signs such as ECG.
  • the sensor band 10 may be provided in a number of sizes sufficient to administer to infants as well as large adults.
  • the "N" bend 15 is preferably located between the left and right chest sections so as to allow some movement of the sensor band 10 when it is attached to the chest.
  • full waveform ECG data is collected at a 250 Hz sampling frequency from three electrodes: one electrode in portion 16 placed under the patient's left armpit, one electrode in a portion 17 on the right hand side of the chest, and one reference electrode in portion 18 on the left hand side of the chest.
  • the ECG data is collected with a resolution of 10 bits.
  • Full waveform respiration data is also collected at a 25 Hz sampling frequency using the trans-thoracic impedance method, with a 50 kHz continuous reciprocating cunent and two electrodes (force and sense) at the left hand side of the chest and two electrodes at the right hand side of the chest.
  • the sense electrode on the right hand side of the chest is preferably the same as that used for ECG detection.
  • the respiration data has a data resolution of 8 bits. Respiration data (with the same qualities except for 7 bit resolution) may also be collected using a printed carbon on flexfrate resistance bend sensor 19 located on the left hand side of the chest.
  • One or both methods of respiration measurement may be used for a given patient.
  • Skin temperature data is collected at 25 Hz using a thermistor located in portion 16 under the armpit.
  • the temperature range is 25 to 45 degrees C with a reporting accuracy of +/- 0.5 degree C, an output sampling frequency of 25 Hz, and data resolution of 6 bits.
  • Motion data is collected at 25 Hz sampling frequency using impedance sensing across the chest using the same drive electrodes as those described for respiration above.
  • the motion data has a data resolution of 6 bits.
  • the motion data may be compared to the ECG waveform and/or respiration waveform to determine if the measured data has been corrupted by movement.
  • Signal processing and transmission circuitry 12 preferably includes a single
  • ASIC Application Specific Integrated Circuit
  • the ASIC contains an H Bridge Drive circuit for output transmission of the data stream using antenna 13.
  • the data is output from the ASIC either by a single wire (back up), or by wireless inductive transmission to the signal transfer unit 20.
  • the ASIC and any microcontrollers of the transmission circuitry 12 are mounted on a flexible or rigid PCB which also contains passive components (resistors, capacitors etc.), a crystal, batteries, and connections.
  • the PCB is connected to a flexible substrate which has printed circuit traces 14 providing connections to the electrodes and the antenna 13 or wire. More details concerning the design and manufacture of the sensor band 10 can be found in contemporaneously filed U.S. Patent Application Serial Nos. 09/292,159 and 09/292,157, the contents of which are incorporated herein by reference.
  • the sensor band 10 uses a one-way inductive transmission scheme using digital frequency modulation in a 4 kHz band on channels with 6 kHz separation in the frequency range 50-150 kHz for a transmission distance of up to 2.5 meters.
  • the randomly-generated unique serial number of each sensor band 10 is inserted in the data transmissions for easy tracking.
  • the transmission antenna 13 is either screen-printed on the flexfrate or provided as a wire wound coil and embedded within the underarm portion 16 for location under the patient's armpit. Additional information regarding the antenna 13 may be found in the afore-mentioned related applications, while additional information regarding the inductive transmission scheme will be provided below.
  • a patient will carry a signal transfer unit 20 to receive the vital signs data signals transmitted by the sensor band 10.
  • the signal transfer unit 20 is designed to retransmit the received data to the base station unit 30 from a distance of up to 60 meters, but a typical range is approximately 30 meters.
  • the signal transfer unit 20 need not be carried by the patient at all times, but must be within communications range of the sensor band 10 (unless a wire is used) in order to receive the transmitted vital signs data.
  • the signal transfer unit 20 is small (approximately 110 x 65 x 25 mm) and is battery operated using, e.g., 4 "AA" primary or rechargeable cells, or a rechargeable battery pack designed to last for a minimum of 30 hours.
  • the signal transfer unit 20 has a clip for attacliment to a waist belt and/or a holster for easy ca ⁇ ying by the patient.
  • the signal transfer unit 20 has a memory buffer which is used in the case of a loss of radio connection with the base station unit 30.
  • This memory buffer is capable of storing vital signs data from the sensor band 10 for a period of time determined by the size of the memory buffer.
  • the memory buffer thus allows the patient increased mobility by allowing the patient to move out of range of the base unit 30 for some period of time, preferably at least an hour (one hour of storage would require a 2 MB buffer using the sampling rates described herein and no data compression).
  • the signal transfer unit 20 may be designed to include enough memory to permit the patient to move out of range of the base station unit 30 for even longer (e.g., 24 hours) without losing any data.
  • the signal transfer unit 20 automatically shuts down its transmission circuitry when it is out of range of the base station unit 30 in order to save energy. In this case, the signal transfer unit 20 keeps trying to reconnect to the base station unit 30 until it is back in range.
  • the memory buffer will operate in FIFO data transfer mode and the signal transfer unit 20 will transmit data at a rate substantially faster than it is received so that the memory buffer may be emptied once the signal transfer unit 20 comes back into range of the base unit 30.
  • the inventors contemplate that, in another embodiment, if an alarm condition is detected in the received data by the base station unit 30, the most recent data could be transmitted to the base station unit 30 first. Also, if the memory buffer should become full at any point, the earliest data in the memory will be replaced with the latest data.
  • the signal transfer unit 20 preferably provides several buttons for inputting information and displays/alarms for providing information to the patient.
  • event buttons 21 may be pressed to identify a particular event such as the taking of medication or pressed to indicate that the patient is experiencing a particular pain, feeling ill, and the like.
  • event buttons 21 are low profile or recessed to prevent them from being pressed accidentally. These events may be specified by the physician and agreed upon by the patient.
  • a light 22 may be illuminated when an auxiliary sensor measurement by the base station unit 30 is scheduled.
  • a buzzer sound may also be provided as desired.
  • a buzzer silence button 23 also may be used to silence the buzzer.
  • warning lights 24 are provided in addition to the buzzer to indicate particular conditions and/or that the system is not working properly.
  • Such conditions include battery low in signal transfer unit 20, batteries of the signal transfer unit 20 are at the end of recharge life, no signals are being received from the sensor band 10, loss of radio contact with base station unit 30, the memory buffer in the signal transfer unit 10 is 90% full, the memory in the base station unit 30 is 90% full, time to take treatment, time to take an auxiliary sensor measurement at the base station unit 30, a physiological alarm condition has been detected in the base station unit 30, and the like.
  • the patient may need to take appropriate action.
  • the patient Upon starting a monitoring session, the patient will simply need to check that batteries are inserted co ⁇ ectly in the signal transfer unit 20, that the power on LED is lit, and that there are no warning lights 24 indicating low power, loss of contact with the base station, etc.
  • the patient At the end of each day, or when the patient changes the sensor band 10, he or she will need to recharge the batteries of the signal transfer unit 20 or replace them with new ones. Other than this, no action will be required on the part of the patient to operate the signal transfer unit 20.
  • the patient will need to connect the wire link from the sensor band 10 to the signal transfer unit 20.
  • the signal transfer unit 20 will receive the vital signs data signals from the sensor band 10 using three receiving coils (or via the wire back up link). Data packets received are CRC checked, and any packets of data not received co ⁇ ectly or intact by the signal transfer unit 20 are discarded. In the presently preferred embodiment, the signal transfer unit will only receive data from a single sensor band 10, although software change on the signal transfer unit 20 will enable multiple sensor bands 10 to broadcast vital signs data to a single signal transfer unit 20.
  • the signal transfer unit 20 may also have an internal position sensor which, when the patient is carrying signal transfer unit 20, indicates when the patient is in the horizontal position and will switch when the patient's position changes towards the vertical by more than 15 degrees. A three axis sensor or accelerometer may be used for this function.
  • the signal transfer unit 20 may also have the facility for the connection of a microphone for recording lung or breathing sounds.
  • the signal transfer unit 20 transmits all data to the base station unit 30 via a half-duplex single frequency radio link using standard off the shelf radio components and a transmission rate of 40 kbps, with a frequency shift keying modulation scheme.
  • the transmission frequency is preferably 433 MHZ in Europe and 915 MHZ in the United States and Canada.
  • the radio transmission system uses a simple low-power, high efficiency protocol, ensuring CRC e ⁇ or checking of data packets in the forward direction, with an instruction set enabling retransmission of erroneous packets.
  • the system is preferably fail-safe, erring on the side of sending no data rather than enoneous data.
  • the signal transfer unit 20 transmits its signals via radio link to base station unit 30, which is powered by a selectable 110/230V mains power supply and includes a modem connection for a land telephone line or cellular link 40.
  • the modem is used to send data and information to a remote monitoring station 50 at a remote telemonitoring center, which may be a physician's office or a hospital.
  • a remote telemonitoring center which may be a physician's office or a hospital.
  • the base station unit 30 operates automatically, with no further action required by the patient, other than the use of auxiliary sensors.
  • a base station unit 30 can only receive signals from a single signal transfer unit 20, and two base station units 30 will not be able to operate within interference range of each other unless they are frequency differentiated.
  • known transmission techniques such as spread spectrum, CDMA, or TDMA may be used to permit the reception of signals from a plurality of signal transfer units 20 at a single base station unit 30.
  • the base station unit 30 may include a liquid crystal display screen 31 which provides information regarding system operation and gives the patient guidance when stepping through the options for collecting data from an auxiliary sensor.
  • a light 32 indicates that the base station unit 30 is receiving mains power.
  • a similar light 33 may be used to indicate that the base station unit 30 is communicating with the remote monitoring station 50 via modem.
  • An auxiliary sensor button 34 illuminates to indicate that an auxiliary sensor measurement is due, and the auxiliary sensor button 34 may be pushed to acknowledge when an auxiliary sensor measurement is about to be started and when it has been completed.
  • a buzzer silence button 35 is preferably provided to silence the buzzer, which will sound to indicate that a message is to be read on the display screen 31.
  • a telephone hang-up button 36 preferably breaks the communication between the base station unit 30 and the remote monitoring station 50 when depressed so that normal use of a phone connected to the same telephone line either directly or via a base station port is enabled, e.g., in emergency situations.
  • the base station unit 30 preferably includes the facility for the connection of a blood pressure sensor to a connector 37 or a spirometer or weigh scales to a connector 38.
  • the blood pressure sensor and spirometer are preferably standard commercially available units with standard RS232 digital data output streams.
  • the base station has electrical isolation to these units.
  • other point in time sensors such as a blood glucose meter could be connected to either connector 37 or 38.
  • the base station unit 30 will collect and store all data received from the sensor band 10.
  • the base station unit 30 preferably has a hard disk memory, enabling storage of data until it is ready to be sent to the remote monitoring station 50.
  • a memory having the capability of storing several days of data (at least 2 GB of memory at the sample rates described herein and assuming no data compression) is desired.
  • the sensor data from the sensor band 10, the event data (threshold violations, button presses, and the like), and the auxiliary measurement data (spirometer, weight scales, and/or blood pressure) are stored separately and aged independently in the memory of the base station unit 30 based on the time stamps from the sensor band 10 and/or the signal transfer unit 20.
  • Time synchronization signals may be sent from the base station unit 30 to the signal transfer unit 20 and/or sensor band 10 to synchronize the time stamps. All data is retained in the base station memory until either it is directed to be discarded by an instruction sent from the remote monitoring station 50, or until the base station memory is full, at which point the earliest data is discarded first.
  • the base station unit further contains software algorithms which enable the calculation of heart rate and respiration rate from the ECG and respiration signals, respectively.
  • Such algorithms include artefact detection and filtering to ensure that a high quality reading is obtained.
  • the algorithm for heart rate also includes a 50Hz/60Hz notch filter for removal of any mains noise.
  • the base station may further contain a look-up table to convert signals received from the thermistor of the sensor band 10 into an accurate temperature reading.
  • the base station unit 30 may also include software which compares the various vital signs data signals received with pre-programmed thresholds for certain physiological variables.
  • the base station unit 30 may look for threshold violations; however, the actual processing for determining whether an "event" has occurred is performed when processing the raw data at the remote monitoring station 50. Where data points fall outside these threshold values for a certain period of time, the base station unit 30 may record an event condition and could also indicate this fact to the patient by reverse radio transmission to the signal transfer unit 20 via a two-way radio link. Events are preferably generated for high or low heart rate, high or low respiration rate, or high or low temperature. The inventors also contemplate that, in alternative embodiments, events could be generated for high or low blood pressure, ischaemic events, or a ⁇ hythmias.
  • the base station unit 30 When an event is generated, the buzzer on the base station unit 30 is sounded and the buzzer silence button 35 is illuminated. Events will also be generated at the base station unit 30 if the base station unit 30 has lost contact with the signal transfer unit 20 and/or if the memory of the base station unit 30 is full. Any or all of these situations except for loss of contact could also generate an "event" and/or an alarm in the signal transfer unit 20 through reverse transmission via the two-way radio link. As will be explained in detail below, the base station unit 30 is preferably programmable remotely from the remote monitoring station 50 via modem or, in an alternative embodiment, locally using a laptop or PC.
  • the base station unit 30 would have an interface for the optional connection of a PC or notebook computer for the display of live graphical data or for programming of the base station unit 30.
  • the local PC or laptop could also be used for a simple video link with the remote monitoring station 50.
  • programming of the base station unit 30 is password protected. Programming involves setting study start and stop times, setting alarm thresholds and minimum breach times, setting pre-specified dial up times for the remote monitoring station 50 to download data, setting data collection times (e.g., 5 minutes every hour), and setting times for recording data from auxiliary sensors. In this manner, the physician may choose to collect only the required data and at intervals set by the physician.
  • the remote monitoring station 50 has the ability to automatically dial in to the base station unit 30 to download data at specified times or to view real-time live data. If the line for the base station unit 30 is busy, the remote monitoring station 50 may also have the automatic ability to try again after a pre- specified period.
  • the base station unit 30 could initiate the dial-up for uploading the stored data.
  • the data is downloaded in a binary TCP/IP compatible protocol, providing guaranteed transmission integrity over the link with the remote monitoring station 50.
  • the base station unit 30 has a plug-in for a normal telephone so that the patient is not required to have two telephone lines. Voice communications will take precedence over data communications, i.e. the patient will be able to interrupt a data download if he or she needs to make an urgent telephone call.
  • each patient may be provided with a battery charger for charging the batteries of the signal transfer unit 20 if rechargeable batteries are to be used.
  • Remote monitoring station 50 a physician or nurse has access to a normal PC connected by modem to the telephone line 40.
  • Physiological monitoring software is run on this PC or on a networked system to process the data received via the modem from the base station unit 30.
  • the received data will incorporate the serial number of the base station unit 30, as well as the serial number of the sensor band 10, to be used for historical data tracking purposes, should this be necessary.
  • Remote monitoring station 50 may display continuous or non-continuous data in real-time or historically and may also enable the physician to review previously stored data, to view events, and to store data to a database or other electronic file.
  • a server 60 may be located in the transmission lines 40 to permit data from a plurality of patients to be stored on the server 60 and provided to a plurality of remote monitoring stations 50 in a telemonitoring center or centers.
  • a plurality of patients are monitored using a telemonitoring service which receives data generated and transmitted in accordance with the techniques of the invention and allows the operator at the telemonitoring center to configure studies and to analyze data.
  • the remote monitoring station 50 may be used to simply monitor a single patient or several patients from a single remote monitoring PC running the server 52 and physiological monitoring software.
  • the operator of the remote monitoring station 50 will need to configure the system's software for the type of study, e.g. real-time continuous viewing, historical data viewing, viewing of summaries, etc.
  • the operator will also need to remotely program the base station unit 30 to collect the desired data from the patient.
  • the operator at the remote monitoring station 50 also may want to dial in to a particular base station unit 30 to check the status of a particular patient. In these instances, the operator will be able to view real-time data, even if such data is not otherwise scheduled to be downloaded by the base station unit 30 for a particular study.
  • the operator also may download any data that has already been stored at the accessed base station unit 30.
  • the operator will need to program a unique patient identifier at the start of a study so that data recordings can later be identified and so that patient data confidentiality can be maintained.
  • the physiological monitoring software could detect alarm conditions locally and could alert the operator of the remote monitoring station 50 or of a central monitoring station on a network to this fact.
  • the remote monitoring station 50 may display several scrolling traces and several numerical measures on a single screen at any time, with the operator able to configure which traces or measures he/she wishes to see.
  • the operator will be able to choose from a number of time bases for the review of live or historical data. Some parameters (e.g. temperature) could be shown as the latest numerical value only.
  • the operator will also have the ability to define a data schedule enabling him/her to download selected samples of the continuous and auxiliary sensor data to the remote monitoring station 50.
  • a "recording session" for later download may be flagged, causing a block of data to be recorded containing all the parameters being monitored for several (e.g. ten) minutes leading up to the event and for its duration.
  • the remote operator will be able to review data from a number of patients, with data being transmitted from a number of base station units 30.
  • events data could be sent first and could be viewed for any particular patient by the operator.
  • the physiological monitoring software enables summaries of data to be viewed, e.g., traces of sample data points taken every 15 minutes for a particular parameter, and a display of events generated.
  • the physiological monitoring software will enable the operator to look at data using a choice of time-bases and a horizontal scroll bar.
  • the physiological monitoring software contains software algorithms for the analysis of the ECG signal for standard single or multiple lead ECG waveform measurements, interval measurements, beat-typing and for arrhythmia detection. These algorithms preferably include artefact detection and filtering to ensure that a high quality reading is obtained. The algorithms preferably include a 50Hz/60Hz notch filter for removal of any mains noise and the above-mentioned 3 lead detection algorithm.
  • the data is stored in a standard flat file format on the local hard disk, or in a separate location such as on a separate optical disk drive.
  • all blocks of data stored are in a form that enables them to be exported from the physiological monitoring software in an HL7 compliant format.
  • Each block of data stored may have a unique patient identifier, the sensor band and base station unit identification numbers, the date, and the time.
  • Remote monitoring unit 50 may also perform other types of processing on the received ECG data such as heart rate variability analysis, atrial fibrillation detection, ST episode detection, QT analysis, and other flagging events.
  • processing techniques may be used to detect disease states such as cardiac failure, hypertension, angina, ischaemia/ coronary artery disease, peripheral vascular disease, acute and chronic respiratory insufficiency, history of recurrent a ⁇ hythmias, sub-acute patients, post- infarction patients, acute and recu ⁇ ent febrile illnesses (including malaria, hepatitis, lymphoma, Hodgkin's disease, AIDS, tuberculosis) and the like, and such processing techniques are believed to be l ⁇ iown to those skilled in the art.
  • the present invention wirelessly transmits data from the sensor band 10 a short distance to a signal transfer unit 20 and retransmits the data wirelessly from the signal transfer unit 20 to the base station unit 30.
  • the data is then transmitted over conventional phone lines 40 or via a conventional wireless telecommunications link to a remote monitoring station 40. Each of these transmission links will be discussed in detail in this section.
  • FIGURE 6 illustrates a general block diagram of the system transmission electronics.
  • the sensor band 10 includes a plurality of sensors (e.g., electrodes) 62 which provide analog vital signs data via traces 14 to an ASIC 64 for A/D conversion and signal conditioning.
  • ASIC 64 also provides the necessary supply and drive signals to the electrodes 62.
  • One of the micro-controllers 66 implements the communications modulation coding scheme described herein and passes the modulated signal to ASIC 64 and then to an antenna for wire-free communication to the signal transfer unit's signal conditioning unit.
  • ASIC 64 in conjunction with one of the micro-controllers 66 continuously transmits the data including vital signs data over communications link 65 to signal transfer unit 20, where the vital signs data is received by communications receiver 68 and processed by processor 70.
  • processor 70 may condition the received signal, optionally compress the received data, and store the received data in FIFO memory buffer 72.
  • memory buffer 72 preferably has sufficient size so that the patient may leave the range of the base station unit 30 for at least an hour without losing any vital signs data.
  • Radio transceiver 74 of signal transfer unit 20 then transmits the data over communications link 75 to a co ⁇ esponding radio transceiver 76 of the base station unit 30.
  • base station unit 30 includes a processor 78 which preferably implements software algorithms that calculate heart rate and respiration rate from the ECG and respiration signals, respectively.
  • the received vital signs data is accumulated in memory 80 where it is stored until a remote monitoring station download is initiated, at which time the stored data is uploaded over communications link 85 (e.g. including telephone lines 40) using modem 82 of the base station unit 30 and modem 84 of the remote monitoring station 50.
  • the vital signs data may be uploaded once per day in the early morning hours to minimize interference with normal telephone usage, uploaded several times per day, or once per week.
  • Remote monitoring station 50 then processes and displays the received vital signs data using a conventional personal computer 86, as will be described in more detail in the following section.
  • radio transceiver 74 of the signal transfer unit 20 may include a conventional cell phone which communicates directly with the remote monitoring station 50 so as to eliminate the base station unit 30; similarly, communications link 85 could be a cell phone link.
  • the signal transfer unit 20 could be eliminated by providing cell phone capability in the sensor band 10 or by providing expanded broadcast capability to extend the range to the base station unit 30; however, such devices will inevitably be more expensive to manufacture than the device described in connection with the preferred embodiment of the invention.
  • communications link 65 uses digital phase- shift keyed modulation to transmit the vital signs data via an inductive link.
  • a band from 50 kHz to 150 kHz is available for inductive transmissions from the sensor band 10 to the signal transfer unit 20. If only a narrower frequency band is available, then one or more channels will be lost from the transmission scheme described below.
  • the sensor band 10 and the signal transfer unit 20 each contain a coil, and inductive coupling between the two coils is used to transmit the vital signs data.
  • the signal transfer unit 20 contains tliree orthogonal coils with reception selected on the coil with the most usable signal at any point in time.
  • the preferred embodiment also defines sixteen frequency-division multiplex channels with carriers at 6 kHz intervals from 54 kHz to 144 kHz inclusive.
  • a one-bit digital version of the modulated signal is generated directly in software by one of the micro-controllers 66. The steps entailed in producing the code for the one of the micro-controllers 66 are described below.
  • the modulation scheme employed for transmission from the sensor band 10 is digital QPSK (quadrature phase-shift keying).
  • binary data is transmitted as bit pairs, known as symbols, at a regular rate, called the symbol rate.
  • the effective bit rate is thus twice the symbol rate.
  • Each symbol corresponds to a different phase offset (0, 90, 180 or 270 degrees) of the transmitted signal relative to a fixed carrier.
  • phase offsets can be represented as the points 1, i, -1 and - . in the complex plane.
  • the nature of the transitions between adjacent symbols determines the envelope of the spectrum of the transmitted signal. In practice, to constrain the bandwidth of the signal, a raised cosine function is used to interpolate between the signals representing adjacent symbols.
  • the raised cosine function has the characteristic that the influence on the transmitted signal of one symbol does not extend further than the two symbols either side of it. Transitions between the symbols can be thought of as the motion of a point between the symbol points, and thus as a complex function of time.
  • the transmitted signal is then the real part of this function multiplied by a complex exponential representing the carrier.
  • symbols are transmitted at a 2 kHz rate. Since each symbol represents two bits, this corresponds to a bit rate of 4 kbps.
  • the ca ⁇ ier signal is phase-locked to the symbol transitions. For example, with a ca ⁇ ier frequency of 102 kHz, there are exactly 51 cycles (102kHz/2kHz) of carrier in each symbol time. Thus, the value at any given time of the complex exponential representing the carrier only depends on the time since the last symbol transition.
  • This coupled with the characteristic of the raised cosine interpolation function stated above, means that the transmitted signal is built up from only a limited number of template waveforms: one for each possible transition between symbols. Since there are four symbols, there are sixteen possible transitions and thus sixteen possible template waveforms (including those where the symbol remains constant).
  • Each of the sixteen waveforms contains 500 (1MHz/ 2kHz) samples, for 8000 samples in all. Where simple thresholding has been used, each waveform consists of about 51 (102kHz 2kHz) pulses, or 102 state changes. If the phase angle increases through the waveform, there may be more than 102 state changes; if the phase angle decreases, there may be fewer.
  • the template waveforms are referenced by the symbol represented at their start (0,1,2 or 3) and by the symbol represented at their end (again 0,1,2 or 3).
  • waveform [0,1] starts with a phase angle of 0 relative to the implied carrier, and ends with a phase angle of 90 degrees relative to it.
  • waveform [a,b] to join smoothly to a waveform [c,d]
  • b c.
  • a symbol sequence ...u,v,w,x... therefore includes the waveform sequencetician.[u,v][v,w][w,x]....
  • waveform templates [u,0], [u,l], [u,2] and [u,3] can be made all to begin with the same sequence of samples and, in particular, can be made all to have their first state change at the same point. All samples leading up to this first state change are removed from the waveforms and added to the end of each waveform template [0,u], [l,u], [2,u] and [3,u]. This is carried out for each value of u from 0 to 3 as illustrated in FIGURE 7A.
  • Each template waveform now begins with a state change and ends with a period free of state changes. This idle period will later be used to link together the various templates. As a result, the templates are no longer all necessarily the same length.
  • the sampled waveforms are now converted into micro-controller instructions.
  • Zero-to-one waveform state changes are converted into instructions which set an output port bit; one-to-zero wavefoim state changes are converted into instructions which clear that bit.
  • Idle periods between changes are converted into a sequence of no- operation instructions such that the conect time delays between changes are introduced. This procedure is illustrated in FIGURE 7B. As shown, the end of each template now consists of a number of no-operation instructions.
  • a small number of extra instructions is required to read the state of the input port bits co ⁇ esponding to the next symbol to be transmitted, select the appropriate waveform template, and produce a symbol trigger pulse.
  • the instructions at the start of template [u,0] (for each u) are searched for suitable points where these extra instructions can replace no-operation instructions. If symbol 1 is required, these new instructions cause a jump into the code for template [u,l] at the correct point to ensure continuity of the waveform; similarly, if symbol 2 is required, a jump is caused into template [u,2]; and if symbol 3 is required, a jump is caused into template [u,3].
  • Code in templates [u,l], [u,2] and [u,3] before the destinations of these new jump instructions will never be executed and is deleted.
  • the code is searched for the longest sequence of instructions that occur more than once using an algorithm which iteratively increases the length of candidate sequences, rejecting them as they become unique. Only those sequences which could be converted to a subroutine are considered; these need to have enough no-operation instructions at either end to cover the subroutine call and return overheads of the microcontroller.
  • the longest sequence is found, it is converted to a subroutine with the appropriate number of no-operation instructions deleted from either end to cover the time required for the call and return; each occu ⁇ ence of the sequence is then replaced with a subroutine call instruction. This procedure is then repeated until no further suitable duplicated sequences are found.
  • the code size will now have been reduced to perhaps 2000 instructions.
  • the pool of newly-created subroutines is now searched to identify instances where the whole of a subroutine A (consisting of n instructions) is identical to the last n instructions of another subroutine B. All calls to subroutine A are replaced with calls to the point n instructions from the end of subroutine B. Subroutine A is then deleted.
  • a number of peephole optimizations is also performed which reduce code size while preserving timing in accordance with the invention. For example, on the PIC16F84, two consecutive no-operation instructions can be replaced with a jump to the following location, saving one instruction.
  • the communications link 65 is divided into sixteen channels spaced at 6 kHz intervals.
  • the center frequencies of the channels are at multiples of 6 kHz.
  • the lowest-frequency channel is therefore centered at 54 kHz and the highest at 144 kHz as illustrated in FIGURE 8.
  • Channels are refe ⁇ ed to by number, where the number is the center frequency divided by 6 kHz.
  • the available channels are numbered 9 to 24 inclusive.
  • Each channel can ⁇ es a QPSK signal with a symbol rate of 2 kHz and a data rate of 4 kbps.
  • the channel thus occupies a band 2 kHz either side of its center frequency with guard bands 2 kHz wide separating adjacent channels as shown in FIGURE 8.
  • the majority of the different types of sensor bands 10 for use in accordance with the invention will have data rates which fit comfortably within a 4 kbps channel.
  • data compression techniques may be used to compress data into a single 4 kbps channel, or multiple channels could be used for a single sensor band.
  • the QPSK signal can be generated digitally and then passed through an oversampling modulator, implemented within the ASIC 64. This would directly generate a digital signal suitable for feeding to the coil driver.
  • the transmitter of the sensor band 10 may require a small additional circuit, probably involving a phase-locked loop, to reduce out-of-band transmissions further than a practical oversampling modulator will allow.
  • a number of QPSK channels can be simultaneously demodulated using a DSP device.
  • a front-end comprising amplifiers, anti-aliasing filters and analog-to-digital converters is required. Such circuitry is described in detail in the aforementioned related U.S. Patent Application Serial No. 09/292,159.
  • the output of the DPS device comprises three signals:
  • the data from the sensor band 10 consists of a continuous sequence of 160-bit packets, where the bit rate is nominally approximately 4 kHz and the packet rate is thus approximately 25 Hz.
  • the framing pulse F indicates the position of bit 0 of each packet.
  • 128 form the data payload.
  • the remainder include a header including a field to indicate the format of the data and a sequence number that increments with each packet.
  • a trailer includes an error-checking (CRC) field.
  • CRC error-checking
  • the data capacity of the channel is therefore 25 Hz multiplied by 128 bits, or 3200 bps. This is sufficient capacity for the majority of the known sensor a ⁇ ays to require only one channel each. If not, data compression or multiple channels may be used for each sensor band 10. Packets of data from several received channels can be ' multiplexed into a single output stream for the DSP. As shown in FIGURE 9, each packet of 160 bits is divided into a number of fields as follows:
  • bits 0-7 bits 0-7; header, including packet type and sequence number.
  • the packet type field defines the format of the data within the payload field. Each different sensor array could be assigned a different packet type.
  • the three-bit sequence number increments modulo 8 with each packet and can be used to check the integrity of the data stream.
  • bits 8-135 bits 8-135; data payload.
  • the format of the data within the payload field is defined by the packet type.
  • This field may include a CRC field which is an eight-bit CRC of the data in bits 0-135 of the packet.
  • the CRC may be used to detect e ⁇ ors in marginal reception conditions or in the presence of interference.
  • the signal transfer unit 20 has a memory buffer 72 which enables at least three modes of operation for the signal transfer unit 20. In normal operation, the signal transfer unit 20 communicates with the base station unit 30 with no data stored in the memory buffer 72.
  • the memory buffer 72 is preferably disabled in order to minimize the supply cunent.
  • the data is transmitted via the communications link 75 using the protocol to be described below.
  • the user interface (FIGURE 3) has normal operational information displayed.
  • the signal transfer unit 20 may also operate without a communications link to the base station unit 30. In this state, the vital signs data arrives at the signal transfer unit 20 as in the normal state. However, the data is redirected from the communications receiver 68 to a buffer of processor 70.
  • the processor's buffer fills up (this only allows 4 packets worth of data and is held on-chip in the RAM of processor 70) the data is directed to the much larger memory buffer 72, which may be, e.g., a DRAM, a flash memory, or other comparable memory device. If the memory buffer 72 becomes 90% full, an alarm condition may be set.
  • the signal transfer unit 20 may operate with a communications link 75 but still having data stored in the processor's buffer and/or memory buffer 72 on a "first-in, first-out" (FIFO) basis. In this state, the buffered data is sent to the base station unit 30 as quickly as possible, with new incoming data being directed to the memory buffer 72.
  • FIFO first-in, first-out
  • the CRC status bits of the incoming data frame will be examined, and if these show that the data is valid, the data is extracted and, depending on the state of the signal transfer unit 20, this information will either be directly built into a packet for transmission to the base station unit 30 (or placed in a buffer ready for transmission) or will be sent to the next available area of the memory buffer 72. If the CRC fails, the data packet is discarded.
  • the radio transceiver 74 of the signal transfer unit 20 is a transmitter/receiver based on the RF2905 transceiver chip with the following interface lines to baseband: 1) data in (data received from the base station unit 30);
  • the other interface connections to the RF2905 chip can be derived from these interfaces using a small amount of logic circuitry so as to reduce the number of I/O ports required on the processing device.
  • communications link 75 runs at a 40 kbps baud rate.
  • a packet typically comprises a preamble, a synchronization codeword, various packet definition codes, a packet ID, data, and a CRC error detection code.
  • the CRC code is 16 bits wide and the data content within a packet is 32 bits, resulting in a CRC algorithm performing over a 48-bit packet.
  • the CRC is performed in baseband in the signal transfer unit 20 for both the transmitted and received data.
  • the CRC algorithm is performed in real-time if possible, utilizing 32-bit registers and various rotate and shift instructions in the instruction set of processor 70.
  • the CRC cannot be performed in real-time, the data will be buffered and the CRC will be perfonned as soon as the current reception is complete. Due to the base station channel being predominantly for data traffic to the base station unit 30, this incoming data procedure should have little activity; however, this will not be the case during periods of poor reception when data will need to be re-transmitted and "NAK" codes sent regularly from the base station unit 30. Data received from the transceiver of the radio transceiver 74 is asynchronous; therefore, clock extraction is a function that must be performed by the signal transfer unit 20 in baseband. This involves over-sampling of the synchronization codeword (a 101010... pattern) and performing frame alignment.
  • the communications protocol between the signal transfer unit 20 and the base station unit 30 has been designed to address the following requirements:
  • the communications protocol between the signal transfer unit 20 and the base station unit 30 has been designed to transport data over a physical channel implemented as a radio link.
  • the behavior of radio propagation channels is well documented and of relevance to the protocol design is its tendency to exhibit burst e ⁇ or characteristics rather than random bit e ⁇ ors. This is due to fading effects originating from mechanisms such as multi-path, shadowing, and antenna orientation. Therefore, a data packet scheme has been adopted with CRC to provide error detection and an ARQ scheme to retransmit enoneous data packets.
  • the communications protocol is asynchronous. Initial dialogue synchronization is established with a preamble sequence and provision for subsequent timing alignment is provided by synchronization sequences preceding all data packets.
  • Three basic functional mechanisms are provided in the signal transfer unit/base station unit protocol: 1) Registration;
  • FIGURE 10A represents this mechanism.
  • the dialog is initiated with a dialog registration request from the signal transfer unit 20 which must be transmitted within t PO w ER _ p seconds of the signal transfer unit 20 being powered up.
  • the base station unit 30 responds to the registration request with an acknowledgment (ACK) packet to confirm its conect receipt or a data packet containing control information which implicitly provides the acl ⁇ iowledgment.
  • ACK acknowledgment
  • the signal transfer unit 20 must acknowledge the safe receipt of the control information. If the control data exceeds a single packet length, multiple packets may be used to fragment the control information, with an acknowledgment being required from the signal transfer unit 20 for each packet. This is conducted in the same manner as the data flow mechanism described below with respect to FIGURE 10B. If no control data is transmitted from the base station unit 30 and a simple acknowledgment packet is sent, the signal transfer unit 20 will not provide further acknowledgment. It is recommended that the base station unit 30 allocate a unique logical unit number to the signal transfer unit 20 during the registration dialog using the appropriate control code such that control data is always sent in place of the acknowledgment package.
  • the signal transfer unit 20 will wait for a minimum time of . M ⁇ RE Q WAIT and a maximum time of t MAX _ REG _ WA ⁇ before making another attempt at registration with a dialog request. It is recommended that a random element be included in the wait time in order to facilitate random access schemes in the case of multiple signal transfer units 20 transmitting to a single base station unit 30 in alternative embodiments. Idle Mechanism
  • the purpose of the idle mechanism is to maintain registration of the signal transfer unit 20 and to provide the opportunity for the base station unit 30 to reconfigure control parameters within the signal transfer unit 20 if required.
  • the format of the dialog is identical to the registration mechanism with the difference lying in the format of the dialog request packet.
  • the maximum allowable time between idle dialog (or registration dialog in the first instance) will be registration will become invalid if no dialog is conducted after t L0SE mG of the previous dialog.
  • ⁇ J ⁇ E defines the maximum time permissible before control data can be sent to the signal transfer unit 20 and t LO s E _ REG defines the time after which registration becomes invalid.
  • FIGURE 10B illustrates the data flow mechanism.
  • the data flow mechanism is similar in its implementation to the registration and idle mechanisms except the dialog request packet must notify the base station unit 30 that the signal transfer unit 20 has valid data waiting.
  • an acknowledgment packet may be replaced by a data packet with implicit acknowledgment and, similarly, the data packet on the reverse link may implicitly acknowledge safe receipt of the control information.
  • the data packets contain control information that informs the base station unit 30 if further data packets are to be transmitted in the dialog.
  • ARQ Scheme The purpose of the ARQ scheme is to provide the means by which erroneous data packets are retransmitted based on the use of "not-acknowledged" (NAK) packets to request retransmission.
  • NAK not-acknowledged
  • the number of times a packet may be retransmitted is limited, and if either the base station unit 30 or signal transfer unit 20 receives two consecutive erroneous packets, the data link will be considered to have failed, and a minimum time of ⁇ ⁇ N FA ⁇ WAIT will be allowed to elapse before the signal transfer unit 20 attempts to re-establish the link with a dialog request.
  • the scheme is independent of packet type such that an acknowledgment package is treated in the same manner as a data packet.
  • Case 1 This case defines the ARQ behavior when a single erroneous packet is detected and no further errors occur on the communications link 75 thereafter.
  • FIGURE IOC defines the mechanism. As illustrated in FIGURE IOC, the signal transfer unit 20 sends a data packet which is incorrectly received at the base station unit 30, the base station unit 30 sends a NAK package which contains a data field pointing to the first detected erroneous packet, and the signal transfer unit 20 retransmits the data packet. As illustrated in FIGURE 10D, an identical procedure is adopted if the signal transfer unit 20 fails to receive a packet from the base station unit 30. Case 2
  • FIGURE 10E defines the mechanism. As illustrated in FIGURE 10E, the signal transfer unit 20 sends a data packet which is inconectly received at the base station unit 30, and the base station unit 30 sends a NAK packet which is incorrectly received by the signal transfer unit 20. The signal transfer unit 20 then transmits a NAK which is correctly received at the base station unit 30 which then retransmits the first NAK packet containing a data field pointing to the first detected enoneous packet which is subsequently retransmitted by the signal transfer unit 20. As illustrated in FIGURE 10F, an identical procedure is adopted if the signal transfer unit 20 fails to receive a packet from the base station unit 30. Case 3
  • FIGURE 10G shows the mechanism. As illustrated in FIGURE 10G, the base station unit 30 receives two consecutive enoneous packets and hence recognizes that the radio link has failed. No further reply is sent to the signal transfer unit 20 which, by implication, will inform the signal transfer unit 20 that the link has failed.
  • the base station unit 30 then returns to receive mode and awaits re-establishment of the communications link 75 by a dialog request from the signal transfer unit 20.
  • a dialog request from the signal transfer unit 20.
  • an identical mechanism is adopted as shown in FIGURE 10H.
  • This case also defines the situation where a corcectly received packet lies between two enoneous packets as the receiving unit detects two consecutive erroneous data packets and considers the radio link to have failed.
  • FIGURE 101 illustrates the dialog in this case. Packet Formats
  • a dialog request packet initiates a dialog between the signal transfer unit 20 and the base station unit 30 and can only be sent by the signal transfer unit 20.
  • each dialog request packet contains a preamble that allows an analog data slicing hardware threshold in the radio circuitry to settle to an appropriate value for optimum data reception, a synchronization codeword which allows the receiver to synchronize its bit sampling mechanism, a registration identification codeword that identifies the transmitted data packet as a registration data packet, an optional serial ID assigned to the signal transfer unit 20 at manufacture and/or logical unit ID assigned to the signal transfer unit 20 by the base station unit 30 to provide limited addressing functionality in the case of a plurality of signal transfer units 20 transmitting to a single base station unit 30, a modulo counter number (packet ID), and CRC bits.
  • packet ID modulo counter number
  • Acknowledgment Packet An acknowledgment packet is used to inform the sender of the success of a transmitted packet. Two types of acknowledgment packet are defined for success and failure. All acknowledgment packets are of fixed length and have a CRC bit sequence appended to the packet. In each case the CRC applies only to the data content of the packet and excludes the synchronization codeword. Generally, each acknowledgment packet contains a preamble, a synchronization codeword, an ACK or NACK identification codeword, an optional serial and/or logical unit ID of the signal transfer unit 20, a packet ID, a packet success ID or retransmit reference ID, and CRC bits.
  • Data Packet Data packets are used to transfer sensor data from the signal transfer unit 20 to the base station unit 30 and control information from the base station unit 30 to the signal transfer unit 20.
  • the information contained within the packet may be divided into an integer number of data codewords with CRC individually applied to each word.
  • the synchronization codeword is excluded from this process.
  • Two types of data packet are defined to implement rapid data transfer and control data transfer. For each type of data packet, two identification codewords are applicable which indicate whether another data packet is to follow.
  • the CRC is embedded in the data packet according to the codeword structure.
  • Each codeword contains N BITS PER CODEWORD and a maximum of
  • the rapid data packet is used to transfer measurement data from a single sensor device as efficiently as possible and contains minimal confrol content.
  • This type of data packet is preferably used in instances where maximizing the capacity of the communications channel is paramount.
  • This data packet preferably includes an indication of the Signal Transfer Unit Logical Unit and the Data Source ID.
  • the CRC will be embedded in the data packet according to the codeword structure.
  • the control data packet is used to transfer control data to configure parameters within the signal transfer unit 20. It is identical in format to the rapid data packet except that the free format sample data field contains a number of control sequences.
  • data scrambling is applied to all bits transmitted over communications link 75, with the exception of synchronization codewords and preambles.
  • Data scrambling is applied to minimize the DC content of the data within a particular packet and is achieved by multiplying the bitstream with a fixed pseudo noise (PN) sequence having a length equal to the length of a data codeword (including the CRC) such that the scrambling is applied codeword by codeword for a data packet and a partial sequence used for all other types of packet.
  • PN pseudo noise
  • the communications link 75 is required to transport a maximum information rate of 15 kbits/sec over a range of 60 meters.
  • the communications link 75 must support the data overheads associated with the protocol and provide sufficient capacity for the system to transmit previously stored measurements at a higher data rate to catch up with the real time function in the event that the signal transfer unit 20 should be taken out of range for a period of time. Assuming a minimum protocol efficiency of 63%, a minimum data rate of 23.8 kbits/sec is required to achieve the required information rate assuming a perfectly reliable link.
  • a data rate of 40 kbits/sec has been adopted in a preferred embodiment to provide an information capacity of 25.2 kbits/sec which translates to a duty cycle of 59.5% under good operating conditions or a catch-up rate of 0.68 hours/hour when the full information capacity is required.
  • the spectral allocations for unlicensed radio transmission are at 433 MHZ and 915 MHZ in Europe and the USA, respectively, with a small number of exceptions where bandwidth is specifically allocated for medical telemetry applications, these frequencies are chosen for transmission via communications link 75 in the preferred embodiment.
  • the allocations provide more than 100 kHz of bandwidth which will not be restrictive to the system given the 40 kbits/s data rate.
  • Base Station Unit - Remote Monitoring Station Link Communications link 85 is used to transfer the acquired patient vital signs data from the base station unit 30 to the remote monitoring station 50 and to transfer configuration information from the remote monitoring station 50 to the base station unit 30.
  • the base station unit 30 and remote monitoring station 50 communicate in a stream-based protocol implemented using TCI/IP sockets, where each data packet has a message start byte, bytes indicating total message length, a message command, and message contents.
  • the data packets generally contain a data timestamp and ECG, respiration, temperature, motion, and bend data; however, data packets from the base station unit 30 may also contain weight, blood pressure, and spirometer readings from the auxiliary sensors.
  • Other packet types may include heart rate, respiration rate, temperature and/or event data.
  • TCP/IP communication between the base station unit 30 and the remote monitoring station 50 can be established, a network connection must first be established between the two systems.
  • the remote monitoring station 50 initiates connection to the base station unit 30, and once the connection has been accepted, both ends of the communications link 85 will listen for commands.
  • the protocol may be terminated by either end of the communications link 85 disconnecting its socket. Each command is unidirectional, and acknowledgment of any command is necessary.
  • a command set of the protocol for communications between the base station unit 30 and the remote monitoring station 50 in the preferred embodiment of the invention will now be described.
  • the following partial list of commands are used to implement the communications protocol over the communications link 85.
  • An AddDataSource command from the remote monitoring station 50 instructs the base station unit 30 to begin acquiring data from a data source (sensor band 10) specified in a data source ID within the command and to use a particular type of stream. Usually, this command identifies the wireless channel to use.
  • a RemoveDataSource command from the remote monitoring station 50 instructs the base station unit 30 to stop acquiring data from the specified data source ID.
  • a SetConf ⁇ g command from the remote monitoring station 50 sends any required configuration data to the base station unit 30 and may contain flags instructing the base station unit 30 to flush the databases of the base station unit 30.
  • An AckConfig command from the base station unit 30 acknowledges to the remote monitoring station 50 successful receipt of the SetConfig message.
  • a DataRequest command from the remote monitoring station 50 requests that the base station unit 30 sends a specified time range of raw or real-time data to the remote monitoring station 50.
  • the data record type field within the command specifies the format that the remote monitoring station 50 will expect to be returned. In some cases, the same raw data may be requested in multiple formats. Only one request for data may be active at any one time.
  • a DataRequestAbort command message from the remote monitoring station 50 causes all outstanding data requests to be aborted, including Event and Alarm data requests. This command should be sent before the remote monitoring station 50 terminates the communications link 85.
  • a ReturnComplete command is sent by the base station unit 30 to indicate that all data for the last data request has now been sent to the remote monitoring station 50.
  • a data request includes a request for threshold alarms, session data, or events.
  • a status field in this command indicates the reason for the base station unit 30 to stop transmission of Return records.
  • a DataReturn command packet from the base station unit 30 contains data as requested via a DataRequest command. Different data record types will have different data sizes.
  • a SetAlarm command from the remote monitoring station 50 is used to set up a threshold alarm monitor on the base station unit 30.
  • a duration parameter indicates for how many seconds the threshold must be exceeded before the alarm is triggered.
  • a hysteresis parameter defines a boundary around the threshold that needs to be crossed before the alarm triggers or resets.
  • An AlarmDataRequest command from the remote monitoring station 50 requests that the base station unit 30 send all alarms recorded between the Start and End times supplied. The data actually is returned as a series of "Alarm" commands, followed by a ReturnComplete message.
  • a RemoveAlarm command from the remote monitoring station 50 causes the base station unit 30 to stop monitoring for the specified alarm. This command can only be used to stop monitoring for an alarm that was configured using the SetAlarm command.
  • An Alarm command packet from the base station unit 30 encapsulates an alarm and returns an Alarm ID to the remote monitoring station after the SetAlarm message.
  • a SetEventMeasurement command message from the remote monitoring station 50 requests that the base station unit 30 makes an auxiliary measurement. If the alert time is outside the range defined by the start and end times, no user alert is sent. If a periodic flag is set, the measurements are made daily, and the date portion of the start, end, and alert times are ignored.
  • An EventReading command from the base station unit 30 contains the results of a scheduled auxiliary measurement, as requested by the SetEventMeasurement command. Data valid flags are used to indicate the nature of the data contained in the measurement.
  • An EventDataRequest command message packet from the remote monitoring station 50 contains a request for event data specified for the specified time range.
  • the response is a series of EventReading command packets followed by a single ReturnComplete command.
  • a TestRequest command is sent by either end of the communications link 85 and is used to test the link between the two systems.
  • a TestRequest command should result in a TestResponse packet within 3 seconds in a preferred embodiment.
  • a TestResponse command packet is sent in response to the TestRequest command packet and may include a copy of the data accompanying the TestRequest message.
  • FIGURE 11 illustrates the functional or software architecture of the remote monitoring station 50.
  • remote monitoring station 50 is utilized by a health care professional to evaluate the vital signs data received from one or more patients and to perform control functions and maintenance functions necessary for system operation.
  • FIGURE 11 illustrates an embodiment of FIGURE 5B in which the remote monitoring station 50 includes a server 52 for managing the processing of the vital signs data received from the base station units 30.
  • the server would be located in a separate physical unit or at a remote location.
  • the remote monitoring station 50 maintains a database 110 of patient data received from each patient taking part in a study using the techniques of the invention.
  • the patient data includes a patient number which is unique for possibly linking to other patient information systems and a telephone number for the patient's base station unit 30.
  • additional information is maintained for each patient case which is linked to the patient information.
  • Such information may include current medications taken by the patient, cunent diagnosis information, base station ID, settings used to obtain data from the base station unit 30 and auxiliary sensors, and the like.
  • the software of the remote monitoring station 50 maintains the patient database 110 and allows the operator to access such data for analysis and processing.
  • database manager 112 manages all interactions with the patient database 110.
  • Database manager 112 runs as a continuous background process to ensure that data can always be stored on arrival.
  • the main interface is with the database management system used for the patient database 110; all other interfaces involve extraction of information from the patient database 110.
  • Schedule manager 114 is responsible for all interactions with the base station unit 30 and, like the database manager 112, runs continuously as a background process. Since information about the required schedules for patient studies is stored in the patient database 110, the schedule manager 114 must obtain all relevant schedule information from the database manager 112. Similarly, the schedule manager 114 passes all data to be stored (i.e. case session data, case alarm data) to the database manager 112 for storage in the patient database 110. The schedule manager 114 interfaces with the rest of the system through the database manager 112. The schedule manager 114 also needs to interface to any modems used to connect to base station units 30. Schedule manager 114 further implements the base station-remote monitoring station communications protocol described in the previous section.
  • the main user interface 116 provides all normal user interaction with the remote monitoring station 50.
  • the user interface 116 has no customization or set-up options; all such functionality is provided by the system maintenance user interface 118.
  • User interface 116 is designed to interface with the user manager 120, which maintains cunent state information and the like. However, some components may interact via different routes for efficiency if this is felt necessary (e.g. the schedule manager 114 may interface directly for live displaj')-
  • the user interface 116 embeds instances of the graphics control process 122 for controlling the display of graphical data.
  • the system maintenance user interface 118 provides control over any configurable parameters.
  • an interface to the audit log 119 is provided from the system maintenance user interface 118 so that the operator may view the audit log.
  • settings that cause changes in visual elements e.g. graphs
  • System maintenance user interface 118 also interfaces with the user manager 120, which maintains state information and the like.
  • User manager 120 maintains state information about a single client user session. The coupling of user manager 120 to user interface 116 depends on the implementation methods actually used.
  • user manager 120 obtains a user name and password from the user and then activates either the user interface 116 or the system maintenance user interface 118 depending on the privilege level of the user.
  • User preferences and other settings are read from the system settings object 123.
  • the user manager 120 also accepts connections from graphics objects 122 and supplies the necessary graphical data on demand.
  • the security system 124 maintains a secure database of user names and passwords used to access the system. There are two levels of user: user and administrator, which are mutually exclusive. In the preferred embodiment, the security system 124 maintains the user database files in an encrypted format. The user manager 120 validates users via password database 125 before continuing using a query to the security system 124.
  • an ECG analyzer 126 is provided to analyze in one second chunks any ECG signals passed to it.
  • the processed data is output in a form that can be stored back in the patient database 110.
  • the ECG analyzer 126 processes data as a complete session.
  • ECG analyzer 126 preferably interfaces to the database manager 112 to perform the ECG analysis and to flag events in the vital signs data as it is uploaded.
  • the ECG analyzer 126 performs a ⁇ hythmia analysis by searching for ventricular fibrillation (VF) and/or typing QRS complexes as normal, ventricular ectopic beat (VEB), SVEB, or artefact.
  • ST analysis may also be performed to check for ST segment elevation, depression, and the like.
  • ECG analyzer 126 If an arrhythmia event is found by ECG analyzer 126, the operator may choose to upload additional patient data around the arrhythmia event, send a warning message to the patient via the communications link 85 to cause the buzzer on the signal transfer unit 20 to sound, or the patient may be called in for evaluation. Generally, since the review is typically performed several hours after the data is collected, the event is noted and the patient is contacted off-line.
  • download scheduler 114 will use the case properties to download data from the patient base station units 30.
  • the information that the user can specify for a patient's schedule is as follows:
  • the download scheduler 114 should be aware of the download bandwidth available to it, so that estimates of download times can be presented to the user. This can be refined based on actual data transfer times experienced by the system.
  • the download scheduler 114 will support multiple modems. If multiple downloads are scheduled for the same time, the download scheduler 114 will order them and perform downloads sequentially (or in parallel if multiple modems are present). Any downloads that fail should be moved to the end of the queue, and retried up to 3 times before failure is reported. Also, any downloads requested immediately by the user preferably will take priority over previously scheduled events, and the user warned of this fact. However, if the data requested does not exist on the base station unit 30, the fact will be audited, and an event raised for that patient, which would be reviewable with all other events on request. If the download is happening interactively, the user will also be notified with a message on the display screen of the remote monitoring station 50.
  • any data download shall not cause data to be removed from the base station unit 30 such that the same or additional data could be downloaded more than once if necessary (e.g. , in the event of a hard disk failure on the remote monitoring station 50 or in the case of a patient informing a physician that he or she felt poorly during the monitoring period at a time for which the data was not scheduled to be downloaded).
  • ECG analysis may be performed automatically upon data download, if appropriate. 2j . Flagging Events
  • the following types of event can be set by the remote monitoring station 50 to be flagged by the base station units 30:
  • the above events will be stored on the base station unit 30, and new events will be downloaded whenever the remote monitoring unit 50 and base station unit 30 connect.
  • ECG for both full analysis and heart rate calculation
  • respiration either respiration or bend channels, to produce a measurement of respiration rate
  • the audit record should be kept in audit log 119 (FIGURE 11) separate from the patient database 110. Clearing the audit log 119 will only be possible by administrator level users.
  • a checksum based on file size and modification date is kept in the system configuration, preferably encrypted. If on software start up, the checksum does not match the file, the software should refuse to start until reset by a user with privileged access. In other words, the software will not start until the password is entered. This event will then be logged into the audit log 119.
  • the audit log 119 will consist of entries showing the type of entry, time of occunence, and the name of the user causing the auditable event (where appropriate). Other event-specific information may optionally be added.
  • the events to be audited are:
  • FIGURE 12 illustrates a diagram of the top level uses of the remote monitoring station 50 of the invention. As illustrated, such uses include: adding a new patient to be monitored (creating a new patient case), modifying case properties, closing a patient case, downloading data immediately, monitoring real-time (live) data from a patient, reviewing downloaded data from a patient, reviewing events, performing system maintenance, and shutting down logging off the remote monitoring station 50.
  • the use cases and the user interface of the remote monitoring station 50 used for implementing such use cases will be described in this section.
  • the remote monitoring station's software communicates with the base station unit 30 via the base station/remote monitoring station protocol described above. Add a new patient
  • the user is prompted to enter the new patient information, with access to all fields in the patient database 110.
  • the user is prompted to either try again, create a new case for that patient or go to Modify Case Properties to modify the cunent case for that patient. If the patient has closed cases, the option is also given to re-open a case.
  • the patient information is added to the patient database 110 if the patient is a new patient, and the case information is also added to the patient database 110. Modify case properties
  • the user modifies any of the entries in the patient or case record, except the Patient Number and any auto-generated ID fields used to link databases together.
  • This page offers the option to have a look at the current status of the patient.
  • the download properties are entered, with about 3 common defaults accessible from a simple interface, and the cunent settings (if any) displayed.
  • Some types of download schedules actually result in multiple download instructions being generated, e.g. for downloading 5 minutes per hour over the course of a 24 hour period, with the actual download saved up for a later time.
  • download properties are validated, and any conflicts resolved (e.g. if an impossible amount of download time is required).
  • the download properties are then sent to the download scheduler 114. Since some downloads may take an extended period of time, it is desirable that an estimate of the online expected time should be presented when setting download schedules.
  • a page showing all possible event types is presented. If none has been set for the current case, all events default to OFF. Each type of event has default parameters that are supplied when it is activated. The events set for this patient case is saved in the patient database 110 with other download information. Changes to the alarm set are audited. Also, each event has associated with it a property that determines if any associated data for a given event is to be downloaded; this specifies the number of minutes data before and after the event to be acquired. This is determined by the remote monitoring station 50, so that the decision to download a session corresponding to an event is made only once an event has arrived at the remote monitoring station 50.
  • the following auxiliary sensors are supported by the base station unit 30: blood pressure (systolic, diastolic and mean), spirometry (FEV1 and PEF), and weight. Measurements are set on an case by case basis; a typical scenario might require 4 measurements per day. A measurement window is defined, outside of which, the measurement is not made. Optionally an alert point (in minutes before the end of the measurement period) is selectable, which causes the patient to be reminded by the buzzer of the signal transfer unit 20. When multiple measurements are required during the same time window, the order in which the patient is required to make measurements is controllable.
  • the user selects a patient case and establishes a connection with the appropriate base station unit 30. Failure to connect should be reported immediately. Conditions likely to cause failure are: 1) base station unit 30 turned off or not connected, 2) patient is not wearing a disposable sensor band 10 (data not available), 3) phone line is busy, 4) all user phone lines are busy downloading other patient sessions, and 5) the signal transfer unit 20 is out of range of the base station unit 30 (or in catch-up mode).
  • the monitored data is displayed in a real time, smooth scrolling display. When disconnected from the base station unit 30, the user may go to the review downloaded data section to analyze the session just downloaded. Review downloaded data
  • FIGURE 14 illustrates this use case and its associated subtasks, each of which will be described in turn.
  • the default display shows ECG, respiration, motion and bend data, with numerical values for heart rate (HR), respiration rate (RR) and temperature.
  • HR heart rate
  • RR respiration rate
  • the raw data channels are filtered for display purposes only (filtered data is not stored), and the display time base is selected from 5 seconds, 10 seconds, 20 seconds or 25 mm/sec. Any gaps in the data are shown as gaps in the graphs.
  • System maintenance allows scales to be changed, traces to be added or removed, and colors to be changed.
  • the user has controls to change the time base, to scroll backwards or forwards through the data, to pause the display (but not to stop live acquisition), to stop monitoring and disconnect from the base station unit 30, and to print the current screen.
  • User controls are as for live review, with the additional option to turn the above dynamic scrolling on and off.
  • data is shown as a page of graphs from the whole session, showing HR, RR, and temperature.
  • the display time base is selectable from 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours and 24 hours. Where the session is smaller than some of these ranges, not all options are available (e.g. 24 hour time base is not available for a 1 hour session). Any gaps in the data are shown as gaps in the graphs. Also, system maintenance allows scales to be changed, traces to be added or removed, and colors to be changed. In addition, the display is interactive, so that selecting a region of the graph allows access to the raw data for that section. This happens in such a way that returning to the summary view is simple (perhaps bringing up a separate window for the raw data, for example).
  • ECG analysis has not already been performed at the time of data download, the user is asked to confirm if ECG analysis should be performed immediately.
  • the entire patient session is sent to the ECG analyzer 126, and the progress through analysis is reported to the user by way of a progress bar. Once completed, the results of the analysis are saved to the session record.
  • the analysis options outlined in the following use cases are presented to the user. By default the summary report should be shown when analysis is complete.
  • the user is offered the ability to display a histogram of R-R intervals in the analyzed data.
  • a template display is provided which displays a page with the top 12 beat types, including the number of each type and the percent of total beats.
  • the beats shown are one actual beat from the raw data, including its time.
  • the user is permitted to navigate forwards and backwards through the different occu ⁇ ences of that beat type in the raw data.
  • the user may go to the section of data co ⁇ esponding to a given beat; such a display is in the "full disclosure" format where a trace is displayed with the same basic properties as the raw data graphs.
  • the ECG trace is labeled with all classified beats and rhythms identified by the ECG analyzer 126.
  • a summary report of the results of ECG analysis is generated.
  • the user has simple access to print out a report.
  • the ST/QT/NEB graph of ST Level, QT Interval, and VEB frequency and heart rate, plotted against time for the entire session may be available.
  • This routine displays a graph of data acquired from the auxiliary sensors at the base station unit 30. If no data exists for one of the auxiliary sensor types, no axes are drawn for that sensor. Graphs plotted are blood pressure (with systolic, diastolic and mean plotted on the same set of axes), FEV1 and PEF (highest of three readings plotted on different axes) and weight. All data points for a given series are joined by lines. Time base range is selectable between 1 week, 1 month, 3 months and 6 months. Review events
  • FIGURE 15 illustrates an analysis of the applicable alarms.
  • This report is the simplest and simply lists, in a text based form, the events that have occuned in the specified period. Information listed includes the time the event was triggered, the type of event, and the cause of the event (e.g. high threshold triggered).
  • the only customization is the ability to selectively show event of a particular type or all events.
  • the default is to show all events.
  • the data associated with it From a given event, it is possible to go to the data associated with it. For certain events, the data will have automatically been downloaded with the event itself; for others, the data may be included in an already downloaded session. In the remaining case, where there is no data associated with an event, the user is prompted to download the associated data.
  • This report shows a histogram spanning the selected time period, showing the number of events of each type that occuned.
  • the histogram columns are determined by the events selected for the patient. Threshold events will give rise to 2 columns each, one for high trigger, the other for low trigger.
  • This report shows a graph plotting the total number of events per 15-minute interval against time.
  • the graph is interactive in that selecting a point on the graph will open up a histogram, but with the data taken only from the selected 15-minute period.
  • C. Use of Remote Monitoring Station Software will now be described with respect to the user interface screen displays of FIGURES 16 and 17. To use the remote monitoring station software, the user logs in by entering a valid user name and password into a log in screen. Unless the user is a technician desiring to perform system maintenance, the user also ensures that the option "I want to monitor patient data" is selected. Once logged in, the user selects a patient using a choose patient screen.
  • a patient can be found by using the patient number, study code, patient initials, or any combination of these by entering the data and selecting a "Find” button. If the user desires to see a list of all patients, the user selects a "Select from all patients" button. On the other hand, if the user wishes to work with a new patient who has no record in the system, the user selects an "Add new patient” button. If no patients meet the search criteria, the user will be given a warning message. If the search resulted in just one patient, then the patient information will be shown in the "Case Home Screen" described below. However, if the search resulted in more than one patient, then the user will be shown a list of patients. The user selects the desired patient from the list and clicks on a "View selected patient” button. If the desired patient is not in the list, the user may select a "Go Back" button to try another search.
  • the case home screen 196 is divided into three areas: a portion 198 providing information relating to the currently selected patient and study case, a portion 200 listing a number of tabs that allow the user to look at various different configurations as well as to select different sessions of data, and a portion 202 including buttons for allowing the user to print various screens, download the patient data, and to change the cunently selected patient.
  • the user selects one of the tabs in portion 200.
  • the user Upon selecting the "Sessions" tab, the user sees the boxes 204 and 206 of FIGURE 16A. A list of days with sessions available is displayed in box 204, and a list of different times of the sessions is shown in box 206. The user selects a day from box 204 and one of the corresponding session times from box 206. The user then selects the "View selected session” button 208, and the session data is then loaded and displayed to the user.
  • FIGURE 16B illustrates the events screen 210 which appears when the "Events" tab is selected.
  • the events screen 210 lists the events that have occurred over a period of time. The use may select what type of event is shown (or elect to show all events) and over what period of time the events are to be collected. The user also receives an indication of when the last download of patient data occurred. To view the monitored data associated with an event, the user selects the event from the list and selects the "View data for event" button 212. The data is then loaded and displayed to the user.
  • FIGURE 16C illustrates the monitoring screen 214 which appears when the
  • Monitoring screen 214 gives a number of configuration options which allow the user to change the way in which the selected patient is monitored.
  • the top half of the monitoring screen 214 allows the user to change when and for how long the patient is monitored, including which days, the time of day, and for how long the patient will be monitored. The user may select up to 4 fixed times in which to monitor or elect to monitor on a periodic basis, such as every 6 hours.
  • the next part of the monitoring screen 214 allows the user to configure the time of day that the application will automatically call the patient's base station unit 30 to download the patient data from the base station unit 30 to the remote monitoring station 50.
  • the bottom part of screen 214 allows the user to setup which events should be monitored and the thresholds for these events. The user may also configure how much data on either side of the event should be downloaded in the next scheduled download.
  • FIGURE 16D illustrates the patient information screen 216 that appears when the "Patient Information" tab is selected. Patient information screen 216 displays all information relating to the patient and permits the patient information to be updated.
  • FIGURE 16E illustrates the auxiliary sensors screen 218 that appears when the "Auxiliary Sensors" tab is selected.
  • Auxiliary sensors screen 218 displays a number of configuration options that allow the user to change the way in which the auxiliary sensor measurements are taken at the base station unit 30.
  • the top part of the auxiliary sensors screen 218 allows the user to setup on which days the auxiliary sensor measurements are taken, while the rest of the auxiliary sensors screen 218 allows the user to configure up to 8 different measurements to be taken each day. The user simply selects "Active" in the checkbox and then specifies the time period in which the measurement must be taken.
  • the user may also tell the base station unit 30 to alert the patient by selecting the "Alert from” checkbox and specify the time at which this alert should take place.
  • the alert may be a light and buzzer on both the base station unit 30 and the signal fransfer unit 20.
  • the user selects the type of measurement from the list of available auxiliary sensors (e.g. blood pressure) to be used during the measurement.
  • FIGURE 16F illustrates the trend data screen 220 that appears when the "Trend Data" tab is selected.
  • Trend data screen 220 displays the readings taken from the auxiliary sensors during the study case. The layout varies depending on which auxiliary sensors are in use for a given patient.
  • the user is given the option of printing a report for the currently selected tab, to download data immediately from the base station unit 30 in order to view live data (if available) or previously recorded data, to change patients, or to exit.
  • the session data is loaded into a session view screen 222 of the type illustrated in FIGURE 17.
  • the session view screen 222 provides session information and allows the user to change the session to be viewed, provides a set of tabs 224 from which to select to view either raw, summary or ECG data, and provides buttons 226 to allow the user to print various screens and to close the session view screen
  • FIGURE 17 illustrates the summary graphs for heart rate, respiration and temperature when the summary button is selected and provides a way for the user to look at the data over a larger range of time (i.e., hours instead of minutes).
  • Control buttons 228 allow the user to move the cursor along the graph and to view the graph at different time scales.
  • the user may manipulate the cursor with a mouse to move the cursor along the graph.
  • a scroll bar 228 at the bottom allows the user to view the graphs at different times.
  • the user may select the "Raw Data" tab to review raw data over a smaller range of time or select the "ECG Analysis” tab to view the ECG analysis data for the cunent session. The user may select from among the types of ECG analysis available, and the system will display the analysis report.
  • the present invention provides more data, earlier, and at a lower cost than current telemonitoring systems.
  • the ability to monitor the patient continuously for several days means that parameters such as duration of drug effect, drug- drug interactions and safety, which are difficult to measure/monitor at present, may now be measured in a domiciliary setting thereby optimizing drug or other therapies.
  • the system of the invention permits closed loop control of drug presentation to the patient, whereby the physician may directly monitor the effects of adjusting drug dosages.
  • the system is designed to be very user-friendly, both from the patient's and the physician's perspectives, offering substantial advantages in patient compliance as compared to current telemetric monitoring methods.
  • data processing such as ECG analysis could be performed at the base station unit 30 and only the summary data transmitted to the remote monitoring station 50, thereby reducing download times considerably.
  • a radio receiver may be provided to the patient for attachment to his or her computer for use in downloading software and uploading data from/to an Internet server for connection to a predetermined remote monitoring station connected to a designated node on the Internet. This approach would eliminate the need for (and cost of) a separate base station. If auxiliary sensor functions were still required, connections could be built into the radio receiver unit.
  • a low bandwidth version of the invention may also be developed by tailoring the signal from the sensor band 10 so as to leave out unnecessary data.
  • two-way communication with the sensor band 10 may also be provided.
  • the received event data from several patients may be prioritized for patient management (triaging) using the techniques of the invention.

Abstract

A system, and method for monitoring health parameters, and capturing data from a patient (10) remotely using RF telemetry (20).

Description

PORTABLE REMOTE PATIENT TELEMONITORING SYSTEM
BACKGROUND OF THE INVENTION Field of the Invention
The present invention relates to a system and method for monitoring vital signs and capturing data from a patient remotely using radiotelemetry techniques. In particular, the present invention is a low cost, patient-friendly, ambulatory monitoring system for remote electronic capture of noninvasive vital signs data including, e.g., full waveform ECG, respiration rate, skin temperature, and blood pressure. The present invention also has the capability for real-time monitoring or recording of continuous or point-in-time information with the data presented to the user in a tailored form.
Monitoring software included in the system of the invention may also incorporate full ECG analysis as well as alarms for arrhythmias and other abnormalities determined from the measured vital signs.
Description of the Prior Art Before drugs and related therapies are approved for widespread use by physicians, such drugs and therapies typically undergo numerous trials for efficacy and safety. Successful human trials are critical to regulatory approval of a new drug or therapy, and accordingly, much money and effort goes into the human trials. At present, patients are selected for the trial and placed on the regimen under test. The efficacy and safety of the drug and/or therapy is tested by having the patient make numerous visits to his or her physician for testing during the trial period. While a great deal of information can be gathered at such tests, generally there is no method for collecting the data between physician visits, thereby causing decisions regarding efficacy and safety to be made based on a small sampling of the patients' experiences with the drug and/or therapy. More frequent visits to the physician would improve the data pool; unfortunately, such visits are expensive, add to the overall cost of the trial, and, because a limited data set is available, the trial duration is lengthened, thereby delaying the drug's market introduction. An improved technique for testing the efficacy and safety of a drug and/or therapy is desired which does not require additional visits to the physician. It is desired to develop a technique for collecting data from a human subject at all times during a trial without requiring any visits to the physician's office, thereby eliminating the cost and inconvenience of visiting the physician's office for routine monitoring. Also, an improved remote patient monitoring/management system is generally desired whereby useful vital signs data may be obtained from a patient without requiring frequent visits to the physician's office. Such remote monitoring/management is particularly desirable for home patient monitoring of patients with chronic illnesses such as congestive heart failure or for post-operative or out-patient monitoring. Prior art patient telemetry systems have had limited commercial success for a variety of reasons such as difficulty of use and cost.
Remote patient monitoring techniques are generally known in which electrodes are placed on the patient to monitor the patient's vital signs and the captured data is transmitted to a remote display for monitoring the patient's condition. Remote monitoring systems are lαiown which permit a doctor or nurse to monitor the conditions of several hospitalized patients from a central monitoring site in the hospital. Typically, sophisticated patient monitoring equipment is used to collect data from the patient, and the collected data is transmitted via wire to the central monitoring site in the hospital. Generally, wireless systems are problematic in the hospital setting because of the proximity of the respective patients and the amount of interference found in such a setting.
Typically, most of the patients receiving a particular drug regimen or therapy being tested are ambulatory and, in many cases, participating in the study from home. Remote monitoring of patients from their homes introduces an entirely new set of challenges for transmitting the gathered data to a central location for evaluation. Numerous attempts have been made to facilitate such data collection and transmission; however, in each case, cumbersome and uncomfortable monitoring equipment is placed on the patient and the patient is tethered to the monitoring equipment by electrical cords, thereby limiting the patient's movement. In some prior art systems, the electrical cords have been removed and the transmissions to the monitoring equipment made using telemetry techniques; however, such systems have been used primarily for real-time vital signs monitoring and not for data collection of the type needed for diagnosis and efficacy and safety testing. Moreover, such systems also limited the movement of the patient to a limited area near the vital signs monitor.
For example, an early telemetry system is described in U.S. Patent No. 3,603,881 in which short transmission distances to a building's wiring system are covered using NHF transmission. Physiologic data such as elecfrocardiographic (ECG) data is collected by a sensor and transmitted by a NHF transmitter to a fixed NHF receiver RF transmitter coupled to the wiring system in the building. An RF receiver demodulator monitor is coupled to the building's wiring system at the nurse's station for receiving the physiologic data for patient monitoring and/or data recording. A similar telemetry system for monitoring ECG signals is described in
U.K. Patent Application No. 2 003 276 except that telephone connections are used in place of the building wiring and the system is also designed to collect blood pressure, pulse rate, respiratory rate and the like and to relate that information to the physician via the telephone connections. Other early telemetry systems of the type described by Lewis in U.S. Patent
No. 3,943,918 and by Crovella et al. in U.S. Patent No. 4,121,573 use telemetric techniques to transmit data from a sensor device attached to the patient's chest via RF to a radio telemetry receiver for display and/or recording as desired. S.S. Ng describe yet another telemetry system for ECG monitoring in an article entitled "Microprocessor-based Telemetry System for ECG Monitoring," IEEE/Ninth Annual Conference of the
Engineering in Medicine and Biology Society, CH2513-0, pages 1492-93 (1987). Ng therein describes a system for providing continuous ECG monitoring and analysis by means of a PC AT via wireless link. In the Ng system, the patient requires a transmitter which is carried by the patient for sensing and transmitting the patient's ECG signal to a central base station via wireless link. At the base station, a receiver recovers the original
ECG signal from a few patients simultaneously for display. Each of the above-described telemetry systems is designed primarily for hospital use and include relatively expensive sensor arrays and processing devices for realtime patient monitoring and diagnosis. The real-time monitoring is generally used in an "alarm" mode to capture events, rather than to collect data over a period of time to determine trends which might indicate a more gradual deterioration or improvement in the patient's condition or to predict a forthcoming event. Also, these systems require the patient to remain in close proximity to the base stations including the receivers.
Bornn et al. describe a portable physiological data monitoring/alert system in U.S. Patent Nos. 4,784,162; 4,827,943; 5,214,939; 5,348,008; 5,353,793; and 5,564,429 in which one or more patients wear sensor harnesses including a microprocessor which detects potentially life-threatening events and automatically calls a central base station via radiotelemetry using a radio modem link. In a home or alternate site configuration, communications between the base station and remote unit is by way of commercial telephone lines. Generally, the system automatically calls "911 " or a similar emergency response service when an abnormality is detected by the ECG monitor. Unfortunately, .the sensor harness is quite cumbersome and conspicuous and includes sensors for performing an alert function rather than data collection and analysis functions.
Segalowitz discloses a wireless vital signs monitoring system in U.S. Patent Nos. 4,981,141; 5,168,874; 5,307,818; and 5,511,553 including a precordial strip patch including a multi-layer flexible structure for telemetering data by radio frequency or single wire to hardware recording apparatus and a display monitor. Microsensors and conductive contact elements (CCEs) are mounted on the strip patch so as to permit simultaneous and continuous detection, processing and transmission of 12-lead ECG, cardiac output, respiration rate, peripheral blood oximetry, temperature of the patient, and ECG fetal heart monitoring via a single wavelength of radio frequency transmission. While the precordial strip patch used by Segalowitz purportedly transmits vital signs data up to 50 meters, it requires a dual-stage operational amplifier chip, an encoder modulator chip, a wireless transmitter chip including an oscillator, and other costly components such as artificial intelligence software, sound and visual alarms, and a microprocessor. As a result, the precordial strip patch is relatively expensive to manufacture and operate. Also, as with the other telemetry systems noted above, the emphasis of Segalowitz is on real-time monitoring and alerting of medical personnel to immediate medical needs of the patient.
Platt et al. also disclose a sensor patch for wireless physiological monitoring of patients in U.S. Patent No. 5,634,468. Platt et al. describe a sensor and system for monitoring ECG signals remotely from patients located in non-hospital sites. In this system, a sensor patch containing sensing electrodes, signal processing circuitry and radio or infra-red transmission circuitry is attached to the patient's body and preferably worn for at least a week before its power supply is exhausted and the sensor patch is thrown away. A receiver at a primary site in the vicinity of the patient receives the data transmitted by the sensor patch and stores the sensed data. When the patient feels discomfort or concern, or if the portable unit sounds an alarm, the patient telephones the monitoring station and downloads the stored data from the portable unit via the standard voice telecommunications network. The downloaded ECG data is then monitored and analyzed at the monitoring station. The receiver in the proximity of the patient may be a portable unit carried around by the patient, where the portable unit includes a receiver, a processor for processing the received data to identify abnormalities, a memory for storing the sensed data, and circuitry for interfacing to a telephone line to send the ECG data signals to the monitoring station. The monitoring station decodes the received ECG signals and performs beat and rhythm analysis for classification of the ECG data. If an abnormal condition is discovered, medical persomiel in the vicinity of the patient are contacted. While the system described by Platt et al. may collect ECG data from the patient and process it at a remote monitoring station, the data is only collected when the patient initiates the data download. Otherwise, data is lost once the memory in the portable unit is full. No mechanism is provided for continuously collecting data, at all times, in a way which requires no patient action. In U.S. Patent No. 5,522,396, Langer et al. disclose a telemetry system for monitoring the heart of a patient in which a patient station includes telemetering apparatus for transmitting the outputs of patient electrodes to a tele-link unit connected to a monitoring station by telephone lines. As in the Platt et al. system, Langer et al. transmit ECG data to a central location. However, unlike the Platt et al. system, the Langer et al. system checks the ECG data for predetermined events and automatically calls the monitoring station when such events are detected. A similar telemetry system is described by Davis et al. in U.S. Patent No. 5,544,661 which initiates a cellular phone link from the patient to the central monitoring location when an event is detected. As with the Platt et al. system, neither of these systems provides a mechanism for continuously collecting data without patient action. Accordingly, a telemetry system is desired which collects vital signs data from a patient using an inexpensive device which permits the continuous collection of a patient's vital signs data without patient action. Also, a data management system is desired which permits the collected data to be reviewed and formatted for use in patient trials and the like. The present invention has been designed to meet these needs in the art.
SUMMARY OF THE INVENTION
The present invention meets the above-mentioned needs in the prior art by providing a portable remote patient telemonitoring system having four separate elements, each with different functions within the system.
The system of the invention is characterized by a first component, an adhesive, cordless, disposable sensor band with electrode patches, other sensors, and transmission circuitry for the detection and transmission of vital signs data. The sensor band is easy-to-use and is positioned on the patient by the patient. The sensor band is designed to be worn comfortably by the patient for 24 hours, at which time the sensor band may be discarded and replaced by a new sensor band. The system of the invention is further characterized by a second component, a small signal transfer unit that can either be worn by the patient, e.g., on his or her belt, or positioned nearby (within approximately 1.5 meters), e.g., on a desk or chair or at the bedside. The function of the signal transfer unit is to receive data from the sensor band, which it then forwards by, e.g., radio transmission to a base station that can be located up to 60 meters away. The small signal transfer unit is designed to minimize the transmission requirements of the sensor band while also allowing the patient to move around freely while his or her vital signs are being monitored.
A third component, a base station, receives data transmissions from the signal transfer unit and is designed to connect to conventional phone lines for transferring the collected data to a remote monitoring station. The base station may also be designed to capture additional clinical data, such as blood pressure data, and to perform data checks. For data transfer, the base station connects the output of the sensor band, via modem and land or cellular telephone line, to the remote monitoring station. Connections for auxiliary sensors such as a blood pressure cuff extend the number of clinical parameters that can be captured. Patient safety is enhanced by the ability of the base station to compare clinical data, e.g. ECG, against given profiles and to raise alarms when appropriate or when the base station is programmed to do so. Such alarms could be indicated to the patient by reverse transmission to the signal transfer unit.
The fourth component, a remote monitoring station, allows the presentation and review of data (including event flags) forwarded by the sensor band and other sensors and simply requires a standard PC running, e.g., Windows NT. ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep.
In preferred embodiments, the patient vital signs data collection and monitoring system of the invention is characterized by a sensor band having a sensor assembly for application to a patient. The sensor assembly produces a data signal including vital signs data indicative of values of at least one vital sign of the patient, and the sensor band further comprises a transmitter which transmits the data signal over a first communications link to a transceiver coupled to the first communications link so as to receive the vital signs data for retransmission of the data signal over a second, wireless communications link. A remote monitoring station is also provided which is disposed so as to receive the retransmitted data signal from the transmitter via the second communications link, where the remote monitoring station is characterized by its ability to capture the vital signs data for display and subsequent access and processing of the vital signs data for medical diagnosis or analysis.
In a preferred embodiment, the transceiver includes a buffer which stores vital signs data received from the sensor band at least during times when the second communications link is disconnected, lost, or unreliable. Also, the sensor band preferably comprises a transmitter having a first antenna which transmits the data signal over the first wireless communications link to a transceiver having a second antenna inductively coupled to the first communications link so as to form a wireless inductive loop with the first antenna for reception of the vital signs data. Also, in a prefened embodiment, the remote monitoring station captures the vital signs data and stores it in a database with vital signs data from a plurality of other patients. A user interface provides access to the vital signs data in the database for processing, medical diagnosis and/or analysis. In presently preferred embodiments, the sensor band measures full waveform single or multiple lead ECG, full waveform respiration, skin temperature, and motion and transmits the measured data to the signal transfer unit, where the data is retransmitted to the base station. Auxiliary sensors may be provided at the base station including a blood pressure cuff, a spirometer, and weight scales. Also, the user interface at the remote monitoring station may contain full ECG analysis software covering waveform measurements, interval measurements, beat-typing and arrhythmia detection. "Event flags" also may be generated and indicated to the physician for high and low heart rate, high and low respiration rate, high and low temperature, high and low blood pressure or arrhythmias. While there are many potential patient management applications for the remote telemetry system of the invention, such as remote measurement of cardiovascular abnormalities including hypertension, congestive heart failure, arrhythmia, silent ischaemia, and the like, and respiratory abnormalities including chronic obstructive pulmonary disease, in a presently preferred implementation of the invention, the remote telemetry system of the invention is also designed to reduce both the length and the cost of clinical drug trials by providing versatility in data collection with respect to site (in-clinic or domiciliary), time, and volume, and to provide direct, electronic data capture, which can be real-time if necessary. Additional applications include the monitoring of sleep apnea, diabetes, acute or sub-acute infection, asthma, and the like. The system of the invention may be used in a clinic or hospital setting but, when used in such settings, must be designed to minimize interference between radio signals.
Coπesponding methods of collecting a patient's vital signs data using the remote telemetry system of the invention are also described and claimed herein.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects and advantages of the invention will become more apparent and more readily appreciated from the following detailed description of presently preferred exemplary embodiments of the invention taken in conjunction with the accompanying drawings of which:
FIGURE 1 illustrates a presently preferred embodiment of the remote patient monitoring system in accordance with the invention.
FIGURE 2 illustrates a sensor band including electrodes and sensors for attachment to the patient's body for measuring and transmitting vital signs data such as full waveform single or multiple lead ECG, full waveform chest respiration, skin temperature, and motion using the techniques of the invention. FIGURE 3 illustrates the user interface to the signal transfer unit provided in accordance with the invention.
FIGURE 4 illustrates the user interface to the base station unit provided in accordance with the invention.
FIGURE 5 A illustrates a remote monitoring embodiment in which a server is used for data acquisition from a plurality of patients and providing the acquired data to client systems which are connected to access the acquired data for analysis.
FIGURE 5B illustrates a remote monitoring embodiment in which the end user has a server for data acquisition from a plurality of patients, where the end user accesses the server directly. FIGURE 6 illustrates a general block diagram of the system transmission electronics.
FIGURE 7A illustrates waveform templates which begin with a state change and end with a period free of state changes.
FIGURE 7B illustrates the method by which idle periods between changes are converted into a sequence of no-operation instructions such that the conect time delays between changes are introduced.
FIGURE 8 illustrates the sixteen channels spaced at 6 kHz intervals used in the communications link between the sensor band and the signal transfer unit.
FIGURE 9 illustrates the format of the data packets transmitted in the communications link between the sensor band and the signal transfer unit.
FIGURE 10A illustrates schematically the registration mechanism by which the signal transfer unit and the base station unit acknowledge their mutual presence and confirm the performance of the radio link.
FIGURE 10B illustrates the data flow mechanism by which measurement data is transferred from the signal transfer unit to the base station unit to provide the opportunity for the base station unit to reconfigure control parameters within the signal transfer unit if required.
FIGURES IOC and 10D illustrate the ARQ behavior when a single erroneous packet is detected and no further eπors occur on the link thereafter for transmission from the signal transfer unit to the base station (FIGURE IOC) and from the base station to the signal transfer unit (FIGURE 10D).
FIGURES 10E and 10F illustrate the ARQ behavior when two erroneous packets are detected consecutively and no further eπors occur on the link thereafter for transmission from the signal transfer unit to the base station (FIGURE 10E) and from the base station to the signal transfer unit (FIGURE 10F). FIGURES 10G and 1 OH illustrate the ARQ behavior when three enoneous packets are detected consecutively and no further eπors occur on the link thereafter for transmission from the signal transfer unit to the base station (FIGURE 10G) and from the base station, to the signal transfer unit (FIGURE 10H).
FIGURE 101 illustrates the ARQ behavior when a correctly received packet lies between two enoneous packets as the receiving unit detects two consecutive erroneous data packets and considers the radio link to have failed.
FIGURE 11 illustrates the architecture of software of the remote monitoring station.
FIGURE 12 illustrates a diagram of the top level uses of the remote monitoring station of the invention.
FIGURE 13 illustrates the modify case properties process implemented by the monitoring station of the invention.
FIGURE 14 illustrates the "review downloaded data from a patient" process implemented by the monitoring station of the invention. FIGURE 15 illustrates the "review events" process implemented by the monitoring station of the invention. FIGURE 16A illustrates the case home screen with the sessions available for the selected patient.
FIGURE 16B illustrates the case home screen listing the events which occurred for the selected patient during the selected time interval. FIGURE 16C illustrates the monitoring setup change screen available for the selected patient.
FIGURE 16D illustrates the patient information listing the patient data for the selected patient.
FIGURE 16E illustrates the auxiliary sensors setup screen available for the selected patient.
FIGURE 16F illustrates the trend data screen for displaying auxiliary sensor data available for the selected patient.
FIGURE 17 illustrates the summary graphs for heart rate, respiration and temperature when the summary button is selected.
DETAILED DESCRIPTION OF PRESENTLY PREFERRED EMBODIMENTS
A system and method with the above-mentioned beneficial features in accordance with a presently preferred exemplary embodiment of the invention will be described below with reference to FIGURES 1-17. It will be appreciated by those of ordinary skill in the art that the description given herein with respect to those figures is for exemplary purposes only and is not intended in any way to limit the scope of the invention. All questions regarding the scope of the invention may be resolved by refeπing to the appended claims.
I. System Overview
A presently preferred embodiment of the remote patient telemonitoring system of the invention is illustrated in FIGURE 1. As illustrated, the system of the invention comprises a disposable multi-parameter sensor band 10, preferably worn on the patient's chest, for measuring patient vital signs and transmitting the measured vital signs data, a signal transfer unit 20 in proximity to the sensor band 10 for storing and retransmitting the measured vital signs data, a base station unit 30 which receives the retransmitted vital signs data and transmits the vital signs data over a telecommunications link 40, and a remote monitoring station 50 which receives the vital signs data from the base station unit 30 via the telecommunications link 40. The operation of each of the components of the system will be described in more detail below. A. Multi-Parameter Sensor Band
As illustrated in FIGURE 2, the sensor band 10 is designed to extend across the patient's chest and includes electrodes and other sensors (not shown) which are situated so as to measure full waveform single or multiple lead ECG, full waveform chest respiration (using impedance and/or resistance bend sensor), skin temperature, and motion. Of course, other vital signs, such as EEG and blood oxygenation, could be measured as desired using sensors included within the existing sensor band and placed either on the chest or elsewhere on the body, or using sensors in another sensor band placed either on the chest or elsewhere on the patient's body. Conventional blood oxygenation sensors placed on the finger, wrist, or ear may also provide data through a wire or wireless link to the sensor band 10 or signal transfer unit 20. The signal processing and transmission circuitry 12 receives the sensor data from traces 14 and a directly connected thermistor (not shown) and is powered by, e.g., a zinc-air battery pack (not shown) designed to permit the sensor band 10 collect and transmit vital signs data for approximately 30 hours. The sensor band 10 is typically removed and disposed of every 24 hours and replaced by a new sensor band 10. Upon power up of the new sensor band 10, the serial number of that sensor band 10 is randomly generated and sent in a repeating cycle. The transmission circuitry 12 in the sensor band 10 includes a transmission antenna 13 which transmits digitized signal samples continuously via a wireless link to signal transfer unit 20, which is preferably within 1.5 meters distance. Alternatively, a back-up wire transmission link may be provided to the signal transfer unit 20; however, such a wire transmission link is not prefeπed because of the inconvenience to the patient. The sensor band 10 is designed such that the patient only has to prepare his or her skin, peel back a protective strip over the hydrogel and hydrocolloid adhesive layers which are, in turn, placed over the electrodes, signal processing and transmission circuitry 12, and battery, and stick the sensor band 10 to the prepared skin in a position for measurement of the vital signs such as ECG. The sensor band 10 may be provided in a number of sizes sufficient to administer to infants as well as large adults. The "N" bend 15 is preferably located between the left and right chest sections so as to allow some movement of the sensor band 10 when it is attached to the chest.
In a presently preferred embodiment, full waveform ECG data is collected at a 250 Hz sampling frequency from three electrodes: one electrode in portion 16 placed under the patient's left armpit, one electrode in a portion 17 on the right hand side of the chest, and one reference electrode in portion 18 on the left hand side of the chest. The ECG data is collected with a resolution of 10 bits.
Full waveform respiration data is also collected at a 25 Hz sampling frequency using the trans-thoracic impedance method, with a 50 kHz continuous reciprocating cunent and two electrodes (force and sense) at the left hand side of the chest and two electrodes at the right hand side of the chest. The sense electrode on the right hand side of the chest is preferably the same as that used for ECG detection. The respiration data has a data resolution of 8 bits. Respiration data (with the same qualities except for 7 bit resolution) may also be collected using a printed carbon on flexfrate resistance bend sensor 19 located on the left hand side of the chest. One or both methods of respiration measurement may be used for a given patient.
Skin temperature data is collected at 25 Hz using a thermistor located in portion 16 under the armpit. The temperature range is 25 to 45 degrees C with a reporting accuracy of +/- 0.5 degree C, an output sampling frequency of 25 Hz, and data resolution of 6 bits.
Motion data is collected at 25 Hz sampling frequency using impedance sensing across the chest using the same drive electrodes as those described for respiration above. The motion data has a data resolution of 6 bits. In a preferred embodiment, the motion data may be compared to the ECG waveform and/or respiration waveform to determine if the measured data has been corrupted by movement.
In modified embodiments, additional data, such as blood oxygen saturation data either from a finger band or included within the chest sensor band 10, may also be collected and provided to the sensor band 10 for transmission. Signal processing and transmission circuitry 12 preferably includes a single
ASIC (Application Specific Integrated Circuit) that will receive, amplify, filter, and signal process the analog data from the sensors, perform analog to digital data conversion at 10 bit accuracy (with subsequent reduction for all but the ECG signal), pass the data stream to two micro-controllers which format and modulate the data stream and output it back to the ASIC; however, the functionality of a one or more such micro-controllers could be implemented in the ASIC using techniques known in the art. In a preferred embodiment, the ASIC contains an H Bridge Drive circuit for output transmission of the data stream using antenna 13. The data is output from the ASIC either by a single wire (back up), or by wireless inductive transmission to the signal transfer unit 20. The ASIC and any microcontrollers of the transmission circuitry 12 are mounted on a flexible or rigid PCB which also contains passive components (resistors, capacitors etc.), a crystal, batteries, and connections. The PCB is connected to a flexible substrate which has printed circuit traces 14 providing connections to the electrodes and the antenna 13 or wire. More details concerning the design and manufacture of the sensor band 10 can be found in contemporaneously filed U.S. Patent Application Serial Nos. 09/292,159 and 09/292,157, the contents of which are incorporated herein by reference.
For the wireless communications used in the prefeπed embodiment of the invention, the sensor band 10 uses a one-way inductive transmission scheme using digital frequency modulation in a 4 kHz band on channels with 6 kHz separation in the frequency range 50-150 kHz for a transmission distance of up to 2.5 meters. Preferably, the randomly-generated unique serial number of each sensor band 10 is inserted in the data transmissions for easy tracking. The transmission antenna 13 is either screen-printed on the flexfrate or provided as a wire wound coil and embedded within the underarm portion 16 for location under the patient's armpit. Additional information regarding the antenna 13 may be found in the afore-mentioned related applications, while additional information regarding the inductive transmission scheme will be provided below.
B. Signal Transfer Unit
In accordance with a presently prefeπed embodiment of the invention, a patient will carry a signal transfer unit 20 to receive the vital signs data signals transmitted by the sensor band 10. The signal transfer unit 20 is designed to retransmit the received data to the base station unit 30 from a distance of up to 60 meters, but a typical range is approximately 30 meters. The signal transfer unit 20 need not be carried by the patient at all times, but must be within communications range of the sensor band 10 (unless a wire is used) in order to receive the transmitted vital signs data. The signal transfer unit 20 is small (approximately 110 x 65 x 25 mm) and is battery operated using, e.g., 4 "AA" primary or rechargeable cells, or a rechargeable battery pack designed to last for a minimum of 30 hours. Preferably, the signal transfer unit 20 has a clip for attacliment to a waist belt and/or a holster for easy caπying by the patient.
The signal transfer unit 20 has a memory buffer which is used in the case of a loss of radio connection with the base station unit 30. This memory buffer is capable of storing vital signs data from the sensor band 10 for a period of time determined by the size of the memory buffer. The memory buffer thus allows the patient increased mobility by allowing the patient to move out of range of the base unit 30 for some period of time, preferably at least an hour (one hour of storage would require a 2 MB buffer using the sampling rates described herein and no data compression). The present inventors contemplate that, as memory options expand and costs continue to fall, the signal transfer unit 20 may be designed to include enough memory to permit the patient to move out of range of the base station unit 30 for even longer (e.g., 24 hours) without losing any data. Preferably, the signal transfer unit 20 automatically shuts down its transmission circuitry when it is out of range of the base station unit 30 in order to save energy. In this case, the signal transfer unit 20 keeps trying to reconnect to the base station unit 30 until it is back in range. Generally, the memory buffer will operate in FIFO data transfer mode and the signal transfer unit 20 will transmit data at a rate substantially faster than it is received so that the memory buffer may be emptied once the signal transfer unit 20 comes back into range of the base unit 30. However, the inventors contemplate that, in another embodiment, if an alarm condition is detected in the received data by the base station unit 30, the most recent data could be transmitted to the base station unit 30 first. Also, if the memory buffer should become full at any point, the earliest data in the memory will be replaced with the latest data.
As illustrated in FIGURE 3, the signal transfer unit 20 preferably provides several buttons for inputting information and displays/alarms for providing information to the patient. For example, event buttons 21 may be pressed to identify a particular event such as the taking of medication or pressed to indicate that the patient is experiencing a particular pain, feeling ill, and the like. Preferably, event buttons 21 are low profile or recessed to prevent them from being pressed accidentally. These events may be specified by the physician and agreed upon by the patient. Also, a light 22 may be illuminated when an auxiliary sensor measurement by the base station unit 30 is scheduled. A buzzer sound may also be provided as desired. A buzzer silence button 23 also may be used to silence the buzzer.
In a prefeπed embodiment, warning lights 24 are provided in addition to the buzzer to indicate particular conditions and/or that the system is not working properly. Such conditions include battery low in signal transfer unit 20, batteries of the signal transfer unit 20 are at the end of recharge life, no signals are being received from the sensor band 10, loss of radio contact with base station unit 30, the memory buffer in the signal transfer unit 10 is 90% full, the memory in the base station unit 30 is 90% full, time to take treatment, time to take an auxiliary sensor measurement at the base station unit 30, a physiological alarm condition has been detected in the base station unit 30, and the like. Depending on the LED "message", the patient may need to take appropriate action.
Upon starting a monitoring session, the patient will simply need to check that batteries are inserted coπectly in the signal transfer unit 20, that the power on LED is lit, and that there are no warning lights 24 indicating low power, loss of contact with the base station, etc. At the end of each day, or when the patient changes the sensor band 10, he or she will need to recharge the batteries of the signal transfer unit 20 or replace them with new ones. Other than this, no action will be required on the part of the patient to operate the signal transfer unit 20. However, in the event that a wire link from the sensor band 10 is used instead of wireless transmission, the patient will need to connect the wire link from the sensor band 10 to the signal transfer unit 20. The signal transfer unit 20 will receive the vital signs data signals from the sensor band 10 using three receiving coils (or via the wire back up link). Data packets received are CRC checked, and any packets of data not received coπectly or intact by the signal transfer unit 20 are discarded. In the presently preferred embodiment, the signal transfer unit will only receive data from a single sensor band 10, although software change on the signal transfer unit 20 will enable multiple sensor bands 10 to broadcast vital signs data to a single signal transfer unit 20. The signal transfer unit 20 may also have an internal position sensor which, when the patient is carrying signal transfer unit 20, indicates when the patient is in the horizontal position and will switch when the patient's position changes towards the vertical by more than 15 degrees. A three axis sensor or accelerometer may be used for this function. The signal transfer unit 20 may also have the facility for the connection of a microphone for recording lung or breathing sounds.
In a presently prefeπed embodiment, the signal transfer unit 20 transmits all data to the base station unit 30 via a half-duplex single frequency radio link using standard off the shelf radio components and a transmission rate of 40 kbps, with a frequency shift keying modulation scheme. The transmission frequency is preferably 433 MHZ in Europe and 915 MHZ in the United States and Canada. As will be explained in more detail below, the radio transmission system uses a simple low-power, high efficiency protocol, ensuring CRC eπor checking of data packets in the forward direction, with an instruction set enabling retransmission of erroneous packets. The system is preferably fail-safe, erring on the side of sending no data rather than enoneous data.
A more detailed description of the structure and operation of the signal transfer unit 20 of the invention may be found in contemporaneously filed U.S. Patent Application Serial No. 09/292,158, the contents of which are incorporated herein by reference. _ Base Station Unit
The signal transfer unit 20 transmits its signals via radio link to base station unit 30, which is powered by a selectable 110/230V mains power supply and includes a modem connection for a land telephone line or cellular link 40. The modem is used to send data and information to a remote monitoring station 50 at a remote telemonitoring center, which may be a physician's office or a hospital. In using the base station unit 30, the patient will need to ensure that it is switched on and that the telephone line 40 is connected. Otherwise, the base station unit 30 operates automatically, with no further action required by the patient, other than the use of auxiliary sensors.
In a presently preferred embodiment, a base station unit 30 can only receive signals from a single signal transfer unit 20, and two base station units 30 will not be able to operate within interference range of each other unless they are frequency differentiated. Of course, known transmission techniques such as spread spectrum, CDMA, or TDMA may be used to permit the reception of signals from a plurality of signal transfer units 20 at a single base station unit 30.
As illustrated in FIGURE 4, the base station unit 30 may include a liquid crystal display screen 31 which provides information regarding system operation and gives the patient guidance when stepping through the options for collecting data from an auxiliary sensor. A light 32 indicates that the base station unit 30 is receiving mains power. A similar light 33 may be used to indicate that the base station unit 30 is communicating with the remote monitoring station 50 via modem. An auxiliary sensor button 34 illuminates to indicate that an auxiliary sensor measurement is due, and the auxiliary sensor button 34 may be pushed to acknowledge when an auxiliary sensor measurement is about to be started and when it has been completed. A buzzer silence button 35 is preferably provided to silence the buzzer, which will sound to indicate that a message is to be read on the display screen 31. A telephone hang-up button 36 preferably breaks the communication between the base station unit 30 and the remote monitoring station 50 when depressed so that normal use of a phone connected to the same telephone line either directly or via a base station port is enabled, e.g., in emergency situations.
As noted above, the base station unit 30 preferably includes the facility for the connection of a blood pressure sensor to a connector 37 or a spirometer or weigh scales to a connector 38. The blood pressure sensor and spirometer are preferably standard commercially available units with standard RS232 digital data output streams. The base station has electrical isolation to these units. Alternatively, other point in time sensors such as a blood glucose meter could be connected to either connector 37 or 38.
During operation, the base station unit 30 will collect and store all data received from the sensor band 10. The base station unit 30 preferably has a hard disk memory, enabling storage of data until it is ready to be sent to the remote monitoring station 50. In a presently prefeπed embodiment, a memory having the capability of storing several days of data (at least 2 GB of memory at the sample rates described herein and assuming no data compression) is desired. Preferably, the sensor data from the sensor band 10, the event data (threshold violations, button presses, and the like), and the auxiliary measurement data (spirometer, weight scales, and/or blood pressure) are stored separately and aged independently in the memory of the base station unit 30 based on the time stamps from the sensor band 10 and/or the signal transfer unit 20. Time synchronization signals may be sent from the base station unit 30 to the signal transfer unit 20 and/or sensor band 10 to synchronize the time stamps. All data is retained in the base station memory until either it is directed to be discarded by an instruction sent from the remote monitoring station 50, or until the base station memory is full, at which point the earliest data is discarded first.
In the prefeπed embodiment, the base station unit further contains software algorithms which enable the calculation of heart rate and respiration rate from the ECG and respiration signals, respectively. Such algorithms include artefact detection and filtering to ensure that a high quality reading is obtained. Preferably, the algorithm for heart rate also includes a 50Hz/60Hz notch filter for removal of any mains noise. The base station may further contain a look-up table to convert signals received from the thermistor of the sensor band 10 into an accurate temperature reading. The base station unit 30 may also include software which compares the various vital signs data signals received with pre-programmed thresholds for certain physiological variables. In particular, the base station unit 30 may look for threshold violations; however, the actual processing for determining whether an "event" has occurred is performed when processing the raw data at the remote monitoring station 50. Where data points fall outside these threshold values for a certain period of time, the base station unit 30 may record an event condition and could also indicate this fact to the patient by reverse radio transmission to the signal transfer unit 20 via a two-way radio link. Events are preferably generated for high or low heart rate, high or low respiration rate, or high or low temperature. The inventors also contemplate that, in alternative embodiments, events could be generated for high or low blood pressure, ischaemic events, or aπhythmias.
When an event is generated, the buzzer on the base station unit 30 is sounded and the buzzer silence button 35 is illuminated. Events will also be generated at the base station unit 30 if the base station unit 30 has lost contact with the signal transfer unit 20 and/or if the memory of the base station unit 30 is full. Any or all of these situations except for loss of contact could also generate an "event" and/or an alarm in the signal transfer unit 20 through reverse transmission via the two-way radio link. As will be explained in detail below, the base station unit 30 is preferably programmable remotely from the remote monitoring station 50 via modem or, in an alternative embodiment, locally using a laptop or PC. In the latter case, the base station unit 30 would have an interface for the optional connection of a PC or notebook computer for the display of live graphical data or for programming of the base station unit 30. The local PC or laptop could also be used for a simple video link with the remote monitoring station 50. In any case, programming of the base station unit 30 is password protected. Programming involves setting study start and stop times, setting alarm thresholds and minimum breach times, setting pre-specified dial up times for the remote monitoring station 50 to download data, setting data collection times (e.g., 5 minutes every hour), and setting times for recording data from auxiliary sensors. In this manner, the physician may choose to collect only the required data and at intervals set by the physician.
In the prefeπed embodiment, the remote monitoring station 50 has the ability to automatically dial in to the base station unit 30 to download data at specified times or to view real-time live data. If the line for the base station unit 30 is busy, the remote monitoring station 50 may also have the automatic ability to try again after a pre- specified period. However, the inventors contemplate that in an alternative embodiment the base station unit 30 could initiate the dial-up for uploading the stored data. Generally, the data is downloaded in a binary TCP/IP compatible protocol, providing guaranteed transmission integrity over the link with the remote monitoring station 50.
In the prefeπed embodiment, the base station unit 30 has a plug-in for a normal telephone so that the patient is not required to have two telephone lines. Voice communications will take precedence over data communications, i.e. the patient will be able to interrupt a data download if he or she needs to make an urgent telephone call. In addition to the base station unit 30, each patient may be provided with a battery charger for charging the batteries of the signal transfer unit 20 if rechargeable batteries are to be used.
D. Remote Monitoring Station
At the remote monitoring station 50, a physician or nurse has access to a normal PC connected by modem to the telephone line 40. Physiological monitoring software is run on this PC or on a networked system to process the data received via the modem from the base station unit 30. Preferably, though not necessarily, the received data will incorporate the serial number of the base station unit 30, as well as the serial number of the sensor band 10, to be used for historical data tracking purposes, should this be necessary. Remote monitoring station 50 may display continuous or non-continuous data in real-time or historically and may also enable the physician to review previously stored data, to view events, and to store data to a database or other electronic file.
As illustrated in FIGURE 5 A, a server 60 may be located in the transmission lines 40 to permit data from a plurality of patients to be stored on the server 60 and provided to a plurality of remote monitoring stations 50 in a telemonitoring center or centers. In this case, a plurality of patients are monitored using a telemonitoring service which receives data generated and transmitted in accordance with the techniques of the invention and allows the operator at the telemonitoring center to configure studies and to analyze data. On the other hand, as illustrated in FIGURE 5B, the remote monitoring station 50 may be used to simply monitor a single patient or several patients from a single remote monitoring PC running the server 52 and physiological monitoring software. At the start of any patient study, the operator of the remote monitoring station 50 will need to configure the system's software for the type of study, e.g. real-time continuous viewing, historical data viewing, viewing of summaries, etc. The operator will also need to remotely program the base station unit 30 to collect the desired data from the patient. In some circumstances, the operator at the remote monitoring station 50 also may want to dial in to a particular base station unit 30 to check the status of a particular patient. In these instances, the operator will be able to view real-time data, even if such data is not otherwise scheduled to be downloaded by the base station unit 30 for a particular study. The operator also may download any data that has already been stored at the accessed base station unit 30. The operator will need to program a unique patient identifier at the start of a study so that data recordings can later be identified and so that patient data confidentiality can be maintained.
The inventors contemplate that under continuous real-time monitoring, the physiological monitoring software could detect alarm conditions locally and could alert the operator of the remote monitoring station 50 or of a central monitoring station on a network to this fact. In a preferred embodiment, the remote monitoring station 50 may display several scrolling traces and several numerical measures on a single screen at any time, with the operator able to configure which traces or measures he/she wishes to see. The operator will be able to choose from a number of time bases for the review of live or historical data. Some parameters (e.g. temperature) could be shown as the latest numerical value only. The operator will also have the ability to define a data schedule enabling him/her to download selected samples of the continuous and auxiliary sensor data to the remote monitoring station 50. When a threshold event is detected by the base station unit 30, a "recording session" for later download may be flagged, causing a block of data to be recorded containing all the parameters being monitored for several (e.g. ten) minutes leading up to the event and for its duration.
If a monitoring station is provided as in the FIGURE 5 A or 5B embodiments, the remote operator will be able to review data from a number of patients, with data being transmitted from a number of base station units 30. When data is downloaded, events data could be sent first and could be viewed for any particular patient by the operator. The physiological monitoring software enables summaries of data to be viewed, e.g., traces of sample data points taken every 15 minutes for a particular parameter, and a display of events generated. For review of historical data, on the other hand, the physiological monitoring software will enable the operator to look at data using a choice of time-bases and a horizontal scroll bar.
In a preferred embodiment, the physiological monitoring software contains software algorithms for the analysis of the ECG signal for standard single or multiple lead ECG waveform measurements, interval measurements, beat-typing and for arrhythmia detection. These algorithms preferably include artefact detection and filtering to ensure that a high quality reading is obtained. The algorithms preferably include a 50Hz/60Hz notch filter for removal of any mains noise and the above-mentioned 3 lead detection algorithm.
For any data downloaded by the base station unit 30, the data is stored in a standard flat file format on the local hard disk, or in a separate location such as on a separate optical disk drive. In a preferred embodiment, all blocks of data stored are in a form that enables them to be exported from the physiological monitoring software in an HL7 compliant format. Each block of data stored may have a unique patient identifier, the sensor band and base station unit identification numbers, the date, and the time.
Remote monitoring unit 50 may also perform other types of processing on the received ECG data such as heart rate variability analysis, atrial fibrillation detection, ST episode detection, QT analysis, and other flagging events. Such processing techniques may be used to detect disease states such as cardiac failure, hypertension, angina, ischaemia/ coronary artery disease, peripheral vascular disease, acute and chronic respiratory insufficiency, history of recurrent aπhythmias, sub-acute patients, post- infarction patients, acute and recuπent febrile illnesses (including malaria, hepatitis, lymphoma, Hodgkin's disease, AIDS, tuberculosis) and the like, and such processing techniques are believed to be lαiown to those skilled in the art.
II. Data Transmission Scheme
As noted above, the present invention wirelessly transmits data from the sensor band 10 a short distance to a signal transfer unit 20 and retransmits the data wirelessly from the signal transfer unit 20 to the base station unit 30. The data is then transmitted over conventional phone lines 40 or via a conventional wireless telecommunications link to a remote monitoring station 40. Each of these transmission links will be discussed in detail in this section.
FIGURE 6 illustrates a general block diagram of the system transmission electronics. As shown, the sensor band 10 includes a plurality of sensors (e.g., electrodes) 62 which provide analog vital signs data via traces 14 to an ASIC 64 for A/D conversion and signal conditioning. ASIC 64 also provides the necessary supply and drive signals to the electrodes 62. One of the micro-controllers 66 implements the communications modulation coding scheme described herein and passes the modulated signal to ASIC 64 and then to an antenna for wire-free communication to the signal transfer unit's signal conditioning unit. ASIC 64 in conjunction with one of the micro-controllers 66 continuously transmits the data including vital signs data over communications link 65 to signal transfer unit 20, where the vital signs data is received by communications receiver 68 and processed by processor 70. For example, processor 70 may condition the received signal, optionally compress the received data, and store the received data in FIFO memory buffer 72. As noted above, memory buffer 72 preferably has sufficient size so that the patient may leave the range of the base station unit 30 for at least an hour without losing any vital signs data. Radio transceiver 74 of signal transfer unit 20 then transmits the data over communications link 75 to a coπesponding radio transceiver 76 of the base station unit 30. As noted above, base station unit 30 includes a processor 78 which preferably implements software algorithms that calculate heart rate and respiration rate from the ECG and respiration signals, respectively. The received vital signs data is accumulated in memory 80 where it is stored until a remote monitoring station download is initiated, at which time the stored data is uploaded over communications link 85 (e.g. including telephone lines 40) using modem 82 of the base station unit 30 and modem 84 of the remote monitoring station 50. For example, the vital signs data may be uploaded once per day in the early morning hours to minimize interference with normal telephone usage, uploaded several times per day, or once per week. Remote monitoring station 50 then processes and displays the received vital signs data using a conventional personal computer 86, as will be described in more detail in the following section.
The remainder of this section will address the formatting of the communications links 65, 75, and 85 in the prefeπed embodiment. The communications links described herein were chosen for satisfactory performance in the home environment. Those skilled in the art will appreciate that other communications modalities may be prefeπed in different environments under different circumstances. For example, radio transceiver 74 of the signal transfer unit 20 may include a conventional cell phone which communicates directly with the remote monitoring station 50 so as to eliminate the base station unit 30; similarly, communications link 85 could be a cell phone link. Moreover, the signal transfer unit 20 could be eliminated by providing cell phone capability in the sensor band 10 or by providing expanded broadcast capability to extend the range to the base station unit 30; however, such devices will inevitably be more expensive to manufacture than the device described in connection with the preferred embodiment of the invention.
A. Sensor Band - Signal transfer unit Link In the prefeπed embodiment, communications link 65 uses digital phase- shift keyed modulation to transmit the vital signs data via an inductive link. For the purposes of this discussion it is assumed that a band from 50 kHz to 150 kHz is available for inductive transmissions from the sensor band 10 to the signal transfer unit 20. If only a narrower frequency band is available, then one or more channels will be lost from the transmission scheme described below. The sensor band 10 and the signal transfer unit 20 each contain a coil, and inductive coupling between the two coils is used to transmit the vital signs data. In a preferred embodiment, the signal transfer unit 20 contains tliree orthogonal coils with reception selected on the coil with the most usable signal at any point in time. The preferred embodiment also defines sixteen frequency-division multiplex channels with carriers at 6 kHz intervals from 54 kHz to 144 kHz inclusive. A one-bit digital version of the modulated signal is generated directly in software by one of the micro-controllers 66. The steps entailed in producing the code for the one of the micro-controllers 66 are described below.
In the prefeπed embodiment, the modulation scheme employed for transmission from the sensor band 10 is digital QPSK (quadrature phase-shift keying). In this scheme, binary data is transmitted as bit pairs, known as symbols, at a regular rate, called the symbol rate. The effective bit rate is thus twice the symbol rate. Each symbol corresponds to a different phase offset (0, 90, 180 or 270 degrees) of the transmitted signal relative to a fixed carrier. These phase offsets can be represented as the points 1, i, -1 and - . in the complex plane. The nature of the transitions between adjacent symbols determines the envelope of the spectrum of the transmitted signal. In practice, to constrain the bandwidth of the signal, a raised cosine function is used to interpolate between the signals representing adjacent symbols. Unlike more sophisticated interpolation functions, the raised cosine function has the characteristic that the influence on the transmitted signal of one symbol does not extend further than the two symbols either side of it. Transitions between the symbols can be thought of as the motion of a point between the symbol points, and thus as a complex function of time. The transmitted signal is then the real part of this function multiplied by a complex exponential representing the carrier.
In the preferred embodiment, symbols are transmitted at a 2 kHz rate. Since each symbol represents two bits, this corresponds to a bit rate of 4 kbps. In the preferred embodiment, the caπier signal is phase-locked to the symbol transitions. For example, with a caπier frequency of 102 kHz, there are exactly 51 cycles (102kHz/2kHz) of carrier in each symbol time. Thus, the value at any given time of the complex exponential representing the carrier only depends on the time since the last symbol transition. This, coupled with the characteristic of the raised cosine interpolation function stated above, means that the transmitted signal is built up from only a limited number of template waveforms: one for each possible transition between symbols. Since there are four symbols, there are sixteen possible transitions and thus sixteen possible template waveforms (including those where the symbol remains constant).
The several stages involved in compiling the communications code will now be described. Reference is made to implementation on a PIC 16F84 micro-controller running at an instruction rate of 1 MHZ, but the principles described herein are generally applicable to other micro-controllers which may be used in the communications scheme described herein. An example carrier frequency of 102 kHz is assumed for illustrative purposes; the same principles will apply to other frequencies. The modulated output is generated on one bit of an output port, and symbol data is received on a pair of input bits. A trigger pulse is generated on a further output port bit to request each new symbol.
Sixteen template waveforms are generated at compile time that are sampled at the instruction rate of one of the micro-controllers 66, i.e. 1 MHZ. These template waveforms are then converted to digital streams, either by simple thresholding or by a more sophisticated 'bitstream' method. Each of the sixteen waveforms contains 500 (1MHz/ 2kHz) samples, for 8000 samples in all. Where simple thresholding has been used, each waveform consists of about 51 (102kHz 2kHz) pulses, or 102 state changes. If the phase angle increases through the waveform, there may be more than 102 state changes; if the phase angle decreases, there may be fewer.
The template waveforms are referenced by the symbol represented at their start (0,1,2 or 3) and by the symbol represented at their end (again 0,1,2 or 3). For example, waveform [0,1] starts with a phase angle of 0 relative to the implied carrier, and ends with a phase angle of 90 degrees relative to it. For a waveform [a,b] to join smoothly to a waveform [c,d], it is necessary that b=c. A symbol sequence ...u,v,w,x... therefore includes the waveform sequence „.[u,v][v,w][w,x].... With a slight modification to the interpolation function, waveform templates [u,0], [u,l], [u,2] and [u,3] can be made all to begin with the same sequence of samples and, in particular, can be made all to have their first state change at the same point. All samples leading up to this first state change are removed from the waveforms and added to the end of each waveform template [0,u], [l,u], [2,u] and [3,u]. This is carried out for each value of u from 0 to 3 as illustrated in FIGURE 7A. Each template waveform now begins with a state change and ends with a period free of state changes. This idle period will later be used to link together the various templates. As a result, the templates are no longer all necessarily the same length. The sampled waveforms are now converted into micro-controller instructions. Zero-to-one waveform state changes are converted into instructions which set an output port bit; one-to-zero wavefoim state changes are converted into instructions which clear that bit. Idle periods between changes are converted into a sequence of no- operation instructions such that the conect time delays between changes are introduced. This procedure is illustrated in FIGURE 7B. As shown, the end of each template now consists of a number of no-operation instructions.
A small number of extra instructions is required to read the state of the input port bits coπesponding to the next symbol to be transmitted, select the appropriate waveform template, and produce a symbol trigger pulse. The instructions at the start of template [u,0] (for each u) are searched for suitable points where these extra instructions can replace no-operation instructions. If symbol 1 is required, these new instructions cause a jump into the code for template [u,l] at the correct point to ensure continuity of the waveform; similarly, if symbol 2 is required, a jump is caused into template [u,2]; and if symbol 3 is required, a jump is caused into template [u,3]. Code in templates [u,l], [u,2] and [u,3] before the destinations of these new jump instructions will never be executed and is deleted. Finally, as illustrated in FIGURE 7B, some of the last no-operation instructions in template [u,v] (for each u and v) which were created in the step of creating an idle period at the end of each template are replaced by a jump instruction to the start of template v, again in such a way as to ensure continuity of the waveform. The code at this point is typically 8000 instructions long, too long to fit in a low-cost micro-controller. A number of optimization algorithms is therefore applied to reduce the code size. Unlike conventional optimization algorithms, it is essential that these preserve exactly the timing of instructions executed.
The code is searched for the longest sequence of instructions that occur more than once using an algorithm which iteratively increases the length of candidate sequences, rejecting them as they become unique. Only those sequences which could be converted to a subroutine are considered; these need to have enough no-operation instructions at either end to cover the subroutine call and return overheads of the microcontroller. When the longest sequence is found, it is converted to a subroutine with the appropriate number of no-operation instructions deleted from either end to cover the time required for the call and return; each occuπence of the sequence is then replaced with a subroutine call instruction. This procedure is then repeated until no further suitable duplicated sequences are found. The code size will now have been reduced to perhaps 2000 instructions.
The pool of newly-created subroutines is now searched to identify instances where the whole of a subroutine A (consisting of n instructions) is identical to the last n instructions of another subroutine B. All calls to subroutine A are replaced with calls to the point n instructions from the end of subroutine B. Subroutine A is then deleted.
A number of peephole optimizations is also performed which reduce code size while preserving timing in accordance with the invention. For example, on the PIC16F84, two consecutive no-operation instructions can be replaced with a jump to the following location, saving one instruction.
A small number of instructions is added to the beginning of the optimized code to initialize the micro-controller. The code is now complete and ready to be programmed into the appropriate one of the micro-controllers 66. The above procedure need only be performed once for each desired caπier frequency.
As noted above, the communications link 65 is divided into sixteen channels spaced at 6 kHz intervals. For simplicity, the center frequencies of the channels are at multiples of 6 kHz. The lowest-frequency channel is therefore centered at 54 kHz and the highest at 144 kHz as illustrated in FIGURE 8. Channels are refeπed to by number, where the number is the center frequency divided by 6 kHz. Thus, the available channels are numbered 9 to 24 inclusive. Each channel canϊes a QPSK signal with a symbol rate of 2 kHz and a data rate of 4 kbps. The channel thus occupies a band 2 kHz either side of its center frequency with guard bands 2 kHz wide separating adjacent channels as shown in FIGURE 8.
Those skilled in the art will appreciate that, given the digital nature of the coil driving circuit of the sensor band 10, the majority of the out-of-band power for any channel is likely to be at its third harmonic. Since the third harmonic of channel 9 (52 kHz -56 kHz) lies in the range 156 kHz -168 kHz, it will not cause interference with channel 24, which occupies the range 142 kHz - 146 kHz.
The majority of the different types of sensor bands 10 for use in accordance with the invention will have data rates which fit comfortably within a 4 kbps channel. For those sensor bands that require a higher data rate, it is possible to retain the phase-shift keying modulation scheme of the preferred embodiment but to represent more than two bits per symbol by the use of m-ary phase-shift keying. This would allow a higher data rate in the same channel width, although a higher signal-to noise ratio would be required for reliable communication. Alternatively, data compression techniques may be used to compress data into a single 4 kbps channel, or multiple channels could be used for a single sensor band.
The QPSK signal can be generated digitally and then passed through an oversampling modulator, implemented within the ASIC 64. This would directly generate a digital signal suitable for feeding to the coil driver. Alternatively, the transmitter of the sensor band 10 may require a small additional circuit, probably involving a phase-locked loop, to reduce out-of-band transmissions further than a practical oversampling modulator will allow.
At the communications receiver 68 of signal transfer unit 20, a number of QPSK channels can be simultaneously demodulated using a DSP device. A front-end comprising amplifiers, anti-aliasing filters and analog-to-digital converters is required. Such circuitry is described in detail in the aforementioned related U.S. Patent Application Serial No. 09/292,159.
In accordance with the invention, the output of the DPS device comprises three signals:
1) a clock signal C; 2) a framing pulse F; and
3) a data signal D.
In the preferred embodiment, the data from the sensor band 10 consists of a continuous sequence of 160-bit packets, where the bit rate is nominally approximately 4 kHz and the packet rate is thus approximately 25 Hz. The framing pulse F indicates the position of bit 0 of each packet.
As illustrated in FIGURE 9, of the 160 bits in each packet, 128 form the data payload. The remainder include a header including a field to indicate the format of the data and a sequence number that increments with each packet. A trailer includes an error-checking (CRC) field. The data capacity of the channel is therefore 25 Hz multiplied by 128 bits, or 3200 bps. This is sufficient capacity for the majority of the known sensor aπays to require only one channel each. If not, data compression or multiple channels may be used for each sensor band 10. Packets of data from several received channels can be ' multiplexed into a single output stream for the DSP. As shown in FIGURE 9, each packet of 160 bits is divided into a number of fields as follows:
1) bits 0-7; header, including packet type and sequence number. The packet type field defines the format of the data within the payload field. Each different sensor array could be assigned a different packet type. The three-bit sequence number increments modulo 8 with each packet and can be used to check the integrity of the data stream.
2) bits 8-135; data payload. The format of the data within the payload field is defined by the packet type.
3) bits 136-159; trailer. This field may include a CRC field which is an eight-bit CRC of the data in bits 0-135 of the packet. The CRC may be used to detect eπors in marginal reception conditions or in the presence of interference.
Of course, certain sensor arrays may generate raw data at a rate higher than one channel can handle. The provision of suitable compression in the ASIC 64 or one of the micro-controllers 66 would allow one channel to be used, as well as reducing the bandwidth requirement of the transmissions over the communications link 65. In addition, buffering requirements in the signal transfer unit 20 would be reduced, and communications requirements between the signal transfer unit 20 and base station unit 30 would be simplified. However, if such compression cannot be provided due to cost and the like, more than one channel would need to be used for each sensor aπay 10. B. Signal Transfer Unit - Base Station Unit Link
As noted above, the signal transfer unit 20 has a memory buffer 72 which enables at least three modes of operation for the signal transfer unit 20. In normal operation, the signal transfer unit 20 communicates with the base station unit 30 with no data stored in the memory buffer 72. The memory buffer 72 is preferably disabled in order to minimize the supply cunent. The data is transmitted via the communications link 75 using the protocol to be described below. The user interface (FIGURE 3) has normal operational information displayed. The signal transfer unit 20 may also operate without a communications link to the base station unit 30. In this state, the vital signs data arrives at the signal transfer unit 20 as in the normal state. However, the data is redirected from the communications receiver 68 to a buffer of processor 70. When the processor's buffer fills up (this only allows 4 packets worth of data and is held on-chip in the RAM of processor 70) the data is directed to the much larger memory buffer 72, which may be, e.g., a DRAM, a flash memory, or other comparable memory device. If the memory buffer 72 becomes 90% full, an alarm condition may be set. On the other hand, the signal transfer unit 20 may operate with a communications link 75 but still having data stored in the processor's buffer and/or memory buffer 72 on a "first-in, first-out" (FIFO) basis. In this state, the buffered data is sent to the base station unit 30 as quickly as possible, with new incoming data being directed to the memory buffer 72. In any of these states, the CRC status bits of the incoming data frame will be examined, and if these show that the data is valid, the data is extracted and, depending on the state of the signal transfer unit 20, this information will either be directly built into a packet for transmission to the base station unit 30 (or placed in a buffer ready for transmission) or will be sent to the next available area of the memory buffer 72. If the CRC fails, the data packet is discarded.
In the prefeπed embodiment, the radio transceiver 74 of the signal transfer unit 20 is a transmitter/receiver based on the RF2905 transceiver chip with the following interface lines to baseband: 1) data in (data received from the base station unit 30);
2) data out (data transmitted to the base station unit 30);
3) T/R - transmit/receive switch; and
4) power up flag (to wake the transceiver from sleep mode). The other interface connections to the RF2905 chip can be derived from these interfaces using a small amount of logic circuitry so as to reduce the number of I/O ports required on the processing device.
In the prefeπed embodiment, communications link 75 runs at a 40 kbps baud rate. A packet typically comprises a preamble, a synchronization codeword, various packet definition codes, a packet ID, data, and a CRC error detection code. In a preferred embodiment, the CRC code is 16 bits wide and the data content within a packet is 32 bits, resulting in a CRC algorithm performing over a 48-bit packet. The CRC is performed in baseband in the signal transfer unit 20 for both the transmitted and received data. The CRC algorithm is performed in real-time if possible, utilizing 32-bit registers and various rotate and shift instructions in the instruction set of processor 70. If the CRC cannot be performed in real-time, the data will be buffered and the CRC will be perfonned as soon as the current reception is complete. Due to the base station channel being predominantly for data traffic to the base station unit 30, this incoming data procedure should have little activity; however, this will not be the case during periods of poor reception when data will need to be re-transmitted and "NAK" codes sent regularly from the base station unit 30. Data received from the transceiver of the radio transceiver 74 is asynchronous; therefore, clock extraction is a function that must be performed by the signal transfer unit 20 in baseband. This involves over-sampling of the synchronization codeword (a 101010... pattern) and performing frame alignment. The communications protocol between the signal transfer unit 20 and the base station unit 30 has been designed to address the following requirements:
1) The system must be compatible with half duplex operation for implementation within a single radio frequency allocation;
2) Battery life at the signal transfer unit 20 is a critical parameter in the overall system performance and the power consumption at the base station unit 30 is of lesser consideration. Therefore, the protocol must favor low consumption at the signal transfer unit 20;
3) High efficiency in the data flow from the signal transfer unit 20 to the base station unit 30 is required to maximize the channel information capacity of the radio link; 4) A simple protocol implementation is desirable to minimize processing power at the signal transfer unit 20 and hence reduce power consumption; and
5) A high degree of data integrity is required with enoneous data being harmful to the applications supported by the system. Therefore, the system must 'fail safe' with the preference being to supply no data rather than erroneous data. The communications protocol between the signal transfer unit 20 and the base station unit 30 has been designed to transport data over a physical channel implemented as a radio link. The behavior of radio propagation channels is well documented and of relevance to the protocol design is its tendency to exhibit burst eπor characteristics rather than random bit eπors. This is due to fading effects originating from mechanisms such as multi-path, shadowing, and antenna orientation. Therefore, a data packet scheme has been adopted with CRC to provide error detection and an ARQ scheme to retransmit enoneous data packets. No provision for bit eπor correction has been implemented and data scrambling has been included to minimize the DC component in the data stream. Wherever possible, the protocol has been designed to be unrestrictive to the data format being transferred over the communications link 75 while maximizing efficiency, which assumes prior knowledge of the format of the measurement data.
Since the protocol favors low power consumption at the signal transfer unit 20, a communications dialog is always initiated by the signal transfer unit 20 and never the base station unit 30. This allows the signal transfer unit 20 to power down when in idle mode and removes the requirement for high specification timing components.
In the preferred embodiment, the communications protocol is asynchronous. Initial dialogue synchronization is established with a preamble sequence and provision for subsequent timing alignment is provided by synchronization sequences preceding all data packets. Three basic functional mechanisms are provided in the signal transfer unit/base station unit protocol: 1) Registration;
2) Idle/re-registration; and
3) Information flow.
These mechanisms will now be described in detail. Registration Mechanism
The purpose of the registration mechanism is to provide a means by which the signal transfer unit 20 and the base station unit 30 acknowledge their mutual presence and confirm the performance of the radio link 75. It provides an opportunity for the base station unit 30 to send initializing control parameters to the signal transfer unit 20 if required. FIGURE 10A represents this mechanism. As illustrated in FIGURE 10 A, the dialog is initiated with a dialog registration request from the signal transfer unit 20 which must be transmitted within tPOwER_ p seconds of the signal transfer unit 20 being powered up. The base station unit 30 responds to the registration request with an acknowledgment (ACK) packet to confirm its conect receipt or a data packet containing control information which implicitly provides the aclαiowledgment. In the latter case, the signal transfer unit 20 must acknowledge the safe receipt of the control information. If the control data exceeds a single packet length, multiple packets may be used to fragment the control information, with an acknowledgment being required from the signal transfer unit 20 for each packet. This is conducted in the same manner as the data flow mechanism described below with respect to FIGURE 10B. If no control data is transmitted from the base station unit 30 and a simple acknowledgment packet is sent, the signal transfer unit 20 will not provide further acknowledgment. It is recommended that the base station unit 30 allocate a unique logical unit number to the signal transfer unit 20 during the registration dialog using the appropriate control code such that control data is always sent in place of the acknowledgment package.
If the signal transfer unit 20 fails to achieve registration, the signal transfer unit 20 will wait for a minimum time of .MΓ REQ WAIT and a maximum time of tMAX_REG_WAιτ before making another attempt at registration with a dialog request. It is recommended that a random element be included in the wait time in order to facilitate random access schemes in the case of multiple signal transfer units 20 transmitting to a single base station unit 30 in alternative embodiments. Idle Mechanism
The purpose of the idle mechanism is to maintain registration of the signal transfer unit 20 and to provide the opportunity for the base station unit 30 to reconfigure control parameters within the signal transfer unit 20 if required. The format of the dialog is identical to the registration mechanism with the difference lying in the format of the dialog request packet. In order to maintain registration, the maximum allowable time between idle dialog (or registration dialog in the first instance) will be
Figure imgf000037_0001
registration will become invalid if no dialog is conducted after tL0SE mG of the previous dialog. Thus, ^J^E defines the maximum time permissible before control data can be sent to the signal transfer unit 20 and tLOsE_REG defines the time after which registration becomes invalid. Data Flow Mechanism
The purpose of the data flow mechanism is to transfer measurement data from the signal transfer unit 20 to the base station unit 30 and to provide the opportunity for the base station unit 30 to reconfigure control parameters within the signal transfer unit 20 if required. FIGURE 10B illustrates the data flow mechanism. As illustrated in FIGURE 10B, the data flow mechanism is similar in its implementation to the registration and idle mechanisms except the dialog request packet must notify the base station unit 30 that the signal transfer unit 20 has valid data waiting. As before, an acknowledgment packet may be replaced by a data packet with implicit acknowledgment and, similarly, the data packet on the reverse link may implicitly acknowledge safe receipt of the control information. The data packets contain control information that informs the base station unit 30 if further data packets are to be transmitted in the dialog. ARQ Scheme The purpose of the ARQ scheme is to provide the means by which erroneous data packets are retransmitted based on the use of "not-acknowledged" (NAK) packets to request retransmission. In order to conserve power at the signal transfer unit 20, the number of times a packet may be retransmitted is limited, and if either the base station unit 30 or signal transfer unit 20 receives two consecutive erroneous packets, the data link will be considered to have failed, and a minimum time of ^ΠN FA^WAIT will be allowed to elapse before the signal transfer unit 20 attempts to re-establish the link with a dialog request. The scheme is independent of packet type such that an acknowledgment package is treated in the same manner as a data packet.
Three cases are therefore identified. Case 1 This case defines the ARQ behavior when a single erroneous packet is detected and no further errors occur on the communications link 75 thereafter. FIGURE IOC defines the mechanism. As illustrated in FIGURE IOC, the signal transfer unit 20 sends a data packet which is incorrectly received at the base station unit 30, the base station unit 30 sends a NAK package which contains a data field pointing to the first detected erroneous packet, and the signal transfer unit 20 retransmits the data packet. As illustrated in FIGURE 10D, an identical procedure is adopted if the signal transfer unit 20 fails to receive a packet from the base station unit 30. Case 2
This case defines the ARQ behavior when two erroneous packets are detected consecutively and no further errors occur on the communications link 75 thereafter. FIGURE 10E defines the mechanism. As illustrated in FIGURE 10E, the signal transfer unit 20 sends a data packet which is inconectly received at the base station unit 30, and the base station unit 30 sends a NAK packet which is incorrectly received by the signal transfer unit 20. The signal transfer unit 20 then transmits a NAK which is correctly received at the base station unit 30 which then retransmits the first NAK packet containing a data field pointing to the first detected enoneous packet which is subsequently retransmitted by the signal transfer unit 20. As illustrated in FIGURE 10F, an identical procedure is adopted if the signal transfer unit 20 fails to receive a packet from the base station unit 30. Case 3
This case defines the ARQ behavior when three erroneous packets are detected consecutively. FIGURE 10G shows the mechanism. As illustrated in FIGURE 10G, the base station unit 30 receives two consecutive enoneous packets and hence recognizes that the radio link has failed. No further reply is sent to the signal transfer unit 20 which, by implication, will inform the signal transfer unit 20 that the link has failed.
The base station unit 30 then returns to receive mode and awaits re-establishment of the communications link 75 by a dialog request from the signal transfer unit 20. Similarly, if the first enoneous packet is received by the signal transfer unit 20, an identical mechanism is adopted as shown in FIGURE 10H. This case also defines the situation where a corcectly received packet lies between two enoneous packets as the receiving unit detects two consecutive erroneous data packets and considers the radio link to have failed. FIGURE 101 illustrates the dialog in this case. Packet Formats
The format of the data packets required to implement the functional mechanisms described above will now be described. Three primary types of packet are defined as follows:
1) Dialog Request Packet;
2) Acknowledgment Packet; and
3) Data Packet.
Subsets of each primary type are defined to implement the detailed functionality. Dialog Request Packet
A dialog request packet initiates a dialog between the signal transfer unit 20 and the base station unit 30 and can only be sent by the signal transfer unit 20. Three types of dialog exist to implement registration, idle mode and data transfer initiation. All dialog request packets are of fixed length and preceded by a preamble with a single CRC bit sequence appended to the end of the packet. In each case, the CRC is applied to the information content of the packet and excludes the preamble and synchronization codeword. Generally, each dialog request packet contains a preamble that allows an analog data slicing hardware threshold in the radio circuitry to settle to an appropriate value for optimum data reception, a synchronization codeword which allows the receiver to synchronize its bit sampling mechanism, a registration identification codeword that identifies the transmitted data packet as a registration data packet, an optional serial ID assigned to the signal transfer unit 20 at manufacture and/or logical unit ID assigned to the signal transfer unit 20 by the base station unit 30 to provide limited addressing functionality in the case of a plurality of signal transfer units 20 transmitting to a single base station unit 30, a modulo counter number (packet ID), and CRC bits.
Acknowledgment Packet An acknowledgment packet is used to inform the sender of the success of a transmitted packet. Two types of acknowledgment packet are defined for success and failure. All acknowledgment packets are of fixed length and have a CRC bit sequence appended to the packet. In each case the CRC applies only to the data content of the packet and excludes the synchronization codeword. Generally, each acknowledgment packet contains a preamble, a synchronization codeword, an ACK or NACK identification codeword, an optional serial and/or logical unit ID of the signal transfer unit 20, a packet ID, a packet success ID or retransmit reference ID, and CRC bits. Data Packet Data packets are used to transfer sensor data from the signal transfer unit 20 to the base station unit 30 and control information from the base station unit 30 to the signal transfer unit 20. In order to minimize the processing requirements of the signal transfer unit 20 and transmit-receive switching time, the information contained within the packet may be divided into an integer number of data codewords with CRC individually applied to each word. The synchronization codeword is excluded from this process. Two types of data packet are defined to implement rapid data transfer and control data transfer. For each type of data packet, two identification codewords are applicable which indicate whether another data packet is to follow.
The CRC is embedded in the data packet according to the codeword structure. Each codeword contains NBITS PER CODEWORD and a maximum of
NMAX_CODEWORDS_PER PACKET re allowed in a single data packet. It is permissible to fragment data between successive data packets and no restriction is applied regarding the point of fragmentation.
The rapid data packet is used to transfer measurement data from a single sensor device as efficiently as possible and contains minimal confrol content. This type of data packet is preferably used in instances where maximizing the capacity of the communications channel is paramount. This data packet preferably includes an indication of the Signal Transfer Unit Logical Unit and the Data Source ID. The CRC will be embedded in the data packet according to the codeword structure. The control data packet is used to transfer control data to configure parameters within the signal transfer unit 20. It is identical in format to the rapid data packet except that the free format sample data field contains a number of control sequences.
In a prefeπed embodiment, data scrambling is applied to all bits transmitted over communications link 75, with the exception of synchronization codewords and preambles. Data scrambling is applied to minimize the DC content of the data within a particular packet and is achieved by multiplying the bitstream with a fixed pseudo noise (PN) sequence having a length equal to the length of a data codeword (including the CRC) such that the scrambling is applied codeword by codeword for a data packet and a partial sequence used for all other types of packet. In transmitting data pursuant to the above-described transmission protocol, the communications link 75 is required to transport a maximum information rate of 15 kbits/sec over a range of 60 meters. In addition, the communications link 75 must support the data overheads associated with the protocol and provide sufficient capacity for the system to transmit previously stored measurements at a higher data rate to catch up with the real time function in the event that the signal transfer unit 20 should be taken out of range for a period of time. Assuming a minimum protocol efficiency of 63%, a minimum data rate of 23.8 kbits/sec is required to achieve the required information rate assuming a perfectly reliable link.
Taking into account restrictions imposed by baseband processing, a data rate of 40 kbits/sec has been adopted in a preferred embodiment to provide an information capacity of 25.2 kbits/sec which translates to a duty cycle of 59.5% under good operating conditions or a catch-up rate of 0.68 hours/hour when the full information capacity is required. Since the spectral allocations for unlicensed radio transmission are at 433 MHZ and 915 MHZ in Europe and the USA, respectively, with a small number of exceptions where bandwidth is specifically allocated for medical telemetry applications, these frequencies are chosen for transmission via communications link 75 in the preferred embodiment. In general, the allocations provide more than 100 kHz of bandwidth which will not be restrictive to the system given the 40 kbits/s data rate.
C. Base Station Unit - Remote Monitoring Station Link Communications link 85 is used to transfer the acquired patient vital signs data from the base station unit 30 to the remote monitoring station 50 and to transfer configuration information from the remote monitoring station 50 to the base station unit 30. In a prefen-ed embodiment, the base station unit 30 and remote monitoring station 50 communicate in a stream-based protocol implemented using TCI/IP sockets, where each data packet has a message start byte, bytes indicating total message length, a message command, and message contents. The data packets generally contain a data timestamp and ECG, respiration, temperature, motion, and bend data; however, data packets from the base station unit 30 may also contain weight, blood pressure, and spirometer readings from the auxiliary sensors. Other packet types may include heart rate, respiration rate, temperature and/or event data. Generally, before TCP/IP communication between the base station unit 30 and the remote monitoring station 50 can be established, a network connection must first be established between the two systems. The remote monitoring station 50 initiates connection to the base station unit 30, and once the connection has been accepted, both ends of the communications link 85 will listen for commands. The protocol may be terminated by either end of the communications link 85 disconnecting its socket. Each command is unidirectional, and acknowledgment of any command is necessary.
A command set of the protocol for communications between the base station unit 30 and the remote monitoring station 50 in the preferred embodiment of the invention will now be described. The following partial list of commands are used to implement the communications protocol over the communications link 85.
An AddDataSource command from the remote monitoring station 50 instructs the base station unit 30 to begin acquiring data from a data source (sensor band 10) specified in a data source ID within the command and to use a particular type of stream. Usually, this command identifies the wireless channel to use. A RemoveDataSource command from the remote monitoring station 50 instructs the base station unit 30 to stop acquiring data from the specified data source ID.
A SetConfϊg command from the remote monitoring station 50 sends any required configuration data to the base station unit 30 and may contain flags instructing the base station unit 30 to flush the databases of the base station unit 30. An AckConfig command from the base station unit 30 acknowledges to the remote monitoring station 50 successful receipt of the SetConfig message. A DataRequest command from the remote monitoring station 50 requests that the base station unit 30 sends a specified time range of raw or real-time data to the remote monitoring station 50. The data record type field within the command specifies the format that the remote monitoring station 50 will expect to be returned. In some cases, the same raw data may be requested in multiple formats. Only one request for data may be active at any one time.
A DataRequestAbort command message from the remote monitoring station 50 causes all outstanding data requests to be aborted, including Event and Alarm data requests. This command should be sent before the remote monitoring station 50 terminates the communications link 85.
A ReturnComplete command is sent by the base station unit 30 to indicate that all data for the last data request has now been sent to the remote monitoring station 50. In this context, a data request includes a request for threshold alarms, session data, or events. A status field in this command indicates the reason for the base station unit 30 to stop transmission of Return records.
A DataReturn command packet from the base station unit 30 contains data as requested via a DataRequest command. Different data record types will have different data sizes.
A SetAlarm command from the remote monitoring station 50 is used to set up a threshold alarm monitor on the base station unit 30. A duration parameter indicates for how many seconds the threshold must be exceeded before the alarm is triggered. A hysteresis parameter defines a boundary around the threshold that needs to be crossed before the alarm triggers or resets.
An AlarmDataRequest command from the remote monitoring station 50 requests that the base station unit 30 send all alarms recorded between the Start and End times supplied. The data actually is returned as a series of "Alarm" commands, followed by a ReturnComplete message.
A RemoveAlarm command from the remote monitoring station 50 causes the base station unit 30 to stop monitoring for the specified alarm. This command can only be used to stop monitoring for an alarm that was configured using the SetAlarm command. An Alarm command packet from the base station unit 30 encapsulates an alarm and returns an Alarm ID to the remote monitoring station after the SetAlarm message.
A SetEventMeasurement command message from the remote monitoring station 50 requests that the base station unit 30 makes an auxiliary measurement. If the alert time is outside the range defined by the start and end times, no user alert is sent. If a periodic flag is set, the measurements are made daily, and the date portion of the start, end, and alert times are ignored.
An EventReading command from the base station unit 30 contains the results of a scheduled auxiliary measurement, as requested by the SetEventMeasurement command. Data valid flags are used to indicate the nature of the data contained in the measurement.
An EventDataRequest command message packet from the remote monitoring station 50 contains a request for event data specified for the specified time range. The response is a series of EventReading command packets followed by a single ReturnComplete command.
A TestRequest command is sent by either end of the communications link 85 and is used to test the link between the two systems. A TestRequest command should result in a TestResponse packet within 3 seconds in a preferred embodiment. A TestResponse command packet is sent in response to the TestRequest command packet and may include a copy of the data accompanying the TestRequest message.
Of course, other commands may be added as system features are added. Moreover, it is desired that the vital signs data be compressed for faster data downloading to the remote monitoring station 50.
III. Collecting/Managing Data Using Remote Monitoring Station A. Monitoring Software
Figure 11 illustrates the functional or software architecture of the remote monitoring station 50. As noted above, remote monitoring station 50 is utilized by a health care professional to evaluate the vital signs data received from one or more patients and to perform control functions and maintenance functions necessary for system operation. FIGURE 11 illustrates an embodiment of FIGURE 5B in which the remote monitoring station 50 includes a server 52 for managing the processing of the vital signs data received from the base station units 30. A similar functional arrangement would be utilized for implementing the embodiment of FIGURE 5 A except that the server would be located in a separate physical unit or at a remote location. Each of the components of FIGURE 11 will now be discussed in turn.
The remote monitoring station 50 maintains a database 110 of patient data received from each patient taking part in a study using the techniques of the invention. In a prefeπed embodiment, the patient data includes a patient number which is unique for possibly linking to other patient information systems and a telephone number for the patient's base station unit 30. Preferably, additional information is maintained for each patient case which is linked to the patient information. Such information may include current medications taken by the patient, cunent diagnosis information, base station ID, settings used to obtain data from the base station unit 30 and auxiliary sensors, and the like.
The software of the remote monitoring station 50 maintains the patient database 110 and allows the operator to access such data for analysis and processing. As illustrated in FIGURE 11, database manager 112 manages all interactions with the patient database 110. Database manager 112 runs as a continuous background process to ensure that data can always be stored on arrival. The main interface is with the database management system used for the patient database 110; all other interfaces involve extraction of information from the patient database 110.
Schedule manager 114 is responsible for all interactions with the base station unit 30 and, like the database manager 112, runs continuously as a background process. Since information about the required schedules for patient studies is stored in the patient database 110, the schedule manager 114 must obtain all relevant schedule information from the database manager 112. Similarly, the schedule manager 114 passes all data to be stored (i.e. case session data, case alarm data) to the database manager 112 for storage in the patient database 110. The schedule manager 114 interfaces with the rest of the system through the database manager 112. The schedule manager 114 also needs to interface to any modems used to connect to base station units 30. Schedule manager 114 further implements the base station-remote monitoring station communications protocol described in the previous section.
The main user interface 116 provides all normal user interaction with the remote monitoring station 50. In the prefeπed embodiment, the user interface 116 has no customization or set-up options; all such functionality is provided by the system maintenance user interface 118. User interface 116 is designed to interface with the user manager 120, which maintains cunent state information and the like. However, some components may interact via different routes for efficiency if this is felt necessary (e.g. the schedule manager 114 may interface directly for live displaj')- Preferably, the user interface 116 embeds instances of the graphics control process 122 for controlling the display of graphical data.
The system maintenance user interface 118 provides control over any configurable parameters. In the prefened embodiment, an interface to the audit log 119 is provided from the system maintenance user interface 118 so that the operator may view the audit log. Preferably, settings that cause changes in visual elements (e.g. graphs) will provide a preview so that the user does not need to keep switching between the two modes. System maintenance user interface 118 also interfaces with the user manager 120, which maintains state information and the like. User manager 120 maintains state information about a single client user session. The coupling of user manager 120 to user interface 116 depends on the implementation methods actually used. Preferably, user manager 120 obtains a user name and password from the user and then activates either the user interface 116 or the system maintenance user interface 118 depending on the privilege level of the user. User preferences and other settings are read from the system settings object 123. The user manager 120 also accepts connections from graphics objects 122 and supplies the necessary graphical data on demand.
The security system 124 maintains a secure database of user names and passwords used to access the system. There are two levels of user: user and administrator, which are mutually exclusive. In the preferred embodiment, the security system 124 maintains the user database files in an encrypted format. The user manager 120 validates users via password database 125 before continuing using a query to the security system 124.
Finally, an ECG analyzer 126 is provided to analyze in one second chunks any ECG signals passed to it. The processed data is output in a form that can be stored back in the patient database 110. Generally, the ECG analyzer 126 processes data as a complete session. ECG analyzer 126 preferably interfaces to the database manager 112 to perform the ECG analysis and to flag events in the vital signs data as it is uploaded. Generally, the ECG analyzer 126 performs aπhythmia analysis by searching for ventricular fibrillation (VF) and/or typing QRS complexes as normal, ventricular ectopic beat (VEB), SVEB, or artefact. ST analysis may also be performed to check for ST segment elevation, depression, and the like.
If an arrhythmia event is found by ECG analyzer 126, the operator may choose to upload additional patient data around the arrhythmia event, send a warning message to the patient via the communications link 85 to cause the buzzer on the signal transfer unit 20 to sound, or the patient may be called in for evaluation. Generally, since the review is typically performed several hours after the data is collected, the event is noted and the patient is contacted off-line.
Other functions of these software components may include the following: 1. Scheduling data acquisition Scheduling of downloads, and actual data downloads may well occur at different times. In addition, a system may be managing many patients, yet only has access to a single phone line. Therefore, this aspect of the system will behave independently from the user interface.
Generally, download scheduler 114 will use the case properties to download data from the patient base station units 30. The information that the user can specify for a patient's schedule is as follows:
Figure imgf000047_0001
Figure imgf000048_0001
The download scheduler 114 should be aware of the download bandwidth available to it, so that estimates of download times can be presented to the user. This can be refined based on actual data transfer times experienced by the system.
Preferably, the download scheduler 114 will support multiple modems. If multiple downloads are scheduled for the same time, the download scheduler 114 will order them and perform downloads sequentially (or in parallel if multiple modems are present). Any downloads that fail should be moved to the end of the queue, and retried up to 3 times before failure is reported. Also, any downloads requested immediately by the user preferably will take priority over previously scheduled events, and the user warned of this fact. However, if the data requested does not exist on the base station unit 30, the fact will be audited, and an event raised for that patient, which would be reviewable with all other events on request. If the download is happening interactively, the user will also be notified with a message on the display screen of the remote monitoring station 50. In addition, it is prefeπed that any data download shall not cause data to be removed from the base station unit 30 such that the same or additional data could be downloaded more than once if necessary (e.g. , in the event of a hard disk failure on the remote monitoring station 50 or in the case of a patient informing a physician that he or she felt poorly during the monitoring period at a time for which the data was not scheduled to be downloaded). As noted above, ECG analysis may be performed automatically upon data download, if appropriate. 2j. Flagging Events
The following types of event can be set by the remote monitoring station 50 to be flagged by the base station units 30:
Temperature threshold Both high and low, plus an optional time before trigger value
Figure imgf000049_0001
The above events will be stored on the base station unit 30, and new events will be downloaded whenever the remote monitoring unit 50 and base station unit 30 connect.
In addition, the following events will be flagged by the remote monitoring station 50 once data analysis has been performed:
Figure imgf000049_0002
3i Data Analysis The following channels of data may be analyzed: ECG (for both full analysis and heart rate calculation) and respiration (either respiration or bend channels, to produce a measurement of respiration rate). All data analysis is performed automatically on a session whenever results are required, and the results of the data analysis are stored in the patient database 110. 4j. Security
For purposes of accountability, and to simplify the user interface for normal users, it is necessary to identify all users with a user name and password. There are two privilege levels, user and administrator. The two levels are mutually exclusive so that it is always necessary to log in as a different user to perform administration tasks. This prevents a normal user from simply giving themselves administration privileges and accidentally changing or accessing certain features. 5i Auditing
It is necessary to audit certain actions performed by the system or by users. The audit record should be kept in audit log 119 (FIGURE 11) separate from the patient database 110. Clearing the audit log 119 will only be possible by administrator level users. A checksum based on file size and modification date is kept in the system configuration, preferably encrypted. If on software start up, the checksum does not match the file, the software should refuse to start until reset by a user with privileged access. In other words, the software will not start until the password is entered. This event will then be logged into the audit log 119. The audit log 119 will consist of entries showing the type of entry, time of occunence, and the name of the user causing the auditable event (where appropriate). Other event-specific information may optionally be added. The events to be audited are:
1. Addition of a patient case;
2. Closing a patient case; 3. Re-opening a case;
4. Modification of case properties;
5. Session download;
6. Events triggered;
7. Setting/changing of event settings; 8. Failures to connect to base station units 30;
9. Eπors reported by a base station unit 30;
10. Audit log tampering;
11. Data export/import;
12. Data back-up/restoration/archiving; and 13. Adding/removing users.
B. User Interface to Monitoring Software FIGURE 12 illustrates a diagram of the top level uses of the remote monitoring station 50 of the invention. As illustrated, such uses include: adding a new patient to be monitored (creating a new patient case), modifying case properties, closing a patient case, downloading data immediately, monitoring real-time (live) data from a patient, reviewing downloaded data from a patient, reviewing events, performing system maintenance, and shutting down logging off the remote monitoring station 50. The use cases and the user interface of the remote monitoring station 50 used for implementing such use cases will be described in this section. Generally, the remote monitoring station's software communicates with the base station unit 30 via the base station/remote monitoring station protocol described above. Add a new patient
For this case, the user is prompted to enter the new patient information, with access to all fields in the patient database 110. On finding a duplicate patient number (not name, as there may be people with the same name in the same system), the user is prompted to either try again, create a new case for that patient or go to Modify Case Properties to modify the cunent case for that patient. If the patient has closed cases, the option is also given to re-open a case. The patient information is added to the patient database 110 if the patient is a new patient, and the case information is also added to the patient database 110. Modify case properties
The user selects the case to modify, and, as illustrated in FIGURE 13, the process then splits into the following tasks:
1) Edit database information
The user modifies any of the entries in the patient or case record, except the Patient Number and any auto-generated ID fields used to link databases together.
2) Set-up patient schedule
This page offers the option to have a look at the current status of the patient. The download properties are entered, with about 3 common defaults accessible from a simple interface, and the cunent settings (if any) displayed. Some types of download schedules actually result in multiple download instructions being generated, e.g. for downloading 5 minutes per hour over the course of a 24 hour period, with the actual download saved up for a later time. Preferably, download properties are validated, and any conflicts resolved (e.g. if an impossible amount of download time is required). The download properties are then sent to the download scheduler 114. Since some downloads may take an extended period of time, it is desirable that an estimate of the online expected time should be presented when setting download schedules.
3) Set Events
A page showing all possible event types is presented. If none has been set for the current case, all events default to OFF. Each type of event has default parameters that are supplied when it is activated. The events set for this patient case is saved in the patient database 110 with other download information. Changes to the alarm set are audited. Also, each event has associated with it a property that determines if any associated data for a given event is to be downloaded; this specifies the number of minutes data before and after the event to be acquired. This is determined by the remote monitoring station 50, so that the decision to download a session corresponding to an event is made only once an event has arrived at the remote monitoring station 50.
4) Set auxiliary sensor measurements
In a preferred embodiment, the following auxiliary sensors are supported by the base station unit 30: blood pressure (systolic, diastolic and mean), spirometry (FEV1 and PEF), and weight. Measurements are set on an case by case basis; a typical scenario might require 4 measurements per day. A measurement window is defined, outside of which, the measurement is not made. Optionally an alert point (in minutes before the end of the measurement period) is selectable, which causes the patient to be reminded by the buzzer of the signal transfer unit 20. When multiple measurements are required during the same time window, the order in which the patient is required to make measurements is controllable.
Close a patient case
The user is asked to confirm that the case should be closed. Download data immediately
Once the user selects a patient case, the user selects the time range of data to download. The user should be warned if this download would conflict with any others cunently scheduled or taking place. Monitor live data
The user selects a patient case and establishes a connection with the appropriate base station unit 30. Failure to connect should be reported immediately. Conditions likely to cause failure are: 1) base station unit 30 turned off or not connected, 2) patient is not wearing a disposable sensor band 10 (data not available), 3) phone line is busy, 4) all user phone lines are busy downloading other patient sessions, and 5) the signal transfer unit 20 is out of range of the base station unit 30 (or in catch-up mode). The monitored data is displayed in a real time, smooth scrolling display. When disconnected from the base station unit 30, the user may go to the review downloaded data section to analyze the session just downloaded. Review downloaded data
FIGURE 14 illustrates this use case and its associated subtasks, each of which will be described in turn.
1) Review raw data Once the user selects a patient case, the default display shows ECG, respiration, motion and bend data, with numerical values for heart rate (HR), respiration rate (RR) and temperature. The raw data channels are filtered for display purposes only (filtered data is not stored), and the display time base is selected from 5 seconds, 10 seconds, 20 seconds or 25 mm/sec. Any gaps in the data are shown as gaps in the graphs. System maintenance allows scales to be changed, traces to be added or removed, and colors to be changed. The user has controls to change the time base, to scroll backwards or forwards through the data, to pause the display (but not to stop live acquisition), to stop monitoring and disconnect from the base station unit 30, and to print the current screen. User controls are as for live review, with the additional option to turn the above dynamic scrolling on and off.
2) Review summary data
Once the user selects a patient case, data is shown as a page of graphs from the whole session, showing HR, RR, and temperature. The display time base is selectable from 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours and 24 hours. Where the session is smaller than some of these ranges, not all options are available (e.g. 24 hour time base is not available for a 1 hour session). Any gaps in the data are shown as gaps in the graphs. Also, system maintenance allows scales to be changed, traces to be added or removed, and colors to be changed. In addition, the display is interactive, so that selecting a region of the graph allows access to the raw data for that section. This happens in such a way that returning to the summary view is simple (perhaps bringing up a separate window for the raw data, for example).
3) Review/Perform ECG analysis
Once the user selects a patient case, if the ECG analysis has not already been performed at the time of data download, the user is asked to confirm if ECG analysis should be performed immediately. The entire patient session is sent to the ECG analyzer 126, and the progress through analysis is reported to the user by way of a progress bar. Once completed, the results of the analysis are saved to the session record. The analysis options outlined in the following use cases are presented to the user. By default the summary report should be shown when analysis is complete.
The user is offered the ability to display a histogram of R-R intervals in the analyzed data. Also, a template display is provided which displays a page with the top 12 beat types, including the number of each type and the percent of total beats. The beats shown are one actual beat from the raw data, including its time. The user is permitted to navigate forwards and backwards through the different occuπences of that beat type in the raw data. The user may go to the section of data coπesponding to a given beat; such a display is in the "full disclosure" format where a trace is displayed with the same basic properties as the raw data graphs. Additionally, the ECG trace is labeled with all classified beats and rhythms identified by the ECG analyzer 126. A summary report of the results of ECG analysis is generated.
The user has simple access to print out a report. On the other hand, the ST/QT/NEB graph of ST Level, QT Interval, and VEB frequency and heart rate, plotted against time for the entire session may be available.
4) Review auxiliary data
This routine displays a graph of data acquired from the auxiliary sensors at the base station unit 30. If no data exists for one of the auxiliary sensor types, no axes are drawn for that sensor. Graphs plotted are blood pressure (with systolic, diastolic and mean plotted on the same set of axes), FEV1 and PEF (highest of three readings plotted on different axes) and weight. All data points for a given series are joined by lines. Time base range is selectable between 1 week, 1 month, 3 months and 6 months. Review events
Specific event analysis is always performed on an event for a single patient. The user is asked the time period during which to review an event. The default is the last 7 days. FIGURE 15 illustrates an analysis of the applicable alarms.
1) Report of event times
This report is the simplest and simply lists, in a text based form, the events that have occuned in the specified period. Information listed includes the time the event was triggered, the type of event, and the cause of the event (e.g. high threshold triggered).
The only customization is the ability to selectively show event of a particular type or all events. The default is to show all events.
From a given event, it is possible to go to the data associated with it. For certain events, the data will have automatically been downloaded with the event itself; for others, the data may be included in an already downloaded session. In the remaining case, where there is no data associated with an event, the user is prompted to download the associated data.
2) Histogram of all events
This report shows a histogram spanning the selected time period, showing the number of events of each type that occuned. The histogram columns are determined by the events selected for the patient. Threshold events will give rise to 2 columns each, one for high trigger, the other for low trigger.
3) Event frequency graph
This report shows a graph plotting the total number of events per 15-minute interval against time. The graph is interactive in that selecting a point on the graph will open up a histogram, but with the data taken only from the selected 15-minute period. C. Use of Remote Monitoring Station Software Use of the remote monitoring station software will now be described with respect to the user interface screen displays of FIGURES 16 and 17. To use the remote monitoring station software, the user logs in by entering a valid user name and password into a log in screen. Unless the user is a technician desiring to perform system maintenance, the user also ensures that the option "I want to monitor patient data" is selected. Once logged in, the user selects a patient using a choose patient screen. A patient can be found by using the patient number, study code, patient initials, or any combination of these by entering the data and selecting a "Find" button. If the user desires to see a list of all patients, the user selects a "Select from all patients" button. On the other hand, if the user wishes to work with a new patient who has no record in the system, the user selects an "Add new patient" button. If no patients meet the search criteria, the user will be given a warning message. If the search resulted in just one patient, then the patient information will be shown in the "Case Home Screen" described below. However, if the search resulted in more than one patient, then the user will be shown a list of patients. The user selects the desired patient from the list and clicks on a "View selected patient" button. If the desired patient is not in the list, the user may select a "Go Back" button to try another search.
Once a patient has been selected, the patient's data is loaded into the case home screen 196 illustrated in FIGURE 16A. As shown, the case home screen 196 is divided into three areas: a portion 198 providing information relating to the currently selected patient and study case, a portion 200 listing a number of tabs that allow the user to look at various different configurations as well as to select different sessions of data, and a portion 202 including buttons for allowing the user to print various screens, download the patient data, and to change the cunently selected patient.
In order to navigate among the various options, the user selects one of the tabs in portion 200.
Upon selecting the "Sessions" tab, the user sees the boxes 204 and 206 of FIGURE 16A. A list of days with sessions available is displayed in box 204, and a list of different times of the sessions is shown in box 206. The user selects a day from box 204 and one of the corresponding session times from box 206. The user then selects the "View selected session" button 208, and the session data is then loaded and displayed to the user.
FIGURE 16B illustrates the events screen 210 which appears when the "Events" tab is selected. As illustrated, the events screen 210 lists the events that have occurred over a period of time. The use may select what type of event is shown (or elect to show all events) and over what period of time the events are to be collected. The user also receives an indication of when the last download of patient data occurred. To view the monitored data associated with an event, the user selects the event from the list and selects the "View data for event" button 212. The data is then loaded and displayed to the user. FIGURE 16C illustrates the monitoring screen 214 which appears when the
"Monitoring Setup" tab is selected. Monitoring screen 214 gives a number of configuration options which allow the user to change the way in which the selected patient is monitored. The top half of the monitoring screen 214 allows the user to change when and for how long the patient is monitored, including which days, the time of day, and for how long the patient will be monitored. The user may select up to 4 fixed times in which to monitor or elect to monitor on a periodic basis, such as every 6 hours. The next part of the monitoring screen 214 allows the user to configure the time of day that the application will automatically call the patient's base station unit 30 to download the patient data from the base station unit 30 to the remote monitoring station 50. The bottom part of screen 214 allows the user to setup which events should be monitored and the thresholds for these events. The user may also configure how much data on either side of the event should be downloaded in the next scheduled download.
As desired, electronic case record forms (CRFs) may also be generated directly from the data stored in the remote monitoring station 50 for each patient by CRF generating software, thereby greatly simplifying the reporting process for drug trials and the like. An electronic CRF would dictate a schedule for the patient's therapy via setup of the base station unit 30 by the remote monitoring station 50. The specified vital signs data could then be collected and inserted into the electronic CRF for management of a drug trial's results and submission of the results for FDA approval and the like, as necessary. FIGURE 16D illustrates the patient information screen 216 that appears when the "Patient Information" tab is selected. Patient information screen 216 displays all information relating to the patient and permits the patient information to be updated. The patient phone number is the telephone number that the application will use to call the base station unit for downloading the monitored data. FIGURE 16E illustrates the auxiliary sensors screen 218 that appears when the "Auxiliary Sensors" tab is selected. Auxiliary sensors screen 218 displays a number of configuration options that allow the user to change the way in which the auxiliary sensor measurements are taken at the base station unit 30. The top part of the auxiliary sensors screen 218 allows the user to setup on which days the auxiliary sensor measurements are taken, while the rest of the auxiliary sensors screen 218 allows the user to configure up to 8 different measurements to be taken each day. The user simply selects "Active" in the checkbox and then specifies the time period in which the measurement must be taken. The user may also tell the base station unit 30 to alert the patient by selecting the "Alert from" checkbox and specify the time at which this alert should take place. As noted above, the alert may be a light and buzzer on both the base station unit 30 and the signal fransfer unit 20. Finally, the user selects the type of measurement from the list of available auxiliary sensors (e.g. blood pressure) to be used during the measurement.
FIGURE 16F illustrates the trend data screen 220 that appears when the "Trend Data" tab is selected. Trend data screen 220 displays the readings taken from the auxiliary sensors during the study case. The layout varies depending on which auxiliary sensors are in use for a given patient.
As illustrated in FIGURES 16A-16F, the user is given the option of printing a report for the currently selected tab, to download data immediately from the base station unit 30 in order to view live data (if available) or previously recorded data, to change patients, or to exit. When the user has selected a patient session to view from the case home screen 196, the session data is loaded into a session view screen 222 of the type illustrated in FIGURE 17. As illustrated in FIGURE 17, the session view screen 222 provides session information and allows the user to change the session to be viewed, provides a set of tabs 224 from which to select to view either raw, summary or ECG data, and provides buttons 226 to allow the user to print various screens and to close the session view screen
222.
FIGURE 17 illustrates the summary graphs for heart rate, respiration and temperature when the summary button is selected and provides a way for the user to look at the data over a larger range of time (i.e., hours instead of minutes). Control buttons 228 allow the user to move the cursor along the graph and to view the graph at different time scales. On the other hand, the user may manipulate the cursor with a mouse to move the cursor along the graph. A scroll bar 228 at the bottom allows the user to view the graphs at different times. Also, the user may select the "Raw Data" tab to review raw data over a smaller range of time or select the "ECG Analysis" tab to view the ECG analysis data for the cunent session. The user may select from among the types of ECG analysis available, and the system will display the analysis report.
Remote, electronic capture of multiple and continuous vital signs data and transmission of this data in accordance with the invention has the following benefits:
1. Reduction in study costs by replacing expensive clinic visit measurement with domiciliary data capture. 2. Reduction in the number of patients, study time and/or clinic visits required in drug trials through the availability of repeat data, offered by repeat at-home monitoring.
3. Increased safety and improved follow-up of patients provided by domiciliary monitoring. 4. Better management of patients with chronic diseases, with continuous or semi-continuous monitoring, enabling therapy regimes to be refined on an individual basis and possibly preventing acute episodes or deterioration.
5. Increased volumes of patient data for more informed patient diagnoses.
6. The capability to simultaneously capture multiple vital signs data, for example, blood pressure and ECG as defined by study or treatment protocol.
7. The ability to develop predictive algorithms to facilitate more effective treatment protocols by monitoring continuous parameters and comparing patterns with those collected from collections of other patients with similar conditions.
8. Greater speed and simplicity in data handling provided by electronic data capture.
9. Simple, easy-to-use technology (cordless, non-obtrusive design, ideal for night-time monitoring).
In short, the present invention provides more data, earlier, and at a lower cost than current telemonitoring systems. In addition, the ability to monitor the patient continuously for several days means that parameters such as duration of drug effect, drug- drug interactions and safety, which are difficult to measure/monitor at present, may now be measured in a domiciliary setting thereby optimizing drug or other therapies. In particular, the system of the invention permits closed loop control of drug presentation to the patient, whereby the physician may directly monitor the effects of adjusting drug dosages. Also, the system is designed to be very user-friendly, both from the patient's and the physician's perspectives, offering substantial advantages in patient compliance as compared to current telemetric monitoring methods.
Although an exemplary embodiment of the invention has been described in detail above, those skilled in the art will readily appreciate that many additional modifications are possible in the exemplary embodiment without materially departing from the novel teachings and advantages of the invention.
For example, data processing such as ECG analysis could be performed at the base station unit 30 and only the summary data transmitted to the remote monitoring station 50, thereby reducing download times considerably. Also, a radio receiver may be provided to the patient for attachment to his or her computer for use in downloading software and uploading data from/to an Internet server for connection to a predetermined remote monitoring station connected to a designated node on the Internet. This approach would eliminate the need for (and cost of) a separate base station. If auxiliary sensor functions were still required, connections could be built into the radio receiver unit. In addition, a low bandwidth version of the invention may also be developed by tailoring the signal from the sensor band 10 so as to leave out unnecessary data. Also, two-way communication with the sensor band 10 may also be provided. In accordance with another aspect of the invention, the received event data from several patients may be prioritized for patient management (triaging) using the techniques of the invention.
All such modifications are intended to be included within the scope of this invention as defined in the following claims.

Claims

What is claimed is:
1. A health parameter data collection and monitoring system, comprising: a sensor band having a sensor assembly for application to a subject, said sensor assembly producing a data signal including health parameter data indicative of values of at least one health parameter of the subject, said sensor band further comprising a transmitter which transmits said data signal over a first communications link; a transceiver coupled to said first communications link so as to receive said health parameter data signal for retransmission of said data signal over a second, wireless communications link; and a remote monitoring station disposed so as to receive said retransmitted data signal from said transceiver via said second communications link, said remote monitoring station capturing said health parameter data for display and subsequent access and processing of said health parameter data.
2. A system as in claim 1, further comprising a base station unit disposed in said second communication link between said transceiver and said remote monitoring station, said base station unit receiving said retransmitted data signal from said transceiver over said second communications link for storage until said health parameter data is transmitted to said remote monitoring station via a third communications link.
3. A system as in claim 1 , wherein said sensor band is adapted for attachment to a chest of the subject and said sensor assembly produces health parameter data indicative of at least one of ECG, respiration, skin temperature, and subject motion.
4. A system as in claim 1, wherein said sensor band includes a circuit which multiplexes health parameter data signals from at least two different sensors in said sensor assembly for transmission over said first communications link by said transmitter.
5. A system as in claim 1 , wherein said transceiver comprises a buffer which stores health parameter data received from said sensor band at least during times when said second communications link is disconnected, lost, or unreliable.
6. A system as in claim 1, wherein said remote monitoring station requests retransmission of said data signal to said remote monitoring station at predetermined times or conditions or on demand.
7. A system as in claim 6, wherein said remote monitoring station includes an interface which allows a user to set said predetermined times or conditions for said retransmission of said data signal to said remote monitoring station.
8. A system as in claim 7, wherein said interface allows the user of the remote monitoring station to select a subject for review of at least that subject's health parameter data.
9. A system as in claim 7, wherein said interface allows the user to simultaneously review and compare time synchronized health parameter data for a plurality of health parameters for a particular subject.
10. A system as in claim 7, wherein said interface permits the user to select at least one of unprocessed health parameter data and summary data for display to the user of the remote monitoring station.
11. A system as in claim 1, further comprising a database accessible by said remote monitoring station to store health parameter data for a plurality of subjects.
12. A system as in claim 11, wherein said remote monitoring station includes software which generates case record forms from at least the health parameter data stored for a subject in said database.
13. A system as in claim 1 , wherein said transceiver is adapted to receive health parameter data transmitted by at least two sensor bands for retransmission to said remote monitoring station.
14. A health parameter data collection and monitoring system, comprising: a sensor band having a sensor assembly for application to a subject, said sensor assembly producing a data signal including health parameter data indicative of values of at least one health parameter of the subject, said sensor band further comprising a transmitter which transmits said data signal over a first communications link; a transceiver coupled to said first communications link so as to receive said data signal for retransmission over a second, wireless communications link; a base station unit disposed so as to receive said retransmitted data signal from said transceiver via said second communications link, said base station unit storing received health parameter data for retransmission over a third communications link; and a remote monitoring station disposed so as to receive said retransmitted data signal from said base station unit via said third communications link, said remote monitoring station storing and displaying said health parameter data.
15. A system as in claim 14, wherein said base station unit includes a processor which calculates physiological parameter data including at least one of a subject's heart rate and a subject's respiration rate from said health parameter data and stores said physiological parameter data in a memory for transmission to said remote monitoring station.
16. A system as in claim 15, wherein said memory of said base station unit is a rolling first-in-first-out (FIFO) memory which stores said health parameter data irrespective of whether said health parameter data has been transmitted to said remote monitoring station.
17. A system as in claim 14, wherein said base station unit comprises at least one input connection for accepting auxiliary data input from an auxiliary health parameter sensor and a memory which stores said auxiliary data input for transmission to said remote monitoring station.
18. A system as in claim 17, wherein said base station unit time stamps said health parameter data and said auxiliary data synchronously and ages independently said auxiliary data and said health parameter data while stored in said memory of said base station unit.
19. A system as in claim 17, wherein said auxiliary health parameter sensor is at least one of a blood pressure sensor, a spirometer, a weigh scale, and a blood glucose meter.
20. A system as in claim 17, wherein said base station unit detects abnormal physiological conditions in said auxiliary data and indicates an event condition and stores event data indicating a significant physiological event in said memory when an abnormal physiological condition is detected.
21. A system as in claim 20, wherein said base station unit time stamps said health parameter data and said auxiliary data synchronously and ages independently said auxiliary data and said health parameter while stored in said memory of said base station unit.
22. A system as in claim 17, wherein said base station unit includes a processor which calculates physiological parameter data including at least one of a subject's heart rate and a subjects 's respiration rate said health parameter data and stores said physiological parameter data in said memory at said base station unit for transmission to said remote monitoring station.
23. A system as in claim 22, wherein said processor further performs ECG analysis of said health parameter data and stores ECG analysis data in said memory.
24. A system as in claim 22, wherein said memory separately stores said health parameter data and said calculated physiological parameter data.
25. A system as in claim 17, wherein said remote monitoring station includes an interface which allows a user to schedule auxiliary health parameter sensor measurements at said base station unit if such measurements are required.
26. A system as in claim 14, wherein said base station unit comprises a memory and compares received health parameter data with predetermined ranges for detected physiological variables and detects abnormal physiological conditions in said health parameter data, said base station unit indicating an event condition and storing event data indicating a significant physiological event in said memory when said received health parameter data is outside said predetermined ranges or when an abnormal physiological condition is detected.
27. A system as in claim 26, wherein said memory of said base station unit is a rolling first-in-first-out (FIFO) memory which stores at least said health parameter data irrespective of whether said health parameter data has been transmitted to said remote monitoring station.
28. A system as in claim 26, wherein said remote monitoring station includes an interface which allows a user to set at least one of said predetermined ranges of said base station unit.
29. A system as in claim 26, wherein said remote monitoring station includes means for checking received data for event data and an interface which allows a user to view such event data, whereby if event data is detected, said interface allows the user of said remote monitoring station to view a desired amount of health parameter data before, during, and after an occurrence of an event condition indicated by said event data.
30. A system as in claim 14, wherein said second communications link is a bidirectional asynchronous radio link.
31. A system as in claim 30, wherein said transceiver initiates all communications dialogs with said base station unit.
32. A system as in claim 30, wherein said health parameter data is transmitted from said transceiver to said base station unit over said second communications link in data packets including CRC error detection code and ARQ code for the retransmission of erroneous data packets.
33. A system as in claim 32, wherein said data packets are scrambled for transmission in a data packet stream so as to minimize a DC component in said data packet stream.
34. A system as in claim 32, wherein if said base station unit or said transceiver receives two consecutive enoneous data packets over said second communications link, said second communications link will be determined to be disconnected, lost, or unreliable, and said transceiver will wait a predetermined period of time before attempting to re-establish the second communications link with said base station unit.
35. A system as in claim 32, wherein each data packet is one of the following types of data packets: a dialog request packet for initiating a dialog between said transceiver and said base station unit, an acknowledgment packet for informing the sender of the success of a transmitted data packet, a health parameter data packet which includes health parameter data for transfer from said transceiver to said base station unit, and a control data packet for transfening configuration data from said base station unit to said transceiver.
36. A system as in claim 30, wherein said base station unit sends an alarm signal or an indication to a subject to do something to said transceiver via said second communications link when at least one of the following occurs: a physiological event is detected in said health parameter data, it is time for the subject to take a physiological parameter reading or a medication, and the base station unit cannot accept more health parameter data.
37. A system as in claim 14, wherein said third communications link is a telecommunications link.
38. A system as in claim 37, wherein said remote monitoring station initiates a connection with said base station unit, and once the connection is established, said remote monitoring station and base station unit listen for commands.
39. A system as in claim 38, wherein said commands include a data request command from said remote monitoring station requesting at least one of real-time health parameter data and health parameter data in a designated time range from said base station unit.
40. A system as in claim 14, wherein an ID of said base station unit is checked by said remote monitoring station before data is transmitted via said third communications link.
41. A system as in claim 14, further comprising a database accessible by said remote monitoring station to capture and store health parameter data for a plurality of subjects and said remote monitoring station further includes an interface through which a user of the remote monitoring station may select a subject for review of at least that subject's health parameter data.
42. A system as in claim 14, wherein said base station unit is adapted to receive health parameter data transmitted by at least two transceivers for retransmission to said remote monitoring station.
43. A system as in claim 14, wherein said remote monitoring station is adapted to receive health parameter data transmitted by at least two base station units.
44. A system as in claim 43, wherein said remote monitoring station includes a server which controls the receipt and storage of health parameter data from said at least two base station units.
45. A health parameter data collection and monitoring system, comprising: a sensor band having a sensor assembly for application to a subject, said sensor assembly producing a data signal including health parameter data indicative of values of at least one health parameter of the subject, said sensor band further comprising a transmitter which transmits said data signal over a first communications link; a transceiver coupled to said first communications link so as to receive said health parameter data for retransmission of said data signal over a second, wireless communications link, said transceiver including a buffer which stores health parameter data received from said sensor band at least during times when said second communications link is disconnected, lost, or unreliable; and a remote monitoring station disposed so as to receive said retransmitted data signal from said transmitter via said second communication link.
46. A system as in claim 45, wherein said transceiver stops transmission when said second communications link becomes disconnected, lost, or becomes unreliable, and retransmits said data signal over said second communications link from said transceiver at an increased transmission rate after said second communications link is restored as compared to a transmission rate before said second communications link is disconnected, lost, or becomes unreliable.
47. A system as in claim 45, wherein said transceiver includes an alarm indicator which warns the subject that said second communications link has been disconnected, lost, or has become unreliable so that the subject may take steps to restore said second communications link.
48. A system as in claim 45, wherein said transceiver includes at least one event button, wherein depression of said event button indicates an event condition and coπesponding event data is transmitted to said remote monitoring station.
49. A system as in claim 48, wherein said remote monitoring station includes means for checking received data for said event data and an interface which allows a user to view such event data, whereby if event data is detected, said interface allows the user of said remote monitoring station to view health parameter data before, during, and after an occurrence of the event condition indicated by said event data.
50. A health parameter data collection and monitoring system, comprising: a sensor band having a sensor assembly for application to a subject, said sensor assembly producing a data signal including health parameter data indicative of values of at least one health parameter of the subject, said sensor band further comprising a transmitter having a first antenna wliich transmits said data signal over a first wireless communications link; a transceiver having a second antenna inductively coupled to said first communications link so as to form a wireless inductive loop with said first antenna for reception of said health parameter data, said transceiver further retransmitting said data signal over a second wireless communications link; and a remote monitoring station disposed so as to receive said retransmitted data signal from said transmitter via said second wireless communications link.
51. A system as in claim 50, wherein said data signal is transmitted over said first wireless communications link by said transmitter in QPSK formatted coded data packets.
52. A system as in claim 51 , wherein said data packets are transmitted in at least one frequency channel of a plurality of frequency division multiplexed channels spaced at predetermined intervals in a selected frequency range.
53. A system as in claim 52, wherein coded data packets in each of said frequency channels comprise a clock signal, a framing pulse, and said health parameter data.
54. A system as in claim 51 , wherein said transmitter includes a controller which codes said coded data packets from template waveforms representative of each possible transition of symbols coπesponding to a different phase offset of the transmitted signal relative to a fixed carrier phase locked to symbol transitions.
55. A system as in claim 54, wherein said controller converts each of said template waveforms into respective digital data streams which are, in turn, converted into controller instructions.
56. A system as in claim 55, wherein said controller converts zero-to- one state changes of said template waveforms into controller instructions which set an output port bit of said transmitter, converts one-to-zero state changes of said template waveforms into controller instructions which clear said output port bit of said transmitter, and converts idle periods between state changes into a sequence of no-operation instructions so as to introduce correct time delays between state changes.
57. A system as in claim 56, wherein said controller replaces certain no- operation instructions in said template waveforms by jump instructions which jump into a template waveform to a point which ensures continuity of the coded data packets, said controller further deleting instructions in each template waveform rendered unnecessary by said jump instructions.
58. A system as in claim 57, wherein said controller applies an optimization algorithm to said template waveforms to reduce the length program of code.
59. A health parameter data collection and monitoring system, comprising: a sensor band having a sensor assembly for application to a subject, said sensor assembly producing a data signal including health parameter data indicative of values of at least one health parameter of the subject, said sensor band further comprising a transmitter which transmits said data signal over a first communications link; a transceiver coupled to said first communications link so as to receive said health parameter data for retransmission of said data signal over a second, wireless communications link; and a remote monitoring station disposed so as to receive said retransmitted data signal from said transceiver via said second communications link, said remote monitoring station capturing said health parameter data and storing said health parameter data in a database with health parameter data from a plurality of other subjects, said remote monitoring station including a user interface which provides access to health parameter data in said database and processing of said health parameter data.
60. A system as in claim 59, wherein said remote monitoring station requests retransmission of said data signal to said remote monitoring station at predetermined times, in response to certain conditions, or on demand.
61. A system as in claim 60, wherein said interface allows the user to set said predetermined times and conditions for said retransmission of said data signal to said remote monitoring station.
62. A system as in claim 59, wherein said interface allows the user of the remote monitoring station to select a subject for review of at least that subject's health parameter data.
63. A system as in claim 59, wherein said interface allows the user to simultaneously review and compare time synchronized health parameter data for a plurality of health parameters for a particular subject.
64. A system as in claim 59, wherein said interface permits the user to select at least one of unprocessed health parameter data and summary data for display to the user of the remote monitoring station.
65. A system as in claim 59, wherein said remote monitoring station further includes means for performing ECG analysis of said health parameter data.
66. A system as in claim 59, wherein said interface requests a password from a user before permitting the user to access said database.
67. A system as in claim 59, wherein said interface keeps an audit record of actions performs by the user when using said interface and of actions performed by said remote monitoring station.
68. A system as in claim 59, wherein said interface formats at least a portion of said health parameter data into a histogram of R-R intervals of ECG data, presents said data to a display upon user request, and permits the user to navigate and select said ECG data for detailed viewing.
69. A system as in claim 59, wherein said interface formats received physiological parameter data into trend data, presents said trend data to a display upon user request, and permits the user to navigate and select said trend data for detailed viewing.
70. A method of collecting health parameter data, comprising the steps of: applying a sensor band having a sensor assembly to a subject whereby said sensor assembly produces a data signal including health parameter data indicative of values of at least one health parameter of the subject; said sensor band transmitting said data signal over a first communications link to a transceiver which is disposed so as to receive said health parameter data; said transceiver retransmitting said data signal over a second, wireless communications link; and a remote monitoring station receiving said retransmitted data signal from said transmitter and capturing said health parameter data for storage in a database as a continuous record of the subject's health parameter.
71. A method as in claim 70, wherein said sensor band applying step comprises the step of attaching said sensor band to a chest of the subject whereby said sensor assembly produces health parameter data indicative of at least one of ECG, respiration, skin temperature, and subject motion.
72. A method as in claim 70, wherein said sensor band transmitting step comprises the step of multiplexing health parameter data signals from at least two different sensors in said sensor assembly for transmission over said first communications link.
73. A method as in claim 70, wherein said retransmitting step comprises the step of transmitting said data signal over a cellular communications link to said remote monitoring station.
74. A method as in claim 70, wherein said retransmitting step comprises the steps of transmitting said data signal from said transceiver to a base station unit via said second communications link and storing said health parameter data in said base station unit until a designated time for transmission of said health parameter data to said remote monitoring station via a third communications link.
75. A method as in claim 74, wherein said step of transmitting said data signal from said transceiver to said base station unit comprises the step of transmitting said data signal over a cellular communications link to said base station unit.
76. A method as in claim 74, wherein said retransmitting step comprises the step of refransmission of said data signal to said remote monitoring station at said designated time, in response to a certain condition, or on demand.
77. A method as in claim 76, wherein said retransmitting step comprises the step of allowing a user to set said designated time and said certain condition time for said retransmission of said data signal to said remote monitoring station.
78. A method as in claim 76, wherein said step of retransmitting said data signal to said remote monitoring station includes the step of real-time transmission of said data signal to said remote monitoring station on receipt of a demand from said remote monitoring station.
79. A method as in claim 70, comprising the further step of storing said health parameter data received from said sensor band in a buffer of said transceiver at least during times when said second communications link is disconnected, lost, or unreliable.
80. A method as in claim 70, comprising the further step of accessing said health parameter data stored in said database for medical diagnosis or analysis.
81. A method as in claim 80, wherein said step of accessing said health parameter data comprises the step of using the remote monitoring station to select a subject for review of at least that subject's health parameter data.
82. A method as in claim 81 , wherein said step of accessing said health parameter data comprises the step of simultaneously reviewing and comparing time synchronized health parameter data for a plurality of health parameters for the selected subject.
83. A method as in claim 80, wherein said step of accessing said health parameter data step comprises the step of permitting the user to select at least one of unprocessed health parameter data and summary data for display.
84. A method as in claim 70, comprising the further step of generating case record forms from at least the health parameter data stored for a subject in said database.
85. A method as in claim 70, comprising the further step of receiving at said transceiver health parameter data transmitted by at least two sensor bands for retransmission to said remote monitoring station.
86. A method as in claim 70, comprising the further steps of determining whether the subject moved during a measurement of said health parameter data and deleting or ignoring health parameter data collected during a time the subject moved if such movement may have corrupted the health parameter data.
87. A method as in claim 86, wherein corruption of the health parameter data is determined by comparing motion data to at least one of an ECG waveform and a respiration waveform.
88. A method of collecting health parameter data, comprising the steps of: applying a sensor band having a sensor assembly to a subject whereby said sensor assembly produces a data signal including health parameter data indicative of values of at least one health parameter of the subject; said sensor band transmitting said data signal over a first communications link to a transceiver which is disposed so as to receive said health parameter data; said transceiver retransmitting said data signal over a second, wireless communications link; said transceiver storing health parameter data received from said sensor band at least during times when said second communications link is disconnected, lost, or unreliable; and a remote monitoring station receiving said retransmitted data signal from said transceiver and capturing said health parameter data for storage in a database as a continuous record of the subject's health parameters.
89. A method as in claim 88, comprising the additional steps of stopping transmission from said transceiver when said second communications link becomes disconnected, lost, or becomes unreliable, and retransmitting said data signal over said second communications link from said transceiver at an increased transmission rate after said second communications link is restored as compared to a transmission rate before said second communications link is disconnected, lost, or becomes unreliable.
90. A method as in claim 88, comprising the additional step of warning the subject that said second communications link has been disconnected, lost, or has become unreliable so that the subject may take steps to restore said second communications link.
91. A method of remotely collecting health parameter data continuously for at least a day, comprising the steps of: applying a sensor band having a sensor assembly to a subject whereby said sensor assembly produces a data signal including health parameter data indicative of values of at least one health parameter of the subject; said sensor band transmitting said data signal over a first communications link to a transceiver which is disposed so as to receive said health parameter data; said transceiver retransmitting said data signal over a second, wireless communications link; a remote monitoring station receiving said retransmitted data signal from said transceiver and capturing said health parameter data for storage in a database as a continuous record of the subject's health parameters; and temporarily buffering said health parameter data so as to prevent data loss in the event of transmission error over said first or second communications links.
92. A method as in claim 91, comprising the further step of providing real-time access to said health parameter data from said remote monitoring station to said transceiver by bypassing said buffering step when real-time data is requested by said remote monitoring station.
93. A method of continuously monitoring a subj ect' s health parameters during a drug/therapy trial, comprising the steps of: applying a sensor band having a sensor assembly to a subject whereby said sensor assembly produces a data signal including health parameter data indicative of values of at least one health parameter of the subject; said sensor band transmitting said data signal over a first communications link to a transceiver which is disposed so as to receive said health parameter data; providing a drug/therapy to the subject and electronically providing event data indicating that such an event has occuned and when; said transceiver retransmitting said data signal and event data over a second, wireless communications link; and a remote monitoring station receiving said retransmitted data signal from said transceiver and capturing said health parameter data for storage in a database as a continuous record of the subject's health parameters during a trial period of said drug/therapy, whereby said subject's physiological condition during said trial period may be monitored remotely.
94. A method as in claim 93, comprising the further step of electronically providing event data marking (1) that the subject feels ill and (2) when the subject feels ill.
95. A method as in claim 94, comprising the further step of collecting health parameter data at times before, during, and after the timing of an event marked by said event data and providing a display of any changes in said health parameter data as a result of said drug/therapy or of the subj ect feeling ill.
96. A method of triaging at least two patients, comprising the steps of: applying a sensor band having a sensor assembly to each patient whereby each sensor assembly continuously produces a data signal including health parameter data indicative of values of at least one health parameter of each said patient; each said sensor band continuously transmitting a data signal over a first communications link to a transceiver which is disposed so as to receive said health parameter data from each said patient; said transceiver retransmitting said data signal over a second, wireless communications link to a remote monitoring station; and said remote monitoring station receiving said retransmitted data signal from said transceiver and capturing said health parameter data from each said patient for simultaneous display on a display and continuous storage in a database.
97. A method as in claim 96, comprising the further steps of: marking events in said data signal at times when said health parameter data is outside of predetermined thresholds for said health parameter data; marking events in said data signal upon detection of an abnormal condition in said health parameter data; and said remote monitoring station providing to a user of the remote monitoring station an indication of which patient has caused said events to be marked.
PCT/US2000/009491 1999-04-15 2000-04-11 Portable remote patient telemonitoring system WO2000062664A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000611804A JP2002541893A (en) 1999-04-15 2000-04-11 Portable remote patient telemonitoring system
CA002365316A CA2365316A1 (en) 1999-04-15 2000-04-11 Portable remote patient telemonitoring system
AU46423/00A AU4642300A (en) 1999-04-15 2000-04-11 Portable remote patient telemonitoring system
EP00928145A EP1176905A4 (en) 1999-04-15 2000-04-11 Portable remote patient telemonitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/292,405 1999-04-15
US09/292,405 US6416471B1 (en) 1999-04-15 1999-04-15 Portable remote patient telemonitoring system

Publications (2)

Publication Number Publication Date
WO2000062664A1 WO2000062664A1 (en) 2000-10-26
WO2000062664A9 true WO2000062664A9 (en) 2002-08-29

Family

ID=23124530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/009491 WO2000062664A1 (en) 1999-04-15 2000-04-11 Portable remote patient telemonitoring system

Country Status (7)

Country Link
US (1) US6416471B1 (en)
EP (1) EP1176905A4 (en)
JP (1) JP2002541893A (en)
AU (1) AU4642300A (en)
CA (1) CA2365316A1 (en)
WO (1) WO2000062664A1 (en)
ZA (1) ZA200107935B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9000929B2 (en) 2007-05-08 2015-04-07 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9035767B2 (en) 2007-05-08 2015-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9177456B2 (en) 2007-05-08 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
CN108027363A (en) * 2015-07-23 2018-05-11 优先生物技术有限责任公司 It is engineered haemocyte estimation

Families Citing this family (771)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
US20020067269A1 (en) * 1996-01-17 2002-06-06 Cadell Theodore C. Spread spectrum telemetry of physiological signals
US8982856B2 (en) 1996-12-06 2015-03-17 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US7054271B2 (en) 1996-12-06 2006-05-30 Ipco, Llc Wireless network system and method for providing same
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US20020180605A1 (en) * 1997-11-11 2002-12-05 Ozguz Volkan H. Wearable biomonitor with flexible thinned integrated circuit
US7786562B2 (en) * 1997-11-11 2010-08-31 Volkan Ozguz Stackable semiconductor chip layer comprising prefabricated trench interconnect vias
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6914893B2 (en) 1998-06-22 2005-07-05 Statsignal Ipc, Llc System and method for monitoring and controlling remote devices
US6437692B1 (en) 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
US6891838B1 (en) 1998-06-22 2005-05-10 Statsignal Ipc, Llc System and method for monitoring and controlling residential devices
US8410931B2 (en) 1998-06-22 2013-04-02 Sipco, Llc Mobile inventory unit monitoring systems and methods
US6528856B1 (en) * 1998-12-15 2003-03-04 Intel Corporation High dielectric constant metal oxide gate dielectrics
CA2365609A1 (en) * 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
US7650425B2 (en) 1999-03-18 2010-01-19 Sipco, Llc System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system
AU4335700A (en) * 1999-04-07 2000-10-23 Endonetics, Inc. Implantable monitoring probe
US20010034728A1 (en) * 1999-04-14 2001-10-25 Mcbride Stephen Larry Method and apparatus for automatically synchronizing data to electronic devices across a communications network
US6454708B1 (en) * 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6290646B1 (en) * 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US8419650B2 (en) 1999-04-16 2013-04-16 Cariocom, LLC Downloadable datasets for a patient monitoring system
US6689380B1 (en) * 1999-05-17 2004-02-10 Kevin S. Marchitto Remote and local controlled delivery of pharmaceutical compounds using electromagnetic energy
US7429243B2 (en) * 1999-06-03 2008-09-30 Cardiac Intelligence Corporation System and method for transacting an automated patient communications session
US6312378B1 (en) * 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US6270457B1 (en) 1999-06-03 2001-08-07 Cardiac Intelligence Corp. System and method for automated collection and analysis of regularly retrieved patient information for remote patient care
US6607485B2 (en) * 1999-06-03 2003-08-19 Cardiac Intelligence Corporation Computer readable storage medium containing code for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US7134996B2 (en) * 1999-06-03 2006-11-14 Cardiac Intelligence Corporation System and method for collection and analysis of patient information for automated remote patient care
US6221011B1 (en) 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2314517A1 (en) * 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2314513A1 (en) 1999-07-26 2001-01-26 Gust H. Bardy System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system
US6264614B1 (en) * 1999-08-31 2001-07-24 Data Critical Corporation System and method for generating and transferring medical data
US6527711B1 (en) 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US8894577B2 (en) * 1999-11-05 2014-11-25 Elite Care Technologies, Inc. System and method for medical information monitoring and processing
US6368284B1 (en) 1999-11-16 2002-04-09 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof
US6398728B1 (en) 1999-11-16 2002-06-04 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring respiratory insufficiency and outcomes thereof
US6440066B1 (en) * 1999-11-16 2002-08-27 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder
US8369937B2 (en) 1999-11-16 2013-02-05 Cardiac Pacemakers, Inc. System and method for prioritizing medical conditions
US6411840B1 (en) * 1999-11-16 2002-06-25 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring the outcomes of atrial fibrillation
US6336903B1 (en) * 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US7156809B2 (en) 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6976958B2 (en) 2000-12-15 2005-12-20 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6602191B2 (en) * 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US20010037220A1 (en) * 1999-12-21 2001-11-01 Merry Randy L. Integrated software system for implantable medical device installation and management
US6463320B1 (en) * 1999-12-22 2002-10-08 Ge Medical Systems Information Technologies, Inc. Clinical research workstation
EP1110502A3 (en) * 1999-12-22 2003-03-26 GE Marquette Medical Systems, Inc. Clinical research workstation
US6510340B1 (en) * 2000-01-10 2003-01-21 Jordan Neuroscience, Inc. Method and apparatus for electroencephalography
DE10000435A1 (en) * 2000-01-10 2001-07-12 Mann & Hummel Filter Monitoring maintenance-intensive replacement parts involves storing part specifying data, reading into evaluation unit at predefined times or at predetermined intervals using suitable reader
US6805667B2 (en) * 2000-02-04 2004-10-19 Medtronic, Inc. Information remote monitor (IRM) medical device
JP3846844B2 (en) * 2000-03-14 2006-11-15 株式会社東芝 Body-mounted life support device
US7194371B1 (en) * 2000-03-27 2007-03-20 Cardiobeat.Com Medical testing system and method
WO2001075764A1 (en) * 2000-03-31 2001-10-11 Matsushita Electric Industrial Co., Ltd. Medical information system
US6496705B1 (en) * 2000-04-18 2002-12-17 Motorola Inc. Programmable wireless electrode system for medical monitoring
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
AU2001259828A1 (en) 2000-05-05 2001-11-20 Hill-Rom Services, Inc. Remote control for a hospital bed
EP1278456A2 (en) 2000-05-05 2003-01-29 Hill-Rom Services, Inc. Patient point of care computer system
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
BRPI0414359A (en) 2000-06-16 2006-11-14 Bodymedia Inc body weight monitoring and management system and other psychological conditions that include interactive and personalized planning, intervention and reporting
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
ES2260245T3 (en) 2000-06-23 2006-11-01 Bodymedia, Inc. SYSTEM TO CONTROL HEALTH, WELFARE AND EXERCISE.
US6602201B1 (en) * 2000-07-10 2003-08-05 Cardiodynamics International Corporation Apparatus and method for determining cardiac output in a living subject
FR2811878B1 (en) * 2000-07-19 2003-02-07 C2C DEVICE FOR ACQUIRING ELECTRIC SIGNALS FROM THE HUMAN BODY AND MORE PARTICULARLY FOR THE ACQUISITION OF ELECTRIC SIGNALS FROM THE HEART
US6633772B2 (en) 2000-08-18 2003-10-14 Cygnus, Inc. Formulation and manipulation of databases of analyte and associated values
EP1358745B1 (en) * 2000-08-22 2008-12-10 Medtronic, Inc. Medical device systems implemented network system for remote patient management
US7685005B2 (en) * 2000-08-29 2010-03-23 Medtronic, Inc. Medical device systems implemented network scheme for remote patient management
US7584033B2 (en) 2000-08-31 2009-09-01 Strategic Design Federation W. Inc. Automobile monitoring for operation analysis
US6606510B2 (en) * 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
DE10057781B4 (en) * 2000-11-22 2005-08-11 Siemens Ag Apparatus and method for optimizing the medical diagnosis workflow
WO2002041771A1 (en) * 2000-11-27 2002-05-30 Modco Inc. Apparatus and method for monitoring blood pressure and another physiological parameter
US6824307B2 (en) * 2000-12-12 2004-11-30 Harris Corporation Temperature sensor and related methods
US7552029B2 (en) * 2000-12-22 2009-06-23 Thermo Fisher Scientific Inc. Equipment monitoring system and method
US7756722B2 (en) * 2001-02-01 2010-07-13 Georgetown University Clinical management system from chronic illnesses using telecommunication
JP3967680B2 (en) * 2001-02-14 2007-08-29 ドレーガー メディカル システムズ インコーポレイテッド Patient monitoring area network
US6708065B2 (en) * 2001-03-02 2004-03-16 Cardiac Pacemakers, Inc. Antenna for an implantable medical device
US20020126137A1 (en) * 2001-03-06 2002-09-12 Kaestner Frederick G. Data display device
US7075894B2 (en) * 2001-03-14 2006-07-11 Fair Isaac Corporation Algorithm for prioritization of event datum in generic asynchronous telemetric streams
AU2002256048A1 (en) 2001-03-30 2002-10-15 Hill-Rom Services, Inc. Hospital bed and network system
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
FR2823625A1 (en) * 2001-04-17 2002-10-18 Sacet Wireless telecommunications remote telesurveillance system having fixed equipment radio/telephone link mobile equipment communicating having proprietary protocol radio connection and TCP/IP protocol telephone link.
US20050119580A1 (en) 2001-04-23 2005-06-02 Eveland Doug C. Controlling access to a medical monitoring system
KR20020091655A (en) * 2001-05-31 2002-12-06 (주)디지털메드 Wire or wireless health care system based on internet and operating method thereof
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US7197357B2 (en) * 2001-07-17 2007-03-27 Life Sync Corporation Wireless ECG system
US7933642B2 (en) * 2001-07-17 2011-04-26 Rud Istvan Wireless ECG system
US20030065536A1 (en) * 2001-08-13 2003-04-03 Hansen Henrik Egesborg Portable device and method of communicating medical data information
US6978286B2 (en) * 2001-08-27 2005-12-20 Francis Mathis, Inc. Handheld medication dosage calculator
JP2003069731A (en) * 2001-08-29 2003-03-07 Mitsubishi Electric Corp Remote equipment state monitoring system
US20030045787A1 (en) * 2001-09-05 2003-03-06 Schulze Arthur E. Apparatus and method for recording an electrocardiogram using non-obtrusive sensors
EP1304644A3 (en) * 2001-09-26 2003-09-10 Siemens Aktiengesellschaft System for checking of treatment plans
DE10148440A1 (en) * 2001-10-01 2003-04-17 Inflow Dynamics Inc Implantable medical device for monitoring congestive heart failure comprises electrodes for measuring lung and heart tissue impedance, with an increase in impedance above a threshold value triggering an alarm
US7778709B2 (en) * 2001-10-01 2010-08-17 Medtronic, Inc. Method and device for using impedance measurements based on electrical energy of the heart
US8457743B2 (en) * 2001-10-01 2013-06-04 Medtronic, Inc. Method of vagal stimulation to treat patients suffering from congestive heart failure
US20050137480A1 (en) * 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
US6847913B2 (en) 2001-10-04 2005-01-25 The Johns Hopkins University Ambulatory surface skin temperature monitor
FR2831294B1 (en) 2001-10-23 2005-02-11 Ikare SYSTEM FOR ACQUIRING A BIOLOGICAL SIGNAL OF THE ECG TYPE USING A PORTABLE RECORDING DEVICE AND TRANSFERRING THE SIGNAL TO A REMOTE SISTER
US8489063B2 (en) 2001-10-24 2013-07-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US7480501B2 (en) 2001-10-24 2009-01-20 Statsignal Ipc, Llc System and method for transmitting an emergency message over an integrated wireless network
US7424527B2 (en) 2001-10-30 2008-09-09 Sipco, Llc System and method for transmitting pollution information over an integrated wireless network
AUPR875101A0 (en) 2001-11-08 2001-11-29 Mondo Medical Limited Monitoring system
US6993393B2 (en) 2001-12-19 2006-01-31 Cardiac Pacemakers, Inc. Telemetry duty cycle management system for an implantable medical device
US7729776B2 (en) * 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US6934570B2 (en) * 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
KR100453503B1 (en) * 2002-01-08 2004-10-20 주식회사 케이티프리텔 Remote medical treating method and system with local wireless interface
WO2003063684A2 (en) * 2002-01-25 2003-08-07 Intellipatch, Inc. Evaluation of a patient and prediction of chronic symptoms
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US20030144711A1 (en) * 2002-01-29 2003-07-31 Neuropace, Inc. Systems and methods for interacting with an implantable medical device
US7091879B2 (en) * 2002-02-05 2006-08-15 Invivo Corporation System and method for using multiple medical monitors
US6985773B2 (en) 2002-02-07 2006-01-10 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
AUPS043602A0 (en) * 2002-02-11 2002-03-07 Ferris, Brian Edward Communication system and method
US8043213B2 (en) 2002-12-18 2011-10-25 Cardiac Pacemakers, Inc. Advanced patient management for triaging health-related data using color codes
US20040122294A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with environmental data
US8391989B2 (en) 2002-12-18 2013-03-05 Cardiac Pacemakers, Inc. Advanced patient management for defining, identifying and using predetermined health-related events
US20040122487A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with composite parameter indices
US7983759B2 (en) 2002-12-18 2011-07-19 Cardiac Pacemakers, Inc. Advanced patient management for reporting multiple health-related parameters
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7022070B2 (en) * 2002-03-22 2006-04-04 Mini-Mitter Co., Inc. Method for continuous monitoring of patients to detect the potential onset of sepsis
US7448996B2 (en) * 2002-04-16 2008-11-11 Carematix, Inc. Method and apparatus for remotely monitoring the condition of a patient
US20030217050A1 (en) * 2002-04-23 2003-11-20 Manetta Amy M. Patient monitoring user interface and navigation system and method
US6825767B2 (en) 2002-05-08 2004-11-30 Charles Humbard Subscription system for monitoring user well being
AU2003280415A1 (en) * 2002-07-01 2004-01-19 Gmp Wireless Medicine, Inc. Wireless ecg system
CA2392326A1 (en) 2002-07-03 2004-01-03 Newtrax Technologies Inc. Monitoring system and method
US20040059604A1 (en) * 2002-07-29 2004-03-25 Zaleski John R. Patient medical parameter acquisition and distribution system
CN100455255C (en) * 2002-08-09 2009-01-28 因特尔丘尔有限公司 Generalized metronome for modification of biorhythmic activity
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
CA2409078A1 (en) * 2002-09-06 2004-03-06 Bce Emergis Inc. Interactive electronic bill payment system
US7289837B2 (en) 2002-10-01 2007-10-30 Nellcor Puritan Bennett Incorpoated Forehead sensor placement
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
US7074190B2 (en) * 2002-10-09 2006-07-11 Industrial Technology Research Institute Non-invasive apparatus system for monitoring drug hepatoxicity and uses thereof
MXPA05003688A (en) 2002-10-09 2005-09-30 Bodymedia Inc Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters.
KR20040036324A (en) * 2002-10-24 2004-04-30 주식회사 헬스피아 mobile communication terminal with integrated electrocardio-gram facility
JP2004148056A (en) * 2002-11-01 2004-05-27 Matsushita Electric Ind Co Ltd Health care supporting apparatus
US7002609B2 (en) * 2002-11-07 2006-02-21 Brother International Corporation Nano-structure based system and method for charging a photoconductive surface
US8332233B2 (en) * 2002-11-13 2012-12-11 Biomedical Systems Corporation Method and system for collecting and analyzing holter data employing a web site
US20040111293A1 (en) * 2002-12-09 2004-06-10 Catherine Firanek System and a method for tracking patients undergoing treatment and/or therapy for renal disease
US7890341B2 (en) * 2002-12-09 2011-02-15 Baxter International Inc. System and a method for providing integrated access management for peritoneal dialysis and hemodialysis
US7001013B2 (en) * 2002-12-12 2006-02-21 Brother International Corporation Nanostructure based microfluidic pumping apparatus, method and printing device including same
US7009511B2 (en) 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
DE10260068A1 (en) * 2002-12-19 2005-01-27 Siemens Ag Arrangement and method for the wireless transmission of measurement signals between medical devices
EP1578262A4 (en) 2002-12-31 2007-12-05 Therasense Inc Continuous glucose monitoring system and methods of use
US7378955B2 (en) * 2003-01-03 2008-05-27 Cardiac Pacemakers, Inc. System and method for correlating biometric trends with a related temporal event
US20050163189A1 (en) * 2003-03-20 2005-07-28 Sanyo Electric Co., Ltd. Temperature information reader
US20040215738A1 (en) * 2003-03-27 2004-10-28 Ever-Up Technology Co., Ltd. Modulated network integrating system
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
AU2003902187A0 (en) * 2003-05-08 2003-05-22 Aimedics Pty Ltd Patient monitor
ATE425699T1 (en) * 2003-05-13 2009-04-15 Gme Rechte Und Beteiligungen G DEVICE AND METHOD FOR DETECTING Atrial fibrillation
EP1625751A4 (en) * 2003-05-16 2009-11-04 Andrew Odlivak System and method for automatic processing of endoscopic images
US20070055113A1 (en) * 2003-05-20 2007-03-08 Quinn Michael J Method and apparatus for homeopathic provings and diagnosis
US20040243005A1 (en) * 2003-05-29 2004-12-02 Rapps Gary M. Remote speaker microphone having vital sign monitoring capability
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
EP1495713A1 (en) * 2003-07-10 2005-01-12 Faisal Almoammar Fahad Portable medical device
US8795168B2 (en) * 2003-07-17 2014-08-05 Cadi Scientific Pte Ltd. Method and system for capturing and monitoring a physiological parameter and movement within an area of at least one person
US20050020889A1 (en) * 2003-07-24 2005-01-27 Garboski Dennis P. Medical monitoring system
US20050131288A1 (en) * 2003-08-15 2005-06-16 Turner Christopher T. Flexible, patient-worn, integrated, self-contained sensor systems for the acquisition and monitoring of physiologic data
US20070185390A1 (en) * 2003-08-19 2007-08-09 Welch Allyn, Inc. Information workflow for a medical diagnostic workstation
WO2005018432A2 (en) * 2003-08-20 2005-03-03 Philometron, Inc. Hydration monitoring
US7399205B2 (en) 2003-08-21 2008-07-15 Hill-Rom Services, Inc. Plug and receptacle having wired and wireless coupling
US7559902B2 (en) * 2003-08-22 2009-07-14 Foster-Miller, Inc. Physiological monitoring garment
US8068917B2 (en) 2003-08-29 2011-11-29 Medtronic, Inc. Fail-safe programming for implantable medical device
CA2538710A1 (en) 2003-09-12 2005-03-31 Bodymedia, Inc. Method and apparatus for measuring heart related parameters
US20050059869A1 (en) * 2003-09-15 2005-03-17 John Scharf Physiological monitoring system and improved sensor device
JP2005095469A (en) * 2003-09-26 2005-04-14 Nippon Koden Corp Registration/display system for living body monitor information
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
EP1681018A1 (en) * 2003-10-07 2006-07-19 Olympus Corporation Sleep aspiration state measurement device
US20070191815A1 (en) 2004-09-13 2007-08-16 Chrono Therapeutics, Inc. Biosynchronous transdermal drug delivery
US8620402B2 (en) * 2003-10-30 2013-12-31 Halthion Medical Technologies, Inc. Physiological sensor device
US8626262B2 (en) * 2003-10-30 2014-01-07 Halthion Medical Technologies, Inc. Physiological data collection system
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
CA2544926C (en) * 2003-11-26 2013-12-31 Cardionet, Inc. System and method for processing and presenting arrhythmia information to facilitate heart arrhythmia identification and treatment
JP4449055B2 (en) * 2003-11-27 2010-04-14 日本光電工業株式会社 Biological signal data transmission / reception system and biological signal data transmission / reception method
US8712510B2 (en) * 2004-02-06 2014-04-29 Q-Tec Systems Llc Method and apparatus for exercise monitoring combining exercise monitoring and visual data with wireless internet connectivity
US8594778B2 (en) * 2003-12-17 2013-11-26 Regents Of The University Of Colorado Activeinvasive EEG device and technique
FR2864388B1 (en) * 2003-12-22 2006-03-17 Estaris Monitoring SYSTEM FOR MODULAR ACQUISITION AND REAL TIME OF SIGNALS, IN PARTICULAR BIOMEDICAL SIGNALS
WO2005089103A2 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7488290B1 (en) * 2004-02-19 2009-02-10 Cardiac Pacemakers, Inc. System and method for assessing cardiac performance through transcardiac impedance monitoring
US8025624B2 (en) 2004-02-19 2011-09-27 Cardiac Pacemakers, Inc. System and method for assessing cardiac performance through cardiac vibration monitoring
WO2005083620A2 (en) * 2004-02-26 2005-09-09 Siemens Medical Solutions Health Services Corporation A system and method for processing audit records
US8031650B2 (en) 2004-03-03 2011-10-04 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US7756086B2 (en) 2004-03-03 2010-07-13 Sipco, Llc Method for communicating in dual-modes
US7475245B1 (en) 2004-03-15 2009-01-06 Cardiac Pacemakers, Inc. System and method for providing secure exchange of sensitive information with an implantable medical device
GB0405798D0 (en) * 2004-03-15 2004-04-21 E San Ltd Medical data display
US7831828B2 (en) * 2004-03-15 2010-11-09 Cardiac Pacemakers, Inc. System and method for securely authenticating a data exchange session with an implantable medical device
US7881798B2 (en) 2004-03-16 2011-02-01 Medtronic Inc. Controlling therapy based on sleep quality
US7717848B2 (en) * 2004-03-16 2010-05-18 Medtronic, Inc. Collecting sleep quality information via a medical device
US20070276439A1 (en) * 2004-03-16 2007-11-29 Medtronic, Inc. Collecting sleep quality information via a medical device
US8308661B2 (en) * 2004-03-16 2012-11-13 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7792583B2 (en) 2004-03-16 2010-09-07 Medtronic, Inc. Collecting posture information to evaluate therapy
US7395113B2 (en) * 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
US8725244B2 (en) 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
US7330760B2 (en) * 2004-03-16 2008-02-12 Medtronic, Inc. Collecting posture information to evaluate therapy
US20050209512A1 (en) * 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US8055348B2 (en) 2004-03-16 2011-11-08 Medtronic, Inc. Detecting sleep to evaluate therapy
US7805196B2 (en) 2004-03-16 2010-09-28 Medtronic, Inc. Collecting activity information to evaluate therapy
US7542803B2 (en) * 2004-03-16 2009-06-02 Medtronic, Inc. Sensitivity analysis for selecting therapy parameter sets
US7366572B2 (en) * 2004-03-16 2008-04-29 Medtronic, Inc. Controlling therapy based on sleep quality
US7491181B2 (en) * 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
EP1734858B1 (en) 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
US7691048B2 (en) * 2004-03-23 2010-04-06 General Electric Company Incubator patient health care system
WO2005094674A1 (en) * 2004-03-29 2005-10-13 Neuronetrix, Inc. Active, multiplexed digital electrodes for eeg, ecg and emg applications
US20050228300A1 (en) * 2004-04-07 2005-10-13 Triage Data Networks Cuffless blood-pressure monitor and accompanying wireless mobile device
JP4705952B2 (en) * 2004-04-07 2011-06-22 カーディアック ペースメイカーズ, インコーポレイテッド System and method for RF transceiver duty cycle in implantable medical devices
US7179228B2 (en) * 2004-04-07 2007-02-20 Triage Wireless, Inc. Cuffless system for measuring blood pressure
EP1732645B1 (en) * 2004-04-07 2012-06-13 Cardiac Pacemakers, Inc. Rf wake-up of implantable medical device
US20050261598A1 (en) * 2004-04-07 2005-11-24 Triage Wireless, Inc. Patch sensor system for measuring vital signs
DE102004017204B4 (en) * 2004-04-08 2008-10-16 Compugroup Holding Ag Computer system, telecommunication system, computer program product and method for sending an emergency call to an emergency call center
US7313440B2 (en) * 2004-04-14 2007-12-25 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
US8135473B2 (en) 2004-04-14 2012-03-13 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
US7292141B2 (en) * 2004-04-29 2007-11-06 Zoe Medical Incorporated Audible alarm enhancement for monitoring systems
EP1595497A1 (en) * 2004-05-05 2005-11-16 Drakeley Consulting Llc Terminal device and wireless data transmission network
US20060025931A1 (en) * 2004-07-30 2006-02-02 Richard Rosen Method and apparatus for real time predictive modeling for chronically ill patients
US7715905B2 (en) * 2004-05-25 2010-05-11 United Therapeutics Corporation Cooperative processing with mobile monitoring device and computer system
DE102004027044A1 (en) * 2004-06-02 2005-12-29 Mhm Harzbecher Medizintechnik Gmbh Apparatus and method for operating a patient monitor
US7801611B2 (en) * 2004-06-03 2010-09-21 Cardiac Pacemakers, Inc. System and method for providing communications between a physically secure programmer and an external device using a cellular network
US20050273013A1 (en) * 2004-06-04 2005-12-08 Kent Lee E Wireless patient monitoring system
CA2572455C (en) * 2004-06-04 2014-10-28 Therasense, Inc. Diabetes care host-client architecture and data management system
WO2006009767A1 (en) * 2004-06-18 2006-01-26 Neuronetrix, Inc Wireless electrode for biopotential measurement
US20060001551A1 (en) 2004-06-30 2006-01-05 Ulrich Kraft Analyte monitoring system with wireless alarm
US7329226B1 (en) 2004-07-06 2008-02-12 Cardiac Pacemakers, Inc. System and method for assessing pulmonary performance through transthoracic impedance monitoring
US20060009684A1 (en) * 2004-07-07 2006-01-12 Steven Kim System for monitoring compliance to a healthcare regiment of testing
EP1781163A4 (en) * 2004-07-09 2009-09-09 Telemedic Inc Vital sign monitoring system and method
WO2006011124A1 (en) * 2004-07-28 2006-02-02 National University Of Ireland, Galway Portable medical motoring and diagnostic system
US7852208B2 (en) 2004-08-02 2010-12-14 Hill-Rom Services, Inc. Wireless bed connectivity
US7319386B2 (en) * 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US7743151B2 (en) * 2004-08-05 2010-06-22 Cardiac Pacemakers, Inc. System and method for providing digital data communications over a wireless intra-body network
US9259164B2 (en) 2004-08-30 2016-02-16 Neuronetrix, Inc. Controller for neuromuscular testing
US7877527B2 (en) 2004-09-08 2011-01-25 Sony Corporation Cluster PC
US8252321B2 (en) 2004-09-13 2012-08-28 Chrono Therapeutics, Inc. Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, aids, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like
US8285378B1 (en) 2004-09-27 2012-10-09 Cardiac Pacemakers, Inc System and method for determining patient-specific implantable medical device programming parameters
US20060094935A1 (en) * 2004-10-20 2006-05-04 Coulbourn Instruments, L.L.C. Portable psychophysiology system and method of use
US20060089558A1 (en) * 2004-10-27 2006-04-27 General Electric Company Physiological parameter monitoring and data collection system and method
CA2587875A1 (en) * 2004-11-12 2006-05-18 Andrew H. Elser V.M.D., Pc Equine wireless physiological monitoring system
CN101065948B (en) * 2004-11-24 2013-10-16 皇家飞利浦电子股份有限公司 An internet-protocol based telemetry patient monitoring system
EP1824383B1 (en) * 2004-12-13 2018-12-05 Cardiocore Lab, Inc. Method and apparatus for transfer of captured electrocardiogram data
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8255238B2 (en) * 2005-01-03 2012-08-28 Airstrip Ip Holdings, Llc System and method for real time viewing of critical patient data on mobile devices
EP1850734A4 (en) 2005-01-13 2009-08-26 Welch Allyn Inc Vital signs monitor
WO2006081206A1 (en) 2005-01-25 2006-08-03 Sipco, Llc Wireless network protocol systems and methods
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US8378811B2 (en) * 2005-03-11 2013-02-19 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US7616110B2 (en) * 2005-03-11 2009-11-10 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US8618930B2 (en) * 2005-03-11 2013-12-31 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
DE102005032431A1 (en) 2005-03-15 2006-09-21 Weinmann Geräte für Medizin GmbH & Co. KG Modular medical device
DE102005015466A1 (en) * 2005-04-04 2006-10-05 Klaus Dipl.-Ing. Engel Animal`s e.g. running horse, heart muscle activities recording method, involves examining validity of recording of heart muscle activities in real time in combination with telemetric data communication
GB2425181B (en) * 2005-04-14 2010-02-03 Justin Pisani Wearable physiological monitoring device
US7211047B2 (en) * 2005-04-19 2007-05-01 Idt Technology Limited Blood pressure monitor
US7270633B1 (en) * 2005-04-22 2007-09-18 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
US7664553B2 (en) * 2005-04-27 2010-02-16 Cardiac Pacemakers, Inc. System and method for enabling communications with implantable medical devices
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8781847B2 (en) * 2005-05-03 2014-07-15 Cardiac Pacemakers, Inc. System and method for managing alert notifications in an automated patient management system
US20060253300A1 (en) * 2005-05-03 2006-11-09 Somberg Benjamin L System and method for managing patient triage in an automated patient management system
US20100063840A1 (en) * 2005-05-03 2010-03-11 Hoyme Kenneth P System and method for managing coordination of collected patient data in an automated patient management system
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US8021299B2 (en) * 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US20060282001A1 (en) * 2005-06-09 2006-12-14 Michel Noel Physiologic sensor apparatus
US10269228B2 (en) 2008-06-17 2019-04-23 Koninklijke Philips N.V. Acoustical patient monitoring using a sound classifier and a microphone
EP1921980A4 (en) 2005-08-31 2010-03-10 Univ Virginia Improving the accuracy of continuous glucose sensors
WO2007040478A1 (en) * 2005-09-23 2007-04-12 Bio-Products, Inc. System and methods of monitoring vital signs of a living subject
US20070073132A1 (en) * 2005-09-27 2007-03-29 Michael Vosch Apparatus and method for monitoring patients
US8818496B2 (en) 2005-10-14 2014-08-26 Medicalgorithmics Ltd. Systems for safe and remote outpatient ECG monitoring
US20070091813A1 (en) * 2005-10-19 2007-04-26 Guy Richard Automatic channel switching method for low-power communication devices
US20110010087A1 (en) * 2005-10-24 2011-01-13 CellTrak Technologies, Inc. Home Health Point-of-Care and Administration System
US8019622B2 (en) * 2005-10-24 2011-09-13 CellTrak Technologies, Inc. Home health point-of-care and administration system
US8380542B2 (en) 2005-10-24 2013-02-19 CellTrak Technologies, Inc. System and method for facilitating outcome-based health care
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US20070123754A1 (en) * 2005-11-29 2007-05-31 Cuddihy Paul E Non-encumbering, substantially continuous patient daily activity data measurement for indication of patient condition change for access by remote caregiver
US8016776B2 (en) * 2005-12-02 2011-09-13 Medtronic, Inc. Wearable ambulatory data recorder
US20070129617A1 (en) * 2005-12-02 2007-06-07 Michel Noel Light source drive algorithm
US20070180047A1 (en) 2005-12-12 2007-08-02 Yanting Dong System and method for providing authentication of remotely collected external sensor measures
US20070136098A1 (en) * 2005-12-12 2007-06-14 Smythe Alan H System and method for providing a secure feature set distribution infrastructure for medical device management
KR101109311B1 (en) 2005-12-13 2012-01-31 삼성전자주식회사 Method for synchronizing vital signal data received from plural measuring apparatuses and system of enabling the method
US8827905B2 (en) * 2006-01-04 2014-09-09 General Electric Company Patient initiated on-demand remote medical service with integrated knowledge base and computer assisted diagnosing characteristics
WO2007081829A2 (en) 2006-01-09 2007-07-19 Cardiac Pacemakers, Inc. Remotely programming a patient medical device
US20070168222A1 (en) * 2006-01-19 2007-07-19 Hoyme Kenneth P System and method for providing hierarchical medical device control for automated patient management
US8150502B2 (en) * 2006-02-06 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive cardiac monitor and methods of using continuously recorded cardiac data
SE529087C8 (en) * 2006-02-15 2007-05-08 Wireless generation of standard type ECG leads
WO2007099093A1 (en) * 2006-02-28 2007-09-07 Novo Nordisk A/S Delivery device with electronically controlled display means
US7668588B2 (en) 2006-03-03 2010-02-23 PhysioWave, Inc. Dual-mode physiologic monitoring systems and methods
US20070208232A1 (en) * 2006-03-03 2007-09-06 Physiowave Inc. Physiologic monitoring initialization systems and methods
CA2538940A1 (en) * 2006-03-03 2006-06-22 James W. Haslett Bandage with sensors
US8200320B2 (en) * 2006-03-03 2012-06-12 PhysioWave, Inc. Integrated physiologic monitoring systems and methods
US8460223B2 (en) 2006-03-15 2013-06-11 Hill-Rom Services Pte. Ltd. High frequency chest wall oscillation system
US7996074B2 (en) * 2006-03-17 2011-08-09 Cardiac Pacemakers, Inc. System and method for providing closely-followed cardiac therapy management through automated patient care
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US8744587B2 (en) 2006-03-24 2014-06-03 Medtronic, Inc. Collecting gait information for evaluation and control of therapy
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US8052626B2 (en) 2006-05-10 2011-11-08 Hill-Rom Services Pte. Ltd. Data handling for high frequency chest wall oscillation system
US7522574B2 (en) * 2006-05-15 2009-04-21 Omni Medics Corporation Power efficient communication system
WO2007139456A1 (en) * 2006-05-31 2007-12-06 St. Jude Medical Ab A method in an imd system
WO2008020325A2 (en) * 2006-06-01 2008-02-21 Rajiv Muradia Home based healthcare system and method
US20080091470A1 (en) * 2006-06-01 2008-04-17 Igeacare Systems Inc. Remote health care diagnostic tool
US20080076973A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems Inc. Remote health care system with treatment verification
US20080077435A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems Inc. Remote health care system with stethoscope
US7649449B2 (en) 2006-06-05 2010-01-19 Cardiac Pacemakers, Inc. System and method for providing synergistic alert condition processing in an automated patient management system
US7801612B2 (en) * 2006-06-05 2010-09-21 Cardiac Pacemakers, Inc. System and method for managing locally-initiated medical device interrogation
US20080071158A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US7613522B2 (en) * 2006-06-09 2009-11-03 Cardiac Pacemakers, Inc. Multi-antenna for an implantable medical device
US7720544B2 (en) * 2006-06-09 2010-05-18 Cardiac Pacemakers, Inc. Systems for enabling telemetry in an implantable medical device
US7979111B2 (en) * 2006-06-15 2011-07-12 Angelo Joseph Acquista Wireless electrode arrangement and method for patient monitoring via electrocardiography
US9101264B2 (en) 2006-06-15 2015-08-11 Peerbridge Health, Inc. Wireless electrode arrangement and method for patient monitoring via electrocardiography
US20080021287A1 (en) * 2006-06-26 2008-01-24 Woellenstein Matthias D System and method for adaptively adjusting patient data collection in an automated patient management environment
WO2008006150A1 (en) * 2006-07-11 2008-01-17 Citech Research Ip Pty Ltd Bio-activity data capture and transmission
US20080018454A1 (en) * 2006-07-13 2008-01-24 Kuo-Hung Chan Remote mobile medical communication apparatus, system and method
US7396157B2 (en) * 2006-07-14 2008-07-08 Chi-Hong Liao Body temperature measuring system capable of measuring plural remote temperatures and receiver capable of measuring a body temperature
US8396804B1 (en) 2006-07-19 2013-03-12 Mvisum, Inc. System for remote review of clinical data
US7974924B2 (en) 2006-07-19 2011-07-05 Mvisum, Inc. Medical data encryption for communication over a vulnerable system
TWI300201B (en) * 2006-07-19 2008-08-21 Ind Tech Res Inst Moveable monitoring equipment and remote mornitoring and directing system
US8380631B2 (en) 2006-07-19 2013-02-19 Mvisum, Inc. Communication of emergency medical data over a vulnerable system
US20080018480A1 (en) * 2006-07-20 2008-01-24 Sham John C K Remote body temperature monitoring device
US8180339B2 (en) * 2006-08-09 2012-05-15 Cisco Technology, Inc. Method and apparatus for transferring network management information to wireless nodes
US20080058664A1 (en) * 2006-08-29 2008-03-06 Neuropace, Inc. Patient event recording and reporting apparatus, system, and method
US9773060B2 (en) * 2006-09-05 2017-09-26 Cardiac Pacemaker, Inc. System and method for providing automatic setup of a remote patient care environment
US8442607B2 (en) * 2006-09-07 2013-05-14 Sotera Wireless, Inc. Hand-held vital signs monitor
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US9675285B2 (en) * 2006-10-16 2017-06-13 Given Imaging Ltd. Delivery device for implantable monitor
US8126733B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for medical data interchange using mobile computing devices
US8126730B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for storage and forwarding of medical data
US20080097912A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for wireless processing and transmittal of medical data through an intermediary device
US8126732B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for processing and transmittal of medical data through multiple interfaces
US20090112769A1 (en) * 2007-10-24 2009-04-30 Kent Dicks Systems and methods for remote patient monitoring
US8966235B2 (en) * 2006-10-24 2015-02-24 Kent E. Dicks System for remote provisioning of electronic devices by overlaying an initial image with an updated image
US20080097917A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for wireless processing and medical device monitoring via remote command execution
WO2008140554A2 (en) * 2006-10-24 2008-11-20 Medapps, Inc. Systems and methods for adapter-based communication with a medical device
US9543920B2 (en) * 2006-10-24 2017-01-10 Kent E. Dicks Methods for voice communication through personal emergency response system
US8126729B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for processing and transmittal of data from a plurality of medical devices
US8131566B2 (en) * 2006-10-24 2012-03-06 Medapps, Inc. System for facility management of medical data and patient interface
US8126735B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for remote patient monitoring and user interface
US20080097914A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for wireless processing and transmittal of medical data through multiple interfaces
US20080097550A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for remote patient monitoring and command execution
US8126734B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for adapter-based communication with a medical device
US8126728B2 (en) * 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for processing and transmittal of medical data through an intermediary device
US20080097913A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for wireless processing and transmittal of data from a plurality of medical devices
US8462678B2 (en) * 2006-11-06 2013-06-11 Cardiac Pacemakers, Inc. System and method for operating a wireless medical device interrogation network
US8449469B2 (en) * 2006-11-10 2013-05-28 Sotera Wireless, Inc. Two-part patch sensor for monitoring vital signs
US7758522B2 (en) * 2007-01-03 2010-07-20 General Electric Company Combined uterine activity and fetal heart rate monitoring device
WO2008097652A2 (en) * 2007-02-08 2008-08-14 Senior Vitals, Inc. Body patch for none-invasive physiological data readings
EP2126828A4 (en) 2007-02-16 2012-01-25 Bodymedia Inc Systems and methods for understanding and applying the physiological and contextual life patterns of an individual or set of individuals
US9044136B2 (en) 2007-02-16 2015-06-02 Cim Technology Inc. Wearable mini-size intelligent healthcare system
WO2008103827A1 (en) 2007-02-22 2008-08-28 Welldoc Communications, Inc. System and method for providing treatment recommendations based on models
US10860943B2 (en) 2007-02-22 2020-12-08 WellDoc, Inc. Systems and methods for disease control and management
US10872686B2 (en) 2007-02-22 2020-12-22 WellDoc, Inc. Systems and methods for disease control and management
US20080221399A1 (en) * 2007-03-05 2008-09-11 Triage Wireless, Inc. Monitor for measuring vital signs and rendering video images
US9345418B2 (en) * 2007-03-27 2016-05-24 Dignity Health EEG net with transmission capabilities
US8347365B2 (en) * 2007-03-29 2013-01-01 Cardiac Pacemakers, Inc. System and method for confirming identity and authority by a patient medical device
WO2008130896A1 (en) 2007-04-14 2008-10-30 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
EP4108162A1 (en) 2007-04-14 2022-12-28 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US8140142B2 (en) * 2007-04-14 2012-03-20 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9615780B2 (en) 2007-04-14 2017-04-11 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146625B1 (en) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US7664143B2 (en) * 2007-05-01 2010-02-16 Harris Corporation Communications system using adaptive baseband injected pilot carrier symbols and related method
US20080281171A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
KR100903172B1 (en) * 2007-06-04 2009-06-17 충북대학교 산학협력단 Method for monitoring respiration in a wireless way and device for performing the same
US7974689B2 (en) * 2007-06-13 2011-07-05 Zoll Medical Corporation Wearable medical treatment device with motion/position detection
US9597029B2 (en) * 2007-06-19 2017-03-21 Cardiac Pacemakers, Inc. System and method for remotely evaluating patient compliance status
EP3533387A3 (en) 2007-06-21 2019-11-13 Abbott Diabetes Care, Inc. Health management devices and methods
CA2690870C (en) 2007-06-21 2017-07-11 Abbott Diabetes Care Inc. Health monitor
US20080319327A1 (en) * 2007-06-25 2008-12-25 Triage Wireless, Inc. Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090157202A1 (en) * 2007-08-10 2009-06-18 Smiths Medical Md Therapy rules for closed loop programming of medical devices
US20090048644A1 (en) * 2007-08-14 2009-02-19 Stahmann Jeffrey E System and method for providing intrabody data security on an active implantable medical device
US7868740B2 (en) 2007-08-29 2011-01-11 Hill-Rom Services, Inc. Association of support surfaces and beds
US8461968B2 (en) 2007-08-29 2013-06-11 Hill-Rom Services, Inc. Mattress for a hospital bed for use in a healthcare facility and management of same
US11126321B2 (en) 2007-09-04 2021-09-21 Apple Inc. Application menu user interface
US20090069869A1 (en) * 2007-09-11 2009-03-12 Advanced Bionics Corporation Rotating field inductive data telemetry and power transfer in an implantable medical device system
EP2200499B1 (en) 2007-09-14 2019-05-01 Medtronic Monitoring, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
US8897868B2 (en) 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
WO2009036334A1 (en) * 2007-09-14 2009-03-19 Corventis, Inc. Adherent multi-sensor device with empathic monitoring
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
US8591430B2 (en) * 2007-09-14 2013-11-26 Corventis, Inc. Adherent device for respiratory monitoring
US8684925B2 (en) 2007-09-14 2014-04-01 Corventis, Inc. Injectable device for physiological monitoring
US8460189B2 (en) 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
WO2009039124A1 (en) * 2007-09-18 2009-03-26 Stacy Venne Consulting Inc. Method and system for providing remote healthcare
EP2039286A1 (en) * 2007-09-21 2009-03-25 Roche Diagnostics GmbH Interface device between data management unit and medical device
US20110090086A1 (en) * 2007-10-22 2011-04-21 Kent Dicks Systems for personal emergency intervention
US8082160B2 (en) 2007-10-26 2011-12-20 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US8402151B2 (en) * 2007-12-07 2013-03-19 Roche Diagnostics Operations, Inc. Dynamic communication stack
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090287109A1 (en) * 2008-05-14 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9672471B2 (en) 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090192362A1 (en) * 2008-01-24 2009-07-30 Sweeney Robert J System And Method For Corroborating Transitory Changes In Wellness Status Against A Patient Population
US8708919B1 (en) * 2008-01-25 2014-04-29 Raytheon Company System and method for remotely sensing vital signs
JP5055153B2 (en) * 2008-02-01 2012-10-24 株式会社日立製作所 Analysis system and analysis server
WO2009100401A2 (en) * 2008-02-06 2009-08-13 Hmicro, Inc. Wireless communications systems using multiple radios
US8169304B2 (en) 2008-02-22 2012-05-01 Hill-Rom Services, Inc. User station for healthcare communication system
JP5290596B2 (en) * 2008-02-29 2013-09-18 株式会社日立メディコ Biological light measurement device
JP5489043B2 (en) * 2008-03-10 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ Wireless heart monitoring system
EP2262419B1 (en) 2008-03-10 2019-06-26 Koninklijke Philips N.V. Wireless outpatient ecg monitoring system
WO2009114548A1 (en) 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US20090240527A1 (en) * 2008-03-21 2009-09-24 Computerized Screening, Inc. Community based managed health kiosk system
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
KR20100139144A (en) * 2008-04-21 2010-12-31 카를 프레데릭 에드만 Metabolic energy monitoring system
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
WO2009147267A1 (en) * 2008-06-03 2009-12-10 Javier Garavilla Lapeyra Wireless device for remotely checking vital signs and movement, including a two-way voice system
US20100010356A1 (en) * 2008-07-09 2010-01-14 Raymond Chan Blood pressure monitor with remote display
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US20100006098A1 (en) * 2008-07-10 2010-01-14 Mcginnis William J Cpap-oximeter hybrid device and method of using
US20100016746A1 (en) * 2008-07-15 2010-01-21 Hampton David R Personal alerting device for use with diagnostic device
US8604923B1 (en) * 2008-07-16 2013-12-10 Victor Rivas Alvarez Telemetric health monitoring devices and system
JP5309765B2 (en) 2008-07-29 2013-10-09 富士通株式会社 Information access system, information storage device, and read / write device
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8784293B2 (en) * 2008-10-07 2014-07-22 Advanced Brain Monitoring, Inc. Systems and methods for optimization of sleep and post-sleep performance
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
JP5479706B2 (en) * 2008-10-17 2014-04-23 オリンパスメディカルシステムズ株式会社 Medical information system, in-subject information display method, and in-subject information display program
EP2359283A1 (en) * 2008-11-17 2011-08-24 Medicalgorithmics Ltd. Outpatient monitoring systems and methods
EP2375968B1 (en) 2008-12-15 2018-11-14 Medtronic Monitoring, Inc. Patient monitoring systems and methods
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
EP2405803A4 (en) * 2009-03-11 2014-08-06 Airstrip Ip Holdings Llc Systems and methods for viewing patient data
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US9655518B2 (en) * 2009-03-27 2017-05-23 Braemar Manufacturing, Llc Ambulatory and centralized processing of a physiological signal
GB0905377D0 (en) * 2009-03-30 2009-05-13 Danmedical Ltd Medical apparatus
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
KR101006824B1 (en) * 2009-05-22 2011-01-10 한국과학기술원 Wearable monitoring apparatus and driving method thereof
KR101604077B1 (en) * 2009-05-26 2016-03-16 삼성전자주식회사 Method and apparatus for transmitting biological information of user
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
EP2437650A1 (en) * 2009-06-05 2012-04-11 Nonin Medical, Inc Oximetry with remote display
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US20110046698A1 (en) * 2009-08-24 2011-02-24 Medtronic, Inc. Recovery of a wireless communication session with an implantable medical device
CN102473276B (en) 2009-08-31 2016-04-13 雅培糖尿病护理公司 Medical treatment device and method
WO2011031891A1 (en) * 2009-09-09 2011-03-17 Abbott Diabetes Care Inc. Analyzing wireless communication degradation through comparison of communication links
US20110066044A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US9265429B2 (en) 2009-09-18 2016-02-23 Welch Allyn, Inc. Physiological parameter measuring platform device supporting multiple workflows
TW201110935A (en) * 2009-09-18 2011-04-01 Univ Nat Yang Ming Remote patient monitoring system and method thereof
US20110082376A1 (en) * 2009-10-05 2011-04-07 Huelskamp Paul J Physiological blood pressure waveform compression in an acoustic channel
WO2011050283A2 (en) 2009-10-22 2011-04-28 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US20110141116A1 (en) * 2009-12-16 2011-06-16 Baxter International Inc. Methods and apparatus for displaying flow rate graphs and alarms on a dialysis system
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
CN102713916B (en) * 2009-12-21 2016-03-02 皇家飞利浦电子股份有限公司 BODE index measurement
US20110178375A1 (en) * 2010-01-19 2011-07-21 Avery Dennison Corporation Remote physiological monitoring
WO2011091336A1 (en) * 2010-01-22 2011-07-28 Abbott Diabetes Care Inc. Method and apparatus for providing notification in analyte monitoring systems
US8257289B2 (en) * 2010-02-03 2012-09-04 Tyco Healthcare Group Lp Fitting of compression garment
US20110194630A1 (en) * 2010-02-10 2011-08-11 Yang Hua-Lung Systems and methods for reporting radio link failure
US10541048B2 (en) * 2010-02-18 2020-01-21 Siemens Healthcare Gmbh System for monitoring and visualizing a patient treatment process
US8779924B2 (en) 2010-02-19 2014-07-15 Hill-Rom Services, Inc. Nurse call system with additional status board
US20110213579A1 (en) * 2010-02-26 2011-09-01 Henke Tom L Method and apparatus for verifying test results
US20110213619A1 (en) * 2010-02-26 2011-09-01 Henke Tom L Method and system for online medical diagnosis
US20110225008A1 (en) * 2010-03-09 2011-09-15 Respira Dv, Llc Self-Similar Medical Communications System
WO2011112972A2 (en) * 2010-03-11 2011-09-15 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
US8219171B2 (en) * 2010-03-16 2012-07-10 Given Imaging Ltd. Delivery device for implantable monitor
US10956867B2 (en) 2010-03-31 2021-03-23 Airstrip Ip Holdings, Llc Multi-factor authentication for remote access of patient data
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
DE102010014761B4 (en) 2010-04-13 2018-09-27 Drägerwerk AG & Co. KGaA Method for determining vital parameters
US10238362B2 (en) 2010-04-26 2019-03-26 Gary And Mary West Health Institute Integrated wearable device for detection of fetal heart rate and material uterine contractions with wireless communication capability
US9211085B2 (en) 2010-05-03 2015-12-15 Foster-Miller, Inc. Respiration sensing system
WO2011143490A2 (en) 2010-05-12 2011-11-17 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
US9183560B2 (en) 2010-05-28 2015-11-10 Daniel H. Abelow Reality alternate
US20110301478A1 (en) * 2010-06-07 2011-12-08 Mckesson Financial Holdings Limited Management of medical information
WO2011158198A2 (en) * 2010-06-17 2011-12-22 Card Guard Scientific Survival Ltd. A method and a system for monitoring of sleep and other physiological conditions
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9017255B2 (en) * 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
US9028404B2 (en) 2010-07-28 2015-05-12 Foster-Miller, Inc. Physiological status monitoring system
US20120035426A1 (en) * 2010-08-03 2012-02-09 Mielcarz Craig D Extended range physiological monitoring system
EP2603132B1 (en) * 2010-08-09 2016-04-20 MIR SRL Medical International Research Portable device for monitoring and reporting of medical information for the evidence -based management of patients with chronic respiratory disease
US9117321B2 (en) 2010-08-18 2015-08-25 Snap-On Incorporated Method and apparatus to use remote and local control modes to acquire and visually present data
US8560168B2 (en) 2010-08-18 2013-10-15 Snap-On Incorporated System and method for extending communication range and reducing power consumption of vehicle diagnostic equipment
US8463953B2 (en) 2010-08-18 2013-06-11 Snap-On Incorporated System and method for integrating devices for servicing a device-under-service
US9633492B2 (en) 2010-08-18 2017-04-25 Snap-On Incorporated System and method for a vehicle scanner to automatically execute a test suite from a storage card
US20120046825A1 (en) * 2010-08-18 2012-02-23 Snap-On Incorporated System and Method for Universal Scanner Module to Buffer and Bulk Send Vehicle Data Responsive to Network Conditions
US8983785B2 (en) 2010-08-18 2015-03-17 Snap-On Incorporated System and method for simultaneous display of waveforms generated from input signals received at a data acquisition device
US8585606B2 (en) 2010-09-23 2013-11-19 QinetiQ North America, Inc. Physiological status monitoring system
US20120083712A1 (en) 2010-09-30 2012-04-05 Tyco Healthcare Group Lp Monitoring Compliance Using Venous Refill Detection
US20120083710A1 (en) 2010-09-30 2012-04-05 Medism Ltd. Ergonomic hand-held thermometer
EP2624745A4 (en) 2010-10-07 2018-05-23 Abbott Diabetes Care, Inc. Analyte monitoring devices and methods
US9717412B2 (en) * 2010-11-05 2017-08-01 Gary And Mary West Health Institute Wireless fetal monitoring system
JP2012109742A (en) * 2010-11-16 2012-06-07 Sony Corp Information providing device and information providing method and communication system
US9026190B2 (en) 2010-11-17 2015-05-05 Rhythm Check, Inc. Portable physiological parameter detection and monitoring device with integratable computer memory and communication disk, systems and methods of use thereof
EP2641151A4 (en) * 2010-11-19 2018-04-18 Spacelabs Healthcare LLC Self-contained patient monitor
US9597055B2 (en) 2011-01-07 2017-03-21 General Electric Company Fetal scalp doppler device and system
US9168022B2 (en) 2011-01-07 2015-10-27 General Electric Company Abdominal sonar system and apparatus
US8827930B2 (en) 2011-01-10 2014-09-09 Bioguidance Llc System and method for patient monitoring
US8915869B2 (en) 2011-01-10 2014-12-23 Bioguidance Llc Patient monitoring device
US20120185569A1 (en) * 2011-01-14 2012-07-19 Qualcomm Incorporated Techniques for dynamic task processing in a wireless communication system
US8947848B2 (en) * 2011-02-08 2015-02-03 International Business Machines Corporation Smarter health conscious electroshock device with medical implant detection
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9629566B2 (en) 2011-03-11 2017-04-25 Spacelabs Healthcare Llc Methods and systems to determine multi-parameter managed alarm hierarchy during patient monitoring
US20120265090A1 (en) * 2011-04-13 2012-10-18 Fink Rainer J System and method of acquiring uterine emg signals and wirelessly transmitting the same
US8478418B2 (en) 2011-04-15 2013-07-02 Infobionic, Inc. Remote health monitoring system
US8885464B2 (en) * 2011-04-28 2014-11-11 Bio-Signal Group Corp. Wireless EEG data recovery
WO2012162740A1 (en) * 2011-05-31 2012-12-06 Sonomedical Pty Ltd Electronic monitoring system for the production of data packages for analytic and diagnostic purposes
US8773258B2 (en) 2011-06-06 2014-07-08 Halthion Medical Technologies, Inc. Data collection module for a physiological data collection system
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
CN103747721A (en) * 2011-06-16 2014-04-23 Myzone有限公司 Physical activity monitoring systems
EP2729148A4 (en) 2011-07-06 2015-04-22 Parkinson S Inst Compositions and methods for treatment of symptoms in parkinson's disease patients
US9770189B2 (en) 2011-08-16 2017-09-26 Elwha Llc Systematic distillation of status data relating to regimen compliance
US8731632B1 (en) 2011-08-18 2014-05-20 Joel L. Sereboff Electrocardiogram device
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
JP5901231B2 (en) * 2011-11-04 2016-04-06 オリンパス株式会社 Wireless communication terminal
WO2013070794A2 (en) 2011-11-07 2013-05-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods
JP2013106801A (en) * 2011-11-21 2013-06-06 Seiko Instruments Inc Biological information measuring apparatus and biological information measuring method
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
JP5505742B2 (en) * 2012-01-18 2014-05-28 横河電機株式会社 Analog front-end circuit for measurement
US9282897B2 (en) 2012-02-13 2016-03-15 MedHab, LLC Belt-mounted movement sensor system
US8976032B2 (en) 2012-03-07 2015-03-10 Infosys Limited Systems, methods and computer-readable media for identifying an anonymous patient
EP2836944A2 (en) * 2012-04-04 2015-02-18 Cardiocom, LLC Health-monitoring system with multiple health monitoring devices, interactive voice recognition, and mobile interfaces for data collection and transmission
US9055870B2 (en) 2012-04-05 2015-06-16 Welch Allyn, Inc. Physiological parameter measuring platform device supporting multiple workflows
USD772252S1 (en) 2012-04-05 2016-11-22 Welch Allyn, Inc. Patient monitoring device with a graphical user interface
US10226200B2 (en) 2012-04-05 2019-03-12 Welch Allyn, Inc. User interface enhancements for physiological parameter monitoring platform devices
US9235682B2 (en) 2012-04-05 2016-01-12 Welch Allyn, Inc. Combined episodic and continuous parameter monitoring
USD916713S1 (en) 2012-04-05 2021-04-20 Welch Allyn, Inc. Display screen with graphical user interface for patient central monitoring station
US9681836B2 (en) 2012-04-23 2017-06-20 Cyberonics, Inc. Methods, systems and apparatuses for detecting seizure and non-seizure states
US9411934B2 (en) 2012-05-08 2016-08-09 Hill-Rom Services, Inc. In-room alarm configuration of nurse call system
US9459781B2 (en) 2012-05-09 2016-10-04 Apple Inc. Context-specific user interfaces for displaying animated sequences
KR200462846Y1 (en) 2012-06-12 2012-10-10 조민제 Corrective Shoes for Walking
US20130345575A1 (en) * 2012-06-21 2013-12-26 Chang-An Chou Cardiovascular monitoring device
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9582646B2 (en) 2012-08-16 2017-02-28 Koninklijke Philips N.V. Connected patient monitoring system and method to provide patient-centric intelligent monitoring services
US10132793B2 (en) 2012-08-30 2018-11-20 Abbott Diabetes Care Inc. Dropout detection in continuous analyte monitoring data during data excursions
US20140081659A1 (en) 2012-09-17 2014-03-20 Depuy Orthopaedics, Inc. Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9314159B2 (en) 2012-09-24 2016-04-19 Physio-Control, Inc. Patient monitoring device with remote alert
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9351641B2 (en) * 2012-10-04 2016-05-31 Cerner Innovation, Inc. Mobile processing device system for patient monitoring data acquisition
KR101974258B1 (en) 2012-10-26 2019-04-30 백스터 코포레이션 잉글우드 Improved image acquisition for medical dose preparation system
CA2889352C (en) 2012-10-26 2021-12-07 Baxter Corporation Englewood Improved work station for medical dose preparation system
US9395234B2 (en) 2012-12-05 2016-07-19 Cardiocom, Llc Stabilizing base for scale
US9801541B2 (en) 2012-12-31 2017-10-31 Dexcom, Inc. Remote monitoring of analyte measurements
US9730620B2 (en) 2012-12-31 2017-08-15 Dexcom, Inc. Remote monitoring of analyte measurements
US9098991B2 (en) * 2013-01-15 2015-08-04 Fitbit, Inc. Portable monitoring devices and methods of operating the same
US10244986B2 (en) 2013-01-23 2019-04-02 Avery Dennison Corporation Wireless sensor patches and methods of manufacturing
WO2014116825A1 (en) 2013-01-24 2014-07-31 Irhythm Technologies, Inc. Physiological monitoring device
US20150372770A1 (en) * 2013-02-06 2015-12-24 Koninklijke Philips N.V. Body coupled communiication system
US11872053B1 (en) * 2013-02-22 2024-01-16 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
US11612352B1 (en) * 2013-02-22 2023-03-28 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
US9532716B2 (en) 2013-03-04 2017-01-03 Hello Inc. Systems using lifestyle database analysis to provide feedback
US9445651B2 (en) 2013-03-04 2016-09-20 Hello Inc. Wearable device with overlapping ends coupled by magnets
US9398854B2 (en) 2013-03-04 2016-07-26 Hello Inc. System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison
US9339188B2 (en) 2013-03-04 2016-05-17 James Proud Methods from monitoring health, wellness and fitness with feedback
US9345403B2 (en) 2013-03-04 2016-05-24 Hello Inc. Wireless monitoring system with activity manager for monitoring user activity
US9361572B2 (en) 2013-03-04 2016-06-07 Hello Inc. Wearable device with magnets positioned at opposing ends and overlapped from one side to another
US20140246502A1 (en) 2013-03-04 2014-09-04 Hello Inc. Wearable devices with magnets encased by a material that redistributes their magnetic fields
US9526422B2 (en) 2013-03-04 2016-12-27 Hello Inc. System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system
US9330561B2 (en) 2013-03-04 2016-05-03 Hello Inc. Remote communication systems and methods for communicating with a building gateway control to control building systems and elements
US9204798B2 (en) * 2013-03-04 2015-12-08 Hello, Inc. System for monitoring health, wellness and fitness with feedback
US9406220B2 (en) 2013-03-04 2016-08-02 Hello Inc. Telemetry system with tracking receiver devices
US8850421B2 (en) 2013-03-04 2014-09-30 Hello Inc. Telemetry system with remote firmware updates or repair for remote monitoring devices when the monitoring device is not in use by the user
US9634921B2 (en) 2013-03-04 2017-04-25 Hello Inc. Wearable device coupled by magnets positioned in a frame in an interior of the wearable device with at least one electronic circuit
US9848776B2 (en) 2013-03-04 2017-12-26 Hello Inc. Methods using activity manager for monitoring user activity
US9704209B2 (en) 2013-03-04 2017-07-11 Hello Inc. Monitoring system and device with sensors and user profiles based on biometric user information
US9424508B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with magnets having first and second polarities
US9430938B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring device with selectable wireless communication
US9530089B2 (en) 2013-03-04 2016-12-27 Hello Inc. Wearable device with overlapping ends coupled by magnets of a selected width, length and depth
US9420856B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with adjacent magnets magnetized in different directions
US9298882B2 (en) 2013-03-04 2016-03-29 Hello Inc. Methods using patient monitoring devices with unique patient IDs and a telemetry system
US9345404B2 (en) 2013-03-04 2016-05-24 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
US9392939B2 (en) 2013-03-04 2016-07-19 Hello Inc. Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison
US9357922B2 (en) 2013-03-04 2016-06-07 Hello Inc. User or patient monitoring systems with one or more analysis tools
US9427160B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with overlapping ends coupled by magnets positioned in the wearable device by an undercut
US9320434B2 (en) 2013-03-04 2016-04-26 Hello Inc. Patient monitoring systems and messages that send alerts to patients only when the patient is awake
US9420857B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with interior frame
US9432091B2 (en) 2013-03-04 2016-08-30 Hello Inc. Telemetry system with wireless power receiver and monitoring devices
US9553486B2 (en) 2013-03-04 2017-01-24 Hello Inc. Monitoring system and device with sensors that is remotely powered
US9427053B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with magnets magnetized through their widths or thickness
US9662015B2 (en) 2013-03-04 2017-05-30 Hello Inc. System or device with wearable devices having one or more sensors with assignment of a wearable device user identifier to a wearable device user
US9436903B2 (en) 2013-03-04 2016-09-06 Hello Inc. Wearable device with magnets with a defined distance between adjacent magnets
US9737214B2 (en) 2013-03-04 2017-08-22 Hello Inc. Wireless monitoring of patient exercise and lifestyle
US9427189B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring system and device with sensors that are responsive to skin pigmentation
US9367793B2 (en) 2013-03-04 2016-06-14 Hello Inc. Wearable device with magnets distanced from exterior surfaces of the wearable device
US9149189B2 (en) * 2013-03-04 2015-10-06 Hello, Inc. User or patient monitoring methods using one or more analysis tools
US9159223B2 (en) 2013-03-04 2015-10-13 Hello, Inc. User monitoring device configured to be in communication with an emergency response system or team
WO2014143776A2 (en) 2013-03-15 2014-09-18 Bodhi Technology Ventures Llc Providing remote interactions with host device using a wireless device
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
TWI622381B (en) * 2013-03-28 2018-05-01 Brain wave analysis method
EP2983593B1 (en) 2013-04-08 2021-11-10 Irhythm Technologies, Inc. Skin abrader
US20140378810A1 (en) * 2013-04-18 2014-12-25 Digimarc Corporation Physiologic data acquisition and analysis
US10987026B2 (en) 2013-05-30 2021-04-27 Spacelabs Healthcare Llc Capnography module with automatic switching between mainstream and sidestream monitoring
US9861290B1 (en) 2013-06-05 2018-01-09 Rittenhouse Engineering, LLC Wireless medical sensor system
US10009581B2 (en) 2015-01-02 2018-06-26 Fitbit, Inc. Room monitoring device
US10058290B1 (en) 2013-06-21 2018-08-28 Fitbit, Inc. Monitoring device with voice interaction
US9610030B2 (en) 2015-01-23 2017-04-04 Hello Inc. Room monitoring device and sleep analysis methods
US10004451B1 (en) 2013-06-21 2018-06-26 Fitbit, Inc. User monitoring system
US9993166B1 (en) 2013-06-21 2018-06-12 Fitbit, Inc. Monitoring device using radar and measuring motion with a non-contact device
US20160220198A1 (en) 2013-06-21 2016-08-04 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
AU2014301982A1 (en) * 2013-06-24 2016-02-04 Event Cardio Canada, Inc Wireless cardiac event recorder
US9830424B2 (en) 2013-09-18 2017-11-28 Hill-Rom Services, Inc. Bed/room/patient association systems and methods
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US20190167139A1 (en) 2017-12-05 2019-06-06 Gust H. Bardy Subcutaneous P-Wave Centric Insertable Cardiac Monitor For Long Term Electrocardiographic Monitoring
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US20170238833A1 (en) * 2013-09-25 2017-08-24 Bardy Diagnostics, Inc. Electrocardiography And Syncope Monitor Recorder
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
WO2015048194A1 (en) 2013-09-25 2015-04-02 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
JP2016536040A (en) * 2013-09-30 2016-11-24 ヒュイノ カンパニー リミテッド System for monitoring blood pressure in real time
CA2832062A1 (en) * 2013-11-01 2015-05-01 Saskatchewan Telecommunications Centrally managed lone worker monitoring system and method
US10270898B2 (en) 2014-05-30 2019-04-23 Apple Inc. Wellness aggregator
US9397792B2 (en) * 2013-12-06 2016-07-19 Intel Corporation Efficient link layer retry protocol utilizing implicit acknowledgements
US9325449B2 (en) 2013-12-06 2016-04-26 Intel Corporation Lane error detection and lane removal mechanism to reduce the probability of data corruption
US9028407B1 (en) * 2013-12-13 2015-05-12 Safer Care LLC Methods and apparatus for monitoring patient conditions
US10251059B2 (en) 2014-01-21 2019-04-02 Everykey Inc. Authentication device and method
MX2016009787A (en) * 2014-01-31 2017-02-22 Univ Boston Offline glucose control based on preceding periods.
US9628382B2 (en) 2014-02-05 2017-04-18 Intel Corporation Reliable transport of ethernet packet data with wire-speed and packet data rate match
WO2015138734A1 (en) * 2014-03-12 2015-09-17 Zansors Llc Wireless ecg acquisition and monitoring device and system
WO2015136502A1 (en) * 2014-03-13 2015-09-17 Koninklijke Philips N.V. Patient watch-dog and intervention/event timeline
US20170185748A1 (en) 2014-03-30 2017-06-29 Abbott Diabetes Care Inc. Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems
CN116301544A (en) 2014-06-27 2023-06-23 苹果公司 Reduced size user interface
EP3826028A1 (en) 2014-06-30 2021-05-26 Baxter Corporation Englewood Managed medical information exchange
US10135905B2 (en) 2014-07-21 2018-11-20 Apple Inc. Remote user interface
WO2016019040A1 (en) 2014-07-29 2016-02-04 Kurt Stump Computer-implemented systems and methods of automated physiological monitoring, prognosis, and triage
WO2016036552A1 (en) 2014-09-02 2016-03-10 Apple Inc. User interactions for a mapping application
EP3189406B1 (en) 2014-09-02 2022-09-07 Apple Inc. Phone user interface
KR101776098B1 (en) 2014-09-02 2017-09-07 애플 인크. Physical activity and workout monitor
US9663202B2 (en) 2014-09-22 2017-05-30 Water Rescue Innovations, Inc. Safety, rescue, and recovery apparatus and method
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
JP6669950B2 (en) 2014-10-27 2020-03-18 バイタル サイネス インターナショナル インコーポレイテッドVital Sines International Inc. System and method for monitoring aortic pulse wave velocity and blood pressure
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
WO2016070128A1 (en) 2014-10-31 2016-05-06 Irhythm Technologies, Inc. Wireless physiological monitoring device and systems
EP3937116A1 (en) 2014-12-05 2022-01-12 Baxter Corporation Englewood Dose preparation data analytics
US10136859B2 (en) 2014-12-23 2018-11-27 Michael Cutaia System and method for outpatient management of chronic disease
WO2016123406A1 (en) 2015-01-28 2016-08-04 Chrono Therapeutics Inc. Drug delivery methods and systems
EP3998762A1 (en) 2015-02-02 2022-05-18 Apple Inc. Device, method, and graphical user interface for establishing a relationship and connection between two devices
WO2016144385A1 (en) 2015-03-08 2016-09-15 Apple Inc. Sharing user-configurable graphical constructs
CA2977814A1 (en) 2015-03-12 2016-09-15 Chrono Therapeutics Inc. Craving input and support system
US10395008B2 (en) * 2015-05-28 2019-08-27 Welch Allyn, Inc. Device connectivity engine
US10185513B1 (en) 2015-06-05 2019-01-22 Life365, Inc. Device configured for dynamic software change
US10560135B1 (en) 2015-06-05 2020-02-11 Life365, Inc. Health, wellness and activity monitor
US11329683B1 (en) 2015-06-05 2022-05-10 Life365, Inc. Device configured for functional diagnosis and updates
US9974492B1 (en) 2015-06-05 2018-05-22 Life365, Inc. Health monitoring and communications device
US10275116B2 (en) 2015-06-07 2019-04-30 Apple Inc. Browser with docked tabs
WO2016207206A1 (en) 2015-06-25 2016-12-29 Gambro Lundia Ab Medical device system and method having a distributed database
CN107920736A (en) * 2015-06-26 2018-04-17 C.拉芬股份有限公司 Easy to the improved method and equipment of health and safety management
US11553883B2 (en) 2015-07-10 2023-01-17 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
US10671704B2 (en) 2015-07-23 2020-06-02 PrioBio, LLC Predicting immune response
CN113521710A (en) 2015-08-20 2021-10-22 苹果公司 Motion-based dial and complex function block
US10388411B1 (en) 2015-09-02 2019-08-20 Life365, Inc. Device configured for functional diagnosis and updates
CN108697571B (en) 2015-10-09 2021-07-13 Kpr美国有限责任公司 Compression garment compliance
EP3369267A1 (en) * 2015-10-29 2018-09-05 Koninklijke Philips N.V. Reliable communication algorithm for wireless medical devices and sensors within monitoring systems
US20190000335A1 (en) * 2015-11-23 2019-01-03 Medicomp, Inc Heart monitor with diagnostic display and associated methods
US10646144B2 (en) 2015-12-07 2020-05-12 Marcelo Malini Lamego Wireless, disposable, extended use pulse oximeter apparatus and methods
CA3200794A1 (en) 2015-12-28 2017-07-06 Dexcom, Inc. Systems and methods for remote and host monitoring communications
US10617356B2 (en) * 2016-03-15 2020-04-14 Anhui Huami Information Technology Co., Ltd. Garment and cardiac data processing
USD794806S1 (en) 2016-04-29 2017-08-15 Infobionic, Inc. Health monitoring device
USD794805S1 (en) 2016-04-29 2017-08-15 Infobionic, Inc. Health monitoring device with a button
US9968274B2 (en) 2016-04-29 2018-05-15 Infobionic, Inc. Systems and methods for processing ECG data
USD794807S1 (en) 2016-04-29 2017-08-15 Infobionic, Inc. Health monitoring device with a display
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system
US10726846B2 (en) * 2016-06-03 2020-07-28 Sri International Virtual health assistant for promotion of well-being and independent living
DK201770423A1 (en) * 2016-06-11 2018-01-15 Apple Inc Activity and workout updates
US11216119B2 (en) 2016-06-12 2022-01-04 Apple Inc. Displaying a predetermined view of an application
US10873786B2 (en) 2016-06-12 2020-12-22 Apple Inc. Recording and broadcasting application visual output
US10736543B2 (en) 2016-09-22 2020-08-11 Apple Inc. Workout monitor interface
US10368808B2 (en) 2016-11-02 2019-08-06 Medtronic Monitoring, Inc. System and methods of determining etiology of undiagnosed symptomatic events
US10342445B2 (en) 2016-11-03 2019-07-09 Medtronic Monitoring, Inc. Method and apparatus for detecting electrocardiographic abnormalities based on monitored high frequency QRS potentials
JP6913451B2 (en) * 2016-11-10 2021-08-04 フクダ電子株式会社 Biometric information display device, biometric information display control device, and biometric information processing device
WO2018132162A2 (en) 2016-11-11 2018-07-19 3M Innovative Properties Company Systems and methods for wireless physiology monitoring
CN108133735A (en) * 2016-11-30 2018-06-08 北京经纬传奇医药科技有限公司 Clinical testing data collects transmission and analysis system outside a kind of research center
WO2018114346A1 (en) 2016-12-21 2018-06-28 Gambro Lundia Ab Medical device system including information technology infrastructure having secure cluster domain supporting external domain
JP2020503950A (en) 2017-01-06 2020-02-06 クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. Device and method for transdermal drug delivery
US11123014B2 (en) 2017-03-21 2021-09-21 Stryker Corporation Systems and methods for ambient energy powered physiological parameter monitoring
WO2018175489A1 (en) 2017-03-21 2018-09-27 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
US10845955B2 (en) 2017-05-15 2020-11-24 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US10953192B2 (en) 2017-05-18 2021-03-23 Advanced Brain Monitoring, Inc. Systems and methods for detecting and managing physiological patterns
JP2019017803A (en) * 2017-07-19 2019-02-07 Simplex Quantum株式会社 Biological information collection device and apparatus
US11596795B2 (en) 2017-07-31 2023-03-07 Medtronic, Inc. Therapeutic electrical stimulation therapy for patient gait freeze
WO2019093144A1 (en) * 2017-11-10 2019-05-16 日東電工株式会社 Adhering-type biosensor
EP3492005A1 (en) * 2017-12-04 2019-06-05 IMEC vzw A portable device and a system for monitoring vital signs of a person
US10659963B1 (en) 2018-02-12 2020-05-19 True Wearables, Inc. Single use medical device apparatus and methods
CN108478209B (en) * 2018-02-24 2021-06-11 上海乐普云智科技股份有限公司 Electrocardio information dynamic monitoring method and dynamic monitoring system
DK180246B1 (en) 2018-03-12 2020-09-11 Apple Inc User interfaces for health monitoring
US10455397B1 (en) * 2018-03-29 2019-10-22 West Corporation Context aware subscriber service
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
DK179992B1 (en) 2018-05-07 2020-01-14 Apple Inc. Visning af brugergrænseflader associeret med fysiske aktiviteter
DK180171B1 (en) 2018-05-07 2020-07-14 Apple Inc USER INTERFACES FOR SHARING CONTEXTUALLY RELEVANT MEDIA CONTENT
CN112074789B (en) * 2018-05-15 2024-02-13 住友电气工业株式会社 Management device, management method, and recording medium
WO2019232077A1 (en) 2018-05-29 2019-12-05 Chrono Therapeutics Inc. Drug delivery methods and systems
US11804679B2 (en) 2018-09-07 2023-10-31 Cilag Gmbh International Flexible hand-switch circuit
US11471206B2 (en) 2018-09-07 2022-10-18 Cilag Gmbh International Method for controlling a modular energy system user interface
US20200078071A1 (en) 2018-09-07 2020-03-12 Ethicon Llc Instrument tracking arrangement based on real time clock information
US11923084B2 (en) 2018-09-07 2024-03-05 Cilag Gmbh International First and second communication protocol arrangement for driving primary and secondary devices through a single port
US10953307B2 (en) 2018-09-28 2021-03-23 Apple Inc. Swim tracking and notifications for wearable devices
US11911325B2 (en) 2019-02-26 2024-02-27 Hill-Rom Services, Inc. Bed interface for manual location
US11218822B2 (en) 2019-03-29 2022-01-04 Cilag Gmbh International Audio tone construction for an energy module of a modular energy system
EP3715851A1 (en) 2019-03-29 2020-09-30 B.R.A.H.M.S GmbH Prescription of remote patient management based on biomarkers
CA3124744A1 (en) 2019-03-29 2020-10-08 B.R.A.H.M.S Gmbh Prescription of remote patient management based on biomarkers
US11863700B2 (en) 2019-05-06 2024-01-02 Apple Inc. Providing user interfaces based on use contexts and managing playback of media
DK201970532A1 (en) 2019-05-06 2021-05-03 Apple Inc Activity trends and workouts
WO2020247261A1 (en) 2019-06-01 2020-12-10 Apple Inc. Multi-modal activity tracking user interface
US11228835B2 (en) 2019-06-01 2022-01-18 Apple Inc. User interfaces for managing audio exposure
US11152100B2 (en) 2019-06-01 2021-10-19 Apple Inc. Health application user interfaces
US11209957B2 (en) 2019-06-01 2021-12-28 Apple Inc. User interfaces for cycle tracking
US11234077B2 (en) 2019-06-01 2022-01-25 Apple Inc. User interfaces for managing audio exposure
DK201970534A1 (en) 2019-06-01 2021-02-16 Apple Inc User interfaces for monitoring noise exposure levels
CN110234089B (en) * 2019-06-04 2022-07-29 苏州经贸职业技术学院 Wireless sensor network system and data acquisition method
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
TWI739204B (en) * 2019-07-22 2021-09-11 財團法人工業技術研究院 System and method for signal sensing
US20210119740A1 (en) * 2019-07-22 2021-04-22 Industrial Technology Research Institute System and method for signal sensing
USD939545S1 (en) * 2019-09-05 2021-12-28 Cilag Gmbh International Display panel or portion thereof with graphical user interface for energy module
WO2021051121A1 (en) 2019-09-09 2021-03-18 Apple Inc. Research study user interfaces
CA3171482A1 (en) 2020-02-12 2021-08-19 Irhythm Technologies, Inc Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
DK181076B1 (en) 2020-02-14 2022-11-25 Apple Inc USER INTERFACES FOR TRAINING CONTENT
CN111510338B (en) * 2020-03-09 2022-04-26 苏州浪潮智能科技有限公司 Distributed block storage network sub-health test method, device and storage medium
US20210307672A1 (en) 2020-04-05 2021-10-07 Epitel, Inc. Eeg recording and analysis
US11730373B2 (en) * 2020-04-20 2023-08-22 Covidien Lp Sensor with variable depth interrogation
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
DK181037B1 (en) 2020-06-02 2022-10-10 Apple Inc User interfaces for health applications
CN116322497A (en) 2020-08-06 2023-06-23 意锐瑟科技公司 Viscous physiological monitoring device
WO2022032118A1 (en) 2020-08-06 2022-02-10 Irhythm Technologies, Inc. Electrical components for physiological monitoring device
US11698710B2 (en) 2020-08-31 2023-07-11 Apple Inc. User interfaces for logging user activities
US11857252B2 (en) 2021-03-30 2024-01-02 Cilag Gmbh International Bezel with light blocking features for modular energy system
US11915805B2 (en) 2021-06-06 2024-02-27 Apple Inc. User interfaces for shared health-related data
US11896871B2 (en) 2022-06-05 2024-02-13 Apple Inc. User interfaces for physical activity information
US11918368B1 (en) 2022-10-19 2024-03-05 Epitel, Inc. Systems and methods for electroencephalogram monitoring
CN116763260B (en) * 2023-08-21 2023-12-19 北京中医药大学 Portable biological signal synchronous processing equipment and method

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298125A (en) 1942-10-06 Diagnostic aid
US2660165A (en) 1950-06-16 1953-11-24 Sanborn Company Electrical calibration system
CH293560A (en) 1951-07-28 1953-09-30 Rolf Dr Glatt Installation for electrocardiography.
US3212496A (en) 1962-08-21 1965-10-19 United Aircraft Corp Molecular physiological monitoring system
US3409007A (en) 1965-11-26 1968-11-05 Lockheed Aircraft Corp Body electrode support garment
US3572316A (en) 1968-02-23 1971-03-23 Chromalloy American Corp Physiological signal monitoring system
US3603881A (en) 1968-03-01 1971-09-07 Del Mar Eng Lab Frequency shift telemetry system with both radio and wire transmission paths
US3572322A (en) 1968-10-11 1971-03-23 Hoffmann La Roche Transducer assembly
US3902478A (en) 1971-01-07 1975-09-02 Francis Konopasek Disaster alarm
US3757778A (en) 1971-01-13 1973-09-11 Comprehensive Health Testing L Electrocardiograph lead distribution and contact testing apparatus
US3943918A (en) 1971-12-02 1976-03-16 Tel-Pac, Inc. Disposable physiological telemetric device
US3882277A (en) 1972-04-20 1975-05-06 American Optical Corp Electrocardiographic telemetry and telephone transmission link system
US3848582A (en) 1972-07-10 1974-11-19 Medical Res Labor Inc Portable electrocardiographic signal apparatus
US3858576A (en) 1973-05-23 1975-01-07 Sachs Elektronik Kg Hugo Portable electrocardioscope
US4121573A (en) 1973-10-04 1978-10-24 Goebel Fixture Co. Wireless cardiac monitoring system and electrode-transmitter therefor
US3908641A (en) 1974-06-07 1975-09-30 Birtcher Corp Electrocardiograph with improved stylus control circuits
US3986498A (en) 1975-09-08 1976-10-19 Videodetics Corporation Remote ECG monitoring system
US4023564A (en) 1976-01-26 1977-05-17 Spacelabs, Inc. Arrhythmia detector
US4121575A (en) 1976-10-05 1978-10-24 Harold Mills Devices for rapid placement and recording of ECG precordial leads in patients
US4202344A (en) 1976-10-05 1980-05-13 Harold Mills Electrocardiograph electrodes and associated assemblies
US4082087A (en) 1977-02-07 1978-04-04 Isis Medical Instruments Body contact electrode structure for deriving electrical signals due to physiological activity
US4122843A (en) 1977-08-10 1978-10-31 Electro-Technics, Inc. Electrode system for a heart rate monitor
US4173971A (en) 1977-08-29 1979-11-13 Karz Allen E Continuous electrocardiogram monitoring method and system for cardiac patients
US4141351A (en) 1977-09-12 1979-02-27 Motorola, Inc. ECG electrode impedance checking system as for emergency medical service
US4233987A (en) 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
JPS5558154A (en) 1978-10-24 1980-04-30 Toshimitsu Mushiya Electronic diagnosis device
US4319241A (en) 1978-11-01 1982-03-09 Medimetric Company Telemetering system for operating room and the like
US4356486A (en) 1978-11-01 1982-10-26 Medimetric Company Telemetering system for operating room and the like
US4522211A (en) 1979-12-06 1985-06-11 C. R. Bard, Inc. Medical electrode construction
US4353372A (en) 1980-02-11 1982-10-12 Bunker Ramo Corporation Medical cable set and electrode therefor
US4328814A (en) 1980-06-04 1982-05-11 The Kendall Company Precordial ECG strip
US4494553A (en) 1981-04-01 1985-01-22 F. William Carr Vital signs monitor
US4622979A (en) 1984-03-02 1986-11-18 Cardiac Monitoring, Inc. User-worn apparatus for monitoring and recording electrocardiographic data and method of operation
US4709704A (en) 1984-03-06 1987-12-01 The Kendall Company Monitoring device for bio-signals
US4593284A (en) 1984-03-14 1986-06-03 Medtronic, Inc. Analog and digital signal transmitter
US4658831A (en) 1984-06-18 1987-04-21 Pacific Communications, Inc. Telemetry system and method for transmission of ECG signals with heart pacer signals and loose lead detection
US4606352A (en) 1984-07-13 1986-08-19 Purdue Research Foundation Personal electrocardiogram monitor
US4662378A (en) 1984-10-30 1987-05-05 Wendl Thomis Device for monitoring body signals
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US4742831A (en) 1985-11-21 1988-05-10 Siemens-Pacesetter, Inc. Selection and isolation apparatus for use with ECG device
US4763660A (en) 1985-12-10 1988-08-16 Cherne Industries, Inc. Flexible and disposable electrode belt device
US4827943A (en) 1986-09-23 1989-05-09 Advanced Medical Technologies, Inc. Portable, multi-channel, physiological data monitoring system
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
GB8626040D0 (en) 1986-10-31 1986-12-03 Coleman P Telemetry system
US5038782A (en) 1986-12-16 1991-08-13 Sam Technology, Inc. Electrode system for brain wave detection
JPH0536404Y2 (en) 1987-03-30 1993-09-14
US4926868A (en) 1987-04-15 1990-05-22 Larsen Lawrence E Method and apparatus for cardiac hemodynamic monitor
US5269301A (en) 1987-10-06 1993-12-14 Leonard Bloom Multimode system for monitoring and treating a malfunctioning heart
US4967749A (en) 1987-10-06 1990-11-06 Leonard Bloom Hemodynamically responsive system for and method of treating a malfunctioning heart
US5163429A (en) 1987-10-06 1992-11-17 Leonard Bloom Hemodynamically responsive system for treating a malfunctioning heart
US4986270A (en) 1987-10-06 1991-01-22 Leonard Bloom Hemodynamically responsive system for and method of treating a malfunctioning heart
US4984572A (en) 1988-08-18 1991-01-15 Leonard Bloom Hemodynamically responsive system for and method of treating a malfunctioning heart
US4967748A (en) 1987-10-06 1990-11-06 Leonard Bloom O2 level responsive system for and method of treating a malfunctioning heart
US5027816A (en) 1987-10-06 1991-07-02 Leonard Bloom Hemodynamically responsive system for and method of treating a malfunctioning heart
US4909260A (en) 1987-12-03 1990-03-20 American Health Products, Inc. Portable belt monitor of physiological functions and sensors therefor
US4893632A (en) 1988-04-13 1990-01-16 Siemens Aktiengesellschaft Method and apparatus for comparing waveform shapes of time-varying signals
US5078134A (en) 1988-04-25 1992-01-07 Lifecor, Inc. Portable device for sensing cardiac function and automatically delivering electrical therapy
US4957109A (en) 1988-08-22 1990-09-18 Cardiac Spectrum Technologies, Inc. Electrocardiograph system
US4955381A (en) 1988-08-26 1990-09-11 Cardiotronics, Inc. Multi-pad, multi-function electrode
US5080099A (en) 1988-08-26 1992-01-14 Cardiotronics, Inc. Multi-pad, multi-function electrode
DE59007743D1 (en) 1989-01-27 1995-01-05 Medese Ag BIOTELEMETRY METHOD FOR TRANSMITTING BIOELECTRICAL POTENTIAL DIFFERENCES, AND DEVICE FOR TRANSMITTING ECG SIGNALS.
US5069215A (en) 1989-02-06 1991-12-03 Arzco Medical Electronics, Inc. Multiple electrode affixable sheet
US5199433A (en) 1989-02-06 1993-04-06 Arzco Medical Systems, Inc. Esophageal recording/pacing catheter with thermistor and cardiac imaging transceiver
US5343860A (en) 1989-02-06 1994-09-06 Arzco Medical Systems, Inc. Esophageal recording/pacing catheter with thermistor and cardiac imaging transceiver
US5511553A (en) 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
ES2096586T3 (en) 1989-02-15 1997-03-16 Jacob Segalowitz WIRELESS ELECTROCARDIOGRAPHIC CONTROL SYSTEM.
US5307818A (en) 1989-02-15 1994-05-03 Jacob Segalowitz Wireless electrocardiographic and monitoring system and wireless electrode assemblies for same
US4981141A (en) 1989-02-15 1991-01-01 Jacob Segalowitz Wireless electrocardiographic monitoring system
US5168874A (en) 1989-02-15 1992-12-08 Jacob Segalowitz Wireless electrode structure for use in patient monitoring system
DE8908041U1 (en) 1989-06-29 1989-08-17 Nettelhorst, Frhr. Von, Herwig, Dr.-Ing., 1000 Berlin, De
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5228449A (en) 1991-01-22 1993-07-20 Athanasios G. Christ System and method for detecting out-of-hospital cardiac emergencies and summoning emergency assistance
US5224485A (en) 1991-05-28 1993-07-06 Hewlett-Packard Company Portable data acquisition unit
GB9117015D0 (en) 1991-08-07 1991-09-18 Software Solutions Ltd Operation of computer systems
DE69233091T2 (en) 1991-11-08 2004-05-06 Boston Scientific Ltd., St. Michael ABLATION ELECTRODE WITH INSULATED TEMPERATURE MEASURING ELEMENT
US5353793A (en) * 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
JP3231375B2 (en) * 1992-01-16 2001-11-19 テルモ株式会社 Biological signal measurement device
ATE197761T1 (en) 1992-04-03 2000-12-15 Micromedical Ind Ltd ARRANGEMENT FOR MONITORING PHYSIOLOGICAL PARAMETERS
US5522396A (en) 1992-05-12 1996-06-04 Cardiac Telecom Corporation Method and system for monitoring the heart of a patient
US5279305A (en) 1992-08-06 1994-01-18 Pedifutures, Inc. Electroencephalograph incorporating at least one wireless link
US5891044A (en) 1992-10-06 1999-04-06 Gw Scientific, Inc. Detection of abnormal and induction of normal heart rate variability
WO1994010902A1 (en) 1992-11-09 1994-05-26 I Am Fine, Inc. Apparatus and method for remote monitoring of physiological parameters
JPH06242206A (en) * 1993-02-12 1994-09-02 Susumu Sakuma Emergent aid system
DK0617914T3 (en) 1993-03-31 1999-06-21 Siemens Medical Systems Inc Device and method for delivering dual output signals in a telemetry transmitter
DE4311921A1 (en) 1993-04-10 1994-10-13 Bosch Gmbh Robert Method for the operation of an automatic transmission
US5558638A (en) 1993-04-30 1996-09-24 Healthdyne, Inc. Patient monitor and support system
US5431171A (en) 1993-06-25 1995-07-11 The Regents Of The University Of California Monitoring fetal characteristics by radiotelemetric transmission
US5373852A (en) 1993-06-25 1994-12-20 The Regents Of The University Of California Monitoring uterine contractions by radiotelemetric transmission
US5394882A (en) 1993-07-21 1995-03-07 Respironics, Inc. Physiological monitoring system
US5465715A (en) 1993-08-13 1995-11-14 Ludlow Corporation Positive locking biomedical electrode and connector system
US5372125A (en) 1993-08-13 1994-12-13 Ludlow Corporation Positive locking biomedical electrode and connector system
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
FI100941B (en) 1993-09-14 1998-03-31 Internat Business Innovations Health monitoring device attached to the body
US5381798A (en) 1993-11-02 1995-01-17 Quinton Instrument Company Spread spectrum telemetry of physiological signals
JP3417020B2 (en) * 1993-11-12 2003-06-16 カシオ計算機株式会社 Electromagnetic induction system
US5544661A (en) 1994-01-13 1996-08-13 Charles L. Davis Real time ambulatory patient monitor
US5458124A (en) 1994-02-08 1995-10-17 Stanko; Bruce E. Electrocardiographic signal monitoring system
US5652570A (en) 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US5579775A (en) 1994-10-20 1996-12-03 Hewlett-Packard Company Dynamic control of a patient monitoring system
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5579001A (en) 1994-10-20 1996-11-26 Hewlett-Packard Co. Paging-based backchannel in a medical telemetry system
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US5778882A (en) 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
DE69632436T2 (en) 1995-03-17 2005-05-12 Citizen Watch Co., Ltd., Nishitokyo PULSE METER
US5678545A (en) 1995-05-04 1997-10-21 Stratbucker; Robert A. Anisotropic adhesive multiple electrode system, and method of use
JPH0947436A (en) 1995-08-09 1997-02-18 Noboru Akasaka Home medical system
KR970020056A (en) 1995-09-19 1997-05-28 노보루 아까사까 Patient monitor device
US5682902A (en) 1995-10-16 1997-11-04 Hewlett-Packard Company ECG pace pulse detection and processing
JPH09172506A (en) * 1995-12-20 1997-06-30 Casio Comput Co Ltd Data transfer system and data transfer equipment
US5936539A (en) 1996-03-19 1999-08-10 Siemens Medical Systems, Inc. Method and apparatus for automatic configuration of a network node
US5752917A (en) 1996-03-19 1998-05-19 Siemens Medical Systems, Inc. Network connectivity for a portable patient monitor
JP3618169B2 (en) * 1996-05-16 2005-02-09 カシオ計算機株式会社 Electronic device and system using the electronic device
JPH1085192A (en) * 1996-09-18 1998-04-07 Matsushita Electric Ind Co Ltd Emergency support system for person to be nursed at home
JPH1128196A (en) * 1997-07-11 1999-02-02 Nippon Koden Corp Telemeter system
US6014432A (en) * 1998-05-19 2000-01-11 Eastman Kodak Company Home health care system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9380971B2 (en) 2006-03-31 2016-07-05 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9035767B2 (en) 2007-05-08 2015-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9314198B2 (en) 2007-05-08 2016-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9177456B2 (en) 2007-05-08 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9000929B2 (en) 2007-05-08 2015-04-07 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
CN108027363A (en) * 2015-07-23 2018-05-11 优先生物技术有限责任公司 It is engineered haemocyte estimation

Also Published As

Publication number Publication date
EP1176905A4 (en) 2003-05-14
ZA200107935B (en) 2003-08-22
JP2002541893A (en) 2002-12-10
US6416471B1 (en) 2002-07-09
WO2000062664A1 (en) 2000-10-26
EP1176905A1 (en) 2002-02-06
AU4642300A (en) 2000-11-02
CA2365316A1 (en) 2000-10-26

Similar Documents

Publication Publication Date Title
US6416471B1 (en) Portable remote patient telemonitoring system
US6454708B1 (en) Portable remote patient telemonitoring system using a memory card or smart card
US7129836B2 (en) Wireless subject monitoring system
US5348008A (en) Cardiorespiratory alert system
US7761261B2 (en) Portable wireless gateway for remote medical examination
US6319200B1 (en) Method and system for remotely monitoring multiple medical parameters
US9687195B2 (en) Life sign detection and health state assessment system
US7542878B2 (en) Personal health monitor and a method for health monitoring
US8838217B2 (en) System and apparatus for providing diagnosis and personalized abnormalities alerts and for providing adaptive responses in clinical trials
US20120259233A1 (en) Ambulatory physiological monitoring with remote analysis
WO1983003744A1 (en) Ambulatory monitoring system with real time analysis and telephone transmission
JP2006520657A (en) Personal condition physiological monitoring system and structure, and monitoring method
WO2003077745A1 (en) Monitoring method and monitoring system for assessing physiological parameters of a subject
CN101006913A (en) A method for collecting data of physiological index using wireless network
JP2013539991A (en) Method and system for monitoring sleep and other physiological conditions
CN115066206A (en) 12-lead electrocardiogram using three-electrode device
US20020147409A1 (en) Long term atrial fibrillation monitor
JP2023525563A (en) A system for transmitting sensor data using dual communication protocols
CN113303804A (en) Dynamic threshold value adjusting system of physiological signal measuring device
Baxi et al. A Self-Managing Framework for Health Monitoring.
US20220313087A1 (en) Bedside commode electrocardiogram
CN114652321A (en) Intelligent cardiovascular nursing monitoring system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2365316

Country of ref document: CA

Ref country code: CA

Ref document number: 2365316

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001/07935

Country of ref document: ZA

Ref document number: 200107935

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 46423/00

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 611804

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000928145

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000928145

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1-58, DESCRIPTION, REPLACED BY NEW PAGES 1-58; PAGES 59-76, CLAIMS, REPLACED BY NEW PAGES 59-76; PAGES 1/28-28/28, DRAWINGS, REPLACED BY NEW PAGES 1/24-24/24; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

WWW Wipo information: withdrawn in national office

Ref document number: 2000928145

Country of ref document: EP