WO2000060566A1 - Image quality correcting circuit - Google Patents

Image quality correcting circuit Download PDF

Info

Publication number
WO2000060566A1
WO2000060566A1 PCT/JP2000/001872 JP0001872W WO0060566A1 WO 2000060566 A1 WO2000060566 A1 WO 2000060566A1 JP 0001872 W JP0001872 W JP 0001872W WO 0060566 A1 WO0060566 A1 WO 0060566A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
correction
image quality
output
value
Prior art date
Application number
PCT/JP2000/001872
Other languages
English (en)
French (fr)
Inventor
Masayuki Kobayashi
Masamichi Nakajima
Original Assignee
Fujitsu General Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP09201499A external-priority patent/JP4590043B2/ja
Priority claimed from JP28063399A external-priority patent/JP2001103338A/ja
Priority claimed from JP30922499A external-priority patent/JP2001125535A/ja
Application filed by Fujitsu General Limited filed Critical Fujitsu General Limited
Priority to AU33290/00A priority Critical patent/AU769305B2/en
Priority to EP00911390A priority patent/EP1085494A4/en
Priority to CA002333622A priority patent/CA2333622A1/en
Priority to US09/700,495 priority patent/US7012625B1/en
Publication of WO2000060566A1 publication Critical patent/WO2000060566A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • G06T5/92
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • H04N21/4318Generation of visual interfaces for content selection or interaction; Content or additional data rendering by altering the content in the rendering process, e.g. blanking, blurring or masking an image region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/44008Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving operations for analysing video streams, e.g. detecting features or characteristics in the video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Definitions

  • image quality correction eg, gradation correction
  • LCD panel liquid crystal display panel
  • the conventional image quality correction circuit calculates the average video level (APL) by the average value calculation unit 10 for each frame (or one field) of the video signal input to the input terminal 12.
  • the APL is used as an address to read the corresponding correction data from the ROM 14, and the image quality correction section 16 corrects the input video signal according to the input / output conversion characteristic curve corresponding to this correction data, and outputs the Output was made from 18.
  • APL is obtained by, for example, adding the value obtained by multiplying the number of distribution frequencies for each luminance level to the total number of display dots of one frame (or one field), and dividing the total by the total number of display dots.
  • the frequency distribution is 1 where the luminance level is concentrated on the bright side
  • Fig. 2 (b) the luminance level is concentrated on the dark side.
  • Frequency distribution 2 in some cases. Assuming that the APL is the same regardless of the distribution state in this way, in the case of Fig. 2 (a), the resolution on the bright side is low, and in Fig. 2 (b) In the case of, there was a problem that the resolution on the dark side was reduced.
  • the correction characteristic line has an extreme slope as shown in Fig. 4, and the image becomes extremely brighter than it actually is, and the resolution on the bright side is reduced. There was a problem that it became low. The same applies to the frequency distribution in which the luminance level is concentrated on the bright side.
  • the input video signal S0 consisting of (red), G (green), and B (blue) signals is converted to digital R, G, and B signals by A / D (analog-to-digital converter) 20 and used as the lower address.
  • a Y signal luminance signal
  • this ⁇ signal is converted into a digital signal by the A / D 26 and input to the histogram circuit 28. I do.
  • the histogram circuit 28 counts the number of frequencies (the number of distributions) of the luminance level for each of the regions obtained by dividing the luminance level into a plurality of regions (for example, four regions).
  • the decoder 30 decodes the count result of the histogram circuit 28, inputs the result to the ROM 22 as an upper address, selects gradation correction characteristic data stored in the ROM 22 in advance, and inputs the digital R , G, B signals are tone-corrected, and digital R, G, B signals S
  • gradation correction according to the frequency distribution of the luminance level of the input video signal can be obtained, but still appropriate correction characteristics according to the number of appearances of each luminance level can be obtained. There was no problem.
  • the present invention has been made in view of the above problems, and has an image quality correction circuit capable of obtaining an optimum correction characteristic according to the number of appearances of each luminance level and performing an image quality correction process suitable for any video.
  • the purpose is to provide. Disclosure of the invention
  • an average value calculating unit 10 that calculates an average value of luminance levels of a plurality of pixels of a video signal input to a video signal input terminal 12 and an average value calculating unit 10 Number of occurrences that counts the appearance number data of multiple brightness levels for each predetermined level
  • a linear interpolation section 15 that forms a correction characteristic line by performing linear interpolation based on the count output points of the number of occurrences 13 and the number 13 of appearance counts, and an image quality correction that corrects an input video signal using the correction characteristic line
  • an image quality correction circuit comprising:
  • the average value calculating unit 10 calculates and outputs the average value of a plurality of pixels of the video signal input to the video signal input terminal 12 and outputs the number of appearances of the luminance level corresponding to each level. The data is counted.
  • the horizontal axis represents the brightness level
  • the vertical axis represents the number of appearances.
  • the image quality correction unit 16 performs image quality correction processing on the video signal input from the video signal input terminal 12 based on the correction characteristic line by the linear interpolation unit 15 and outputs the image signal from the video signal output terminal 18.
  • a second embodiment of the present invention includes an appearance number counter 13 for counting the appearance number data of a plurality of luminance levels extracted from a video signal input to a video signal input terminal 12 for each predetermined level, and an appearance number counter.
  • a correction curve generator 25 for generating a new correction curve from the count output point data of 13 and the preset set point data inserted between the count points;
  • An image quality correction circuit comprising: an image quality correction unit 16 that corrects an input video signal using a correction curve.
  • every other occurrence data of the video signal input to the video signal input terminal 12 is used, and separately from this, a preset brightness such as on a straight line connecting the start point and the end point Enter the setting data corresponding to the level, and rearrange them in order of the luminance level so that one complements the other, and generate a Bezier curve passing through the start point and end point.
  • the video signal input from the video signal input terminal 12 is subjected to image quality correction based on the Bezier curve and output from the video signal output terminal 18.
  • the number-of-appearances counting of the number of appearances of the luminance level of each pixel in N frames (N is an integer of 1 or more) for each of a plurality of set level ranges is performed based on the input video signal.
  • a change suppression unit that suppresses the change in the count value of the number of appearance counts to a change in a period that is a multiple of the N-frame period and outputs the change, and corrects by linear interpolation based on the count value output from the change suppression unit.
  • the image quality correction unit performs an image quality correction process by correcting the input video signal using the correction characteristic line in which the change is suppressed.
  • the appearance number counter for counting the number of appearances of the luminance level of each pixel in the N frame for each of a plurality of set level ranges based on the input video signal, and the sum of the appearance number counter
  • a change suppression unit that suppresses a change in the numerical value to a change in a period that is a multiple of the N-frame period and outputs the new correction curve based on the count value output from the change suppression unit and a preset setting value
  • a correction curve generating unit that generates the correction curve, and an image quality correction unit that corrects the input video signal using the correction curve generated by the correction curve generating unit.
  • the number-of-appearances counter when the input video signal is input to the number-of-appearances counter, the number of appearances of the luminance level of each pixel is counted for each of a plurality of set level ranges according to the number-of-appearances count.
  • the count value of the appearance number counter is generated by the correction curve generation unit because the change is suppressed by the change suppression unit by the change during a period that is a multiple of the N frame period and input to the correction curve generation unit.
  • the change of the correction curve is also suppressed.
  • the image quality correction unit corrects the input video signal using the correction curve in which the change is suppressed, and performs image quality correction processing.
  • an average value calculation unit that calculates the average value of the luminance level for each m pixels based on the input video signal is provided, and the number of appearance counts is calculated by the average value calculation unit The number of appearances of the brightness level is counted for each of a plurality of preset level ranges.
  • an appearance counter is used to determine whether the luminance level of each pixel corresponds to each of a plurality of set level ranges based on the input video signal.
  • a plurality of judgment units to be judged and the number of judgments of this judgment unit are counted.
  • a plurality of first counters, and a plurality of comparators that compare the count value of the first counter with a preset comparison reference value, and compare the first counter with a comparison output.
  • a plurality of second counters that count the number of outputs of the comparator and determine the number of appearances.
  • a number of appearances counter is used to determine whether the brightness level calculated by the average value calculation unit corresponds to each of a plurality of set level ranges. And comparing a plurality of first counters for counting the number of determinations by the determiner with the count value of the first counter and a predetermined comparison reference value. It is composed of a plurality of comparators that clear the first count with the output, and a plurality of second counts that count the number of outputs of the comparator to be the number of appearances.
  • the change suppression unit is composed of a differentiator, a coefficient unit, an adder, and an N-frame delay unit.
  • the difference unit counts the number of occurrence counters and the output value of the N-frame delay unit.
  • the coefficient unit multiplies the output value of the differentiator by a coefficient of 1 ZX (X is an integer of 2 or more) and outputs the result.
  • the adder outputs the output value of the N-frame delay unit to the output of the coefficient unit.
  • the values are added, and the N-frame delay unit delays the added value by the adder by N frames to output to the difference unit and the adder, and to output the change of which is suppressed.
  • an appearance number counter 13 for counting the number of appearances of a plurality of luminance levels extracted from the video signal input to the video signal input terminal 12 for each predetermined level.
  • the count value of the correction characteristic point output from the appearance number counter 13 is greater than the preset upper limit value, the upper limit value is set.When the count value is smaller than the lower limit value, the lower limit value is set.When the count value is between the upper limit value and the lower limit value, A correction characteristic point suppression circuit 29 for selecting and outputting a count value; a correction curve generation section 48 for generating a correction curve according to the output of the correction characteristic point suppression circuit 13; and a correction curve generation section 4
  • An image quality correction circuit characterized by comprising an image quality correction section 16 for correcting an input video signal with the correction characteristic line generated in Step 8, wherein the upper limit value and the lower limit value of the count value of the correction characteristic point are provided. Is set to an + w and an ⁇ w which change linearly. It is a circuit.
  • the sixth embodiment of the present invention is the same as the fifth embodiment, except that the upper limit value and the lower limit value of the count value of the correction characteristic point are set such that one axis orthogonal to the input luminance level and the other axis is the output luminance level.
  • This is an image quality correction circuit that sets an upper limit value YHn and a lower limit value YLn that pass through the start point and end point in the correction characteristic diagram and that change in a curve in the middle.
  • FIG. 1 is a block diagram of a conventional image quality correction circuit.
  • Fig. 2 is a frequency distribution diagram of the luminance level of the video signal.
  • (A) shows an example in which the luminance level is approximately in the middle, and (b) shows an example in which the luminance level is in the lower direction. is there.
  • FIG. 3 is a frequency distribution diagram showing an example in which the luminance level of a video signal is concentrated in a smaller narrow range.
  • FIG. 4 is a diagram showing a correction characteristic line in the case of FIG.
  • FIG. 6 is a block diagram showing the entire first embodiment of the image quality correction circuit according to the present invention.
  • FIG. 7 is a detailed block diagram of the appearance number counter 13 in FIG. 6, FIG. 9, FIG. 12, and FIG.
  • FIG. 8 is a correction characteristic diagram according to the first embodiment of the present invention.
  • FIG. 9 is an overall block diagram showing a second embodiment of the image quality correction circuit according to the present invention.
  • FIG. 10 is a correction characteristic diagram according to the second embodiment of the present invention.
  • FIG. 11 is another correction characteristic diagram according to the second embodiment of the present invention.
  • FIG. 12 is an overall block diagram showing a third embodiment of the image quality correction circuit according to the present invention.
  • FIG. 13 is a detailed block diagram of the change suppressing unit 31 in FIG.
  • FIG. 14 shows the change suppression unit 31 in FIG. 6 is a time chart for explaining the operation of FIG.
  • FIG. 15 is an overall block diagram showing a fourth embodiment of the image quality correction circuit according to the present invention.
  • FIG. 16 is an overall block diagram showing a fifth embodiment of the image quality correction circuit according to the present invention.
  • FIG. 17 is a correction characteristic diagram according to the fifth embodiment of the present invention.
  • FIG. 18 is an overall block diagram showing a sixth embodiment of the image quality correction circuit according to the present invention.
  • FIG. 19 is a correction characteristic diagram according to the sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 6 A first embodiment of the image quality correction circuit according to the present invention will be described with reference to FIGS. 6, 7, and 8.
  • FIG. 6 A first embodiment of the image quality correction circuit according to the present invention will be described with reference to FIGS. 6, 7, and 8.
  • 12 is a video signal input terminal for inputting a video signal
  • 10 is an average value calculation unit for calculating an average value of luminance levels of 111 (an integer of 2 or more) points
  • 13 is 0 Count the number of occurrences between the levels set to different values from the level sequentially Number of occurrences count
  • 11 is a comparison reference value input terminal for inputting a comparison reference value
  • 15 is based on the occurrence number data
  • 16 for obtaining a corrected special point map
  • 16 is an image quality correction unit for correcting image quality based on linear interpolation
  • 18 is a video signal output terminal for outputting a corrected video signal.
  • FIG. 7 is a more specific circuit diagram of the appearance number counter 13.
  • the average value calculation unit 10 calculates, for example, the average value of the luminance levels of 16 pixels, thereby reducing the number of bits in the subsequent appearance number counter 13.
  • the number of occurrences counted evening 1 3, for example 1 and 6 determiner 1 7 0, 1 7 have ... 1 7 15, respectively are sequentially connected in series to these determiner 1 7 0, 1 7 have ... 1 7 15 a first force Unta 1 9 0, 1 9 had ... 1 9 15, a comparator 2 1 0, 2 1 There ... 1 2 15, a second cow down evening 2 3 2 s 3 ... 2 3 15 , made from the comparator 2 1 2 1 There ... 1 2 15 the other input connected to said comparison reference value input terminal 1 1 Tokyo of the comparator 2 1 0, 2 1 There ... 1 2 15 output the first counter evening 1 9 0 of the preceding stage, to 1 9 There ... 1 9 15 returned as clear signal, also outputs the second counter 2 3 0, 2 3 " ⁇ 2 3 15, the It is sent to the linear interpolation unit 15.
  • the average value calculator 10 calculates the average value of the luminance levels of the 16 pixels and sequentially outputs the image signals input to the image signal input terminals 12. This average value, whether to input to the decision unit 1 7 0, 1 7 have, '- 1 7 15 corresponding to each level corresponding to each level is determined. Specifically, the total number of appearances in one frame is set to 255, and the luminance level is detected in 16 levels. In determine Joki 1 7 Q, to determine whether corresponding to from 0 level to the first level, the determination unit in 1 7 i, to determine whether corresponding to the zero level to a second level, below Similarly a manner, the determiner 1 7 15 determines whether corresponding to from 0 level to the first 6 levels. In this way, it is determined whether or not all the values correspond to the Q level to the corresponding level. Appropriate time, subsequent the first one of the counter 1 9 0, 1 9 ... 1 9 15 number of occurrences in is counted.
  • Appearance number data counted by the first counter evening 1 9 0, 1 9 1 ... 1 9 15 is added their respective one input of the subsequent comparator 2 1 0, 2 1 ... 1 2 15 .
  • comparison reference value data is input from a comparison reference value input terminal 11.
  • the number of occurrences c 0, c 1,..., C E, the starting point 0 0 and the total number of occurrences (constant value) plus 16 levels of data are sent to the linear interpolation unit 15.
  • the number of occurrences 0 0, c 0, cl, to c E, and c F are sequentially connected by a straight line, and a continuous correction characteristic line is obtained by linear interpolation.
  • the image quality correction unit 16 performs image quality correction processing on the video signal input from the video signal input terminal 12 based on the correction characteristic line by the linear interpolation unit 15 and outputs the image signal from the video signal output terminal 18. Specifically, when the brightness level of the video signal input from the video signal input terminal 12 is X, the image quality correction processing is performed based on the correction characteristic line so that the corrected brightness level becomes y, and the video signal output terminal is processed. Output from 18
  • the number of samples for obtaining the average value of the average value calculation unit 10 is 16, the number of frames for obtaining the appearance number data of the appearance count counter 13 is 1 frame, and the luminance is Although the number of levels is 16, the present invention is not limited to these examples.
  • FIG. 9 the video signal input terminal 12, the average value calculation unit 10, the appearance number counter 13, the image quality correction unit 16, and the video signal output terminal 18 are as shown in FIGS. 6 and 7. There is no difference from the configuration of the first embodiment.
  • a feature of the second embodiment is that the number of appearances is input to the video signal input terminal 12 and counted via the average value calculation unit 10.
  • the correction curve generation unit 25 that generates a new correction curve from the appearance number data of the video signal counted in the evening 13 and the preset set point data from the set point data input terminal 27 It is inserted between the number counter 13 and the image quality correction unit 16.
  • the correction curve generation unit 25 is, for example, a circuit that generates a Bezier curve passing through the start point 00 and the end point TF based on a plurality of points in which the appearance number data and the set point data are alternately arranged. Is used.
  • the video signal input to the video signal input terminal 12 has a characteristic such as a frequency distribution 1 which is substantially biased toward the center as shown in FIG. 2 (a).
  • the appearance count data of the appearance count counter 13 corresponds to every other level 10, 30, 50, 70, 90, B 0, D 0, F 0
  • T 0, ⁇ 2, ⁇ 4, corresponding to levels 0 0, 20, 40, 60, 80, A 0, C 0, E 0 on a straight line connecting the start point 0 0 and the end point TF ⁇ 6, ⁇ 8, ⁇ , TC, ⁇ are input from the set point data input terminal 27 as setting data.
  • the Bezier curve passing through the start point 00 and the end point TF is formed by the correction curve generation unit 25 based on a plurality of points in which the number-of-appearance data and the set point data are alternately arranged.
  • the straight line connecting the start point 0 0 and the end point TF swells slightly above the straight line at the high level part, An S-shaped correction curve swelling slightly downward is obtained.
  • the image quality correction unit 16 performs image quality correction processing on the video signal input from the video signal input terminal 12 based on the correction curve by the correction curve generation unit 25, and outputs the image signal from the video signal output terminal 18.
  • the starting point can be obtained, for example, as shown by the solid line in FIG.
  • a correction curve is obtained that is substantially straight at a high level portion and swells slightly below the straight line at a low level portion.
  • the image quality correction unit 16 performs image quality correction processing on the video signal input from the video signal input terminal 12 based on the correction curve by the correction curve generation unit 25, and outputs the image signal from the video signal output terminal 18.
  • the set point data from the set point data input terminal 27 is extracted from the straight line connecting the start point 00 and the end point TF.
  • the present invention is not limited to this.
  • FIG. As shown by the solid characteristic line in the figure, the high level part bulges slightly above the straight line, and the low level part bulges slightly below the straight line. It is also possible to emphasize the dark and dark areas more, or to use the set point of the inverse characteristic so that the light and dark areas are not emphasized much.
  • the present invention is not limited to the case where the number-of-appearance data and the set point data are alternately arranged.
  • the number of appearance data and the set point data are set at a ratio of 2: 1 so that the video signal data is emphasized.
  • the number of occurrences and the set point data may be set at a ratio of 1: 2, so that the set point data is emphasized.
  • 12 is a video signal input terminal
  • 10 is an average value calculation unit
  • 13 is an appearance count
  • 11 is a comparison reference value input terminal
  • 15 is a linear interpolation unit
  • 16 is a linear interpolation unit.
  • 18 is a video signal output terminal
  • 31 is a change suppression unit.
  • the change suppressor 31 includes fifteen change suppressors 3 lo, 31 t ,..., 3 114 as shown in FIG. 13 , and the change suppressor 3 10 includes a differentiator 3 3. 0 , a coefficient unit 3 5 0 adder 3 7 Q and an N frame delay unit 39 o, and the change suppression unit 3 1 i is a difference unit 3 3! , A coefficient unit 3 5 or an adder 3 7 i and an N-frame delay unit 3 91, which are configured in the same manner.
  • the change suppression unit 3 1 14 includes a differentiator 3 3 14 , a coefficient unit 3 5 14 , and an adder 3. and summer 7 14 and N-frame delayer 3 9 14.
  • 3 7 0, 3 7 had ..., 3 7 14 wherein N frame delayer 3 9 0, 3 9 had ..., 3 9 wherein the 14 output value of the coefficient multiplier 3 5 0, 3 5 b ..., 3 5 14 of adds the output values, the N frame delayer 3 9 0, 3 9 had ..., 3 9 14 the adder 3 7 0, 3 7 had ..., 3 7 14 added values by delaying N frames by the differentiator 3 3 0, 3 3 13 ⁇ 4 ..., 3 3 14 and the adder 3 7 0, 3 7 had ..., while the output of the 3 7 14, was suppressed changes The output to the straight line interpolation section 1 5 as a force.
  • N may be an integer of 1 or more
  • m may be an integer of 2 or more
  • X may be an integer of 2 or more.
  • the average value calculating section 10 calculates the average value of the luminance levels of the 16 pixels, and outputs it sequentially.
  • the number of occurrences of each second count 23 o, 23 ⁇ -2315 in the count 13 is c 0, cl, ..., c E, c F Shall be.
  • c 0, c 1,..., C E, and c F represent the following numbers of occurrences.
  • cl The number of occurrences of the second count 23 i during the level 0 0 to 20 (20 is a hexadecimal notation).
  • c E Number of occurrences of the second county 2 3 14 between levels 0 0 and F 0 (FO is in hexadecimal notation.)
  • the output is suppressed with the change during the frame period (an example of a multiple of N frames), but does not change because c F is a fixed value
  • the number of occurrences c 0 of the second counter 23 o is 1 4
  • the change suppression unit 31 Changes from 2 to 9 in one frame period FT immediately after t7 after one frame period FT elapses from t6, followed by one frame immediately after t8, t9, and t10 During the period FT, it changes to “1 3”, “15”, “16” and converges to “16”. That is, a rapid change in one frame period is suppressed to a gradual change in four frame periods
  • the suppression effect of the change suppression unit 31 described above will be described with reference to the circuit of FIG. 13 as follows.
  • the number of appearances (correction characteristic points) of the second count 23 o is P 0
  • the number of appearances of N frame delay unit 39 Q (correction characteristic points) is PDo.
  • the correction characteristic line obtained by the linear interpolation unit 15 in FIG. 6 without the change suppression unit 31 shown in FIG. 6 changes from the correction characteristic line U 1 shown by a dotted line in FIG. 8 in one frame period.
  • the characteristic curve suddenly changes to the correction characteristic line U2 shown by a solid line in the circuit according to the present invention shown in FIG. 12 having the change suppression unit 31, the change from the correction characteristic line U1 to U2 It is suppressed to a gradual change over a plurality of frame periods.
  • the number of appearances c0 gradually changed over the four-frame period as described in (1) to (4) above, but the number of appearances cl,. Over a period of several frames other than 4 (eg, 5, 6).
  • the correction characteristic line U 1 i corresponds to the correction characteristic line for one frame period immediately after t 7 which elapses one frame period from t 6 in FIG. c O (the number of appearances of the second counter 230) corresponds to “9” in the above 2.
  • the image quality correction section 16 converts the video signal input from the video signal input
  • the image quality correction processing is performed based on the correction characteristic line by the linear interpolation unit 15, and output from the video signal output terminal 18. Specifically, when the brightness level of the video signal input from the video signal input terminal 12 is X, the image quality correction processing is performed based on the correction characteristic line so that the corrected brightness level becomes y, and the video signal output terminal is processed. Output from 18
  • the third embodiment of the present invention it is possible to perform the image quality correction processing with the optimum correction characteristic according to the number of appearances of the luminance level of each pixel in the N frame, and at the time of switching the screen or displaying the moving image. Even if the distribution state of the number of appearances of the level greatly changes, it is possible to perform the image quality correction processing that suppresses the change and does not cause the image quality deterioration.
  • FIG. 15 the video signal input terminal 12, the average value calculation unit 10, the number of appearance counters 13, the image quality correction unit 16, the video signal output terminal 18, and the change suppression unit 31
  • a correction curve generation unit 25 is provided instead of the linear interpolation unit 15 in FIG.
  • the correction curve generation unit 25 calculates the number of appearances counted by the number-of-appearance counter 13 and suppressed in the change by the change suppression unit 31 and the preset set point data from the set point data input terminal 27. And a new correction curve is generated from this, and is inserted between the change suppression unit 31 and the image quality correction unit 16.
  • the correction curve generation unit 25 uses, for example, a circuit that generates a Bezier curve passing through the start point 00 and the end point TF based on a plurality of points in which the number of appearances and the set point data are alternately arranged. .
  • FIG. 1 The operation of the above fourth embodiment will be described with reference to FIGS. 2, 9, 10, and 11.
  • FIG. 1 The operation of the above fourth embodiment will be described with reference to FIGS. 2, 9, 10, and 11.
  • the video signal input to the video signal input terminal 12 has a characteristic such as a frequency distribution 1 which is substantially biased toward the center as shown in FIG. 2 (a).
  • the number-of-occurrence data c 0, c 2, c 4, c 6, c 8, c A, c C is obtained by the correction curve generating unit 25. , C E and the set point data T 0, ⁇ 2, ⁇ 4, ⁇ 6, ⁇ 8, ⁇ , TC, ⁇ .
  • the S-shaped correction curve V (Bézier curve) is obtained and the number of appearances c0, c2, c4, c6, c8, cA, cC, cE changes rapidly, Accordingly, the correction curve V also rapidly changes from V1 to V2 (V1 and V2 are not shown).
  • the image quality correction unit 16 performs image quality correction processing on the video signal input from the video signal input terminal 12 based on the correction curve by the correction curve generation unit 25, and outputs the image signal from the video signal output terminal 18.
  • the number-of-appearance data c 0, c 2, c 4, c 6, c 8, c Based on multiple points where A, c C, c E and set point data TO, T 2, 2 4, ⁇ 6, ⁇ 8, ⁇ , TC, ⁇ are arranged alternately,
  • a correction curve W Bézier curve
  • the correction curve W also changes rapidly from W1 to W2 in accordance with (W1, W2 are not shown).
  • the correction curve W generated by the correction curve generation unit 25 is also set to W 1, W 1, W 1 2 ,... Every frame period. gradually change the W 2, converges to W 2 (W l!, W l 2 also not shown).
  • the image quality correction unit 16 performs image quality correction processing on the video signal input from the video signal input terminal 12 based on the correction curve by the correction curve generation unit 25, and outputs the image signal from the video signal output terminal 18.
  • the set point data from the set point data input terminal 27 is extracted from the straight line connecting the start point 00 and the end point TF.
  • the present invention is not limited to this. As shown by the solid characteristic line in the figure, the high-level part bulges slightly above the straight line, and the low-level part bulges slightly below the straight line. It can be set to emphasize the dark areas even more, or to use the set point of the inverse characteristic so that the contrast is not emphasized much.
  • the present invention is not limited to the case where the number-of-appearance data and the set point data are alternately arranged.
  • the number of appearance data and the set point data are set at a ratio of 2: 1 so that the video signal data is emphasized.
  • the number of occurrences and the set point data may be set at a ratio of 1: 2, so that the set point data is emphasized.
  • the fourth embodiment it is possible to perform the image quality correction processing with the optimum correction characteristic according to the appearance number data of each level, and the distribution state of the appearance number of the luminance level of each pixel greatly changes. Therefore, it is possible to perform image quality correction processing that does not cause image quality deterioration. Also, depending on the point on the correction characteristic, it is possible to suppress an extreme change in the correction curve or to add a change to the curve according to the purpose or preference.
  • the average value calculation unit is provided to simplify the configuration of the number of appearance counts has been described.
  • the present invention is not limited to this. Can be used even when is omitted.
  • a fifth embodiment of the image quality correction circuit according to the present invention will be described with reference to FIG. 16 and FIG.
  • 12 is a video signal input terminal for inputting a video signal
  • 10 is The average value calculation unit that calculates the average value of the luminance levels at m (integer of 2 or more) points.
  • 13 is the number of occurrences data between levels set to different values from 0 level.
  • An appearance number counter for sequentially counting the number of frames
  • 29 is a correction characteristic point suppression circuit for setting an upper limit value (an + w) and a lower limit value (an-w) to suppress a correction characteristic point
  • Is a correction curve generation unit that generates a correction curve based on the suppressed correction characteristic points
  • 49 is a set point data input terminal for inputting a set point data
  • 16 is an image quality based on the generated correction curve.
  • An image quality correction unit 18 for correcting the image signal is a video signal output terminal for outputting the corrected video signal.
  • the correction characteristic point suppression circuit 29 includes a suppression range comparator 43, a suppression range setting unit 46, and a control counter 40 for controlling what processing is performed among the n correction characteristic points.
  • the suppression range comparator 43 includes a correction characteristic point before suppression (P n) from the appearance number counter 13 and an upper limit value (an + w), and a lower limit comparator 42 a comparing P n and a lower limit value (an ⁇ w) at the characteristic point thereof.
  • the suppression range setting unit 4 6 Is composed of an upper limit setting section 44a for setting an upper limit value (an + w) and a lower limit setting section 45a for setting a lower limit value (an-w).
  • the straight line an is a straight line between the start point and the end point in the correction characteristic diagram in which one orthogonal axis is the luminance input level and the other axis is the luminance output level.
  • This is an ideal correction characteristic line when the number of appearances of the input level in the input video signal is not biased, and w shows a certain distribution width with respect to the ideal characteristic line.
  • an + w and an ⁇ w represent suppression setting lines parallel to the ideal characteristic line having upper and lower limits having a certain width.
  • the video signal input to the video signal input terminal 12 is calculated by the average value calculation unit 10 at each point, for example, the average value of the luminance levels of every 16 pixels, and is sequentially output.
  • This average value is detected by dividing the total number of occurrences in N (integer of 1 or more) frames into 255 and dividing the luminance level into 16 levels.
  • the number of appearances of the detected average value is counted by the appearance number counter 13.
  • the pre-suppression correction characteristic point data P n from the occurrence count 13 is input to the contact X of the correction characteristic point selector 47, and one of the following upper limit comparator 41a and lower limit comparator 42a. Is added as input. Also, as the other input of each of the upper limit comparator 4 1a and the lower limit comparator 4 2a, the upper limit value an + w and the lower limit value an corresponding to the number of the correction characteristic point data P n are obtained from the control counter 40. — W is typing.
  • the upper comparator 4 la outputs a switching signal to the contact y of the correction characteristic point selector 47 when P n> an + w, and the lower comparator 42 a outputs P n ⁇ an — w At the time of, the switching signal to the contact z of the correction characteristic point selector 47 is output.
  • the video signal from the video signal input terminal 12 is corrected based on the correction curve and output to the output terminal 18. In this way, the image quality is prevented from being degraded by correcting the y point having a bias in the number of appearances so as to limit the y point within the set range.
  • the image quality correction section 16 corrects the video signal from the video signal input terminal 12 based on this correction curve and outputs it to the output terminal 18 I do. In this way, the image quality is prevented from deteriorating by correcting the z-point having a bias in the number of appearances so as to limit it within the set range.
  • the width of the upper limit + w and the width of the lower limit -w are set to be constant regardless of the correction characteristic points.
  • the upper limit width and the lower limit of the setting range are calculated for each correction characteristic point.
  • the width is set.
  • the sixth embodiment will be described specifically.
  • the overnight input terminal 49 is the same as that of the fifth embodiment shown in FIG.
  • the feature of the second embodiment is that the upper limit value YHn and the lower limit value YLn are set to 0 at the starting point 0 0 as shown in FIG. 19, and the upper limit value YHn is set up to the intermediate position. It gradually increases with respect to the straight line an, gradually decreases the lower limit value YL n with respect to the straight line an, and forms a two-dimensional curve that changes for each correction characteristic point again passing through the end point FF. .
  • the straight line an is a line connecting the start point 00 and the end point FF in the correction characteristic diagram with a straight line, as described above, and is an ideal correction characteristic line when the number of appearances of the input level in the input video signal is not biased. is there.
  • the correction characteristic point data before suppression from the appearance number counter 13 is shown. Evening If P n is at the point y where the input level is extremely high, since ⁇ ⁇ > ⁇ ⁇ 1, a switching signal is output from the upper limit comparator 4 1 b and the correction characteristic point selector 4 7 is contacted with y. And YH 1 from the upper limit setting section 44 b is output to the correction curve generation section 48.
  • the output from the upper limit setting unit 44b is used as an address, and based on the set point data input from the evening input terminal 49, the upper limit in FIG. A correction curve corrected to P1 on the setting line is generated and output to the image quality correction unit 16.
  • the video signal from the video signal input terminal 12 is corrected based on the correction curve and output to the output terminal 18. In this manner, the image quality is prevented from deteriorating by correcting so that the y point having a bias in the number of appearances is limited to the set range.
  • Pn is at the extremely low z point of the input level, since Pn ⁇ YL3, a switching signal is output from the lower limit comparator 4 2 b and the correction characteristic point is selected.
  • Switch 47 is switched to contact z, and YL 3 from lower limit setting section 45 b is output to correction curve generation section 48.
  • the output from the lower limit setting unit 45b is used as an address, and based on the set point data input from the set point data input terminal 49, the P on the lower limit setting line in FIG. A correction curve corrected to 3 is generated and output to the image quality correction unit 16.
  • the video signal from the video signal input terminal 12 is corrected based on the correction curve and output to the output terminal 18. In this way, the image quality is prevented from being degraded by correcting the z-point having a bias in the number of appearances so as to limit it within the set range.
  • an optimum correction characteristic can be obtained in accordance with the appearance number data of each level, and an image quality correction process suitable for any video can be performed. Also, depending on the point on the correction characteristic, it is possible to suppress an extreme change of the correction curve or to add a change to the curve according to the purpose or preference.
  • the average value of the average value calculation unit 10 is calculated.
  • the number of samples to be measured is 16, the number of frames for which the appearance number data of the appearance number counter 13 is obtained is 1 frame, and the number of steps of the luminance level is 16.
  • the present invention is not limited to these examples. Absent. Industrial applicability
  • the image quality correction circuit according to the present invention can obtain the optimum correction characteristics in accordance with the number of appearances of each level, image quality correction processing suitable for any video can be performed.
  • image quality correction processing suitable for any video can be performed.
  • the distribution of the number of appearances of the luminance level changes greatly at the time of switching the screen or displaying a moving image, it is possible to suppress the change and perform the image quality correction processing without causing the image quality deterioration.

Description

明 細 書 画 質 補 正 回 路 技術分野
本発明は、 プラズマディスプレイパネル (P D P ) や液晶ディスプレイパネル ( L C Dパネル) 等を表示パネルとする表示装置で映像を表示する場合に、 映像 内容に対応して画質の補正 (例えば階調補正) を行う画質補正回路に関するもの である。 背景技術
従来の画質補正回路は、 第 1図に示すように、 入力端子 1 2に入力した映像信 号の 1フレーム (又は 1フィールド) 毎に、 平均値算出部 1 0によって平均映像 レベル (A P L ) を検出し、 この A P Lをアドレスとして R O M 1 4から対応し た補正データを読み出し、 この補正データに対応した入出力変換特性曲線に従つ て画質補正部 1 6で入力映像信号を補正し、 出力端子 1 8から出力するようにし ていた。 A P Lは、 例えば 1フレーム (又は 1フィールド) の全表示ドット数に ついて輝度レベル毎に分布頻度数を掛けた値を加算し、 全表示ドッ卜数で除算し て求められる。
しかしながら、 第 1図に示した従来例では、 A P Lに基づいて画質補正データ を決めていたので、 明るさが平均的に分布した映像内容の表示改善はできるが、 輝度レベルのヒストグラム (頻度分布) について考慮されていないので、 映像内 容に適した補正ができないという問題点があった。
例えば、 第 2図 (a ) に示すように、 輝度レベルが明るい側に集中している頻 度分布 1の場合と、 同図 (b ) に示すように、 輝度レベルが暗い側に集中してい る頻度分布 2の場合とがあったものとする。 このように分布状態が異なるにも拘 らず、 ともに A P Lが同一であったものとすると、 第 2図 (a ) の場合には明る い側の解像度が低くなり、 また、 同図 (b ) の場合には、 暗い側の解像度が低く なるという問題点があった。 特に、 第 3図に示すように、 輝度レベルが暗い側の 狭い範囲に集中している頻度分布の場合、 補正特性線が第 4図に示すように、 極 端な傾きを持つ部分が出現し、 映像が実際よりも極端に明るくなり、 明るい側の 解像度が低くなるという問題点があった。 輝度レベルが明るい側に集中している 頻度分布の場合も同様である。
上述の問題点を解決するため、 本出願人は既に第 5図に示すような映像信号補 正回路 (特開平 8— 2 3 4 6 0 ) を提案した。 この回路によれば、 アナログの R
(赤) 、 G (緑) 、 B (青) 信号からなる入力映像信号 S 0を A / D (アナログ · ディジタル変換器) 2 0でディジタルの R、 G、 B信号に変換し、 下位アドレス として R O M (リード · オンリ一 · メモリ) 2 2に入力し、 テーブルルックアツ プ方式で入出力変換即ち階調補正が行われる。 一方、 マトリックス回路 2 4によ つてアナログの R、 G、 B信号から Y信号 (輝度信号) を生成し、 この Υ信号を A / D 2 6でディジタル信号に変換してヒストグラム回路 2 8に入力する。 ヒス トグラム回路 2 8は、 輝度レベルを複数の領域 (例えば 4つの領域) に区分した 各領域について、 輝度レベルの頻度数 (分布数) を計数する。 デコーダ 3 0は、 ヒストグラム回路 2 8の計数結果をデコードし、 上位アドレスとして R O M 2 2 に入力し、 R O M 2 2内に予め記憶された階調補正特性データを選択し、 入力し たディジタルの R、 G、 B信号が階調補正され、 ディジタルの R、 G、 B信号 S
1が出力する。
第 5図に示した映像信号補正回路では、 入力映像信号の輝度レベルの頻度分布 に応じた階調補正が得られるが、 依然として、 各輝度レベルの出現数に合わせた 適切な補正特性が得られないという問題点があった。
本発明は、 上述の問題点に鑑みなされたもので、 各輝度レベルの出現数に合わ せて最適な補正特性を得て、 あらゆる映像にも適した画質補正処理を行うことの できる画質補正回路を提供することを目的とする。 発明の開示
本発明の第 1実施例は、 映像信号入力端子 1 2に入力した映像信号の複数画素 毎の輝度レベルの平均値を算出する平均値算出部 1 0と、 この平均値算出部 1 0 で算出した複数の輝度レベルの出現数データを所定レベル毎に計数する出現数力 ゥン夕 1 3と、 この出現数カウン夕 1 3の計数出力点に基づき直線補間して補正 特性線を形成する直線補間部 1 5と、 この補正特性線により入力映像信号を補正 する画質補正部 1 6とを具備してなることを特徴とする画質補正回路である。 このような構成において、 映像信号入力端子 1 2に入力した映像信号は、 平均 値算出部 1 0にて複数画素の平均値を算出して出力し、 それぞれのレベルに対応 した輝度レベルの出現数データがが計数される。 直線補間部 1 5では、 横軸が輝 度レベル、 縦軸が出現数として順次直線で結んで直線補間した折線で連続した補 正特性線が得られる。
画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 前記直 線補間部 1 5による補正特性線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。
本発明の第 2実施例は、 映像信号入力端子 1 2に入力した映像信号から抽出し た複数の輝度レベルの出現数データを所定レベル毎に計数する出現数カウンタ 1 3と、 この出現数カウンタ 1 3の計数出力点データとこの計数点の間に挿入され た予め設定された設定点データとから新たな補正曲線を生成する補正曲線生成部 2 5と、 この補正曲線生成部 2 5からの補正曲線により入力映像信号を補正する 画質補正部 1 6とを具備してなることを特徴とする画質補正回路である。
このような構成において、 映像信号入力端子 1 2に入力した映像信号の出現数 データを 1つおきに使用し、 これとは別に、 開始点と終点を結んだ直線上等、 予 め設定した輝度レベルに対応する設定データを入力し、 一方が他方の間を補完す るように輝度レベル順に並べ替えて、開始点と終点を通るベジエ曲線を生成する。 映像信号入力端子 1 2から入力した映像信号を前記ベジエ曲線に基づき画質補正 をして映像信号出力端子 1 8から出力する。
本発明の第 3実施例は、 入力映像信号に基づいて Nフレーム (Nは 1以上の整 数) 内の各画素の輝度レベルの出現数を複数の設定レベル範囲毎に計数する出現 数カウン夕と、 この出現数カウン夕の計数値の変化を Nフレーム期間の複数倍の 期間における変化に抑制して出力する変化抑制部と、 この変化抑制部から出力し た計数値に基づき直線補間で補正特性線を形成する直線補間部と、 この直線補間 部で形成した補正特性線により入力映像信号を補正する画質補正部とを具備して なることを特徴とする。
このような構成において、 入力映像信号が出現数カウン夕に入力すると、 この 出現数カウンタによって Nフレーム内の各画素の輝度レベルの出現数が複数の設 定レベル範囲毎に計数される。 この出現数カウン夕の計数値は、 その変化が変化 抑制部で Nフレーム期間の複数倍の期間における変化に抑制されて直線補間部に 入力するので、 この直線補間部で形成される補正特性線の変化も抑制される。 画 質補正部では、 この変化の抑制された補正特性線により入力映像信号を補正して 画質補正処理を行う。
本発明の第 4実施例は、 入力映像信号に基づいて Nフレーム内の各画素の輝度 レベルの出現数を複数の設定レベル範囲毎に計数する出現数カウン夕と、 この出 現数カウンタの計数値の変化を Nフレーム期間の複数倍の期間における変化に抑 制して出力する変化抑制部と、 この変化抑制部から出力した計数値と予め設定さ れた設定値とから新たな補正曲線を生成する補正曲線生成部と、 この補正曲線生 成部で生成した補正曲線により入力映像信号を補正する画質補正部とを具備して なることを特徴とする。
このような構成において、 入力映像信号が出現数カウンタに入力すると、 この 出現数カウン夕によって各画素の輝度レベルの出現数が複数の設定レベル範囲毎 に計数される。 この出現数カウンタの計数値は、 その変化が変化抑制部で Nフレ ーム期間の複数倍の期間における変化に抑制されて補正曲線生成部に入力するの で、 この補正曲線生成部で生成される補正曲線の変化も抑制される。 画質補正部 では、 この変化の抑制された補正曲線により入力映像信号を補正して画質補正処 理を行う。
出現数カウン夕の構成を簡単にするために、 入力映像信号に基づいて m画素毎 に輝度レベルの平均値を算出する平均値算出部を設け、 出現数カウン夕が、 平均 値算出部で算出した輝度レベルの出現数が予め設定された複数の設定レベル範囲 毎に計数する。
出現数カウンタを加算器不要として構成を簡単にするために、 出現数カウン夕 を、 入力映像信号に基づいて各画素の輝度レベルが複数の設定レベル範囲のそれ ぞれに相当するか否かを判定する複数個の判定器と、 この判定器の判定回数を計 数する複数個の第 1のカウンタと、 この第 1のカウン夕の計数値と予め設定され た比較基準値とを比較し、 比較出力で前記第 1のカウンタをクリァする複数個の 比較器と、 この比較器の出力回数を計数して出現数とする複数個の第 2のカウン 夕とで構成する。
出現数カウン夕を加算器不要として構成を簡単にするために、 出現数カウンタ を、 平均値算出部で算出した輝度レベルが複数の設定レベル範囲のそれぞれに相 当するか否かを判定する複数個の判定器と、 この判定器の判定回数を計数する複 数個の第 1のカウン夕と、 この第 1のカウン夕の計数値と予め設定された比較基 準値とを比較し、 比較出力で第 1のカウン夕をクリアする複数個の比較器と、 こ の比較器の出力回数を計数して出現数とする複数個の第 2のカウン夕とで構成す る。
変化抑制部の構成を簡単にするために、 変化抑制部を差分器、 係数器、 加算器 及び Nフレーム遅延器で構成し、 差分器が出現数カウンタの計数値と Nフレーム 遅延器の出力値との差分を出力し、 係数器が差分器の出力値に 1 Z X ( Xは 2以 上の整数) の係数を掛けて出力し、 加算器が Nフレーム遅延器の出力値に係数器 の出力値を加算し、 Nフレーム遅延器が加算器による加算値を Nフレーム分遅延 させて差分器及び加算器への出力とするとともに変化の抑制された出力とする。 本発明の第 5実施例は、 映像信号入力端子 1 2に入力した映像信号から抽出し た複数の輝度レベルの出現数デ一夕を所定レベル毎に計数する出現数カウン夕 1 3と、 この出現数カウンタ 1 3から出力した補正特性点の計数値が予め設定した 上限値より多いときは上限値を、 下限値より少ないときは下限値を、 上限値と下 限値の範囲内のときは計数値を選択して出力する補正特性点抑制回路 2 9と、 こ の補正特性点抑制回路 1 3の出力に応じて補正曲線を生成する補正曲線生成部 4 8と、 この補正曲線生成部 4 8で生成された補正特性線により入力映像信号を補 正する画質補正部 1 6とを具備してなることを特徵とする画質補正回路であり、 補正特性点の計数値の上限値と下限値を、 直線的に変化する a n + wと a n— w に設定するようにした画質補正回路である。
本発明の第 6実施例は、 第 5実施例において、 補正特性点の計数値の上限値と 下限値を、 直交する一方の軸を入力輝度レベルとし、 他方の軸を出力輝度レベル とする補正特性線図における開始点と終点を通り、 中間で曲線的に変化する上限 値 Y H nと下限値 Y L nに設定するようにした画質補正回路である。 図面の簡単な説明
第 1図は、 従来の画質補正回路のブロック図である。
第 2図は、 映像信号の輝度レベルの頻度分布図で、 (a ) は輝度レベルが略中 間に偏った例を示し、 (b ) は輝度レベルが低い方に偏った例を示すものである。 第 3図は、 映像信号の輝度レベルが低い方の狭い範囲に集中した例を示す頻度 分布図である。
第 4図は、 第 3図の場合の補正特性線を示す図である。
第 5は、 従来の画質補正回路の他の例を示すブロック図である。
第 6図は、 本発明による画質補正回路の第 1実施例を全体の示すプロック図で ある。
第 7図は、 第 6図、 第 9図、 第 1 2図、 第 1 5図における出現数カウンタ 1 3 の詳細なブロック図である。
第 8図は、 本発明の第 1実施例による補正特性線図である。
第 9図は、 本発明による画質補正回路の第 2実施例を示す全体のブロック図で ある。
第 1 0図は、 本発明の第 2実施例による補正特性線図である。
第 1 1図は、 本発明の第 2実施例による他の補正特性線図である。
第 1 2図は、 本発明による画質補正回路の第 3実施例を示す全体のブロック図 である。
第 1 3図は、 第 1 2図中の変化抑制部 3 1の詳細なブロック図である。
第 1 4図は、第 1 3図中の変化抑制部 3 1。の作用を説明するタイムチャートで ある。
第 1 5図は、 本発明による画質補正回路の第 4実施例を示す全体のブロック図 である。
第 1 6図は、 本発明による画質補正回路の第 5実施例を示す全体のブロック図 である。 第 1 7図は、 本発明の第 5実施例による補正特性線図である。
第 1 8図は、 本発明による画質補正回路の第 6実施例を示す全体のブロック図 である。
第 1 9図は、 本発明の第 6実施例による補正特性線図である。 発明を実施するための最良の形態
本発明による画質補正回路の第 1実施例を第 6図、 第 7図及び第 8図に基づき 説明する。
第 6図において、 1 2は、 映像信号の入力する映像信号入力端子、 1 0は、 111 ( 2以上の整数) 点の輝度レベルの平均値を算出する平均値算出部、 1 3は、 0 レベルから異なる値に設定されたレベルの間の出現数データを順次カウントする 出現数カウン夕、 1 1は、 比較基準値を入力する比較基準値入力端子、 1 5は、 出現数データに基づいて補正特正点図を得るための直線補間部、 1 6は、 直線補 間に基づき画質を補正する画質補正部、 1 8は、 補正された映像信号を出力する 映像信号出力端子である。
第 7図は、 前記出現数カウンタ 1 3のさらに具体的回路図である。
前記平均値算出部 1 0は、 例えば画素 1 6個の輝度レベルの平均値を算出する もので、これにより後続の出現数カウンタ 1 3におけるビット数を削減している。 前記出現数カウン夕 1 3は、 例えば 1 6個の判定器 1 7 0、 1 7い … 1 7 15と、 これらの判定器 1 7 0、 1 7い … 1 7 15にそれぞれ順次直列接続された第 1の力 ゥンタ 1 9 0、 1 9い … 1 9 15と、 比較器 2 1 0、 2 1い … 1 2 15と、 第 2のカウ ン夕 2 3 2 3い … 2 3 15と、 前記比較器 2 1 2 1い … 1 2 15の他方の入力 側に接続された前記比較基準値入力端子 1 1とからなり、 前記比較器 2 1 0、 2 1 い … 1 2 15の出力は、 前段の第 1のカウン夕 1 9 0、 1 9い … 1 9 15へクリア信 号として戻され、 また、 第 2のカウンタ 2 3 0、 2 3 "· 2 3 15の出力は、 前記 直線補間部 1 5へ送られるようになつている。
以上の第 1実施例の構成による作用を説明する。
映像信号入力端子 1 2に入力した映像信号は、 平均値算出部 1 0にて画素 1 6 個の輝度レベルの平均値を算出して順次出力する。 この平均値は、 それぞれのレベルに対応した判定器 1 70、 1 7い ·'· 1 715に 入力してそれぞれのレベルに相当するかどうかが判定される。 具体的には、 1フ レーム中の全出現数を 2 5 5とし、 輝度レベルを 1 6段階に分けて検出する。 判 定器 1 7Qでは、 0レベルから第 1 レベルまでに相当するかどうかを判定し、 判定 器 1 7 iでは、 0レベルから第 2レベルまでに相当するかどうかを判定し、 以下同 様にして、 判定器 1 715では、 0レベルから第 1 6レベルまでに相当するかどう かを判定する。 このように、 すべて Qレベルから当該レベルまでに相当するかど うかが判定される。 該当するときは、 後続のいずれかの第 1のカウンタ 1 90、 1 9 … 1 915で出現数が計数される。
各第 1のカウン夕 1 90、 1 91 … 1 915で計数された出現数データは、 それ ぞれ後続の比較器 2 10、 2 1 … 1 215の一方の入力として加えられる。 また、 他方の入力として、 比較基準値入力端子 1 1から比較基準値データが入力してい る。 従って、 各比較器 2 1 2 1い … 1 215では、 各第 1のカウンタ 1 9 1 9 … 1 915で計数された出現数が比較基準値を越えると、 各第 2のカウン夕 2 30、 2 3い … 2315で計数し、 各第 1のカウン夕 1 90、 1 9!, … 1 915をクリ ァする。
前記比較基準値入力端子 1 1からの比較基準値は、 1フレームの全面素数を平 均値算出部 1 0の平均算出のサンプル数 mで割った数を越えたときに第 2のカウ ン夕 2 315の値 (補正特性点) が 2 5 5 (F FH) となるように次式によって設 定される。
比較基準値 = ( 1フレームの全画素数ノ m) /F FH
=w (横方向画素数) Xh (縦方向画素数) + 1 6 + 2 5 5
前記各第 2のカウンタ 2 30、 2 3い "· 2 315の出現数は、 以下のようになつ たものとする。
c O : レベル 00〜: 1 0 (0 F : 1 6進表示) の間の第 2のカウン夕 2 3 οの出 現数
0 1 : レべル00〜20 ( 1 : 1 6進表示) の間の第 2のカウンタ 23 iの出 現数 c E : レベル 0 0〜 F 0 ( E F : 1 6進表示) の間の第 2のカウン夕 2 3 15の 出現数
これら第 2のカウン夕 2 3 0、 2 3い … 2 3 15の各出現数 c 0、 c l 、 … c E を、 横軸が輝度レベル、 縦軸が出現数として表わすと、 第 8図に示すような補正 特性点として出力する。
各出現数 c 0、 c 1、 … c Eに、 開始点 0 0と出現総数 (一定値) とを加えた 1 6段階のデータが前記直線補間部 1 5へ送られ、 この直線補間部 1 5では、 各 出現数 0 0、 c 0、 c l、 〜 c E、 c Fを順次直線で結んで直線補間した折線で 連続した補正特性線が得られる。
画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 前記直 線補間部 1 5による補正特性線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。 具体的には、 映像信号入力端子 1 2から入力した映像信号の輝 度レベルが Xであるときには、 補正特性線に基づき補正後の輝度レベル yとなる ように画質補正処理を行い映像信号出力端子 1 8から出力する。
以上のような本発明の第 1実施例によれば、 各レベルの出現数データに合わせ て最適な補正特性を得ることができ、 どのような映像にも適した画質補正処理を 行うことができる。
なお、 前記第 1実施例においては、 平均値算出部 1 0の平均値を求めるサンプ ル数を 1 6個、 出現数カウン夕 1 3の出現数データを求めるフレーム数を 1フレ ーム、 輝度レベルの段階数を 1 6としたが、 本発明は、 これらの例に限られるも のではない。
以上のような第 1実施例によれば、 各レベルの出現数データに合わせて最適な 補正特性を得ることができ、 どのような映像にも適した画質補正処理を行うこと ができる。
次に本発明の第 2実施例を第 9図、 第 1 0図及び第 1 1図に基づき説明する。 第 9図において、 映像信号入力端子 1 2、 平均値算出部 1 0、 出現数カウンタ 1 3、 画質補正部 1 6、 映像信号出力端子 1 8は、 前記第 6図及び第 7図に示し た第 1実施例の場合の構成と変わるところはない。 第 2実施例の特徴とするとこ ろは、 映像信号入力端子 1 2に入力し、 平均値算出部 1 0を介して出現数カウン 夕 1 3で計数された映像信号の出現数データと、 設定点データ入力端子 2 7から の予め設定された設定点データとから新たな補正曲線を生成する補正曲線生成部 2 5を、前記出現数カウンタ 1 3と画質補正部 1 6との間に挿入したものである。 この補正曲線生成部 2 5は、 例えば、 出現数データと、 設定点データとを交互 に配置した複数点を基にして、 開始点 0 0と終点 T Fを通るベジエ曲線を生成す るような回路が用いられる。
第 2実施例の作用を説明する。
( 1 ) 映像信号入力端子 1 2に入力した映像信号が第 2図 (a) に示すように、 略中央に偏った頻度分布 1のような特性であったものとする。 出現数カウン夕 1 3の出現数データを第 8図の場合と異なり、 1つおきのレベル 1 0、 3 0、 5 0、 7 0、 9 0、 B 0、 D 0、 F 0に対応する c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eを使用する。 これらの出現数デ一夕から c 0〜 c 6と c 8〜 c Eとで は、 出現数が少なく、 c 6と c 8の間で出現数が多いことを表わしている。
また、 開始点 0 0と終点 T Fを結んだ直線上のレベル 0 0、 2 0、 40、 6 0、 8 0、 A 0、 C 0、 E 0に対応する T 0、 Τ 2、 Τ 4、 Τ 6、 Τ 8、 ΤΑ、 T C、 ΤΕを設定点データ入力端子 2 7から設定データとして入力する。
これらを輝度レベル順に並べ替えると、 T 0、 c 0、 T 2、 c 2、 T 4、 c 4、 T 6、 c 6、 T 8、 c 8、 TA、 c A、 T C、 c C、 TE、 c Eとなり、 第 1実 施例のように、 直線補間すれば点線にて示す折線の補正線となる。
しかるに、 第 2実施例では、 補正曲線生成部 2 5によって、 出現数データと、 設定点データとを交互に配置した複数点を基にして、 開始点 0 0と終点 T Fを通 るベジエ曲線を生成すると、 例えば第 1 0図の実線のように、 開始点 0 0と終点 T Fを結んだ直線に対して、 レベルの高い部分では、 直線より上方にやや膨らみ、 レベルの低い部分では、直線よりやや下方に膨らむ S字状の補正曲線が得られる。 画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 前記補 正曲線生成部 2 5による補正曲線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。
( 2 ) 映像信号入力端子 1 2に入力した映像信号が第 2図 (b) に示すように、 低いレベルに偏った頻度分布 2のような特性であったものとする。 この場合、 c 0〜 c 2と c 4〜 c Eとでは、 出現数が少なく、 c 2と c 4の間で出現数が多い ことを表わしている。
前記同様、 T 0、 c O、 T 2、 c 2、 T 4、 c 4、 T 6、 c 6、 T 8、 c 8、 T A、 c A、 T C、 c C、 T E、 c Eの順に並べ替え、 補正曲線生成部 2 5によ つて、 これらの点を基にして、 開始点 0 0と終点 T Fを通るベジエ曲線を生成す ると、 例えば第 1 1図の実線のように、 開始点 0 0と終点 T Fを結んだ直線に対 して、 レベルの高い部分では、 略直線状で、 レベルの低い部分では、 直線よりや や下方に膨らむ補正曲線が得られる。
画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 前記補 正曲線生成部 2 5による補正曲線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。
前記実施例では、 設定点データ入力端子 2 7からの設定点データを、 開始点 0 0と終点 T Fを結んだ直線から抽出したが、 これに限られるものではなく、 例え ば、 第 1 0図の実線特性線のように、 レベルの高い部分では、 直線より上方にや や膨らみ、 レベルの低い部分では、 直線よりやや下方に膨らむ S字状から設定点 デ一夕を抽出することにより、 明るい部分と、 暗い部分をより一層強調するよう にしたり、 逆特性の設定点を用いることにより明暗をあまり強調しないように設 定することもできる。
また、 出現数データと、 設定点データとを交互に配置する場合に限られるもの ではなく、 出現数データと、 設定点データとを 2対 1の割合として、 映像信号の データを強調するようにしたり、 出現数データと、 設定点データとを 1対 2の割 合として、 設定点データを強調するようにしたりするなど、 任意の割合とするこ とができる。
以上のような本発明の第 2実施例によれば、 各レベルの出現数データに合わせ て最適な補正特性を得ることができ、 どのような映像にも適した画質補正処理を 行うことができる。 また、 任意の補正特性上の点によって、 極端な補正曲線の変 化を抑えたり、 曲線に目的や好みに応じた変化をつけ加えることができる。 つぎに本発明による画質補正回路の第 3実施例を第 1 2図〜第 8図に基づき説 明する。 第 1 2図において、 第 6図と同一部分は同一符号とし説明を省略する。
第 1 2図において、 1 2は映像信号入力端子、 1 0は平均値算出部、 1 3は出 現数カウン夕、 1 1は比較基準値入力端子、 1 5は直線補間部、 1 6は画質補正 部、 1 8は映像信号出力端子、 3 1は変化抑制部である。
前記変化抑制部 3 1は第 1 3図に示すように 1 5個の変化抑制部 3 l o、 3 1 t、 ··-、 3 114からなり、 前記変化抑制部 3 10は差分器 3 30, 係数器 3 50 加算器 3 7Q及び Nフレーム遅延器 3 9oからなり、 前記変化抑制部 3 1 iは差分器 3 3!, 係数器 3 5い 加算器 3 7 i及び Nフレーム遅延器 3 91からなり、 以下同様に構成 され、 前記変化抑制部 3 114は差分器 3 314、 係数器 3 514、 加算器 3 714及び N フレーム遅延器 3 914からなつている。
前記差分器 3 3o、 3 3 ^ ··'、 3 314は、 前記出現数カウンタ 1 3内の第 2の カウンタ 2 30、 2 3 ···、 2 314から出力する出現数 (計数値) と前記 Nフレ ーム遅延器 3 90、 3 9 ···、 3 914の出力値との差分を出力し、 前記係数器 3 50、 3 5 ,, ···, 3 514は前記差分器 3 30、 3 3 !、 …、 3 314の出力値に 1 /X (Xは 2以上の整数で、 例えば X= 2) の係数を掛けて出力し、 前記加算器 3 70, 3 7い …、 3 714は前記 Nフレーム遅延器 3 90、 3 9い …、 3 914の出力値に 前記係数器 3 50、 3 5 b …、 3 514の出力値を加算し、 前記 Nフレーム遅延器 3 90、 3 9い …、 3 914は前記加算器 3 70、 3 7い …、 3 714による加算値を Nフレーム分遅延させて前記差分器 3 30、 3 3 …、 3 314及び加算器 3 70、 3 7い …、 3 714への出力とするとともに、 変化の抑制された出力として前記直 線補間部 1 5へ出力する。 前記出現数カウン夕 1 3内の第 2のカウン夕 2 315か ら出力する出現数は、変化抑制部 3 1を介さずに直接直線補間部 1 5へ出力する。 以上の第 3実施例の構成による作用を第 1 4図、 第 8図を併用して説明する。 Nは 1以上の整数、 mは 2以上の整数、 Xは 2以上の整数であればよいが、 説 明の便宜上、 N= l、 m= 1 6、 X = 2の場合について説明する。
( 1 ) 映像信号入力端子 1 2に入力した映像信号は、 平均値算出部 1 0にて画 素 1 6個の輝度レベルの平均値を算出して順次出力する。
( 2 ) 平均値算出部 1 0で算出された平均値が出現数カウンタ 1 3に入力する と、 この出現数カウン夕 1 3は第 6図〜第 7図に示した第 1実施例の場合と同様 に作用する。
説明の便宜上、 出現数カウン夕 1 3内の各第 2のカウン夕 2 3o、 2 3ぃ - 2 315の出現数が、 c 0、 c l、 ···、 c E、 c Fであったものとする。 ここで、 c 0、 c 1、 ···、 c E、 c Fは、 以下の出現数を表す。
c O : レベル 0 0〜 1 0 ( 1 0は 1 6進表示である。 ) の間の第 2のカウン夕 2 3οの出現数。
c l : レベル 0 0〜 2 0 ( 2 0は 1 6進表示である。 ) の間の第 2のカウン夕 2 3 iの出現数。 c E : レベル 0 0〜F 0 (F Oは 1 6進表示である。 ) の間の第 2のカウン夕 2 314の出現数.
c F : レベル 0 0〜: 1 0 0 ( 1 0 0は 1 6進表示である。 ) の間の第 2のカウ ンタ 2 315の出現数 (固定値) 。
( 3 ) これら第 2のカウン夕 2 30、 2 3 !, ···、 2 315の各出現数 c 0、 c l、 〜 c Fに、開始点 0 0を加えた 1 6段階のデータが変化抑制部 3 1へ送られると、 この変化抑制部 3 1では各出現数 c 0、 c l、 "'、 c E、 c Fの 1フレーム期間 (N= lの場合) における変化を、 複数フレーム期間 (Nフレームの複数倍の一 例) における変化に抑制して出力する。 但し c Fは固定値なので変化しない。 例えば、 第 2のカウン夕 2 3oの出現数 c 0が、 第 1 4図 (a) に示すように、 連続する各フレームで 「2」 、 「2」 、 「2」 、 「2」 、 「2」 、 「 1 6」 、 「 1 6」 、 「 1 6」 、 「 1 6」 、 「 1 6」 、 「 1 6」 、 「 1 6」 となり、 t 6時前後 のフレーム期間 FT、 F Tで 「2」 から 「 1 6」 に急激に変化したものとすると、 同図 (b) に示すように、 変化抑制部 3 1の抑制作用によって、 t 6時から 1フ レーム期間 F T経過した t 7時直後の 1フレーム期間 FTで 「2」 から 「9」 に 変化し、 つづく t 8、 t 9、 t 1 0時直後の各 1フレーム期間 FTで 「 1 3」 、 「 1 5」 、 「 1 6」 と変化し、 「 1 6」 に収束する。 すなわち 1フレーム期間に おける急激な変化が 4フレーム期間における緩やかな変化に抑制される。
前述の変化抑制部 3 1の抑制作用を第 1 3図の回路を併用して説明すると、 つ ぎの①〜⑤に記載のようになる。 説明の便宜上、 第 2のカウン夕 2 3 oの出現数 (補正特性点) を P0、 Nフレー ム遅延器 3 9Qの出現数 (補正特性点) を PDoとする。
①第 1 4図 (a) に示すように t 6時前後の 1フレーム期間 FTで Poが 「2」 から 「 1 6」 に変化したものとすると、 この 1フレーム期間 F Tでは、 Po= 1 6、 P Do= 2となるので、 変化抑制部 3 10から出力する出現数は 「 2」 となる。 このとき、 差分器 3 3oの出力 (Po— PD0) が 1 4 (= 1 6 - 2 ) 、 係数器 3 50の出力 { ( P0- P D0) X 1 / 2 } が 7 (= 1 4 2) 、 加算器 3 7 oの出力 { P D0+ (P0- P D0) X 1 / 2 } が 9 (= 2 + 7 ) となっている。
② t 6時より 1フレーム期間 FT経過した t 7時直後の 1フレーム期間 FTで は、前記①の加算器 3 70の出力を 1フレーム遅延させたデータが Nフレーム遅延 器 3 9oの出力 (すなわち PD0) となるので、 変化抑制部 3 l oから出力する出現 数は 「9」 となる。
このとき、 差分器 3 3 οの出力 (Po一 PD0) が 7 (= 1 6— 9) 、 係数器 3 5 0の出力 { (Po— PD0) X 1 / 2 } が 4 (= 7ノ2の小数点以下を 4捨 5入した 値。 ) 、 加算器 3 70の出力 { P D0+ (P0- P D0) X 1 / 2 } が 1 3 (= 9 + 4) となっている。
③ t 7時より 1フレーム期間 F T経過した t 8時直後の 1フレーム期間 F Tで は、 前記②と同様にして、 変化抑制部 3 10から出力する出現数は 「 1 3」 となる このとき加算器 3 70の出力は、 前記②と同様にして、 1 5 (= 1 3 + 2) とな つている。
④ t 8時より 1フレーム期間 F T経過した t 9時直後の 1フレーム期間 F丁で は、 前記②と同様にして、 変化抑制部 3 10から出力する出現数は 「 1 5」 となる ( このとき加算器 3 7 Qの出力は、 前記②と同様にして、 1 6 (= 1 5 + 1 ) とな つている。
⑤ t 9時より 1フレーム期間 FT経過した t l 0時直後の 1フレーム期間 FT では、 前記②と同様にして変化抑制部 3 10から出力する出現数は 「 1 6」 となる, このとき加算器 3 70の出力は、 前記②と同様にして、 1 6 (= 1 6 + 0) とな つている。
(4) その他の第 2のカウン夕 2 3い '··、 2 314の出現数 c 1、 ···、 c Eの変 化も、 第 2のカウンタ 2 3 oの出現数 c 0と同様に、 変化抑制部 3 1の抑制作用に よって複数フレーム期間における緩やかな変化となって出力する。
これを第 1 3図の回路に当てはめると、 第 2のカウンタ 2 3い ···、 2 314の出 現数が Pi (= c 1 ) 、 ···、 P 14 (= c E) となり、 Nフレーム遅延器 3 9 ^ ··'、 3 914の出力値が P Dい …、 P D14となり、 P!、 ···、 P 14がある 1フレーム期間 において急激に変化した場合、 対応する PDi、 ···、 PD14が複数フレーム期間に おける緩やかな変化に抑制される。
( 5) 第 2のカウンタ 2 30、 2 3い ···、 2 314の出現数 c 0 ( = P 0) 、 c 1 (= Pj) 、 ···、 c E (= P14) の変化が変化抑制部 3 1で緩やかな変化に抑制さ れて直線補間部 1 5へ送られると、 この直線補間部 1 5では、 変化の抑制された 各出現数 0 0、 c 0、 c l、 一 c E、 c Fを順次直線で結んで直線補間した補正 特性線が得られる。
例えば、 変化抑制部 3 1のない既提案の第 6図の直線補間部 1 5で得られた補 正特性線が、 ある 1フレーム期間において第 8図に点線で示す補正特性線 U 1か ら実線で示す補正特性線 U 2に急激に変化した場合について考えると、 変化抑制 部 3 1のある第 1 2図に示した本発明による回路では、 補正特性線 U 1から U 2 への変化が複数フレーム期間にわたった緩やかな変化に抑制される。
すなわち、 変化抑制部 3 1の作用で出現数 c 0、 c l、 ···、 c Eの変化が緩や かになるので、直線補間部 1 5で生成される補正特性線は、第 8図に示すように、 複数フレーム期間 (例えば 4〜 6フレーム期間) かけて、 U 1、 U 1 U 12 (図 示省略) 、 ···、 U 2と緩やかに変化し、 U 2に収束する。
このとき、 出現数 c 0については前記①〜⑤に記述したように 4フレーム期間 かけて緩やかに変化したが、 出現数 c l、 ··'、 c Eについてはその変化量に応じ て 4フレーム期間かけて緩やかに変化したり、 4以外の複数 (例えば 5、 6 ) フ レーム期間かけて緩やかに変化する。
第 8図中において、補正特性線 U 1 iは第 1 4図の t 6時から 1フレーム期間経 過した t 7時直後の 1フレーム期間における補正特性線に相当し、 この補正特性 線 上の c O (第 2のカウンタ 2 30の出現数) は前記②の 「 9」 に相当する。
( 6) 画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 直線補間部 1 5による補正特性線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。 具体的には、 映像信号入力端子 1 2から入力した映像信号の 輝度レベルが Xであるときには、 補正特性線に基づき補正後の輝度レベル yとな るように画質補正処理を行い映像信号出力端子 1 8から出力する。
本発明の第 3実施例によれば、 Nフレーム内の各画素の輝度レベルの出現数に 合わせた最適な補正特性による画質補正処理を行うことができるとともに、 画面 の切り替わり時または動画表示時に輝度レベルの出現数の分布状態が大きく変化 しても、 この変化を抑制して画質劣化を招くことのない画質補正処理を行うこと ができる。
つぎに本発明による画質補正回路の第 4実施例を第 1 5図に基づき説明する。 この第 1 5図において、 映像信号入力端子 1 2、 平均値算出部 1 0、 出現数力 ゥンタ 1 3、 画質補正部 1 6、 映像信号出力端子 1 8及び変化抑制部 3 1は、 第 1 2図及び第 1 3図に示した第 3実施例の場合の構成と変わるところはない。 こ の第 4実施例の特徴とするところは、 第 1 2図の直線補間部 1 5の代わりに補正 曲線生成部 2 5を設けた点である。
この補正曲線生成部 2 5は、 出現数カウンタ 1 3で計数され変化抑制部 3 1で 変化の抑制された出現数と、 設定点データ入力端子 2 7からの予め設定された設 定点デ一夕とから新たな補正曲線を生成するもので、 変化抑制部 3 1と画質補正 部 1 6との間に挿入したものである。
前記補正曲線生成部 2 5は、 例えば、 出現数と設定点データを交互に配置した 複数点を基にして、 開始点 0 0と終点 T Fを通るベジエ曲線を生成するような回 路が用いられる。
以上の第 4実施例の作用を第 2図、 第 9図、 第 1 0図、 第 1 1図を併用して説 明する。
( 1 ) 映像信号入力端子 1 2に入力した映像信号が第 2図 (a ) に示すように、 略中央に偏った頻度分布 1のような特性であったものとする。
出現数カウン夕 1 3の出現数として、 第 9図の第 2実施例と同様に、 1つおき のレベル 1 0 、 3 0、 5 0、 7 0 、 9 0 、 B 0 、 D 0 、 F Oに対応する c 0、 c 2 、 c 4 、 c 6 、 c 8、 c A、 c C、 c Eを使用する。 また、 開始点 0 0と終点 T Fを結んだ直線上のレベル 0 0、 2 0、 4 0、 6 0、 8 0、 A 0、 C 0、 £ 0に対応する丁 0、 T 2、 Τ 4、 Τ 6、 Τ 8、 ΤΑ、 T C、 ΤΕを設定点データ入力端子 2 7から設定データとして入力する。
すると、 変化抑制部 3 1のない第 9図の既提案例では、 補正曲線生成部 2 5に よって、 出現数データ c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eと、 設 定点データ T 0、 Τ 2、 Τ 4、 Τ 6、 Τ 8、 ΤΑ、 T C、 ΤΕとを交互に配置し た複数点を基にして、 第 1 0図に実線で示すような S字状の補正曲線 V (ベジエ 曲線) が得られ、 出現数 c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eが急 激に変化した場合、これに応じて補正曲線 Vも V 1から V 2へ急激に変化する(V 1、 V 2は図示省略) 。
しかし、 変化抑制部 3 1のある第 1 5図の実施形態例では、 出現数 c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eの 1フレーム期間における変化が複数フレ ーム期間にわたる緩やかな変化に抑制されるので、 これに応じて補正曲線生成部 2 5で生成される補正曲線 Vも各 1フレーム期間毎に V 1、 V 1 V l 2、 ···、 V 2と緩やかに変化し、 V 2に収束する (V l i、 V l 2も図示省略) 。
画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 前記補 正曲線生成部 2 5による補正曲線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。
( 2 ) 映像信号入力端子 1 2に入力した映像信号が第 2図 (b) に示すように、 低いレベルに偏った頻度分布 2のような特性であったものとする。
前記 ( 1 ) と同様にして、 変化抑制部 3 1のない第 2実施例では、 補正曲線生 成部 2 5によって、 出現数データ c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eと、 設定点データ T O、 T 2、 Τ 4、 Τ 6、 Τ 8、 ΤΑ、 TC、 ΤΕとを交 互に配置した複数点を基にして、 第 1 1図に実線で示すような補正曲線 W (ベジ ェ曲線) が得られ、 出現数 c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eが 急激に変化した場合、 これに応じて補正曲線 Wも W 1から W2へ急激に変化する (W 1、 W 2は図示省略) 。
しかし、 変化抑制部 3 1のある第 4実施例では、 出現数データ c 0、 c 2、 c 4、 c 6、 c 8、 c A、 c C、 c Eの 1フレーム期間における変化が複数フレー ム期間にわたる緩やかな変化に抑制されるので、 これに応じて補正曲線生成部 2 5で生成される補正曲線 Wも各 1フレーム期間毎に W 1 、 W 1い W 1 2、 ···、 W 2と緩やかに変化し、 W 2に収束する (W l !、 W l 2も図示省略) 。
画質補正部 1 6では、 映像信号入力端子 1 2から入力した映像信号を、 前記補 正曲線生成部 2 5による補正曲線に基づき画質補正処理を行い映像信号出力端子 1 8から出力する。
第 4実施例では、 設定点データ入力端子 2 7からの設定点データを、 開始点 0 0と終点 T Fを結んだ直線から抽出したが、 これに限られるものではなく、 例え ば、 第 1 0図の実線特性線のように、 レベルの高い部分では、 直線より上方にや や膨らみ、 レベルの低い部分では、 直線よりやや下方に膨らむ S字状から設定点 データを抽出することにより、 明るい部分と、 暗い部分をより一層強調するよう にしたり、 逆特性の設定点を用いることにより明暗をあまり強調しないように設 定することもできる。
また、 出現数データと、 設定点データとを交互に配置する場合に限られるもの ではなく、 出現数データと、 設定点データとを 2対 1の割合として、 映像信号の データを強調するようにしたり、 出現数データと、 設定点データとを 1対 2の割 合として、 設定点データを強調するようにしたりするなど、 任意の割合とするこ とができる。
以上のような第 4実施例によれば、 各レベルの出現数データに合わせた最適な 補正特性による画質補正処理を行うことができるとともに、 各画素の輝度レベル の出現数の分布状態が大きく変化しても画質劣化を招くことのない画質補正処理 を行うことができる。 また、 任意の補正特性上の点によって、 極端な補正曲線の 変化を抑えたり、 曲線に目的や好みに応じた変化をつけ加えることができる。 前記第 3および第 4実施例では、 出現数カウン夕の構成を簡単にするために、 平均値算出部を設けた場合について説明したが、本発明はこれに限るものでなく、 平均値算出部を省略した場合についても利用することができる。
本発明による画質補正回路の第 5実施例を第 1 6図及び第 1 7図に基づき説明 する。
第 1 6図において、 1 2は、 映像信号の入力する映像信号入力端子、 1 0は、 m ( 2以上の整数) 点の輝度レベルの平均値を算出する平均値算出部、 1 3は、 0レベルから異なる値に設定されたレベルの間の出現数データを N ( 1以上の整 数) フレーム分順次カウントする出現数カウンタ、 2 9は、 上限値 (a n +w) と下限値 (a n—w) とを設定して補正特性点を抑制するための補正特性点抑制 回路、 4 8は、 抑制された補正特性点に基づき補正曲線を生成する補正曲線生成 部、 4 9は、 設定点デ一夕を入力する設定点データ入力端子、 1 6は、 生成され た補正曲線に基づき画質を補正する画質補正部、 1 8は、 補正された映像信号を 出力する映像信号出力端子である。
前記補正特性点抑制回路 2 9は、 抑制範囲比較器 4 3と、 抑制範囲設定部 4 6 と、 n点ある補正特性点のうち、 何番目の処理を行うかを制御する制御カウンタ 4 0と、 補正特性点選択器 4 7とからなり、 前記抑制範囲比較器 4 3は、 出現数 カウンタ 1 3からの抑制前補正特性点デ一夕 (P n) とその特性点における上限 値 (a n +w) とを比較する上限比較器 4 1 aと、 P nとその特性点における下 限値 (a n—w) とを比較する下限比較器 4 2 aとからなり、 前記抑制範囲設定 部 4 6は、 上限値 (a n +w) を設定する上限設定部 4 4 aと、 下限値 (a n— w) を設定する下限設定部 4 5 aとからなり、 前記補正特性点選択器 4 7は、 出 現数カウン夕 1 3の P nの端子 Xと、 上限設定部 4 4 aの上限値 (a n+w) の 端子 yと、 下限設定部 4 5 aの下限値 (a n—w) の端子 zとを選択するための 回路である。
ここで、 直線 a nは、 第 1 7図に示すように、 直交する一方の軸を輝度の入力 レベルとし、 他方の軸を輝度の出力レベルとする補正特性線図における開始点と 終点を直線で結んだもので、 入力映像信号における入力レベルの出現数に偏りの ない場合の理想的補正特性線であり、 また、 wは、 理想的特性線に対する一定の 分布幅を示している。 しかるに、 a n + wと a n— wとは、 第 1 7図に点線で示 すように、 上限と下限に一定幅を持たせた理想的特性線に平行な抑制設定ライン を示している。
以上の第 5実施例の構成による作用を説明する。
映像信号入力端子 1 2に入力した映像信号は、 平均値算出部 1 0にて各点、 例 えば、 画素 1 6個毎の輝度レベルの平均値を算出して順次出力する。 この平均値は、 N ( 1以上の整数) フレーム中の全出現数を 2 5 5とし、 輝度 レベルを 1 6段階に分けて検出する。 検出された平均値は、 出現数カウンタ 1 3 にて出現数が計数される。
出現数カウン夕 1 3からの抑制前補正特性点データ P nは、 補正特性点選択器 4 7の接点 Xに入力するとともに、 後続の上限比較器 4 1 aと下限比較器 4 2 a の一方の入力として加えられる。 また、 これらの上限比較器 4 1 aと下限比較器 4 2 aのそれぞれの他方の入力として、 制御カウンタ 4 0から補正特性点データ P nの番号に対応した上限値 a n +wと下限値 a n— wが入力している。従って、 上限比較器 4 l aでは、 P n> a n +wのとき、 補正特性点選択器 4 7の接点 y への切換え信号を出力し、 下限比較器 4 2 aでは、 P n< a n— wのとき、 補正 特性点選択器 4 7の接点 zへの切換え信号を出力する。
例えば、第 1 7図において、 P nが入力レベルの極端に高い y点であった場合、 P n> a n +wであるから、 上限比較器 4 1 aから切換え信号が出力し、 補正特 性点選^ 4 7を接点 yに切換え、 上限設定部 44 aからの a n +wが補正曲線 生成部 4 8へ出力する。 この補正曲線生成部 4 8では、 上限設定部 44 aからの 出力 a n +wをアドレスとし、 設定点データ入力端子 4 9から入力した設定点デ —夕に基づき、 第 1 7図における上限の設定ライン上の P 1に補正された補正曲 線が生成されて画質補正部 1 6へ出力する。 画質補正部 1 6では、 映像信号入力 端子 1 2からの映像信号がこの補正曲線に基づき補正されて出力端子 1 8へ出力 する。 このようにして、 出現数に偏りのある y点を設定範囲内に制限するように 補正することで画質劣化が防止される。
また、 第 1 7図において、 P nが入力レベルの極端に低い z点であった場合、 P nぐ a n— wであるから、 下限比較器 4 2 aから切換え信号が出力し、 補正特 性点選択器 4 7を接点 zに切換え、 下限設定部 4 5 aからの a n— wが補正曲線 生成部 4 8へ出力する。 この補正曲線生成部 4 8では、 下限設定部 4 5 aからの 出力 a n— wをアドレスとし、 設定点データ入力端子 4 9から入力した設定点デ 一夕に基づき、 第 1 7図における下限の設定ライン上の P 3に補正された補正曲 線が生成されて画質補正部 1 6へ出力する。 画質補正部 1 6では、 映像信号入力 端子 1 2からの映像信号がこの補正曲線に基づき補正されて出力端子 1 8へ出力 する。 このようにして、 出現数に偏りのある z点を設定範囲内に制限するように 補正することで画質劣化が防止される。
さらに、 P nが上限値と下限値の間の X点にあった場合、 a n + w≥ P n≥ a n— wであるから、 上限比較器 4 1 a、 下限比較器 4 2 aからの切換え信号がな くなり、 出現数カウン夕 1 3からの P nが補正曲線生成部 4 8へ出力する。 この 補正曲線生成部 4 8からは補正されない曲線が画質補正部 1 6へ出力して映像信 号入力端子 1 2からの映像信号を補正することなく出力端子 1 8へ出力する。 以上のような本発明の第 5実施例によれば、 各レベルの出現数データ分布に偏 りがあつたとき発生する極端な傾きを持った補正特性線の生成を抑制でき、 出現 数の偏りによる画質劣化を抑え、 最適な補正特性を得ることができる。
つぎに本発明の第 6実施例を第 1 8図及び第 1 9図に基づき説明する。
前記第 5実施例では、 各補正特性点に拘らず上限値の幅 + wと下限値の幅一 w を一定値とした。
これに対し、 第 6実施例では、 Nフレーム内での映像信号の各入力レベルの出 現数を基にして補正特性点を算出するに際し、 各補正特性点毎に設定範囲の上限 幅と下限幅を設定するようにしたものである。
この第 6実施例を具体的に説明する。
第 1 8図において、 映像信号入力端子 1 2、 平均値算出部 1 0、 出現数カウン 夕 1 3、 画質補正部 1 6、 映像信号出力端子 1 8、 補正曲線生成部 4 8、 設定点 デ一夕入力端子 4 9は、 前記第 1 6図に示した第 5実施例の場合の構成と変わる ところはない。 第 2実施例の特徴とするところは、 上限値 Y H nと下限値 Y L n を、 第 1 9図に示すように、 開始点 0 0では、 0とし、 中間位置までは、 上限値 Y H nを直線 a nに対して次第に増加させ、 下限値 Y L nを直線 a nに対して次 第に減少させ、 再び終点 F Fを通るような各補正特性点毎に変化する 2次元的な 曲線としたものである。 なお、 直線 a nは、 前記同様、 補正特性線図における開 始点 0 0と終点 F Fを直線で結んだもので、 入力映像信号における入力レベルの 出現数に偏りのない場合の理想的補正特性線である。
第 6実施例の作用を説明する。
例えば、 第 1 9図において、 出現数カウンタ 1 3からの抑制前補正特性点デー 夕 P nが入力レベルの極端に高い y点であった場合、 Ρ η > Υ Η 1であるから、 上限比較器 4 1 bから切換え信号が出力し、 補正特性点選択器 4 7を接点 yに切 換え、 上限設定部 4 4 bからの Y H 1が補正曲線生成部 4 8へ出力する。 この補 正曲線生成部 4 8では、 上限設定部 4 4 bからの出力をアドレスとし、 設定点デ —夕入力端子 4 9から入力した設定点デ一夕に基づき、 第 1 9図における上限の 設定ライン上の P 1に補正された補正曲線が生成されて画質補正部 1 6へ出力す る。 画質補正部 1 6では、 映像信号入力端子 1 2からの映像信号がこの補正曲線 に基づき補正されて出力端子 1 8へ出力する。 このようにして、 出現数に偏りの ある y点を設定範囲内に制限するように補正することで画質劣化が防止される。 また、 第 1 9図において、 P nが入力レベルの極端に低い z点であった場合、 P n < Y L 3であるから、 下限比較器 4 2 bから切換え信号が出力し、 補正特性 点選択器 4 7を接点 zに切換え、 下限設定部 4 5 bからの Y L 3が補正曲線生成 部 4 8へ出力する。 この補正曲線生成部 4 8では、 下限設定部 4 5 bからの出力 をアドレスとし、設定点データ入力端子 4 9から入力した設定点データに基づき、 第 1 9図における下限の設定ライン上の P 3に補正された補正曲線が生成されて 画質補正部 1 6へ出力する。 画質補正部 1 6では、 映像信号入力端子 1 2からの 映像信号がこの補正曲線に基づき補正されて出力端子 1 8へ出力する。 このよう にして、 出現数に偏りのある z点を設定範囲内に制限するように補正することで 画質劣化が防止される。
さらに、 P nが上限値と下限値の間の X点にあった場合、 Y H 2≥ P n≥Y L 2であるから、 上限比較器 4 1 a、 下限比較器 4 2 aからの切換え信号がなくな り、 出現数カウン夕 1 3からの P nが補正曲線生成部 4 8へ出力する。 この補正 曲線生成部 4 8からは補正されない曲線が画質補正部 1 6へ出力して映像信号入 力端子 1 2からの映像信号を補正することなく出力端子 1 8へ出力する。
以上のような本発明の第 6実施例によれば、 各レベルの出現数データに合わせ て最適な補正特性を得ることができ、 どのような映像にも適した画質補正処理を 行うことができる。 また、 任意の補正特性上の点によって、 極端な補正曲線の変 化を抑えたり、 曲線に目的や好みに応じた変化をつけ加えることができる。
なお、 前記第 5および第 6実施例においては、 平均値算出部 1 0の平均値を求 めるサンプル数を 1 6個、 出現数カウンタ 1 3の出現数データを求めるフレーム 数を 1フレーム、 輝度レベルの段階数を 1 6 としたが、 本発明は、 これらの例に 限られるものではない。 産業上の利用可能性
以上のように、 本発明による画質補正回路は各レベルの出現数デ一夕に合わせ て最適な補正特性を得ることができるので、 どのような映像にも適した画質補正 処理を行うことができ、 また、 任意の補正特性上の点によって、 極端な補正曲線 の変化を抑えたり、 曲線に目的や好みに応じた変化をつけ加えることができる。 さらに、 画面の切り替わり時または動画表示時に輝度レベルの出現数の分布状態 が大きく変化しても、 この変化を抑制して画質劣化を招く ことのない画質補正処 理を行うことができる。

Claims

請 求 の 範 囲
1 . 映像信号入力端子 1 2に入力した映像信号から抽出した複数の輝度レベルの 出現数データを所定レベル毎に計数する出現数カウンタ 1 3 と、 この出現数カウ ンタ 1 3の計数出力点に基づき直線補間して補正特性線を形成する直線補間部 1 5と、 この補正特性線により入力映像信号を補正する画質補正部 1 6とを具備し てなることを特徴とする画質補正回路。
2 . 映像信号入力端子 1 2に入力した映像信号の複数画素毎の輝度レベルの平均 値を算出する平均値算出部 1 0と、 この平均値算出部 1 0で算出した複数の輝度 レベルの出現数デ一夕を所定レベル毎に計数する出現数カウン夕 1 3 と、 この出 現数カウンタ 1 3の計数出力点に基づき直線補間して補正特性線を形成する直線 補間部 1 5と、 この補正特性線により入力映像信号を補正する画質補正部 1 6と を具備してなることを特徴とする画質補正回路。
3 . 出現数カウン夕 1 3は、 複数の輝度レベルの出現数データを所定レベル毎に 判定する複数個の判定器 1 7 と、 判定器 1 7で判定した所定レベル毎の出現数デ 一夕を計数する複数個の第 1のカウンタ 1 9と、 この第 1のカウンタ 1 9の出力 と予め設定された比較基準値入力端子 1 1からの比較基準値とを比較して、 この 比較出力で前記第 1のカウン夕 1 9をクリアする複数個の比較器 2 1 と、 この比 較器 2 1の出力を計数する複数個の第 2のカウンタ 2 3とからなることを特徴と する請求項 1または 2記載の画質補正回路。
4 . 出現数カウン夕 1 3は、 判定器 1 7、 第 1のカウンタ 1 9、 比較器 2 1及び 第 2のカウンタ 2 3の直列回路を互いに 1 6個を並列接続してなることを特徴と する請求項 3記載の画質補正回路。
5 . 映像信号入力端子 1 2に入力した映像信号から抽出した複数の輝度レベルの 出現数データを所定レベル毎に計数する出現数カウンタ 1 3と、 この出現数カウ ン夕 1 3の計数出力点データとこの計数点の間に挿入された予め設定された設定 点データとから新たな補正曲線を生成する補正曲線生成部 2 5と、 この補正曲線 生成部 2 5からの補正曲線により入力映像信号を補正する画質補正部 1 6とを具 備してなることを特徴とする画質補正回路。
6 . 映像信号入力端子 1 2に入力した映像信号の複数画素毎の輝度レベルの平均 値を算出する平均値算出部 1 0と、 この平均値算出部 1 0で算出した複数の輝度 レベルの出現数データを所定レベル毎に計数する出現数カウンタ 1 3と、 この出 現数カウン夕 1 3の計数出力点データとこの計数点の間に挿入された予め設定さ れた設定点データとから新たな補正曲線を生成する補正曲線生成部 2 5と、 この 補正曲線生成部 2 5からの補正曲線により入力映像信号を補正する画質補正部 1 6とを具備してなることを特徴とする画質補正回路。
7 . 補正曲線生成部 2 5は、 出現数カウンタ 1 3の計数出力点デ一夕と、 予め設 定された設定点データとを、 一方のデ一夕の間に他方のデータを 1または複数個 置きに挿入して新たな補正曲線を生成するようにしたことを特徴とする請求項 5 又は 6記載の画質補正回路。
8 . 補正曲線生成部 2 5は、 出現数カウン夕 1 3の計数出力点データと、 予め設 定された設定点データとを、 一方のデータの間に他方のデータを 1または複数個 置きに挿入した複数点を基にして、 開始点と終点を通るベジエ曲線を生成するよ うな回路からなることを特徴とする請求項 5又は 6記載の画質補正回路。
9 . 入力映像信号に基づいて Nフレーム (Nは 1以上の整数) 内の各画素の輝度 レベルの出現数を複数の設定レベル範囲毎に計数する出現数カウン夕と、 この出 現数カウン夕の計数値の変化を Nフレーム期間の複数倍の期間における変化に抑 制して出力する変化抑制部と、 この変化抑制部から出力した計数値に基づき直線 補間で補正特性線を形成する直線補間部と、 この直線補間部で形成した補正特性 線により入力映像信号を補正する画質補正部とを具備してなることを特徴とする 画質補正回路。
1 0 . 入力映像信号に基づいて m画素毎 (mは 2以上の整数) に輝度レベルの平 均値を算出する平均値算出部と、 この平均値算出部で算出した輝度レベルの出現 数を複数の設定レベル範囲毎に Nフレーム期間 (Nは 1以上の整数) にわたつて 計数する出現数カウン夕と、 この出現数カウン夕の計数値の変化を Nフレーム期 間の複数倍の期間における変化に抑制して出力する変化抑制部と、 この変化抑制 部から出力した計数値に基づき直線補間で補正特性線を形成する直線補間部と、 この直線補間部で形成した補正特性線により入力映像信号を補正する画質補正部 とを具備してなることを特徵とする画質補正回路。
1 1 . 入力映像信号に基づいて Nフレーム (Nは 1以上の整数) 内の各画素 I 度レベルの出現数を複数の設定レベル範囲毎に計数する出現数カウン夕と、 この 出現数カウン夕の計数値の変化を Nフレーム期間の複数倍の期間における変化に 抑制して出力する変化抑制部と、 この変化抑制部から出力した計数値と予め設定 された設定値とから新たな補正曲線を生成する補正曲線生成部と、 この補正曲線 生成部で生成した補正曲線により入力映像信号を補正する画質補正部とを具備し てなることを特徵とする画質補正回路。
1 2 . 入力映像信号に基づいて m画素毎 (mは 2以上の整数) に輝度レベルの平 均値を算出する平均値算出部と、 この平均値算出部で算出した輝度レベルの出現 数を複数の設定レベル範囲毎に Nフレーム期間 (Nは 1以上の整数) にわたつて 計数する出現数カウンタと、 この出現数カウン夕の計数値の変化を Nフレーム期 間の複数倍の期間における変化に抑制して出力する変化抑制部と、 この変化抑制 部から出力した計数値と予め設定された設定値とから新たな補正曲線を生成する 補正曲線生成部と、 この補正曲線生成部で生成した補正曲線により入力映像信号 を補正する画質補正部とを具備してなることを特徴とする画質補正回路。
1 3 . 出現数カウンタは、 入力映像信号に基づいて各画素の輝度レベルが複数の 設定レベル範囲のそれぞれに相当するか否かを判定する複数個の判定器と、 この 判定器の判定回数を計数する複数個の第 1のカウン夕と、 この第 1のカウン夕の 計数値と予め設定された比較基準値とを比較し、 比較出力で前記第 1のカウン夕 をクリァする複数個の比較器と、 この比較器の出力回数を計数して出現数とする 複数個の第 2のカウン夕とからなる請求の範囲 9又は 1 1記載の画質補正回路。
1 4 . 出現数カウン夕は、 平均値算出部で算出した輝度レベルが複数の設定レべ ル範囲のそれぞれに相当するか否かを判定する複数個の判定器と、 この判定器の 判定回数を計数する複数個の第 1のカウン夕と、 この第 1のカウン夕の計数値と 予め設定された比較基準値とを比較し、 比較出力で前記第 1のカウン夕をクリア する複数個の比較器と、 この比較器の出力回数を計数して出現数とする複数個の 第 2のカウン夕とからなる請求の範囲 1 0又は 1 2記載の画質補正回路。
1 5 . 変化抑制部は、 差分器、 係数器、 加算器及び Nフレーム遅延器からなり、 前記差分器は出現数カウン夕の計数値と前記 Nフレーム遅延器の出力値との差分 を出力し、 前記係数器は前記差分器の出力値に 1 ( Xは 2以上の整数) の係 数を掛けて出力し、 前記加算器は前記 Nフレーム遅延器の出力値に前記係数器の 出力値を加算し、 前記 Nフレーム遅延器は前記加算器による加算値を Nフレーム 分遅延させて前記差分器及び加算器への出力とするとともに変化の抑制された出 力としてなる請求の範囲 9、 1 0、 1 1又は 1 2記載の画質補正回路。
1 6 . 変化抑制部は、 差分器、 係数器、 加算器及び Nフレーム遅延器からなり、 前記差分器は第 2カウンタの計数値と前記 Nフレーム遅延器の出力値との差分を 出力し、 前記係数器は前記差分器の出力値に 1 ( Xは 2以上の整数) の係数 を掛けて出力し、 前記加算器は前記 Nフレーム遅延器の出力値に前記係数器の出 力値を加算し、 前記 Nフレーム遅延器は前記加算器による加算値を Nフレーム分 遅延させて前記差分器及び加算器への出力とするとともに変化の抑制された出力 としてなる請求の範囲 1 3記載の画質補正回路。
1 7 . 変化抑制部は、 差分器、 係数器、 加算器及び Nフレーム遅延器からなり、 前記差分器は第 2カウンタの計数値と前記 Nフレーム遅延器の出力値との差分を 出力し、 前記係数器は前記差分器の出力値に 1 Z X ( Xは 2以上の整数) の係数 を掛けて出力し、 前記加算器は前記 Nフレーム遅延器の出力値に前記係数器の出 力値を加算し、 前記 Nフレーム遅延器は前記加算器による加算値を Nフレーム分 遅延させて前記差分器及び加算器への出力とするとともに変化の抑制された出力 としてなる請求の範囲 1 4記載の画質補正回路。
1 8 . 映像信号入力端子 1 2に入力した映像信号から抽出した複数の輝度レベル の出現数データを所定レベル毎に計数する出現数カウン夕 1 3 と、 この出現数力 ゥン夕 1 3から出力した補正特性点の計数値が予め設定した上限値より多いとき は上限値を、 下限値より少ないときは下限値を、 上限値と下限値の範囲内のとき は計数値を選択して出力する補正特性点抑制回路 2 9と、 この補正特性点抑制回 路 2 9の出力に応じて補正曲線を生成する補正曲線生成部 4 8と、 この補正曲線 生成部 4 8で生成された補正特性線により入力映像信号を補正する画質補正部 1 6 とを具備してなることを特徴とする画質補正回路。
1 9 . 出現数カウンタ 1 3は、 映像信号入力端子 1 2に入力した映像信号の複数 画素毎の輝度レベルの平均値を平均値算出部 1 0で算出し、 この平均値算出部 1 0で算出した複数の輝度レベルの出現数データを所定レベル毎に計数するものか らなることを特徴とする請求の範囲 1 8記載の画質補正回路。
2 0 . 補正特性点抑制回路 2 9は、 補正特性点の計数値と、 直線的に変化する上 限値 · 下限値とを比較する抑制範囲比較器 4 3 と、 この抑制範囲比較器 4 3の出 力に応じて、 抑制範囲設定部 4 6で設定された上限値、 下限値又は出現数カウン 夕 1 3の計数値を選択する補正特性点選択器 4 7 と、 補正特性点のうちの何番目 の処理を行うかを制御する制御カウンタ 4 0 とを具備してなることを特徴とする 請求の範囲 1 8又は 1 9記載の画質補正回路。
2 1 . 抑制範囲比較器 4 3は、 補正特性点の計数値 P nと直線的に変化する上限 値 a n + wを比較する上限比較器 4 1 aと、 補正特性点の計数値 P nと下限値 a n— wを比較する下限比較器 4 2 aとからなり、 抑制範囲設定部 4 6は、 上限値 a n + wを設定する上限設定部 4 4 aと、 下限値 a n—wを設定する下限設定部 4 5 aとからなることを特徴とする請求の範囲 2 0記載の画質補正回路。
2 2 . 補正特性点抑制回路 2 9は、 補正特性点の計数値と、 直交する一方の軸を 入力輝度レベルとし、 他方の軸を出力輝度レベルとする補正特性線図における開 始点と終点を通り、 中間で曲線的に変化する上限値 ·下限値とを比較する抑制範 囲比較器 4 3と、 この抑制範囲比較器 4 3の出力に応じて、 抑制範囲設定部 4 6 で設定された上限値、 下限値又は出現数カウンタ 1 3の計数値を選択する補正特 性点選択器 4 7と、 補正特性点のうちの何番目の処理を行うかを制御する制御力 ゥン夕 4 0とを具備してなることを特徴とする請求の範囲 1 8又は 1 9記載の画 質補正回路。
2 3 . 抑制範囲比較器 4 3は、 補正特性点の計数値 P nと曲線的に変化する上限 値 Y H nを比較する上限比較器 4 1 bと、 補正特性点の計数値 P nと下限値 Y L nを比較する下限比較器 4 2 bとからなり、 抑制範囲設定部 4 6は、 上限値 Y H nを設定する上限設定部 4 4 bと、 下限値 Y L nを設定する下限設定部 4 5 bと からなることを特徽とする請求の範囲 2 2記載の画質補正回路。
PCT/JP2000/001872 1999-03-31 2000-03-27 Image quality correcting circuit WO2000060566A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU33290/00A AU769305B2 (en) 1999-03-31 2000-03-27 Image quality correcting circuit
EP00911390A EP1085494A4 (en) 1999-03-31 2000-03-27 IMAGE QUALITY CORRECTION CIRCUIT
CA002333622A CA2333622A1 (en) 1999-03-31 2000-03-27 Image quality correcting circuit
US09/700,495 US7012625B1 (en) 1999-03-31 2000-03-27 Image quality correcting circuit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP09201499A JP4590043B2 (ja) 1999-03-31 1999-03-31 画質補正回路
JP11/92014 1999-03-31
JP11/280633 1999-09-30
JP28063399A JP2001103338A (ja) 1999-09-30 1999-09-30 画質補正回路
JP30922499A JP2001125535A (ja) 1999-10-29 1999-10-29 画質補正回路
JP11/309224 1999-10-29

Publications (1)

Publication Number Publication Date
WO2000060566A1 true WO2000060566A1 (en) 2000-10-12

Family

ID=27306907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001872 WO2000060566A1 (en) 1999-03-31 2000-03-27 Image quality correcting circuit

Country Status (8)

Country Link
US (1) US7012625B1 (ja)
EP (1) EP1085494A4 (ja)
KR (1) KR100732014B1 (ja)
CN (1) CN1163057C (ja)
AU (1) AU769305B2 (ja)
CA (1) CA2333622A1 (ja)
TW (1) TW531721B (ja)
WO (1) WO2000060566A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040699A (ko) * 2002-11-07 2004-05-13 삼성전자주식회사 콘트라스트 보정 장치 및 방법
KR100513273B1 (ko) * 2003-07-04 2005-09-09 이디텍 주식회사 동영상 신호의 실시간 밝기 제어 장치 및 방법
US20050212726A1 (en) * 2004-03-16 2005-09-29 Pioneer Plasma Display Corporation Method, display apparatus and burn-in reduction device for reducing burn-in on display device
JP2006101421A (ja) * 2004-09-30 2006-04-13 Toshiba Corp 映像信号処理回路
JP2006154452A (ja) * 2004-11-30 2006-06-15 Toshiba Corp 映像信号処理装置とグラデーション段差検出方法
JP4325552B2 (ja) 2004-12-24 2009-09-02 セイコーエプソン株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP4533330B2 (ja) * 2005-04-12 2010-09-01 キヤノン株式会社 画像形成装置及び画像形成方法
JP2006319634A (ja) * 2005-05-12 2006-11-24 Toshiba Corp 映像信号処理装置とグラデーション段差検出方法
JP4240023B2 (ja) 2005-08-31 2009-03-18 ソニー株式会社 撮像装置、撮像方法および撮像プログラム、ならびに、画像処理装置、画像処理方法および画像処理プログラム
JP4389882B2 (ja) * 2006-01-27 2009-12-24 セイコーエプソン株式会社 発光装置、画像処理装置および電子機器
JP5196731B2 (ja) * 2006-04-20 2013-05-15 キヤノン株式会社 画像処理装置及び画像処理方法
JP4198720B2 (ja) * 2006-05-17 2008-12-17 Necエレクトロニクス株式会社 表示装置、表示パネルドライバ、及び表示パネルの駆動方法
JP4795473B2 (ja) 2009-06-29 2011-10-19 キヤノン株式会社 画像処理装置及びその制御方法
CN103069478B (zh) 2010-08-26 2016-04-27 松下知识产权经营株式会社 视频显示控制装置
JP5868119B2 (ja) * 2010-12-09 2016-02-24 キヤノン株式会社 画像処理装置、放射線撮影システム、画像処理方法及び記録媒体
TWI483555B (zh) * 2011-12-15 2015-05-01 Silicon Motion Inc 測試裝置以及類比至數位轉換器之測試方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339280A (ja) * 1986-08-04 1988-02-19 Mitsubishi Electric Corp 画像処理装置
JPS6339280B2 (ja) 1983-01-14 1988-08-04 Yoshiro Nakamatsu
JPH03255785A (ja) * 1990-03-06 1991-11-14 Konica Corp 画像処理装置
GB2281674A (en) 1993-09-03 1995-03-08 Matsushita Electric Ind Co Ltd Digital image contrast conversion
JPH07162715A (ja) * 1993-12-10 1995-06-23 Fujitsu General Ltd デジタルガンマ補正方法
JPH07281633A (ja) * 1994-04-06 1995-10-27 Fujitsu General Ltd 電子ディスプレイの映像表示処理方法およびその装置
JPH089197A (ja) * 1994-06-20 1996-01-12 Fujitsu General Ltd 画像表示装置
JPH08317250A (ja) * 1995-05-19 1996-11-29 Fujitsu General Ltd ダイナミック映像制御回路
US5808697A (en) 1995-06-16 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Video contrast enhancer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979136A (en) * 1988-03-01 1990-12-18 Transitions Research Corporation Processing system and method for enhancing image data
JPH06339280A (ja) * 1993-05-27 1994-12-06 Hitachi Ltd 電力変換器の低損失スナバ回路
JPH0823460A (ja) * 1994-07-11 1996-01-23 Fujitsu General Ltd ダイナミックガンマ補正回路
JP3003561B2 (ja) * 1995-09-25 2000-01-31 松下電器産業株式会社 階調変換方法及びその回路と画像表示方法及びその装置と画像信号変換装置
KR100213094B1 (ko) * 1997-02-21 1999-08-02 윤종용 영상 개선장치를 위한 히스토그램 및 cdf 추출방법 및 그 회로
JP3267200B2 (ja) * 1997-07-11 2002-03-18 松下電器産業株式会社 画像処理装置
US6504954B1 (en) * 1999-02-05 2003-01-07 Raytheon Company Closed loop piecewise-linear histogram specification method and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339280B2 (ja) 1983-01-14 1988-08-04 Yoshiro Nakamatsu
JPS6339280A (ja) * 1986-08-04 1988-02-19 Mitsubishi Electric Corp 画像処理装置
JPH03255785A (ja) * 1990-03-06 1991-11-14 Konica Corp 画像処理装置
GB2281674A (en) 1993-09-03 1995-03-08 Matsushita Electric Ind Co Ltd Digital image contrast conversion
JPH07162715A (ja) * 1993-12-10 1995-06-23 Fujitsu General Ltd デジタルガンマ補正方法
JPH07281633A (ja) * 1994-04-06 1995-10-27 Fujitsu General Ltd 電子ディスプレイの映像表示処理方法およびその装置
JPH089197A (ja) * 1994-06-20 1996-01-12 Fujitsu General Ltd 画像表示装置
JPH08317250A (ja) * 1995-05-19 1996-11-29 Fujitsu General Ltd ダイナミック映像制御回路
US5808697A (en) 1995-06-16 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Video contrast enhancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1085494A4

Also Published As

Publication number Publication date
CA2333622A1 (en) 2000-10-12
KR20010043934A (ko) 2001-05-25
TW531721B (en) 2003-05-11
CN1163057C (zh) 2004-08-18
US7012625B1 (en) 2006-03-14
AU3329000A (en) 2000-10-23
EP1085494A4 (en) 2009-01-07
AU769305B2 (en) 2004-01-22
EP1085494A1 (en) 2001-03-21
CN1306657A (zh) 2001-08-01
KR100732014B1 (ko) 2007-06-25

Similar Documents

Publication Publication Date Title
WO2000060566A1 (en) Image quality correcting circuit
US7916219B2 (en) System and method for dynamic gamma correction in digital video
JP3710131B2 (ja) 画像処理装置および画像処理方法、並びに画像表示装置、携帯電子機器
KR100521717B1 (ko) 디스플레이 구동 장치
US7420576B2 (en) Display apparatus and display driving method for effectively eliminating the occurrence of a moving image false contour
EP1408683A2 (en) Method and apparatus for reducing false contour in digital display panel using pulse number modulation
JP4201338B2 (ja) 画像処理装置、画像処理方法、画像表示装置、携帯用情報機器、制御プログラムおよび可読記録媒体
JP2000287104A (ja) 映像信号補正回路
US7042524B2 (en) Video data correction device and video data correction method
US20020186225A1 (en) Method for implementing error diffusion on plasma display panel
JP2001125535A (ja) 画質補正回路
US7088316B2 (en) Color adjustment device and method for plasma display panel
JP2003177697A (ja) 映像表示装置
JP2001103338A (ja) 画質補正回路
JP4590043B2 (ja) 画質補正回路
KR100833536B1 (ko) 화질개선 방법 및 그 장치
JP3912079B2 (ja) 表示装置の誤差拡散処理回路及び方法
US20070188411A1 (en) Image display apparatus and method which switch drive sequences
KR100681020B1 (ko) 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 장치의구동 방법
Park et al. Image adaptive incremental subfield coding for plasma display panels
JP2001117528A (ja) 画像表示装置
KR100623382B1 (ko) 화질 개선 장치 및 방법
JP2005037961A (ja) 画像処理装置および画像処理方法、並びに画像表示装置
WO2004019606A1 (ja) ビットリダクション装置
JPH11196293A (ja) 直線近似による信号処理回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800424.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09700495

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2333622

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020007013488

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 33290/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000911390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000911390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007013488

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 33290/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007013488

Country of ref document: KR