WO2000054101A1 - Afficheur pour electrophorese et son procede de production - Google Patents

Afficheur pour electrophorese et son procede de production Download PDF

Info

Publication number
WO2000054101A1
WO2000054101A1 PCT/JP2000/001351 JP0001351W WO0054101A1 WO 2000054101 A1 WO2000054101 A1 WO 2000054101A1 JP 0001351 W JP0001351 W JP 0001351W WO 0054101 A1 WO0054101 A1 WO 0054101A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
substrate
binder material
electrophoretic display
display device
Prior art date
Application number
PCT/JP2000/001351
Other languages
English (en)
French (fr)
Inventor
Hideyuki Kawai
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2000604266A priority Critical patent/JP4244522B2/ja
Priority to US09/674,679 priority patent/US6597340B1/en
Priority to AU28302/00A priority patent/AU2830200A/en
Publication of WO2000054101A1 publication Critical patent/WO2000054101A1/ja
Priority to US10/462,589 priority patent/US7301524B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules

Definitions

  • the present invention relates to an electrophoretic display device utilizing the movement of electrophoretic particles in a medium by application of an electric field, and a method for manufacturing the same.
  • JP-A-64-81616 and JP-A-10-149118 disclose inventions of electrophoretic display devices using microcapsules.
  • FIG. 7 is a cross-sectional view of a main part illustrating an example of a conventional electrophoretic display device using microcapsules.
  • the transparent substrate 3 having the transparent electrodes 5, 5 to 5 and the transparent rear substrate 2 having the transparent electrode 4 are opposed to each other, and the transparent electrode 4 and the transparent electrodes 5, 5 to 5 3 are opposed to each other.
  • the transparent electrode 4 and the transparent electrodes 5, 5 to 5 3 are opposed to each other.
  • the transparent substrate 3 and the rear substrate 2 are formed using, for example, an insulating synthetic resin such as PET (polyethylene terephthalate).
  • PET polyethylene terephthalate
  • a transparent electrode film I TO (oxidation in Jiu ⁇ ) film
  • a large number of microcapsules 6 are arranged between the transparent substrate 3 and the rear substrate 2.
  • the microcapsules 6 are obtained by individually enclosing a dispersion liquid (dispersion system) in which the electrophoretic particles 7 are dispersed in a dispersion medium 11 by a microencapsulation method, and have a spherical shape in a natural shape. .
  • the electrophoretic particles 7 are composed of, for example, charged particles such as a white pigment.
  • the dispersion medium 11 is composed of, for example, a colored dispersion medium colored black.
  • a liquid mixture of the electrophoretic particles 7 and the dispersion medium 11 enclosed in the microcapsules 6 is also referred to as an electrophoretic display dispersion liquid.
  • microcapsules 6 Between the transparent substrate 3 and the back substrate 2, there are a number of microcapsules 6 and a binder material 8 for fixing the number of microcapsules 6.
  • Binder material 8 is transparent, the transparent electrode 4, 5 having a 5 3 good adhesion
  • the transparent electrode 4 and the ground potential when a positive voltage is applied to the transparent electrode 5 2, the electrophoretic particles 7 Ah Ru inside of the charged particle micro Gab cell 6 between the transparent electrode 4 and the transparent electrode 5 2 moves to the transparent electrode 5 2.
  • microcapsules 6 between the transparent electrode 4 and the transparent electrode 5 2 Teisu white with respect to the direction of the transparent substrate 3
  • An electrophoretic display device having a spherical microphone ⁇ capsule enclosing an electrophoretic display dispersion liquid has the following problems (1) and (2).
  • the gap between the spherical microcapsules, that is, the binder material, has no electrophoretic particles, and may cause a decrease in contrast.
  • An object of the present invention is to provide an electrophoretic display device capable of improving contrast and a method for manufacturing the same.
  • the electrophoretic display device includes: a first substrate on which a transparent electrode serving as a first electrode is formed on one surface; a first substrate on which the other surface is a transparent substrate serving as a display surface; A second substrate formed with a second electrode, and a second substrate arranged in parallel with the first substrate so that the second electrode faces the first electrode; a liquid-phase dispersion medium and electrophoretic particles; A plurality of microcapsules enclosing a dispersion liquid containing: a) disposed between the first and second electrodes so as to be in contact with the respective electrodes, and at least on the side of the first electrodes. And a plurality of microcapsules formed in a flat shape along the first electrode.
  • the plurality of microcapsules are formed in a flat shape along the second electrode also on the side of the second electrode.
  • a plurality of microcapsules enclosing a dispersion liquid containing a liquid phase dispersion medium and electrophoretic particles, and a transparent substrate provided with a first electrode made of a transparent electrode are used.
  • a method for manufacturing an electrophoretic display device having a certain first substrate and a second substrate provided with a second electrode, wherein the first substrate is interposed through the plurality of microcapsules and a liquid binder material. Accommodating the plurality of microcapsules and the binder material between the first and second substrates so that the second electrodes face each other, and applying pressure to the first or second substrate. Forming the micro force capsule between the substrates into a flat shape; and curing the binder material in the vicinity of the micro capsule formed into a flat shape by the pressure, thereby forming the flat shape microphone. Fixing the mouth capsule to at least the first substrate.
  • the binder material is a photo-curable or thermo-curable binder material
  • the binder material in the vicinity of the microcapsule flattened by the pressure includes: Light or heat corresponding to the binder material is applied to cure the binder material.
  • the gap between the microcapsules can be narrowed by making the display surface side of the plurality of microcapsules flat.
  • the distance between the substrates can be smaller than when the microphone opening capsule between the substrates is spherical.
  • the microcapsules are flattened by applying pressure to the first or second substrate, and the binder material near the flattened microcapsules is cured, whereby the microcapsules are hardened.
  • the flat shape of the capsule can be maintained, and the distance between the substrates can be smaller than when the microcapsules between the substrates are spherical.
  • FIG. 1 is a fragmentary cross-sectional view illustrating a first embodiment of an electrophoretic display device according to the present invention.
  • FIG. 2 is an explanatory diagram illustrating a method for manufacturing the electrophoretic display device of FIG.
  • FIG. 3 is an explanatory view showing a method for manufacturing the electrophoretic display device of FIG. 1, following FIG.
  • FIG. 4 is a fragmentary cross-sectional view illustrating a second embodiment of the electrophoretic display device according to the present invention.
  • FIG. 5 is an explanatory diagram illustrating a method for manufacturing the electrophoretic display device of FIG.
  • FIG. 6 is an explanatory view showing a method for manufacturing the electrophoretic display device of FIG. 4, following FIG.
  • FIG. 7 is a cross-sectional view of a main part illustrating an example of a conventional electrophoretic display device.
  • FIG. 1 is a fragmentary cross-sectional view illustrating a first embodiment of an electrophoretic display device according to the present invention.
  • This electrophoretic display device 150 includes a rear substrate 52 provided with a transparent electrode 54 and a plurality of transparent electrodes 55!
  • the transparent substrate 53 with ⁇ 5 5 ⁇ is the transparent electrode 54 and the transparent electrode 55! 555 ⁇ are arranged at a predetermined interval D such that they face each other.
  • FIG. 1 a plurality of transparent electrodes 5 5, 5 out of 5 eta, 3 one transparent electrode 5 5! Only ⁇ 5 5 3 is illustrated.
  • the back substrate 52 is formed using an insulating synthetic resin.
  • the transparent substrate 53 is formed using, for example, an insulating synthetic resin such as PET.
  • the transparent electrode 54 and the transparent electrodes 55 to 55 n are each formed of a transparent electrode film such as an ITO film.
  • microcapsules 56 A are inserted between the transparent substrate 53 and the rear substrate 52.
  • the microcapsules 56 A have a flat shape, and the display surface side, which is the side of the transparent substrate 53, and the back side, which is the side of the back substrate 52, are parallel.
  • the microcapsules 56 A are prepared by individually encapsulating a dispersion (dispersion system) obtained by dispersing electrophoretic particles 57 in a dispersion medium 61 in advance by a microencapsulation technique into spherical microcapsules.
  • the microcapsules are flattened by applying pressure ⁇
  • the electrophoretic particles 57 are composed of, for example, charged particles such as a white pigment.
  • the dispersion medium 61 is composed of, for example, a colored dispersion medium colored black.
  • electrophoretic particles 57 encapsulated in the microcapsules 56 A and the dispersion medium 61 are Is also referred to as an electrophoretic display dispersion liquid.
  • a solid binder material 58LA for fixing the large number of microcapsules 56A is packed.
  • binder material 58LA a photocurable binder material such as a photocurable resin is used.
  • microcapsules 56 A have flexibility.
  • Examples of flexible materials for the microcapsules 56 A include arabia gum • gelatin-based compounds and urethane-based compounds.
  • the basic composition of the urethane-based compound is represented by the following chemical formula, and any flexibility can be obtained by selecting the substituent R i or R 2 in the formula.
  • urethane compounds are produced from isocyanates and alcohols.
  • microgabs cells having a diameter of about 40 to 60 zm by using, for example, filtration or a specific gravity difference class.o
  • FIG. 4 is a sectional view of a main part of the electrophoretic display device.
  • the electrophoretic display device 100 is manufactured through the following steps 1 to 5.
  • Step 1 A transparent electrode 54 is formed on a flexible rear substrate 52. Also, a transparent electrode 55> 5555 is formed on the transparent substrate 53. Also, a large number of microcapsules in which a mixture of the electrophoretic particles 57 and the dispersion medium 61 are separately formed are formed. .
  • Step 2 A liquid binder material 58 L is applied to the transparent substrate 53 on which the transparent electrodes 55 to 55 n are formed.
  • Step 3 Spherical microcapsules 56 having substantially the same size are arranged on the transparent substrate 53 coated with the liquid binder material 58L.
  • Process 4 The back substrate 52 and the transparent substrate 53 are connected to the transparent electrode 54 and the transparent electrode 55, etc.
  • microcapsules 56 and the liquid binder material 58 L are accommodated between the rear substrate 52 and the transparent substrate 53 by disposing them at predetermined intervals E such that 55racfaces each other.
  • the binder material is applied to the surface of the transparent substrate 53 in an amount necessary to make a gap between the microcapsules at the final shape of the electrophoretic display device.
  • Step 5 As shown in FIG. 3, pressure is applied to the outer surface of the back substrate 52 of the electrophoretic display device 100 by bringing the pressure port 70 into contact with the outer surface, and the pressure roller 70 is relatively moved. By moving-more spherical microcapsules 5 6 flattened microcapsules 5
  • liquid binder material 58 L moves so as to fill the gap between the microcapsules.
  • a slit light 75 is irradiated through a transparent substrate 53 onto a liquid binder material 58 L near the microcapsule 56 A, which is flattened by the pressure from the pressure roller 70, The liquid binder material 58 L is cured by the slit light 75 to be solid.
  • the microcapsules 56 A are fixed to the transparent substrate 53 and the rear substrate 52 and flattened. While maintaining the shape, the transparent substrate 53 and the rear substrate 52 are adhered to each other by a binder material 58LA to maintain a predetermined distance D ( ⁇ E).
  • the relative movement between the pressure roller 70 and the slit light 75 and the electrophoretic display 100 is performed by setting the irradiation direction of the slit light 75 to the direction of the roller shaft 71 and the electrophoretic display 1
  • the pressure roller 70 and an output device (not shown) for the slit light 75 may be moved while fixing the pressure roller 0, and the pressure roller 70 is rotated at a fixed position to display an electrophoretic display device. 100 may be moved.
  • the electrophoretic display device 100 may be sandwiched by using two pressure rollers, and the electrophoretic display device 100 may be pressed from the display surface side and the back surface side.
  • the electrophoretic display device 150 is obtained by using the pressure roller 70, the slit light 75, and the photocurable binder material 58L. Can be. / "
  • a transparent substrate 53 is coated with a binder material 58 L.
  • the rear substrate 52 is made transparent.
  • the liquid substrate material 58 L is applied to the rear substrate 52, and the slit is formed from the rear substrate 52 side or from the rear substrate 52 side and the transparent substrate 53 side.
  • Light 75 may be applied.
  • a hole may be provided in advance in the transparent substrate 53 or the rear substrate 52 so that the hole may be closed after the liquid binder material 58 L is hardened.
  • FIG. 4 is a fragmentary cross-sectional view illustrating a second embodiment of the electrophoretic display device according to the present invention.
  • the electrophoretic display device 250 has substantially the same configuration as the electrophoretic display device 150 according to the first embodiment, but differs in a binder material and a manufacturing method.
  • the same portions as those of the electrophoretic display device 150 in FIG. 1 are denoted by the same reference numerals, and the description of the same portions will be omitted.
  • a large number of flat microcapsules 56A and a solid binder material 58WA for fixing the many microcapsules 56A are packed.
  • thermosetting material such as a water-soluble silicone resin or a thermosetting urethane-based compound is used.
  • 5 and 6 are explanatory views showing a method for manufacturing the electrophoretic display device according to the second embodiment, and show cross-sectional views of main parts of the electrophoretic display device.
  • the binder material 58 W is in a liquid state, and is contained between the transparent substrate 53 and the rear substrate 52 in an aqueous solution state.
  • the silicon resin and water in the liquid binder material 58 W are filled with silicon resin in the flattened microcapsules 56 A in consideration of the desired flatness of the microcapsules, that is, the volume of the gap between the microcapsules. It is mixed to be filled.
  • a pressure roller is provided on the outer surface of the rear substrate 52 of the electrophoretic display device 200.
  • the spherical microcapsules 56 are successively deformed into flat microcapsules 56 A by the pressure roller 70. Further, the liquid binder material 58 W near the microcapsules 56 A, which was flattened by the above-mentioned pressure, was heated by the heat rays 76 irradiated through the transparent substrate 53 so that the liquid binder material 58 W Moisture is removed, shrinks and hardens.
  • the microcapsules 56 A are fixed to the transparent substrate 53 and the back substrate 52 and maintain a flat shape, The transparent substrate 53 and the rear substrate 52 are adhered to each other by a binder material 58WA to maintain a predetermined distance D (E).
  • the microcapsule is heated while being flattened by pressurizing to evaporate the water, thereby shrinking and hardening the thermosetting binder material 58 W.
  • the relative movement between the pressure roller 70 and the heating wire 76 and the electrophoretic display device 200 is such that the irradiation direction of the heating wire 76 is set to the direction of the roller shaft 71 and the electrophoretic display device 200 is fixed.
  • the pressure roller 70 and an output device (not shown) of the heating wire 76 may be moved to move the electrophoretic display device 200 by rotating the pressure roller 70 at a fixed position. You may make it do.
  • the electrophoretic display 200 may be sandwiched between two pressure rollers, and the electrophoretic display 200 may be pressed from the display surface side and the back surface side.
  • the electrophoretic display device 250 according to the second embodiment can be obtained by using the pressure roller 70, the heating wire 76, and the thermosetting binder material 58W. .
  • holes are previously formed in the transparent substrate 53 or the rear substrate 52 so that the liquid binder material 58 W comes out of water when pressurized or heated.
  • the holes may be closed after the liquid binder material 58 W is cured.
  • the moisture is allowed to come out from the edge of the transparent substrate 53 or the rear substrate 52 at the time of pressurization or heating, and after the liquid binder material 58 W is hardened, the micro cover is formed.
  • the cell 56 A and the binder material 58 WA may be sealed between the substrates 52 and 53.
  • a heat-shrinkable binder material 58 W may be used, and the liquid binder material 58 W may be thermally contracted and cured by heating while the microcapsules 56 are formed into a flat shape by the pressure roller 70. .
  • the transparent electrode of the transparent substrate 53 may be an IT film formed by sputtering. Further, the back electrode of the back substrate 52 may be made of copper foil, and the transparent substrate 53 may be irradiated with slit light or heat rays.
  • a spacer may be interposed between the substrates in order to maintain a constant distance between the substrates, and the spacer may be made of a light-curing or thermosetting substance. May be configured.
  • the display surface side of the microcapsules has a flat shape. Therefore, when the microcapsules between the substrates are spherical, the binder between the microcapsules is closer to the display surface. Thus, the gap existing in the image can be narrowed, and the change in contrast can be increased.
  • the distance between the substrates can be reduced compared to when the microcapsules between the substrates are spherical, and the difference in the applied voltage between the electrodes can be reduced.
  • the electrophoretic display devices 150 and 250 can be made thin.
  • the microcapsules are sandwiched between the transparent substrate 53 and the back substrate 52 to flatten the display surface side and the back surface side, so that the intensity of the electric field acting on the electrophoretic display dispersion liquid is almost uniform.
  • the localization of the electrophoretic particles 57 can be suppressed.
  • the gap where the binder exists between the microcapsules is narrowed, and the structure of the electrophoretic display device is changed to a cell type structure. Can be brought closer to each other, and the contrast can be improved.
  • the response time T is proportional to the square of the distance A between the electrodes and inversely proportional to the applied voltage Vin.
  • the height of the regular hexagonal prism is about 30 im
  • the distance A between the electrodes is about 60%
  • the response time T is about 36%
  • the display can be switched in about 1Z3.
  • the applied voltage can be reduced to about 1 Z3, which can achieve effects such as simplification of the display drive circuit, cost reduction, and prevention of heat generation. .
  • the gap between the microcapsules can be narrowed to improve contrast, and the quality can be improved. It is possible to
  • the electrophoretic display device can be made thin.
  • the display surface side and the back surface side of the plurality of microcapsules have a flat shape, the electric field acting on the electrophoretic display dispersion liquid Can be made uniform, the localization of the electrophoretic particles can be suppressed, and the quality can be further improved.
  • an electrophoretic display device in which at least a display surface side of the plurality of microcapsules has a flat shape, and a thin electrophoretic display device with improved contrast. It is possible to obtain

Description

明 細 書 電気泳動表示装置とその製造方法 技 術 分 野
本発明は、 電界の印加によって媒体中の電気泳動粒子が移動することを利用し た電気泳動表示装置とその製造方法とに関する。 背 景 技 術
特開昭 6 4— 8 6 1 1 6号公報、 特開平 1 0— 1 4 9 1 1 8号公報には、 マイ クロカプセルを用いた電気泳動表示装置の発明が開示されている。
図 7は、 マイクロカプセルを用いた従来の電気泳動表示装置の一例を説明する 要部断面図である。
電気泳動表示装置 1では、 透明電極 5 , 〜53 を備えた透明基板 3と、 透明電 極 4を備えた透明な背面基板 2とが、 透明電極 4と透明電極 5 , 〜53 が対向す るように所定の間隔 dをもって配置されている。
透明基板 3および背面基板 2は、 例えば、 PET (ポリエチレン ·テレフタレ —ト) 等の絶縁性合成樹脂を用いて形成されている。
透明電極 4と透明電極 5 , 〜53 は、 例えば、 透明電極膜 ( I TO (酸化イン ジゥ厶) 膜) でそれぞれ形成されている。
透明基板 3と背面基板 2との間には、 多数のマイクロカプセル 6が配置されて いる。
マイクロカプセル 6は、 電気泳動粒子 7を分散媒 1 1中に分散させた分散液 ( 分散系) を、 予めマイクロカプセル化手法で個々に封入したものであり、 自然形 状では球形をしている。
電気泳動粒子 7は、 例えば、 白色顔料などの荷電粒子で構成する。 分散媒 1 1は、 例えば、 黒色に着色された着色分散媒で構成する p
以下、 マイクロカプセル 6に封入された電気泳動粒子 7と分散媒 1 1 との混合 液を電気泳動表示用分散液とも記す。
透明基板 3と背面基板 2との間には、 多数のマイクロカプセル 6と共に、 多数 のマイクロカプセル 6を固定するバインダ材 8が入っている。
バインダ材 8は透明であり、 透明電極 4, 5 , 〜5 3 と良好な接着性を有する
0
このような構成において、 例えば透明電極 4を接地電位にし、 透明電極 5 , , 5 3 にはマイナスの電圧を印加したとき、 透明電極 4と透明電極 5 , , 5 3 との 間のマイクロカプセル 6の内部の荷電粒子である電気泳動粒子 7は透明電極 4の 方に移動する。 その結果、 透明電極 4と透明電極 5 t , 5 3 との間のマイクロ力 プセル 6は、 透明基板 3.の方向に対して黒色を呈す。
また、 透明電極 4を接地電位にし、 透明電極 5 2 にプラスの電圧を印加すると 、 透明電極 4と透明電極 5 2 との間のマイクロガブセル 6の内部の荷電粒子であ る電気泳動粒子 7は透明電極 5 2 の方に移動する。 その結果、 透明電極 4と透明 電極 5 2 との間のマイクロカプセル 6は、 透明基板 3の方向に対して白色を呈す
0
電気泳動表示用分散液が封入された球形のマイク πカプセルを有する電気泳動 表示装置では、 以下の ( 1 ) および (2 ) の問題がある。
( 1 ) :球形の各マイクロカプセルの間隙部分、 すなわちバインダ材の部分は 電気泳動粒子が存在しないので、 コントラストの低下を招くおそれがある。
( 2 ) :電極間に位置する球形のマイクロカプセル中の電気泳動表示用分散液 に作用する電界強度が不均一になり、 電気泳動粒子の局在化を招くおそれがある o
特開平 1 0— 1 4 9 1 1 8号公報では、 電気泳動粒子の局在化を抑制するため に、 電気泳動表示用分散液とバインダ材との誘電率を同一にして電界強度を均一 化することが開示されているが、 そうすると電気泳動表示用分散液およびノくィン ダ材の材料選択に制約が生じる。 発明の開示
本発明の目的は、 コン トラス トを向上することが可能な電気泳動表示装置とそ , の製造方法とを提供することにある。
本発明に係る電気泳動表示装置は、 一方の面には第 1の電極である透明電極が 形成され、 他方の面が表示面をなす透明基板である第 1の基板と、 一方の面には 第 2の電極が形成され、 当該第 2の電極が前記第 1の電極に対向するように前記 第 1の基板に平行に配置された第 2の基板と、 液相分散媒と電気泳動粒子とを含 む分散液が封入された複数のマイクロカプセルであって、 前記第 1 と第 2の電極 の間に当該各電極と接触するように配置され、 少なく とも前記第 1の電極の側で は前記第 1の電極に沿って偏平な形状に形成された複数のマイクロカプセルとを 有する。
本発明に係る電気泳動表示装置では、 好適には、 前記複数のマイクロカプセル は、 前記第 2の電極の側においても当該第 2の電極に沿って偏平な形状に形成さ れている。
本発明に係る電気泳動表示装置の製造方法では、 液相分散媒と電気泳動粒子と を含む分散液が封入された複数のマイクロカプセルと、 透明電極からなる第 1の 電極を備えた透明基板である第 1の基板と、 第 2の電極を備えた第 2の基板とを 有する電気泳動表示装置の製造方法であつて、 前記複数のマイクロカプセルと液 状のバインダ材とを介して前記第 1 と第 2の電極が対向するように、 前記複数の マイクロカプセルおよび前記バインダ材を前記第 1 と第 2の基板の間に収容する 工程と、 前記第 1または第 2の基板に圧力を加えて前記基板間の前記マイクロ力 プセルを偏平形状にする工程と、 前記圧力で偏平形状にした前記マイクロカプセ ルの付近の前記バインダ材を硬化させることにより、 前記偏平形状の前記マイク 口カプセルを少なく とも前記第 1の基板に固定する工程とを有する。
本発明に係る電気泳動表示装置の製造方法では、 前記バインダ材は、 光硬化性 または熱硬化性のバインダ材であり、 前記圧力で偏平形状にした前記マイクロカ プセルの付近の前記バインダ材に、 当該バインダ材に対応した光または熱を与え て当該バインダ材を硬化させる。
本発明に係る電気泳動表示装置では、 複数のマイクロカプセルの表示面側を偏 平にすることで、 マイクロカプセル間の間隙部分を狭くすることができると共に
、 基板間のマイク口カプセルが球形の時に比べて基板間の距離を小さくすること ができる。
本発明に係る電気泳動表示装置の製造方法では、 第 1または第 2の基板に圧力 を加えてマイクロカプセルを偏平形状にし、 偏平形状にしたマイクロカプセル付 近のバインダ材を硬化させることで、 マイクロカプセルの偏平形状を保持するこ とができると共に基板間のマイクロカプセルが球形の時に比べて基板間の距離を 小さくすることができる。 図面の簡単な説明
図 1は、 本発明に係る電気泳動表示装置の第 1の実施の形態を説明する要部断 面図である。
図 2は、 図 1の電気泳動表示装置の製造方法を示す説明図である。
図 3は、 図 2に続いて、 図 1の電気泳動表示装置の製造方法を示す説明図であ る。
図 4は、 本発明に係る電気泳動表示装置の第 2の実施の形態を説明する要部断 面図である。
図 5は、 図 4の電気泳動表示装置の製造方法を示す説明図である。
図 6は、 図 5に続いて、 図 4の電気泳動表示装置の製造方法を示す説明図であ る。 図 7は、 従来の電気泳動表示装置の一例を説明する要部断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を添付図面を参照して説明する。
第 1の実施の形態
図 1は、 本発明に係る電気泳動表示装置の第 1の実施の形態を説明する要部断 面図である。
この電気泳動表示装置 1 5 0は、 透明電極 5 4を備えた背面基板 5 2と、 複数 の透明電極 5 5! 〜 5 5 π を備えた透明基板 5 3とが、 透明電極 5 4と透明電極 5 5! 〜5 5 η が対向するように所定の間隔 Dで配置されている。
なお、 図 1では、 複数の透明電極 5 5 , 〜5 5 η のうち、 3つの透明電極 5 5 ! ~ 5 5 3 のみを図解する。
背面基板 5 2は、 絶縁性合成樹脂を用いて形成される。
透明基板 5 3は、 例えば、 P E T等の絶縁性合成樹脂を用いて形成される。 透明電極 5 4と透明電極 5 5 〜5 5 n は、 I T O膜等の透明電極膜でそれぞ れ形成される。
透明基板 5 3と背面基板 5 2との間には、 多数のマイクロカプセル 5 6 Aが入 つている。 マイクロカプセル 5 6 Aは偏平形状であり、 透明基板 5 3の側である 表示面側と、 背面基板 5 2の側である背面側とが平行になっている。
マイクロカプセル 5 6 Aは、 電気泳動粒子 5 7を分散媒 6 1中に分散させた分 散液 (分散系) を、 予めマイクロカプセル化手法で球形のマイクロカプセルに個 々に封入し、 その球形のマイクロカプセルに圧力を加えて偏平にしたものである ο
電気泳動粒子 5 7は、 例えば、 白色顔料などの荷電粒子で構成する。
分散媒 6 1は、 例えば、 黒色に着色された着色分散媒で構成する。
以下、 マイクロカプセル 5 6 Aに封入された電気泳動粒子 5 7と分散媒 6 1 と の混合液を電気泳動表示用分散液とも記す。
透明基板 5 2と背面基板 5 3との間には、 多数のマイクロカプセル 5 6 Aと共 に、 前記多数のマイクロカプセル 5 6 Aを固定する固体状のバインダ材 5 8 L A が詰まっている。
バインダ材 5 8 L Aとしては、 光硬化性樹脂などの光硬化性のバインダ材を用 いる。
マイクロカプセル 5 6 Aは、 柔軟性を有することが望ましい。
マイクロカプセル 5 6 Aの材料として柔軟性を有するものには、 ァラビヤゴム •ゼラチン系の化合物やウレタン系の化合物がある。
ウレタン系の化合物は、 基本組成が次の化学式で表され、 式中の置換基 R i ま たは R 2を選択することで、 任意の柔軟性を得ることが可能である。
下記の化学式では、 ィソシァネートとアルコールからウレタン系の化合物を生 成している。
R 1 - N = C = 0 + H O - R 2 → R 1 —N H— C 0— 0— R 2 また、 マイクロカプセル 5 6 Aは、 大きさが均一またはほぼ均一であることが 望ましい 6·
大きさがほぼ等しいマイクロカプセルは、 例えば、 濾過または比重差分級など を用いて、 直径が 4 0〜6 0 z m程度のマイクロガブセルを得ることが可能であ る o
このような構成において、 例えば透明電極 5 4を接地電位にし、 透明電極 5 5 1 ~ 5 5 3 にマイナスの電圧を印加すると、 透明電極 5 4 と透明電極 5 5 i 〜5 5 3 との間のマイクロカプセル 5 6 A内の荷電粒子である電気泳動粒子 5 7は透 明電極 5 4の方に移動する。 その結果、 これらのマイクロカプセル 5 6 Aは、 透 明基板 5 3の方向に対して黒色を呈す。
次に、 第 1の実施の形態に係る電気泳動表示装置の製造方法を説明する。 図 2および図 3は、 第 1の実施の形態に係る電気泳動表示装置の製造方法を説 明する図であり、 電気泳動表示装置の要部断面図を示している。
電気泳動表示装置 1 0 0は、 以下の工程 1〜5を経て製造される。
工程 1 :可撓性の背面基板 5 2上に透明電極 5 4を形成する。 また、 透明基板 5 3上に透明電極 5 5 > 〜5 5„ を形成する。 また、 別途電気泳動粒子 5 7と分 散媒 6 1 との混合液が封入された多数のマイクロカプセルを形成する。
工程 2 :透明電極 5 5 , 〜5 5 n が形成された前記透明基板 5 3に液状のバイ ンダ材 5 8 Lを塗布する。
工程 3 :液状のバインダ材 5 8 Lが塗布された前記透明基板 5 3上に、 大きさ がほぼ等しい球形のマイクロカプセル 5 6を配置する。
工程 4 :背面基板 5 2と透明基板' 5 3とを、 透明電極 5 4と透明電極 5 5 , 〜
5 5„ が対向するように所定の間隔 Eで配置し、 背面基板 5 2と透明基板 5 3と の間にマイクロカプセル 5 6と液状のバインダ材 5 8 Lとを収容する。
バインダ材、 5 8 Lは、 電気泳動表示装置の最終形状時にマイクロカプセル間の 隙間を Jiめるのに必要な量が、 透明基板 5 3の表面に塗布される。
工程 5 :図 3に示すように、 電気泳動表示装置 1 0 0の背面基板 5 2の外表面 に加圧口 ラ 7 0を接触させて圧力を印加し、 加圧ローラ 7 0を相対的に移動さ せることに-より、 球形のマイクロカプセル 5 6を偏平形状のマイクロカプセル 5
6 Aへと順次変形させる。
このとき、 液状のバインダ材 5 8 Lは、 マイクロカプセル間の隙間を埋めるよ うに移動する。
また、 加圧ローラ 7 0からの圧力により偏平形状にしたマイクロカプセル 5 6 Aの付近の液状のバインダ材 5 8 Lに対し、 スリッ ト光 7 5を透明基板 5 3を介 して照射し、 スリッ ト光 7 5により液状のバインダ材 5 8 Lを硬化させて固体状 にする。
液状のバインダ材 5 8 Lを硬化して固体状のバインダ材 5 8 L Aにすることで 、 マイクロカプセル 5 6 Aは透明基板 5 3および背面基板 5 2に固定されて偏平 形状を保持すると共に、 透明基板 5 3と背面基板 5 2はバインダ材 5 8 L Aによ り互いに接着されて所定の間隔 D ( < E ) を保持する。
このようにして、 液状のバインダ材 5 8 Lを少なめに塗布しておき、 加圧によ りマイクロ力プセルを偏平形状にしながら液状のバインダ材 5 8 Lを硬化させる ο
加圧ローラ 7 0およびスリッ ト光 7 5と電気泳動表示装置 1 0 0 との相対的な 移動は、 スリッ ト光 7 5の照射方向をローラ軸 7 1の方向とし、 電気泳動表示装 置 1 0 0を固定して加圧ローラ 7 0とスリッ ト光 7 5の出力装置 (不図示) とを 移動させるようにしてもよく、 加圧ローラ 7 0を一定位置で回転させて電気泳動 表示装置 1 0 0を移動させるようにしてもよい。
加圧ローラを 2個用いて電気泳動表示装置 1 0 0を挟み、 電気泳動表示装置 Γ 0 0を表示面側と背面側とから加圧する構成としてもよい。
以上のようにして、 加圧ローラ 7 0 とスリッ ト光 7 5と光硬化性のバインダ材 5 8 Lとを用いて、 第 1の実施の形態に係る電気泳動表示装置 1 5 0を得ること ができる。/"
なお、 図 2の電気泳動表示装置 1 0 0では、 透明基板 5 3にバインダ材 5 8 L が塗布されているが、 電気泳動表示装置 1 5 0の製造に際し、 背面基板 5 2を透 明な材質とし、 背面基板 5 2に液状のバインダ材 5 8 Lが塗布されている構成と し、 背面基板 5 2の側から、 または背面基板 5 2の側と透明基板 5 3の側とから スリ ッ ト光 7 5を照射してもよい。
また、 図 2の電気泳動表示装置 1 0 0において、 透明基板 5 3と背面基板 5 2 との間に位置する物質のうちマイクロカプセル 5 6およびバインダ材 5 8 L以外 の余剰な物質が加圧時に出てくるように、 透明基板 5 3または背面基板 5 2に予 め孔を設けておき、 液状のバインダ材 5 8 Lの硬化後に前記孔を閉じるようにし てもよい。
また、 透明基板 5 3または背面基板 5 2の縁から前記余剰な物質が加圧時に出 てくるようにしておき、 液状のバインダ材 5 8 Lの硬化後にマイクロカプセル 5
6 Aおよびバインダ材 5 8 L Aを基板 5 2, 5 3間に密封してもよい。
第 2の実施の形態
図 4は、 本発明に係る電気泳動表示装置の第 2の実施の形態を説明する要部断 面図である。
この電気泳動表示装置 2 5 0は、 第 1の実施の形態に係る電気泳動表示装置 1 5 0と実質的に同じ構成であるが、 バインダ材および製造方法が異なる。
電気泳動表示装置 2 5 0では、 図 1の電気泳動表示装置 1 5 0と同一部分には 同一符号を付しており、 同一部分の説明を省略する。
透明基板 5 3と背面基板 5 2との間には、 偏平形状の多数のマイクロカプセル 5 6 Aと共に、 多数のマイクロカプセル 5 6 Aを固定する固体状のバインダ材 5 8 WAが詰まっている。
バインダ材 5 8 WAとしては、 水溶性のシリコン · レジンなどの熱硬化性の材 料や、 熱硬化性のウレタン系の化合物を用いる。
次に、 第 2の実施の形態に係る電気泳動表示装置の製造方法を説明する。 図 5および図 6は、 第 2の実施の形態に係る電気泳動表示装置の製造方法を示 す説明図であり、 電気泳動表示装置の要部断面図を示している。
図 5の電気泳動表示装置 2 0 0において、 バインダ材 5 8 Wは液状であり、 透 明基板 5 3と背面基板 5 2との間に、 水溶液の状態で入っている。
液状のバインダ材 5 8 Wにおけるシリコン · レジンと水は、 マイクロカプセル の所望の偏平率すなわちマイクロカプセル間の隙間の容積を勘案して、 偏平され たマイクロカプセル 5 6 Aの隙間にシリコン · レジンが満たされるように混合さ れている。
図 6において、 電気泳動表示装置 2 0 0の背面基板 5 2の外表面に加圧ローラ
7 0が接触して圧力が印加されており、 加圧ローラ 7 0によって球形のマイクロ カプセル 5 6が偏平型のマイクロカプセル 5 6 Aに次々と変形されている。 また、 前記圧力で偏平形状にしたマイクロカプセル 5 6 A付近の液状のバイン ダ材 5 8 Wは、 透明基板 5 3を介して照射される熱線 7 6により、 液状のバイン ダ材 5 8 W中の水分が除去され、 収縮して硬化する。
液状のバインダ材 5 8 Wを硬化して固体状のバインダ材 5 8 WAにすることで 、 マイクロカプセル 5 6 Aは透明基板 5 3および背面基板 5 2に固定されて偏平 形状を保持すると共に、 透明基板 5 3と背面基板 5 2はバインダ材 5 8 WAによ り互いに接着されて所定の間隔 D (く E ) を保持する。
このようにして、 液状のバインダ材 5 8 Wを用い、 加圧によりマイクロカプセ ルを偏平させながら加熱して水分を蒸発させ、 熱硬化性のバインダ材 5 8 Wを収 縮および硬化させる。
加圧ローラ 7 0および熱線 7 6と電気泳動表示装置 2 0 0との相対的な移動は 、 熱線 7 6の照射方向をローラ軸 7 1の方向とし、 電気泳動表示装置 2 0 0を固 定して加圧ローラ 7 0と熱線 7 6の出力装置 (不図示) とを移動させるようにし てもよく、 加圧ローラ 7 0を一定位置で回転させて電気泳動表示装置 2 0 0を移 動させるようにしてもよい。
加圧ローラを 2個用いて電気泳動表示装置 2 0 0を挟み、 電気泳動表示装置 2 0 0を表示面側と背面側とから加圧する構成としてもよい。
以上のようにして、 加圧ローラ 7 0と熱線 7 6と熱硬化性のバインダ材 5 8 W とを用いて、 第 2の実施の形態に係る電気泳動表示装置 2 5 0を得ることができ 。
なお、 図 5の電気泳動表示装置 2 0 0において、 加圧時または加熱時に液状の バインダ材 5 8 W中の水分が出てくるように、 透明基板 5 3もしくは背面基板 5 2に予め孔を設けておき、 液状のバインダ材 5 8 Wの硬化後に前記孔を閉じるよ うにしてもよい。
また、 透明基板 5 3または背面基板 5 2の縁から前記水分が加圧時または加熱 時に出てくるようにしておき、 液状のバインダ材 5 8 Wの硬化後にマイクロカブ セル 5 6 Aおよびバインダ材 5 8 WAを基板 5 2 , 5 3間に密封してもよレ、。 また、 バインダ材 5 8 Wとして熱収縮性のものを用い、 加圧ローラ 7 0により マイクロカプセル 5 6を偏平形状にしながら加熱により液状のバインダ材 5 8 W を熱収縮させて硬化させてもよい。
上述した実施の形態において、 透明基板 5 3の透明電極は、 スパッタによる I T〇膜としてもよい。 また、 背面基板 5 2の背面電極は銅箔とし、 透明基板 5 3 の側からスリッ ト光または熱線を照射してもよい。
電気泳動表示装置の最終形状時において、 基板間の距離を一定距離に保持する ためにスぺーサを基板間に介在させてもよく、 前記スぺ一サを光硬化性または熱 硬化性の物質で構成してもよい。
上述した実施の形態に係る電気泳動表示装置では、 マイクロカプセルの少なく とも表示面側を偏平形状にしたので、 基板間のマイクロカプセルが球形の時に比 ベ、 各マイクロカプセル間のバインダが表示面側に存在する間隙部分を狭くする ことができ、 コントラストの変化を大きくすることができる。
また、 マイクロカプセルの少なくとも表示面側を偏平形状にしたので、 基板間 のマイクロカプセルが球形の時に比べ、 基板間の距離を小さくすることができ、 電極間の印加電圧の差を小さくすることができると共に電気泳動表示装置 1 5 0 , 2 5 0を薄型にすることができる。
また、 マイクロカプセルを透明基板 5 3と背面基板 5 2で挟んで表示面側と背 面側とを偏平にしたので、 電気泳動表示用分散液に作用する電界の強度をほぼ均 一にすることができ、 電気泳動粒子 5 7の局在化を抑制することができる。 さらに、 マイクロカプセルの表示面側と背面側とを偏平形状にすることで、 マ イク口カプセル間のバインダが存在する間隙部分をより狭く して、 電気泳動表示 装置の構造をセルタイプの構造に近づけることができ、 コントラストを向上させ ることができる。
また、 基板間距離を小さくすることで、 基板間距離を小さくする前に比べて応 答性を向上することができる。
例えば、 電気泳動粒子の移動速度 Vは電界強度 E inにほぼ比例すると考えられ 、 比例定数 kを用いて v = k · E in…①と表される。
また、 電気泳動粒子が一方の電極から他方の電極に移動する所要時間 (応答時 間) Tは、 電極間距離 (基板間距離) Aを用いて T = AZ v…②と表される。 電界強度 E inは、 印加電圧 (電極間の電位差) V inを電極間距離 Aで除算して 求めることができ、 E in= V inZA…③と表される。
上式①〜③から移動速度 Vと電界強度 E i nとを消去することで、 応答時間 Tは 、 T = A 2 / ( k · V in) …④と表される。
上式④によると、 応答時間 Tは、 電極間距離 Aの 2乗に比例し、 印加電圧 V in に反比例する。
上式④によると、 一例として最高密度に配列された直径 5 O z mのマイクロ力 プセルが体積不変で正 6角柱の偏平形状になる場合は、 正 6角柱の高さが約 3 0 i mとなるが、 この場合は電極間距離 Aが約 6 0 %となり、 応答時間 Tが約 3 6 %となって約 1 Z 3の時間で表示の切換えを行うことができる。
また、 応答時間 Tを短縮する必要がない場合は、 印加電圧を約 1 Z 3にするこ とができ、 これにより表示駆動回路の簡単化、 コスト低減、 発熱防止などの効果 を得ることができる。 産業上の利用可能性
本発明に係る電気泳動表示装置では、 前記複数のマイクロカプセルの表示面側 を偏平形状にすることで、 各マイクロカプセル間の間隙部分を狭く してコントラ ストを向上することができ、 品質を向上することが可能である。
また、 電気泳動表示装置を薄型にすることができる。
また、 本発明に係る電気泳動表示装置では、 前記複数のマイクロカプセルの表 示面側と背面側とを偏平形状にしたので、 電気泳動表示用分散液に作用する電界 の強度を均一化することができ、 電気泳動粒子の局在化を抑制することができ、 品質を更に向上することが可能である。
本発明に係る電気泳動表示装置の製造方法によれば、 前記複数のマイクロカプ セルの少なくとも表示面側が偏平形状の電気泳動表示装置を製造することができ 、 コントラストを向上した薄型の電気泳動表示装置を得ることが可能である。

Claims

請求の範囲
1 . 一方の面には第 1の電極である透明電極が形成され、 他方の面が表示面を なす透明基板である第 1の基板と、
一方の面には第 2の電極が形成され、 当該第 2の電極が前記第 1の電極に 対向するように前記第 1の基板に平行に配置された第 2の基板と、
液相分散媒と電気泳動粒子とを含む分散液が封入された複数のマイクロカ プセルであって、 前記第 1 と第 2の電極の間に当該各電極と接触するように配置 され、 少なくとも前記第 1の電極の側では前記第 1の電極に沿って偏平な形状に 形成された複数のマイクロカプセルと
を有する
電気泳動表示装置。
2 . 前記複数のマイクロカプセルは、 前記第 2の電極の側においても当該第 2 の電極に沿つて偏平な形状に形成されている
請求項 1記載の電気泳動表示装置。
3 . 液相分散媒と電気泳動粒子とを含む分散液が封入された複数のマイクロ力 プセルと、 透明電極からなる第 1の電極を備えた透明基板である第 1の基板と、 第 2の電極を備えた第 2の基板とを有する電気泳動表示装置の製造方法であつて 前記複数のマイクロカプセルと液状のバインダ材とを介して前記第 1 と第 2の電極が対向するように、 前記複数のマイクロカプセルおよび前記バインダ材 を前記第 1 と第 2の基板の間に収容する工程と、
前記第 1または第 2の基板に圧力を加えて前記基板間の前記マイクロカブ セルを偏平形状にする工程と、
前記圧力で偏平形状にした前記マイクロカプセルの付近の前記バインダ材 を硬化させることにより、 前記偏平形状の前記マイクロカプセルを少なくとも前 記第 1の基板に固定する工程と
を有する電気泳動表示装置の製造方法。
4 . 前記バインダ材は、 光硬化性または熱硬化性のバインダ材であり、
前記圧力で偏平形状にした前記マイクロカプセルの付近の前記バインダ材 に、 当該バインダ材に対応した光または熱を与えて当該バインダ材を硬化させる 請求項 3記載の電気泳動表示装置の製造方法。
5 . 前記第 1または第 2の基板の外表面に加圧ローラを接触させて前記加圧口 ーラを回転させ、 前記複数のマイクロカプセルを順次偏平形状にする
請求項 3または 4記載の電気泳動表示装置の製造方法。
PCT/JP2000/001351 1999-03-05 2000-03-06 Afficheur pour electrophorese et son procede de production WO2000054101A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000604266A JP4244522B2 (ja) 1999-03-05 2000-03-06 電気泳動表示装置とその製造方法
US09/674,679 US6597340B1 (en) 1999-03-05 2000-03-06 Electrophoresis display and its production method
AU28302/00A AU2830200A (en) 1999-03-05 2000-03-06 Electrophoresis display and its production method
US10/462,589 US7301524B2 (en) 1999-03-05 2003-06-17 Electrophoretic display and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5935199 1999-03-05
JP11/59351 1999-03-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/674,679 A-371-Of-International US6597340B1 (en) 1999-03-05 2000-03-06 Electrophoresis display and its production method
US10/462,589 Continuation-In-Part US7301524B2 (en) 1999-03-05 2003-06-17 Electrophoretic display and method of producing the same

Publications (1)

Publication Number Publication Date
WO2000054101A1 true WO2000054101A1 (fr) 2000-09-14

Family

ID=13110787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001351 WO2000054101A1 (fr) 1999-03-05 2000-03-06 Afficheur pour electrophorese et son procede de production

Country Status (4)

Country Link
US (2) US6597340B1 (ja)
JP (4) JP4244522B2 (ja)
AU (1) AU2830200A (ja)
WO (1) WO2000054101A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117123A (ja) * 1999-10-22 2001-04-27 Canon Inc 表示装置及びその製造方法
JP2002189234A (ja) * 2000-10-11 2002-07-05 Canon Inc 電気泳動表示用マイクロカプセル含有ファイバ、それを用いた表示装置およびその製造方法
JP2002250944A (ja) * 2001-02-23 2002-09-06 Tdk Corp 電気泳動表示装置
US7161732B2 (en) * 2000-10-27 2007-01-09 Seiko Epson Corporation Electrophoretic display, method for making the electrophoretic display, and electronic apparatus
CN100354743C (zh) * 2003-02-25 2007-12-12 株式会社普利司通 图像显示面板
JP2008033335A (ja) * 2006-07-31 2008-02-14 Samsung Electronics Co Ltd 電気泳動表示装置及びその製造方法
JP2009198725A (ja) * 2008-02-20 2009-09-03 Seiko Epson Corp 電気泳動表示装置の製造方法、電気泳動表示装置および電子機器
JP2011002844A (ja) * 1998-10-07 2011-01-06 E Ink Corp カプセルの単層を有するカプセル化電気泳動ディスプレイ
US7999786B2 (en) 2004-01-13 2011-08-16 Seiko Epson Corporation Electrophoretic display and method of manufacturing the same
KR101311502B1 (ko) * 2007-01-16 2013-09-25 삼성디스플레이 주식회사 전기영동 표시장치 및 이의 제조방법
JP2015062085A (ja) * 2003-10-24 2015-04-02 イー インク コーポレイション 電気光学ディスプレイ
CN110383165A (zh) * 2017-03-28 2019-10-25 伊英克公司 用于电光显示器的可渗透背板
JP2022079727A (ja) * 2021-01-05 2022-05-26 イー インク コーポレイション 電気光学ディスプレイを生産するプロセス

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109968B2 (en) * 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
WO2000054101A1 (fr) * 1999-03-05 2000-09-14 Seiko Epson Corporation Afficheur pour electrophorese et son procede de production
JP4114374B2 (ja) * 2001-03-19 2008-07-09 セイコーエプソン株式会社 電気泳動表示装置、電気泳動表示装置の駆動方法及び電子機器
US6819471B2 (en) * 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
US7492505B2 (en) 2001-08-17 2009-02-17 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US7038670B2 (en) * 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
US20030137496A1 (en) * 2002-01-23 2003-07-24 Chad Stevens Systems and methods for facilitating interaction with a whiteboard
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
JP4366059B2 (ja) * 2002-09-10 2009-11-18 キヤノン株式会社 電気泳動表示装置
KR20050100380A (ko) * 2003-01-30 2005-10-18 코닌클리케 필립스 일렉트로닉스 엔.브이. 전기 영동 디스플레이 패널
KR20050112878A (ko) * 2004-05-28 2005-12-01 삼성전자주식회사 전기 영동 표시 장치
EP1763699B1 (fr) * 2004-07-02 2011-08-10 Essilor International (Compagnie Generale D'optique) Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu
FR2872590B1 (fr) * 2004-07-02 2006-10-27 Essilor Int Procede de realisation d'un verre ophtalmique et composant optique adapte pour la mise en oeuvre de ce procede
US7359109B2 (en) * 2004-12-14 2008-04-15 Palo Alto Research Center Incorporated Rear-viewable reflective display
FR2879757B1 (fr) * 2004-12-17 2007-07-13 Essilor Int Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu
JP4718859B2 (ja) * 2005-02-17 2011-07-06 セイコーエプソン株式会社 電気泳動装置とその駆動方法、及び電子機器
JP4379919B2 (ja) * 2005-03-14 2009-12-09 セイコーエプソン株式会社 表示装置の製造方法および電子機器
FR2888951B1 (fr) * 2005-07-20 2008-02-08 Essilor Int Composant optique pixellise aleatoirement, son procede de fabrication, et son utilisation dans la fabrication d'un element optique transparent
FR2888948B1 (fr) 2005-07-20 2007-10-12 Essilor Int Composant optique transparent pixellise comprenant un revetement absorbant, son procede de realisation et son utilisation dans un element optique
FR2888950B1 (fr) * 2005-07-20 2007-10-12 Essilor Int Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent
FR2888947B1 (fr) * 2005-07-20 2007-10-12 Essilor Int Composant optique a cellules
JP5167624B2 (ja) * 2005-12-28 2013-03-21 セイコーエプソン株式会社 電気泳動表示装置及び電子機器
US7982479B2 (en) * 2006-04-07 2011-07-19 Sipix Imaging, Inc. Inspection methods for defects in electrophoretic display and related devices
FR2901367B1 (fr) * 2006-05-17 2008-10-17 Essilor Int Realisation d'un element optique transparent comprenant une substance contenue dans des cellules
FR2907559B1 (fr) * 2006-10-19 2009-02-13 Essilor Int Composant optique elecro-commandable comprenant un ensemble de cellules
FR2910642B1 (fr) * 2006-12-26 2009-03-06 Essilor Int Composant optique transparent a deux ensembles de cellules
KR20080065486A (ko) * 2007-01-09 2008-07-14 삼성에스디아이 주식회사 전기 영동 디스플레이 장치 및 그 제조방법
FR2911404B1 (fr) * 2007-01-17 2009-04-10 Essilor Int Composant optique transparent a cellules remplies de materiau optique
JP4547433B2 (ja) * 2008-02-20 2010-09-22 セイコーエプソン株式会社 電気泳動表示装置および電子機器
KR20120023138A (ko) * 2009-05-28 2012-03-12 가부시키가이샤 브리지스톤 정보 표시 시스템 및 정보 표시 방법
KR101097582B1 (ko) * 2009-07-21 2011-12-22 삼성전기주식회사 전자종이 표시소자 및 그 제조방법
JP2011100107A (ja) * 2009-10-06 2011-05-19 Seiko Epson Corp 電気泳動表示シートの製造方法、電気泳動表示シート、電気泳動表示装置および電子機器
JP2012053184A (ja) * 2010-08-31 2012-03-15 Seiko Epson Corp 表示シートおよび表示装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683382A (en) * 1969-05-29 1972-08-08 Honeywell Inc Recording medium responsive to force fields and apparatus for recording and reproducing signals on the medium
JPS6486116A (en) * 1987-09-29 1989-03-30 Nippon Mektron Kk Electrophoretic display device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522472A (en) * 1982-02-19 1985-06-11 North American Philips Corporation Electrophoretic image display with reduced drives and leads
US4648956A (en) * 1984-12-31 1987-03-10 North American Philips Corporation Electrode configurations for an electrophoretic display device
JPH0854651A (ja) * 1994-08-12 1996-02-27 Chemitec Kk 磁気表示板の製造方法
JPH10149118A (ja) 1996-11-21 1998-06-02 Nok Corp 電気泳動表示装置
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
JP4460149B2 (ja) * 1997-08-28 2010-05-12 イー インク コーポレイション 電気泳動ディスプレイおよび材料
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6252564B1 (en) * 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
WO1999010768A1 (en) * 1997-08-28 1999-03-04 E-Ink Corporation Novel addressing schemes for electrophoretic displays
US6181393B1 (en) * 1997-12-26 2001-01-30 Kabushiki Kaisha Toshiba Liquid crystal display device and method of manufacturing the same
WO1999039234A1 (en) * 1998-01-30 1999-08-05 Minnesota Mining And Manufacturing Company Reflective particle display film and method of manufacture
US7075502B1 (en) * 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
JP2000047266A (ja) * 1998-07-27 2000-02-18 Sony Corp 電気泳動表示装置と情報表示システム
WO2000054101A1 (fr) * 1999-03-05 2000-09-14 Seiko Epson Corporation Afficheur pour electrophorese et son procede de production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683382A (en) * 1969-05-29 1972-08-08 Honeywell Inc Recording medium responsive to force fields and apparatus for recording and reproducing signals on the medium
JPS6486116A (en) * 1987-09-29 1989-03-30 Nippon Mektron Kk Electrophoretic display device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002844A (ja) * 1998-10-07 2011-01-06 E Ink Corp カプセルの単層を有するカプセル化電気泳動ディスプレイ
JP2001117123A (ja) * 1999-10-22 2001-04-27 Canon Inc 表示装置及びその製造方法
JP4508322B2 (ja) * 1999-10-22 2010-07-21 キヤノン株式会社 表示装置
JP2002189234A (ja) * 2000-10-11 2002-07-05 Canon Inc 電気泳動表示用マイクロカプセル含有ファイバ、それを用いた表示装置およびその製造方法
US7161732B2 (en) * 2000-10-27 2007-01-09 Seiko Epson Corporation Electrophoretic display, method for making the electrophoretic display, and electronic apparatus
JP2002250944A (ja) * 2001-02-23 2002-09-06 Tdk Corp 電気泳動表示装置
CN100354743C (zh) * 2003-02-25 2007-12-12 株式会社普利司通 图像显示面板
JP2015062085A (ja) * 2003-10-24 2015-04-02 イー インク コーポレイション 電気光学ディスプレイ
US7999786B2 (en) 2004-01-13 2011-08-16 Seiko Epson Corporation Electrophoretic display and method of manufacturing the same
JP2008033335A (ja) * 2006-07-31 2008-02-14 Samsung Electronics Co Ltd 電気泳動表示装置及びその製造方法
KR101311502B1 (ko) * 2007-01-16 2013-09-25 삼성디스플레이 주식회사 전기영동 표시장치 및 이의 제조방법
JP4547434B2 (ja) * 2008-02-20 2010-09-22 セイコーエプソン株式会社 電気泳動表示装置の製造方法
JP2009198725A (ja) * 2008-02-20 2009-09-03 Seiko Epson Corp 電気泳動表示装置の製造方法、電気泳動表示装置および電子機器
CN110383165A (zh) * 2017-03-28 2019-10-25 伊英克公司 用于电光显示器的可渗透背板
JP2020515897A (ja) * 2017-03-28 2020-05-28 イー インク コーポレイション 電気光学ディスプレイのための多孔質バックプレーン
JP2021063995A (ja) * 2017-03-28 2021-04-22 イー インク コーポレイション 電気光学ディスプレイのための多孔質バックプレーン
JP6994047B2 (ja) 2017-03-28 2022-01-14 イー インク コーポレイション 電気光学ディスプレイのための多孔質バックプレーン
JP7038793B2 (ja) 2017-03-28 2022-03-18 イー インク コーポレイション 電気光学ディスプレイのための多孔質バックプレーン
CN110383165B (zh) * 2017-03-28 2023-05-02 伊英克公司 用于电光显示器的可渗透背板
JP2022079727A (ja) * 2021-01-05 2022-05-26 イー インク コーポレイション 電気光学ディスプレイを生産するプロセス
JP7335388B2 (ja) 2021-01-05 2023-08-29 イー インク コーポレイション 電気光学ディスプレイを生産するプロセス

Also Published As

Publication number Publication date
US7301524B2 (en) 2007-11-27
JP2011242801A (ja) 2011-12-01
JP2009086686A (ja) 2009-04-23
US20040017349A1 (en) 2004-01-29
AU2830200A (en) 2000-09-28
JP2009053715A (ja) 2009-03-12
JP4244522B2 (ja) 2009-03-25
JP4840441B2 (ja) 2011-12-21
US6597340B1 (en) 2003-07-22
JP4835678B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2000054101A1 (fr) Afficheur pour electrophorese et son procede de production
KR102242277B1 (ko) 전자잉크 디스플레이 장치 및 제조방법
KR100804545B1 (ko) 전기 영동 표시 시트, 전기 영동 표시 장치, 전자 기기, 및전기 영동 표시 시트의 제조 방법
JP5538711B2 (ja) 表示装置
WO2008023524A1 (fr) support d&#39;affichage électrophorétique, son processus de fabrication, et appareil d&#39;affichage électrophorétique
JP6935874B2 (ja) 電子ペーパーディスプレイ及びその製造方法
MXPA02008517A (es) Exhibidor electroforetico.
JP4355126B2 (ja) 微細構造のテンプレート
TW200848902A (en) Manufacturing method and manufacturing apparatus for image display element structure, and manufacturing method and manufacturing apparatus for electrophoretic image display element
WO2000049593A1 (fr) Procede servant a fabriquer un panneau d&#39;affichage et panneau d&#39;affichage
JP7010448B2 (ja) 電気泳動ディスプレイモジュール及びその製造方法
KR20190089147A (ko) 디스플레이 플라즈마 모듈과 그 제조방법
JPH01248182A (ja) 電気泳動表示装置
JP4048679B2 (ja) 電気泳動表示装置及びその製造方法
JP2005099249A (ja) エレクトロクロミック素子及び該素子の駆動方法
JP2003029305A (ja) シート型表示装置
KR101228189B1 (ko) 전자종이 디스플레이 장치의 제조방법 및 이를 이용한전자종이 디스플레이 장치
KR101085570B1 (ko) 절연층을 포함하는 전자종이 디스플레이 장치의 제조방법
JP4626152B2 (ja) 画像表示媒体の製造方法
TWI834235B (zh) 在電極上具有介電塗層的電泳顯示器及其製造方法
JP2013235022A (ja) 表示装置および表示装置の製造方法
JP2004012590A (ja) 書き換え可能両面表示装置
CN110383165B (zh) 用于电光显示器的可渗透背板
JPH01300232A (ja) 電気泳動表示装置及びその製造法
JP2004294955A (ja) 表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09674679

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642