WO2000052725A1 - Electron emitter and method for producing the same - Google Patents

Electron emitter and method for producing the same Download PDF

Info

Publication number
WO2000052725A1
WO2000052725A1 PCT/DE2000/000570 DE0000570W WO0052725A1 WO 2000052725 A1 WO2000052725 A1 WO 2000052725A1 DE 0000570 W DE0000570 W DE 0000570W WO 0052725 A1 WO0052725 A1 WO 0052725A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
ions
electron emitter
diamond
Prior art date
Application number
PCT/DE2000/000570
Other languages
German (de)
French (fr)
Inventor
Bernd Mertesacker
Björn PIETZAK
Markus Waiblinger
Alois Weidinger
Original Assignee
Hahn-Meitner-Institut Berlin Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn-Meitner-Institut Berlin Gmbh filed Critical Hahn-Meitner-Institut Berlin Gmbh
Priority to JP2000603064A priority Critical patent/JP2002538594A/en
Priority to EP00912394A priority patent/EP1157402B1/en
Priority to DE50006333T priority patent/DE50006333D1/en
Priority to KR1020017010531A priority patent/KR100588738B1/en
Publication of WO2000052725A1 publication Critical patent/WO2000052725A1/en
Priority to HK02103984.0A priority patent/HK1044071B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Definitions

  • the invention relates to an electron emitter, comprising in an insulating layer arranged on a substrate conductive cylindrical areas arranged perpendicular to the surface of this layer, and a method for its production.
  • the liquid of the nanotube suspension obtained was removed by means of a ceramic filter, a film being formed on the surface of the filter which is finally pressed against the PTFE film and remains there. Due to the manufacturing process, however, not all nanotubes are arranged perpendicular to the substrate, which leads to a non-homogeneous emission, which leads to instabilities of the electron-emitting layer.
  • EP 0 609 532 describes an electron emitter in which the electron-emitting layer is a hydrogenated layer of diamond or diamond-like carbon material.
  • This layer has deliberately introduced electrically and / or electronically active defects.
  • the defects are spaced in the hydrogenated layer from the surface of the layer or as aligned filaments with an angle to the surface of the hydrogenated layer of 45 ° to 90 °.
  • Defects are, for example, empty spaces, imperfections, interstitial spaces. Such defects can be generated during the growth of the layer, but also subsequently by ion implantation.
  • the bond structure in the crystal lattice is changed, whereby conductive defects are formed.
  • the object is achieved by an electron emitter of the type mentioned at the outset in that, according to the invention, the cylindrical conductive regions are formed over the entire thickness of this layer in a straight manner and aligned parallel to one another as homogeneously conductive channels.
  • the insulating layer is a diamond-like carbon layer or a layer of cubic boron nitride.
  • the diamond-like carbon layer in which the homogeneously conductive channels are embedded is preferably 100 nm thick.
  • cylindrical conductive regions as homogeneously conductive channels, which are formed parallel to one another and perpendicular to the surface of the insulating layer and embedded therein, make them mechanically and electrically stable, so that a homogeneous and stable emission of this layer is ensured.
  • the process according to the invention for producing the electron emitter described provides that an insulating layer with a thickness between 40 nm and 1000 nm is first applied to a substrate, then this layer is homogeneously irradiated perpendicular to its surface with high-energy heavy ions, the ions being a have energy which ensures a sufficiently high energy deposition over the entire thickness of this layer for restructuring the insulating layer, and the ions have a dose at which the middle one
  • the distance of the statistically impacting ions in the insulating layer is between 20 nm and 1000 nm.
  • the method according to the invention allows for the first time the production of nanowires, i. H. of thin, electrically conductive channels (ion traces) in an insulating layer over the entire thickness of this layer.
  • the ends of these channels act as thin tips, at which there is a strong increase in field strength when an electric field is applied.
  • the nanowires produced are straight and parallel to each other and arranged perpendicular to the substrate, which guarantees good electrical homogeneity and small deviations in the emission properties.
  • Electron emitters are ensured by embedding the nanowires in a very stable insulating crystal structure.
  • the method according to the invention enables the generation of conductive channels of approximately the same diameter and the same structure, which in turn supports the uniform emission.
  • the method according to the invention is suitable, for example, for producing stable, large-area field emission cathodes for flat screens.
  • Xe ions with an energy of 240 MeV and a dose of 5 ⁇ 10 10 particles / cm 2 are used as high-energy heavy ions.
  • a diamond-like carbon layer is used as the insulating layer. Bombarding the diamond-like carbon layer with high-energy heavy ions brings about a rearrangement of the carbon atoms due to the local energy deposition along its track over the entire thickness of this layer.
  • the insulating, diamond-like sp 3 bond is converted into the electrically conductive, graphite-like sp 2 bond. The ions themselves are only stopped in the substrate.
  • the bombardment with heavy ions changes the stoichiometry along the ion track, which is also the case for other composite materials, and ultimately for the change of conductivity in this channel.
  • the diamond-like carbon layer is applied to a doped silicon substrate by means of ion deposition. It is further provided that the diamond-like carbon layer is preferably applied in a thickness of 100 nm.
  • a 100 nm thick diamond-like carbon layer is applied to a 0.3 mm thick doped Si substrate by direct deposition of C ions in an energy interval from 50 eV to 400 eV at room temperature.
  • the substrate should be at least partially suitable for the electrode feed or may already contain the control electronics.
  • the diamond-like carbon layer is then bombarded with Xe ions, which have an energy of 240 MeV and a dose of 5 ⁇ 10 10 particles / cm 2 .
  • the impacts of the xe ions are statistical and are homogeneously distributed over the entire irradiated area.
  • the desired size of the irradiated area can be achieved by an appropriately selected cross section of the ion beam and / or by scanning the area to be irradiated.
  • the energy of the ions was selected so that the energy loss can be realized over the entire thickness of the diamond-like carbon layer.
  • the Xe ions deposit about 20 keV / nm, as a result of which the carbon atoms in the ion track are rearranged and the insulating, diamond-like sp 3 bond is converted into the electrically conductive, graphite-like sp 2 bond. This creates conductive nanowires in the insulating diamond-like carbon layer, which are oriented perpendicular to the surface of the diamond-like carbon matrix surrounding them.

Abstract

The invention relates to an electron emitter that is provided with conductive cylindrical areas which are located in an insulating layer that is arranged on a substrate. Said areas are arranged vertically in relation to the surface of the layer, are evenly formed over the entire thickness of the layer, are parallel to each other and are configured as homogeneously conducting channels. According to the method for producing such an electron emitter, an insulating layer having a thickness of 40 nm and 1,000 nm is mounted on a substrate. Said layer is then exposed to homogeneous radiation of heavy ions vertically in relation to the surface of the layer. The ions are provided with high energy that guarantees a sufficiently high energy deposition for restructuring the insulating layer over the entire thickness thereof. The ions are provided with a dose with a mean distance of the ions which statistically strike into the insulating layer. Said distance is between 20 nm and 1,000 nm.

Description

Bezeichnungdescription
Elektronenemitter und Verfahren zu dessen HerstellungElectron emitter and method for its production
Beschreibungdescription
Die Erfindung betrifft einen Elektronenemitter, aufweisend in einer auf einem Substrat angeordneten isolierenden Schicht leitende zylinderförmige und senkrecht zur Oberfläche dieser Schicht angeordnete Bereiche, und ein Verfahren zu dessen Herstellung.The invention relates to an electron emitter, comprising in an insulating layer arranged on a substrate conductive cylindrical areas arranged perpendicular to the surface of this layer, and a method for its production.
Über einen Elektronenemitter für Flachbildschirme aus Kohlenstoff- Nanoröhren wird in SCIENCE, VOL. 270, 17 NOVEMBER 1995, pp. 1179- 1180 berichtet. Es konnten einige zehntausend Nanoröhren auf einer leitfähigen PTFE(Polytetrafluorethylen)-Unterlage nebeneinander auf diesem Substrat angeordnet werden. Es entstand ein großflächiger Film von meistens senkrecht zur Oberfläche des Trägermaterials orientierten Nanoröhren, wobei der Durchmesser der Röhren ca. 10 ± 5 nm und ihre Länge ca. 1 μm betrug. Die mehrwandigen Kohlenstoff-Nanoröhren wurden mittels eines hochintensiven Kohlenstoff-Bogens in He-Atmosphäre erzeugt, anschließend extrahiert und mittels Ultraschall in Äthanol dispergiert. Die Flüssigkeit der erhaltenen Nanoröhren-Suspension wurde mittels eines keramischen Filters entfernt, wobei sich ein Film auf der Oberfläche des Filters bildete, der abschließend gegen die PTFE-Folie gepreßt wird und dort haften bleibt. Aufgrund des Herstellungsverfahrens sind aber nicht alle Nanoröhren senkrecht auf dem Substrat angeordnet, was zu einer nicht homogenen Emission führt, die Instabilitäten der elektronenenemittierenden Schicht nach sich zieht.An electron emitter for flat screens made of carbon nanotubes is described in SCIENCE, VOL. 270, NOVEMBER 17, 1995, pp. 1179-1180 reports. Several tens of thousands of nanotubes could be arranged next to each other on this substrate on a conductive PTFE (polytetrafluoroethylene) base. A large-area film of nanotubes oriented mostly perpendicular to the surface of the carrier material was formed, the diameter of the tubes being approximately 10 ± 5 nm and their length being approximately 1 μm. The multi-walled carbon nanotubes were created using a high-intensity carbon arc in an He atmosphere, then extracted and ultrasonically dispersed in ethanol. The liquid of the nanotube suspension obtained was removed by means of a ceramic filter, a film being formed on the surface of the filter which is finally pressed against the PTFE film and remains there. Due to the manufacturing process, however, not all nanotubes are arranged perpendicular to the substrate, which leads to a non-homogeneous emission, which leads to instabilities of the electron-emitting layer.
In Chemical Physics Letters, 299 (1999), 97-102 wird über das direkte Aufwachsen von ausgerichteten offenen Nanoröhren mittels CVD (Chemical Vapour Deposition - Chemische Dampfabscheidung) berichtet. Das relativ aufwendige Verfahren ermöglicht die Herstellung von getrennten mehrheitlich senkrecht angeordneten Nanoröhren. Jedoch konnte auch hier wegen der noch vorhandenen inhomogenen Ausrichtung dieser Nanoröhren keine wesentliche Verbesserung der Stabilität der elektronenemittierenden Schicht erreicht werden. Außerdem sind die gemäß dem erst- und zweitgenannten Verfahren hergestellten und nur diese Nanoröhren enthaltenden Schichten mechanisch instabil, was wiederum auch elektrische Instabilitäten nach sich zieht.Chemical Physics Letters, 299 (1999), 97-102 reports on the direct growth of aligned open nanotubes using CVD (Chemical Vapor Deposition - Chemical Vapor Deposition). The relative elaborate processes enable the production of separate mostly vertically arranged nanotubes. However, due to the still inhomogeneous alignment of these nanotubes, no significant improvement in the stability of the electron-emitting layer could be achieved. In addition, the layers produced according to the first and second-mentioned processes and containing only these nanotubes are mechanically unstable, which in turn also entails electrical instabilities.
In EP 0 609 532 wird ein Elektronenemitter beschrieben, bei dem die Elektronen emittierende Schicht eine hydrierte Schicht von Diamant oder diamantartigem Kohlenstoffmaterial ist. Diese Schicht weist gezielt eingebrachte elektrisch und/oder elektronische aktive Defekte auf. Die Defekte sind in der hydrierten Schicht beabstandet zur Oberfläche der Schicht oder auch als ausgerichtete Filamente mit einem Winkel zur Oberfläche der hydrierten Schicht von 45 ° bis 90 ° angeordnet. Als Defekte werden beispielsweise Leerstellen, Störstellen, Zwischengitterplätze angegeben. Die Erzeugung derartiger Defekte kann während des Wachstums der Schicht erfolgen aber auch nachträglich durch Ionenimplantation. Hierbei wird die Bindungsstruktur im Kristallgitter geändert, wodurch leitende Defekte gebildet werden.EP 0 609 532 describes an electron emitter in which the electron-emitting layer is a hydrogenated layer of diamond or diamond-like carbon material. This layer has deliberately introduced electrically and / or electronically active defects. The defects are spaced in the hydrogenated layer from the surface of the layer or as aligned filaments with an angle to the surface of the hydrogenated layer of 45 ° to 90 °. Defects are, for example, empty spaces, imperfections, interstitial spaces. Such defects can be generated during the growth of the layer, but also subsequently by ion implantation. Here, the bond structure in the crystal lattice is changed, whereby conductive defects are formed.
In der Broschüre „VDI Technologiezentrum Physikalische Technologien / Technologiefrüherkennung / Ergebnisse des Expertenworkshops „Nanoröhren " 2. Juli 1998 / Zukünftige Technologien Band 27, S. 82 ff. wird neben der bereits erwähnten Abscheidung von Kohlenstoff mittels Vakuumbogen auch die Laser-Arc-Beschichtung beschrieben. Auch dieses Verfahren liefert nicht vollständig homogene Schichten, was wiederum Instabilitäten nach sich zieht. In dieser Veröffentlichung wird auch die Überlegung ausgeführt, daß ein optimaler Schichtaufbau aus senkrecht zur Oberfläche orientierten, graphitischen (und dementsprechend leitfähigen) Nanozylindern bestehen könnte, die in eine diamantähnliche (und dementsprechend dielektrische) Matrix eingebettet sind. Mit den bisher dem Stand der Technik nach bekannten Verfahren läßt sich diese optimale Struktur aber nicht realisieren.In the brochure "VDI Technology Center for Physical Technologies / Early Technology Detection / Results of the Expert Workshop" Nanotubes "July 2, 1998 / Future Technologies Volume 27, pp. 82 ff., Laser arc coating is also described in addition to the aforementioned carbon deposition using a vacuum arc This method also does not provide completely homogeneous layers, which in turn leads to instabilities.This publication also considers that an optimal layer structure could consist of graphite (and accordingly conductive) nano cylinders oriented perpendicular to the surface, which could be made into a diamond-like one (and accordingly dielectric) Matrix are embedded. However, this optimal structure cannot be realized with the methods known to date in the prior art.
Deshalb ist es Aufgabe der Erfindung, einen mechanisch und elektrisch homogenen und stabilen Elektronenemitter anzugeben, der in einer auf einem Substrat angeordneten isolierenden Schicht leitende zylinderförmige und senkrecht zur Oberfläche dieser Schicht angeordnete Bereiche aufweist, sowie eine Verfahren zur Herstellung eines solchen Elektronenemitters.It is therefore an object of the invention to provide a mechanically and electrically homogeneous and stable electron emitter which has conductive cylindrical regions in an insulating layer arranged on a substrate and is arranged perpendicular to the surface of this layer, and a method for producing such an electron emitter.
Die Aufgabe wird durch einen Elektronenemitter der eingangs genannten Art dadurch gelöst, daß erfindungsgemäß die zylinderförmigen leitenden Bereiche über die gesamte Dicke dieser Schicht in dieser gerade geformt und parallel zueinander ausgerichtet als homogen leitende Kanäle ausgebildet sind.The object is achieved by an electron emitter of the type mentioned at the outset in that, according to the invention, the cylindrical conductive regions are formed over the entire thickness of this layer in a straight manner and aligned parallel to one another as homogeneously conductive channels.
In Ausführungsformen der Erfindung ist vorgesehen, daß die isolierende Schicht eine diamantartige Kohlenstoff-Schicht oder eine Schicht aus kubischem Bornitrid ist. Vorzugsweise ist die diamantartige Kohlenstoff- Schicht, in die die homogen leitenden Kanäle eingebettet sind, 100 nm dick.In embodiments of the invention it is provided that the insulating layer is a diamond-like carbon layer or a layer of cubic boron nitride. The diamond-like carbon layer in which the homogeneously conductive channels are embedded is preferably 100 nm thick.
Die Ausbildung der zylinderförmigen leitenden Bereiche als homogen leitende Kanäle, die parallel zueinander und senkrecht zur Oberfläche der isolierenden Schicht ausgebildet und in dieser eingebettet sind, machen sie mechanisch und elektrisch stabil, so daß eine homogene und stabile Emission dieser Schicht gewährleistet ist.The formation of the cylindrical conductive regions as homogeneously conductive channels, which are formed parallel to one another and perpendicular to the surface of the insulating layer and embedded therein, make them mechanically and electrically stable, so that a homogeneous and stable emission of this layer is ensured.
Das erfindungsgemäße Verfahren zur Herstellung des beschriebenen Elektronenemitters sieht vor, daß zunächst auf einem Substrat eine isolierende Schicht mit einer Dicke zwischen 40 nm und 1000 nm aufgebracht wird, anschließend diese Schicht senkrecht zu ihrer Oberfläche mit energiereichen schweren Ionen homogen bestrahlt wird, wobei die Ionen eine solche Energie aufweisen, die eine für eine Umstrukturierung der isolierenden Schicht hinreichend hohe Energiedeposition über die gesamte Dicke dieser Schicht gewährleistet, und die Ionen eine Dosis aufweisen, bei der der mittlere Abstand der statistisch in die isolierende Schicht einschlagenden Ionen zwischen 20 nm und 1000 nm liegt.The process according to the invention for producing the electron emitter described provides that an insulating layer with a thickness between 40 nm and 1000 nm is first applied to a substrate, then this layer is homogeneously irradiated perpendicular to its surface with high-energy heavy ions, the ions being a have energy which ensures a sufficiently high energy deposition over the entire thickness of this layer for restructuring the insulating layer, and the ions have a dose at which the middle one The distance of the statistically impacting ions in the insulating layer is between 20 nm and 1000 nm.
Das erfindungsgemäße Verfahren gestattet erstmals die Erzeugung von Nanodrähten, d. h. von dünnen, elektrisch leitenden Kanälen (lonenspuren) in einer isolierenden Schicht über die gesamte Dicke dieser Schicht. Die Enden dieser Kanäle wirken als dünne Spitzen, an denen es bei Anlegen eines elektrischen Feldes zu einer starken Überhöhung der Feldstärke kommt. Die erzeugten Nanodrähte sind gerade und parallel zueinander ausgebildet und senkrecht zum Substrat angeordnet, was eine gute elektrische Homogenität und geringe Abweichungen in den Emissionseigenschaften garantiert. DieThe method according to the invention allows for the first time the production of nanowires, i. H. of thin, electrically conductive channels (ion traces) in an insulating layer over the entire thickness of this layer. The ends of these channels act as thin tips, at which there is a strong increase in field strength when an electric field is applied. The nanowires produced are straight and parallel to each other and arranged perpendicular to the substrate, which guarantees good electrical homogeneity and small deviations in the emission properties. The
Stabilität des mit Hilfe des erfindungsgemäßen Verfahrens erzeugtenStability of the generated using the method according to the invention
Elektronenemitters wird durch die Einbettung der Nanodrähte in eine sehr stabile isolierende Kristallstruktur gewährleistet. Das erfindungsgemäße Verfahren ermöglicht die Erzeugung von leitenden Kanälen annähernd gleichen Durchmessers und gleicher Struktur, wodurch wiederum die gleichmäßige Emission unterstützt wird.Electron emitters are ensured by embedding the nanowires in a very stable insulating crystal structure. The method according to the invention enables the generation of conductive channels of approximately the same diameter and the same structure, which in turn supports the uniform emission.
Das erfindungsgemäße Verfahren ist beispielsweise geeignet, stabile, großflächige Feldemissionskathoden für Flachbildschirme herzustellen.The method according to the invention is suitable, for example, for producing stable, large-area field emission cathodes for flat screens.
In einer Ausführungsform der Erfindung werden als energiereiche schwere Ionen Xe-Ionen mit einer Energie von 240 MeV und einer Dosis von 5 x 1010 Teilchen/cm2 verwendet.In one embodiment of the invention, Xe ions with an energy of 240 MeV and a dose of 5 × 10 10 particles / cm 2 are used as high-energy heavy ions.
In einer anderen Ausführungsform ist vorgesehen, als isolierende Schicht eine diamantartige Kohlenstoff-Schicht zu verwenden. Der Beschüß der diamantartigen Kohlenstoff-Schicht mit energiereichen schweren Ionen bewirkt aufgrund der lokalen Energiedeposition entlang ihrer Spur über die gesamte Dicke dieser Schicht eine Umordnung der Kohlenstoff-Atome. Hierbei erfolgt eine Umwandlung der isolierenden, diamantartigen sp3- in die elektrisch leitende, graphitartige sp2-Bindung. Die Ionen selbst werden erst im Substrat gestoppt. Wenn - wie in einer weiteren Ausführungsform der Erfindung vorgesehen - als isolierende Schicht eine Schicht aus kubischem Bornitrid verwendet wird, so ändert sich beim Beschüß mit schweren Ionen die Stöchiometrie entlang der lonenspur, was auch für andere zusammengesetzte Materialien der Fall ist, und letztendlich zur Änderung der Leitfähigkeit in diesem Kanal führt.In another embodiment, a diamond-like carbon layer is used as the insulating layer. Bombarding the diamond-like carbon layer with high-energy heavy ions brings about a rearrangement of the carbon atoms due to the local energy deposition along its track over the entire thickness of this layer. The insulating, diamond-like sp 3 bond is converted into the electrically conductive, graphite-like sp 2 bond. The ions themselves are only stopped in the substrate. If - as provided in a further embodiment of the invention - a layer of cubic boron nitride is used as the insulating layer, the bombardment with heavy ions changes the stoichiometry along the ion track, which is also the case for other composite materials, and ultimately for the change of conductivity in this channel.
In einer Ausführungsform wird die diamantartige Kohlenstoff-Schicht mittels lonendeposition auf einem dotierten Silizium-Substrat aufgebracht. Weiterhin ist vorgesehen, daß die diamantartige Kohlenstoff-Schicht vorzugsweise in einer Dicke von 100 nm aufgebracht wird.In one embodiment, the diamond-like carbon layer is applied to a doped silicon substrate by means of ion deposition. It is further provided that the diamond-like carbon layer is preferably applied in a thickness of 100 nm.
Die Erfindung wird in folgendem Ausführungsbeispiel näher erläutert.The invention is explained in more detail in the following embodiment.
Auf ein 0,3 mm dickes dotiertes Si-Substrat wird mittels direkter Deposition von C-Ionen in einem Energieintervall von 50 eV bis 400 eV bei Raumtemperatur eine 100 nm dicke diamantartige Kohlenstoff-Schicht aufgebracht. Das Substrat sollte mindestens teilweise für die Elektrodenzuführung geeignet sein bzw. kann auch bereits die Ansteuerelektronik enthalten. Anschließend wird die diamantartige Kohlenstoff-Schicht mit Xe-Ionen beschossen, die eine Energie von 240 MeV und eine Dosis von 5 x 1010 Teilchen/cm2 aufweisen. Die Einschläge der Xe- Ionen erfolgen statistisch und sind homogen über die gesamte bestrahlte Fläche verteilt. Die gewünschte Größe der bestrahlten Fläche kann durch einen entsprechend gewählten Querschnitt des lonenstrahls und/oder durch Abscannen der zu bestrahlenden Fläche erreicht werden. Die Energie der Ionen wurde so ausgewählt, daß der Energieverlust über die gesamte Dicke der diamantartigen Kohlenstoff-Schicht realisierbar ist. In diesem Ausführungsbeispiel deponieren die Xe-Ionen ca. 20 keV/nm, wodurch in der lonenspur die Kohlenstoffatome umgeordnet werden und die isolierende, diamantartige sp3-Bindung in die elektrisch leitende, graphitartige sp2-Bindung umgewandelt wird. Somit entstehen in der isolierenden diamantartigen Kohlenstoff-Schicht leitende Nanodrähte, die senkrecht zur Oberfläche der sie umgebenden diamantartigen Kohlenstoff-Matrix ausgerichtet sind. A 100 nm thick diamond-like carbon layer is applied to a 0.3 mm thick doped Si substrate by direct deposition of C ions in an energy interval from 50 eV to 400 eV at room temperature. The substrate should be at least partially suitable for the electrode feed or may already contain the control electronics. The diamond-like carbon layer is then bombarded with Xe ions, which have an energy of 240 MeV and a dose of 5 × 10 10 particles / cm 2 . The impacts of the xe ions are statistical and are homogeneously distributed over the entire irradiated area. The desired size of the irradiated area can be achieved by an appropriately selected cross section of the ion beam and / or by scanning the area to be irradiated. The energy of the ions was selected so that the energy loss can be realized over the entire thickness of the diamond-like carbon layer. In this exemplary embodiment, the Xe ions deposit about 20 keV / nm, as a result of which the carbon atoms in the ion track are rearranged and the insulating, diamond-like sp 3 bond is converted into the electrically conductive, graphite-like sp 2 bond. This creates conductive nanowires in the insulating diamond-like carbon layer, which are oriented perpendicular to the surface of the diamond-like carbon matrix surrounding them.

Claims

Patentansprüche claims
1. Elektronenemitter, aufweisend in einer auf einem Substrat angeordneten isolierenden Schicht leitende zylinderförmige und senkrecht zur Oberfläche dieser Schicht angeordnete Bereiche, dadurch gekennzeichnet, daß die zylinderförmigen leitenden Bereiche über die gesamte Dicke dieser Schicht in dieser gerade geformt und parallel zueinander ausgerichtet als homogen leitende Kanäle ausgebildet sind.1. electron emitter, comprising in an insulating layer arranged on a substrate conductive cylindrical and perpendicular to the surface of this layer arranged areas, characterized in that the cylindrical conductive areas over the entire thickness of this layer in this just formed and aligned parallel to each other as homogeneously conductive channels are trained.
2. Elektronenemitter nach Anspruch 1 , dadurch gekennzeichnet, daß die isolierende Schicht, in die die homogen leitenden Kanäle eingebettet sind, eine diamantartige Kohlenstoff-Schicht ist.2. Electron emitter according to claim 1, characterized in that the insulating layer, in which the homogeneously conductive channels are embedded, is a diamond-like carbon layer.
3. Elektronenemitter nach Anspruch 2, dadurch gekennzeichnet, daß die Dicke der diamantartigen Kohlenstoff-Schicht 100 nm beträgt.3. Electron emitter according to claim 2, characterized in that the thickness of the diamond-like carbon layer is 100 nm.
4. Elektronenemitter nach Anspruch 1 , dadurch gekennzeichnet, daß die isolierende Schicht, in die die homogen leitenden Kanäle eingebettet sind, eine Schicht aus kubischem Bornitrid (BN) ist.4. Electron emitter according to claim 1, characterized in that the insulating layer, in which the homogeneously conductive channels are embedded, is a layer of cubic boron nitride (BN).
5. Elektronenemitter nach Anspruch 1 , dadurch gekennzeichnet, daß das Substrat aus Silizium gebildet ist.5. Electron emitter according to claim 1, characterized in that the substrate is formed from silicon.
6. Verfahren zur Herstellung eines Elektronenemitters gemäß Anspruch 1 , dadurch gekennzeichnet, daß zunächst auf einem Substrat eine isolierende Schicht mit einer Dicke zwischen 40 nm und 1000 nm aufgebracht wird, anschließend diese Schicht senkrecht zu ihrer Oberfläche mit energiereichen schweren Ionen homogen bestrahlt wird, wobei die Ionen eine solche Energie aufweisen, die eine für eine Umstrukturierung der isolierenden Schicht hinreichend hohe Energiedeposition über die gesamte Dicke dieser Schicht gewährleistet, und die Ionen eine Dosis aufweisen, bei der der mittlere Abstand der statistisch in die isolierende Schicht einschlagenden Ionen zwischen 20 nm und 1000 nm liegt.6. A method for producing an electron emitter according to claim 1, characterized in that an insulating layer having a thickness between 40 nm and 1000 nm is first applied to a substrate, this layer is then homogeneously irradiated perpendicular to its surface with high-energy heavy ions, the ions having an energy which ensures a sufficiently high energy deposition over the entire thickness of this layer for restructuring the insulating layer, and the ions have a dose at which the average distance of the statistically striking ions in the insulating layer is between 20 nm and 1000 nm.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß als energiereiche schwere Ionen Xe-Ionen mit einer Energie von 240 MeV und einer Dosis von 5 x 1010 Teilchen/cm2 verwendet werden.7. The method according to claim 6, characterized in that Xe ions with an energy of 240 MeV and a dose of 5 x 10 10 particles / cm 2 are used as high-energy heavy ions.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß als Material für die isolierende Schicht diamantartiger Kohlenstoff verwendet wird.8. The method according to claim 6, characterized in that diamond-like carbon is used as the material for the insulating layer.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß als Material für die isolierende Schicht kubisches Bornitrid verwendet wird.9. The method according to claim 6, characterized in that cubic boron nitride is used as the material for the insulating layer.
10. Verfahren nach Anspruch 1 und 8, dadurch gekennzeichnet, daß die diamantartige Kohlenstoff-Schicht mittels lonendeposition auf einem dotierten Silizium-Substrat aufgebracht wird.10. The method according to claim 1 and 8, characterized in that the diamond-like carbon layer is applied by means of ion deposition on a doped silicon substrate.
1 1. Verfahren nach Anspruch 8, dadu rch gekennzeichnet, daß die diamantartige Kohlenstoff-Schicht in einer Dicke von 100 nm aufgebracht wird. 1 1. The method according to claim 8, characterized in that the diamond-like carbon layer is applied in a thickness of 100 nm.
PCT/DE2000/000570 1999-02-26 2000-02-25 Electron emitter and method for producing the same WO2000052725A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000603064A JP2002538594A (en) 1999-02-26 2000-02-25 Electron emitting material and method of manufacturing electron emitting material
EP00912394A EP1157402B1 (en) 1999-02-26 2000-02-25 Electron emitter and method for producing the same
DE50006333T DE50006333D1 (en) 1999-02-26 2000-02-25 ELECTRONIC EMITTER AND METHOD FOR THE PRODUCTION THEREOF
KR1020017010531A KR100588738B1 (en) 1999-02-26 2000-02-25 Electron emitter and manufacturing method of electron emitter
HK02103984.0A HK1044071B (en) 1999-02-26 2002-05-28 Electron emitter and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19910156A DE19910156C2 (en) 1999-02-26 1999-02-26 Electron emitter and method for its production
DE19910156.6 1999-02-26

Publications (1)

Publication Number Publication Date
WO2000052725A1 true WO2000052725A1 (en) 2000-09-08

Family

ID=7900127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000570 WO2000052725A1 (en) 1999-02-26 2000-02-25 Electron emitter and method for producing the same

Country Status (6)

Country Link
EP (1) EP1157402B1 (en)
JP (1) JP2002538594A (en)
KR (1) KR100588738B1 (en)
DE (2) DE19910156C2 (en)
HK (1) HK1044071B (en)
WO (1) WO2000052725A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070735A1 (en) * 2003-02-08 2004-08-19 Hahn-Meitner-Institut Berlin Gmbh Quantum point made of electrically conducting carbon, production method, and application
EP1249028B1 (en) * 2000-01-14 2007-04-25 Thales Electron Devices S.A. Electron generating cathode and method for the production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882094B2 (en) 2000-02-16 2005-04-19 Fullerene International Corporation Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission
DE102004011363A1 (en) * 2004-03-05 2005-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nano-structured unit for use as e.g. information storage unit, has locally modified and defined nano-scaled areas with increased electrical conductivity and/or increased layer thickness formed opposite to amorphous carbon layer
JP6684488B2 (en) * 2016-09-30 2020-04-22 株式会社長町サイエンスラボ Method for manufacturing conductive DLC film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
US5773834A (en) * 1996-02-13 1998-06-30 Director-General Of Agency Of Industrial Science And Technology Method of forming carbon nanotubes on a carbonaceous body, composite material obtained thereby and electron beam source element using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089742A (en) * 1990-09-28 1992-02-18 The United States Of America As Represented By The Secretary Of The Navy Electron beam source formed with biologically derived tubule materials
US5619092A (en) * 1993-02-01 1997-04-08 Motorola Enhanced electron emitter
FR2705830B1 (en) * 1993-05-27 1995-06-30 Commissariat Energie Atomique A method of manufacturing microtip display devices using heavy ion lithography.
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
US5857882A (en) * 1996-02-27 1999-01-12 Sandia Corporation Processing of materials for uniform field emission
DE69834673T2 (en) * 1997-09-30 2006-10-26 Noritake Co., Ltd., Nagoya Method for producing an electron-emitting source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773834A (en) * 1996-02-13 1998-06-30 Director-General Of Agency Of Industrial Science And Technology Method of forming carbon nanotubes on a carbonaceous body, composite material obtained thereby and electron beam source element using same
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHERNOZATONSKII L A ET AL: "ELECTRON FIELD EMISSION FROM NANOFILAMENT CARBON FILMS", CHEMICAL PHYSICS LETTERS,NL,AMSTERDAM, vol. 233, no. 1, 3 February 1995 (1995-02-03), pages 63 - 68, XP000614463 *
HEER DE W A ET AL: "A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE", SCIENCE,US,AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, vol. 270, 17 November 1995 (1995-11-17), pages 1179 - 1180, XP000574977, ISSN: 0036-8075 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249028B1 (en) * 2000-01-14 2007-04-25 Thales Electron Devices S.A. Electron generating cathode and method for the production thereof
WO2004070735A1 (en) * 2003-02-08 2004-08-19 Hahn-Meitner-Institut Berlin Gmbh Quantum point made of electrically conducting carbon, production method, and application

Also Published As

Publication number Publication date
EP1157402A1 (en) 2001-11-28
HK1044071B (en) 2005-02-04
DE19910156C2 (en) 2002-07-18
EP1157402B1 (en) 2004-05-06
KR20010102258A (en) 2001-11-15
HK1044071A1 (en) 2002-10-04
KR100588738B1 (en) 2006-06-12
JP2002538594A (en) 2002-11-12
DE50006333D1 (en) 2004-06-09
DE19910156A1 (en) 2000-09-07

Similar Documents

Publication Publication Date Title
DE69724376T2 (en) Electron emitting coating and method
DE60014461T2 (en) Field emission device with aligned and shortened carbon nanotubes and manufacturing process
DE10122602B4 (en) Nanotube emitter structure for a field emission display
DE102010027871B4 (en) Ring cathode segment with nanostructure as electron emitter
DE60221057T2 (en) Production process for carbon fibers and uses
DE3039283C2 (en)
WO1995023424A1 (en) Field-emission cathode and method of manufacturing it
DE2628584A1 (en) FIELD EMISSION CATHODE AND METHOD OF MANUFACTURING IT
DE60037027T2 (en) ELECTRO-EMITTING AND INSULATING PARTICLES CONTAINING FIELD EMISSIONS CATHODES
DE112016001009B4 (en) Emitter, emitter using electron gun, electronic device using electron gun, and method of manufacturing the emitter
WO2005117058A1 (en) High-dose x-ray tube
EP0432528A2 (en) Process for the production of hard carbon layers and apparatus for carrying out the process
DE2906285A1 (en) SEMICONDUCTOR EMITTERS FOR ION SOURCES AND METHOD AND DEVICE FOR PRODUCING THE SAME
DE112016007170B4 (en) Electron beam device
AT408157B (en) METHOD FOR PRODUCING A FIELD EMISSION DISPLAY
EP1157402B1 (en) Electron emitter and method for producing the same
WO2018158422A1 (en) Apparatus for generating accelerated electrons
EP2092542A2 (en) Field emission device
DE19850217C1 (en) Coating of substrates in vacuum involves using a porous target which also functions for intermediate storage and/or passage of a gas or a gas mixture being supplied to the plasma
EP0757370A1 (en) Electric discharge tube or discharge lamp and scandate dispenser cathode
DE602004008812T2 (en) Electron-emitting device, electron source and image display device
WO2009030435A1 (en) Method for the production of dlc layers and doped polymers or diamond-like carbon layers
DE69829502T2 (en) ION-SHAPED GRAPHITE COATED WIRE ELECTRON MIXER
DE102017205417A1 (en) Process for forming a layer formed with polycrystalline or monocrystalline diamond
DE10005057C2 (en) Field emission tips

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IL JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000912394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017010531

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 603064

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09914435

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017010531

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000912394

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000912394

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017010531

Country of ref document: KR