WO2000046299A1 - Aromatic polycarbonate resin composition - Google Patents

Aromatic polycarbonate resin composition Download PDF

Info

Publication number
WO2000046299A1
WO2000046299A1 PCT/JP2000/000681 JP0000681W WO0046299A1 WO 2000046299 A1 WO2000046299 A1 WO 2000046299A1 JP 0000681 W JP0000681 W JP 0000681W WO 0046299 A1 WO0046299 A1 WO 0046299A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polymer
aromatic
flame retardant
component
Prior art date
Application number
PCT/JP2000/000681
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Nishihara
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to DE10080144T priority Critical patent/DE10080144T1/en
Publication of WO2000046299A1 publication Critical patent/WO2000046299A1/en
Priority to US09/717,060 priority patent/US6790887B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to an aromatic polycarbonate resin composition. More specifically, the present invention provides (A) a resin mixture of an aromatic polycarbonate or an aromatic polycarbonate and at least one other organic polymer resin; Or a cyclic aromatic group-containing silicone compound, wherein the component (B) contains a specific amount of an aromatic group.
  • the polycarbonate resin composition of the present invention not only has excellent flame retardancy, but also has excellent melt fluidity and stability during melt molding (quality stability of molded articles). Furthermore, when the polycarbonate resin composition of the present invention is molded, a molded article having excellent mechanical properties, light resistance, and appearance can be obtained. Conventional technology
  • Polycarbonate is used in a wide range of fields, including automobile parts, home appliances parts, and ⁇ A equipment parts, because of its light weight and excellent impact resistance. Its use is limited. : As a method of making a resin flame-retardant, it is known to add a halogen-based, phosphorus-based, or inorganic-based flame retardant to the resin, thereby achieving a certain degree of flame retardancy. . However, in recent years, the demand for fire safety has been greatly increased, and advanced flame retardant technology has been developed. In addition, environmental problems and mechanical properties of resin molded products have also been increased. There is a strong demand for technological development that does not lead to a decline.
  • Japanese Unexamined Patent Publication No. 63-41565 discloses a smoke suppressant comprising hydrocarbon, silicon and zinc borate, and is disclosed in U.S. Pat. No. 7,925,5 and U.S. Pat. Nos. 4,387,176 disclose a flame-retardant resin composition containing dimethyl silicone.
  • the silicones described in the above publications have a very low aromatic group content (less than 5 mol%).
  • a flame retardant containing silicone having a low aromatic group content is blended with an aromatic group-containing resin to form a resin composition, the silicone has low compatibility with the resin.
  • the resin composition is phase-separated, and therefore, when the resin composition is molded, there are problems such as a decrease in mechanical properties such as impact resistance of the resulting molded article, and there is room for improvement in practical use.
  • Japanese Patent Application Laid-Open No. 63-1662756 discloses a resin composition for the purpose of improving abrasion, comprising aromatic poly-carbonate, polyolefin and silicone fluid. I have. In this gazette The silicones described also have very low aromatics content.
  • the resin compositions disclosed in this publication are also disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 63-41565, and the above-mentioned U.S. Pat. Nos. 4,497,925 and U.S. Pat. There was a problem similar to that of Japanese Patent Publication No. 87,176.
  • Japanese Patent Application Laid-Open Nos. H10-139964 and H11-140294 describe flame retardant compositions containing branched and Z- or cross-linked methylphenylsilicone.
  • Aromatic polycarbonate] A resin composition is disclosed.
  • the above methylphenylsilicone has a branched structure and / or a crosslinked structure, so that it has low compatibility with aromatic polycarbonate-based resins, and thus has poor dispersibility in the resin composition. was there.
  • the aromatic polycarbonate resin composition disclosed in this publication has another problem such as inferior flame retardancy.
  • methylphenylsilicone which has no branched or cross-linked structure, used as oil for diffusion pumps or oils for high-temperature oil baths.
  • silicones have been combined with aromatic polycarbonates to excel. There is no report that a polycarbonate composition having both the above-mentioned flame retardancy and mechanical properties was obtained.
  • a composition of polyphenylene ether and phenylsiloxane JP-A-5-76080
  • the product flame retardant is a linear aromatic group-containing polyorganosiloxane, which uses polyphenylene ether as the power resin, and is inferior in impact strength and light resistance, and solves the problem of polycarbonate. It does not disclose any technology that does. Summary of the Invention
  • the present inventor has not only the above-mentioned problems, but also excellent flame retardancy, excellent melt fluidity and stability during melt molding (quality of molded products).
  • the present inventors have conducted intensive studies to develop a poly-carbonate-based resin composition which can be advantageously used in the production of molded articles having excellent mechanical properties, light resistance and appearance.
  • the result is a straight-chain or cyclic aromatic group-containing silicone compound having a specific structure, which has a specific amount of aromatic group. It has been found that not only the flame retardancy can be dramatically improved, but also the physical properties other than the flame retardancy can be improved.
  • the present invention has been completed based on this finding.
  • the main object of the present invention is not only to have excellent flame retardancy, but also to have excellent melt fluidity and stability during melt molding (quality stability of molded articles) and mechanical properties
  • An object of the present invention is to provide an aromatic polycarbonate resin composition which can be advantageously used for producing a molded article having excellent light resistance and appearance.
  • an aromatic polycarbonate and a resin mixture of an aromatic polycarbonate and at least one other organic polymer resin are selected, and the aromatic polycarbonate of the resin mixture is selected from the group consisting of: 100 parts by weight of a resin component having a bone content of 50% by weight or more and (B) 0.1 to 100 parts by weight of a linear or cyclic aromatic group-containing silicone compound;
  • the aromatic group-containing silicone compound (B) is represented by the following formula (1) ′:
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent C i —C sa hydrocarbon group
  • R 3 and R 4 are each independently a hydrogen atom or monovalent or divalent C 2 . Wherein R 3 and R 4 are each independently divalent —C 2 . R 3 and R 4 are divalent at the same time and are bonded to each other Forming a ring;
  • At least one of R 1 , R 2 , R 3 and R 4 is C 6 —C 2 .
  • the aromatic group has a valency as defined above for RR 2 , R 3 or R 4 ;
  • n 1 or more, expressed as a number average n value.
  • the above polymer as the component (B) includes a monomer, a polymer or a mixture thereof represented by the following formula (2):
  • the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer, and In this case, the copolymer is a random copolymer, a block copolymer or an alternating copolymer,
  • the amount of the aromatic group in the component (B) is 5 to 100 mol% based on the total molar amount of R 1 R 2 , R 3 and R 4 ;
  • an aromatic polycarbonate resin composition characterized by the following features: Is done.
  • the aromatic group-containing silicone compound (B) has the following formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent C i —C 2. Hydrocarbon group
  • R 3 and R 4 are each independently a hydrogen atom or monovalent or divalent mono C 2 . Wherein R 3 and R 4 are each independently a divalent C 1 -C 1. When representing a hydrocarbon group of R 3 and And R 4 are simultaneously divalent and are linked to each other
  • RR 2 one at least of the R 3 and R 4 are C 6
  • n is 1 or more, expressed as a number average n value.
  • the polymer as the component (B) is represented by the following formula (2):
  • the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer.
  • the copolymer is a random copolymer, a block copolymer or an alternating copolymer,
  • An aromatic polycarbonate-based resin composition comprising:
  • the flame retardant (C) is at least one flame retardant selected from metal salt flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicon flame retardants, inorganic flame retardants, and fluorine flame retardants. 5.
  • the resin composition according to the above item 5 wherein the metal salt-based flame retardant is a metal salt of an organic sulfur compound. 7. The resin composition according to the above item 6, wherein the metal salt of the organic sulfur compound is a metal salt of an organic sulfonic acid.
  • the nitrogen-based flame retardant is at least one member selected from the group consisting of triazine-based compounds, triazole-based compounds, tetrazole-based compounds, phosphazene-based compounds, and diazo-based compounds.
  • the resin component (A) is composed of an aromatic polycarbonate, an aromatic vinyl polymer, an olefin polymer, a polyester polymer, a polyamide polymer, and a polyphenylene ether. 10.
  • the aromatic polycarbonate resin composition of the present invention is selected from the group consisting of (A) a aromatic polycarbonate and a resin mixture of an aromatic polycarbonate and at least one other organic polymer resin.
  • the aromatic polycarbonate content of the resin mixture is 50% by weight or more
  • the component (B) not only acts as a flame retardant for the resin component (A), but also provides the resin composition with excellent melt fluidity and stability during melt molding (quality stability of molded articles). And an effect of improving the mechanical properties, light resistance and appearance of a molded article of the resin composition.
  • the component (B) forms a silica coating on the surface of the molded product as soon as the composition of the present invention, in particular, the molded product starts burning, and the resin component (A) Improve the flame retardancy of
  • the component (B) can dramatically improve the flame retardancy of the resin component (A).
  • the reasons for the improvement in flame retardancy are considered as follows. .
  • the component (B) contains an aromatic group, the compatibility with the resin component (A) is improved, and as a result of the component (B) being finely dispersed in the resin component (A), the resin is dramatically improved.
  • the flame retardancy of the composition is improved.
  • the component (B) is a linear or cyclic aromatic group-containing silicone compound having no branched structure and no cross-linked structure, the molded product obtained from the resin composition of the present invention can be obtained.
  • the gas begins to burn, the molecular motion of the component (B) is activated, and the compatibility between the component (B) and the resin component (A) is improved. Therefore, the siloxane group and the resin component ( The reaction with the carbonate group of A) is promoted. to this Thus, the combustion of the resin component (A) is suppressed.
  • the silicon atom contained in the component (B) is an element having a low surface energy
  • the component (B) segregates on the surface of a molded article obtained from the resin composition of the present invention.
  • the component (B) is a linear or cyclic compound having no branched structure and no crosslinked structure
  • the mobility of the component (B) to the surface of the molded article is promoted.
  • the molded article obtained from the resin composition of the present invention starts burning, a high concentration of the component (B) is present on the surface, and excellent flame retardancy is exhibited. 5 O A (Angstrom) especially from the surface of the compact
  • the ratio of CZC 2 to (%) is 2 to 100, the molded product becomes an excellent flame retardant material.
  • the aromatic polycarbonate (hereinafter often referred to as “PC:”) used for the resin component (A) may be one or more different types of bifunctional phenolic compounds contained therein. Any of aromatic homopolycarbonate and aromatic copolycarbonate obtained by the above method may be used.
  • a phosgene method in which phosgene is blown into a bifunctional phenolic compound in the presence of caustic alkali and a solvent, or, for example, transesterification of a bifunctional phenolic compound with getyl carbonate in the presence of a catalyst Transesterification method It can be.
  • bifunctional phenolic compounds examples include 2,2'-bis (4-hydroxyphenyl) propane, 2,2'-bis (4-hydroxy-3,5-dimethylphenyl) propane, bis ( 4—Hydroxyphenyl) methane, 1,1′-bis (4—hydroxyphenyl) ethane, 2,2′-bis (4—hydroxyphenyl) butane, 2,2′-bis (4—hydroxy-3 , 5 —diphenyl) butane, 2,2'-bis (4-hydroxy35-dipropylpyrphenyl) propane, 1,1'-bis (4-hydroxyphenyl) cyclohexane, 1-phenyl-1, 1'-bis (4-hydroxyphenyl) ethane and the like, and 2,2'-bis (4-hydroxyphenyl) propane, which is known as bisphenol A, is particularly preferable.
  • the bifunctional phenolic compound may be used alone or in combination.
  • the PC preferably has a viscosity-average molecular weight in the range of 10,000 to 100,000.
  • the viscosity-average molecular weight of PC can be measured by gel permeation chromatography (GPC).
  • the PC content of the resin mixture is 50% by weight or more, preferably 70% by weight or more.
  • organic polymer resins other than PC examples include thermoplastic resins other than PC, rubbery polymers, and thermosetting resins. Among them, thermoplastic resins other than PC and rubbery polymers are preferred, and thermoplastic resins other than PC are particularly preferred.
  • thermoplastic resin other than the above-mentioned PC is not particularly limited as long as it can be dispersed uniformly with the PC.
  • aromatic vinyl polymer, polyphenylene ether polymer, olefin polymer, polyvinyl chloride polymer, polyamide polymer, polyester polymer, polyphenylene sulfide Polymers, polymethacrylate polymers, epoxy polymers, etc., or a mixture of two or more of them can be used.
  • the aromatic vinyl resin which can be used in the resin mixture as the component (A.) is a rubber-modified aromatic vinyl resin and a Z- or non-rubber-modified aromatic vinyl resin, particularly a rubber-modified aromatic resin. It is preferable that the resin be composed of a vinyl-based resin alone or a rubber-modified aromatic vinyl-based resin and a non-rubber-modified aromatic vinyl-based resin, and is not particularly limited as long as it can be uniformly dispersed with PC. Further, the rubber-modified aromatic pinyl-based polymer refers to a polymer in which a rubber component for modification is dispersed in a matrix composed of an aromatic vinyl-based polymer in the form of particles.
  • polystyrene examples include impact-resistant polystyrene (HIPS), ABS polymer (acrylonitrile-butadiene-styrene copolymer), AAS polymer (Acrylonitrile).
  • HIPS impact-resistant polystyrene
  • ABS polymer acrylonitrile-butadiene-styrene copolymer
  • AAS polymer Acrylonitrile
  • acrylic rubber-styrene copolymer examples include an acrylic rubber-styrene copolymer and an AES polymer (acrylonitrile ethylene propylene rubber-styrene copolymer).
  • the modifying rubber component preferably has a glass transition temperature (T g) of ⁇ 30 ° C. or lower, and if it exceeds 130 ° C., a molded article obtained from the composition of the present invention The impact resistance tends to decrease.
  • T g glass transition temperature
  • the glass transition temperature should be measured by the differential scanning calorimetry (DSC) described in the "Polymer Handbook" (edited by J. Brandrup, A Wiley-Interscience Publication, John Wiley S Sons, New York (1975)). Can be.
  • Examples of such rubber components for modification include gen-based rubbers such as polybutadiene, poly (styrene-butadiene), and poly (acrylonitrile butadiene); saturated rubber obtained by hydrogenating the gen rubber; and isoprene rubber. , Chloroprene rubber, acrylic rubbers such as polybutyl acrylate, ethylene-propylene copolymer rubber, ethylene-propylene-monomer terpolymer rubber (EPDM), ethylene-octene copolymer Rubber etc. Gen-based rubbers are particularly preferred.
  • the aromatic vinyl monomer as an essential component in the graft-polymerizable monomer mixture to be polymerized in the presence of the above-mentioned rubber component for modification is, for example, styrene, ⁇ -methylstyrene, paramethylstyrene, etc. Yes, styrene is most preferred, but the above-mentioned other aromatic vinyl monomers may be copolymerized mainly with styrene.
  • one or more other monomer components as described below, which can be copolymerized with an aromatic vinyl monomer can be introduced as desired.
  • an unsaturated nitrile monomer such as acrylonitrile and methacrylonitrile can be used.
  • an acrylate ester having an alkyl group having 1 to 8 carbon atoms can be used.
  • a monomer such as acrylic acid, methacrylic acid, maleic anhydride, or ⁇ -substituted maleimide is copolymerized. May be.
  • the heat resistance can also be increased by using ⁇ -methylstyrene as at least a part of the aromatic vinyl monomer.
  • the content of the other monomer copolymerizable with the aromatic vinyl monomer in the polymerizable monomer mixture which is polymerized in the presence of the rubber component for modification described above is 0 to 40. % By weight.
  • the rubber component for modification in the rubber-modified aromatic vinyl polymer Preferably from 5 to 80% by weight, particularly preferably from 10 to 50% by weight, the graft-polymerizable monomer mixture is preferably from 95 to 20% by weight, more preferably from 90 to 90% by weight. It is in the range of 50% by weight. Within this range, the balance between impact resistance and rigidity of a molded article obtained from the composition of the present invention is improved. Further, the rubber-modified aromatic vinyl-based polymer has a rubber average particle diameter of preferably from 0.1 to 5.0 ⁇ m, and particularly preferably from 0.2 to 3.0 m. Within the above range, the impact resistance of a molded article obtained from the composition of the present invention is particularly improved.
  • Reduced viscosity of the polymer part which is a measure of the molecular weight of the rubber-modified aromatic vinyl polymer 7] sp / c (0.5 gd1, 30 ° C measurement: toluene when the matrix resin is polystyrene
  • sp / c 0.5 gd1, 30 ° C measurement: toluene when the matrix resin is polystyrene
  • the solution or the matrix resin is an unsaturated ditolyl-aromatic vinyl copolymer, use methylethyl ketone
  • Means for satisfying the above requirements for sp / c include adjustment of polymerization initiator amount, polymerization temperature, chain transfer agent amount, and the like. .
  • Syndiotactic styrene polymer which is a crystalline styrene polymer is preferable.
  • Syndiotactic styrene-based polymers have superior heat and chemical resistance characteristics compared to ordinary amorphous, atactic polystyrene. However, it is brittle and has poor impact resistance.
  • Syndiotactic structure means that the stereochemical structure is a syndiotactic structure, that is, a steric structure in which phenyl groups, which are side chains, are alternately located in the opposite direction to the polymer main chain formed from carbon-carbon bonds.
  • the tacticity one is quantified Ri by the nuclear magnetic resonance method according to carbon isotope (1 3 C-NMR method).
  • styrenic polymers include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (alkoxy styrene), poly (vinyl benzoic acid), and mixtures thereof, or a mixture thereof.
  • poly (alkylstyrene) include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), and poly (Yuichi-Shearylstyrene), and poly (halogenated styrene). Examples include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene), and the like. Examples of the poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene).
  • polystyrene poly (p-methylstyrene), poly (m-methylstyrene), poly (p-short-butylstyrene), poly (p-chlorostyrene), and poly (m —Chlorosperene), poly (p-fluorostyrene), and a copolymer of styrene and p-methylstyrene.
  • HIPS impact-resistant polystyrene
  • ABS polymer acrylonitrile-butadiene-styrene copolymer
  • compatibilizer a styrene-based copolymer described in WO95-353346 as a compatibilizer.
  • the polyphenylene ether resin which can be used in the resin mixture as the component (A) includes poly (2,6-dimethyl-1,4-phenylene).
  • PPE polyphenylene ether resin
  • the method for producing such PPE is not particularly limited, and examples thereof include a method for preparing a mixture of a cuprous salt and an amine by the method described in US Patent No. 3,306,874. It can be easily produced by oxidative polymerization of 2,6-xylenol using a plex as a catalyst.
  • U.S. Pat. No. 3,306,875 and U.S. Pat. No. 7, 357, U.S. Pat. No. 3,257, 358, Japanese Patent Publication No. 52-17880, and Japanese Patent Publication No. 50-511197 It can be easily manufactured by the method described.
  • the reduced viscosity of the above PPE is 7 sp / c (0.5 g / d 1, close-form solution, measured at 30 ° C). It should be in the range of 0.20 to 0.70 d 1 Zg. And preferably in the range of 0.30 to 0.60 dl Z g Is more preferred.
  • Means for adjusting the reduced viscosity of PPE to 77 sp / c; in the above-mentioned preferred range include means for adjusting the amount of catalyst in the production of PPE.
  • olefin-based polymer which can be used as an organic polymer resin other than PC in the resin mixture as the component (A)
  • a propylene-based resin is preferable, and a homo-isotactic polypropylene and propylene are preferred.
  • other ⁇ -olefins such as ethylene, butene-11, pentene-11, hexene-11, etc. (including block and random).
  • olefin polymer is a mixture obtained by mixing a crosslinkable rubber component and an olefin polymer and a polymer, for example, by melt-kneading in the presence of a crosslinking agent and a crosslinking assistant.
  • an ethylene ' ⁇ -olefin copolymer or a hydrogenated gen-based rubber is preferable.
  • ethylene- ⁇ one-year-old olefin copolymers ethylene and ⁇ -olefins having 3 to 20 carbon atoms are more preferable, and particularly ethylene and ⁇ -olefin having 6 to 1 carbon atoms produced using a meta-open catalyst.
  • the ⁇ -olefin copolymer of No. 2 is preferred because of its narrow molecular weight distribution.
  • random hydrogenated gen-based rubbers in which 50% or more of the total double bonds of the gen-based rubber are hydrogenated are preferable.
  • gen-based rubber is hydrogenated with 90% or more of the total double bonds, and 1,2—vinyl bonds after hydrogenation are 5% or less, and 1,4-bonds after hydrogenation are 5% or less. Certain random hydrogenated gen rubbers are more preferred.
  • an aromatic vinyl unit can be contained in the gen-based rubber.
  • the glass transition temperature (T g) of the rubber-like polymer is ⁇ 30 °. ⁇ It is preferable that the following is satisfied. If the Tg of the rubber-like polymer exceeds ⁇ 30 ° C., the impact resistance of the molded article obtained from the composition of the present invention tends to decrease.
  • Examples of such rubbery polymers include gen-based rubbers such as polybutadiene, poly (styrene-butadiene), and poly (acrylonitrile-butadiene); saturated rubbers obtained by hydrogenating the gen rubber; Acrylic rubbers such as isoprene rubber, chloroprene rubber, and polybutyl acrylate; ethylene-propylene copolymer rubber; ethylene-propylene-gen monomer terpolymer rubber (EPDM); Examples thereof include crosslinked rubber or non-crosslinked rubber such as butene copolymer rubber, and a thermoplastic elastomer containing the above rubber component.
  • gen-based rubbers such as polybutadiene, poly (styrene-butadiene), and poly (acrylonitrile-butadiene); saturated rubbers obtained by hydrogenating the gen rubber
  • Acrylic rubbers such as isoprene rubber, chloroprene rubber, and polybutyl acrylate
  • thermoplastic elastomers an aromatic vinyl-based thermoplastic elastomer is particularly preferable, and a block copolymer comprising an aromatic vinyl unit and a conjugated gen unit, or the conjugated gen unit portion A partially hydrogenated or epoxy-modified block copolymer or the like can be used.
  • thermoplastic elastomer By blending the above-mentioned thermoplastic elastomer into PC, it is possible to solve the problem that the impact strength is reduced when PC is formed into a thick molded body. At that time, by further blending the styrene-based copolymer as a compatibilizer, excellent impact strength is exhibited.
  • Examples of the aromatic vinyl monomer used to form the aromatic vinyl unit constituting the block copolymer include styrene, ⁇ -methylstyrene, paramethylstyrene, ⁇ -chlorostyrene, ⁇ -bromostyrene, 4, 5-tribromostyrene, etc., of which styrene is most preferred, but styrene may be the main component and other aromatic vinyl monomers may be copolymerized.
  • Examples of the conjugated diene monomer used to form the conjugated diene unit constituting the copolymer include 1,3-butanediene and isoprene.
  • a polymer block composed of an aromatic vinyl unit is represented by S
  • a polymer block composed of a conjugated gen and / or a partially hydrogenated unit thereof is represented by S.
  • X is a residue of a coupling agent such as silicon tetrachloride, tin tetrachloride, polyepoxy compound, etc.)
  • X part is the connection center It is preferably a star (star) blog copolymer.
  • a linear one block copolymer of SB type 2, SBS type 3, and SBSB type 4 is preferable.
  • thermosetting resins that can be used as an organic fluoropolymer resin other than PC in the resin mixture as the component (A) include phenol resins, amino resins, melamine resins, and imido resins. And epoxy polymers.
  • the weight average molecular weight of the organic polymer resin other than PC is preferably 50,000 to 1,000,000, and 100,000 to 500,000. More preferably, it is 0 0.
  • a particularly preferred example of the resin mixture as the resin component (A) is a mixture of PC and the above-mentioned aromatic vinyl polymer.
  • the aromatic group-containing silicone compound (B) has the following formula (1):
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent —C 2. Hydrocarbon group
  • R 3 and R 4 are each independently a hydrogen atom or monovalent or divalent —C 2 . Wherein R 3 and R 4 are each independently a divalent mono-C 2 . R 3 and R 4 are divalent at the same time, and combine with each other to form a ring;
  • RR 2 one at least of the R 3 and R 4 are C 6 one C 2.
  • the aromatic group has a valency as defined above for RR 2 , R 3 or R 4 ;
  • n 1 or more, expressed as a number average n value.
  • the above polymer as the component (B) includes a monomer, a polymer or a mixture thereof represented by the following formula (2):
  • R 1 and R 2 are each as defined in the formula (1).
  • the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer, and In this case, the copolymer is a random copolymer, a block copolymer or an alternating copolymer,
  • the amount of the aromatic group in the component (B) is from 5 to 100 mol% based on the total molar amount of RR 2 , R 3 and R 4 .
  • non-aromatic hydrocarbon group that can be contained in the component (B)
  • a methyl group, an ethyl group, and a butyl group are preferable, and a methyl group is more preferable.
  • the aromatic group in the component (B) is preferably a phenyl group.
  • the component (B) is a bifunctional D unit represented by the following formula (3) described in "Silicon Handbook" (edited by Nikkan Kogyo Shimbun, Kunio Ito (1990), Japan). Is a silicone compound having a linear or cyclic structure.
  • the silicone compound used as the component (B) in the present invention does not contain a structural unit that forms a branched structure or a crosslinked structure.
  • the flame retardancy of the resin component (A) cannot be sufficiently improved.
  • Branched or bridged structures Examples of the structural unit that forms the structure include a trifunctional T unit represented by the following formula (4) described in the above “Silicon Handbook”.
  • Fat component (A) 0.1 to 100 parts by weight, preferably 0.10 parts by weight, more preferably 1 to 5 parts by weight based on 100 parts by weight of component (B).
  • Ri Ah is necessary for the total moles of R 4 is a 5-1 0 0 mol%, preferably 1 0-9 0 mol%, further preferred properly 2 0-9 0 mol%, and most preferably 3 0 ⁇ 90 mol%.
  • N in the above formula (1) is preferably at least 10 and more preferably at least 100.
  • the aromatic group-containing silicone compound used as the component (B) preferably has a kinematic viscosity measured at 25 ° C. of 100 centistokes or more in accordance with JIS-K240, more preferably It is at least 300 centistokes, most preferably at least 1000 centistokes. The kinematic viscosity is 100 centi-cents. When full, component (B) becomes volatile and may not be desirable.
  • the upper limit of the kinematic viscosity of the component (B) is not particularly limited, and may be a gum that exceeds the measurement limit (1, 000, 000 centistokes).
  • the component (B) a mixture of a plurality of different aromatic group-containing silicone compounds satisfying the requirements of the present invention can be used.
  • the component (B) is a silicone compound containing the aromatic group in an amount of 5 mol% to less than 50 mol% based on the total molar amount of R 1 , R 2 , R 3 and R 4 ; It is preferably a mixture with a silicone compound containing 50% by mole or more of the aromatic group based on the total moles of RR 2 , R 3 and R 4 .
  • the above-mentioned silicone compound containing an aromatic group in an amount of 50 mol% or more is extremely advantageous for obtaining the excellent effects of the present invention, but is relatively expensive.
  • the above-mentioned silicone compound containing an aromatic group in an amount of 5 mol% to less than 50 mol% and the above-mentioned silicone compound containing an aromatic group in an amount of 50 mol% or more are mixed. It is preferred to use as component (B).
  • composition of the present invention may further contain (C) 0.001 to 100 parts by weight of a flame retardant.
  • Flame retardants (C) include silicon-based flame retardants, metal-salt-based flame retardants, halogen-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, inorganic flame retardants, fibrous flame retardants, and char forming. At least one flame retardant selected from agents can be used. Of the above flame retardants (C), Silicone flame retardants, metal salt flame retardants, phosphorus flame retardants, nitrogen flame retardants, and inorganic flame retardants are particularly preferred.
  • silicon-based flame retardant polyorganosiloxane (silicon, organic silicate, etc.) other than the silicone-based compound used as the component (B), silica, and the like can be used.
  • Polyorganosiloxane is classified into oil, resin, and rubber according to their properties.
  • the polyorganosiloxane that can be used as the silicon-based flame retardant (C) in the present invention is a structural unit described in the above-mentioned “Silicon Had Book”, that is, M represented by monofunctional R 3 Si 2.
  • R 0 which contained 4 S i 0 2 represented by Q units, and alkoxy groups or ⁇ Li bite alkoxy group functional S at least one selected from the group consisting of an X unit represented by i O 2.0 and a Y unit represented by (RO) 2 Si 0 3.0 (R is a hydrocarbon having 1 to 20 carbon atoms)
  • R is a hydrocarbon having 1 to 20 carbon atoms
  • Such a polyorganosiloxane is a polyorganosiloxane having an oily branched structure or a silicone resin having a three-dimensional network structure.
  • the rubbery polyorganosiloxane is a vulcanized product of a high molecular weight gum-like linear polydiorganosiloxane.
  • the flame retardant (C) a modified form of the above-mentioned polyorganosiloxane or a complex with another substance may be used.
  • the body include a modified polyorganosiloxane modified with an epoxy, amino, mercapto, methyl group or the like.
  • the above-mentioned composite include a polycarbonate (PC) -silicon copolymer, an acrylic rubber-silicon composite, and the like.
  • R in the polyorganosiloxane that can be used as the flame retardant (C) is a hydrocarbon group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, a butyl group, a phenyl group, or a benzyl group. Groups are preferred, and a methyl group and a phenyl group are particularly preferred.
  • the phenyl group is contained in an amount of 5 to 100 mol% based on the total molar amount of R.
  • Such a polyorganosiloxane not only has excellent compatibility with aromatic resins such as PC, but also improves the water resistance and thermal stability of the composition of the present invention.
  • Silica one of the silicon-based flame retardants, is amorphous silicon dioxide.
  • a hydrocarbon-based compound-coated silica obtained by treating the silica surface with a hydrocarbon-based silane-capping agent is preferable, and a vinyl-containing hydrocarbon-based compound-coated silica is more preferable.
  • silane coupling agents examples include p-styrilyltrimethoxysilane, vinyltrichlorosilane, vinyltris (jSmethoxylethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, Ryoichi Vinyl group-containing silanes such as methacryloxyprovir trimethoxyxylane, ⁇ - (3,4 epoxy Epoxysilanes such as (cyclohexyl) ethyl trimethoxysilane, aglycidoxypropyl trimethoxysilane, and aglycidoxypropyl triethoxysilane; and N— ⁇ (aminoethyl) aminopropyl Aminosilanes such as built-in trimethoxysilane, ⁇ -3 (aminoethyl) aminopropylmethyldimethoxysilane, amiaminopropyl triethoxysilane, and phenylaminopropyl
  • the treatment of the silane coupling agent on the silica surface is roughly classified into a wet method and a dry method.
  • the wet method is a method in which silica is treated in a silane coupling agent solution and then dried.
  • the dry method is a method in which silica is charged into a device capable of high-speed stirring such as a Henschel mixer, and the silane-based printing agent solution is slowly dropped while stirring, followed by heat treatment. .
  • the metal salt-based flame retardant as the flame retardant (C) is preferably an organic sulfur compound metal salt.
  • organic sulfur compounds include potassium tribenzene sulfonic acid, potassium perfluorobutanesulfonic acid, potassium disulfonic acid-3-sulfonic acid, and the like.
  • Organic sulfonic acid metal salts are exemplified.
  • metal salt-based flame retardants aromatic sulfonimide metal salts
  • a contained aromatic organic polymer can be used.
  • Alkali metals and alkaline earth metals can be used as the metals of the above metal salts.
  • Such a metal salt-based flame retardant promotes a decarboxylation reaction at the time of burning a molded article obtained from the composition of the present invention, and improves flame retardancy.
  • a metal sulfonate-containing aromatic organic polymer is particularly preferred.
  • the aromatic organic polymer containing a metal sulfonic acid salt is used as the flame retardant (C)
  • the metal sulfonic acid salt becomes a cross-linking point and forms a carbonized film when the molded product obtained from the composition of the present invention is burned.
  • halogen-based flame retardants examples include bisphenol phenol, aromatic halogen compounds, halogenated polycarbonate, halogenated aromatic vinyl polymer, and halogenated halogenated flame retardant.
  • examples include cyanurate resin and halogenated polyphenylene ether.
  • decabromodiphenyloxyside, tetrabromobisphenol A, an oligomer of tetrabromobisphenol A bisphenol bromide phenolic resin, bisphenol bromide polycarbonate, bromide Polystyrene, brominated cross-linked polystyrene, polyphenylene bromide, polydibromophenylene oxide, condensate of decabromdiphenyloxide with bisphenol, halogenated phosphoric acid ester It is preferable to use a fluorine resin or the like.
  • Examples of the phosphorus-based flame retardant as the flame retardant (C) include organic phosphorus compounds, red phosphorus, and inorganic phosphorus salts.
  • organic phosphorus compound examples include phosphine, phosphoxide, biphosphine, phosphonium salt, phosphinate, phosphinate, phosphite and the like. More specific examples include triphenyl phosphate, methyl neopentyl phosphite, henyl erythritol getyl diphosphite methyl neopentyl phosphonate, phenyl neopentyl phosphite Erythritol phenyldiphenyl diphosphate, dicyclopentyl hypophosphite, dineopentyl hypophosphite, phenylpyrophosphate phosphite, ethylpyrocatechol phosphate, zipiro Catechol hypothetic phosphate is an example.
  • organic phosphorus compound an aromatic phosphate ester monomer or an aromatic phosphate ester condensate is particularly preferred.
  • aromatic phosphate ester monomers among the aromatic phosphate ester monomers, those described in U.S. Pat. Phosphoric acid ester monomers or aromatic phosphoric acid ester monomers containing one or two or more phenolic hydroxyl groups in cresyl phosphate, triphenyl phosphate and the like are preferred. Or a long-chain alkyl such as tris (nonylphenyl) phosphate described in WO96-27736 Preferred is an aromatic phosphate ester monomer containing a hydroxyl group.
  • bisphenol A bis (diphenyl phosphate), bisphenol A bis (diphenyl phosphate), resorcinol bis (diphenyl phosphate) and the like are preferable.
  • an aromatic phosphoric acid ester condensate produced by a method disclosed in Japanese Patent Application Laid-Open No. 5-17979 or the like is also preferable as the organic phosphorus compound.
  • a monofunctional phenol substituted at the 2- and 6-positions is reacted with oxyhalogenated phosphorus in the presence of a Lewis acid catalyst to obtain diaryl phosphorohalide, and then to obtain the resulting diaryl phosphorohalide.
  • the aromatic phosphate condensate obtained by reacting the compound with a bifunctional phenol in the presence of a Lewis acid catalyst can be suitably used as a phosphorus-based flame retardant.
  • Red phosphorus one of the phosphorus-based flame retardants mentioned above, is selected from aluminum hydroxide, magnesium hydroxide, zinc hydroxide, and titanium hydroxide in advance, in addition to ordinary red phosphorus.
  • Coated with a coating of a metal hydroxide to be coated coated with a coating of a metal hydroxide selected from aluminum hydroxide, magnesium hydroxide, zinc hydroxide, titanium hydroxide, and a thermosetting resin Or a double-coated thermosetting resin film on a metal hydroxide film selected from aluminum hydroxide, magnesium hydroxide, zinc hydroxide, and titanium hydroxide. is there.
  • inorganic phosphate used as the above phosphorus flame retardant For example, ammonium phosphate is used.
  • the nitrogen-based flame retardant includes at least one selected from the group consisting of triazine-based compounds, triazole-based compounds, tetrazole-based compounds, phosphazene-based compounds, and diazo-based compounds. Seeds can be used.
  • triazine-based compounds include melamine, melamine, melem, melon (a product of deammonification of three molecules from three molecules of melem at 600 ° C. or higher), melamine cyanide Melamine phosphate, succinoguanamine, adipoguanamine, methylglutalogamine, melamine resin, BT resin, and the like, and melamine cyanurate are particularly preferred from the viewpoint of low volatility.
  • triazole-based compound examples include triazole, methyltriazole, and phenyltriazole.
  • the phosphazene compound as a nitrogen-based flame retardant is not particularly limited as long as it has a structure in which a phosphorus atom and a nitrogen atom are connected by a double bond, and examples thereof include cyclic phosphazene and linear phosphazene.
  • phosphazenes phosphazenes containing an aromatic group as a substituent are preferred from the viewpoint of compatibility with aromatic polycarbonate. In terms of structure, linear phosphazene is preferred.
  • cyclic phosphazene examples include propoxyphosphazene, phenoxyphosphazene, aminophosphazene, and full Specific examples of linear phosphazenes include polyarylphosphazenes such as polyphenylphenylphosphazene, polyaryloxyphosphazenes such as polydiphenoxyphosphazene, polydiaminophosphazenes, and the like. And polydifluoroalkylphosphazene. These phosphazene compounds are produced by substituting the clog phosphazene with alcohols or phenols.
  • Te Torazo Ichiru compounds as nitrogen-based flame retardant 5 - full ⁇ two ruthenate Torazo Ichiru, 5, 5 '- Bisute Torazoru 2 Anmoniumu salt 5, 5' - Bisute Torazo Ichiru 2 amino Nogua two gin salt, 5, 5 '— bisestrazole piperazine salt, azoviste torazole 2 guanidine salt, azoviste tolazole 2 amino guanidine salt and the like.
  • diazo compounds examples include azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, and polyvinylazodicarboxylate.
  • inorganic flame retardants examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and basic magnesium carbonate.
  • Hydrates of inorganic metal compounds such as hydrates of zirconium hydroxide, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, Bismuth oxide, acid Metal oxides such as chromium oxide, tin oxide, antimony oxide, nickel oxide, copper oxide, tungsten oxide, aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper , Tungsten, tin, antimony and other metal powders, zinc borate, zinc metaborate, barium metaborate, zinc carbonate, magnesium carbonate, calcium carbonate, and barium carbonate. These may be used alone or in combination of two or more. Among
  • Fibrous flame retardant as flame retardant (C) is a flame retardant used to prevent dripping of fire, and becomes fibrous when added or processed. Specific examples thereof include aramide fiber, polyacrylonitrile fiber, and fluororesin.
  • the above-mentioned aramide fiber preferably has an average diameter of 1 to 500 m and an average fiber length of 0.1 to 10 mm, and is preferably made of isophthalamide or polyparaphenylene terephthalamide. It can be produced by dissolving in a basic solvent or sulfuric acid and spinning the solution by a wet or dry method.
  • the polyacrylonitrile fiber as the fibrous flame retardant preferably has an average diameter of 1 to 500 m, an average fiber length of 0.1 to 10 mm, and dimethylformamide.
  • Dry spinning in which the polymer is dissolved in a solvent such as Is produced by a wet spinning method in which a polymer is dissolved in a solvent such as nitric acid and wet-spun in water.
  • the fluororesin as the fibrous flame retardant is a resin containing a fluorine atom in the resin.
  • a resin containing a fluorine atom in the resin include polymonofluoroethylene, polydifluoroethylene, polytrifluoroethylene, polytetrafluoroethylene, tetrafluoroethylene Z-hexafluoropropylene copolymer, and the like.
  • the fluorine-based resin may be obtained by copolymerizing a fluorine-containing monomer with a monomer which can be combined with the fluorine-containing monomer.
  • other methods for producing a fluororesin include melt-kneading a fluororesin, a thermoplastic resin, and a dispersant, if desired, to prepare a masterbatch, and then prepare a thermoplastic resin.
  • a two-step process for producing a master batch is preferable.
  • the novolak resin as a char forming agent one of the flame retardants (C), is an acid catalyst such as sulfuric acid or hydrochloric acid for phenols and aldehydes. Is a phenolic novolak resin obtained by condensation in the presence of water.
  • the phenols used in the production of novolak resins include phenol, 0—cresol, m—cresol, p—cresol, 2,5—dimethyl, 3,5—dimethyl, and 2 , 3, 5 — trimethylol, 3, 4, 5 — trimethyl-1, p-t — butyl, p — n — octyl, p — stearyl, ⁇ — fenuru, p — (2 — Phenylethyl), o—isopropyl—, p—isopropyl, m—isopropyl, p—methoxy, and p—phenoxyphenol, pyrocatechol, resorcinol, nose Quinone, salicylaldehyde, salicylic acid, p—hydroxybenzoic acid, methyl p—hydroxybenzoate, p—cyano—, and 0—cyanophenol, p—hydroxybenzenesulfonic acid, p
  • the aldehydes used in the production of novolak resins include formaldehyde, acetate aldehyde, n-propanal, n-butane nar, isopropanal, isobutyl aldehyde, 3-methylene n-butanal, benzaldehyde, p-tolylaldehyde, 2-phenylphenylaldehyde, etc.
  • the amount of the flame retardant (C) in the composition of the present invention is preferably 0.01 to 100 parts by weight, more preferably 1 to 100 parts by weight, based on 100 parts by weight of the resin component (A). To 50 parts by weight, more preferably 3 to 20 parts by weight, and most preferably 5 to 15 parts by weight.
  • composition of the present invention may further contain (D) a processing aid, if desired.
  • Processing aids (D) include aliphatic hydrocarbons, higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty alcohols, metal stones, organosiloxane-based waxes, polyolefin waxes, and polyproprolactones. At least one kind of mold release agent or melt flowability improver selected from the following can be used.
  • the amount of the processing aid (D) is preferably from 0.01 to 20 parts by weight, more preferably from 0.5 to 10 parts by weight, based on 100 parts by weight of the resin component (A). Most preferably, it is 1 to 5 parts by weight.
  • the molded article obtained from the composition of the present invention has high light resistance.
  • a lightfastness improver can be added to the composition of the present invention, if desired.
  • the lightfastness improver (E) is at least one selected from ultraviolet absorbers, hindered amine light stabilizers, antioxidants, active species scavengers, light-blocking agents, metal deactivators, and quenchers. Seeds can be used.
  • the amount of the light fastness improver (E) is preferably from 0.05 to 20 parts by weight, more preferably from 0 ::! To 100 parts by weight of the resin component (A). It is 10 parts by weight, most preferably 1 to 5 parts by weight.
  • Examples of the method for producing the resin composition of the present invention include a method in which the resin components (A) and (B) are mixed and melt-kneaded with an extruder.
  • the resin component (A) is first melted, and then (B) Ingredients are added and melt-kneaded in the same extruder.
  • the masterbatch after preparing a masterbatch in which the (B) component is blended with the resin component (A), the masterbatch and the remaining resin component (A) or There is a method of kneading the remaining component (B) or another flame retardant.
  • a twin-screw extruder As an extruder used in the method for producing the resin composition of the present invention, a twin-screw extruder is preferable, and the ratio L ZD of the screw length L to the cylinder inner diameter D is 20 to 50. It has two or more supply openings, namely a main feed opening and a side feed opening which differ in the distance from the tip of the twin-screw extruder. A knee portion between the end portions and between the tip portion and the supply opening at a distance close to the tip portion, and the length of the two-sided portion is 3D to 10D, respectively. But preferable.
  • the resin composition of the present invention As a preferable example of the resin composition of the present invention, as the resin component (A), 100 parts by weight of an aromatic polycarbonate alone or a mixture of an aromatic polycarbonate and an aromatic vinyl-based resin; 0.1 to 100 parts by weight of methylphenylsilicone oil which satisfies the requirements of the present invention described above, and an organic metal sulfonate such as potassium diphenylsulfon-3-sulfonic acid as a flame retardant (C). Examples thereof include a resin composition containing 0.001 to 10 parts by weight of a salt and a phosphazene compound, and 0.0001 to 10 parts by weight of polytetrafluoroethylene. This resin composition has particularly excellent balance properties of flame retardancy, continuous moldability, moldability (melt fluidity), impact resistance, and heat resistance.
  • the resin composition of the present invention may be, for example, a force obtained by melt-blending each of the above components with a commercially available single-screw extruder, twin-screw extruder, or the like.
  • Agents, lubricants, fillers, reinforcing agents such as glass fibers, coloring agents such as dyes and pigments, and the like can be added.
  • composition of the present invention thus obtained can be continuously molded for a long period of time using an injection molding machine or an extrusion molding machine, and the obtained molded article has flame retardancy, heat resistance and heat resistance.
  • the impact resistance is excellent.
  • the Izocl impact strength of a 1/8 inch test piece and a 1Z4 inch test piece was measured by the measurement method described in the above section (2), and the ratio was used as an index of thickness dependence. The closer the ratio is to 1, the less the thickness dependence, and the more stable the impact strength is.
  • melt molding stability ⁇ Molded product quality stability> Using a melt extruder, the resin composition was continuously melt-extruded for 10 hours, and the Izod impact strength of the molded product obtained every hour was measured, and the change rate (%) from the average strength was continuously measured. We evaluated melt molding stability (stability of molded product quality), which is an indicator of productivity.
  • the melt fluidity index was measured by a method in accordance with ASTM-D1238. It was determined from the extrusion rate (g / 10 minutes) per 10 minutes under the conditions of a load of 10 kg and a melting temperature of 260.
  • the SP value was calculated from the Fedors equation described in Polymer Engineering and Science, 14, (2), 147 (1974), and the data of ⁇ e 1 and ⁇ V 1 summarized in the literature.
  • ⁇ e 1 is the cohesive energy per unit functional group
  • ⁇ V 1 is the molecular volume per unit functional group
  • the unit of ⁇ is
  • the SP value of the copolymer or blend is assumed to satisfy the addition rule.For copolymers, the SP value of the monomer unit is used, or for blends, the SP value of each component is used. Calculated by proportional distribution of weight ratio, and this was used as the average SP value.
  • the light resistance test was performed by a method based on JISK 7102 using an ATLAS CI35W Weatherometer manufactured by ATLAS Electric Devices Co., USA as a light resistance tester. Irradiation conditions were as follows: internal temperature of the test machine was 55 ° (: 55% humidity, no rain, xenon light (wavelength: 340 nm, energy: 0.3 OW / m 2 ), 300 hours, Japan Using the SM Color Computer Model SM-3 manufactured by Koku Suga Test Instruments Co., Ltd., the color difference ⁇ E of the molded body before and after the test was determined by the L. a. B. Method, and the color tone change was evaluated. The smaller the is, the higher the light resistance.
  • the components used in Examples and Comparative Examples are as follows.
  • components (B) used in the comparative examples do not satisfy the requirements for the component (B) of the aromatic polycarbonate resin composition of the present invention. For convenience, these components are also used as the components (B). component Classified into
  • PC bisphenol A type polycarbonate
  • HIPS rubber-modified polystyrene (polybutadiene Z-postylene weight ratio: 10Z90) (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: Styron) (hereinafter referred to as HIPS) was used.
  • ABS resin ABS resin
  • ABS resin acrylonitrile polybutadiene styrene weight ratio: 24Z20Z56
  • SUIRAC ABS trade name: SUIRAC ABS
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • m-SEBS maleic anhydride-modified styrene-ethylene-petit A styrene-styrene copolymer (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: Tuftec) (hereinafter referred to as m-SEBS) was used.
  • SB styrene-butadiene copolymer
  • ESB epoxy-modified styrene-butadiene copolymer
  • Syndiotactic polystyrene (SPS) having a melting point of 270 ° C and a weight average molecular weight of 320,000 was used.
  • PPE polyphenylene ether
  • PP polypropylene
  • Ethylene-octene copolymer (E ⁇ ) was used.
  • Commercially available ethylene-octene copolymer (Dupont, USA Dowelas Toma One; product name: Engage) (hereinafter referred to as EII).
  • the styrene copolymer produced by the following method was used as a compatibilizer.
  • the polymerization liquid was led to a devolatilizer at 230 ° C. to remove unreacted monomers and a solvent to obtain a random copolymer (hereinafter referred to as AS-1).
  • AS-1 a random copolymer
  • the obtained copolymer was analyzed by the method described in W95-35-346.
  • the ratio of the monomer components of the copolymer was 6% by weight of acrylonitrile unit and 94% by weight of styrene unit, and the average SP value was 10.75 (single amount).
  • the ratio of body components is determined by infrared absorption spectroscopy).
  • the distribution of the ratio of the monomer components of the copolymer was measured by liquid chromatography analysis to find that the acrylonitrile unit was 0 to 12% by weight.
  • the maximum SP value of the copolymer molecule was 11.0, the minimum SP value was 10.5, and the ⁇ SP value was 0.5.
  • PBT Polybutylene terephthalate
  • Epoxy polymer A commercially available thermoplastic non-halogen-substituted epoxy polymer (manufactured by Asahi Chiba Co., Ltd., Japan (hereinafter referred to as EP)) was used.
  • PA polyamide resin
  • KSS diphenyl sulfone 3-sulfonic acid
  • FBK potassium perfluorobutanesulfonate
  • FP resorcinol-derived aromatic condensed phosphoric acid ester
  • PTFE Polytetrafluoroethylene
  • MC Melamine cyanurate
  • PPP Polydiphenoxyphosphazene (melting point: 110 ° C.) (hereinafter referred to as PPP) was used.
  • HAP Hexakis (acryloyl ethoxy) phosphine
  • a screw a two-section screw having a kneading part before and after the inlet was used.
  • a molded body was produced by injection molding at a cylinder set temperature of 270 ° C. and a mold temperature of 60 ° C. under the following conditions, and was evaluated.
  • the results are shown in Tables 1 and 2.
  • Tables 1 and 2 in the resin composition of the aromatic polycarbonate and the silicon-based compound, even in the silicon-based compound silicone, the D-unit was more than the branched or cross-linked silicone resin having the T unit.
  • the resin composition according to the present invention which comprises a linear silicone having only 5 units and containing an aromatic group in an amount of 5 mol% or more, as the component (B), has not only excellent flame retardancy but also excellent melting properties.
  • a composition was prepared and evaluated in the same manner as in Example 1 except that the resin composition was changed as shown in Tables 3 to 6. The results are shown in Tables 3-6.
  • flame retardants selected from metal salts, phosphorus-based, silicon-based, silicon-based, inorganic-based, and fluorine-based flame retardants as the flame retardant (C) are added to the composition of the present invention. It can be seen that the properties are further improved.
  • a composition was prepared and evaluated in the same manner as in Example 1, except that the composition of the composition was changed as shown in Table 7.
  • Table 7 shows the results. According to Table 7, as long as the requirement of the component (B) of the composition of the present invention is satisfied, the silicone compound containing an aromatic group in an amount of 5 mol% to less than 50 mol% and the aromatic group in an amount of 50 mol% It can be seen that various excellent effects of the present invention are exhibited even when mixtures having various ratios with a silicon compound containing at least mol% are used as the component (B).
  • the meanings of the abbreviations in Tables 1 to 7 are as follows.
  • PC aromatic polycarbonate
  • PPE polyphenylene ether
  • HIPS rubber-modified polystyrene
  • ABS ABS resin
  • SEBS Styrene-ethylene-butylene-styrene copolymer
  • m-SEBS maleic anhydride-modified styrene-ethylene-butylene-styrene copolymer
  • S B Styrene-butadiene copolymer
  • ESB Epoxy-modified styrene-butadiene copolymer
  • SPS syndiotactic styrene polymer
  • PP polypropylene
  • PBT polybutylene terephthalate
  • KSS diphenylsulfone-3-potassium sulfonate
  • FBK potassium perfluorinated sulfonate
  • PPPP polydiphenoxyphosphazene
  • HAP Hexakis (acylethoxy) phosphazene '
  • Composition (B) amount-1 0
  • Product D unit / T unit (molar ratio) 1) 100/0 100/0 0/100 10/90 50/50 80/20 phenyl / methyl (molar ratio) 10/90 40/60 60/40 70 / 30 90/10 100/0 60/40 0/100 60/40
  • the flame-retardant materials obtained by using the resin composition of the present invention include VTRs, distribution boards, televisions, audio players, capacitors, household outlets, radio cassettes, video cassettes, video disc players, and the like.

Abstract

An aromatic polycarbonate resin composition, characterized by comprising (A) a resin component selected from among aromatic polycarbonates and mixtures thereof with other organic polymer resins which have aromatic polycarbonate contents of 50 wt. % or above, and (B) a linear or cyclic aromatic silicone component which contains a monomer or polymer represented by general formula (1) or a mixture of both and whose aromatic group content is 5 to 100 % by mole based on the total amount of R1 to R4.

Description

明 細 書 芳香族ポリカーボネー ト系樹脂組成物 技術分野  Description Aromatic polycarbonate resin composition Technical field
本発明は芳香族ポリカーボネー ト系樹脂組成物に関するもの である。 更に詳しく は、 本発明は、 (A ) 芳香族ポリ 力一ボネ — ト又は芳香族ポリカーボネー ト とそれ以外の少なく とも 1種 の有機重合体樹脂との樹脂混合物と、 ( B ) 直鎖状または環状 の芳香族基含有シリ コーン化合物とを含み、 該 ( B ) 成分が芳 香族基を特定の量含有する ことを特徴とする芳香族ポリカーボ ネー ト系樹脂組成物に関する。 本発明のポリカーボネー ト系樹 脂組成物は、 卓越した難燃性を有するのみならず、 優れた溶融 流動性及び溶融成形時の安定性 (成形品の品質安定性) を併せ 持つ。 更に、 本発明のボリカーボネー ト系樹脂組成物を成形す ると、 機械的特性、 耐光性、 及び外観に優れた成形品を得るこ とができる。 従来技術  The present invention relates to an aromatic polycarbonate resin composition. More specifically, the present invention provides (A) a resin mixture of an aromatic polycarbonate or an aromatic polycarbonate and at least one other organic polymer resin; Or a cyclic aromatic group-containing silicone compound, wherein the component (B) contains a specific amount of an aromatic group. The polycarbonate resin composition of the present invention not only has excellent flame retardancy, but also has excellent melt fluidity and stability during melt molding (quality stability of molded articles). Furthermore, when the polycarbonate resin composition of the present invention is molded, a molded article having excellent mechanical properties, light resistance, and appearance can be obtained. Conventional technology
ポリ カーボネー トは、 軽量で、 耐衝撃性に優れている こ とか ら、 自動車部品、 家電部品、 〇 A機器部品を始めとする多岐の 分野で使用されているが、 樹脂の易燃性のためにその用途が制 限されている。: 樹脂の難燃化の方法と しては、 ハロゲン系、 リ ン系、 無機系 の難燃剤を樹脂に添加することが知られており、 それによ り あ る程度難燃化が達成されている。 しかしながら、 近年火災に対 する安全性の要求がとみにク ローズアップされ、 高度な難燃化 技術が開発されてきているが、 それと共に、 更に、 環境上の問 題や樹脂成形品の機械的性質の低下のない技術開発が強く望ま れている。 Polycarbonate is used in a wide range of fields, including automobile parts, home appliances parts, and 〇A equipment parts, because of its light weight and excellent impact resistance. Its use is limited. : As a method of making a resin flame-retardant, it is known to add a halogen-based, phosphorus-based, or inorganic-based flame retardant to the resin, thereby achieving a certain degree of flame retardancy. . However, in recent years, the demand for fire safety has been greatly increased, and advanced flame retardant technology has been developed. In addition, environmental problems and mechanical properties of resin molded products have also been increased. There is a strong demand for technological development that does not lead to a decline.
また、 有機ケィ素化合物を樹脂用の難燃剤として用いる 術 も知られている。 例えば、 日本国特開昭 6 3 - 4 1 5 6 5号公 報には炭化水素、 シリ コ一ン及びホウ酸亜鉛からなる煙抑制剤 一が開示されており、 米国特許第 4 , 4 9 7 , 9 2 5号公報、 米 国特許第 4 , 3 8 7 , 1 7 6号公報にはジメチルシリ コーンを含 有する難燃性樹脂組成物が開示されている。 上記公報に記載さ れているシリ コーンは、 いずれも芳香族基の含有量が非常に低 い ( 5 モル%未満) ものである。 この芳香族基の含有量が低い シリ コーンを含む難燃剤を芳香族基含有樹脂に配合して樹脂組 成物と した場合には、 上記シリ コ一ンが該樹脂との相溶性が低 く樹脂と相分離してしまい、 そのため樹脂組成物を成形した場 合、 得られる成形品の耐衝撃性等の機械的特性が低下するなど の問題があ り、 実用的使用において改良の余地があった。  It is also known to use an organic silicon compound as a flame retardant for a resin. For example, Japanese Unexamined Patent Publication No. 63-41565 discloses a smoke suppressant comprising hydrocarbon, silicon and zinc borate, and is disclosed in U.S. Pat. No. 7,925,5 and U.S. Pat. Nos. 4,387,176 disclose a flame-retardant resin composition containing dimethyl silicone. The silicones described in the above publications have a very low aromatic group content (less than 5 mol%). When a flame retardant containing silicone having a low aromatic group content is blended with an aromatic group-containing resin to form a resin composition, the silicone has low compatibility with the resin. The resin composition is phase-separated, and therefore, when the resin composition is molded, there are problems such as a decrease in mechanical properties such as impact resistance of the resulting molded article, and there is room for improvement in practical use. Was.
日本国特開昭 6 3 — 1 6 2 7 5 6号公報には、 芳香族ポリ力 —ボネー ト、 ポリ オレフィ ン及びシリ コーン流体からなる摩耗 性改良を目的と した樹脂組成物が開示されている。 この公報に 記載されているシリ コーンも、 芳香族基の含有量が非常に低い ものである。 この公報に開示されている樹脂組成物も上記日本 国特開昭 6 3 — 4 1 5 6 5 号公報及び上記米国特許第 4 , 4 9 7 , 9 2 5号公報、米国特許第 4 , 3 8 7 , 1 7 6号公報と同様の 問題があった。 Japanese Patent Application Laid-Open No. 63-1662756 discloses a resin composition for the purpose of improving abrasion, comprising aromatic poly-carbonate, polyolefin and silicone fluid. I have. In this gazette The silicones described also have very low aromatics content. The resin compositions disclosed in this publication are also disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 63-41565, and the above-mentioned U.S. Pat. Nos. 4,497,925 and U.S. Pat. There was a problem similar to that of Japanese Patent Publication No. 87,176.
また、 日本国特開平 1 0 — 1 3 9 9 6 4号、 日本国特開平 1 1 - 1 4 0 2 9 4号公報等には、 分岐及び Z又は架橋メチルフ ェニルシリ コーンを含有する難燃性芳香族ポリカーボネー ]:;系 樹脂組成物が開示されている。 しかし、 上記メチルフエニルシ リ コーンは分岐構造及び //又は架橋構造を有しているために芳 香族ポリカーボネー ト系樹脂との相溶性が低く 、 そのため樹脂 組成物中での分散性が悪いという問題があった。 また、 この公 報に開示されている芳香族ポリカーボネー ト系樹脂組成物は難 燃性が劣るなどの問題もあった。  In addition, Japanese Patent Application Laid-Open Nos. H10-139964 and H11-140294 describe flame retardant compositions containing branched and Z- or cross-linked methylphenylsilicone. Aromatic polycarbonate] :; A resin composition is disclosed. However, the above methylphenylsilicone has a branched structure and / or a crosslinked structure, so that it has low compatibility with aromatic polycarbonate-based resins, and thus has poor dispersibility in the resin composition. was there. In addition, the aromatic polycarbonate resin composition disclosed in this publication has another problem such as inferior flame retardancy.
拡散ポンプ用オイルまたは高温オイルバス用オイルとして用 いられる分岐構造及び架橋構造を有さないメチルフエ二ルシリ コーンも知られている力 現在まで、 上記シリ コーンを芳香族 ポリカーボネー トと組み合わせて、 卓越した難燃性や機械的性 質等を併せ持つポリカーボネー ト組成物を得たという報告はな い。  Also known is methylphenylsilicone, which has no branched or cross-linked structure, used as oil for diffusion pumps or oils for high-temperature oil baths. Until now, the above-mentioned silicones have been combined with aromatic polycarbonates to excel. There is no report that a polycarbonate composition having both the above-mentioned flame retardancy and mechanical properties was obtained.
—方で、ポリ カーボネー ト以外の樹脂との組み合わせと して、 ポリ フエ二レンエーテルとフエニルシロキサンとの組成物 (日 本国特開平 5 — 7 0 6 8 0号公報) が知られている。 上記組成 物の難燃剤は直鎖状の芳香族基含有ポリオルガノ シロキサンで ある力 樹脂と してポリ フエ二レンエーテルを用いている もの であり、 衝撃強度、 耐光性に劣り 、 ポリカーボネー トの問題を 解決する技術を開示するものではない。 発明の概要 On the other hand, as a combination with a resin other than polycarbonate, a composition of polyphenylene ether and phenylsiloxane (JP-A-5-76080) is known. . The above composition The product flame retardant is a linear aromatic group-containing polyorganosiloxane, which uses polyphenylene ether as the power resin, and is inferior in impact strength and light resistance, and solves the problem of polycarbonate. It does not disclose any technology that does. Summary of the Invention
このような状況下、 本発明者は、 上記のような問題点のない、 卓越した難燃性を有するのみならず、 優れた溶融流動性及 '溶 融成形時の安定性 (成形品の品質安定性) を有し且つ機械的特 性、 耐光性及び外観に優れる成形品の製造に有利に用いる こと ができるポリ力一ボネー ト系樹脂組成物を開発すべく鋭意検討 した。 その結果、 特定の構造を有する直鎖状または環状の芳香 族基含有シリ コーン化合物であって、 芳香族基を特定の量で含 有する.シリ コーン化合物が、 驚くべきことに芳香族ポリカーボ ネー トの難燃性を飛躍的に向上させる ことが可能であるのみな らず、 難燃性以外の前記物性をも向上させることが可能である ことを見出した。 この知見に基づき本発明を完成した。  Under such circumstances, the present inventor has not only the above-mentioned problems, but also excellent flame retardancy, excellent melt fluidity and stability during melt molding (quality of molded products). The present inventors have conducted intensive studies to develop a poly-carbonate-based resin composition which can be advantageously used in the production of molded articles having excellent mechanical properties, light resistance and appearance. The result is a straight-chain or cyclic aromatic group-containing silicone compound having a specific structure, which has a specific amount of aromatic group. It has been found that not only the flame retardancy can be dramatically improved, but also the physical properties other than the flame retardancy can be improved. The present invention has been completed based on this finding.
従って、 本発明の主要な目的は、 卓越した難燃性を有するの みならず、 優れた溶融流動性及び溶融成形時の安定性 (成形品 の品質安定性) を有し且つ機械的特性、 耐光性及び外観に優れ る成形品の製造に有利に用いるこ とができる芳香族ポリ カーボ ネー ト系樹脂組成物を提供することにある。  Therefore, the main object of the present invention is not only to have excellent flame retardancy, but also to have excellent melt fluidity and stability during melt molding (quality stability of molded articles) and mechanical properties, An object of the present invention is to provide an aromatic polycarbonate resin composition which can be advantageously used for producing a molded article having excellent light resistance and appearance.
本発明の上記及びその他の諸目的、諸特徴ならびに諸利益は、 以下の詳細な説明及び請求の範囲の記載から明らかになる。 発明の詳細な説明 The above and other objects, features and benefits of the present invention are: It will become apparent from the following detailed description and claims. Detailed description of the invention
本発明によれば、 (A ) 芳香族ポリカーボネー ト及び芳香族 ポリ カーボネー ト とそれ以外の少なく とも 1種の有機重合体樹 脂との樹脂混合物から選ばれ、 該樹脂混合物の芳香族ポリ カー ボネー ト含量が 5 0重量%以上である樹脂成分 1 0 0重量部と ( B )直鎖状または環状の芳香族基含有シリ コーン化合物 0 . 1 〜 1 0 0重量部、  According to the present invention, (A) an aromatic polycarbonate and a resin mixture of an aromatic polycarbonate and at least one other organic polymer resin are selected, and the aromatic polycarbonate of the resin mixture is selected from the group consisting of: 100 parts by weight of a resin component having a bone content of 50% by weight or more and (B) 0.1 to 100 parts by weight of a linear or cyclic aromatic group-containing silicone compound;
とを含み、 And
該芳香族基含有シリ コーン化合物 ( B ) は下記式 ( 1 ) ' :  The aromatic group-containing silicone compound (B) is represented by the following formula (1) ′:
R 1 R 1
R 〇+ S i—〇 R C l ) R 〇 + S i—〇 R C l)
R n  R n
(式中、 R 1及び R 2は各々独立して水素原子あ る いは 1 価の C i — C s a の炭化水素基を表わ し ; (Wherein, R 1 and R 2 each independently represent a hydrogen atom or a monovalent C i —C sa hydrocarbon group;
R 3及び R 4は各々独立して水素原子あるいは 1 価または 2価の 一 C 2。の炭化水素基を 表し、 但し、 R 3及び R 4が各々独立して 2価 の — C 2。の炭化水素基を表す場合、 R 3及 び R 4は同時に 2価であ り、 かつ、 互いに結合 して環を形成し ; R 3 and R 4 are each independently a hydrogen atom or monovalent or divalent C 2 . Wherein R 3 and R 4 are each independently divalent —C 2 . R 3 and R 4 are divalent at the same time and are bonded to each other Forming a ring;
R 1 , R 2 、 R 3及び R 4の少なく とも 1 つは C 6 — C 2。の芳香族基を表わし、 該芳香族基は R R 2 、 R 3または R 4の上記定義による価数を有 し ; そして At least one of R 1 , R 2 , R 3 and R 4 is C 6 —C 2 . Wherein the aromatic group has a valency as defined above for RR 2 , R 3 or R 4 ; and
nは、 数平均 n値で表して 1以上である。 ) で表される単量体、 重合体またはそれらの混合物を包含し 該 ( B ) 成分としての上記重合体は、 下記式 ( 2 ) :  n is 1 or more, expressed as a number average n value. The above polymer as the component (B) includes a monomer, a polymer or a mixture thereof represented by the following formula (2):
( 2 )
Figure imgf000008_0001
(2)
Figure imgf000008_0001
(式中、 1及び1 2は各々式 ( 1 ) におい (Wherein 1 and 1 and 2 respectively represent the formula (1)
て定義した通りである。 )  As defined above. )
で表わされる複数の繰り返し単位を含有し、 該繰り返し単位は 同じでも異なっていてもよく 、 従って該 ( B ) 成分と しての上 記重合体は単独重合体または共重合体であ り、 その際、 該共重 合体は、 ランダム共重合体、 ブロ ック共重合体または交互共重 合体であ り 、 And the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer, and In this case, the copolymer is a random copolymer, a block copolymer or an alternating copolymer,
該 ( B ) 成分中の該芳香族基の量が、 R 1 R 2 、 R 3及び R 4 の全モル量に対して 5〜 1 0 0モル%である、 The amount of the aromatic group in the component (B) is 5 to 100 mol% based on the total molar amount of R 1 R 2 , R 3 and R 4 ;
ことを特徴とする芳香族ポリ カーボネー ト系樹脂組成物が提供 される。 Provided is an aromatic polycarbonate resin composition characterized by the following features: Is done.
次に、 本発明の理解を容易にするために、 まず、 本発明の基 本的特徴及び好ましい諸態様を列挙する。  Next, in order to facilitate understanding of the present invention, first, basic features and preferred embodiments of the present invention will be listed.
1 . ( A) 芳香族ポリカーボネー ト及び芳香族ポリカーボネー ト とそれ以外の少なく とも 1種の有機重合体樹脂との樹脂混合 物から選ばれ、 該樹脂混合物の芳香族ポリカーボネー ト含量が 5 0重量%以上である樹脂成分 1 0 0重量部と、  1. (A) A resin selected from aromatic polycarbonate and a resin mixture of aromatic polycarbonate and at least one other organic polymer resin, wherein the aromatic polycarbonate content of the resin mixture is 5 100 parts by weight of a resin component which is 0% by weight or more,
( B )直鎖状または環状の芳香族基含有シリ コーン化合物 J3.  (B) Linear or cyclic aromatic group-containing silicone compound J3.
1 0 0 i∑I7  1 0 0 i∑I7
とを含み、 And
該芳香族基含有シリ コーン化合物 ( B ) は下記式 ( 1 )  The aromatic group-containing silicone compound (B) has the following formula (1)
R 3—〇 ( 1
Figure imgf000009_0001
R 3 —〇 (1
Figure imgf000009_0001
(式中、 R 1及び R 2は各々独立して水素原子あ る いは 1 価の C i — C 2 。 の炭化水素基を表わ し ; (Wherein, R 1 and R 2 each independently represent a hydrogen atom or a monovalent C i —C 2. Hydrocarbon group;
R 3及び R 4は各々独立して水素原子あるいは 1価または 2価の 一 C 2。の炭化水素基を 表し、 但し、 R 3及び R 4が各々独立して 2価 の C i一 C 。の炭化水素基を表す場合、 R 3及 び R 4は同時に 2価であ り 、 かつ、 互いに結合 R 3 and R 4 are each independently a hydrogen atom or monovalent or divalent mono C 2 . Wherein R 3 and R 4 are each independently a divalent C 1 -C 1. When representing a hydrocarbon group of R 3 and And R 4 are simultaneously divalent and are linked to each other
して環を形成し ;  Forming a ring;
R R 2 、 R 3及び R 4の少なく とも 1つは C 6 RR 2, one at least of the R 3 and R 4 are C 6
一 C 2 Qの芳香族基を表わし、 該芳香族基は R R 2 、 R 3または R 4の上記定義による価数を有 し ; そして Represents a C 2 Q aromatic group, said aromatic group having the valency of RR 2 , R 3 or R 4 as defined above;
nは、 数平均 n値で表して 1以上である。 )  n is 1 or more, expressed as a number average n value. )
で表される単量体、 重合体またはそれらの混合物を包含し Including monomers, polymers or mixtures thereof represented by
該 ( B ) 成分としての上記重合体は、 下記式 ( 2 ) :  The polymer as the component (B) is represented by the following formula (2):
( 2 )
Figure imgf000010_0001
(2)
Figure imgf000010_0001
(式中、 ェ及び尺 ^ま各 式 ( 1 ) におい (Wherein ェ, 及 び and 尺)
て定義した通りである。 )  As defined above. )
で表わされる複数の繰り返し単位を含有し、 該繰り返し単位は 同じでも異なっていてもよく 、 従って該 ( B ) 成分としての上 記重合体は単独重合体または共重合体であ り 、 その際、 該共重 合体は、 ランダム共重合体、 ブロ ック共重合体または交互共重 合体であ り、 And the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer. The copolymer is a random copolymer, a block copolymer or an alternating copolymer,
該 ( B ) 成分中の該芳香族基の量が、 R 1 、 R 2 、 R 3及び R 4 の全モル量に対して 5〜 1 0 0モル%である、 ことを特徴とする芳香族ポリ カーボネー ト系樹脂組成物。 The amount of the aromatic group in the component (B) is 5 to 100 mol% based on the total molar amount of R 1 , R 2 , R 3 and R 4 ; An aromatic polycarbonate-based resin composition, comprising:
2 . ( B ) 成分が、 J I S — K 2 4 1 0 に従い 2 5 °Cで測定し て 1 0 0センチス トークス以上の動粘度を示す前項 1 に記載の 樹脂組成物。 2. The resin composition according to item 1, wherein the component (B) exhibits a kinematic viscosity of 100 centistokes or more when measured at 25 ° C. in accordance with JIS—K2410.
3 . ( B ) 成分が、 該芳香族基を R 1 , R 2 、 R 3及び R 4の全 モル量に対して 5モル% ~ 5 0モル%未満含有するシリ コ ン 化合物と、 該芳香族基を R 1 , R 2 、 R 3及び R 4の全モル量に 対して 5 0 モル%以上含有するシリ コーン化合物との混合物で ある前項 1 または 2 に記載の樹脂組成物。 3. A silicone compound in which the component (B) contains the aromatic group in an amount of 5 mol% to less than 50 mol% based on the total molar amount of R 1 , R 2 , R 3 and R 4 ; 3. The resin composition according to the above item 1 or 2, which is a mixture with a silicon compound containing 50 mol% or more based on the total molar amount of R 1 , R 2 , R 3 and R 4 .
4. 更に ( C ) 難燃剤 0 . 0 0 1 〜 1 0 0重量部を含有する前 項 1 〜.3 のいずれかに記載の樹脂組成物。 4. The resin composition according to any one of items 1 to 0.3, further comprising (C) a flame retardant in an amount of 0.01 to 100 parts by weight.
5 . 難燃剤 ( C ) が金属塩系難燃剤、 リ ン系難燃剤、 窒素系難 燃剤、 ケィ素系難燃剤、 無機系難燃剤及びフッ素系難燃剤から 選ばれる少なく とも 1 種の難燃剤である前項 4 に記載の樹脂組 成物。 5. The flame retardant (C) is at least one flame retardant selected from metal salt flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicon flame retardants, inorganic flame retardants, and fluorine flame retardants. 5. The resin composition according to the above item 4, wherein
6 . 該金属塩系難燃剤が有機硫黄化合物金属塩である前項 5 に 記載の樹脂組成物。 7 . 該有機硫黄化合物金属塩が有機スルホン酸金属塩である前 項 6 に記載の樹脂組成物。 6. The resin composition according to the above item 5, wherein the metal salt-based flame retardant is a metal salt of an organic sulfur compound. 7. The resin composition according to the above item 6, wherein the metal salt of the organic sulfur compound is a metal salt of an organic sulfonic acid.
8 . 該金属塩系難燃剤がスルホン酸金属塩含有芳香族有機重合 体である前項 5 に記載の樹脂組成物。 8. The resin composition according to the above item 5, wherein the metal salt-based flame retardant is an aromatic organic polymer containing a metal sulfonic acid salt.
9 . 該窒素系難燃剤が ト リアジン系化合物、 ト リ ァゾ一ル系化 合物、 テ ト ラゾール系化合物、 ホスファゼン系化合物及びジァ ゾ系化合物からなる群から選ばれる少なく とも 1種である前項 5 に記載の樹脂組成物。 9. The nitrogen-based flame retardant is at least one member selected from the group consisting of triazine-based compounds, triazole-based compounds, tetrazole-based compounds, phosphazene-based compounds, and diazo-based compounds. A certain resin composition according to the preceding item 5.
1 0 . 樹脂成分 ( A ) が芳香族ポリカーボネー ト と、 芳香族ビ ニル系重合体、 ォレフィ ン系重合体、 ポリエステル系重合体、 ポリ ア.ミ ド系重合体、 ポリ フエ二レンエーテル系重合体及びェ ポキシ系重合体からなる群から選ばれる少なく とも 1種の有機 重合体樹脂との樹脂混合物である前項 1 〜 9 のいずれかに記載 の樹脂組成物。 以下、 本発明を詳しく 説明する。 10. The resin component (A) is composed of an aromatic polycarbonate, an aromatic vinyl polymer, an olefin polymer, a polyester polymer, a polyamide polymer, and a polyphenylene ether. 10. The resin composition according to any one of the above items 1 to 9, which is a resin mixture with at least one kind of organic polymer resin selected from the group consisting of a polymer and an epoxy polymer. Hereinafter, the present invention will be described in detail.
本発明の芳香族ポリカーボネー ト系樹脂組成物は、 (A ) 芳 香族ポリ カーボネー ト及び芳香族ポリ カーボネー ト とそれ以外 の少なく とも 1 種の有機重合体樹脂との樹脂混合物から選ばれ 該樹脂混合物の芳香族ポリカーボネー ト含量が 5 0重量%以上 である樹脂成分 1 0 0重量部と、 ( B ) 特定の量の芳香族基を 含有する、 直鎖状または環状の芳香族基含有シリ コーン化合物 0. 1 〜 1 0 0重量部とを含んでなる。 The aromatic polycarbonate resin composition of the present invention is selected from the group consisting of (A) a aromatic polycarbonate and a resin mixture of an aromatic polycarbonate and at least one other organic polymer resin. The aromatic polycarbonate content of the resin mixture is 50% by weight or more (B) a linear or cyclic aromatic group-containing silicone compound containing a specific amount of an aromatic group, in an amount of 0.1 to 100 parts by weight. It becomes.
上記 ( B ) 成分は、 上記樹脂成分 (A) に対する難燃剤とし て作用するのみならず、 樹脂組成物に優れた溶融流動性及び溶 融成形時の安定性 (成形品の品質安定性) を与え、 且つ、 該樹 脂組成物の成形品の機械的特性、 耐光性及び外観を向上する作 用を発揮する。  The component (B) not only acts as a flame retardant for the resin component (A), but also provides the resin composition with excellent melt fluidity and stability during melt molding (quality stability of molded articles). And an effect of improving the mechanical properties, light resistance and appearance of a molded article of the resin composition.
難燃剤と しての作用については、 ( B ) 成分は、 本発明の.組 成物、 特にその成形体が燃焼しはじめると直ぐに、 成形体表面 にシリ カ被膜を形成し樹脂成分 (A) の難燃性を向上させる。  Regarding the action as a flame retardant, the component (B) forms a silica coating on the surface of the molded product as soon as the composition of the present invention, in particular, the molded product starts burning, and the resin component (A) Improve the flame retardancy of
( B ) 成分は、 樹脂成分 (A) の難燃性を飛躍的に向上させる ことができる。 この難燃性の向上の理由は次のように考えられ る。 .  The component (B) can dramatically improve the flame retardancy of the resin component (A). The reasons for the improvement in flame retardancy are considered as follows. .
( B ) 成分は芳香族基を含有する ことによ り、 樹脂成分 (A) との相溶性が向上し、 ( B ) 成分が樹脂成分 (A) に微分散す る結果、 飛躍的に樹脂組成物の難燃性が向上する。 更に、 ( B ) 成分は分岐構造及び架橋構造を有さない直鎖状又は環状の芳香 族基含有シリ コーン化合物である ことによ り、 本発明の樹脂組 成物よ り得られた成形体が燃焼しはじめる と、 ( B ) 成分の分 子運動が活発化されて ( B ) 成分と樹脂成分 (A) との相溶性 が向上するので、 ( B ) 成分が有するシロキサン基と樹脂成分 ( A ) が有するカーボネー ト基との反応が促進される。 これに よ り、 樹脂成分 ( A ) の燃焼を抑制する。 Since the component (B) contains an aromatic group, the compatibility with the resin component (A) is improved, and as a result of the component (B) being finely dispersed in the resin component (A), the resin is dramatically improved. The flame retardancy of the composition is improved. Furthermore, since the component (B) is a linear or cyclic aromatic group-containing silicone compound having no branched structure and no cross-linked structure, the molded product obtained from the resin composition of the present invention can be obtained. When the gas begins to burn, the molecular motion of the component (B) is activated, and the compatibility between the component (B) and the resin component (A) is improved. Therefore, the siloxane group and the resin component ( The reaction with the carbonate group of A) is promoted. to this Thus, the combustion of the resin component (A) is suppressed.
また、 ( B ) 成分が有するケィ素原子は表面エネルギーの低 い元素であるために、 本発明の樹脂組成物から得られた成形体 の表面に ( B ) 成分が偏析する。 これに加えて、 ( B ) 成分が 分岐構造及び架橋構造を有さない直鎖状又は環状化合物である ことによ り、 ( B ) 成分の成形体表面への移動性が促進される。 その結果、 本発明の樹脂組成物よ り得られた成形体が燃焼しは じめると高濃度の ( B ) 成分が表面に存在して卓越した難燃性 が発現する。 特に成形体表面から 5 O A (オングス ト ローム) In addition, since the silicon atom contained in the component (B) is an element having a low surface energy, the component (B) segregates on the surface of a molded article obtained from the resin composition of the present invention. In addition, when the component (B) is a linear or cyclic compound having no branched structure and no crosslinked structure, the mobility of the component (B) to the surface of the molded article is promoted. As a result, when the molded article obtained from the resin composition of the present invention starts burning, a high concentration of the component (B) is present on the surface, and excellent flame retardancy is exhibited. 5 O A (Angstrom) especially from the surface of the compact
( 5 n m) の深さまでの、 ケィ素原子の X線光電子スペク トル 法によって求めた平均濃度 C 1 ( % ) と、 成形体全体のケィ素 原子の蛍光 X線法によって求めた平均濃度 C 2 ( % ) との比で ある C Z C 2が 2〜 1 0 0である場合は、 その成形体は卓越し た難燃.性材料となる。 The average concentration C 1 (%) of silicon atoms determined by X-ray photoelectron spectroscopy up to a depth of (5 nm) and the average concentration C 2 determined by fluorescent X-rays of silicon atoms in the entire molded body When the ratio of CZC 2 to (%) is 2 to 100, the molded product becomes an excellent flame retardant material.
本発明において、 樹脂成分 (A) に用いる芳香族ポリカーボ ネー ト (以下、 屡々 「 P C:」 と称す) は、 含まれる 2官能フエ ノール系化合物について 1種類又は複数の異なった種類を用い る ことによって得られる芳香族ホモポリカーボネー ト及び芳香 族コポリ カーボネー トのいずれでもよい。  In the present invention, the aromatic polycarbonate (hereinafter often referred to as “PC:”) used for the resin component (A) may be one or more different types of bifunctional phenolic compounds contained therein. Any of aromatic homopolycarbonate and aromatic copolycarbonate obtained by the above method may be used.
P Cの製造方法としては、 2官能フエノール系化合物に苛性 アルカ リ及び溶剤の存在下でホスゲンを吹き込むホスゲン法、 あるいは、 例えば、 2官能フエノール系化合物と炭酸ジェチル とを触媒の存在下でエステル交換させるエステル交換法を挙げ る ことができる。 As a method for producing PC, a phosgene method in which phosgene is blown into a bifunctional phenolic compound in the presence of caustic alkali and a solvent, or, for example, transesterification of a bifunctional phenolic compound with getyl carbonate in the presence of a catalyst Transesterification method It can be.
上記 2官能フエノール系化合物の例としては、 2 , 2 ' ー ビ ス ( 4 ーヒ ドロキシフエニル) プロパン、 2 , 2 ' — ビス ( 4 ー ヒ ドロキシ— 3 , 5 —ジメチルフエニル) プロパン、 ビス ( 4 — ヒ ドロキシフエニル) メタン、 1 , 1 ' —ビス ( 4 —ヒ ドロ キシフエニル) ェタン、 2 , 2 ' 一ビス ( 4 — ヒ ドロキシフエ ニル) ブタ ン、 2 , 2 ' 一ビス ( 4 —ヒ ドロキシー 3 , 5 —ジ フエニル) ブタン、 2 , 2 ' 一ビス ( 4 ー ヒ ドロキシー 3 5 ージプロ ピルフエニル) プロパン、 1 , 1 ' — ビス ( 4 — ヒ ド ロキシフエニル) シクロへキサン、 1 —フエ二ルー 1 , 1 ' 一 ビス ( 4 ー ヒ ドロキシフエニル) ェタン等が挙げられ、 特に、 ビスフエノール Aと して知られる 2 , 2 ' —ビス ( 4 —ヒ ドロ キシフエニル) プロパンが好ましい。 本発明において、 前記し たよう.に、 2官能フエノール系化合物は、 単独で用いてもよい し、 あるいはそれらを併用してもよい。  Examples of the above-mentioned bifunctional phenolic compounds include 2,2'-bis (4-hydroxyphenyl) propane, 2,2'-bis (4-hydroxy-3,5-dimethylphenyl) propane, bis ( 4—Hydroxyphenyl) methane, 1,1′-bis (4—hydroxyphenyl) ethane, 2,2′-bis (4—hydroxyphenyl) butane, 2,2′-bis (4—hydroxy-3 , 5 —diphenyl) butane, 2,2'-bis (4-hydroxy35-dipropylpyrphenyl) propane, 1,1'-bis (4-hydroxyphenyl) cyclohexane, 1-phenyl-1, 1'-bis (4-hydroxyphenyl) ethane and the like, and 2,2'-bis (4-hydroxyphenyl) propane, which is known as bisphenol A, is particularly preferable.In the present invention, as described above, the bifunctional phenolic compound may be used alone or in combination.
該 P Cは粘度平均分子量が 1 万〜 1 0万の範囲が好適である < P Cの粘度平均分子量はゲルパーミエーショ ンク ロマ トグラフ ィ ー ( G P C ) によって測定することができる。  The PC preferably has a viscosity-average molecular weight in the range of 10,000 to 100,000. <The viscosity-average molecular weight of PC can be measured by gel permeation chromatography (GPC).
樹脂成分 (A ) と して上記の樹脂混合物を用いる場合、 樹脂 混合物の P C含量は 5 0重量%以上であり、 好ま しく は 7 0重 量%以上である。  When the above resin mixture is used as the resin component (A), the PC content of the resin mixture is 50% by weight or more, preferably 70% by weight or more.
P C以外の有機重合体樹脂の例と しては、 P C以外の熱可塑 性樹脂、 ゴム状重合体、 及び熱硬化性樹脂等が挙げられるが、 その中でも P C以外の熱可塑性樹脂及びゴム状重合体が好まし く 、 P C以外の熱可塑性樹脂が特に好ましい。 Examples of organic polymer resins other than PC include thermoplastic resins other than PC, rubbery polymers, and thermosetting resins. Among them, thermoplastic resins other than PC and rubbery polymers are preferred, and thermoplastic resins other than PC are particularly preferred.
上記の P C以外の熱可塑性樹脂は、 P C と互いに均一分散し 得るものであればと く に制限はない。 例えば、 芳香族ビニル系 重合体、 ポリ フエ二レンエーテル系重合体、 ォレフィ ン系重合 体、 ポリ塩化ビニル系重合体、 ポリ アミ ド系重合体、 ポリ エス テル系重合体、 ポリ フエ二レンスルフィ ド系重合体、 ポリ メタ ク リ レー ト系重合体及びエポキシ系重合体等を単独も しく は二 種以上を混合したものを使用することができる。これらのうち、 芳香族ビニル系重合体、 ォレフィ ン系重合体、 ポリエステル系 重合体、 ポリ アミ ド系重合体、 ポリ フエ二レンエーテル系重合 体、 及びエポキシ系重合体からなる群より選ばれる少なく とも The thermoplastic resin other than the above-mentioned PC is not particularly limited as long as it can be dispersed uniformly with the PC. For example, aromatic vinyl polymer, polyphenylene ether polymer, olefin polymer, polyvinyl chloride polymer, polyamide polymer, polyester polymer, polyphenylene sulfide Polymers, polymethacrylate polymers, epoxy polymers, etc., or a mixture of two or more of them can be used. Of these, at least one selected from the group consisting of an aromatic vinyl polymer, an olefin polymer, a polyester polymer, a polyamide polymer, a polyphenylene ether polymer, and an epoxy polymer. With
1 種を用いる ことが好ましい。 It is preferable to use one kind.
( A.) 成分と しての樹脂混合物に用いることができる上記芳 香族ビニル系樹脂は、 ゴム変性芳香族ビニル系樹脂及び Z又は 非ゴム変性芳香族ビニル系樹脂であり、 特にゴム変性芳香族ビ ニル系樹脂単独またはゴム変性芳香族ビニル系樹脂と非ゴム変 性芳香族ビニル系樹脂からなることが好ましく 、 P C と互いに 均一分散し得るものであれば特に制限はない。 また、 ゴム変性 芳香族ピニル系重合体は、 芳香族ビニル系重合体よ りなるマ ト リ ックス中に変性用ゴム成分が粒子状に分散してなる重合体を いい、 変性用ゴム成分の存在下に、 芳香族ビニル単量体及び所 望によ り、これと共重合可能なビニル単量体を加えて得られる、 変性用ゴム成分にグラフ ト重合可能な単量体混合物を、 公知の 塊状重合、 乳化重合、 懸濁重合等の方法で変性用ゴム成分にグ ラフ 卜重合する ことによ り得られる。 The aromatic vinyl resin which can be used in the resin mixture as the component (A.) is a rubber-modified aromatic vinyl resin and a Z- or non-rubber-modified aromatic vinyl resin, particularly a rubber-modified aromatic resin. It is preferable that the resin be composed of a vinyl-based resin alone or a rubber-modified aromatic vinyl-based resin and a non-rubber-modified aromatic vinyl-based resin, and is not particularly limited as long as it can be uniformly dispersed with PC. Further, the rubber-modified aromatic pinyl-based polymer refers to a polymer in which a rubber component for modification is dispersed in a matrix composed of an aromatic vinyl-based polymer in the form of particles. Below, obtained by adding an aromatic vinyl monomer and, if desired, a vinyl monomer copolymerizable therewith, It can be obtained by subjecting a monomer mixture capable of undergoing graft polymerization to the modifying rubber component to be subjected to graph polymerization to the modifying rubber component by a known method such as bulk polymerization, emulsion polymerization, or suspension polymerization.
このような重合体の例と しては、 耐衝撃性ポリ スチレン (H I P S ) 、 A B S重合体 (アク リ ロニ ト リル一ブタジエン一ス チレン共重合体) 、 AA S重合体.(アク リ ロニ ト リル一ァク リ ルゴムースチレン共重合体) 、 A E S重合体 (ァク リ ロ二 ト リ ルーエチレンプロ ピレンゴム—スチレン共重合体) 等が挙ばら れる。  Examples of such polymers include impact-resistant polystyrene (HIPS), ABS polymer (acrylonitrile-butadiene-styrene copolymer), AAS polymer (Acrylonitrile). Examples include an acrylic rubber-styrene copolymer) and an AES polymer (acrylonitrile ethylene propylene rubber-styrene copolymer).
ここで、 前記変性用ゴム成分は、 ガラス転移温度 ( T g ) が — 3 0 °C以下であることが好ましく 、 一 3 0 °Cを越えると本発 明の組成物よ り得られる成形体の耐衝撃性が低下する傾向にあ る。 ガラス転移温度の測定は "Polymer Handbook" (edited by J. Brandrup, A Wiley-Interscience Publ ication, John Wi ley S Sons, New York ( 1975))に記載の示差走査熱量測定法 (D S C ) によって行う ことができる。  Here, the modifying rubber component preferably has a glass transition temperature (T g) of −30 ° C. or lower, and if it exceeds 130 ° C., a molded article obtained from the composition of the present invention The impact resistance tends to decrease. The glass transition temperature should be measured by the differential scanning calorimetry (DSC) described in the "Polymer Handbook" (edited by J. Brandrup, A Wiley-Interscience Publication, John Wiley S Sons, New York (1975)). Can be.
このような変性用ゴム成分の例と しては、 ポリ ブタジエン、 ポリ (スチレン一ブタジエン) 、 ポリ (アク リ ロニ ト リルーブ タジェン) 等のジェン系ゴム、 上記ジェンゴムを水素添加した 飽和ゴム、 イ ソプレンゴム、 ク ロロプレンゴム、 ポリ アク リル 酸ブチル等のァク リル系ゴム、 エチレン一プロ ピレン共重合体 ゴム、 及びエチレン—プロ ピレン一ジェンモノマー三元共重合 体ゴム ( E P D M) 、 エチレン—ォクテン共重合体ゴム等を挙 げる ことができ、 ジェン系ゴムが特に好ましい。 Examples of such rubber components for modification include gen-based rubbers such as polybutadiene, poly (styrene-butadiene), and poly (acrylonitrile butadiene); saturated rubber obtained by hydrogenating the gen rubber; and isoprene rubber. , Chloroprene rubber, acrylic rubbers such as polybutyl acrylate, ethylene-propylene copolymer rubber, ethylene-propylene-monomer terpolymer rubber (EPDM), ethylene-octene copolymer Rubber etc. Gen-based rubbers are particularly preferred.
上記の変性用ゴム成分の存在下に重合させるグラフ ト重合可 能な単量体混合物中の必須成分の芳香族ビニル単量体は、 例え ば、 スチレン、 α —メチルスチレン、 パラメチルスチレン等で あ り、 スチレンが最も好ましいが、 スチレンを主体に上記他の 芳香族ビニル単量体を共重合してもよい。  The aromatic vinyl monomer as an essential component in the graft-polymerizable monomer mixture to be polymerized in the presence of the above-mentioned rubber component for modification is, for example, styrene, α-methylstyrene, paramethylstyrene, etc. Yes, styrene is most preferred, but the above-mentioned other aromatic vinyl monomers may be copolymerized mainly with styrene.
また、 ゴム変性芳香族ビニル系重合体の成分として、 所望に よ り芳香族ビニル単量体に共重合可能な下記のような他の 量 体成分を一種以上導入することができる。 耐油性を高める必要 のある場合は、 アク リ ロニ ト リル、 メタク リ ロニ ト リル等の不 飽和二 ト リル単量体を用いる ことができる。 そして、 芳香族ビ 二ル単量体とのブレン ド時の溶融粘度を低下させる必要のある 場合は、 炭素'数が 1 ~ 8 のアルキル基を有するアク リル酸エス テルを用いることができる。 また更に、 本発明の樹脂組成物の 耐熱性を更に高める必要のある場合は、 アク リル酸、 メタク リ ル酸、 無水マレイ ン酸、 Ν —置換マレイ ミ ド等の単量体を共重 合してもよい。 なお、 芳香族ビニル単量体の少なく とも一部と して α —メチルスチレンを用いる ことによつても耐熱性を高め る ことができる。  In addition, as a component of the rubber-modified aromatic vinyl polymer, one or more other monomer components as described below, which can be copolymerized with an aromatic vinyl monomer, can be introduced as desired. When it is necessary to increase the oil resistance, an unsaturated nitrile monomer such as acrylonitrile and methacrylonitrile can be used. When it is necessary to lower the melt viscosity at the time of blending with the aromatic vinyl monomer, an acrylate ester having an alkyl group having 1 to 8 carbon atoms can be used. Further, when it is necessary to further increase the heat resistance of the resin composition of the present invention, a monomer such as acrylic acid, methacrylic acid, maleic anhydride, or Ν-substituted maleimide is copolymerized. May be. The heat resistance can also be increased by using α-methylstyrene as at least a part of the aromatic vinyl monomer.
上記の変性用ゴム成分の存在下に重合させるグラフ ト重合可 能な単量体混合物中に占める芳香族ビニル単量体と共重合可能 な上記した他の単量体の含量は 0 ~ 4 0重量%である。  The content of the other monomer copolymerizable with the aromatic vinyl monomer in the polymerizable monomer mixture which is polymerized in the presence of the rubber component for modification described above is 0 to 40. % By weight.
ゴム変性芳香族ビニル系重合体における変性用ゴム成分は、 好ましく は 5〜 8 0重量%、特に好ま しく は 1 0 〜 5 0重量%、 グラフ ト重合可能な単量体混合物は、 好ま しく は 9 5 〜 2 0重 量%、 更に好ましく は 9 0〜 5 0重量%の範囲にある。 こ の範 囲内では、 本発明の組成物よ り得られる成形体の耐衝撃性と剛 性のバランスが向上する。 更には、 ゴム変性芳香族ビニル系重 合体のゴム平均粒子径は、 0 . 1 〜 5 . Ο ΠΙが好ましく 、 特 に 0 . 2〜 3 . 0 mが好適である。 上記範囲内では、 特に本 発明の組成物よ り得られる成形体の耐衝撃性が向上する。 The rubber component for modification in the rubber-modified aromatic vinyl polymer, Preferably from 5 to 80% by weight, particularly preferably from 10 to 50% by weight, the graft-polymerizable monomer mixture is preferably from 95 to 20% by weight, more preferably from 90 to 90% by weight. It is in the range of 50% by weight. Within this range, the balance between impact resistance and rigidity of a molded article obtained from the composition of the present invention is improved. Further, the rubber-modified aromatic vinyl-based polymer has a rubber average particle diameter of preferably from 0.1 to 5.0 μm, and particularly preferably from 0.2 to 3.0 m. Within the above range, the impact resistance of a molded article obtained from the composition of the present invention is particularly improved.
ゴム変性芳香族ビニル系重合体の分子量の尺度である重合体 部分の還元粘度 7] s p / c ( 0 . 5 g d 1 、 3 0 °C測定 : マ ト リ ックス樹脂がポリスチレンの場合は トルエン溶液、 マ ト リ ックス樹脂が不飽和二 ト リル—芳香族ビニル共重合体の場合は メチルェチルケ トンを使用) は、 0 . 3 0〜 0 . 8 0 d l Z g の範囲.にあることが好ま しく 、 0 . ·4 0〜 0 . 6 0 d l / gの 範囲にある ことがよ り好ましい。 ゴム変性芳香族ビニル系樹脂 の還元粘度 7] s p / c に関する上記要件を満たすための手段と しては、 重合開始剤量、 重合温度、 連鎖移動剤量の調整等を挙 げることができる。 Reduced viscosity of the polymer part, which is a measure of the molecular weight of the rubber-modified aromatic vinyl polymer 7] sp / c (0.5 gd1, 30 ° C measurement: toluene when the matrix resin is polystyrene When the solution or the matrix resin is an unsaturated ditolyl-aromatic vinyl copolymer, use methylethyl ketone), preferably in the range of 0.30 to 0.80 dlZg. More preferably, it is in the range of 0.40 to 0.60 dl / g. Reduced viscosity of rubber-modified aromatic vinyl resin 7] Means for satisfying the above requirements for sp / c include adjustment of polymerization initiator amount, polymerization temperature, chain transfer agent amount, and the like. .
上記芳香族ビニル系重合体の中でも、 特に耐熱性、 耐油性が 要求される場合は、 結晶性のスチレン系重合体であるシンジォ タクチックスチレン系重合体が好ま しい。 シンジオタクチック スチレン系重合体は、 通常のアモルファスのァタクチッ クポリ スチレンと比較して耐熱性、 耐薬品性に優れる特徴を有してい るものの、 脆く 、 耐衝撃性に劣る欠点を有している。 シンジォ タクチック構造とは立体化学構造がシンジオタクチック構造、 即ち炭素一炭素結合から形成されるポリマー主鎖に対して側鎖 であるフエニル基が交互に反対方向に位置する立体構造を有す ることを意味してお り、 そのタクティ シティ一は同位体炭素に よる核磁気共鳴法 ( 1 3 C— N M R法) によ り定量される。 この ようなスチレン系重合体は、 ポリ スチレン、 ポリ (アルキルス チレン) 、 ポリ (ハロゲン化スチレン) 、 ポリ (アルコキ ス チレン) 、 ポリ (ビニル安息香酸) 及びこれらの混合物、 ある いはこれらを主成分とする共重合体を意味する。 ポリ (アルキ ルスチレン) としては、 ポリ (メチルスチレン) 、 ポリ (ェチ. ルスチレン) 、 ポリ (イ ソプロ ピルスチレン) 、 ポリ (夕一シ ャ リーブヂルスチレン) 等があ り、 ポリ (ハロゲン化スチレン) と して.は、 ポリ (ク ロロスチレン) 、 ポリ (プロモスチレン) 、 ポリ (フロロスチレン) 等がある。 また、 ポリ (アルコキシス チレン) としてはポリ (メ トキシスチレン) 、 ポリ (エ トキシ スチレン) 等がある。 これらのうち特に好ましいものとして、 ポリスチレン、 ポリ ( p —メチルスチレン) 、 ポリ (m —メチ ルスチレン) 、 ポリ ( p —夕一シャ リーブチルスチレン) 、 ポ リ ( p —ク ロロスチレン) 、 ポリ (m —ク ロロスヂレン) 、 ポ リ ( p —フロロスチレン) 、 さ らにはスチレンと p —メチルス チレンの共重合体を挙げる こ とが出来る。 Among the above aromatic vinyl polymers, when heat resistance and oil resistance are particularly required, a syndiotactic styrene polymer which is a crystalline styrene polymer is preferable. Syndiotactic styrene-based polymers have superior heat and chemical resistance characteristics compared to ordinary amorphous, atactic polystyrene. However, it is brittle and has poor impact resistance. Syndiotactic structure means that the stereochemical structure is a syndiotactic structure, that is, a steric structure in which phenyl groups, which are side chains, are alternately located in the opposite direction to the polymer main chain formed from carbon-carbon bonds. Ri Contact means, the tacticity one is quantified Ri by the nuclear magnetic resonance method according to carbon isotope (1 3 C-NMR method). Such styrenic polymers include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (alkoxy styrene), poly (vinyl benzoic acid), and mixtures thereof, or a mixture thereof. Means a copolymer represented by the formula: Examples of poly (alkylstyrene) include poly (methylstyrene), poly (ethylstyrene), poly (isopropylstyrene), and poly (Yuichi-Shearylstyrene), and poly (halogenated styrene). Examples include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene), and the like. Examples of the poly (alkoxystyrene) include poly (methoxystyrene) and poly (ethoxystyrene). Of these, particularly preferred are polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-short-butylstyrene), poly (p-chlorostyrene), and poly (m —Chlorosperene), poly (p-fluorostyrene), and a copolymer of styrene and p-methylstyrene.
上記芳香族ビニル系樹脂の中でも、耐衝撃性ポリ スチレン( H I P S ) 、 A B S重合体 (アク リ ロニ ト リル一ブタジエン—ス チレン共重合体) が好ま しい。 上記 H I P S を用いる場合には、 P C との相溶性の観点から、 スチレン系共重合体を相溶化剤と して用いることが好ましい。 例えば、 W〇 9 5 - 3 5 3 4 6号 公報記載のスチレン系共重合体を相溶化剤として用いることが 好ましい。 Among the above aromatic vinyl resins, impact-resistant polystyrene (H IPS) and ABS polymer (acrylonitrile-butadiene-styrene copolymer) are preferred. When the above HIPS is used, it is preferable to use a styrene-based copolymer as a compatibilizer from the viewpoint of compatibility with PC. For example, it is preferable to use a styrene-based copolymer described in WO95-353346 as a compatibilizer.
成分 (A) としての樹脂混合物に用いる ことができる上記ポ リ フエ二レンエーテル系樹脂 (以下、 屡々 「 P P E」 と称す) としては、 ポリ ( 2 , 6 —ジメチルー 1 , 4 —フエ二レンェ一 テル) 、 2 , 6 —ジメチルフエノールと 2 , 3 , 6 — ト リ メチ ルフエノールとの共重合体等が好ましく 、 中でもポリ ( 2 , 6 ージメチル— 1 , 4 一フエ二レンエーテル) が好ましい。 かか る P P Eの製造方法は特に限定されるものではなく 、 例えば、 米国特.許第 3 , 3 0 6 , 8 7 4号公報に記載の方法による第一 銅塩とァミ ンのコ ンプレックスを触媒として用い、 例えば 2, 6 —キシレノールを酸化重合する ことによ り容易に製造でき、 そのほかにも米国特許第 3 , 3 0 6 , 8 7 5号公報、 米国特許 第 3 , 2 5 7 , 3 5 7号公報、 米国特許 3 , 2 5 7 , 3 5 8号 公報、 特公昭 5 2 — 1 7 8 8 0号公報、 及び特開昭 5 0 — 5 1 1 9 7号公報に記載された方法で容易に製造できる。 上記 P P Eの還元粘度 7 s p / c ( 0 . 5 g / d 1 、 ク ロ口ホルム溶液、 3 0 °C測定) は、 0 . 2 0 〜 0 . 7 0 d 1 Z gの範囲にあるこ とが好ましく 、 0 . 3 0 〜 0 . 6 0 d l Z gの範囲にある こと がよ り好ましい。 P P Eの還元粘度 77 s p / c; を上記の好ま し い範囲にするための手段としては、 上記 P P Eの製造の際の触 媒量の調整などの手段を挙げるこ とができる。 The polyphenylene ether resin (hereinafter often referred to as “PPE”) which can be used in the resin mixture as the component (A) includes poly (2,6-dimethyl-1,4-phenylene). Ter), a copolymer of 2,6—dimethylphenol and 2,3,6—trimethylphenol, and the like are preferred, and poly (2,6-dimethyl-1,4-phenylene ether) is particularly preferred. The method for producing such PPE is not particularly limited, and examples thereof include a method for preparing a mixture of a cuprous salt and an amine by the method described in US Patent No. 3,306,874. It can be easily produced by oxidative polymerization of 2,6-xylenol using a plex as a catalyst. In addition, U.S. Pat. No. 3,306,875 and U.S. Pat. No. 7, 357, U.S. Pat. No. 3,257, 358, Japanese Patent Publication No. 52-17880, and Japanese Patent Publication No. 50-511197. It can be easily manufactured by the method described. The reduced viscosity of the above PPE is 7 sp / c (0.5 g / d 1, close-form solution, measured at 30 ° C). It should be in the range of 0.20 to 0.70 d 1 Zg. And preferably in the range of 0.30 to 0.60 dl Z g Is more preferred. Means for adjusting the reduced viscosity of PPE to 77 sp / c; in the above-mentioned preferred range include means for adjusting the amount of catalyst in the production of PPE.
( A ) 成分と しての樹脂混合物における P C以外の有機重合 体樹脂として用いることができる上記ォレフィ ン系重合体とし ては、 プロ ピレン系樹脂が好ましく 、 ホモのアイ ソ夕クチック ポリ プロピレン、 プロピレンとエチレン、 ブテン一 1 、 ペンテ ン一 1 、 へキセン一 1等の他の α —ォレフィ ンとのアイソ夕ク チック共重合樹脂 (ブロック、 ランダムを含む) 等が挙げられ る。  As the above-mentioned olefin-based polymer which can be used as an organic polymer resin other than PC in the resin mixture as the component (A), a propylene-based resin is preferable, and a homo-isotactic polypropylene and propylene are preferred. And other α-olefins such as ethylene, butene-11, pentene-11, hexene-11, etc. (including block and random).
上記ォレフィ ン系重合体として特に好ましいのは、 架橋性ゴ ム成分とォレフィ ン系重合,体とを混合して得られる混合物を、 例えば架橋剤、 架橋助剤の存在下に溶融混練することによって 動的に架橋処理する ことによ り製造するこ とができる、 部分的 または完全に架橋された熱可塑性重合体である。  Particularly preferred as the above-mentioned olefin polymer is a mixture obtained by mixing a crosslinkable rubber component and an olefin polymer and a polymer, for example, by melt-kneading in the presence of a crosslinking agent and a crosslinking assistant. A partially or completely crosslinked thermoplastic polymer that can be produced by dynamically crosslinking.
上記架橋性ゴム成分としては、 エチレン ' α —ォレフィ ン共 重合体または水素添加ジェン系ゴムが好ま しい。 エチレン - α 一才レフィ ン共重合体の中でも、 エチレンおよび炭素数が 3 〜 2 0 の α —ォレフィ ンが更に好ま しく 、 特にメタ 口セン触媒を 用いて製造されたエチレン一炭素数 6 〜 1 2 の α —ォレフィ ン 共重合体は分子量分布が狭いため好ましい。 また水素添加ジェ ン系ゴムの中でも、 ジェン系ゴムの全二重結合の 5 0 %以上が 水素添加されたランダム水素添加ジェン系ゴムが好ま しく 、 更 にはジェン系ゴムの全二重結合の 9 0 %以上が水素添加され、 かつ水素添加後の 1 , 2 — ビニル結合が 5 %以下、水素添加後の 1 , 4 一結合が 5 %以下であるラ ンダム水素添加ジェン系ゴム がよ り好ま しい。 ここで、 ジェン系ゴムに芳香族ビニル単位を 含有させることができる。 As the crosslinkable rubber component, an ethylene 'α-olefin copolymer or a hydrogenated gen-based rubber is preferable. Among ethylene-α one-year-old olefin copolymers, ethylene and α-olefins having 3 to 20 carbon atoms are more preferable, and particularly ethylene and α-olefin having 6 to 1 carbon atoms produced using a meta-open catalyst. The α-olefin copolymer of No. 2 is preferred because of its narrow molecular weight distribution. Further, among hydrogenated gen-based rubbers, random hydrogenated gen-based rubbers in which 50% or more of the total double bonds of the gen-based rubber are hydrogenated are preferable. Of the gen-based rubber is hydrogenated with 90% or more of the total double bonds, and 1,2—vinyl bonds after hydrogenation are 5% or less, and 1,4-bonds after hydrogenation are 5% or less. Certain random hydrogenated gen rubbers are more preferred. Here, an aromatic vinyl unit can be contained in the gen-based rubber.
本発明において、 樹脂成分 (A ) としての上記樹脂混合物に おける P C以外の有機重合体樹脂としてゴム状重合体を用いる 場合は、 ゴム状重合体のガラス転移温度 ( T g ) がー 3 0 °ς以 下であることが好ましい。 ゴム状重合体の T gがー 3 0 °Cを越 えると本発明の組成物よ り得られる成形体の耐衝撃性が低下す る傾向にある。  In the present invention, when a rubber-like polymer is used as the organic polymer resin other than PC in the above resin mixture as the resin component (A), the glass transition temperature (T g) of the rubber-like polymer is −30 °. ς It is preferable that the following is satisfied. If the Tg of the rubber-like polymer exceeds −30 ° C., the impact resistance of the molded article obtained from the composition of the present invention tends to decrease.
このようなゴム状重合体の例としては、 ポリ ブタジエン、 ポ リ (スチレン一ブタジエン) 、 ポリ (アク リ ロニ ト リル一ブタ ジェン) 等のジェン系ゴム、 上記ジェンゴムを水素添加した飽 和ゴム、 イ ソプレンゴム、 ク ロ ロプレンゴム、 ポリ アク リル酸 ブチル等のァク リル系ゴム、 エチレン—プロ ピレン共重合体ゴ ム、 エチレン—プロ ピレン—ジェンモノマー三元共重合体ゴム ( E P D M ) 、 エチレンーォクテン共重合体ゴム等の架橋ゴム または非架橋ゴム、 及び上記ゴム成分を含有する熱可塑性エラ ス トマ一等を挙げることができる。  Examples of such rubbery polymers include gen-based rubbers such as polybutadiene, poly (styrene-butadiene), and poly (acrylonitrile-butadiene); saturated rubbers obtained by hydrogenating the gen rubber; Acrylic rubbers such as isoprene rubber, chloroprene rubber, and polybutyl acrylate; ethylene-propylene copolymer rubber; ethylene-propylene-gen monomer terpolymer rubber (EPDM); Examples thereof include crosslinked rubber or non-crosslinked rubber such as butene copolymer rubber, and a thermoplastic elastomer containing the above rubber component.
上記熱可塑性エラス トマ一の中でも特に芳香族ビニル系熱可 塑性エラス トマ一が好ましく 、 芳香族ビニル単位と共役ジェン 単位からなるブロ ック共重合体、 または上記共役ジェン単位部 分が部分的に水素添加またはエポキシ変性されたブロック共重 合体等を用いることができる。 上記熱可塑性エラス トマ一を P Cに配合することによ り、 P Cを厚肉成形体とした時に衝撃強 度が低下するという問題点を解決することができる。 その際に 更に相溶化剤として前記スチレン系共重合体を配合する こ とに よ り、 卓越した衝撃強度が発現する。 Among the above-mentioned thermoplastic elastomers, an aromatic vinyl-based thermoplastic elastomer is particularly preferable, and a block copolymer comprising an aromatic vinyl unit and a conjugated gen unit, or the conjugated gen unit portion A partially hydrogenated or epoxy-modified block copolymer or the like can be used. By blending the above-mentioned thermoplastic elastomer into PC, it is possible to solve the problem that the impact strength is reduced when PC is formed into a thick molded body. At that time, by further blending the styrene-based copolymer as a compatibilizer, excellent impact strength is exhibited.
上記ブロック共重合体を構成する芳香族ビニル単位を形成す るために用いる芳香族ビニル単量体の例として、 スチレン、 α ーメチルスチレン、 パラメチルスチレン、 ρ —ク ロロスチレン、 ρ —プロモスチレン、 2 , 4, 5 — ト リ ブロモスチレン等を挙 げるこ とができ、 そのうちスチレンが最も好ましいが、 スチレ ンを主体に上記以外の芳香族ビニル単量体を共重合してもよい また、 上記ブロック共重合体を構成する共役ジェン単位を形 成する.ために用いる共役ジェン単量体の例として、 1 , 3 —ブ 夕ジェン、 イ ソプレン等を挙げることができる。  Examples of the aromatic vinyl monomer used to form the aromatic vinyl unit constituting the block copolymer include styrene, α-methylstyrene, paramethylstyrene, ρ-chlorostyrene, ρ-bromostyrene, 4, 5-tribromostyrene, etc., of which styrene is most preferred, but styrene may be the main component and other aromatic vinyl monomers may be copolymerized. Examples of the conjugated diene monomer used to form the conjugated diene unit constituting the copolymer include 1,3-butanediene and isoprene.
そして、 ブロック共重合体のブロック構造は、 芳香族ビニル 単位からなる重合体ブロ ックを Sで表示し、 共役ジェン及び またはその部分的に水素添加された単位からなる重合体ブ口ッ クを Βで表示する場合、 S B、 S ( B S ) n 、 (但し、 nは 1 〜 3 の整数) 、 S ( B S B ) n 、 (但し、 nは 1 〜 2 の整数) のリニア一ブロ ック共重合体や、 ( S B ) n X (但し、 nは 3 〜 6 の整数。 Xは四塩化ケィ素、 四塩化スズ、 ポリ エポキシ化 合物等のカ ップリ ング剤残基。 ) で示され、 X部分を結合中心 とする星状 (スター状) ブロ ッグ共重合体である こ とが好まし い。 なかでも S Bの 2型、 S B Sの 3型、 S B S Bの 4型のリ ニァ一ブロック共重合体が好ましい。 For the block structure of the block copolymer, a polymer block composed of an aromatic vinyl unit is represented by S, and a polymer block composed of a conjugated gen and / or a partially hydrogenated unit thereof is represented by S. When displayed as Β, the linear block of SB, S (BS) n (where n is an integer of 1 to 3), and S (BSB) n (where n is an integer of 1 to 2) A polymer or (SB) n X (where n is an integer of 3 to 6; X is a residue of a coupling agent such as silicon tetrachloride, tin tetrachloride, polyepoxy compound, etc.) X part is the connection center It is preferably a star (star) blog copolymer. Among them, a linear one block copolymer of SB type 2, SBS type 3, and SBSB type 4 is preferable.
本発明の組成物に特に高度な溶融流動性が要求される場合に P Cに配合することが好ましい熱可塑性樹脂の例として、 ポリ ブチレンテレフタレー ト、 ポリエチレンテレフ夕 レー ト、 熱可 塑性エポキシ系重合体、 ポリ アミ ド等が挙げられる。  Examples of thermoplastic resins which are preferably blended with PC when particularly high melt fluidity is required for the composition of the present invention include polybutylene terephthalate, polyethylene terephthalate, and thermoplastic epoxy resin. Coalescence, polyamide and the like.
( A) 成分としての樹脂混合物における P C以外の有機熏合 体樹脂として用いることができる上記熱硬化性樹脂の例と して は、 フエノール樹脂、 ァミ ノ樹脂、 メラミ ン樹脂、 イ ミ ド樹脂 及びエポキシ系重合体が挙げられる。  Examples of the above-mentioned thermosetting resins that can be used as an organic fluoropolymer resin other than PC in the resin mixture as the component (A) include phenol resins, amino resins, melamine resins, and imido resins. And epoxy polymers.
上記 P C以外の有機重合体樹脂の重量平均分子量は、 5 0 , 0 0 0〜 1, 0 0 0, 0 0 0であることが好ましく 、 1 0 0 , 0 0 0.〜 5 0 0 , 0 0 0であることが更に好ま しい。  The weight average molecular weight of the organic polymer resin other than PC is preferably 50,000 to 1,000,000, and 100,000 to 500,000. More preferably, it is 0 0.
本発明において、 樹脂成分 ( A ) と しての樹脂混合物の特に 好ましい例として、 P Cと上記芳香族ビニル系重合体との混合 物が挙げられる。  In the present invention, a particularly preferred example of the resin mixture as the resin component (A) is a mixture of PC and the above-mentioned aromatic vinyl polymer.
上記芳香族基含有シリ コーン化合物 ( B ) は下記式 ( 1 ) :  The aromatic group-containing silicone compound (B) has the following formula (1):
R R
R 0 -H S i一〇 + R ( 1 )  R 0 -H S i〇 + R (1)
R 2 n (式中、 R 1及び R 2は各々独立して水素原子あ るいは 1価の — C 2。の炭化水素基を表わ し ; R 2 n (Wherein, R 1 and R 2 each independently represent a hydrogen atom or a monovalent —C 2. Hydrocarbon group;
R 3及び R 4は各々独立して水素原子あるいは 1価または 2価の — C 2。の炭化水素基を 表し、 但し、 R 3及び R 4が各々独立して 2価 の 一 C 2。の炭化水素基を表す場合、 R 3及 び R 4は同時に 2価であり、 かつ、 互いに結合 して環を形成し ; R 3 and R 4 are each independently a hydrogen atom or monovalent or divalent —C 2 . Wherein R 3 and R 4 are each independently a divalent mono-C 2 . R 3 and R 4 are divalent at the same time, and combine with each other to form a ring;
R R 2、 R 3及び R 4の少なく とも 1つは C 6 一 C 2。の芳香族基を表わし、 該芳香族基は R R 2 、 R 3または R 4の上記定義による価数を有 し ; そして RR 2, one at least of the R 3 and R 4 are C 6 one C 2. Wherein the aromatic group has a valency as defined above for RR 2 , R 3 or R 4 ; and
nは、 数平均 n値で表して 1以上である。 ) で表される単量体、 重合体またはそれらの混合物を包含し 該 ( B ) 成分としての上記重合体は、 下記式 ( 2 ) :  n is 1 or more, expressed as a number average n value. The above polymer as the component (B) includes a monomer, a polymer or a mixture thereof represented by the following formula (2):
Figure imgf000026_0001
Figure imgf000026_0001
(式中、 R 1及び R 2は各々式 ( 1 ) におい て定義した通りである。 ) で表わされる複数の繰り返し単位を含有し、 該繰り返し単位は 同じでも異なっていてもよく 、 従って該 ( B ) 成分と しての上 記重合体は単独重合体または共重合体であ り、 その際、 該共重 合体は、 ランダム共重合体、 ブロ ック共重合体または交互共重 合体であり、 (In the formula, R 1 and R 2 are each as defined in the formula (1).) And the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer, and In this case, the copolymer is a random copolymer, a block copolymer or an alternating copolymer,
該 ( B ). 成分中の該芳香族基の量が、 R R 2、 R 3及び R 4 の全モル量に対して 5 〜 1 0 0モル%である。 The amount of the aromatic group in the component (B) is from 5 to 100 mol% based on the total molar amount of RR 2 , R 3 and R 4 .
( B ) 成分が含むことのできる非芳香族炭化水素基として.は、 メチル基、 ェチル基、 ブチル基が好ましく 、 更にメチル基が好 ましい。 As the non-aromatic hydrocarbon group that can be contained in the component (B), a methyl group, an ethyl group, and a butyl group are preferable, and a methyl group is more preferable.
( B ) 成分における芳香族基としてはフエニル基が好ましい。 上記 ( B ) 成分は、 「シリ コーンハン ドブック」 〔日本国、 日刊工業新聞社、 伊藤邦雄編集 ( 1 9 9 0 ) 〕 に記載の下式 ( 3 ) で表さ.れる 2官能性の D単位で構成させる直鎖状又は環状の構 造を有するシリ コーン化合物である。 The aromatic group in the component (B) is preferably a phenyl group. The component (B) is a bifunctional D unit represented by the following formula (3) described in "Silicon Handbook" (edited by Nikkan Kogyo Shimbun, Kunio Ito (1990), Japan). Is a silicone compound having a linear or cyclic structure.
R R
一〇一 S i — 0— ( 3 )  1〇1 S i — 0— (3)
R  R
本発明で ( B ) 成分と して用いるシリ コーン化合物は、 分岐 構造や架橋構造を形成する構成単位を含有しない。 ( B ) 成分 が分岐構造や架橋構造を有していると、 樹脂成分 ( A ) の難燃 性を十分に向上させることができなく なる。 分岐構造や架橋構 造を形成する構成単位の例と しては、 上記 「シリ コーンハン ド ブック」 に記載の下式 ( 4 ) で表される 3官能性の T単位が挙 げられる。 The silicone compound used as the component (B) in the present invention does not contain a structural unit that forms a branched structure or a crosslinked structure. When the component (B) has a branched structure or a crosslinked structure, the flame retardancy of the resin component (A) cannot be sufficiently improved. Branched or bridged structures Examples of the structural unit that forms the structure include a trifunctional T unit represented by the following formula (4) described in the above “Silicon Handbook”.
〇 ( 4 ) 〇 (4)
RSOII RSOII
本発明の樹脂組成物における上記 (B ) 成分の量は、 上記樹  The amount of the component (B) in the resin composition of the present invention
- 1  -1
 One
脂成分 (A) 1 0 0重量部に対して 0. 〇 1〜 1 0 0重量部、 好 ましく は 0. 1 0重量部、 更に好ましく は 1〜 5重量部で ある 上記 ( B ) 成分中の該芳香族基の量は、 R 1 R 2、 R 3及び Fat component (A) 0.1 to 100 parts by weight, preferably 0.10 parts by weight, more preferably 1 to 5 parts by weight based on 100 parts by weight of component (B). The amount of the aromatic group in R 1 R 2 , R 3 and
R 4の全モル 対して 5〜 1 0 0モル%であることが必要で あ り、 好ましく は 1 0〜 9 0モル%、 更に好ま しく は 2 0〜 9 0モル%、 最も好ましく は 3 0〜 9 0モル%である。 上記式 ( 1 ) 中の nは好ましく は 1 0以上、 更に好まし く は 1 0 0以上である。 上記 ( B ) 成分として用いる芳香族基含有シリ コーン化合物 は、 J I S - K 2 4 1 0 に従い 2 5 °Cで測定した動粘度が 1 0 0センチス トークス以上である ことが好ましく 、 更に好ま しく は 3 0 0センチス トークス以上、 最も好ましく は 1 0 0 0セン チス トークス以上である。 動粘度が 1 0 0センチス トークス未 満では ( B ) 成分が揮発性となり、 好ましく ない場合がある。Ri Ah is necessary for the total moles of R 4 is a 5-1 0 0 mol%, preferably 1 0-9 0 mol%, further preferred properly 2 0-9 0 mol%, and most preferably 3 0 ~ 90 mol%. N in the above formula (1) is preferably at least 10 and more preferably at least 100. The aromatic group-containing silicone compound used as the component (B) preferably has a kinematic viscosity measured at 25 ° C. of 100 centistokes or more in accordance with JIS-K240, more preferably It is at least 300 centistokes, most preferably at least 1000 centistokes. The kinematic viscosity is 100 centi-cents. When full, component (B) becomes volatile and may not be desirable.
( B ) 成分の動粘度の上限に関しては特に限定はなく 、 測定限 界 ( 1 , 0 0 0 , 0 0 0センチス ト一クス) を越えてガム状に なっているものでもよい。 The upper limit of the kinematic viscosity of the component (B) is not particularly limited, and may be a gum that exceeds the measurement limit (1, 000, 000 centistokes).
また上記 ( B ) 成分として、 本発明の要件を満たす複数の異 なる芳香族基含有シリ コーン化合物の混合物を用いる ことがで きる。 この場合、 ( B ) 成分が、 該芳香族基を R 1 , R 2 、 R 3 及び R 4の全モル量に対して 5 モル%〜 5 0モル%未満含有.す るシリ コーン化合物と、 該芳香族基を R R 2、 R 3及び R 4 の全モル量に対して 5 0 モル%以上含有するシリ コーン化合物 との混合物であることが好ましい。 芳香族基を 5 0 モル%以上 含有する上記シリ コーン化合物は本発明の優れた効果を得るた めに非常に有利であるが、 比較的高価なものとなってしまう。 従って.、経済性の観点からは、芳香族基を 5 モル%〜 5 0 モル% 未満含有する上記シリ コーン化合物と、 芳香族基を 5 0 モル% 以上含有する上記シリ コーン化合物とを混合して ( B ) 成分と して用いる ことが好ましい。 Further, as the component (B), a mixture of a plurality of different aromatic group-containing silicone compounds satisfying the requirements of the present invention can be used. In this case, the component (B) is a silicone compound containing the aromatic group in an amount of 5 mol% to less than 50 mol% based on the total molar amount of R 1 , R 2 , R 3 and R 4 ; It is preferably a mixture with a silicone compound containing 50% by mole or more of the aromatic group based on the total moles of RR 2 , R 3 and R 4 . The above-mentioned silicone compound containing an aromatic group in an amount of 50 mol% or more is extremely advantageous for obtaining the excellent effects of the present invention, but is relatively expensive. Therefore, from the viewpoint of economy, the above-mentioned silicone compound containing an aromatic group in an amount of 5 mol% to less than 50 mol% and the above-mentioned silicone compound containing an aromatic group in an amount of 50 mol% or more are mixed. It is preferred to use as component (B).
本発明の組成物は、 更に ( C ) 難燃剤 0 . 0 0 1 〜 1 0 0重 量部を含有していても良い。  The composition of the present invention may further contain (C) 0.001 to 100 parts by weight of a flame retardant.
難燃剤 ( C ) としては、 ケィ素系難燃剤、 金属塩系難燃剤、 ハロゲン系難燃剤、 リ ン系難燃剤、 窒素系難燃剤、 無機系難燃 剤、 繊維状難燃剤、 チヤ一形成剤から選ばれる少なく とも 1種 の難燃剤を用いることができる。 上記の難燃剤 ( C ) のうち、 ケィ素系難燃剤、 金属塩系難燃剤、 リ ン系難燃剤、 窒素系難燃 剤及び無機系難燃剤が特に好ましい。 Flame retardants (C) include silicon-based flame retardants, metal-salt-based flame retardants, halogen-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, inorganic flame retardants, fibrous flame retardants, and char forming. At least one flame retardant selected from agents can be used. Of the above flame retardants (C), Silicone flame retardants, metal salt flame retardants, phosphorus flame retardants, nitrogen flame retardants, and inorganic flame retardants are particularly preferred.
上記ケィ素系難燃剤と しては、 ( B ) 成分と して用いるシリ コーン系化合物以外のポリオルガノ シロキサン (シリ コーン、 有機シリケ一 ト等) 及びシリ カ等を用いる ことができる。  As the silicon-based flame retardant, polyorganosiloxane (silicon, organic silicate, etc.) other than the silicone-based compound used as the component (B), silica, and the like can be used.
ポリオルガノ シロキサンは、 性状からオイル、 樹脂、 ゴムに 分類される。 本発明でケィ素系難燃剤 ( C ) として用いること ができるポリオルガノ シロキサンは、 上記 「シリ コーンハ ド ブック」 に記載の構成単位、 即ち、 単官能の R 3 S i 〇 丄 2 で表される M単位、 上記の 2官能の D単位、 上記の 3官能の T 単位、 4官能の S i 0 2で表される Q単位、 及びアルコキシ基 またはァリ一口キシ基を含有した R ( R 0 ) S i O 2 . 0で表 される X単位及び ( R O ) 2 S i 0 3 . 0で表される Y単位 ( R は炭素.数 1 〜 2 0 の炭化水素) からなる群より選ばれる少なく とも 1種の構成単位を含み、 但し、 D単位のみから構成されて いる場合は、 芳香族基の量が R基の全モル量に対して 5 モル% 未満のポリオルガノ シロキサンである。 このようなポリオルガ ノ シロキサンは、 オイル状の分岐構造を含有したポリオルガノ シロキサンまたは三次元網状構造を有するシリ コーン樹脂であ る。 ゴム状のポリオルガノ シロキサンは、 高分子量のガム状直 鎖状のポリ ジオルガノ シロキサンの加硫体等である。 Polyorganosiloxane is classified into oil, resin, and rubber according to their properties. The polyorganosiloxane that can be used as the silicon-based flame retardant (C) in the present invention is a structural unit described in the above-mentioned “Silicon Had Book”, that is, M represented by monofunctional R 3 Si 2. units, the above difunctional D units, the above trifunctional T units, R (R 0) which contained 4 S i 0 2 represented by Q units, and alkoxy groups or § Li bite alkoxy group functional S at least one selected from the group consisting of an X unit represented by i O 2.0 and a Y unit represented by (RO) 2 Si 0 3.0 (R is a hydrocarbon having 1 to 20 carbon atoms) A polyorganosiloxane containing one type of structural unit, but when it is composed of only D units, is a polyorganosiloxane in which the amount of the aromatic group is less than 5 mol% based on the total molar amount of the R group. Such a polyorganosiloxane is a polyorganosiloxane having an oily branched structure or a silicone resin having a three-dimensional network structure. The rubbery polyorganosiloxane is a vulcanized product of a high molecular weight gum-like linear polydiorganosiloxane.
また、 難燃剤 ( C ) と して、 上記のポリオルガノ シロキサン の変性体又は他の物質との複合体を用いても良い。 上記の変性 体の例としては、 エポキシ、 ァミ ノ、 メルカプト、 メ夕ク リル 基等で変性した変性ポリ オルガノ シロキサンが挙げられる。 上 記の複合体の例と してはポリ力一ボネー ト ( P C ) —シリ コ一 ン共重合体、アク リルゴム—シリ コーン複合体等が挙げられる。 上記の難燃剤 ( C ) と して用いることができるポ.リ オルガノ シロキサンの Rとしては炭素数 1 〜 2 0 の炭化水素基であ り、 メチル基、 ェチル基、 ブチル基、 フエニル基、 ベンジル基が好 ましく 、 特にメチル基とフエニル基が好ましい。 3官能以 の 上記構成単位を含むポリ オルガノ シロキサンの場合には、 フエ 二ル基を Rの全モル量に対して 5〜 1 0 0 モル%含有する こと が好ましい。 このようなポリオルガノ シロキサンは、 P Cなど の芳香族系樹脂との相溶性に優れるだけでなく 、 本発明の組成 物の耐水性、 熱安定性を向上させる。 Further, as the flame retardant (C), a modified form of the above-mentioned polyorganosiloxane or a complex with another substance may be used. Above denaturation Examples of the body include a modified polyorganosiloxane modified with an epoxy, amino, mercapto, methyl group or the like. Examples of the above-mentioned composite include a polycarbonate (PC) -silicon copolymer, an acrylic rubber-silicon composite, and the like. R in the polyorganosiloxane that can be used as the flame retardant (C) is a hydrocarbon group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, a butyl group, a phenyl group, or a benzyl group. Groups are preferred, and a methyl group and a phenyl group are particularly preferred. In the case of a polyorganosiloxane containing the above-mentioned constitutional unit having three or more functional groups, it is preferable that the phenyl group is contained in an amount of 5 to 100 mol% based on the total molar amount of R. Such a polyorganosiloxane not only has excellent compatibility with aromatic resins such as PC, but also improves the water resistance and thermal stability of the composition of the present invention.
上記.ケィ素系難燃剤の一つであるシリカは、 無定形の二酸化 ケィ素である。 本発明においては、 特にシリカ表面を炭化水素 系 匕合物系のシランカ ツプリ ング剤で処理した炭化水素系化合 物被覆シリカが好ましく 、 更にはビニル基を含有した炭化水素 系化合物被覆シリ力が好ましい。  Silica, one of the silicon-based flame retardants, is amorphous silicon dioxide. In the present invention, in particular, a hydrocarbon-based compound-coated silica obtained by treating the silica surface with a hydrocarbon-based silane-capping agent is preferable, and a vinyl-containing hydrocarbon-based compound-coated silica is more preferable. .
上記シランカツプリ ング剤の例としては、 p —スチリリレ 卜 リ メ トキシシラン、 ビニル ト リ ク ロルシラン、 ビニル ト リス ( jS メ 卜キシェ 卜キシ) シラン、 ビニル ト リエ トキシシラン、 ビニ ル ト リ メ トキシシラン、 了 一メタク リ ロキシプロ ビル ト リ メ 卜 キシシラン等のビニル基含有シラン、 β — ( 3 , 4エポキシシ ク ロへキシル) ェチル ト リ メ トキシシラン、 ア ーグリ シ ドキシ プロピル 卜 リ メ トキシシラン、 ァ ーグリ シ ドキシプロ ピル ト リ エ トキシシラン等のエポキシシラン、 及び N — β (アミ ノエチ ル) ァ 一ァミ ノ プロ ビル ト リ メ トキシシラン、 Ν — 3 (ァミ ノ ェチル) ァ ーァミ ノプロ ピルメチルジメ トキシシラン、 ァ 一ァ ミ ノプロピル ト リエ トキシシラン、 Ν—フエニル一 ア ーァミ ノ プロ ビルト リ メ トキシシラン等のアミ ノ シランである。こ こで、 特に熱可塑性樹脂と構造が類似した単位を有するシランカッ.プ リ ング剤が好ましく 、 例えば、 スチレン系重合体に対しては、 Ρ —スチリルト リ メ トキシシランが好適である。 Examples of the above silane coupling agents include p-styrilyltrimethoxysilane, vinyltrichlorosilane, vinyltris (jSmethoxylethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, Ryoichi Vinyl group-containing silanes such as methacryloxyprovir trimethoxyxylane, β- (3,4 epoxy Epoxysilanes such as (cyclohexyl) ethyl trimethoxysilane, aglycidoxypropyl trimethoxysilane, and aglycidoxypropyl triethoxysilane; and N—β (aminoethyl) aminopropyl Aminosilanes such as built-in trimethoxysilane, Ν-3 (aminoethyl) aminopropylmethyldimethoxysilane, amiaminopropyl triethoxysilane, and phenylaminopropyl built-in rimethoxysilane. Here, a silane coupling agent having a unit similar in structure to the thermoplastic resin is particularly preferable. For example, for a styrene-based polymer, styrene-trimethoxysilane is preferable.
シリカ表面へのシランカ ツプリ ング剤の処理は、 湿式法と乾 式法に大別される。 湿式法は、 シリカをシランカ ップリ ング剤 溶液中で処理し、 その後乾燥させる方法である。 乾式法は、 へ ンシェ.ルミキサーのような高速撹はん可能な機器の中にシリカ を仕込み、 撹はんしながらシラン力ップリ ング剤液をゆつ く り 滴下し、 その後熱処理する方法である。  The treatment of the silane coupling agent on the silica surface is roughly classified into a wet method and a dry method. The wet method is a method in which silica is treated in a silane coupling agent solution and then dried. The dry method is a method in which silica is charged into a device capable of high-speed stirring such as a Henschel mixer, and the silane-based printing agent solution is slowly dropped while stirring, followed by heat treatment. .
上記難燃剤 ( C ) と しての金属塩系難燃剤と しては、 有機硫 黄化合物金属塩であることが好ましい。 有機硫黄化合物金属塩 の例と しては、 ト リ ク ロ口ベンゼンスルホン酸カ リ ウム、 パ一 フルォロブタンスルホン酸力 リ ゥム、 ジフエ二ルースルホン— 3 —スルホン酸カ リ ウム等の有機スルホン酸金属塩が挙げられ る。  The metal salt-based flame retardant as the flame retardant (C) is preferably an organic sulfur compound metal salt. Examples of metal salts of organic sulfur compounds include potassium tribenzene sulfonic acid, potassium perfluorobutanesulfonic acid, potassium disulfonic acid-3-sulfonic acid, and the like. Organic sulfonic acid metal salts are exemplified.
また、 金属塩系難燃剤として、 芳香族スルホンイ ミ ド金属塩、 あるいは芳香族ビニル系重合体、 ポリ フエ二レンエーテル等の 芳香族基含有重合体の芳香環に、 スルホン酸金属塩、 硫酸金属 塩、 リ ン酸金属塩、 ホウ酸金属塩が結合した金属塩含有芳香族 有機重合体を用いる ことができる。 上記の金属塩の金属として はアルカ リ金属及びアルカ リ土類金属を用いる ことができる。 このような金属塩系難燃剤は、 本発明の組成物よ り得られた成 形体の燃焼時に脱炭酸反応を促進して難燃性を向上させる。 上 記の金属塩含有芳香族有機重合体としてはスルホン酸金属塩含 有芳香族有機重合体が特に好ましい。 スルホン酸金属塩含有芳 香族有機重合体を難燃剤 ( C ) と して用いると、 本発明の組成 物よ り得られた成形体の燃焼時に、 スルホン酸金属塩が架橋点 となり炭化被膜形成に大きく寄与する。 In addition, as metal salt-based flame retardants, aromatic sulfonimide metal salts, Alternatively, a metal salt in which a metal sulfonate, a metal sulfate, a metal phosphate, or a metal borate is bonded to an aromatic ring of an aromatic group-containing polymer such as an aromatic vinyl polymer or a polyphenylene ether. A contained aromatic organic polymer can be used. Alkali metals and alkaline earth metals can be used as the metals of the above metal salts. Such a metal salt-based flame retardant promotes a decarboxylation reaction at the time of burning a molded article obtained from the composition of the present invention, and improves flame retardancy. As the above-mentioned metal salt-containing aromatic organic polymer, a metal sulfonate-containing aromatic organic polymer is particularly preferred. When the aromatic organic polymer containing a metal sulfonic acid salt is used as the flame retardant (C), the metal sulfonic acid salt becomes a cross-linking point and forms a carbonized film when the molded product obtained from the composition of the present invention is burned. Greatly contributes to
前記難燃剤 ( C ) としてのハロゲン系難燃剤の例と しては、 ノ ロゲ.ン化ビスフエノール、 芳香族ハロゲン化合物、 ハロゲン 化ポリカーボネー ト 、 ハロゲン化芳香族ビニル系重合体、 ハロ ゲン化シァヌ レー ト樹脂、 ハロゲン化ボリ フエ二レンエーテル 等が挙げられる。 具体的には、 デカブロモジフエ二ルォキサイ ド、 テ トラブロムビスフエノール A、 テ ト ラブロムビスフエノ ール Aのオリ ゴマー、 臭化ビスフエノール系フエノキシ樹脂、 臭化ビスフエノール系ポリカーボネ一 ト、 臭化ポリスチレン、 臭化架橋ポリスチレン、 臭化ポリ フエ二レンォキサイ ド、 ポリ ジブロムフエ二レンォキサイ ド、 デカブロムジフエニルォキサ ィ ドとビスフエノールとの縮合物、 含ハロゲンリ ン酸エステル 及びフッ素系樹脂等を用いる ことが好ましい。 Examples of the halogen-based flame retardants as the flame retardant (C) include bisphenol phenol, aromatic halogen compounds, halogenated polycarbonate, halogenated aromatic vinyl polymer, and halogenated halogenated flame retardant. Examples include cyanurate resin and halogenated polyphenylene ether. Specifically, decabromodiphenyloxyside, tetrabromobisphenol A, an oligomer of tetrabromobisphenol A, bisphenol bromide phenolic resin, bisphenol bromide polycarbonate, bromide Polystyrene, brominated cross-linked polystyrene, polyphenylene bromide, polydibromophenylene oxide, condensate of decabromdiphenyloxide with bisphenol, halogenated phosphoric acid ester It is preferable to use a fluorine resin or the like.
前記難燃剤 ( C ) と してのリ ン系難燃剤の例と しては、 有機 リ ン化合物、 赤リ ン、 無機系リ ン酸塩等が挙げられる。  Examples of the phosphorus-based flame retardant as the flame retardant (C) include organic phosphorus compounds, red phosphorus, and inorganic phosphorus salts.
上記有機リ ン化合物の例と しては、 ホスフィ ン、 ホスフィ ンォ キシ ド、 ビホスフィ ン、 ホスホニゥム塩、 ホスフィ ン酸塩、 リ ン 酸エステル、 亜リ ン酸エステル等が挙げられる。 よ り具体的な例 としては、 ト リ フエニルホスフェー ト、 メチルネオベンチルホス フアイ ト、 ヘン夕エリス リ トールジェチルジホスフアイ ト メチ ルネオペンチルホスフォネー ト、フエニルネオペンチルホスフエ ー ト、 ペン夕エリス リ ト一ルジフエニルジホスフエ一 ト、 ジシク 口ペンチルハイポジホスフエ一 ト、ジネオペンチルハイポホスフ アイ ト、 フエニルピロ力テコ一ルホスフアイ ト、 ェチルピロカテ コールホスフエ一 ト、ジピロカテコールハイポジホスフエ一 卜が 挙げられる。  Examples of the organic phosphorus compound include phosphine, phosphoxide, biphosphine, phosphonium salt, phosphinate, phosphinate, phosphite and the like. More specific examples include triphenyl phosphate, methyl neopentyl phosphite, henyl erythritol getyl diphosphite methyl neopentyl phosphonate, phenyl neopentyl phosphite Erythritol phenyldiphenyl diphosphate, dicyclopentyl hypophosphite, dineopentyl hypophosphite, phenylpyrophosphate phosphite, ethylpyrocatechol phosphate, zipiro Catechol hypothetic phosphate is an example.
こ こで、 特に有機リ ン化合物と して、 芳香族系リ ン酸エステ ル単量体、 芳香族系リ ン酸エステル縮合体が好ま しい。  Here, as the organic phosphorus compound, an aromatic phosphate ester monomer or an aromatic phosphate ester condensate is particularly preferred.
上記芳香族系リ ン酸エステル単量体の中でも、米国特許第 5 , 2 7 8 , 2 1 2号記載のヒ ドロキシル基含有芳香族系リ ン酸ェ ステル単量体、 例えば、 ト リ.ク レジルホスフェー トや ト リ フエ ニルホスフエ一 ト等に 1個または 2個以上のフエノ 一ル性水酸 基を含有したリ ン酸エステル単量体または芳香族リ ン酸エステ ル単量体が好ましい。 または、 W 0 9 6 — 2 7 6 3 7 号公報に 記載の ト リ ス (ノニルフエニル) ホスフェー ト等の長鎖アルキ ル基含有芳香族系リ ン酸エステル単量体が好ま しい。 Among the above aromatic phosphate ester monomers, among the aromatic phosphate ester monomers, those described in U.S. Pat. Phosphoric acid ester monomers or aromatic phosphoric acid ester monomers containing one or two or more phenolic hydroxyl groups in cresyl phosphate, triphenyl phosphate and the like are preferred. Or a long-chain alkyl such as tris (nonylphenyl) phosphate described in WO96-27736 Preferred is an aromatic phosphate ester monomer containing a hydroxyl group.
上記芳香族リ ン酸エステル縮合体の中では、 ビスフエノール A ビス (ジフエニルホスフェー ト) 、 ビスフエノール A ビ ス (ジク レジルホスフェー ト) 、 レゾルシノール ビス (ジフ ェニルホスフェー ト) 等が好ましい。  Among the above aromatic phosphoric acid ester condensates, bisphenol A bis (diphenyl phosphate), bisphenol A bis (diphenyl phosphate), resorcinol bis (diphenyl phosphate) and the like are preferable.
又、 日本国特開平 5 — 1 0 7 9号公報等に開示された方法に よ り製造された芳香族リ ン酸エステル縮合体も有機リ ン化合物 として好ましい。 例えば、 2 , 6位が置換された単官能フエノ ー ルとォキシハロゲン化リ ンをルイス酸触媒の存在下で反応させ. ジァリールホスホロハラィ ドを得、 次いで得られたジァ リール ホスホロハライ ドと二官能フエノールをルイス酸触媒の存在下 で反応させて得られた芳香族リ ン酸エステル縮合体は、 リ ン系 難燃剤として好適に用いる ことができる。  Further, an aromatic phosphoric acid ester condensate produced by a method disclosed in Japanese Patent Application Laid-Open No. 5-17979 or the like is also preferable as the organic phosphorus compound. For example, a monofunctional phenol substituted at the 2- and 6-positions is reacted with oxyhalogenated phosphorus in the presence of a Lewis acid catalyst to obtain diaryl phosphorohalide, and then to obtain the resulting diaryl phosphorohalide. The aromatic phosphate condensate obtained by reacting the compound with a bifunctional phenol in the presence of a Lewis acid catalyst can be suitably used as a phosphorus-based flame retardant.
上記.のリ ン系難燃剤の一つの赤リ ンは、一般の赤リ ンの他に、 その表面をあらかじめ、 水酸化アルミニウム、 水酸化マグネシ ゥム、 水酸化亜鉛、 水酸化チタンよ り選ばれる金属水酸化物の 被膜で被覆処理されたもの、 水酸化アルミニウム、 水酸化マグ ネシゥム、 水酸化亜鉛、 水酸化チタンより選ばれる金属水酸化 物及び熱硬化性樹脂よりなる被膜で被覆処理されたもの、 水酸 化アルミニウム、 水酸化マグネシウム、 水酸化亜鉛、 水酸化チ タンよ り選ばれる金属水酸化物の被膜の上に熱硬化性樹脂の被 膜で二重に被覆処理されたものなどである。  Red phosphorus, one of the phosphorus-based flame retardants mentioned above, is selected from aluminum hydroxide, magnesium hydroxide, zinc hydroxide, and titanium hydroxide in advance, in addition to ordinary red phosphorus. Coated with a coating of a metal hydroxide to be coated, coated with a coating of a metal hydroxide selected from aluminum hydroxide, magnesium hydroxide, zinc hydroxide, titanium hydroxide, and a thermosetting resin Or a double-coated thermosetting resin film on a metal hydroxide film selected from aluminum hydroxide, magnesium hydroxide, zinc hydroxide, and titanium hydroxide. is there.
上記リ ン系難燃剤と して用いられる無機系リ ン酸塩の例とし ては、 ポリ リ ン酸アンモニゥムが挙げられる。 As an example of the inorganic phosphate used as the above phosphorus flame retardant, For example, ammonium phosphate is used.
上記窒素系難燃剤のと しては、 ト リ アジン系化合物、 ト リ ァ ゾール系化合物、 テ トラゾ一ル系化合物、 ホスフ ァゼン系化合 物及びジァゾ系化合物からなる群よ り選ばれる少なく とも 1 種 を用いることができる。  The nitrogen-based flame retardant includes at least one selected from the group consisting of triazine-based compounds, triazole-based compounds, tetrazole-based compounds, phosphazene-based compounds, and diazo-based compounds. Seeds can be used.
上記ト リ アジン系化合物の具体例としては、 メラミ ン、 メラ ム、 メ レム、 メ ロン ( 6 0 0 ° C以上でメ レム 3分子から 3分 子の脱アンモニアによる生成物) 、 メラミ ンシァヌ レー ト 、 _ リ ン酸メラミ ン、 サクシノ グアナミ ン、 アジポグアナミ ン、 メチ ルグルタログアナミ ン、 メラミ ン樹脂、 B Tレジンを挙げるこ とができる力 、 低揮発性の観点から特にメラミ ンシァヌ レー ト が好ましい。  Specific examples of the above triazine-based compounds include melamine, melamine, melem, melon (a product of deammonification of three molecules from three molecules of melem at 600 ° C. or higher), melamine cyanide Melamine phosphate, succinoguanamine, adipoguanamine, methylglutalogamine, melamine resin, BT resin, and the like, and melamine cyanurate are particularly preferred from the viewpoint of low volatility.
上記 ト リァゾール系化合物の具体例としては、 ト リ ァゾール、 メチル.ト リ ァゾール、及びフエニルト リ アゾ一ルが挙げられる。 窒素系難燃剤と してのフォスファゼン化合物は、 リ ン原子と 窒素原子が二重結合で結ばれた構造を有する化合物であれば特 に制限はなく 、 例えば環状ホスファゼンまたは直鎖状ホスファ ゼンが挙げられる。 ホスファゼンの中でも、 芳香族ポリ カーボ ネー ト との相溶性の観点から、 置換基として芳香族基を含有す るホスフ ァゼンが好ま しい。 また構造的には直鎖状のホスフ ァ ゼンが好ま しい。  Specific examples of the above triazole-based compound include triazole, methyltriazole, and phenyltriazole. The phosphazene compound as a nitrogen-based flame retardant is not particularly limited as long as it has a structure in which a phosphorus atom and a nitrogen atom are connected by a double bond, and examples thereof include cyclic phosphazene and linear phosphazene. Can be Among phosphazenes, phosphazenes containing an aromatic group as a substituent are preferred from the viewpoint of compatibility with aromatic polycarbonate. In terms of structure, linear phosphazene is preferred.
上記環状ホスフ ァゼンの具体例としては、 プロボキシホスフ ァゼン、 フエノキシホスフ ァゼン、 アミ ノホスフ.ァゼン、 フル ォ qアルキルホスフ ァゼン等が挙げられ、 直鎖ホスフ ァゼンの 具体例として、 ボリ ジフエニルホスファゼン等のポリ アリ ール ホスフ ァゼン、 ポリ ジフエノキシホスフ ァゼン等のボリ ジァリ ロキシホスファゼン、 ポリ ジァミ ノホスファゼン、 ポリ ジフル ォロアルキルホスファゼン等が挙げられる。 これらのホスファ ゼン化合物はク ロ口ホスファゼンをアルコール類またはフエノ —ル類で置換する ことによ り製造される。 Specific examples of the cyclic phosphazene include propoxyphosphazene, phenoxyphosphazene, aminophosphazene, and full Specific examples of linear phosphazenes include polyarylphosphazenes such as polyphenylphenylphosphazene, polyaryloxyphosphazenes such as polydiphenoxyphosphazene, polydiaminophosphazenes, and the like. And polydifluoroalkylphosphazene. These phosphazene compounds are produced by substituting the clog phosphazene with alcohols or phenols.
窒素系難燃剤としてのテ トラゾ一ル系化合物は、 5 —フ ÷二 ルテ トラゾ一ル、 5 , 5 ' —ビステ トラゾール 2 アンモニゥム塩 5 , 5 ' — ビステ トラゾ一ル 2 アミ ノグァ二ジン塩、 5 , 5 ' — ビステ トラゾールピペラジン塩、ァゾビステ トラゾール 2 グァ 二ジン塩、ァゾビステ トラゾ一ル 2 アミ ノ グァ二ジン塩等であ る。 Te Torazo Ichiru compounds as nitrogen-based flame retardant, 5 - full ÷ two ruthenate Torazo Ichiru, 5, 5 '- Bisute Torazoru 2 Anmoniumu salt 5, 5' - Bisute Torazo Ichiru 2 amino Nogua two gin salt, 5, 5 '— bisestrazole piperazine salt, azoviste torazole 2 guanidine salt, azoviste tolazole 2 amino guanidine salt and the like.
上記.ジァゾ系化合物の例としては、 ァゾジカルボンアミ ド、 ァゾビスイソプチロニ ト リル、 ジァゾァミ ノベンゼン、 及びバ リ ゥムァゾジカルボキシレ一 ト等が挙げられる。  Examples of the diazo compounds include azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, and polyvinylazodicarboxylate.
そして、 難燃剤 ( C ) と しての無機系難燃剤の例と しては、 水酸化アルミニウム、 水酸化マグネシウム、 ドロマイ ト、 ハイ ドロタルサイ ト、 水酸化カルシウム、 水酸化バリ ウム、 塩基性 炭酸マグネシウム、 水酸化ジルコニウム、 酸化スズの水和物等 の無機金属化合物の水和物、 酸化アルミニウム、 酸化鉄、 酸化 チタン、 酸化マンガン、 酸化マグネシウム、 酸化ジルコニウム、 酸化亜鉛、 酸化モリ ブデン、 酸化コバル ト、 酸化ビスマス、 酸 化ク ロム、 酸化スズ、 酸化アンチモン、 酸化ニッケル, 酸化銅、 酸化タ ングステン等の金属酸化物、 アルミニウム、 鉄、 チタ ン、 マンガン、 亜鉛、 モリ ブデン、 コバル ト、 ビスマス、 ク ロム、 ニッケル、 銅、 タングステン、 スズ、 アンチモン等の金属粉、 ホウ酸亜鉛、 メタホウ酸亜鉛、 メタホウ酸バリ ウム、 炭酸亜鉛、 炭酸マグネシウム、 炭酸カルシウム、 及び炭酸バリ ウム等が挙 げられる。 これらは、 1種でも 2種以上を併用 してもよい。 こ の中で特に、 水酸化マグネシウム、 水酸化アルミニウム、 塩基 性炭酸マグネシウム、 ハイ ドロタルサイ トからなる群から選ば れたものが難燃効果が良く 、 経済的にも有利である。 Examples of inorganic flame retardants as the flame retardant (C) include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and basic magnesium carbonate. Hydrates of inorganic metal compounds such as hydrates of zirconium hydroxide, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, Bismuth oxide, acid Metal oxides such as chromium oxide, tin oxide, antimony oxide, nickel oxide, copper oxide, tungsten oxide, aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper , Tungsten, tin, antimony and other metal powders, zinc borate, zinc metaborate, barium metaborate, zinc carbonate, magnesium carbonate, calcium carbonate, and barium carbonate. These may be used alone or in combination of two or more. Among them, those selected from the group consisting of magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate and hydrotalcite have particularly good flame retardant effects and are economically advantageous.
難燃剤 ( C ) としての繊維状難燃剤は、 火種の滴下防止のた めに用いられる難燃剤であり、 添加時もしく は加工時に繊維状 となる。 その具体例として、 ァラミ ド繊維、 ポリ アク リ ロニ ト リル繊維、 フッ素系樹脂等が上げられる。  Fibrous flame retardant as flame retardant (C) is a flame retardant used to prevent dripping of fire, and becomes fibrous when added or processed. Specific examples thereof include aramide fiber, polyacrylonitrile fiber, and fluororesin.
上記ァラミ ド繊維は、 平均直径が 1 〜 5 0 0 mで平均繊維 長が 0 . 1 〜 1 0 m mである ことが好ま しく 、 イソフタルアミ ド、 またはポリパラフエ二レンテレフタルアミ ドをアミ ド系極 性溶媒または硫酸に溶解し、 湿式または乾式法で溶液紡糸する ことによ り製造することができる。  The above-mentioned aramide fiber preferably has an average diameter of 1 to 500 m and an average fiber length of 0.1 to 10 mm, and is preferably made of isophthalamide or polyparaphenylene terephthalamide. It can be produced by dissolving in a basic solvent or sulfuric acid and spinning the solution by a wet or dry method.
前記繊維状難燃剤としてのポリ アク リ ロニ ト リル繊維は、 平 均直径が 1 〜 5 0 0 mで平均繊維長が 0 . 1 〜 1 0 m mであ ることが好ま しく 、 ジメチルホルムアミ ド等の溶媒に重合体を 溶解し、 4 0 0 ° Cの空気流中に乾式紡糸する乾式紡糸、 また は硝酸等の溶媒に重合体を溶解し水中に湿式紡糸する湿式紡糸 法によ り製造される。 The polyacrylonitrile fiber as the fibrous flame retardant preferably has an average diameter of 1 to 500 m, an average fiber length of 0.1 to 10 mm, and dimethylformamide. Dry spinning, in which the polymer is dissolved in a solvent such as Is produced by a wet spinning method in which a polymer is dissolved in a solvent such as nitric acid and wet-spun in water.
前記繊維状難燃剤としてのフッ素系樹脂は、 樹脂中にフッ素 原子を含有する樹脂である。 その具体例と して、 ポリモノ フル ォロエチレン、 ポリ ジフルォロエチレン、 ポリ ト リ フルォロェ チレン、 ポリテ ト ラフルォロエチレン、 テ トラフルォロェチレ ン Zへキサフルォロプロ ピレン共重合体等を挙げる ことができ る。 また、 フッ素系樹脂は、 含フッ素モノマーをそれと共蓴合 可能なモノマーと共重合させて得られたものでもよい。  The fluororesin as the fibrous flame retardant is a resin containing a fluorine atom in the resin. Specific examples thereof include polymonofluoroethylene, polydifluoroethylene, polytrifluoroethylene, polytetrafluoroethylene, tetrafluoroethylene Z-hexafluoropropylene copolymer, and the like. . Further, the fluorine-based resin may be obtained by copolymerizing a fluorine-containing monomer with a monomer which can be combined with the fluorine-containing monomer.
フッ素系樹脂の製造方法は、 米国特許第 2 , 3 9 3, 6 9 7 号明細書及び米国特許第 2, 5 3 4 , 0 5 8号明細書に開示さ れている。 例えば、 テ トラフルォロエチレンを水性媒体中で過 硫酸アンモニゥム、 過硫酸カ リ ウム等のラジカル開.始剤を用い て、 7〜 7 0 k g / c m 2の加圧下、 0〜 2 0 0 °Cの温度で重 合し、 次いで懸濁液、 分散液または乳濁液から凝析または沈殿 によ り 、 ポリテ トラフルォロエチレン粉末を製造する ことがで きる。 Methods for producing fluororesins are disclosed in U.S. Pat. No. 2,393,697 and U.S. Pat. No. 2,534,058. For example, Te trough Ruo Russia ethylene in an aqueous medium persulfate Anmoniumu, using a radical open. Initiator such as persulfate mosquito Li um, a pressure of 7~ 7 0 kg / cm 2, 0~ 2 0 0 ° Polytetrafluoroethylene powder can be produced by polymerization at a temperature of C, followed by coagulation or precipitation from a suspension, dispersion or emulsion.
上記以外にもフッ素系樹脂の製造方法と しては、 フッ素系樹 脂と熱可塑性樹脂と、 望まれるならば分散剤とを溶融混練して マスターバッチを作製してから、 熱可塑性樹脂、 難燃剤と溶融 混練する二段プロセス法、 またはサイ ドフィ 一 ド可能なニゾー ンからなる押出機を用い、 前段で熱可塑性樹脂とフ ッ素系樹脂 と所望によ り分散剤を溶融混練し、 後段で溶融温度を下げて難 „Λ,〜„ PCT/JP00/00 In addition to the above, other methods for producing a fluororesin include melt-kneading a fluororesin, a thermoplastic resin, and a dispersant, if desired, to prepare a masterbatch, and then prepare a thermoplastic resin. Using a two-stage process in which a fuel is melt-kneaded, or an extruder consisting of a side-feedable nizon, melts and kneads a thermoplastic resin, a fluorine-based resin, and a dispersant as required in the first stage, and the second stage. Difficult to lower melting temperature „ Λ , ~„ PCT / JP00 / 00
00/46299 3 g 燃剤をフィ ー ド し溶融混練する一段プロセス法、 またはフ ッ素 系樹脂を含む全成分をメイ ンフィ ーダ一にフィ ー ド し溶融混練 する一段プロセス法等が挙げられる。 ここで、 難燃性の観点か らマスターバッチを作製する二段プロセス法が好ましい。 00/46299 A one-stage process method in which 3 g of the fuel is fed and melt-kneaded, or a one-stage process method in which all components including the fluororesin are fed to the main feeder and melt-kneaded. Here, from the viewpoint of flame retardancy, a two-step process for producing a master batch is preferable.
難燃剤 ( C ) の一つであ る チヤ 一形成剤 と しての ノ ボ ラ ッ ク 樹脂は、 フ エ ノ ール類と ァルデヒ ド類を硫酸ま た は塩 酸の よ う な酸触媒の存在下で縮合 して得 ら れる フ エ ノ ー ルノ ボ ラ ッ ク 樹脂で り、 その製造方法は、 「高分子実!^学 The novolak resin as a char forming agent, one of the flame retardants (C), is an acid catalyst such as sulfuric acid or hydrochloric acid for phenols and aldehydes. Is a phenolic novolak resin obtained by condensation in the presence of water.
5 『重縮合 と 重付加』 p . 4 3 7 〜 4 5 5 (共立出版(株))」 に記載さ れて い る 。 5 “Polycondensation and polyaddition” p. 433-7455 (Kyoritsu Shuppan Co., Ltd.) ”.
ノボラック樹脂の製造に用いられるフエノ ール類は、 フエノ —ル、 0 —ク レゾ一ル,、 m —ク レゾール、 p —ク レゾ一ル、 2 , 5 —ジメチルー、 3 , 5 —ジメチルー、 2, 3, 5 — ト リ メチ ルー、 3 , 4, 5 — ト リ メチル一、 p— t —ブチルー、 p — n —ォクチル一、 p—ステアリル一、 ρ —フエ二ルー、 p— ( 2 —フエニルェチル) 一 、 o —イ ソプロ ピル—、 p —イ ソプロ ピ ル一、 m —イ ソプロピル一 、 p —メ トキシー、 及び p — フエノ キシフエノ ール、 ピロカテコール、 レゾルシノ ール、 ノ、イ ド口 キノ ン、 サリチルアルデヒ ド、 サルチル酸、 p — ヒ ドロキシ安 息香酸、 メチル p — ヒ ドロキシベンゾェ— ト、 p —シァノ —、 及び 0 —シァノ フエノ ール、 p — ヒ ドロキシベンゼンスルホン 酸、 p — ヒ ドロキシベンゼンスルホンアミ ド、 シク ロへキシル P — ヒ ドロキシベンゼンス レホネ一 ト、 4 ー ヒ ドロキシフエ二 ルフエニルホスフィ ン酸、 メチル 4 ー ヒ ドロキシフエニルフ ェニルホスフイ ネ一 卜、 4 —七 ドロキシフエニルホスホン酸、 ェチル 4 —ヒ ドロキシフエニルホスホネー ト、 ジフエニル 4 —ヒ ドロキシフエニルホスホネー ト等である。 The phenols used in the production of novolak resins include phenol, 0—cresol, m—cresol, p—cresol, 2,5—dimethyl, 3,5—dimethyl, and 2 , 3, 5 — trimethylol, 3, 4, 5 — trimethyl-1, p-t — butyl, p — n — octyl, p — stearyl, ρ — fenuru, p — (2 — Phenylethyl), o—isopropyl—, p—isopropyl, m—isopropyl, p—methoxy, and p—phenoxyphenol, pyrocatechol, resorcinol, nose Quinone, salicylaldehyde, salicylic acid, p—hydroxybenzoic acid, methyl p—hydroxybenzoate, p—cyano—, and 0—cyanophenol, p—hydroxybenzenesulfonic acid, p — Hydroxy Emissions Zen sulfonamidyl de, hexyl consequent b P - hydroxycarboxylic benzene scan Rehone one preparative, 4-arsenide Dorokishifue two Ruphenylphosphinic acid, methyl 4-hydroxyphenylphenylphosphine, 4-heptahydroxyphenylphosphonic acid, ethyl 4—hydroxyphenylphosphonate, diphenyl4—hydroxyphenylphosphonate And so on.
ノボラック樹脂の製造に用いられるアルデヒ ド類は、 ホルム アルデヒ ド、 ァセ トアルデヒ ド、 n—プロパナール、 n—ブ夕 ナール、 イ ソプロパナール、 イソブチルアルデヒ ド、 3 —メチ ルー n —ブタナール、 ベンズアルデヒ ド、 p— ト リルアルデヒ ド、 2 —フエニルァセ トアルデヒ ド等である。  The aldehydes used in the production of novolak resins include formaldehyde, acetate aldehyde, n-propanal, n-butane nar, isopropanal, isobutyl aldehyde, 3-methylene n-butanal, benzaldehyde, p-tolylaldehyde, 2-phenylphenylaldehyde, etc.
本発明の組成物における難燃剤 ( C ) の量は、 樹脂成分 (A ) 1 0 0重量部に対して、好ましく は 0 . 0 0 1 ~ 1 0 0重量部で あ り、 更に好ましく は 1 〜 5 0重量部、 更に好ましく は、 3 〜 2 0重量部、 最も好ましく は、 5 〜 1 5重量部である。  The amount of the flame retardant (C) in the composition of the present invention is preferably 0.01 to 100 parts by weight, more preferably 1 to 100 parts by weight, based on 100 parts by weight of the resin component (A). To 50 parts by weight, more preferably 3 to 20 parts by weight, and most preferably 5 to 15 parts by weight.
本発明の組成物は、 更に所望により、 (D ) 加工助剤を含有 してもよい。 加工助剤 (D ) としては、 脂肪族炭化水素、 高級 脂肪酸、 高級脂肪酸エステル、 高級脂肪酸アミ ド、 高級脂肪族 アルコール、 金属石鹼、 オルガノ シロキサン系ワッ クス、 ポリ ォレフィ ンワックス、 ポリ力プロラク ト ンから選ばれる少なく とも 1 種の離型剤または溶融流動性向上剤を用いることができ る。 加工助剤 (D ) の量は、 樹脂成分 (A ) 1 0 0重量部に対 して、 好ま しく は 0 . 0 1 〜 2 0重量部、 更に好ましく は、 0 . 5 〜 1 0重量部、 最も好ましく は、 1 〜 5重量部である。  The composition of the present invention may further contain (D) a processing aid, if desired. Processing aids (D) include aliphatic hydrocarbons, higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty alcohols, metal stones, organosiloxane-based waxes, polyolefin waxes, and polyproprolactones. At least one kind of mold release agent or melt flowability improver selected from the following can be used. The amount of the processing aid (D) is preferably from 0.01 to 20 parts by weight, more preferably from 0.5 to 10 parts by weight, based on 100 parts by weight of the resin component (A). Most preferably, it is 1 to 5 parts by weight.
本発明の組成物から得られる成形体が高い耐光性を有するこ とが要求される場合には、 所望によ り 、 ( E ) 耐光性改良剤を 本発明の組成物に配合することができる。 耐光性改良剤 ( E ) と しては、 紫外線吸収剤、 ヒンダー ドアミ ン系光安定剤、 酸化 防止剤、 活性種捕捉剤、 遮光剤、 金属不活性剤、 または消光剤 から選ばれる少なく とも 1種を用いることができる。 耐光性改 良剤 ( E ) の量は、 樹脂成分 (A) 1 0 0重量部に対して、 好 ましく は 0. 0 5〜 2 0重量部、 更に好ま しく は、 0. :! 〜 1 0重量部、 最も好ましく は、 1〜 5重量部である。 The molded article obtained from the composition of the present invention has high light resistance. If required, (E) a lightfastness improver can be added to the composition of the present invention, if desired. The lightfastness improver (E) is at least one selected from ultraviolet absorbers, hindered amine light stabilizers, antioxidants, active species scavengers, light-blocking agents, metal deactivators, and quenchers. Seeds can be used. The amount of the light fastness improver (E) is preferably from 0.05 to 20 parts by weight, more preferably from 0 ::! To 100 parts by weight of the resin component (A). It is 10 parts by weight, most preferably 1 to 5 parts by weight.
本発明の樹脂組成物の製造方法としては、 例えば樹脂成分 ( A) と ( B ) 成分とを混合し押出機で溶融混練する方法、 樹 脂成分 (A) をまず溶融し、 次いで ( B ) 成分を添加し、 同一 押出機で溶融混練する方法、 あるいは、 樹脂成分 (A) に (B ) 成分を配合したマスターバッチを製造した後、 上記マスターバ ツチと.、 残りの樹脂成分 (A) または残り の (B ) 成分もしく は他の難燃剤を混練する方法等がある。  Examples of the method for producing the resin composition of the present invention include a method in which the resin components (A) and (B) are mixed and melt-kneaded with an extruder. The resin component (A) is first melted, and then (B) Ingredients are added and melt-kneaded in the same extruder. Alternatively, after preparing a masterbatch in which the (B) component is blended with the resin component (A), the masterbatch and the remaining resin component (A) or There is a method of kneading the remaining component (B) or another flame retardant.
本発明の樹脂組成物の製造方法において使用する押出機とし て、 二軸押出機が好ましく 、 そのシリ ンダー内径 Dに対するス ク リ ュー長さ Lの割合 L ZDが 2 0〜 5 0であ り、 上記二軸押 出機の先端部からの距離を異にするメイ ンフィ ー ド開口部とサ イ ドフイ ー ド開口部の 2箇所以上の供給用開口部を有し、 複数 の上記供給用開口部の間及び上記先端部と上記先端部から近い 距離の供給用開口部との間にニーデイ ング部分を有し、 上記二 ーデイ ング部分の長さカ 、 それぞれ 3 D〜 1 0 Dである ことが 好ましい。 As an extruder used in the method for producing the resin composition of the present invention, a twin-screw extruder is preferable, and the ratio L ZD of the screw length L to the cylinder inner diameter D is 20 to 50. It has two or more supply openings, namely a main feed opening and a side feed opening which differ in the distance from the tip of the twin-screw extruder. A knee portion between the end portions and between the tip portion and the supply opening at a distance close to the tip portion, and the length of the two-sided portion is 3D to 10D, respectively. But preferable.
本発明の樹脂組成物の好ましい一例として、 樹脂成分 ( A ) と して芳香族ポリカーボネー ト単独または芳香族ポリカーボネ — 卜 と芳香族ビニル系樹脂との混合物 1 0 0重量部、 ( B ) 成 分として上記の本発明の要件を満たすメチルフエニルシリ コー ンオイル 0 . 1 〜 1 0 0重量部、 及び難燃剤 ( C ) としてジフエ ニルスルホン— 3 —スルホン酸カ リ ウム等の有機スルホン酸金 属塩及びノまたはホスファゼン化合物 0 . 0 0 1 〜 1 0重量部、 及びポリテ トラフルォロエチレン 0 . 0 0 1 〜 1 0重量部を含 有する樹脂組成物を挙げることができる。 この樹脂組成物は、 難燃性、 連続成形性、 成形加工性 (溶融流動性) 、 耐衝撃性、 耐熱性のバランス特性が特に優れている。  As a preferable example of the resin composition of the present invention, as the resin component (A), 100 parts by weight of an aromatic polycarbonate alone or a mixture of an aromatic polycarbonate and an aromatic vinyl-based resin; 0.1 to 100 parts by weight of methylphenylsilicone oil which satisfies the requirements of the present invention described above, and an organic metal sulfonate such as potassium diphenylsulfon-3-sulfonic acid as a flame retardant (C). Examples thereof include a resin composition containing 0.001 to 10 parts by weight of a salt and a phosphazene compound, and 0.0001 to 10 parts by weight of polytetrafluoroethylene. This resin composition has particularly excellent balance properties of flame retardancy, continuous moldability, moldability (melt fluidity), impact resistance, and heat resistance.
本発明の樹脂組成物は、 例えば上記の各成分を、 市販の単軸 押出機や二軸押出機などで溶融混線することによって得られる 力 、 所望により、 上記した成分に、 これ以外の熱安定剤、 滑剤、 充填剤、 ガラス繊維等の補強剤、 染料や顔料等の着色剤等を添 加することもできる。  The resin composition of the present invention may be, for example, a force obtained by melt-blending each of the above components with a commercially available single-screw extruder, twin-screw extruder, or the like. Agents, lubricants, fillers, reinforcing agents such as glass fibers, coloring agents such as dyes and pigments, and the like can be added.
このよう にして得られた本発明の組成物は、 射出成形機や押 出成形機を用いて長期間連続成形する ことが可能であり 、 また 得られた成形品の難燃性、 耐熱性及び耐衝撃性は優れている。 発明を実施するための最良の形態 The composition of the present invention thus obtained can be continuously molded for a long period of time using an injection molding machine or an extrusion molding machine, and the obtained molded article has flame retardancy, heat resistance and heat resistance. The impact resistance is excellent. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例及び比較例によって、 本発明をさ らに詳細に説 明する力 本発明はこれによ り何ら限定されるものではない。 尚、 実施例、 比較例においては、 以下の測定法もし く は測定 機を用いて種々の測定を行なった。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited thereto. In Examples and Comparative Examples, various measurements were performed using the following measuring methods or measuring instruments.
( 1 ) 難燃性  (1) Flame retardant
U L— 9 4 に準拠した V B ( V e r t i c a 1 B u r n i n g ) 法によ り、 自己消火性の評価を行った ( 1 8 イ ンチ試 験片) 。 評価の基準は以下の通りである。  Self-extinguishing properties were evaluated by the VB (Vertica1Burning) method based on UL-94 (18-inch test specimens). The evaluation criteria are as follows.
◎ 2 0秒以内に自己消火 ◎ Self-extinguishing within 20 seconds
〇 2 0 〜 4 0秒以内に自己消火  自己 Self-extinguishing within 20 to 40 seconds
X 全焼  X Burnt
( 2 ) I z 0 d衝撃強度 (2) Iz 0 d impact strength
A S T M - D 2 5 6 に準拠した方法で測定した。( 2 3 °C Vノ ッチ付き 1 Z 4イ ンチ試験片 : 単位 kg ' c m/c m)  It was measured by a method according to ASTM-D255. (23 ° C V-notched 1Z4 inch test piece: unit kg'cm / cm)
( 3 ) I z o ci衝撃強度の厚み依存性  (3) Thickness dependence of Iz o ci impact strength
上記 ( 2 ) 項の測定法で 1 / 8 イ ンチ試験片と 1 Z 4ィ ンチ試験片の I z o cl衝撃強度を測定し、 その比を厚み依存性 の指標とした。 その比が 1 に近いほど厚み依存性が少なく 、 安 定した衝撃強度が発現する。  The Izocl impact strength of a 1/8 inch test piece and a 1Z4 inch test piece was measured by the measurement method described in the above section (2), and the ratio was used as an index of thickness dependence. The closer the ratio is to 1, the less the thickness dependence, and the more stable the impact strength is.
( 4 ) 溶融成形安定性 〈成形品の品質の安定性) 溶融押出機を用い、 樹脂組成物を 1 0時間連続溶融押出 しを行い、 1時間毎に得られた成形品の I z o d衝撃強度を測 定し、 その平均強度に対する変化率 (%) から連続生産性の指 標である溶融成形安定性 (成形品の品質の安定性) を評価した。 (4) Melt molding stability <Molded product quality stability> Using a melt extruder, the resin composition was continuously melt-extruded for 10 hours, and the Izod impact strength of the molded product obtained every hour was measured, and the change rate (%) from the average strength was continuously measured. We evaluated melt molding stability (stability of molded product quality), which is an indicator of productivity.
( 5 ) メリレ トフ口一レー ト (M F R)  (5) Melire tofu mouth rate (MFR)
溶融流動性の指標で A S T M - D 1 2 3 8 に準拠した方法 で測定した。 荷重 1 0 k g、 溶融温度 2 6 0 の条件で 1 0分 間あたり の押出量 ( g / 1 0分) から求めた。  The melt fluidity index was measured by a method in accordance with ASTM-D1238. It was determined from the extrusion rate (g / 10 minutes) per 10 minutes under the conditions of a load of 10 kg and a melting temperature of 260.
( 6 ) S P値 ( <5 ) 〔溶解性パラメータ一 (Solubi lity Parameter) 〕 と平均 S P値  (6) SP value (<5) [Solubility Parameter] and average SP value
S P値は Polymer Engineering and Science、 14、 (2)、 147 (1974) に記載の Fedors式、 及び該文献に纏められている Δ e 1 と△ V 1 のデ一夕から算出した。  The SP value was calculated from the Fedors equation described in Polymer Engineering and Science, 14, (2), 147 (1974), and the data of Δe 1 and △ V 1 summarized in the literature.
.δ = 〔∑ ( Δ e 1) /∑ ( Δ v 1) 〕 1 / 2 .δ = [∑ (Δ e 1) / ∑ (Δ v 1)] 1/2
[こ こで、 △ e 1 は各単位官能基当たり の凝集エネルギー、 △ V 1 は各単位官能基当たり の分子容を示し、 δ の単位は  [Where, Δe 1 is the cohesive energy per unit functional group, ΔV 1 is the molecular volume per unit functional group, and the unit of δ is
( c a 1 / c m3) 1/2 である。 ]  (c a 1 / c m3) 1/2. ]
尚、 共重合体またはブレン ド物の S P値は、 加成則が成立す ると仮定し、 共重合体の場合は単量体ユニッ ト、 またはプレン ド物の場合は各成分の S P値の重量比の比例配分によ り算出し、 これを平均 S P値とした。  The SP value of the copolymer or blend is assumed to satisfy the addition rule.For copolymers, the SP value of the monomer unit is used, or for blends, the SP value of each component is used. Calculated by proportional distribution of weight ratio, and this was used as the average SP value.
( 7 ) 表面外観  (7) Surface appearance
J I S - Z - 8 7 2 2 に準拠した方法で、 黄色度 Δ Υ I値 を求め、 成形体の表面外観の評価を行った ( Δ Y I 値が小さい ほど黄色度が小さ く、 外観が良好であることを示す) 。 Yellowness Δ Υ I value by a method based on JIS-Z-8 7 2 2 Was evaluated, and the surface appearance of the molded body was evaluated (the smaller the ΔYI value, the lower the yellowness and the better the appearance).
( 8 ) 耐光性  (8) Light fastness
耐光性試験は、 耐光性試験機として米国 ATLAS Electric Devices Co.製 ATLAS CI35W Weatherometer を用い、 J I S K 7 1 0 2 に基づいた方法で行なった。 照射条件としては、 試験 機内部温度 5 5 ° (:、 湿度 5 5 %、 雨無し、 キセノ ン光 (波長 3 4 0 n m エネルギー 0 . 3 O W/m2) 3 0 0時間照射と した, 日本国スガ試験機 (株) 製 S Mカラーコンピューター型式 S M— 3 を用い、 L . a . b .法によ り試験前後での成形体の色差 Δ Eをもとめて、 色調変化を評価した。 色調変化が小さいほど、 耐光性が高い。 実施.例及び比較例で用いる各成分は以下の通りである。 The light resistance test was performed by a method based on JISK 7102 using an ATLAS CI35W Weatherometer manufactured by ATLAS Electric Devices Co., USA as a light resistance tester. Irradiation conditions were as follows: internal temperature of the test machine was 55 ° (: 55% humidity, no rain, xenon light (wavelength: 340 nm, energy: 0.3 OW / m 2 ), 300 hours, Japan Using the SM Color Computer Model SM-3 manufactured by Koku Suga Test Instruments Co., Ltd., the color difference ΔE of the molded body before and after the test was determined by the L. a. B. Method, and the color tone change was evaluated. The smaller the is, the higher the light resistance.The components used in Examples and Comparative Examples are as follows.
(ィ) 芳香族基含有シリ コーン化合物 ( B ) 及び難燃剤 ( C ) と してのケィ素系難燃剤  (A) Silicone flame retardant as aromatic compound-containing silicone compound (B) and flame retardant (C)
「シリ コーンハン ドブック」 〔日本国、 日刊工業新聞社 伊藤邦雄編集 ( 1 9 9 0 )〕 の第 1 7章 シリ コーン製造法に従 つて表 1 〜 7 に示す上記 D単位及び 又は T単位を有するシリ コーン化合物を製造した。  It has the above D units and / or T units shown in Tables 1 to 7 in accordance with Chapter 17 of "Silicon Handbook" [edited by Kunio Ito, Nikkan Kogyo Shimbun (1990), Japan] A silicon compound was produced.
なお、 比較例において用いた ( B ) 成分には、 本発明の芳香 族ポリ カーボネー ト樹脂組成物の ( B ) 成分についての要件を 満足しないものがある力 、 便宜上、 これらの成分も ( B ) 成分 に分類した Some of the components (B) used in the comparative examples do not satisfy the requirements for the component (B) of the aromatic polycarbonate resin composition of the present invention. For convenience, these components are also used as the components (B). component Classified into
(口) 重合体  (Mouth) Polymer
( 1 ) 芳香族ポリカーボネー ト  (1) Aromatic polycarbonate
市販のビスフエノール A型ポリカーボネー 卜(日本国、 住友ダウ (株) 製 ; 商品名 : カ リバー 1 3 ) (以下、 P Cと称 する) を用いた。  A commercially available bisphenol A type polycarbonate (manufactured by Sumitomo Dow, Japan; trade name: Caliber 13) (hereinafter referred to as PC) was used.
( 2 ) ゴム変性ポリスチレン (H I P S )  (2) Rubber modified polystyrene (HIPS)
市販のゴム変性ポリスチレン (ポリ ブタジエン Zポ ス チレン重量比 : 1 0 Z 9 0 ) (日本国、 旭化成工業 (株) 製 ; 商品名 : スタイ ロン) (以下、 H I P S と称する) 〕 を用いた,  A commercially available rubber-modified polystyrene (polybutadiene Z-postylene weight ratio: 10Z90) (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: Styron) (hereinafter referred to as HIPS) was used.
( 3 ) A B S樹脂 (A B S )  (3) ABS resin (ABS)
市販の A' B S樹脂 (ァク リ ロニ ト リル ポリ ブタジエン ノスチレン重量比 : 2 4 Z 2 0 Z 5 6 ) (日本国、 旭化成工業 (株) .製 ; 商品名 : ス夕ィ ラック A B S〕 (以下、 A B S と称 する) を用いた。  Commercially available A'BS resin (acrylonitrile polybutadiene styrene weight ratio: 24Z20Z56) (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: SUIRAC ABS) ( Hereinafter, it is called ABS).
( 4 ) スチレン一エチレンーブチレン一スチレン共重合 体 ( S E B S )  (4) Styrene-ethylenebutylene-styrene copolymer (SEBS)
市販のスチレン—エチレン—ブチレン一スチレン共重 合体 (日本国、 旭化成工業 (株) 製 ; 商品名 : タフテック) (以 下、 S E B S と称する) を用いた。  A commercially available styrene-ethylene-butylene-styrene copolymer (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: Tuftec) (hereinafter referred to as SEBS) was used.
( 5 ) 無水マレイ ン酸変性スチレン—エチレン—ブチレ ンースチレン共重合体 (以下、 m— S E B S )  (5) Maleic anhydride-modified styrene-ethylene-butylene-styrene copolymer (hereafter, m-SEBS)
市販の無水マレイ ン酸変性スチレン一エチレン—プチ レン—スチレン共重合体 (日本国、 旭化成工業 (株) 製 ; 商品 名 : タフテック) (以下、 m— S E B S と称する) を用いた。 Commercially available maleic anhydride-modified styrene-ethylene-petit A styrene-styrene copolymer (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: Tuftec) (hereinafter referred to as m-SEBS) was used.
( 6 ) スチレン—ブタジエン共重合体 ( S B )  (6) Styrene-butadiene copolymer (SB)
市販のスチレン一ブタジエン共重合体 (日本国、 旭化 成工業 (株) 製 ; 商品名 : タフプレン) (以下、 S Bと称す る) を用いた。  A commercially available styrene-butadiene copolymer (manufactured by Asahi Kasei Kogyo Co., Ltd., Japan; trade name: tufprene) (hereinafter referred to as SB) was used.
( 7 ) エポキシ変性スチレン一ブタジエン共重合体 ( E (7) Epoxy-modified styrene-butadiene copolymer (E
S B ) S B)
市販のエポキシ変性スチレン—ブタジエン共重合体 (日本国、 ダイセル化学工業 (株) 製 ; 商品名 : ェポフレン ド) (以下、 E S Bと称する) を用いた。  A commercially available epoxy-modified styrene-butadiene copolymer (manufactured by Daicel Chemical Industries, Ltd., Japan; trade name: Epofrend) (hereinafter referred to as ESB) was used.
( 8 ) シンジオタクチックスチレン系重合体  (8) Syndiotactic styrenic polymer
融点 2 7 0 °C、 重量平均分子量 3 2万のシンジオタ クチックポリスチレン ( S P S と称する) を用いた。  Syndiotactic polystyrene (SPS) having a melting point of 270 ° C and a weight average molecular weight of 320,000 was used.
( 9 ) ポリ フエ,二レンエーテル ( P P E )  (9) Poly fu, dilen ether (PPE)
市販のポリ フエ二レンェ一テル (日本国、 旭化成工業 (株) 製 ; 商品名 : ザィ ロン) (以下、 P P Eと称する) 〕 を 用いた。  A commercially available polyphenylene ether (manufactured by Asahi Kasei Kogyo Co., Ltd .; trade name: Xylon) (hereinafter referred to as PPE) was used.
( 1 0 ) ポリ プロ ピレン ( P P )  (10) Polypropylene (PP)
市販のポリ プロ ピレン (日本国、 日本ポリ ケム (株) 製) (以下、 P Pと称する) を用いた。  A commercially available polypropylene (manufactured by Japan Polychem Co., Ltd., Japan) (hereinafter referred to as PP) was used.
( 1 1 ) エチレンーォクテン共重合体 ( E〇) を用いた。 市販のエチレン—ォクテン共重合体 (米国、 デュポン ダウエラス トマ一社製 ; 商品名 : エンゲージ) (以下、 E〇と 称する) を用いた。 (11) Ethylene-octene copolymer (E〇) was used. Commercially available ethylene-octene copolymer (Dupont, USA Dowelas Toma One; product name: Engage) (hereinafter referred to as EII).
( 1 2 ) アク リ ロニ ト リル—スチレン共重合体 (A S )  (12) Acrylonitrile-styrene copolymer (AS)
A) 共重合組成分布を有するスチレン系共重合体 (A A) Styrene copolymer having copolymer composition distribution (A
S - 1 ) S-1)
以下の方法で製造したスチレン系共重合体を相溶化剤と し て用いた。  The styrene copolymer produced by the following method was used as a compatibilizer.
アク リ ロニ ト リル 3. 4重量部、 スチレン 8 1 . 6重量部、 ェチルベンゼン 1 5重量部、 及び開始剤として、 1 , 1 一 ビス ( t 一ブチルパーォキシ) 一 3, 3 , 5 — ト リ メチリレシク ロへ キサン 0. 0 3重量部の混合液を 0. 7 リ ッ トル Z時間の速度 で、 撹拌機付の直列 3段式プラグフロー型反応機に連続的に送 液して、 第 1段は撹拌数 1 0 0 r p m、 1 2 6 °C、 第 2段は 2 0 r p m、 1 3 5で、 第 3段は 1 0 ]: 111、 1 4 7 °Cで重合を 行なった。 引き続きこの重合液を 2 3 0 °Cの脱揮装置に導き、 未反応単量体及び溶媒を除去し、 ランダム共重合体を得た (以 下、 A S— 1 と称す) 。 得られた共重合体を W〇 9 5 — 3 5 3 4 6記載の方法で分析した。 その結果、 共重合体の単量体成分 の比率は、 アク リ ロニ ト リル単位 6重量%、 スチレン単位 9 4 重量%であ り、 平均 S P値は 1 0 . 7 5であった (単量体成分 の比率は赤外吸収スペク トル法による) 。 また、 液体ク ロマ ト グラフィ ー分析により、 共重合体の単量体成分の比率の分布を 測定したところ、 アク リ ロニ ト リル単位は 0〜 1 2重量%であ り、 共重合体分子の最大 S P値は 1 1 . 0であり 、 最小 S P値 は 1 0. 5であ り、 Δ S P値は 0. 5であった。 3.4 parts by weight of acrylonitrile, 81.6 parts by weight of styrene, 15 parts by weight of ethylbenzene, and 1,1,1-bis (t-butylperoxy) -1,3,3,5-trimethylsilicic acid as an initiator Hexane 0.03 parts by weight of the mixture was continuously fed at a rate of 0.7 liter Z-hour to a three-stage in-line plug-flow reactor equipped with a stirrer. The polymerization was carried out at a stirring speed of 100 rpm and 126 ° C., in the second stage at 20 rpm and 135, and in the third stage at 10]: 111 at 147 ° C. Subsequently, the polymerization liquid was led to a devolatilizer at 230 ° C. to remove unreacted monomers and a solvent to obtain a random copolymer (hereinafter referred to as AS-1). The obtained copolymer was analyzed by the method described in W95-35-346. As a result, the ratio of the monomer components of the copolymer was 6% by weight of acrylonitrile unit and 94% by weight of styrene unit, and the average SP value was 10.75 (single amount). The ratio of body components is determined by infrared absorption spectroscopy). Further, the distribution of the ratio of the monomer components of the copolymer was measured by liquid chromatography analysis to find that the acrylonitrile unit was 0 to 12% by weight. The maximum SP value of the copolymer molecule was 11.0, the minimum SP value was 10.5, and the ΔSP value was 0.5.
B ) 共重合組成の比較的均一な共重合体 (A S — 2 ) 以下の方法で製造した共重合体を相溶化剤と して用いた。 上記 A S— 1 の製造において、 反応機を完全混合型反応機に 変更すること以外同一の実験を繰り返した。 得られた共重合体 を分析した結果、 共重合体の単量体成分の比率が、 ァク リ ロ二 ト リル単位 6重量%、 スチレン単位 9 4重量%であった (赤外 吸収スペク トル法による) 。 また、 液体ク ロマ トグラフィ ー分 析によ り、 共重合体の単量体成分の比率の分布を測定したとこ ろ、 共重合体分子の最大 S P値は 1 1 . 0であ り、 最小 S P値 は 1 0. 8であ り、 A S P値は 0. 2であった。 B) Copolymer having relatively uniform copolymer composition (A S — 2) A copolymer produced by the following method was used as a compatibilizer. The same experiment was repeated except that the reactor was changed to a completely mixed reactor in the production of AS-1. As a result of analyzing the obtained copolymer, the ratio of the monomer components of the copolymer was 6% by weight of acrylonitrile unit and 94% by weight of styrene unit (infrared absorption spectrum). By law). Further, the distribution of the ratio of the monomer components of the copolymer was measured by liquid chromatography analysis, and the maximum SP value of the copolymer molecule was 11.0 and the minimum SP value was The value was 10.8 and the ASP value was 0.2.
• . ( 1 3 ) E〇— P P架橋体 ( T P V )  (13) E〇—PP crosslinked product (TPV)
E〇と P Pとの混合物 (重量比 : 5 0 Z 5 0 ) 1 0 0重量部に有機過酸化物 0. 5重量部とジビニルベンゼン 1重 量部を加えて二軸押出機で押出すことによ り製造した、 動的に 架橋された熱可塑性ポリ プロ ピレン (以下、 T P Vと称する) を用いた。  Mixture of E〇 and PP (weight ratio: 50 Z50) Add 100 parts by weight of organic peroxide and 0.5 parts by weight of divinylbenzene to 100 parts by weight and extrude with a twin screw extruder A dynamically cross-linked thermoplastic polypropylene (hereinafter referred to as TPV) manufactured by the Company was used.
( 1 4 ) ポリ ブチレンテレフタ レ一 卜 ( P B T) 市販のポリ ブチレンテレフタ レ一 卜(日本国、東レ(株) 製) (以下、 P B Tと称する) を用いた。  (14) Polybutylene terephthalate (PBT) A commercially available polybutylene terephthalate (manufactured by Toray Industries, Inc., Japan) (hereinafter referred to as PBT) was used.
( 1 5 ) エポキシ系重合体 ( E P ) 市販の熱可塑性非ハロゲン置換エポキシ系重合体 (日 本国、 旭チバ (株) 製 (以下、 E Pと称する) を用いた。 (15) Epoxy polymer (EP) A commercially available thermoplastic non-halogen-substituted epoxy polymer (manufactured by Asahi Chiba Co., Ltd., Japan (hereinafter referred to as EP)) was used.
( 1 6 ) ポリ アミ ド系重合体  (16) Polyamide polymer
市販のポリ 了ミ ド樹脂 (東レ (株) 製; 商品名 ポリ アミ ド 6 ) (以下、 P Aと称す) を用いた。  A commercially available polyamide resin (manufactured by Toray Industries, Inc .; trade name: Polyamide 6) (hereinafter referred to as PA) was used.
(八) 非ケィ素系難燃剤  (8) Non-carbon flame retardants
( 1 ) 有機スルホン酸金属塩  (1) Metal salt of organic sulfonic acid
A ) 市販のジフエ二ルースルホン 3 —スルホン酸カ リ ゥム (日本国、 U C B 日本 (株) 製) (以下、 K S S と称する) を用いた。  A) Commercially available diphenyl sulfone 3-sulfonic acid (manufactured by UCB Japan Ltd. in Japan) (hereinafter referred to as KSS) was used.
B )市販のパーフルォロブタンスルホン酸カ リ ウム(日 本国、 大日本イ ンキ工業 (株) 製) (以下、 F B Kと称する) を用いた。  B) Commercially available potassium perfluorobutanesulfonate (manufactured by Dainippon Ink Industries, Ltd. in Japan) (hereinafter referred to as FBK) was used.
( 2 ) 1 , 3 —フエ二レン ビス (ジフエニルホスフエ一 卜) ( F P )  (2) 1,3-phenylene bis (diphenylphosphophosphate) (FP)
市販の、 レゾルシン由来の芳香族縮合リ ン酸エステル (日本国、 大八化学工業 (株) 製 ; 商品名 : C R 7 3 3 S ) (以 下、 F Pと称する) を用いた。  A commercially available resorcinol-derived aromatic condensed phosphoric acid ester (manufactured by Daihachi Chemical Industry Co., Ltd., Japan; trade name: CR733S) (hereinafter referred to as FP) was used.
( 3 ) ポリテ トラフルォロエチレン ( P T F E ) 市販のポリテ トラフルォロエチレン (重量平均分子 量 : 1 , 0 0 0, 0 0 0 ) (日本国、 ダイキン工業 (株) 製) (以下、 P T F Eと称する) を用いた。  (3) Polytetrafluoroethylene (PTFE) Commercially available Polytetrafluoroethylene (weight average molecular weight: 1,000,000) (manufactured by Daikin Industries, Ltd., Japan) ) Was used.
( 4 ) メ ラミ ンシァヌ レー ト (M C ) 市販のメラミ ンシァヌ レー ト (日本国、 日産化学 (株) 製) (以下、 M Cと称する) を用いた。 (4) Melamine cyanurate (MC) A commercially available melamine cyanate (manufactured by Nissan Chemical Co., Ltd., Japan) (hereinafter referred to as MC) was used.
( 5 ) ホスファゼン  (5) Phosphazen
A) 直鎖状ホスフ ァゼン  A) Linear phosphazene
ポリ ジフエノキシホスフ ァゼン (融点: 1 1 0 °C ) (以下、 P P P と称する) を用いた。  Polydiphenoxyphosphazene (melting point: 110 ° C.) (hereinafter referred to as PPP) was used.
B ) 環状ホスフ ァゼン  B) Cyclic phosphazene
へキサキス (ァク ロィルエ トキシ) ホスファ f ン (以下、 H A P と称する) を用いた。  Hexakis (acryloyl ethoxy) phosphine (hereinafter referred to as HAP) was used.
( 6 ) テ トラゾール  (6) Tetrazole
市販の 5 , 5 ' — ビステ トラゾールピペラジン塩 (日本国東洋化成工業 (株) 製) (以下、 B P Pと称する) を 用いた。 実施例 9、 比較例 1 〜 1 1  A commercially available 5,5′-viste tolazole piperazine salt (manufactured by Toyo Kasei Kogyo Co., Ltd., Japan) (hereinafter referred to as BPP) was used. Example 9, Comparative Examples 1 to 11
ヘンシェルミキサーで、 表 1記載に記載の組成で組成物の各 成分を混合し、 引き続きバレル中央部に注入口を有した二軸押 出機 ( 4 0 mm <i) 、 L / D = 4 7 ) を用いて、 2 8 0 °Cの温度 条件で 1 0時間連続溶融押出を行った。 スク リ ユーと しては注 入口の前後に混練部を有した 2条スク リ ューを用いた。  Using a Henschel mixer, each component of the composition was mixed with the composition shown in Table 1, followed by a twin-screw extruder (40 mm <i) having an inlet at the center of the barrel, L / D = 47 ) Was used for continuous melt extrusion at 280 ° C for 10 hours. As a screw, a two-section screw having a kneading part before and after the inlet was used.
このようにして得られた組成物から以下の条件でシリ ンダー 設定温度 2 7 0 °C、 金型温度 6 0 °Cにて射出成形によ り成形体 を作製し、 評価を行った。 結果を表 1及び 2 に示す。 表 1 及び 2 によ り 、 芳香族ポリカーボネー ト と珪素系化合物 の樹脂組成物において、 珪素系化合物であるシリ コーンの中で も T単位を有する分岐または架橋シリ コーン樹脂よ り も、 D単 位のみからなり、 かつ芳香族基を 5 モル%以上含有する直鎖状 シリ コーンを ( B ) 成分として用いる本発明の樹脂組成物は、 卓越した難燃性を有するのみならず、 優れた溶融流動性及び溶 融成形時の安定性 (成形品の品質安定性) を有し且つ機械的特 性、 耐光性及び外観に優れる成形品の製造に用いるこ とができ ることが分かる。 一方、 芳香族ポリカーボネー トの代わり にポ リ フエ二レンエーテルを用いても、 本願の組成物において発現 する、 難燃性、 耐光性の向上効果は確認されないことが判明し た。 実施例. 1 0 〜 5 7 From the composition thus obtained, a molded body was produced by injection molding at a cylinder set temperature of 270 ° C. and a mold temperature of 60 ° C. under the following conditions, and was evaluated. The results are shown in Tables 1 and 2. According to Tables 1 and 2, in the resin composition of the aromatic polycarbonate and the silicon-based compound, even in the silicon-based compound silicone, the D-unit was more than the branched or cross-linked silicone resin having the T unit. The resin composition according to the present invention, which comprises a linear silicone having only 5 units and containing an aromatic group in an amount of 5 mol% or more, as the component (B), has not only excellent flame retardancy but also excellent melting properties. It can be seen that it can be used for manufacturing molded products that have fluidity and stability during melt molding (quality stability of molded products) and are excellent in mechanical properties, light resistance and appearance. On the other hand, it was found that even if polyphenylene ether was used in place of the aromatic polycarbonate, the effect of improving the flame retardancy and light resistance exhibited in the composition of the present invention was not confirmed. Example.10 to 5 7
樹脂組成物を表 3 〜 6記載のよう に変えた以外は、 実施例 1 と同様にして組成物を作製し、 評価を行った。 結果を表 3 〜 6 に示す。  A composition was prepared and evaluated in the same manner as in Example 1 except that the resin composition was changed as shown in Tables 3 to 6. The results are shown in Tables 3-6.
表 1 より、 難燃剤 ( C ) として 金属塩、 リ ン系、 窆素系、 珪 素系、 無機系、 フッ素系難燃剤から選ばれる難燃剤を更に本発 明の組成物に配合すると難燃性が一層向上する ことが分かる。  As shown in Table 1, flame retardants selected from metal salts, phosphorus-based, silicon-based, silicon-based, inorganic-based, and fluorine-based flame retardants as the flame retardant (C) are added to the composition of the present invention. It can be seen that the properties are further improved.
また P Cに、 ゴム状重合体を配合することによ り、 衝撃強度 が飛躍的に向上し、 一方、 P B T等のポリ エステルまたは熱可 塑性エポキシ系重合体またはポリ アミ ドを配合するこ とにより 溶融流動性が飛躍的に向上することが分かる。 実施例 5 8〜 6 9 Also, by blending a rubber-like polymer with PC, the impact strength is dramatically improved, while by blending a polyester such as PBT or a thermoplastic epoxy polymer or a polyamide. It can be seen that the melt fluidity is dramatically improved. Example 5 8-6 9
組成物の組成を表 7記載のよう に変えた以外は、 実施例 1 と 同様に組成物を作製し、 評価を行った。 結果を表 7 に示す。 表 7 よ り、 本発明の組成物の (B ) 成分の要件を満たす限り、. 芳香族基を 5モル%〜 5 0モル%未満含有するシリ コーン化合 物と、 該芳香族基を 5 0モル%以上含有するシリ コーン化 物 との様々な比率の混合物を ( B ) 成分として用いても、 本発明 の様々な優れた効果が発現することが分かる。 表 1 〜 7 における略称の意味は次の通り。  A composition was prepared and evaluated in the same manner as in Example 1, except that the composition of the composition was changed as shown in Table 7. Table 7 shows the results. According to Table 7, as long as the requirement of the component (B) of the composition of the present invention is satisfied, the silicone compound containing an aromatic group in an amount of 5 mol% to less than 50 mol% and the aromatic group in an amount of 50 mol% It can be seen that various excellent effects of the present invention are exhibited even when mixtures having various ratios with a silicon compound containing at least mol% are used as the component (B). The meanings of the abbreviations in Tables 1 to 7 are as follows.
P C : 芳香族ポリカーボネー ト ; PC: aromatic polycarbonate;
P P E : ポリ フエ二レンエーテル ; PPE: polyphenylene ether;
H I P S : ゴム変性ポリスチレン ; HIPS: rubber-modified polystyrene;
A B S : A B S樹脂 ; ABS: ABS resin;
S E B S : スチレン一エチレンー ブチレン一スチレン共重合 体 ;  SEBS: Styrene-ethylene-butylene-styrene copolymer;
m— S E B S : 無水マレイ ン酸変性スチレン一エチレン—プチ レンースチレン共重合体 ; m-SEBS: maleic anhydride-modified styrene-ethylene-butylene-styrene copolymer;
S B : スチレン一ブタジエン共重合体 ;  S B: Styrene-butadiene copolymer;
E S B : エポキシ変性スチレン一ブタジエン共重合体 ;  ESB: Epoxy-modified styrene-butadiene copolymer;
S P S : シンジオタクチックスチレン系重合体 ; P P : ポリ プロ ピレン ; SPS: syndiotactic styrene polymer; PP: polypropylene;
E〇 : エチレン—ォクテン共重合体 ;  E〇: ethylene-octene copolymer;
A S— 1 と A S — 2 : アク リ ロニ ト リル—スチレン共重合体 AS-1 and AS-2: Acrylonitrile-styrene copolymer
T P V : E 0 - P P架橋体 ; T P V: E 0 -PP cross-linked product;
P B T : ポリ ブチレンテレフタ レ一 卜 ;  PBT: polybutylene terephthalate;
E P : エポキシ樹脂 ;  E P: epoxy resin;
K S S : ジフエニルスルホン— 3 —スルホン酸カ リ ウム ; KSS: diphenylsulfone-3-potassium sulfonate;
F B K : パーフルォロブ夕ンスルホン酸カ リ ウム ; FBK: potassium perfluorinated sulfonate;
F P : 1 , 3 —フエ二レン ビス (ジフエニルホスフェー ト) F P: 1,3—phenylene bis (diphenyl phosphate)
P T F E : ポリテ トラフルォロエチレン ; PTF: Polytetrafluoroethylene;
M C : メラミ ンシァヌ レー ト ;  M C: Melamine cyanulate;
P P P : ポリ ジフエノキシホスファゼン ;  PPPP: polydiphenoxyphosphazene;
HA P : へキサキス (ァク ロィルエ トキシ) ホスフ ァゼン'; HAP: Hexakis (acylethoxy) phosphazene ';
B P P : 5 , 5 ' 一 ビステ トラゾ一ルピペラジン塩 BPP: 5,5'-biste tolazolpiperazine salt
実 施 例 比 較 例 Example Example Comparative Example
1 2 1 2 3 4 5 6 組 (A) P C 9 2 1 0 0 9 2 0 0 成 (B) 量 8 0 8 0 '8 8 物 D単位 ZT単位 ( 比) 1) 100/0 100/0 50/50 100/0 50/50 フエニル チル (モル比) 25/75 5/95 3/97 25/75 25/75 25/75 1 2 1 2 3 4 5 6 pairs (A) PC 9 2 1 0 0 9 2 0 0 Composition (B) Amount 8 0 8 0 '8 8 Objects D unit ZT unit (ratio) 1) 100/0 100/0 50/50 100/0 50/50 phenyl chill (molar ratio) 25/75 5/95 3/97 25/75 25/75 25/75
R3と R4に由来のメ卜キシ甚 ist Methoxy ist from R 3 and R 4
の有無  Presence
比 P PE 1 0 0 9 2 難燃性 2) ◎ ◎ X X X 〇 〇 〇 アイゾット衝撃強度 (kg · cm/cm) 1 5 1 2 1 5 7 5 7 5 3 外観 :黄色度 ΔΥ Ι 2 2 3 3 . 3 4 3 44 4 5 耐光性 色差 ΔΕ 2 2 3 3 5 2 0 2 2 2 5 押出安定性:アイ'/ ^の変化率(%) 5 7 5 2 9 3 3 9 1 8 40Ratio P PE 100 9 2 Flame retardance 2) ◎ ◎ XXX 〇 〇 〇 Izod impact strength (kg · cm / cm) 1 5 1 2 1 5 7 5 7 5 3 3 Appearance: Yellowness ΔΥ Ι 2 2 2 3 3 3 4 3 44 4 5 Light fastness Color difference ΔΕ 2 2 3 3 5 2 0 2 2 2 5 Extrusion stability: Change rate of eye '/ ^ (%) 5 7 5 2 9 3 3 9 1 8 40
1) D単位: R T単位: R 1) D unit: R T unit: R
I  I
— 0— S i—0— — 0— S i— 0—  — 0— S i—0— — 0— S i— 0—
I I  I I
R 0—  R 0—
2 ) 難燃性:◎ 2 0秒未満内に自己消火  2) Flame retardant: ◎ Self-extinguishing within 20 seconds
〇 2 0〜4 0秒以内に自己消火  自己 Self extinguishing within 20 to 40 seconds
X 全焼  X Burnt
上記 1 ) と 2) は表 2〜7についても同じ。 The above 1) and 2) are the same for Tables 2 to 7.
表 2 実 施 例 比 蛟 例 Table 2 Comparative examples
3 4 5 6 7 8 9 7 8 9 1 0 1 1 組 (A) P C 9 0  3 4 5 6 7 8 9 7 8 9 1 0 1 1 pair (A) PC 9 0
成 (B) 量 - 1 0 Composition (B) amount-1 0
物 D単位/ T単位(モル比) 1) 1 0 0/0 100/0 0/100 10/90 50/50 80/20 フエニル/メチル (モル比) 10/90 40/60 60/40 70/30 90/10 100/0 60/40 0/100 60/40 Product D unit / T unit (molar ratio) 1) 100/0 100/0 0/100 10/90 50/50 80/20 phenyl / methyl (molar ratio) 10/90 40/60 60/40 70 / 30 90/10 100/0 60/40 0/100 60/40
R3と R4に由来のメトキシ 有 Methoxy derived from R 3 and R 4
量 基の有無 Presence or absence of base
Ratio
難燃性 2) 〇 ◎ ◎ ◎ 〇 〇 ◎ X X X X X アイゾッ卜衝撃強度 (kg · cm/cm) 1 0 1 2 1 3 1 4 1 6 1 8 1 2 2 3 4 6 8 外観 :黄色度 ΔΥ Ι 2 2 2 3 3 3 2 2 3 3 3 5 耐光性 色差 ΔΕ 2 2 2 3 3 3 2 2 4 4 5 6 押出安定性:アイ 'ノトの変化率(%) 7 5 5 5 4 4 4 5 5 6 3 4 3 3 5 3 1 Flame retardance 2) 〇 ◎ ◎ ◎ 〇 ◎ ◎ XXXXX Izod impact strength (kg · cm / cm) 1 0 1 2 1 3 1 4 1 6 1 8 1 2 2 3 4 6 8 Appearance: Yellowness ΔΥ Ι 2 2 2 3 3 3 2 2 3 3 3 5 Lightfastness Color difference ΔΕ 2 2 2 3 3 3 2 2 4 4 5 6 Extrusion stability: change rate of eye-note (%) 7 5 5 5 4 4 4 5 5 6 3 4 3 3 5 3 1
表 3 Table 3
Figure imgf000058_0001
Figure imgf000058_0001
表 4 Table 4
Figure imgf000059_0001
Figure imgf000059_0001
表 5 Table 5
Figure imgf000060_0001
Figure imgf000060_0001
* 成形体の 1ノ8" インチ厚みのアイゾット衝撃強度と 1/4" のそれとの比が 1に近いほど厚み依存性が少なく、 安定した衝撃強度が発現する。 * The closer the ratio of the Izod impact strength of the molded product to the Izod impact strength of 1/8 "inch and that of 1/4" is closer to 1, the less the thickness dependency, the more stable impact strength is exhibited.
表 6 Table 6
Figure imgf000061_0001
Figure imgf000061_0001
表 7 Table 7
Figure imgf000062_0001
Figure imgf000062_0001
産業上の利用可能性 Industrial applicability
本発明によれば、 卓越した難燃性を有するのみならず、 優れ た溶融流動性及び溶融成形時の安定性 (成形品の品質安定性) を有し且つ機械的特性、 耐光性及び外観に優れる成形品の製造 に有利に用いることができる芳香族ポリカーボネー ト系樹脂組 成物が得られる。 従って、 本発明の樹脂組成物を用いて得られ た難燃材料は、 V T R、 分電盤、 テレビ、 オーディ オプレーヤ ―、 コ ンデンサ、 家庭用コンセン ト、 ラジカセ、 ビデオカセッ ト、 ビデオディ スクプレイヤ一、 エアコンディ ショ ナー、 加湿 機、 電気温風機械等の家電ハウジング、 シャーシまたは部品、 C D— R OMのメイ ンフ レーム (メカシャーシ) 、 プリ ンター、 ファ ックス、 P P C (plain paper copier) 、 C R T, ワープ 口複写機、 電子式金銭登録機、 オフィ スコ ンピュータ一システ ム、 フロッ ピ一ディ スク ドライブ、 キーボー ド、 タイ プ、 E C R (電子式金銭登録機) (electronic cash register) 、 電卓、 トナーカー ト リ ッジ、 電話等の〇 A機器ハウジング、 シャーシ または部品、 コネクタ、 コイルポビン、 スィ ッチ、 リ レー、 リ レーソケッ ト、 L E D ( 1 ight-emi 11 ing diode) 、 ノ リ コ ン、 A C ( al ternat ing current) アダプタ一、 F B T高圧ボビン、 F B Tケース、 I F Tコイルボビン、 ジャ ック、 ボリ ユウムシ ャフ ト、 モーター部品等の電子 · 電気材料、 そして、 イ ンスッ ルメン トパネル、 ラジェ一夕一グリル、 ク ラスター、 スピーカ —グリル、 ルーバー、 コ ンソールボックス、 デフロス夕一ガー ニッシュ、 オーナメ ン ト、 ヒューズボックス、 リ レーケース、 コネクタシフ 卜テープ等の自動車材料等にきわめて好適である したがって、本発明がこれらの産業分野に果たす役割は大きい。 ADVANTAGE OF THE INVENTION According to this invention, it not only has outstanding flame retardancy, but also has excellent melt fluidity and stability at the time of melt molding (quality stability of molded products), and has excellent mechanical properties, light resistance and appearance. An aromatic polycarbonate-based resin composition that can be advantageously used for producing excellent molded articles is obtained. Therefore, the flame-retardant materials obtained by using the resin composition of the present invention include VTRs, distribution boards, televisions, audio players, capacitors, household outlets, radio cassettes, video cassettes, video disc players, and the like. Home appliances such as air conditioners, humidifiers, electric warm air machines, chassis or parts, CD-ROM mainframe (mechanical chassis), printers, fax machines, PPC (plain paper copier), CRT, Warp-copier, electronic cash register, office computer system, floppy disk drive, keyboard, type, ECR (electronic cash register), calculator, toner cartridge機器 A equipment housing, chassis or parts, connectors, coil pobins, switches, relays, relays Socket, LED (1 ight-emi 11 ing diode), Norikon, AC (alternating current) adapter, FBT high-voltage bobbin, FBT case, IFT coil bobbin, jack, battery shaft, motor Electronic and electrical materials such as components, instrument panels, grilles, loudspeakers, clusters, and speakers — grills, louvers, console boxes, and defrosters It is extremely suitable for automobile materials such as nish, ornament, fuse box, relay case, connector shift tape, etc. Therefore, the role of the present invention in these industrial fields is great.

Claims

求 の 範 囲 Range of request
1 . (A) 芳香族ポリカーボネー ト及び芳香族ポリカーボネー ト とそれ以外の少なく とも 1種の有機重合体樹脂との樹脂混合 物から選ばれ、 該樹脂混合物の芳香族ポリカーボネー ト含量が 5 0重量%以上である樹脂成分 1 0 0重量部と、 1. (A) A resin selected from aromatic polycarbonate and a resin mixture of aromatic polycarbonate and at least one other organic polymer resin, wherein the aromatic polycarbonate content of the resin mixture is 5 100 parts by weight of a resin component which is 0% by weight or more,
( B )直鎖状または環状の芳香族基含有シリ コーン化合物 0. 1〜 1 0 0重量部、  (B) a linear or cyclic aromatic group-containing silicone compound 0.1 to 100 parts by weight,
とを含み、 And
該芳香族基含有シリ コーン化合物 ( B ) は下記式 ( 1 ) :  The aromatic group-containing silicone compound (B) has the following formula (1):
R 3—〇 ( 1 )
Figure imgf000065_0001
R 3 —〇 (1)
Figure imgf000065_0001
(式中、 R 1及び R 2は各々独立して水素原子あ るいは 1価の C i一 C 2。の炭化水素基を表わ し ; (Wherein, R 1 and R 2 each independently represent a hydrogen atom or a monovalent C i -C 2. Hydrocarbon group;
R 3及び R 4は各々独立して水素原子あるいは 1価または 2価の C i一 C 2 Qの炭化水素基を 表し、 但し、 R 3及び R 4が各々独立して 2価 の 一 C 2。の炭化水素基を表す場合、 R 3及 び R 4は同時に 2価であ り、 かつ、 互いに結合 して環を形成し ; R 3 and R 4 each independently represent a hydrogen atom or a monovalent or divalent C i -C 2 Q hydrocarbon group, provided that R 3 and R 4 are each independently a divalent mono-C 2 . R 3 and R 4 are divalent at the same time and are bonded to each other Forming a ring;
R R 2、 R 3及び R 4の少なく とも 1 つは C 6 RR 2, one at least of the R 3 and R 4 are C 6
一 C 2。の芳香族基を表わし、 該芳香族基は R R 2、 R 3または R 4の上記定義による価数を有 し ; そして One C 2. Wherein the aromatic group has a valency as defined above for RR 2 , R 3 or R 4 ; and
nは、 数平均 n値で表して 1以上である。 ) で表される単量体、 重合体またはそれらの混合物を包含し 該 ( B ) 成分としての上記重合体は、 下記式 ( 2 ) :  n is 1 or more, expressed as a number average n value. The above polymer as the component (B) includes a monomer, a polymer or a mixture thereof represented by the following formula (2):
Figure imgf000066_0001
Figure imgf000066_0001
(式中、 R 1及び R 2は各々式 ( 1 ) におい (Wherein, R 1 and R 2 each represent the formula (1)
て定義した通りである。 )  As defined above. )
で表わされる複数の繰り返し単位を含有し、 該繰り返し単位は 同じでも異なっていてもよく 、 従って該 ( B ) 成分としての上 記重合体は単独重合体または共重合体であ り、 その際、 該共重 合体は、 ランダム共重合体、 ブロック共重合体または交互共重 合体であ り、 And the repeating unit may be the same or different. Therefore, the above-mentioned polymer as the component (B) is a homopolymer or a copolymer. The copolymer is a random copolymer, a block copolymer or an alternating copolymer,
該 ( B ) 成分中の該芳香族基の量が、 R 1、 R 2、 R 3及び R 4 の全モル量に対して 5〜 1 0 0モル%である、 The amount of the aromatic group in the component (B) is 5 to 100 mol% based on the total molar amount of R 1 , R 2 , R 3 and R 4 ;
ことを特徴とする芳香族ポリ カーボネー ト系樹脂組成物。 An aromatic polycarbonate-based resin composition, comprising:
2. ( B ) 成分が、 J I S— K 2 4 1 0 に従い 2 5 °Cで測定し て 1 0 0センチス ト一クス以上の動粘度を示す請求項.1 に記載 の樹脂組成物。 2. The resin composition according to claim 1, wherein the component (B) exhibits a kinematic viscosity of 100 centistokes or more when measured at 25 ° C in accordance with JIS-K224.
3. ( B ) 成分が、 該芳香族基を R R 2、 R 3及び R 4の全 モル量に対して 5モル%〜 5 0モル%未満含有するシリ〉コ一ン 化合物と、 該芳香族基を R 1_、 R 2 , R 3及び R 4の全モル量に 対して 5 0モル%以上含有するシリ コーン化合物との混合物で ある請求項 1 または 2 に記載の樹脂組成物。 3. A (silicon) compound in which the component (B) contains the aromatic group in an amount of 5 to less than 50 mol% based on the total molar amount of RR 2 , R 3 and R 4 ; 3. The resin composition according to claim 1, which is a mixture with a silicone compound containing a group in an amount of 50 mol% or more based on the total molar amount of R 1_ , R 2 , R 3 and R 4 .
4. 更に ( C ) 難燃剤 0. 0 0 1 ~ 1 0 0重量部を含有する請 求項 1〜 3 のいずれかに記載の樹脂組成物。 4. The resin composition according to any one of claims 1 to 3, further comprising (C) 0.01 to 100 parts by weight of a flame retardant.
5. 難燃剤 ( C ) が金属塩系難燃剤、 リ ン系難燃剤、 窒素系難 燃剤、 ケィ素系難燃剤、 無機系難燃剤及びフッ素系難燃剤から 選ばれる少なく とも 1種の難燃剤である請求項 4に記載の樹脂 組成物。 5. Flame retardant (C) is at least one flame retardant selected from metal salt flame retardant, phosphorus flame retardant, nitrogen flame retardant, silicon flame retardant, inorganic flame retardant and fluorine flame retardant The resin composition according to claim 4, which is:
6. 該金属塩系難燃剤が有機硫黄化合物金属塩である請求項 5 に記載の樹脂組成物。 6. The resin composition according to claim 5, wherein the metal salt-based flame retardant is a metal salt of an organic sulfur compound.
7 . 該有機硫黄化合物金属塩が有機スルホン酸金属塩である請 求項 6 に記載の樹脂組成物。 7. The organic sulfur compound metal salt is an organic sulfonic acid metal salt. 7. The resin composition according to claim 6.
8 . 該金属塩系難燃剤がスルホン酸金属塩含有芳香族有機重合 体である請求項 5 に記載の樹脂組成物。 8. The resin composition according to claim 5, wherein the metal salt-based flame retardant is an aromatic organic polymer containing a metal sulfonic acid salt.
9 . 該窒素系難燃剤が ト リ アジン系化合物、 ト リ ァゾール系化 合物、 テ トラゾール系化合物、 ホスファゼン系化合物及びジァ ゾ系化合物からなる群から選ばれる少なく とも 1 種である請求 項 5 に記載の樹脂組成物。 9. The nitrogen-based flame retardant is at least one selected from the group consisting of a triazine-based compound, a triazole-based compound, a tetrazole-based compound, a phosphazene-based compound, and a diazo-based compound. 6. The resin composition according to 5.
1 0 . 樹脂成分 (A ) が芳香族ポリカーボネー ト と、 芳香族ビ ニル系重合体、 ォレフィ ン系重合体、 ポリエステル系重合体、 ポリアミ ド系重合体、 ポリ フエ二レンエーテル系重合体及びェ ポキシ.系重合体からなる群から選ばれる少なく とも 1 種の有機 重合体樹脂との樹脂混合物である請求項 1 〜 9 のいずれかに記 載の樹脂組成物。 10. The resin component (A) is composed of an aromatic polycarbonate, an aromatic vinyl polymer, an olefin polymer, a polyester polymer, a polyamide polymer, a polyphenylene ether polymer and The resin composition according to any one of claims 1 to 9, which is a resin mixture with at least one organic polymer resin selected from the group consisting of epoxy polymers.
PCT/JP2000/000681 1999-02-08 2000-02-08 Aromatic polycarbonate resin composition WO2000046299A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10080144T DE10080144T1 (en) 1999-02-08 2000-02-08 Aromatic polycarbonate resin composition
US09/717,060 US6790887B1 (en) 1999-02-08 2000-11-22 Aromatic polycarbonate resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3003099 1999-02-08
JP11/30030 1999-02-08
JP32993999 1999-11-19
JP11/329939 1999-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US60184300A Continuation-In-Part 1999-02-08 2000-08-09

Publications (1)

Publication Number Publication Date
WO2000046299A1 true WO2000046299A1 (en) 2000-08-10

Family

ID=26368293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000681 WO2000046299A1 (en) 1999-02-08 2000-02-08 Aromatic polycarbonate resin composition

Country Status (2)

Country Link
DE (1) DE10080144T1 (en)
WO (1) WO2000046299A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270983A (en) * 2000-03-28 2001-10-02 Teijin Chem Ltd Flame retardant polycarbonate resin composition
JP2002088237A (en) * 2000-07-11 2002-03-27 Ge Plastics Japan Ltd Flame-retardant polycarbonate resin composition and its molded article
WO2002051923A3 (en) * 2000-12-27 2002-09-19 Gen Electric Method for reducing haze in a fire resistant polycarbonate composition
US6541548B2 (en) * 2000-08-07 2003-04-01 Wacker-Chemie Gmbh Flame retardant aromatic polycarbonate resin composition
US6825264B2 (en) 2001-10-11 2004-11-30 Asahi Kasei Chemicals Corporation Flame retardant resin composition
JP2005200526A (en) * 2004-01-15 2005-07-28 Teijin Chem Ltd Flame-retarded aromatic polycarbonate resin composition
WO2006126670A1 (en) * 2005-05-26 2006-11-30 Kaneka Corporation Flame-retardant resin composition
US7144935B2 (en) 2002-12-06 2006-12-05 Bayer Aktiengesellschaft Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds
US7390450B2 (en) 2002-06-07 2008-06-24 General Electric Company Process for preparing a fire resistant polycarbonate composition
JP2010174121A (en) * 2009-01-29 2010-08-12 Teijin Chem Ltd Flame retardant aromatic polycarbonate resin composition
WO2012091293A2 (en) * 2010-12-30 2012-07-05 제일모직주식회사 Polycarbonate resin composition having excellent chemical resistance
JP2013040237A (en) * 2011-08-11 2013-02-28 Techno Polymer Co Ltd Thermoplastic resin composition and molding
KR101333590B1 (en) 2010-12-30 2013-11-28 제일모직주식회사 Polycarbonate Resin Composition With Excellent Chemical Resistance
US9150725B2 (en) 2010-07-30 2015-10-06 Cheil Industries Inc. Flame retardant polycarbonate resin composition and molded product made using the same
JP2018523742A (en) * 2015-09-09 2018-08-23 ダウ シリコーンズ コーポレーション Flame retardant resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056726A1 (en) * 2013-10-17 2015-04-23 東レ・ダウコーニング株式会社 Curable silicone composition, and optical semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390651A (en) * 1974-09-16 1983-06-28 General Electric Company Phenyl-containing organopolysiloxanes
JPH06100785A (en) * 1992-09-16 1994-04-12 Asahi Chem Ind Co Ltd Drip-resistant, flame-retardant, heat-resistant, and impact-resistant resin composition
JPH06306265A (en) * 1993-04-26 1994-11-01 Idemitsu Petrochem Co Ltd Flame-retardant polycarbonate resin composition
JPH0987504A (en) * 1995-09-21 1997-03-31 Teijin Chem Ltd Polycarbonate resin composition
JPH09111109A (en) * 1995-10-19 1997-04-28 Mitsubishi Eng Plast Kk Flame-retardant polycarbonate resin composition
JPH111574A (en) * 1997-01-16 1999-01-06 Chisso Corp Flame retardant and thermoplastic composition resin containing the same
WO1999028387A1 (en) * 1997-11-28 1999-06-10 Sumitomo Dow Limited Flame-retardant polycarbonate resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390651A (en) * 1974-09-16 1983-06-28 General Electric Company Phenyl-containing organopolysiloxanes
JPH06100785A (en) * 1992-09-16 1994-04-12 Asahi Chem Ind Co Ltd Drip-resistant, flame-retardant, heat-resistant, and impact-resistant resin composition
JPH06306265A (en) * 1993-04-26 1994-11-01 Idemitsu Petrochem Co Ltd Flame-retardant polycarbonate resin composition
JPH0987504A (en) * 1995-09-21 1997-03-31 Teijin Chem Ltd Polycarbonate resin composition
JPH09111109A (en) * 1995-10-19 1997-04-28 Mitsubishi Eng Plast Kk Flame-retardant polycarbonate resin composition
JPH111574A (en) * 1997-01-16 1999-01-06 Chisso Corp Flame retardant and thermoplastic composition resin containing the same
WO1999028387A1 (en) * 1997-11-28 1999-06-10 Sumitomo Dow Limited Flame-retardant polycarbonate resin composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270983A (en) * 2000-03-28 2001-10-02 Teijin Chem Ltd Flame retardant polycarbonate resin composition
JP2002088237A (en) * 2000-07-11 2002-03-27 Ge Plastics Japan Ltd Flame-retardant polycarbonate resin composition and its molded article
JP4680381B2 (en) * 2000-07-11 2011-05-11 Sabicイノベーティブプラスチックスジャパン合同会社 Flame retardant polycarbonate resin composition and molded product thereof
US6541548B2 (en) * 2000-08-07 2003-04-01 Wacker-Chemie Gmbh Flame retardant aromatic polycarbonate resin composition
US7288579B2 (en) 2000-12-27 2007-10-30 General Electric Company Method for reducing haze in a fire resistant polycarbonate composition
WO2002051923A3 (en) * 2000-12-27 2002-09-19 Gen Electric Method for reducing haze in a fire resistant polycarbonate composition
US6730720B2 (en) 2000-12-27 2004-05-04 General Electric Company Method for reducing haze in a fire resistant polycarbonate composition
US6825264B2 (en) 2001-10-11 2004-11-30 Asahi Kasei Chemicals Corporation Flame retardant resin composition
US7390450B2 (en) 2002-06-07 2008-06-24 General Electric Company Process for preparing a fire resistant polycarbonate composition
US7144935B2 (en) 2002-12-06 2006-12-05 Bayer Aktiengesellschaft Flame-resistant polycarbonate compositions containing phosphorus-silicon compounds
JP4515778B2 (en) * 2004-01-15 2010-08-04 帝人化成株式会社 Flame retardant aromatic polycarbonate resin composition
JP2005200526A (en) * 2004-01-15 2005-07-28 Teijin Chem Ltd Flame-retarded aromatic polycarbonate resin composition
WO2006126670A1 (en) * 2005-05-26 2006-11-30 Kaneka Corporation Flame-retardant resin composition
JP2010174121A (en) * 2009-01-29 2010-08-12 Teijin Chem Ltd Flame retardant aromatic polycarbonate resin composition
US9150725B2 (en) 2010-07-30 2015-10-06 Cheil Industries Inc. Flame retardant polycarbonate resin composition and molded product made using the same
WO2012091293A2 (en) * 2010-12-30 2012-07-05 제일모직주식회사 Polycarbonate resin composition having excellent chemical resistance
WO2012091293A3 (en) * 2010-12-30 2012-08-23 제일모직주식회사 Polycarbonate resin composition having excellent chemical resistance
KR101333590B1 (en) 2010-12-30 2013-11-28 제일모직주식회사 Polycarbonate Resin Composition With Excellent Chemical Resistance
US8987379B2 (en) 2010-12-30 2015-03-24 Cheil Industries Inc. Polycarbonate resin composition having excellent chemical resistance
JP2013040237A (en) * 2011-08-11 2013-02-28 Techno Polymer Co Ltd Thermoplastic resin composition and molding
JP2018523742A (en) * 2015-09-09 2018-08-23 ダウ シリコーンズ コーポレーション Flame retardant resin composition

Also Published As

Publication number Publication date
DE10080144T1 (en) 2001-03-22

Similar Documents

Publication Publication Date Title
US6790887B1 (en) Aromatic polycarbonate resin composition
TWI300424B (en)
WO2000046299A1 (en) Aromatic polycarbonate resin composition
JP3619193B2 (en) Flame retardant polycarbonate resin composition molded body
JP7386159B2 (en) Thermoplastic resin composition and molded articles formed from it
JP2003096288A (en) Aromatic polycarbonate resin composition
JP5290483B2 (en) Flame retardant aromatic polycarbonate resin composition
WO2001072899A1 (en) Flame-retardant polycarbonate resin composition and molded article
JP2004137396A (en) Thermoplastic resin composition and molded product
JP2003292816A (en) Inorganic function-adding agent
JP6055010B2 (en) Contact parts made of thermoplastic resin composition with reduced squeaking noise
JP5687466B2 (en) Contact parts made of thermoplastic resin composition with reduced squeaking noise
JP2011046843A (en) Composite rubber-based graft copolymer, thermoplastic resin composition, and resin molded product
JPH11323063A (en) Flame-retardant resin composition
JP2000256566A (en) Silicon-based non-halogen flame retardant polymer composition
JPH11349758A (en) Thermoplastic resin composition
JP2000297209A (en) Silicon-containing polyphenylene ether-based composition
JPH10130510A (en) Flame-retardant thermoplastic resin composition
JP2002194197A (en) Flame-retardant aromatic polycarbonate composition
JP2002114982A (en) Silicone-based flame retardant
JP2003292793A (en) Flame-retardant composition
JP2000248144A (en) Flame-retardant resin composition
JP2001192557A (en) Silicon based polymeric composition
JP2002338819A (en) Flame retardant polymer composition
JPH05255598A (en) Flame-retardant high-impact resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09601843

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

WWE Wipo information: entry into national phase

Ref document number: 09717060

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10080144

Country of ref document: DE

Date of ref document: 20010322

WWE Wipo information: entry into national phase

Ref document number: 10080144

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607