WO2000043433A1 - High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance - Google Patents

High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance Download PDF

Info

Publication number
WO2000043433A1
WO2000043433A1 PCT/US2000/001404 US0001404W WO0043433A1 WO 2000043433 A1 WO2000043433 A1 WO 2000043433A1 US 0001404 W US0001404 W US 0001404W WO 0043433 A1 WO0043433 A1 WO 0043433A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mole
hot melt
molecular weight
polyether polyol
Prior art date
Application number
PCT/US2000/001404
Other languages
French (fr)
Inventor
Marietta B. Helmeke
Original Assignee
H.B. Fuller Licensing & Financing, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H.B. Fuller Licensing & Financing, Inc. filed Critical H.B. Fuller Licensing & Financing, Inc.
Priority to EP00909940A priority Critical patent/EP1151022B1/en
Priority to DE60009862T priority patent/DE60009862T2/en
Publication of WO2000043433A1 publication Critical patent/WO2000043433A1/en
Priority to HK02103307.0A priority patent/HK1042506B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/20Compositions for hot melt adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S528/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S528/905Polymer prepared from isocyanate reactant has adhesive property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • This invention relates to hot melt moisture cure polyurethane compositions
  • hot melt moisture cure polyurethane compositions comprising the reaction product of a polyether glycol, a low molecular weight polyalkylene glycol, a crystalline polyester diol and at least one polyfunctional isocyanate component having two or more -NCO groups
  • the compositions can further optionally comprise a thermoplastic component
  • the compositions are useful as adhesives and coatings, and are particularly useful where high moisture vapor transmission rates and excellent hydrolysis resistance are desired
  • These prepolymers have low viscosity, excellent thermal stability and green strength
  • Green strength refers to the strength of a bond after the composition sets, but before the composition is cured
  • compositions may be designed to have a fast rate of set for coating applications or they may be designed to have a slower rate of set for adhesive applications where a long open time gives excellent bondability by allowing for more time for penetration into the substrates They may be applied at low application temperatures from about 80°C to about 120°C which is beneficial for heat sensitive substrates such as very low gauge films
  • these one-part hot melt moisture cure polyurethane compositions have surprisingly high bond strength, very good flexibility, excellent mechanical strength, excellent moisture vapor transmission rates and superior hydrolysis resistance
  • This invention relates to a reactive hot melt moisture cure polyurethane composition which has a set time of from about 10 seconds to about 5 minutes, a moisture vapor transmission rate of greater than about 100 grams per meter squared per day at a film thickness from about 450 to about 500 g/m 2 and excellent hydrolysis resistance
  • This invention further relates to a hot melt moisture cure polyurethane which is the reaction product of a) at least one polyether polyol formed from one or more ingredients selected from the group including ethylene oxide, propylene oxide, 1,2- butylene oxide, 1,4-butylene oxide and mixtures thereof; b) at least one low molecular weight alkylene glycol having at least about 3 carbon atoms, c) at least one crystalline polyester polyol having a melting point from about 40°C to about 120°C, and d) at least one polyfunctional isocyanate component
  • the polyfunctional isocyanate preferably has about two or more NCO groups
  • the crystalline polyester polyol is preferably free of ether linkages
  • the hot melt moisture cure polyurethane composition may further comprise a thermoplastic component to impart improved film forming characteristics It is not necessary to the compositions of the present invention that a thermoplastic component be added to form a film However, the present inventors have found that by adding the thermoplastic component, better films are formed
  • compositions may be applied at low application temperatures ranging from about 80°C to about 120°C
  • compositions have a set time from about 10 seconds to about 5 minutes They can therefore be utilized for such coating applications where a fast rate of set is needed to adhesive applications where a slow set time is needed for better penetration and excellent bondability
  • the resultant compositions Prior to cure, the resultant compositions have superior green strength, low viscosities and excellent viscosity stability in the molten state, and once cured also have good flexibility, excellent mechanical strength, excellent moisture vapor transmission rates and excellent hydrolysis resistance
  • the excellent moisture vapor transmission rates and excellent hydrolysis resistance makes them especially useful for adhering to, and for coating woven and nonwoven material for use in medical garments, athletic gear, rain protective garments and tarpaulins to mention only a few waterproof garments where breathability is desired
  • the hydrolysis resistance gives the hot melt moisture cure washability so that garments may withstand many wash cycles
  • This invention further relates to a flexible laminate which comprises a) at least one flexible layer, and b) at least one hydrophilic hot melt moisture cure polyurethane layer wherein the hot melt moisture cure polyurethane composition is the reaction product of i) at least one polyether polyol formed from a compound selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof, ii) at least one low molecular weight alkylene glycol having at least about 3 carbon atoms, iii) at least one crystalline polyester polyol having a melt point from about 40°C to about 120°C, and iv) at least one polyfunctional isocyanate component
  • these one-part hot melt moisture cure polyurethane compositions have surprisingly high bond strength, very good flexibility, excellent mechanical strength, excellent moisture vapor transmission rates and surprisingly excellent hydrolysis resistance
  • the polyether polyols useful herein include those compounds which are homopolymers or copolymers which are formed from one or more ingredients including ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof These polyols may have a random or a block configuration
  • Some useful polyether glycols include those which are the reaction product of propylene oxide or butylene oxide capped or copolymerized with ethylene oxide More preferably, the polyether glycol may be the reaction product of propylene oxide copolymerized with ethylene oxide and the mole % of ethylene oxide is less than 45 mole-%, preferably from about 5 mole-% to about 40 mole-% and even more preferably from about 20 mole-% to about 30 mole-% and the propylene oxide is preferably greater than 55 mole-%, more preferably from about 60 mole-% to about 95 mole-% and even more preferably from about 70 mole-% to about 80 mole-%
  • Polyols having higher molecular weights have been found to have higher vapor transmission rates and more flexibility Furthermore, higher molecular weight polyols also lower the amount of isocyanate required thus lowering the amount of urethane linkages, which may also increase moisture vapor transmission rates Additionally, polyols having high amounts of ethylene oxide and molecular weights of about 2,000 or less have been found to have poor hydrolysis resistance The molecular weights of these polyether polyols are preferably greater than about
  • polyols are useful from about 20 wt-% to about 60 wt-% of the polyurethane prepolymer composition and preferably from about 30 wt-% to about 50 wt- % of the prepolymer composition
  • Arco Chemical Co now Lyondell Petrochemical Co , Inc
  • Newtown Square PA
  • Huntsman Corp in Houston TX
  • Texaco Chemical Co in Bellaire TX
  • the low molecular weight alkylene glycols useful herein preferably have a molecular weight of less than about 1,000 g/mole, more preferably from about 400 g/mole to about 1,000 g/mole and most preferably from about 400 g/mole to about 600 g/mole
  • the alkylene glycols are preferably those having 3 or more carbon atoms such as propylene glycol or butylene glycol but propylene glycol is preferable
  • This low molecular weight component provides the hard segment of the prepolymer, increases the glass transition temperature, increases the strength and contributes to the hydrolysis resistance or washability
  • polyols having number average molecular weights of less than about 1,000 g/mole have been found to be less stable in the molten state, the compositions are useful in smaller amounts from about 5 wt-% to about 20 wt-% and preferably from about 10 wt-% to about 15 wt-%
  • crystalline polyester polyols useful herein are those polyols having a melt point from about 40°C to about 120°C and glass transition temperatures, T g 's, of less than about 0°C
  • the crystalline polyester polyols are those which are the reaction product of either hexane diol or butane diol, and an acid which may include adipic acid, dodecanedioic acid, sebacic acid, terephthalic acid and mixtures thereof
  • the acid is sebacic acid or dodecanedioic acid
  • useful polyester polyols include Dynacoll® 7360, 7371, 7380 and 7381 which are all crystalline polyester polyols available from Huls America, Inc in Piscataway, NJ While this list is intended to illustrate the useful crystalline polyols, it is in no way intended as an exclusive list
  • these crystalline polyester polyols are preferably free of ether linkages which may decrease the crystallinity of the polyester polyols Those polyols having melting points of less than about 40°C are no longer very crystalline Those polyols which have melting points of greater than about 120°C require high temperatures of application, which may be detrimental to fabrics which are heat sensitive and which may melt or deform as a result of the high temperatures
  • the higher the percentage of crystalline polyester polyol the faster the finished composition will set However, this is balanced against the decrease in the moisture vapor transmission rate as the amount of the crystalline polyester polyol is increased
  • it may be desirable to have a faster rate of set which can either be achieved by using higher levels of the crystalline component or by using polyols at the higher end of the range of crystallinity (i e , those having higher melting points or higher enthalpies)
  • a polyol having a melting point of 120°C will be more crystalline than one having a melting point of 80°C
  • the isocyanates useful herein include those described in U S Pat Nos 4,775,719 issued October 4, 1988, U S Pat No 4,808,255 issued February 28, 1989 and U S Pat No 4,820,368 issued April 11 to Markevka et al incorporated herein by reference
  • An example of a useful isocyanate compound is Isonate® 2125M, pure diphenylmethane diisocyanate (MDI) manufactured by Dow Chemical Co in Midland, MI
  • MDI diphenylmethane diisocyanate
  • MI isocyanate compounds are polyfunctional, having two or more -NCO groups, and include those isocyanates that are aliphatic, aromatic and those having mixtures thereof
  • the isocyanate compounds can also contain other substituents which do not substantially adversely affect the properties of the isocyanate compounds such as viscosity of the isocyanate terminated prepolymers, the adhesive properties of the bond line or the reactivity of the -NCO groups during the formation of the prepolymer
  • a catalyst may optionally be utilized in the compositions of the present invention to improve curing speed without adversely affecting other physical properties such as green strength or thermal stability
  • Preferred catalysts comprise both ether and morpholine functional groups, with 2,2-dimorpholinoethyl ether and di(2,6-dimethyl morpholinoethyl)ether being the most preferred
  • An example of a useful catalyst is 4,4'- (oxydi-2,l-ethanediyl)bis-morpholine
  • This catalyst is otherwise known as DMDEE and is available under the tradename of Jeffcat DMDEE from Huntsman Corp located in Houston, TX
  • Other catalysts such as ethylene diamine and organo tin and bismuth catalysts such as dibutyl tin dilaurate and dibutyl tin diacetate are not as advantageous
  • bismuth octoate for instance, is a very good hot melt moisture cure catalyst, but is less stable during shipping and storage where the temperatures may reach about 65°C
  • thermoplastic components include Pearlstick® thermoplastic polyesterurethane polymers from Aries Technologies in Deny, NH, a distributor of Merquinsa located in Barcelona, Spain, thermoplastic polyetherurethane polymers sold under the tradename of Estane® and available from B F Goodrich Specialty Chemicals in Cleveland, OH, Hytrel® 8171, a butylene/poly(alkylene ether) phthalate from DuPont de Nemours in Wilmington, DE, ethylene vinyl acetate copolymers also available from Du Pont de Nemours under the tradename of Elvax® and from Quantum Chemical Co , USI Division in Cincinnati, OH under the tradename of Ultrathene®, ethylene n-butyl acrylate copolymers available from Quantum Chemical Co , USI Division in Cincinnati, OH under the tradename of Enathene®, from Exxon Chemical Co in Houston, TX under
  • compositions of the present invention may optionally contain other ingredients
  • a tackifying resin may be incorporated Tackifying resins should be selected based on compatibility with the composition
  • those tackifiers having residual acid numbers such as rosin based tackifying resins and those resins having phenolic functionality are selected with care as the residual acid may react in the hot melt moisture cure system
  • tackifying resins that may be utilized and the list is not exclusive
  • Plasticizers may also be incorporated into the system
  • the plasticizers are carefully selected so as not to interfere with the efficacy of the other components, but will facilitate processing and increase flexibility of the composition
  • compositions of the present invention may optionally contain fillers
  • fillers may include talcs, clays, silicas and treated versions thereof, carbon blacks and micas
  • examples of such fillers include Mistron Vapor® talc from Luzenac America, Inc in Englewood, CO, Nytal® 200, 300 and 400, different particle size grades of talc from R T Vanderbilt Co in Norwalk, CT, Snobrite® Clay, a Kaolin clay available from Evans Clay Co in Mcintyre, GA, Cab-o-sil® TD-720, a fumed silica available from Cabot Corp in Tuscol, IL and Mineralite® 3X and 4X micas available from Mineral Mining Corp in Kershaw, SC
  • a stabilizer or antioxidant can also be added to protect the composition from degradation caused by reaction with oxygen induced by such things as heat, light or residual catalyst from the raw materials such as the tackifying resin
  • Such antioxidants are commercially available from Ciba-Geigy in Hawthorne, NY and include Irganox® 565, 1010 and 1076, all hindered phenolic antioxidants, and Anox® 20, also a hindered phenolic antioxidant from Great Lakes Chemicals in West Lafayette, Indiana These are primary antioxidants which act as free radical scavengers and may be used alone or in combination with other antioxidants such as phosphite antioxidants like Irgafos® 168 available from Ciba-Geigy Phosphite antioxidants are considered secondary antioxidants, are primarily used as peroxide decomposers and are generally not used alone, but are instead used in combination with other antioxidants Other available antioxidants are Cyanox® LTDP, a thioether antioxidant available from Cytec Industries in Stamford
  • the reactive hot melt polyurethane compositions of this invention can be made by reacting the isocyanate and the polyols and then blending with the thermoplastic component and any other optional ingredient that may be added The amount of each ingredient is based on a percentage of the resultant total weight of the hot melt moisture cure composition regardless of what the ingredients are Optionally, the thermoplastic component can be blended with the polyols before reacting with the isocyanate
  • compositions are typically prepared by reacting the polyols, in this case at least one polyether polyol, at least one low molecular weight polyalkylene glycol, at least one crystalline polyester polyol and at least one polyfunctional isocyanate compound at an elevated temperature of typically between about 40°C and about 200°C
  • the polyols may first be introduced into a reaction vessel, heated to reaction temperatures and dried to remove ambient moisture absorbed by the polyols
  • the polyfunctional isocyanate compounds are then added to the reactor
  • the polyols are generally reacted with the isocyanate compounds at ratios that typically depend on the hydroxy and isocyanate functionality of the reactants Typically the compounds are reacted at ratios which result in a reaction between isocyanate groups and hydroxy groups leaving essentially no residual hydroxy and minimal isocyanate functionality, typically less than 10% by weight of the prepolymer
  • the reaction between the polyol compounds and the isocyanate compounds is conducted at an OH NCO ratio of between about 0 75 1
  • the reactive hot melt urethane compositions can be cured after application using a variety of mechanisms
  • the curing reaction occurs between a compound having an available active hydrogen atom and the NCO groups of the polyurethane prepolymer
  • a variety of reactive compounds having free active hydrogens are known in the art including water, hydrogen sulfide, polyols, ammonia and other active compounds These curing reactions may be carried out by relying on ambient moisture, or the active compounds may be added to the composition at the bond line
  • urea groups are formed to provide a polyurethane urea polymer
  • the prepolymer compositions have low viscosities of less than about 10,000 cPs, preferably from about 1,000 to about 5,000 and most preferably from about 1,500 to about 3,000 cPs at about 110°C
  • the temperature of application may therefore be low from about 80°C to about 120°C (175°F to about 250°F), preferably from about 80°C to about 110°C (about 175°F to about 225°F
  • compositions have good heat stability in the molten state as measured by a 5% or less increase in viscosity per hour at the temperature of application
  • the resultant compositions generally have superior green strength, referring to the bond strength prior to cure
  • the resultant compositions may have a rate of set ranging anywhere from about 10 seconds or less to about 5 minutes This set time simply refers to the formation of a tack free film
  • This set time simply refers to the formation of a tack free film
  • the composition must form a film which does not adhere to the back of the substrate to which it is coated and does not interfere with the unwinding process of the finished roll
  • the compositions of the present invention may be therefore composed so as to make them ideally suited for direct coating onto any materials without transfer coating due to a high green strength and rapid rate of set which means that surface tack is lost rapidly, although
  • the rates of set may be longer and may preferably be from about 1 minute to about 5 minutes Once cured these compositions remain very flexible and have good mechanical strength
  • the resultant compositions have moisture vapor transmission rates (MVTR) of greater than about 100 g/m 2 /day, preferably greater than about 150 g/m 2 /day and most preferably greater than about 175 g/m 2 /day at a film thickness from about 18 to about 20 mils (about 450 g/m 2 to about 500 g/m 2 as measured by ASTM F 1249-90)
  • MVTR moisture vapor transmission rates
  • compositions are also hydrophilic
  • hydrophilicity refers to the transfer of substantial amounts of water through a film by absorbing water on one side of the film where the water vapor concentration is high, and desorbing or evaporating it on the opposite side of the film where the water vapor concentration is low
  • These materials do not readily allow the passage of other materials such as surface active agents and contaminants found in perspiration and other organic materials generally and also water in liquid form
  • This characteristic makes them ideal for adhesives and coatings which are used on flexible materials including woven and non-woven materials which are used for protective rain gear, athletic gear, medical garments, tarpaulins and tents to mention only a few waterproof garments where breathability is desired Breathability is a term which also may be used to describe the permeability to water in vapor form, and transport of water by diffusion
  • These compositions further have excellent washability or hydrolysis resistance In a laboratory setting, excellent washability is defined as being able to withstand two accelerated and intense wash cycles See Test Method No 5 of the present invention In
  • these laminates therefore generally have one or more layers including any of the materials mentioned above, and another layer which may be an adhesive used between two layers referred to as adherents, or may be a coating on one layer
  • compositions may be applied to rigid substrates including those materials used in manufacturing shoes, as well as for applications in the building industry
  • Application methods may include slot die coating, roll coating, gravure coating, transfer coating, pattern coating, screen printing, spray and filament applications, extrusion and so forth
  • the application temperature may be varied between about 75°C and about 125°C, preferably from about 80°C to about 120°C
  • the sensitivity of the substrate to high temperatures may determine which application temperature is applicable
  • Such physical characteristics as the viscosity and rate of set of the compositions may be varied to accommodate such application conditions
  • Specific applications that the present inventors contemplate that the compositions of the present invention may be used for include that found in U S Patent No 5,560,974 to Langley issued October 1, 1996 in which a composition would be used as a spot or pattern adhesive on a breathable non- woven composite fabric bonded to a microporous film, a coating material as found in U S Patent No 5,508,371 issued April 16, 1996 to Werenicz et al and as a
  • melt viscosities of the hot melt adhesives were determined on a Brookfield Thermosel Viscometer Model DV-I using a number 27 spindle
  • the MVTR was determined using ASTM E 96 B Film thicknesses were varied between 0 625 mils and 1 25 mils A DuPont resin was used as the standard of measurement
  • a flexible laminate is prepared by drawing down a 10 mil film (250 g/m 2 ) which is heated to an application temperature of 80°C using a drawdown bar which has also been heated to 80°C, onto a first polyester substrate, and then laminating a second polyester substrate to the first
  • the laminate is allowed to cure for 7 days and is then placed in a reactor in a solution which is 20% sodium hydroxide (potassium hydroxide may also be used) and 0 5% laundry detergent (any kind to emulsify the mixture) in water
  • the laminate is washed for 1 hour at 160°F (about 70°C) using a metal stirring rod for agitation
  • the laminate was then rinsed with water for approximately 3 minutes to remove the soap and then dried at about 275°F (about 130°C) for about 15 minutes
  • the washing cycle was repeated Delamination will occur in 1 or 2 cycles if the adhesive fails If the adhesive passes, then T-peel tests are run on the laminate
  • Polyol 1 is a polyether polyol comprised of the reaction product of 80 mole % of polypropylene oxide capped with 20 mole % of polyethylene oxide The resultant polyol has an OH number of about 28
  • Polyol 2 is a polyether polyol which is the reaction product of 70 mole % of polypropylene oxide capped with 30 mole % of polyethylene oxide The resultant polyol has an OH number of about 28 Polyol 3
  • Polyol 3 is a polyether polyol which is a copolymer having 45 mole-% ethylene oxide and 55 mole-% polypropylene oxide
  • the resultant polyol has an OH number of about 56 and a molecular weight of about 2,000 g/mole This polyol has been found to comprise too much ethylene oxide and does not have good washability
  • Polyol 4 is a polyether polyol which is a copolymer having 45 mole-% ethylene oxide and 55 mole-% polypropylene oxide The resultant polyol has an OH number of about 173 This polyol has been found to comprise too much ethylene oxide and does not have good washability
  • a reactor was charged with about 180 grams of Polyol 1 (45 wt-%), 64 0 g of Dynacoll® 7371, a crystalline polyester polyol available from Huls America (16 0 wt-%), 60 0 g (15 0 wt-%) of polypropylene glycol with an OH number of 260, 1 80 g Irganox® 1010 hindered phenolic antioxidant (0 45 wt-%), 0 12 g of 85% phosphoric acid (0 03 wt-%) and 0 08 g of Modaflow® Resin Modifier/defoamer (0 02 wt-%)
  • the solids were then melted and dried at about 215°F (about 100°C) for 1 hour under vacuum The temperature was lowered to about 160°F (about 70°C), the vacuum broken and 94 0 g of Isonate® 2125 M isocyanate (23 5 wt-%) was added The reaction was allowed to proceed for about 2 hours at 190°F (about
  • the resultant prepolymer had a viscosity of 3,055 cPs at about 175°F (about 80°C)
  • the washability of the composition was tested using Test Method No 5 All of the laminates were still intact after two wash cycles T-peels were determined using Test Method No 6 above The T-peel values were about 2 kg/cm for the unwashed laminates and substrate failure (i e , the polyester fabric failed at the bond line) occurred both after the first wash cycle and after the second wash cycle
  • the sample exhibited an MVTR of about 198 g/m /day as measured by Test
  • Example 1 The same procedure was followed as for Example 1 using 180 g of Polyol 2 (45 wt-%), 64 0 g of Dynacoll® 7371 (16 0 wt-%), 60 0 g of polypropylene glycol with a molecular weight of 400 g/mole, 1 80 g of Irganox® 1010 (0 45 wt-%), 0 03 g of 85% phosphoric acid, 0 08 g (0 2 wt-%) of Modaflow® Resin Modifier defoamer and 94 0 g (23 5 wt-%) of Isonate® 2125 M isocyanate
  • the reaction yielded a prepolymer with an NCO OH ratio of 1 84
  • the resultant prepolymer had a viscosity of 3,020 cPs at about 175°F (about
  • T-peels of the unwashed laminate were about 2 7 kg/cm and substrate failure occurred both after the first wash cycle and after the second wash cycle No adhesive failure or delamination of the laminate was observed
  • the film sample exhibited an MVTR of about 195 g/m 2 /day as measured by MVTR Method B
  • the sample was prepared according to the method used in Example 1
  • the reactants were 60 0 g of Polyol 2 (15 wt-%), 120 g of a polypropylene glycol (PPG) with a molecular weight of 4000 g/mole (30 wt-%), 64 g of Dynacoll® 7371 crystalline polyester polyol (16 wt-%), 60 0 g of PPG with a molecular weight of 400 g/mole, 1 8 g Irganox® 1010 antioxidant (0 45 wt-%), 0 12 g (0 03 wt-%) of phosphoric acid (85%), 0 08 Modaflow® Resin Modifier/defoamer (0 02 wt-%) and 94 0 g of Isonate® 2125 M isocyanate (23 5 wt-%)
  • This sample yielded an NCO OH ratio of 1 86
  • the resultant prepolymer had a viscosity of 2,730 cPs at about 175°F (about 80°C)
  • a laminate was made according to Test Method No 5 in the Test Methods section The laminate remained intact through two washing cycles The T-peels were tested and the substrate, rather than the adhesive, failed
  • the MVTR was measured and found to be 115 6 g/m 2 /day at a film thickness of about 475 g/m 2
  • the permeability coefficient was about 4 This MVTR was found to be lower than some of the other compositions of the present invention
  • the sample was prepared according to Example 1 using 192 0 g of Dynacoll® X- 7210 PO6 (64 wt-%), an amorphous fused polyether-polyester polyol, 75 0 g (25 0 wt-%) of CAP A® 240 polycaprolactone diol, 1 44 g (0 48 wt-%) Irganox® 1010 antioxidant, 0 06 g Modaflow® defoamer (0 02 wt-%) and 31 5 g (10 5 wt-%) Isonate® 2125 M isocyanate
  • the product yielded an NCO OH ratio of about 2 75
  • the resultant product was brown in color but compatible
  • the viscosity of the resultant product was 27,400 cPs at about 175°F (about 80°C), 14,200 cPs at about 200°F (about 93°C) and 8,200 cPs at about 225°F (about 107°C) and about 5,200 cPs at about 250°F (about 120°C)
  • a laminate was prepared and put through one washing cycle Delamination occurred during the washing step
  • the film of adhesive was separated from the polyester fabric The film integrity and strength remained, however
  • the sample was prepared according to Example 1 using 180 0 g of Polyol 3 (45 wt-%), 60 0 g (15 0 wt-%) of CAP A® 535011 polycaprolactone diol with a molecular weight of 8,000 g/mole, 58 0 g of polyethylene glycol with a molecular weight of 400 g/mole(14 5 wt-%), 1 92 g (0 48 wt-%) Irganox® 1010 antioxidant, 0 08 g Modaflow® defoamer (0 02 wt-%) and 100 0 g (25 0 wt-%) Isonate® 2125 M isocyanate
  • the product yielded an NCO OH ratio of about 1 74
  • Laminates were prepared according to Test Method No 5 using an adhesive application temperature of about 200°F (93°C) and applying a film at a thickness of about 250 g/m 2
  • an adhesive application temperature of about 200°F (93°C) and applying a film at a thickness of about 250 g/m 2
  • Nine laminates were made and three were unsoaked, three were put through one wash cycle and three were put through two wash cycles The laminates remained intact after one wash cycle but some fabric discoloration was observed After the second wash cycle the adhesive failed The laminates showed fabric deterioration and when peeled the laminate came easily apart and the adhesive peeled off
  • the unsoaked T-peel values were about 2 2 kg/cm Substrate failure occurred with the laminates that went through one wash cycle and adhesive failure as well as substrate failure were observed for those laminates going through the second wash cycle Comparative Example C
  • the sample was prepared according to Example 1 using 192 0 g of Polyol 2 (48 0 wt-%), 64 0 g (16 0 wt-%) of Dynacoll® 7371 crystalline polyester polyol, 60 0 g of Polyol 4 (15 0 wt-%), 1 80 g (0 45 wt-%) Irganox® 1010 antioxidant, 0 12 g (0 03 wt- %) of phosphoric acid (85% solution), 0 08 g Modaflow® defoamer (0 02 wt-%) and 82 0 g (20 5 wt-%) Isonate® 2125 M isocyanate
  • the product yielded an NCO OH ratio of about 2 01
  • the resultant prepolymer had a viscosity of about 2,095 cPs at about 175°F
  • Laminates were prepared according to Test Method No 5 using a 250 g/m 2 film thickness and an application temperature of 175°F (about 80°C) The laminates were tested in the same manner as Comparative Example B and the same observations were made as for B
  • T-peel values for the unsoaked laminates were 4 2 kg/cm Substrate failure was observed after one wash cycle and adhesive failure and substrate failure were observed after two wash cycles The laminates were weak and the fabric had deteriorated after one wash cycle After two, the laminates could be easily peeled apart indicating adhesive failure Comparative Example D
  • the sample was prepared according to Example 1 and utilizing 104 4 g polypropylene glycol (26 1 wt-%) with an OH # of 94 and MW about 1000 g/mole, 62 64 g (15 66 wt-%) of polypropylene glycol with an OH # of 260 and MW about 400 g/mole, 100 24 g (25 06 wt-%) Dynacoll® 7361 crystalline polyester polyol, 20 0 g (5 0 wt-%) Synthetic Resin AP, 8 0 g (2 0 wt-%) Mistron Vapor Talc, 1 84 g (0 46 wt-%) Anox® 20 antioxidant, 102 72 g (25 68 wt-%) Isonate® 2125 M isocyanate compound, 0 12 g (0 03 wt-%) phosphoric acid (85%), 0 04 g (0 01 wt-%) Modaflow® Resin Modifier/defoamer
  • the resultant composition exhibited T
  • the moisture vapor transmission rate was about 16 g/m /day as measured by MVTR Method B which is unacceptable to the present invention
  • This composition illustrates the use of the low molecular weight component which achieves good washability However, due to the absence of any ethylene oxide and no higher molecular weight component, poor MVTR is exhibited

Abstract

This invention relates to a hot melt moisture cure polyurethane composition which is the reaction product of a polyether polyol formed from a compound selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof; a low molecular weight polyalkylene glycol having from 3 to 7 carbon atoms; a crystalline polyester polyol having a melting point from about 40 °C to about 120 °C; and at least one polyfunctional isocyanate component wherein said composition has a moisture vapor transmission rate of greater than about 100 g/m2/day film thickness of from about 450 to 500 g/m2, and hydrolysis resistance.

Description

HIGH MOISTURE VAPOR TRANSMISSION HOT MELT MOISTURE CURE POLYURETHANE ADHESIVE WITH EXCELLENT HYDROLYSIS
RESISTANCE
Field of the Invention
This invention relates to hot melt moisture cure polyurethane compositions comprising the reaction product of a polyether glycol, a low molecular weight polyalkylene glycol, a crystalline polyester diol and at least one polyfunctional isocyanate component having two or more -NCO groups The compositions can further optionally comprise a thermoplastic component The compositions are useful as adhesives and coatings, and are particularly useful where high moisture vapor transmission rates and excellent hydrolysis resistance are desired
Background of the Invention Materials that are permeable to water only in vapor form have been commercially available for a considerable period of time These materials do not allow the passage of water in liquid form and therefore are extremely useful where it is desired to keep underlying articles or skin dry while allowing air and water vapor to travel through the material These water vapor permeable materials are useful for athletic clothing, medical garments, rain gear, tarpaulins, tents and other waterproof garments
It is often desirable to fasten such materials to other substrates Polyurethanes are commonly used as adhesives or coatings for these materials and it is therefore necessary that the polyurethane compositions also have a high moisture vapor transmission rate U S Pat No 4,194,041 to Gore et al issued March 18, 1980 teaches a layered article that prevents liquid water from penetrating through while at the same time permitting moisture vapor to pass out through the article Gore teaches a hydrophilic layer which is a liquid polyether-polyurethane The liquid polyurethane involves the mixing of two or more liquids, which are generally of low molecular weight The initial physical properties of the system are poor until the curing proceeds to some degree Such characteristics include green strength and low flow characteristics Green strength refers to the strength of the bond after the composition sets, but before the composition is cured Generally, these polyurethane adhesives have value where the initial strength of the bond is unimportant Substantial bonding often forms over a period of time between hours and days and the resultant bond has high tensile strength and is strong and resilient to external forces U S Pat No 4,925,732 to Driskill et al teaches a laminate which comprises a solvent based moisture permeable adhesive This adhesive is the reaction product of a polyol of primarily oxyethylene units, a chain extender having a molecular weight in a range lower than about 500 and a polyisocyanate These adhesives are undesirable because of the problems typically associated with the use of a solvent U S Pat No 4,532,316 to Henn issued July 30, 1985 teaches how to make and use a hot melt moisture cure polyurethane prepolymer with high moisture vapor transmission rates which in elastomeric film form may be used in combination with other materials useful in rain protective garments Henn uses a polyol, a polyisocyanate and a chain extender having a molecular weight in a range lower than about 500 used to build molecular weight faster, and therefore increase the green strength Henn exemplifies the use of a poly(oxyethylene) glycol There are disadvantages to the use of chain extenders including lower melt rates caused by the use of the chain extender, poor green strength and longer open times which consequently results in a surface which remains tacky longer For coating applications, production will be slowed down, or it may be necessary to transfer coat which involves more steps The transfer coating process also prevents the polyurethane composition from having an exposed surface during manufacturing which could result in the polyurethane undesirably adhering to equipment, or to other surfaces Another problem associated with the use of chain extenders is stability during storage and during use at typical application temperatures from about 90°C to about 110°C Gelling is usually an indication of instability and can result when too much crosslinking takes place, ultimately destroying the processability and applicability of the prepolymer In Example 1 at column 21 lines 29-32, Henn refers to a storage stability of 4 months, and in Example 3 at column 25 lines 29-31, Henn refers to the packaged prepolymer as remaining workable for at least several days While this hot melt moisture cure is an improvement over the use of liquid moisture cure polyurethanes, the rate of set and green strength are still undesirably slow U S Patent No 5,508,371 to Werenicz et al issued April 16, 1996 teaches a polyurethane composition with superior moisture vapor transmission Werenicz et al teaches the use of a polyester polyol segmented with a polyether Specifically, polyester polyols built up from aliphatic and aromatic dicarboxylic acids and diols having a chain length of between C2 to C20 The OH number of the polyester group lies between 10 and 50, and preferably between 10 and 40
U S Patent No 5,166,302 to Werner et al teaches a moisture curing polyurethane hot melt adhesive which utilizes crystalline polyester polyols which have short setting times However, Werner et al does not teach nor suggest how to combine specific crystalline polyester polyols with specific polyether polyols to obtain rapid setting hot melt moisture cure compositions which have high moisture vapor transmission rates In fact, Werner et al teaches moisture-crosslinking hot melt adhesives which are highly resistant to the creepage of moisture as found at column 1 lines 64 to 68 and column 2 lines 1 to 2 In addition to the requirement of high moisture vapor transmission, many applications also require that the hot melt moisture cure composition have good hydrolysis resistance also referred to as washability This is especially important for garments such as athletic apparel which will go through many wash cycles
Objects of the Invention
It is accordingly an object of the present invention to teach a unique combination of polyols and isocyanates which will ultimately result in polyurethane prepolymer compositions which have high moisture vapor transmission rates and excellent washability These prepolymers have low viscosity, excellent thermal stability and green strength Green strength refers to the strength of a bond after the composition sets, but before the composition is cured
The compositions may be designed to have a fast rate of set for coating applications or they may be designed to have a slower rate of set for adhesive applications where a long open time gives excellent bondability by allowing for more time for penetration into the substrates They may be applied at low application temperatures from about 80°C to about 120°C which is beneficial for heat sensitive substrates such as very low gauge films
Once cured, these one-part hot melt moisture cure polyurethane compositions have surprisingly high bond strength, very good flexibility, excellent mechanical strength, excellent moisture vapor transmission rates and superior hydrolysis resistance
Summary of the Invention
This invention relates to a reactive hot melt moisture cure polyurethane composition which has a set time of from about 10 seconds to about 5 minutes, a moisture vapor transmission rate of greater than about 100 grams per meter squared per day at a film thickness from about 450 to about 500 g/m2 and excellent hydrolysis resistance
This invention further relates to a hot melt moisture cure polyurethane which is the reaction product of a) at least one polyether polyol formed from one or more ingredients selected from the group including ethylene oxide, propylene oxide, 1,2- butylene oxide, 1,4-butylene oxide and mixtures thereof; b) at least one low molecular weight alkylene glycol having at least about 3 carbon atoms, c) at least one crystalline polyester polyol having a melting point from about 40°C to about 120°C, and d) at least one polyfunctional isocyanate component The polyfunctional isocyanate preferably has about two or more NCO groups The crystalline polyester polyol is preferably free of ether linkages
The hot melt moisture cure polyurethane composition may further comprise a thermoplastic component to impart improved film forming characteristics It is not necessary to the compositions of the present invention that a thermoplastic component be added to form a film However, the present inventors have found that by adding the thermoplastic component, better films are formed
The compositions may be applied at low application temperatures ranging from about 80°C to about 120°C
The resultant compositions have a set time from about 10 seconds to about 5 minutes They can therefore be utilized for such coating applications where a fast rate of set is needed to adhesive applications where a slow set time is needed for better penetration and excellent bondability
Prior to cure, the resultant compositions have superior green strength, low viscosities and excellent viscosity stability in the molten state, and once cured also have good flexibility, excellent mechanical strength, excellent moisture vapor transmission rates and excellent hydrolysis resistance
The excellent moisture vapor transmission rates and excellent hydrolysis resistance makes them especially useful for adhering to, and for coating woven and nonwoven material for use in medical garments, athletic gear, rain protective garments and tarpaulins to mention only a few waterproof garments where breathability is desired The hydrolysis resistance gives the hot melt moisture cure washability so that garments may withstand many wash cycles
This invention further relates to a flexible laminate which comprises a) at least one flexible layer, and b) at least one hydrophilic hot melt moisture cure polyurethane layer wherein the hot melt moisture cure polyurethane composition is the reaction product of i) at least one polyether polyol formed from a compound selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof, ii) at least one low molecular weight alkylene glycol having at least about 3 carbon atoms, iii) at least one crystalline polyester polyol having a melt point from about 40°C to about 120°C, and iv) at least one polyfunctional isocyanate component
Once cured, these one-part hot melt moisture cure polyurethane compositions have surprisingly high bond strength, very good flexibility, excellent mechanical strength, excellent moisture vapor transmission rates and surprisingly excellent hydrolysis resistance
Detailed Description of the Preferred Embodiments
The polyether polyols useful herein include those compounds which are homopolymers or copolymers which are formed from one or more ingredients including ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof These polyols may have a random or a block configuration Some useful polyether glycols include those which are the reaction product of propylene oxide or butylene oxide capped or copolymerized with ethylene oxide More preferably, the polyether glycol may be the reaction product of propylene oxide copolymerized with ethylene oxide and the mole % of ethylene oxide is less than 45 mole-%, preferably from about 5 mole-% to about 40 mole-% and even more preferably from about 20 mole-% to about 30 mole-% and the propylene oxide is preferably greater than 55 mole-%, more preferably from about 60 mole-% to about 95 mole-% and even more preferably from about 70 mole-% to about 80 mole-% The number average molecular weight of the polyol is preferably from about 4000 to about 8000 grams/mole and more preferably from about 4000 to about 6000 g/mole The higher the ethylene oxide content of the polyether polyol and/or the polyurethane composition, the more hydrophilic the composition and the higher the moisture vapor transmission rate However, polyols having 45 mole-% of ethylene oxide or higher have exhibited poor hydrolysis resistance and poor washability as tested according to Test Method No 5 in the Test Methods section A polyol which has a higher ethylene oxide content and having a high molecular weight may result in more crystalline, rigid composition which does not have good flexibility Increasing the propylene oxide content, or butylene oxide content will accordingly increase the flexibility Comonomers are preferable in the present invention
Polyols having higher molecular weights have been found to have higher vapor transmission rates and more flexibility Furthermore, higher molecular weight polyols also lower the amount of isocyanate required thus lowering the amount of urethane linkages, which may also increase moisture vapor transmission rates Additionally, polyols having high amounts of ethylene oxide and molecular weights of about 2,000 or less have been found to have poor hydrolysis resistance The molecular weights of these polyether polyols are preferably greater than about
4,000 g/mole, more preferably from about 4000 g/mole to about 8000 g/mole and even more preferably from about 4,000 g/mole to about 6,000 g/mole
These polyols are useful from about 20 wt-% to about 60 wt-% of the polyurethane prepolymer composition and preferably from about 30 wt-% to about 50 wt- % of the prepolymer composition These polyols are supplied by such manufacturers as Arco Chemical Co (now Lyondell Petrochemical Co , Inc ) in Newtown Square, PA, Huntsman Corp in Houston, TX, Texaco Chemical Co in Bellaire, TX, ICI Polyurethanes Group in West Deptford, NJ, BASF Corp in Charlotte, NC, Olin Corp in Stamford, CT, Union Carbide in Danbury, CT, Mazer Chemicals in Gurnee, IL, Ashland Chemical Co , Drew Division in Boonton, NJ, Dow Chemical Co in Midland, MI, Witco Corp in Houston, TX, and Bayer Corp in Akron, OH
The low molecular weight alkylene glycols useful herein preferably have a molecular weight of less than about 1,000 g/mole, more preferably from about 400 g/mole to about 1,000 g/mole and most preferably from about 400 g/mole to about 600 g/mole The alkylene glycols are preferably those having 3 or more carbon atoms such as propylene glycol or butylene glycol but propylene glycol is preferable This low molecular weight component provides the hard segment of the prepolymer, increases the glass transition temperature, increases the strength and contributes to the hydrolysis resistance or washability Typically, polyols having number average molecular weights of less than about 1,000 g/mole have been found to be less stable in the molten state, the compositions are useful in smaller amounts from about 5 wt-% to about 20 wt-% and preferably from about 10 wt-% to about 15 wt-%
Those crystalline polyester polyols useful herein are those polyols having a melt point from about 40°C to about 120°C and glass transition temperatures, Tg's, of less than about 0°C Preferably, the crystalline polyester polyols are those which are the reaction product of either hexane diol or butane diol, and an acid which may include adipic acid, dodecanedioic acid, sebacic acid, terephthalic acid and mixtures thereof Preferably, the acid is sebacic acid or dodecanedioic acid Examples of useful polyester polyols include Dynacoll® 7360, 7371, 7380 and 7381 which are all crystalline polyester polyols available from Huls America, Inc in Piscataway, NJ While this list is intended to illustrate the useful crystalline polyols, it is in no way intended as an exclusive list
Furthermore, these crystalline polyester polyols are preferably free of ether linkages which may decrease the crystallinity of the polyester polyols Those polyols having melting points of less than about 40°C are no longer very crystalline Those polyols which have melting points of greater than about 120°C require high temperatures of application, which may be detrimental to fabrics which are heat sensitive and which may melt or deform as a result of the high temperatures The higher the percentage of crystalline polyester polyol, the faster the finished composition will set However, this is balanced against the decrease in the moisture vapor transmission rate as the amount of the crystalline polyester polyol is increased For coating applications, it may be desirable to have a faster rate of set which can either be achieved by using higher levels of the crystalline component or by using polyols at the higher end of the range of crystallinity (i e , those having higher melting points or higher enthalpies) For example, a polyol having a melting point of 120°C will be more crystalline than one having a melting point of 80°C These crystalline polyols are useful from about 10 wt-% to about 40 wt-% and preferably from about 15 wt-% to about 25 wt-% of the polyurethane prepolymer composition
The isocyanates useful herein include those described in U S Pat Nos 4,775,719 issued October 4, 1988, U S Pat No 4,808,255 issued February 28, 1989 and U S Pat No 4,820,368 issued April 11 to Markevka et al incorporated herein by reference An example of a useful isocyanate compound is Isonate® 2125M, pure diphenylmethane diisocyanate (MDI) manufactured by Dow Chemical Co in Midland, MI These isocyanate compounds are polyfunctional, having two or more -NCO groups, and include those isocyanates that are aliphatic, aromatic and those having mixtures thereof The isocyanate compounds can also contain other substituents which do not substantially adversely affect the properties of the isocyanate compounds such as viscosity of the isocyanate terminated prepolymers, the adhesive properties of the bond line or the reactivity of the -NCO groups during the formation of the prepolymer Typical aromatic isocyanates include diphenylmethane diisocyanate compounds (MDI) including its isomers, carbodiimide modified MDI, diphenylmethane 4,4'-diisocyanate, diphenylmethane-2,2'-diisocyanate, diphenylmethane-2,4'-diisocyanate, and other oligomeric methylene isocyanates, toluene diisocyanate compounds (TDI) including isomers thereof, tetramethylxylene diisocyanate (TMXDI), isomers of naphthalene diisocyanate, isomers of triphenylmethane triisocyanate, and mixtures thereof Aliphatic di-, tri- and polyisocyanates are also useful including, for example, isophorone diisocyanate, hydrogenated aromatic diisocyanates, aliphatic polyisocyanates and cycloaliphatic polyisocyanates to mention only a few
A catalyst may optionally be utilized in the compositions of the present invention to improve curing speed without adversely affecting other physical properties such as green strength or thermal stability Preferred catalysts comprise both ether and morpholine functional groups, with 2,2-dimorpholinoethyl ether and di(2,6-dimethyl morpholinoethyl)ether being the most preferred An example of a useful catalyst is 4,4'- (oxydi-2,l-ethanediyl)bis-morpholine This catalyst is otherwise known as DMDEE and is available under the tradename of Jeffcat DMDEE from Huntsman Corp located in Houston, TX Other catalysts such as ethylene diamine and organo tin and bismuth catalysts such as dibutyl tin dilaurate and dibutyl tin diacetate are not as advantageous In general, bismuth octoate, for instance, is a very good hot melt moisture cure catalyst, but is less stable during shipping and storage where the temperatures may reach about 65°C Other catalysts include aliphatic titanates having from 1-12 carbon atoms such as lower alkyl titanates including tetrabutyl titanate and tetraethyl titanate, and amines These catalysts are useful from about 0 01% to about 2% by weight in the one-part hot melt moisture cure polyurethane composition
The hot melt moisture cure polyurethane compositions of the present invention may optionally comprise a thermoplastic component Preferred thermoplastic components include Pearlstick® thermoplastic polyesterurethane polymers from Aries Technologies in Deny, NH, a distributor of Merquinsa located in Barcelona, Spain, thermoplastic polyetherurethane polymers sold under the tradename of Estane® and available from B F Goodrich Specialty Chemicals in Cleveland, OH, Hytrel® 8171, a butylene/poly(alkylene ether) phthalate from DuPont de Nemours in Wilmington, DE, ethylene vinyl acetate copolymers also available from Du Pont de Nemours under the tradename of Elvax® and from Quantum Chemical Co , USI Division in Cincinnati, OH under the tradename of Ultrathene®, ethylene n-butyl acrylate copolymers available from Quantum Chemical Co , USI Division in Cincinnati, OH under the tradename of Enathene®, from Exxon Chemical Co in Houston, TX under the tradename of Escorene® and from Elf Atochem North America in Philadelphia, PA under the tradename of Lotryl®, ethylene methyl acrylate available from Exxon under the tradename of Optema®, ethylene acrylate copolymers from Du Pont under the tradename of Elvaloy®, ethylene n-butyl acrylate carbon monoxide terpolymers available from Du Pont also under the tradename of Elvaloy® and acrylic polymers such as those supplied by ICI Acrylics located in St Louis, MO under the tradename of Elvacite® The present inventors contemplate the use of any thermoplastic polymers which would be compatible in the one-part hot melt moisture cure polyurethane compositions of the present invention The critical requirement is that the copolymer selected be compatible with the polyols selected This aspect of the invention is fully discussed in the patents previously incorporated herein by reference which are U S Patent Nos 4,775,719, 4,808,255 and 4,820,368 to Markevka et al and U S Patent No 5,411,808 to Anderson et al issued August 15,1995 These thermoplastic polymers may be present from about 5% to about 50% by weight of the resultant hot melt moisture cure polyurethane composition, preferably from about 5% to about 40% by weight of the composition, more preferably from about 5% to about 30% by weight of the composition and most preferably from about 5% to about 20% by weight of the composition
The compositions of the present invention may optionally contain other ingredients To improve the tack and to impart pressure sensitive qualities a tackifying resin may be incorporated Tackifying resins should be selected based on compatibility with the composition Also, those tackifiers having residual acid numbers such as rosin based tackifying resins and those resins having phenolic functionality are selected with care as the residual acid may react in the hot melt moisture cure system One of skill in the hot melt adhesive art would recognize that there are numerous tackifying resins that may be utilized and the list is not exclusive
Plasticizers may also be incorporated into the system The plasticizers are carefully selected so as not to interfere with the efficacy of the other components, but will facilitate processing and increase flexibility of the composition
Representative plasticizers and tackifying resins may also be found in U S Patent Nos 4,775,719, 4,808,255 and 4,820,368 to Markevka et al and U S Patent No 5,441,808 to Anderson et al herein incorporated by reference The compositions of the present invention may optionally contain fillers Such fillers may include talcs, clays, silicas and treated versions thereof, carbon blacks and micas Examples of such fillers include Mistron Vapor® talc from Luzenac America, Inc in Englewood, CO, Nytal® 200, 300 and 400, different particle size grades of talc from R T Vanderbilt Co in Norwalk, CT, Snobrite® Clay, a Kaolin clay available from Evans Clay Co in Mcintyre, GA, Cab-o-sil® TD-720, a fumed silica available from Cabot Corp in Tuscol, IL and Mineralite® 3X and 4X micas available from Mineral Mining Corp in Kershaw, SC
A stabilizer or antioxidant can also be added to protect the composition from degradation caused by reaction with oxygen induced by such things as heat, light or residual catalyst from the raw materials such as the tackifying resin Such antioxidants are commercially available from Ciba-Geigy in Hawthorne, NY and include Irganox® 565, 1010 and 1076, all hindered phenolic antioxidants, and Anox® 20, also a hindered phenolic antioxidant from Great Lakes Chemicals in West Lafayette, Indiana These are primary antioxidants which act as free radical scavengers and may be used alone or in combination with other antioxidants such as phosphite antioxidants like Irgafos® 168 available from Ciba-Geigy Phosphite antioxidants are considered secondary antioxidants, are primarily used as peroxide decomposers and are generally not used alone, but are instead used in combination with other antioxidants Other available antioxidants are Cyanox® LTDP, a thioether antioxidant available from Cytec Industries in Stamford, CT, Ethanox® 330, a hindered phenolic antioxidant, available from Albemarle in Baton Rouge, LA Many other antioxidants are available for use by themselves, or in combination with other antioxidants These compounds are added to the hot melt moisture cure polyurethane composition in small amounts of up to about 2% by weight in the composition, and have no effect on the physical properties of the composition There are various other ingredients that can be added to such compositions including ultraviolet (UN) scavengers or absorbers, pigments to add color, fluorescing agents, odor masks, adhesion promoters (i e silane), surfactants, defoamers and so forth Typically, these ingredients are added in small amounts of typically less than about 5% by weight of the composition and more typically less than about 2% by weight
While the choice of component, order of addition and addition rate can be left to one of skill in the art, generally the reactive hot melt polyurethane compositions of this invention can be made by reacting the isocyanate and the polyols and then blending with the thermoplastic component and any other optional ingredient that may be added The amount of each ingredient is based on a percentage of the resultant total weight of the hot melt moisture cure composition regardless of what the ingredients are Optionally, the thermoplastic component can be blended with the polyols before reacting with the isocyanate
The compositions are typically prepared by reacting the polyols, in this case at least one polyether polyol, at least one low molecular weight polyalkylene glycol, at least one crystalline polyester polyol and at least one polyfunctional isocyanate compound at an elevated temperature of typically between about 40°C and about 200°C The polyols may first be introduced into a reaction vessel, heated to reaction temperatures and dried to remove ambient moisture absorbed by the polyols The polyfunctional isocyanate compounds are then added to the reactor The polyols are generally reacted with the isocyanate compounds at ratios that typically depend on the hydroxy and isocyanate functionality of the reactants Typically the compounds are reacted at ratios which result in a reaction between isocyanate groups and hydroxy groups leaving essentially no residual hydroxy and minimal isocyanate functionality, typically less than 10% by weight of the prepolymer Typically the reaction between the polyol compounds and the isocyanate compounds is conducted at an OH NCO ratio of between about 0 75 1 0 and 0 15 1 0 in order to obtain an NCO concentration in the final adhesive of about 1% to about 5% by weight Typically the prepolymer is titrated to measure residual concentration of isocyanate using ASTM D-2572-80 "Standard Method for Isocyanate Group and Urethane Materials or Prepolymers" to determine completion of the reaction The resultant compositions can then be packaged in suitable moisture proof containers
The reactive hot melt urethane compositions can be cured after application using a variety of mechanisms The curing reaction occurs between a compound having an available active hydrogen atom and the NCO groups of the polyurethane prepolymer A variety of reactive compounds having free active hydrogens are known in the art including water, hydrogen sulfide, polyols, ammonia and other active compounds These curing reactions may be carried out by relying on ambient moisture, or the active compounds may be added to the composition at the bond line When the compositions react with water, urea groups are formed to provide a polyurethane urea polymer The prepolymer compositions have low viscosities of less than about 10,000 cPs, preferably from about 1,000 to about 5,000 and most preferably from about 1,500 to about 3,000 cPs at about 110°C The temperature of application may therefore be low from about 80°C to about 120°C (175°F to about 250°F), preferably from about 80°C to about 110°C (about 175°F to about 225°F) and even more preferably from about 80°C to about 95°C (about 175°F to about 200°F)
The compositions have good heat stability in the molten state as measured by a 5% or less increase in viscosity per hour at the temperature of application
The resultant compositions generally have superior green strength, referring to the bond strength prior to cure The resultant compositions may have a rate of set ranging anywhere from about 10 seconds or less to about 5 minutes This set time simply refers to the formation of a tack free film It is important for non-transfer type, direct coating techniques to utilize compositions which set quickly in 10 seconds or less This refers to the formation of a substantially tack-free film within 10 seconds of less This makes these compositions amenable to high speed converting operations because the coated material may be rolled or wound upon itself immediately prior to cure For web type coaters which utilize self-winding techniques, the composition must form a film which does not adhere to the back of the substrate to which it is coated and does not interfere with the unwinding process of the finished roll The compositions of the present invention may be therefore composed so as to make them ideally suited for direct coating onto any materials without transfer coating due to a high green strength and rapid rate of set which means that surface tack is lost rapidly, although transfer coating is not precluded The rapid loss of tack indicates that these compositions will also not undesirably adhere to production equipment or other materials Directly coating substrates allows for higher production speeds and higher economic efficiency because the amount of material used is decreased These faster setting compositions will comprise amounts of the crystalline component at the higher end of the specified range, or a very crystalline material with a melting point at the higher end of the specified range
For adhesive applications on the other hand, where a lamination or bond is made at the time of application, the rates of set may be longer and may preferably be from about 1 minute to about 5 minutes Once cured these compositions remain very flexible and have good mechanical strength
The resultant compositions have moisture vapor transmission rates (MVTR) of greater than about 100 g/m2/day, preferably greater than about 150 g/m2/day and most preferably greater than about 175 g/m2/day at a film thickness from about 18 to about 20 mils (about 450 g/m2 to about 500 g/m2 as measured by ASTM F 1249-90)
It is also possible to measure the MVTR using ASTM E 96 B wherein the MVTR would be greater than about 500 g/m2/day at a film thickness of about 0 5 mils or 12 5 g/m2 It is further possible to measure this aspect of the invention using a permeability coefficient as measured by ASTM F 1249-90 It is obvious to one of skill in the art that if the film thickness is decreased, the moisture vapor transmission rates will increase, and if the film thickness is increased, the moisture vapor transmission rates will decrease
These compositions are also hydrophilic In this instance, hydrophilicity refers to the transfer of substantial amounts of water through a film by absorbing water on one side of the film where the water vapor concentration is high, and desorbing or evaporating it on the opposite side of the film where the water vapor concentration is low These materials do not readily allow the passage of other materials such as surface active agents and contaminants found in perspiration and other organic materials generally and also water in liquid form This characteristic makes them ideal for adhesives and coatings which are used on flexible materials including woven and non-woven materials which are used for protective rain gear, athletic gear, medical garments, tarpaulins and tents to mention only a few waterproof garments where breathability is desired Breathability is a term which also may be used to describe the permeability to water in vapor form, and transport of water by diffusion These compositions further have excellent washability or hydrolysis resistance In a laboratory setting, excellent washability is defined as being able to withstand two accelerated and intense wash cycles See Test Method No 5 of the present invention In a consumer setting, the compositions are held to a standard from about 50 wash cycles to about 100 wash cycles Obviously, such washability is important when the compositions are utilized on clothing such as outdoor apparel or athletic apparel The compositions of the present invention may be used as either coatings, or as adhesives where two substrates are sealed together by applying either a continuous or an interrupted pattern of the composition to a first substrate, contacting the composition with a second substrate and allowing the composition to cure The compositions of the present invention may therefore be utilized as adhesives to laminate flexible layers together Materials used in these laminates may include waterproof materials such as microporous films of polytetrafluoroethylene, polyurethanes, polypropylene, polyester, woven and tightly spaced nonwoven polyethylene and polypropylene, and other types of materials which are treated with hydrophobic agents, and so forth Hydrophobic means that water will not spread on the material and wick into its porous structure Water vapor, on the other hand, which may evaporate or desorb from the hydrophilic layer, is free to flow or diffuse as a gas through the pores of the hydrophobic layer to the exterior environment These flexible layers may then further be laminated to other flexible layers including knitted or random laid materials such as fleeces These materials may be nylon, polyester and nylon tricot knit for instance These types of laminations are used in sporting apparel, usable/reusable medical garments, raincoats, tents and so forth This list of films and textiles is illustrative of the present invention only and is not intended as an exclusive list
In summary, these laminates therefore generally have one or more layers including any of the materials mentioned above, and another layer which may be an adhesive used between two layers referred to as adherents, or may be a coating on one layer
The present inventors also envision that these compositions may be applied to rigid substrates including those materials used in manufacturing shoes, as well as for applications in the building industry Application methods may include slot die coating, roll coating, gravure coating, transfer coating, pattern coating, screen printing, spray and filament applications, extrusion and so forth The application temperature may be varied between about 75°C and about 125°C, preferably from about 80°C to about 120°C The sensitivity of the substrate to high temperatures may determine which application temperature is applicable Such physical characteristics as the viscosity and rate of set of the compositions may be varied to accommodate such application conditions Specific applications that the present inventors contemplate that the compositions of the present invention may be used for include that found in U S Patent No 5,560,974 to Langley issued October 1, 1996 in which a composition would be used as a spot or pattern adhesive on a breathable non- woven composite fabric bonded to a microporous film, a coating material as found in U S Patent No 5,508,371 issued April 16, 1996 to Werenicz et al and as a hydrophilic layer as found in U S Patent No 4,194,041 issued March 18, 1980 to Gore et al These are only a few specific examples and it should be recognized that these compositions are contemplated for use in any application where a high moisture vapor transmission and excellent washability may be needed The following non-limiting examples further illustrate the invention
Examples
TEST METHODS
1 Melt Viscosities
The melt viscosities of the hot melt adhesives were determined on a Brookfield Thermosel Viscometer Model DV-I using a number 27 spindle
2 Moisture Vapor Transmission Rate (MVTRyMethod A
The MVTR was determined using ASTM E 96 B Film thicknesses were varied between 0 625 mils and 1 25 mils A DuPont resin was used as the standard of measurement
3 Moisture Vapor Transmission Rate/Method B
ASTM F 1249-90 The film thickness was 450-500 g/m2 and the conditions used were 100°F (37 8°C) and 90% relative humidity
4 Permeability Coefficient The permeability coefficient was determined using ASTM F 1249-90, "Standard
Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor " The test was conducted at about 37°C (100°F) and 90% relative humidity Film thicknesses were about 40 mils
Accelerated Hydrolysis Resistance (Washability) A flexible laminate is prepared by drawing down a 10 mil film (250 g/m2) which is heated to an application temperature of 80°C using a drawdown bar which has also been heated to 80°C, onto a first polyester substrate, and then laminating a second polyester substrate to the first The laminate is allowed to cure for 7 days and is then placed in a reactor in a solution which is 20% sodium hydroxide (potassium hydroxide may also be used) and 0 5% laundry detergent (any kind to emulsify the mixture) in water The laminate is washed for 1 hour at 160°F (about 70°C) using a metal stirring rod for agitation The laminate was then rinsed with water for approximately 3 minutes to remove the soap and then dried at about 275°F (about 130°C) for about 15 minutes The washing cycle was repeated Delamination will occur in 1 or 2 cycles if the adhesive fails If the adhesive passes, then T-peel tests are run on the laminate
6 T-Peels
ASTM D- 1876-83 T-peels were determined using an Thwing- Albert Instrument (Intelect 500) or an Instron (Series 4500)
EXAMPLES
Polyol 1
Polyol 1 is a polyether polyol comprised of the reaction product of 80 mole % of polypropylene oxide capped with 20 mole % of polyethylene oxide The resultant polyol has an OH number of about 28
Polyol 2
Polyol 2 is a polyether polyol which is the reaction product of 70 mole % of polypropylene oxide capped with 30 mole % of polyethylene oxide The resultant polyol has an OH number of about 28 Polyol 3
Polyol 3 is a polyether polyol which is a copolymer having 45 mole-% ethylene oxide and 55 mole-% polypropylene oxide The resultant polyol has an OH number of about 56 and a molecular weight of about 2,000 g/mole This polyol has been found to comprise too much ethylene oxide and does not have good washability
Polyol 4
Polyol 4 is a polyether polyol which is a copolymer having 45 mole-% ethylene oxide and 55 mole-% polypropylene oxide The resultant polyol has an OH number of about 173 This polyol has been found to comprise too much ethylene oxide and does not have good washability
Examples 1 - 3 and Comparative Examples A - D
Example 1
A reactor was charged with about 180 grams of Polyol 1 (45 wt-%), 64 0 g of Dynacoll® 7371, a crystalline polyester polyol available from Huls America (16 0 wt-%), 60 0 g (15 0 wt-%) of polypropylene glycol with an OH number of 260, 1 80 g Irganox® 1010 hindered phenolic antioxidant (0 45 wt-%), 0 12 g of 85% phosphoric acid (0 03 wt-%) and 0 08 g of Modaflow® Resin Modifier/defoamer (0 02 wt-%) The solids were then melted and dried at about 215°F (about 100°C) for 1 hour under vacuum The temperature was lowered to about 160°F (about 70°C), the vacuum broken and 94 0 g of Isonate® 2125 M isocyanate (23 5 wt-%) was added The reaction was allowed to proceed for about 2 hours at 190°F (about 88°C) under vacuum The resultant product was then poured from the reactor and purged with nitrogen The resultant NCO OH ratio was 1 87
The resultant prepolymer had a viscosity of 3,055 cPs at about 175°F (about 80°C) The washability of the composition was tested using Test Method No 5 All of the laminates were still intact after two wash cycles T-peels were determined using Test Method No 6 above The T-peel values were about 2 kg/cm for the unwashed laminates and substrate failure (i e , the polyester fabric failed at the bond line) occurred both after the first wash cycle and after the second wash cycle The sample exhibited an MVTR of about 198 g/m /day as measured by Test
Method No 3 found in the Test Methods section (MVTR Method B)
Example 2
The same procedure was followed as for Example 1 using 180 g of Polyol 2 (45 wt-%), 64 0 g of Dynacoll® 7371 (16 0 wt-%), 60 0 g of polypropylene glycol with a molecular weight of 400 g/mole, 1 80 g of Irganox® 1010 (0 45 wt-%), 0 03 g of 85% phosphoric acid, 0 08 g (0 2 wt-%) of Modaflow® Resin Modifier defoamer and 94 0 g (23 5 wt-%) of Isonate® 2125 M isocyanate The reaction yielded a prepolymer with an NCO OH ratio of 1 84 The resultant prepolymer had a viscosity of 3,020 cPs at about 175°F (about
80°C)
The washability of the sample was determined and the laminate remained intact after two wash cycles
T-peels of the unwashed laminate were about 2 7 kg/cm and substrate failure occurred both after the first wash cycle and after the second wash cycle No adhesive failure or delamination of the laminate was observed
The film sample exhibited an MVTR of about 195 g/m2/day as measured by MVTR Method B
Example 3
The sample was prepared according to the method used in Example 1 The reactants were 60 0 g of Polyol 2 (15 wt-%), 120 g of a polypropylene glycol (PPG) with a molecular weight of 4000 g/mole (30 wt-%), 64 g of Dynacoll® 7371 crystalline polyester polyol (16 wt-%), 60 0 g of PPG with a molecular weight of 400 g/mole, 1 8 g Irganox® 1010 antioxidant (0 45 wt-%), 0 12 g (0 03 wt-%) of phosphoric acid (85%), 0 08 Modaflow® Resin Modifier/defoamer (0 02 wt-%) and 94 0 g of Isonate® 2125 M isocyanate (23 5 wt-%) This sample yielded an NCO OH ratio of 1 86
The resultant prepolymer had a viscosity of 2,730 cPs at about 175°F (about 80°C) A laminate was made according to Test Method No 5 in the Test Methods section The laminate remained intact through two washing cycles The T-peels were tested and the substrate, rather than the adhesive, failed
The MVTR was measured and found to be 115 6 g/m2/day at a film thickness of about 475 g/m2 The permeability coefficient was about 4 This MVTR was found to be lower than some of the other compositions of the present invention
Comparative Example A
The sample was prepared according to Example 1 using 192 0 g of Dynacoll® X- 7210 PO6 (64 wt-%), an amorphous fused polyether-polyester polyol, 75 0 g (25 0 wt-%) of CAP A® 240 polycaprolactone diol, 1 44 g (0 48 wt-%) Irganox® 1010 antioxidant, 0 06 g Modaflow® defoamer (0 02 wt-%) and 31 5 g (10 5 wt-%) Isonate® 2125 M isocyanate The product yielded an NCO OH ratio of about 2 75 The resultant product was brown in color but compatible
The viscosity of the resultant product was 27,400 cPs at about 175°F (about 80°C), 14,200 cPs at about 200°F (about 93°C) and 8,200 cPs at about 225°F (about 107°C) and about 5,200 cPs at about 250°F (about 120°C)
A laminate was prepared and put through one washing cycle Delamination occurred during the washing step The film of adhesive was separated from the polyester fabric The film integrity and strength remained, however
Comparative Example B
The sample was prepared according to Example 1 using 180 0 g of Polyol 3 (45 wt-%), 60 0 g (15 0 wt-%) of CAP A® 535011 polycaprolactone diol with a molecular weight of 8,000 g/mole, 58 0 g of polyethylene glycol with a molecular weight of 400 g/mole(14 5 wt-%), 1 92 g (0 48 wt-%) Irganox® 1010 antioxidant, 0 08 g Modaflow® defoamer (0 02 wt-%) and 100 0 g (25 0 wt-%) Isonate® 2125 M isocyanate The product yielded an NCO OH ratio of about 1 74
Laminates were prepared according to Test Method No 5 using an adhesive application temperature of about 200°F (93°C) and applying a film at a thickness of about 250 g/m2 Nine laminates were made and three were unsoaked, three were put through one wash cycle and three were put through two wash cycles The laminates remained intact after one wash cycle but some fabric discoloration was observed After the second wash cycle the adhesive failed The laminates showed fabric deterioration and when peeled the laminate came easily apart and the adhesive peeled off The unsoaked T-peel values were about 2 2 kg/cm Substrate failure occurred with the laminates that went through one wash cycle and adhesive failure as well as substrate failure were observed for those laminates going through the second wash cycle Comparative Example C
The sample was prepared according to Example 1 using 192 0 g of Polyol 2 (48 0 wt-%), 64 0 g (16 0 wt-%) of Dynacoll® 7371 crystalline polyester polyol, 60 0 g of Polyol 4 (15 0 wt-%), 1 80 g (0 45 wt-%) Irganox® 1010 antioxidant, 0 12 g (0 03 wt- %) of phosphoric acid (85% solution), 0 08 g Modaflow® defoamer (0 02 wt-%) and 82 0 g (20 5 wt-%) Isonate® 2125 M isocyanate The product yielded an NCO OH ratio of about 2 01 The resultant prepolymer had a viscosity of about 2,095 cPs at about 175°F
(about 80°C)
Laminates were prepared according to Test Method No 5 using a 250 g/m2 film thickness and an application temperature of 175°F (about 80°C) The laminates were tested in the same manner as Comparative Example B and the same observations were made as for B
T-peel values for the unsoaked laminates were 4 2 kg/cm Substrate failure was observed after one wash cycle and adhesive failure and substrate failure were observed after two wash cycles The laminates were weak and the fabric had deteriorated after one wash cycle After two, the laminates could be easily peeled apart indicating adhesive failure Comparative Example D
The sample was prepared according to Example 1 and utilizing 104 4 g polypropylene glycol (26 1 wt-%) with an OH # of 94 and MW about 1000 g/mole, 62 64 g (15 66 wt-%) of polypropylene glycol with an OH # of 260 and MW about 400 g/mole, 100 24 g (25 06 wt-%) Dynacoll® 7361 crystalline polyester polyol, 20 0 g (5 0 wt-%) Synthetic Resin AP, 8 0 g (2 0 wt-%) Mistron Vapor Talc, 1 84 g (0 46 wt-%) Anox® 20 antioxidant, 102 72 g (25 68 wt-%) Isonate® 2125 M isocyanate compound, 0 12 g (0 03 wt-%) phosphoric acid (85%), 0 04 g (0 01 wt-%) Modaflow® Resin Modifier/defoamer The resultant composition exhibited T-peels for the unsoaked laminate of 1 9 kg/cm (10 6 lbs/in) and 1 9 kg/cm (10 5 lbs/in) after one wash cycle All the bonds remained intact after one wash cycle and the fabric ripped or substrate failure occurred at the bond line after two wash cycles
The moisture vapor transmission rate was about 16 g/m /day as measured by MVTR Method B which is unacceptable to the present invention This composition illustrates the use of the low molecular weight component which achieves good washability However, due to the absence of any ethylene oxide and no higher molecular weight component, poor MVTR is exhibited

Claims

Claims:
1. A hot melt moisture cure polyurethane composition comprising the reaction product of: a) at least one polyether polyol formed from at least one compound selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof; b) at least one low molecular weight polyalkylene glycol having 3 to 7 carbon atoms; c) at least one crystalline polyester polyol having a melting point of from about 40°C to about 120°C; and d) at least one polyfunctional isocyanate; wherein the resultant one-part hot melt moisture cure polyurethane has a moisture vapor transmission rate of greater than about 100 grams per meter squared per day at a film thickness of from about 400 to about 500 g/m2.
2. The composition of Claim 1 wherein said polyether polyol comprises from about 5 mole-% to less than 45 mole-% of ethylene oxide.
3. The composition of Claim 1 wherein said polyether polyol is the reaction product of from about 5 mole-% to about 40 mole-% of ethylene oxide copolymerized with from about 60 mole-% to about 95 mole-% of propylene oxide.
4. The composition of Claim 1, 2 or 3 wherein said polyether polyol has a molecular weight from about 3,000 g/mole to about 8,000 g/mole.
5. The composition of Claim 1, 2 or 3 wherein said polyether polyol has a molecular weight from about 4,000 to about 6,000 g/mole.
6. The composition of any of Claims 1 - 5 wherein said low molecular weight polyalkylene glycol has a molecular weight from about 400 to about 1,000 g/mole. The composition of any of Claims 1 - 5 wherein said low molecular weight polyalkylene glycol has a molecular weight from about 400 to about 600 g/mole
The composition of any of Claims 1 - 5 wherein said low molecular weight polyalkylene glycol is polypropylene glycol
The composition of Claim 1 wherein said crystalline polyester polyol is the reaction product of at least one diol selected from the group consisting of hexane diol, butane diol and mixtures thereof and at least one acid selected from the group consisting of adipic acid, dodecanedioic acid, sebacic acid, terephthalic acid and mixtures thereof
The composition of Claim 1 wherein said polyester polyol is free of ether linkages
The composition of Claim 1 wherein said polyfunctional isocyanate is diphenylmethane-4,4'-diisocyanate
The composition of any of Claims 1, 2, 3, 9, 10 or 11 wherein said composition has a set time of greater than about 1 minute
The composition of any of Claims 1, 2, 3, 9, 10 or 11 wherein said composition has a set time of less than about 10 seconds
The composition of any of Claims 1, 2, 3, 9, 10 or 11 wherein said composition has a moisture vapor transmission rate of greater than about 175 g/m /day at a film thickness from about 450 to about 500 g/m2
The Composition of any of Claims 1, 2, 3, 9, 10 or 11 wherein said composition is resistant to hydrolysis Waterproof garments selected from the group consisting of protective rain gear, athletic apparel, useable/reusable medical garments, tarpaulins and tents comprising the composition of any of Claims 1, 2, 3, 9, 10 or 11 wherein said composition is utilized as an adhesive or as a coating on said garments
A flexible laminate, comprising
I at least one flexible layer, and
II at least one hydrophilic layer comprising the hot melt moisture curing composition of Claim 1
The flexible laminate of Claim 17 wherein there are at least two flexible layers which are adherents, and the hydrophilic hot melt moisture cure layer is an adhesive
The flexible laminate of Claim 18 wherein at least one flexible layer is a nonwoven or woven material
Waterproof garments selected from the group consisting of protective rain gear, athletic apparel gear, useable/reusable medical garments, tarpaulins and tents comprising the flexible laminate of Claim 17 wherein said hydrophilic hot melt moisture cure polyurethane layer utilized as an adhesive of said flexible laminate
The flexible laminate of Claim 17 or 20 wherein said laminate remains intact after Two accelerated wash cycles
A hot melt moisture cure polyurethane composition comprising the reaction product of a) about 20% by weight to about 60% by weight of the polyurethane prepolymer composition of at least one polyether polyol formed from at least one compound selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide and mixtures thereof; b) about 5% by weight to about 20% by weight of the polyurethane prepolymer of at least one low molecular weight polyalkylene glycol having 3 to 7 carbon atoms; c) about 10%) by weight to about 40% by weight of the polyurethane prepolymer of at least one crystalline polyester polyol having a melting point of from about 40°C to about 120°C; and d) at least one polyfunctional isocyanate; wherein the resultant one-part hot melt moisture cure polyurethane has a moisture vapor transmission rate of greater than about 100 grams per meter squared per day at a film thickness of from about 400 to about 500 g/m2 .
23. The composition of Claim 22 wherein said polyether polyol has a molecular weight of greater than about 3,000 g/mole.
24. The composition of Claim 22 wherein said polyether polyol comprises from about 5 mole-% to less than 45 mole-% of ethylene oxide.
25. The composition of any of Claims 22 - 24 wherein said composition is resistant to hydrolysis.
PCT/US2000/001404 1999-01-20 2000-01-20 High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance WO2000043433A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00909940A EP1151022B1 (en) 1999-01-20 2000-01-20 High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance
DE60009862T DE60009862T2 (en) 1999-01-20 2000-01-20 HYDROLYSIS RESISTANT TO WATER VAPOR THERMAL HOT POLISHING POLYURETHANE ADHESIVE WITH EXCELLENT HYDROLYSIS RESISTANCE
HK02103307.0A HK1042506B (en) 1999-01-20 2002-05-02 High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/234,181 1999-01-20
US09/234,181 US6133400A (en) 1999-01-20 1999-01-20 High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance

Publications (1)

Publication Number Publication Date
WO2000043433A1 true WO2000043433A1 (en) 2000-07-27

Family

ID=22880296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/001404 WO2000043433A1 (en) 1999-01-20 2000-01-20 High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance

Country Status (6)

Country Link
US (1) US6133400A (en)
EP (1) EP1151022B1 (en)
CN (1) CN1151189C (en)
DE (1) DE60009862T2 (en)
HK (1) HK1042506B (en)
WO (1) WO2000043433A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104640A2 (en) * 2006-03-10 2007-09-20 Basf Se Composite element made from polyurethane and polyolefin
WO2007138096A1 (en) * 2006-05-31 2007-12-06 Bostik Sa Process of high speed laminating
WO2012021661A1 (en) * 2010-08-10 2012-02-16 Avery Dennison Corporation Breathable heat transfer labels
EP2436380A1 (en) * 2009-05-29 2012-04-04 Inoac Technical Center Co., Ltd. Patch material
US9892398B2 (en) 2011-11-02 2018-02-13 Avery Dennison Retail Information Services, Llc Distributed point of sale, electronic article surveillance, and product information system, apparatus and method
US10069126B2 (en) 2011-07-18 2018-09-04 Celgard, Llc Surface modified polymeric materials, modified functionalized polymers, functional polymers, and methods
WO2018205221A1 (en) * 2017-05-11 2018-11-15 Dow Global Technologies Llc Aqueous polyurethane dispersion adhesive compositions
EP3666971A4 (en) * 2017-09-25 2021-01-20 DIC Corporation Method for manufacturing artificial leather
GB2611804A (en) * 2021-10-15 2023-04-19 Robertson Barry A garment and a composite fabric for use in smoky environments

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964026A1 (en) * 1998-06-09 1999-12-15 The Procter & Gamble Company Low viscosity thermoplastic compositions for structures with enhanced moisture vapour permeability and the utilisation thereof in absorbent articles
EP0963760A1 (en) * 1998-06-09 1999-12-15 The Procter & Gamble Company Low viscosity thermoplastic compositions for moisture vapour permeable structures and the utilisation thereof in absorbent articles
US6495612B1 (en) * 1998-06-09 2002-12-17 The Procter & Gamble Company Shape-formed, three dimensional, moisture vapor permeable, liquid impermeable articles
DE19961941A1 (en) * 1999-12-22 2001-07-05 Henkel Kgaa Polyurethane compositions based on polyether copolymers
US6660376B1 (en) * 2000-06-06 2003-12-09 H. B. Fuller Licensing & Financing Inc. Method of bonding permeable substrates with hot melt moisture cure adhesive having low viscosity and high green strength
JP3700645B2 (en) * 2001-12-20 2005-09-28 宇部興産株式会社 Compatibilizer and polyester polyol mixture containing the same and melt adhesive using the mixture
US20030215617A1 (en) * 2002-05-15 2003-11-20 Hussein Shehata Waterproof and breathable microporous thermoplastic laminated fabric
WO2004030903A2 (en) * 2002-10-01 2004-04-15 Kappler, Inc. Durable waterproof composite sheet material
US7101950B2 (en) * 2003-08-22 2006-09-05 Dow Global Technologies Inc. Composition useful as an adhesive for installing vehicle windows
US7361292B2 (en) * 2004-11-08 2008-04-22 Dow Global Technologies Inc. High modulus, nonconductive adhesive useful for installing vehicle windows
ATE540809T1 (en) * 2005-05-25 2012-01-15 Fuller H B Co METHOD FOR PRODUCING WATER-REPELLENT LAMINATES
DE102006029401A1 (en) 2006-06-27 2008-01-03 Kalle Gmbh Tubular food casing with glued, permanently elastic longitudinal seam
US7857937B2 (en) * 2007-12-05 2010-12-28 Pepsico, Inc. Thermosetting hot-melt polyurethane adhesive for labeling a structure
ES2535081T3 (en) 2009-12-11 2015-05-05 Invista Technologies S.À.R.L. Enhanced elastomeric compositions
DE102010001470A1 (en) 2010-02-02 2011-08-04 Henkel AG & Co. KGaA, 40589 Polyether block copolymers and compositions obtainable therefrom
DE202010003295U1 (en) * 2010-03-05 2010-06-24 H.B. Fuller Co., Saint Paul solar panel
CN103483547B (en) * 2013-09-30 2015-08-19 山东省科学院新材料研究所 A kind of moisture curing temperature sensitive type waterproof moisture-penetrating urethane and preparation method thereof
DE102014217783A1 (en) * 2014-09-05 2016-03-10 Evonik Degussa Gmbh Two-component polyurethane hotmelt adhesive with high initial and final strength
KR20210127820A (en) * 2014-11-13 2021-10-22 세키스이가가쿠 고교가부시키가이샤 Cured body, electronic component and display element
TWI615525B (en) * 2016-11-03 2018-02-21 高鼎精密材料股份有限公司 Hot melt adhesive of moisture cured reactive polyurethane and process for preparing the same and use of the same in fabrics
WO2019163622A1 (en) * 2018-02-21 2019-08-29 Dic株式会社 Moisture-curable polyurethane hot melt resin composition
JP2020069686A (en) * 2018-10-30 2020-05-07 株式会社ケー・エス・ティー Moisture-permeable waterproof sheet and method for producing the same
NL2022726B1 (en) 2019-03-12 2020-09-18 Johann Borgers GmbH Modified moulding press and thermoforming and lamination process
CN111533871B (en) * 2020-05-13 2022-12-30 上海抚佳精细化工有限公司 Composition for assisting in improving moisture permeability of polyurethane and polyurethane hot melt adhesive containing composition
CN111690360B (en) * 2020-06-22 2023-03-03 万华化学(北京)有限公司 Reactive moisture-curing polyurethane hot melt adhesive and preparation method thereof
JP2024505523A (en) * 2021-01-28 2024-02-06 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Method of incorporating gelation and phase separation inhibitors into filled polyurethane reactive hot melt adhesives
CN113214771B (en) * 2021-04-30 2022-01-11 东莞聚力创新材料科技有限公司 High-moisture-permeability fabric laminating adhesive and preparation method and application thereof
WO2023019562A1 (en) * 2021-08-20 2023-02-23 Dow Global Technologies Llc High green strength reactive hot melt adhesives

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455400A2 (en) * 1990-04-27 1991-11-06 Minnesota Mining And Manufacturing Company Mixture of isocyanate-terminated polyurethane prepolymers
EP0472278A1 (en) * 1990-07-20 1992-02-26 Lord Corporation Non-yellowing polyurethane adhesives
WO1995032230A1 (en) * 1994-05-25 1995-11-30 Henkel Kommanditgesellschaft Auf Aktien Humidity-setting polyurethane hot-melt-type glue
US5721311A (en) * 1994-08-18 1998-02-24 Minnesota Mining And Manufacturing Company Reactive hot-melt adhesive and/or sealing composition and method of using same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645925A (en) * 1970-07-31 1972-02-29 Jefferson Chem Co Inc 4 4'-dimorpholinodiethyl ether catalyst for polyurethane preparation
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4532316A (en) * 1984-05-29 1985-07-30 W. L. Gore & Assoc., Inc. Phase separating polyurethane prepolymers and elastomers prepared by reacting a polyol having a molecular weight of 600-3500 and isocyanate and a low molecular weight chain extender in which the ratios of reactants have a limited range
US4594286A (en) * 1985-05-07 1986-06-10 Graniteville Company Coated fabric
US4775719A (en) * 1986-01-29 1988-10-04 H. B. Fuller Company Thermally stable hot melt moisture-cure polyurethane adhesive composition
US4758648A (en) * 1986-10-20 1988-07-19 Essex Specialty Products, Inc. High speed cure sealant
US4820368A (en) * 1987-05-07 1989-04-11 H. B. Fuller Company Thermally stable reactive hot melt urethane adhesive composition having a thermoplastic polymer, a compatible, curing urethane polyalkylene polyol prepolymer and a tackifying agent
US4808255A (en) * 1987-05-07 1989-02-28 H. B. Fuller Company Thermally stable reactive hot melt urethane adhesive composition having a thermoplastic polymer, a compatible, curing urethane polyester polyol prepolymer and a tackifying agent
US4925732A (en) * 1988-07-27 1990-05-15 W. L. Gore & Associates, Inc. Breathable flexible laminates adhered by a breathable adhesive
GB8826702D0 (en) * 1988-11-15 1988-12-21 Bostik Ltd Moisture-curing polyurethane hot-melt compositions
DE69106134T2 (en) * 1990-03-30 1995-05-11 Fuller H B Licensing Financ WATER-CURABLE POLYURETHANE HOT-MELT ADHESIVE.
CA2055346A1 (en) * 1990-12-21 1992-06-22 John C. Tangen Mixture of isocyanate-terminated polyurethane prepolymers having reduced set time
DE59109176D1 (en) * 1991-03-19 2000-02-17 Huntsman International Trading Process for the production of foamed masses based on polyurea elastomers
US5560974A (en) * 1991-03-22 1996-10-01 Kappler Safety Group, Inc. Breathable non-woven composite barrier fabric and fabrication process
DE4114220A1 (en) * 1991-05-01 1992-11-05 Bayer Ag MOISTURIZABLE, NCO POLYURETHANE MELT ADHESIVE COMPOSITION
US5130404A (en) * 1991-06-04 1992-07-14 Azon Usa Inc. Castable thermosetting polyurethane polymer having improved heat stability
DE4143454C2 (en) * 1991-07-01 1995-01-05 Fuller H B Licensing Financ Process for producing a water vapor permeable material and such a material
DE4121703A1 (en) * 1991-07-01 1993-01-07 Huels Chemische Werke Ag FILM-FORMING, RADIATION-HARDENABLE AND HUMIDITY-HARDENING LAMINATING ADHESIVE, METHOD FOR LAMINATING TEXTILE LAYERS WITH THIS LAMINATING ADHESIVE, AND TEXTILE MATERIAL FROM TEXTILE LAYERS AND FOILS OF THE CASE
JPH05117619A (en) * 1991-10-31 1993-05-14 Koatsu Gas Kogyo Co Ltd One-pack, moisture-curing polyurethane adhesive
AU667448B2 (en) * 1994-02-22 1996-03-21 National Starch And Chemical Investment Holding Corporation Catalyst for reactive hot melt adhesives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455400A2 (en) * 1990-04-27 1991-11-06 Minnesota Mining And Manufacturing Company Mixture of isocyanate-terminated polyurethane prepolymers
EP0472278A1 (en) * 1990-07-20 1992-02-26 Lord Corporation Non-yellowing polyurethane adhesives
WO1995032230A1 (en) * 1994-05-25 1995-11-30 Henkel Kommanditgesellschaft Auf Aktien Humidity-setting polyurethane hot-melt-type glue
US5721311A (en) * 1994-08-18 1998-02-24 Minnesota Mining And Manufacturing Company Reactive hot-melt adhesive and/or sealing composition and method of using same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104640A2 (en) * 2006-03-10 2007-09-20 Basf Se Composite element made from polyurethane and polyolefin
WO2007104640A3 (en) * 2006-03-10 2008-11-20 Basf Se Composite element made from polyurethane and polyolefin
WO2007138096A1 (en) * 2006-05-31 2007-12-06 Bostik Sa Process of high speed laminating
EP2436380A1 (en) * 2009-05-29 2012-04-04 Inoac Technical Center Co., Ltd. Patch material
EP2436380A4 (en) * 2009-05-29 2013-12-18 Inoac Technical Ct Co Ltd Patch material
WO2012021661A1 (en) * 2010-08-10 2012-02-16 Avery Dennison Corporation Breathable heat transfer labels
US9842518B2 (en) 2010-08-10 2017-12-12 Avery Dennison Retail Information Services, Llc Breathable heat transfer labels
US10069126B2 (en) 2011-07-18 2018-09-04 Celgard, Llc Surface modified polymeric materials, modified functionalized polymers, functional polymers, and methods
US10665839B2 (en) 2011-07-18 2020-05-26 Celgard, Llc Surface modified polymeric materials, modified functionalized polymers, functional polymers, and methods
US9892398B2 (en) 2011-11-02 2018-02-13 Avery Dennison Retail Information Services, Llc Distributed point of sale, electronic article surveillance, and product information system, apparatus and method
WO2018205221A1 (en) * 2017-05-11 2018-11-15 Dow Global Technologies Llc Aqueous polyurethane dispersion adhesive compositions
RU2758522C2 (en) * 2017-05-11 2021-10-29 Дау Глоубл Текнолоджиз Ллк Adhesion compositions based on aqueous polyurethane dispersion
US11498999B2 (en) 2017-05-11 2022-11-15 Dow Global Technologies Llc Aqueous polyurethane dispersion adhesive compositions
EP3666971A4 (en) * 2017-09-25 2021-01-20 DIC Corporation Method for manufacturing artificial leather
US11634530B2 (en) 2017-09-25 2023-04-25 Dic Corporation Method for manufacturing artificial leather
GB2611804A (en) * 2021-10-15 2023-04-19 Robertson Barry A garment and a composite fabric for use in smoky environments
GB2611804B (en) * 2021-10-15 2024-01-17 Robertson Barry A base layer garment for use in smoky environments

Also Published As

Publication number Publication date
DE60009862D1 (en) 2004-05-19
EP1151022A1 (en) 2001-11-07
DE60009862T2 (en) 2005-03-31
HK1042506A1 (en) 2002-08-16
CN1341133A (en) 2002-03-20
US6133400A (en) 2000-10-17
HK1042506B (en) 2004-08-20
EP1151022B1 (en) 2004-04-14
CN1151189C (en) 2004-05-26

Similar Documents

Publication Publication Date Title
EP1151022B1 (en) High moisture vapor transmission hot melt moisture cure polyurethane adhesive with excellent hydrolysis resistance
US5869593A (en) High moisture vapor transmission hot melt moisture cure polyurethane adhesive
EP1883533B1 (en) Method of making water repellent laminates
US5558941A (en) Article including an adhesively bonded moisture cured material and a method of making the same
US6303731B1 (en) Moisture curable polyurethane compositions
US7641968B2 (en) Moisture-curable polyurethane hot melt adhesive and multilayer sheet using the same
EP1430105B1 (en) Hot melt moisture cure polyurethane adhesive with wide range of open time
US5851661A (en) Water vapor permeable film
CN112601792B (en) Moisture curable polyurethane adhesive compositions
EP0915112B1 (en) Reactive hot melt adhesive and adhesive composite sheet material
KR101972774B1 (en) Reactive polyurethane hotmelt adhesives having the non-swelling property and producing method of coating textile using the same
TWI808496B (en) Urethane prepolymer, moisture-curing urethane hot-melt resin composition, and laminate
US6448193B1 (en) Moisture-setting polyurethane adhesive

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00804075.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000909940

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000909940

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000909940

Country of ref document: EP