WO2000037389A1 - Mikroporöser wärmedämmkörper - Google Patents

Mikroporöser wärmedämmkörper Download PDF

Info

Publication number
WO2000037389A1
WO2000037389A1 PCT/EP1999/010003 EP9910003W WO0037389A1 WO 2000037389 A1 WO2000037389 A1 WO 2000037389A1 EP 9910003 W EP9910003 W EP 9910003W WO 0037389 A1 WO0037389 A1 WO 0037389A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
xonotlite
microporous
weight
heat insulating
Prior art date
Application number
PCT/EP1999/010003
Other languages
English (en)
French (fr)
Inventor
Octavian Anton
Ann Opsommer
Original Assignee
Redco N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE59906802T priority Critical patent/DE59906802D1/de
Priority to AU24324/00A priority patent/AU2432400A/en
Priority to JP2000589464A priority patent/JP4616482B2/ja
Priority to EP99967948A priority patent/EP1140729B1/de
Priority to DK99967948T priority patent/DK1140729T3/da
Priority to AT99967948T priority patent/ATE248137T1/de
Application filed by Redco N.V. filed Critical Redco N.V.
Priority to PL349445A priority patent/PL192902B1/pl
Priority to US09/857,181 priority patent/US6936326B1/en
Priority to CA002356143A priority patent/CA2356143C/en
Priority to BRPI9916379-9A priority patent/BR9916379B1/pt
Publication of WO2000037389A1 publication Critical patent/WO2000037389A1/de
Priority to NO20013019A priority patent/NO331414B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/232Encased layer derived from inorganic settable ingredient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing

Definitions

  • the present invention relates to a microporous thermal insulation body consisting of compressed thermal insulation material containing 30 to 90% by weight of finely divided metal oxide, 0 to 30% by weight of opacifying agent, 0 to 10% by weight of fiber material and 10 to 15% by weight of inorganic binder.
  • thermal insulation body is described, for example, in EP-A-0618 399, but it is required that at least one surface of the molded body has channel pores with a base area of the pore of 0.01 to 8 mm 2 and a penetration depth of 5 to 100% based on has the thickness of the molded body and 0.002 to 10 channel pores are contained per learning 2 of the molded body surface.
  • thermal insulation bodies are produced by dry pressing and subsequent sintering at temperatures of 500 to 900 ° C., the channel pores being produced by drilling, punching or milling, and preferably by means of stamping dies. These measures make it possible to discharge the water vapor that escapes explosively during rapid heating in such a way that the thermal insulation body is not destroyed.
  • the disadvantages of these thermal insulation bodies are the cumbersome
  • EP-A-0 623 567 Another method for producing a microporous body is described in EP-A-0 623 567, in which oxides, hydroxides and carbonates of the metals of the 2nd main group together with pyrogenically produced Si0 2 and optionally A1 2 0 3 and an opacifier and one organic fiber pressed together and then sintered at temperatures above 700 ° C.
  • This method is not only complex, but also has the disadvantage that the cooling down of this good insulating material takes a long time.
  • thermal insulation bodies using highly temperature-resistant adhesives and a slurry, a silica sol and a clay are described in DE-C-40 20 771. This also describes further prior art relating to the production and composition of thermal insulation bodies.
  • the disadvantage of all thermal insulation bodies with organic constituents and in particular organic fiber material is that they burn at very high temperatures and have undesirable gas evolution.
  • thermal insulation bodies with a covering made of plastic film, wherein shrinkable plastic films are to be used in particular. These thermal insulation bodies also contain organic material and lose their dimensional stability in the event of very high heating.
  • DE-C-42 02 569 describes molds for pressing heat-insulating bodies, in particular for electric radiant heaters such as hot plates.
  • EP-A-686 732 describes thermal insulation boards that are pressed dry and consist of different materials inside and outside, which have openings for their stabilization, which consist of the outer material throughout. These plates are also difficult to manufacture and have neither optimal mechanical stability nor thermal insulation properties.
  • thermal insulation boards Another disadvantage of these thermal insulation boards is that it is difficult to cut and machine them in such a way that the outer layers are not damaged unless very expensive tools such as laser cutters are used as they are able to do the new sintering resulting cut edges glassy.
  • thermal insulation bodies by dry pressing of the components A major problem in the production of thermal insulation bodies by dry pressing of the components is that these materials tend to spring back and expand again after being pressed, so that at least very high pressures have to be used in order to achieve reasonably useful results.
  • thermal insulation boards can improve the bending strength of the thermal insulation boards, but higher amounts of fibers tend to delaminate and deteriorate the coherence of the compressed mixture during the critical step of demolding. In any case, the thermal insulation boards should not be organic and flammable
  • the finished thermal insulation bodies should also be able to be processed and processed easily and without problems, for example they should be able to be sawn, cut and drilled without any problems, and no unwanted dust should arise.
  • the heat insulation bodies are good electrical insulators, but there are applications in which it is desirable for at least one of the surfaces to have electrical conductivity in order to be able to dissipate electrostatic charges.
  • microporous heat insulation bodies consisting of ve ⁇ resstem Wä ⁇ nedämrnmaterial containing 30 to 90 wt .-% finely divided metal oxide, 0 to 30 wt .-% opacifier, 0 to 10 wt .-% inorganic fiber material and 0 to 15 wt .-% % inorganic binder, the body additionally containing 2 to 45% by weight, preferably 5 to 15% by weight, of xonotlite.
  • This microporous thermal insulation body preferably has a cover made of heat-resistant material on one or both surfaces. Covers which are the same or different and which consist of pre-pressed xonotlite, mica or graphite are particularly preferred. When using xonotlite and / or mica, covers are created that are good insulators. When using graphite, a cover is created which is electrically conductive to such an extent that it can at least discharge electrostatic charges. In certain applications, it may therefore be advantageous to produce one side of the cover from xonotlite and / or mica and the other cover from graphite.
  • the heat insulation bodies according to the invention are produced by dry
  • Heat insulation bodies by adding only relatively small amounts of fiber material to a considerable extent if xonotlite is part of the heat insulation body.
  • xonotlite in the core leads to an improvement in the homogeneity of the dry mix both during production and in the end product.
  • the remaining constituents of the heat-insulating bodies according to the invention can be selected from the materials already known for this purpose.
  • the finely divided metal oxides used are, for example: pyrogenically produced silicas, including arcing silicas, low-alkali precipitated silicas, silicon dioxide aerogels, aluminum oxides produced analogously and mixtures thereof. Pyrogenic silicas are particularly preferred.
  • Titanium dioxide, ilmenite, silicon carbide, iron-II-iron-III mixed oxides, chromium dioxide, zirconium oxide, manganese dioxide, iron oxide, silicon dioxide, aluminum oxide and zirconium silicate and mixtures thereof can be used as opacifiers. These opacifiers primarily serve to absorb and scatter infrared rays and thus provide good insulation against thermal radiation in the higher temperature range.
  • Fibers, rock wool, basalt fibers, slag wool, ceramic fibers and whiskers as well as fiber cords such as these are suitable as fiber materials can be obtained, for example, from melts of aluminum and / or silicon oxide, and also mixtures thereof.
  • inorganic binders can also be used, such as water glass, aluminum phosphates, borides of aluminum, titanium, zirconium, calcium, silicides such as calcium silicide and calcium aluminum silicide.
  • inorganic binders can also be used, such as water glass, aluminum phosphates, borides of aluminum, titanium, zirconium, calcium, silicides such as calcium silicide and calcium aluminum silicide.
  • Boron carbide and basic oxides such as magnesium oxide, calcium oxide and barium oxide.
  • binders are no longer required when using xonotlite.
  • Some of these binders can also be used as dry premixes with xonotlite, as they are particularly easy to mix in homogeneously.
  • Synthetically produced xonotlite is used as the xonotlite, since natural xonotlite is not available in sufficient quantities and at acceptable prices.
  • the preparation of synthetic xonotlite is described, for example, in GB 1193172 and EP 0 231 460.
  • This synthetically produced xonotlite is generally obtained in the form of beads consisting of felted needles. According to the invention, however, it is also possible to use the needles which are no longer felt or which are barely matted, which are obtained in the manufacture, use and processing of xonotlite for other purposes and are also mixed with the other components of such products.
  • the thermal insulation body according to the invention If a covering of one or both surfaces of the thermal insulation body according to the invention is desired, with heat-resistant material, the commercially available foils made of mica and graphite can be used. It is also possible to produce a layered material from pre-pressed xonotlite, which is introduced at the top and bottom of the mold for the rest of the dry mixture and co-pressed.
  • microporous thermal insulation body according to the invention can in their entirety
  • End product can be adapted to the respective purpose.
  • the invention is illustrated by the following examples and comparative examples.
  • Example 1 To the mixture according to Example 1, various amounts of synthetic xonotlite (Promaxon ®, a commercial product of the company Promat NV, Belgium) are admixed and how ve ⁇ resst in Example. 1 The springback and re-expansion is significantly reduced by increasing amounts of xonotlite.
  • the data are compiled below and shown in FIG. 1:

Abstract

Der mikroporöse Wärmedämmkörper besteht aus verpresstem Wärmedämmmaterial enthaltend 30 bis 90 Gew.-% feinteiliges Metalloxid, 0 bis 30 Gew.-% Trübungsmittel, 0 bis 10 Gew.-% anorganisches Fasermaterial und 10 bis 15 Gew-%. anorganisches Bindemittel, sowie zusätzlich 2 bis 45 Gew.-%, vorzugsweise 5 bis 15 Gew.-% Xonotlit.

Description

Mikroporöser Wärmedämmkörper
Gegenstand der vorliegenden Erfindung ist ein mikroporöser Wärmedämmkörper, bestehend aus verpresstem Wärmedämmmaterial enthaltend 30 bis 90 Gew.% feinteiliges Metalloxid, 0 bis 30 Gew.% Trübungsmittel, 0 bis 10 Gew.% Fasermaterial und 10 bis 15 Gew. Anorganisches Bindemittel.
Ein derartiger Wärmedämmkö er ist beispielsweise beschrieben in der EP-A-0618 399, wobei jedoch gefordert wird, dass zumindest eine Oberfläche des Formkörpers Kanalporen mit einer Grundfläche der Pore von 0,01 bis 8mm2 und einer Eindringtiefe von 5 bis 100 % bezogen auf die Dicke des Formkörpers aufweist und wobei pro lern2 der Formkörperoberfläche 0,004 bis 10 Kanalporen enthalten sind.
Diese Wärmedäimrikörper werden hergestellt durch trockenes Nerpressen und anschließendes Sintern bei Temperaturen von 500 bis 900° C, wobei die Kanalporen erzeugt werden durch Bohren, Stanzen oder Fräsen sowie vorzugsweise durch Prägestempel. Durch diese Maßnahmen gelingt es, den beim raschen Erhitzen explosionsartig entweichenden Wasserdampf so abzuleiten, dass es nicht zur Zerstörung des Wärmedämmkörpers kommt. Die Nachteile dieser Wärmedämmkörper sind das umständliche
Herstellungsverfahren sowie die Verschlechterung der Wärmedämmeigenschaften, durch die Konvektion der Gase in den Poren.
Ein weiteres Verfahren zur Herstellung eines mikroporösen Körpers ist beschrieben in der EP-A- 0 623 567, bei welcher Oxide, Hydroxide und Carbonate der Metalle der 2. Hauptgruppe zusammen mit pyrogen hergestelltem Si02 sowie gegebenenfalls A1203 sowie einem Trübungsmittel und einer organischen Faser miteinander verpreßt und dann bei Temperaturen über 700° C gesintert werden. Dieses Verfahren ist nicht nur aufwendig, sondern weist darüber hinaus den Nachteil auf, dass das Wiederabkühlen dieses gut isolierenden Materials lange Zeit beansprucht.
Die Wärmedämmkörper unter Verwendung von hoch temperaturbeständigen Klebstoffen sowie einer Trübe, einem Kieselsol und einem Ton sind in der DE-C-40 20 771 beschrieben. Hierin ist auch weiterer Stand der Technik betreffend Herstellung und Zusammensetzung von Wärmedämmkörpern beschrieben. Der Nachteil aller Wärmedämmkörper mit organischen Bestandteilen und insbesondere organischem Fasermaterial besteht darin, dass diese bei sehr hohen Temperaturen verbrennen und unerwünschte Gasentwicklung aufweisen.
Die DE 41 06 727 beschreibt Wärmedämnikörper mit einer Umhüllung aus Kunststofffolie, wobei speziell schrumpffähige Kunststofffolien verwendet werden sollen. Auch diese Wärmedämmkörper enthalten noch organisches Material und verlieren im Falle sehr hoher Erhitzung ihre Formbeständigkeit.
Die DE-C- 42 02 569 beschreibt Formwerkzeuge zum Pressen von Wärmedämmköφern, insbesondere für elektrische Strahlungsheizköφer wie Kochplatten. Die EP-A-686 732 beschreibt Wärmedämmplatten, die trocken verpreßt werden und innen und außen aus verschiedenem Material bestehen, die zu ihrer Stabilisierung Öffnungen aufweisen, die durchgehend aus dem äußeren Material bestehen. Auch diese Platten sind nur schwer herstellbar und weisen weder von der mechanischen Stabilität noch von ihren Wärmeisoliereigenschaften optimale Eigenschaften auf.
Ein weiterer Nachteil dieser Wärmedämmplatten ist, dass es schwierig ist, sie so zu schneiden und zu bearbeiten, dass die äußeren Schichten nicht beschädigt werden, es sei denn, es werden sehr teure Werkzeuge wie Laserschneider verwendet, da diese in der Lage sind, die neu entstehenden Schnittkanten glasig zu sintern.
Ein weiterer Versuch, die Probleme bei der Herstellung von Wärmdämmplatten zu lösen und dabei zu optimalen Eigenschaften zu kommen, ist beschrieben in der EP 0 829 346, in welcher ebenfalls noch einmal die Schwierigkeiten und Nachteile des Standes der Technik zusammengestellt sind.
Ein wesentliches Problem bei der Herstellung von Wärmedämmköφern durch trockenes Veφressen der Bestandteile besteht darin, dass diese Materialien nach dem Veφressen dazu neigen, zurückzufedern und sich wieder auszudehnen, so dass zumindest mit sehr hohen Drucken gearbeitet werden muss, um einigermaßen brauchbare Ergebnisse zu erzielen.
Durch den Zusatz von Fasermaterial lässt sich zwar die Biegefestigkeit der Wärmedämmplatten verbessern, jedoch führen höhere Mengen an Fasern in der Tendenz zur Delaminierung und verschlechtem die Kohärenz der veφressten Mischung während des kritischen Schrittes der Entformung. Auf alle Fälle sollten die Wärmedämmplatten keine organischen und brennbaren
Bestandteile enthalten, die beim hohen Erhitzen zur Entwicklung von teilweise auch toxischen Gasen führen können. Schließlich sollen die fertigen Wärmedämmköφer auch leicht und problemlos bearbeitet und verarbeitet werden können, so sollen sie beispielsweise problemlos gesägt, geschnitten und gebohrt werden können, wobei kein unerwünschter Staub anfallen soll.
Schließlich ist in vielen Fällen erwünscht, dass die Wärmedämmköφer gute elektrische Isolatoren sind, es gibt jedoch Anwendungsfälle, in denen es erwünscht ist, dass zumindest eine der Oberflächen elektrische Leitfähigkeit aufweist, um elektrostatische Aufladungen ableiten zu können.
All diese Aufgaben werden jetzt gelöst durch mikroporöse Wärmedämmköφer, bestehend aus veφresstem Wäπnedämrnmaterial enthaltend 30 bis 90 Gew.-% feinteiliges Metalloxid, 0 bis 30 Gew.-% Trübungsmittel, 0 bis 10 Gew.-% anorganisches Fasermaterial und 0 bis 15 Gew.-% anorganisches Bindemittel, wobei der Köφer zusätzlich 2 bis 45 Gew.%, vorzugsweise 5 bis 15 Gew.% Xonotlit enthält.
Vorzugsweise weist dieser mikroporöser Wärmedämmköφer auf einen oder beiden Oberflächen eine Abdeckung aus hitzebeständigem Material auf. Besonders bevorzugt sind Abdeckungen, die gleich oder verschieden sind und aus vorgepresstem Xonotlit, Glimmer oder Graphit bestehen. Bei Verwendung von Xonotlit und/oder Glimmer entstehen Abdeckungen, die gute Isolatoren sind. Bei Verwendung von Graphit entsteht eine Abdeckung, die elektrisch so weit leitend ist, dass sie zumindest elektrostatische Aufladungen ableiten kann. Bei gewissen Anwendungen kann es somit von Vorteil sein, die eine Seite der Abdeckung aus Xonotlit und/oder Glimmer und die andere Abdeckung aus Graphit herzustellen. Die Herstellung der erfindungsgemäßen Wärmedämmköφer erfolgt durch trockenes
Veφressen, wobei durch den Zusatz von Xonotlit eine bessere mechanische
Verfestigung erfolgt, ohne dass ein Sintern bei hohen Temperaturen nötig ist.
Weiterhin führt der Zusatz von Xonotlit zu einer geringeren Rückfederung nach dem
Veφressen. Weiterhin verbessert sich die Biegefestigkeit der fertigen
Wärmedämmköφer durch Zusatz von nur relativ geringen Mengen von Fasermaterial in erheblichem Maße, wenn Xonotlit Bestandteil des Wärmedämmköφers ist.
Schließlich führt die Verwendung von Xonotlit im Kern zu einer Verbesserung der Homogenität der Trockenmischung sowohl während der Herstellung als auch im Endprodukt.
Die übrigen Bestandteile der erfindungsgemäßen Wärmedärnmköφer können ausgewählt werden aus den für diesen Zweck bereits bekannten Materialien. Als feinteilige Metalloxide werden beispielsweise verwendet: pyrogen erzeugte Kieselsäuren, einschließlich Lichtbogenkieselsäuren, alkaliarme Fällungskieselsäuren, Siliciumdioxidaerogele, analog hergestellte Aluminiumoxide sowie deren Mischungen. Besonders bevorzugt sind pyrogen erzeugte Kieselsäuren.
Als Trübungsmittel verwendbar sind Titandioxid, Ilmenit, Siliciumcarbid, Eisen-II- Eisen-III-Mischoxide, Chromdioxid, Zirkonoxid, Mangandioxid, Eisenoxid, Siliciumdioxid, Aluminiumoxid und Zirkonsilikat sowie deren Mischungen. Diese Trübungsmittel dienen vor allen Dingen der Absoφtion und Streuung von Infrarotstrahlen und damit einer guten Dämmung gegen Wärmestrahlung im höheren Temperaturbereich.
Als Fasermaterialien geeignet sind Glasfasern, Steinwolle, Basaltfasern, Schlackenwolle,keramische Fasern und Whiskers sowie Faserschnüre, wie sie beispielsweise aus Schmelzen von Aluminium- und/oder Siliciumoxid gewonnen werden, sowie Mischungen derselben.
Gewünschtenfalls können auch zusätzlich anorganische Bindemittel verwendet werden, wie Wasserglas, Aluminiumphosphate, Boride des Aluminiums, des Titans, des Zirkons, des Calciums, Silicide wie Calciumsilicid und Calcium-Aluminium- Silicid,. Borcarbid sowie basische Oxide wie Magnesiumoxid, Calciumoxid und Bariumoxid.
Im allgemeinen sind solche Bindemittel aber bei Verwendung von Xonotlit nicht mehr erforderlich. Einige dieser Bindemittel können auch als trockene Vormischung mit Xonotlit eingesetzt werden, da sie sich dabei besonders leicht homogen einmischen lassen.
Als Xonotlit wird eingesetzt synthetisch hergestellter Xonotlit, da natürlicher Xonotlit nicht in ausreichenden Mengen und zu akzeptablen Preisen zur Verfügung steht. Die Herstellung von synthetischem Xonotlit ist beispielsweise beschrieben in der GB- 1193172 sowie der EP 0 231 460.
Dieser synthetisch hergestellte Xonotlit fällt dabei im allgemeinen an in Form von Kügelchen, bestehend aus verfilzten Nadeln. Erfindungsgemäß können aber auch die nicht mehr oder kaum noch verfilzten Nadeln eingesetzt werden, die bei der Herstellung, Verwendung und Verarbeitung von Xonotlit zu anderen Zwecken anfallen und dabei auch mit den sonstigen Komponenten solcher Produkte vermischt sind.
Sofern eine Abdeckung einer oder beider Oberflächen der erfindungsgemäßen Wärmedämmköφer gewünscht ist, mit hitzebeständigem Material, können die handelsüblichen Folien aus Glimmer und Graphit eingesetzt werden. Es ist weiterhin möglich, aus vorgepresstem Xonotlit ein Schichtmaterial herzustellen, welches unten und oben in die Pressform für das übrige trockene Gemisch eingebracht und mitveφresst werden.
Die erfindungsgemäßen mikroporösen Wärmedämmköφer können in ihren
Eigenschaften variiert werden, je nach gewünschtem Anwendungszweck, wobei durch die Zusammensetzung auch die physikalischen Eigenschaften des
Endproduktes dem jeweiligen Zweck angepasst werden können.
Die Erfindung wird durch die nachfolgenden Beispiele und Vergleichsbeispiele näher erläutert.
Beispiel 1
68 Gew.% pryrogene Kieselsäure, 30 Gew.% Rutil als Trübungsmittel und 2 Gew.% Silikafasern (6 mm Länge) werden in einem Zwangsmischer intensiv gemischt und dann in einer rechteckigen metallischen Form trocken veφresst mit einem Pressdruck von 0,9 MPa wobei eine Platte mit einer Dichte von 320 kg/m3 entstand. Nach Wegnahme des Pressdruckes und Entformung vergrößerte sich bei einer 15 mm dicken Platte die Dicke um 3 bis 4 % durch Zurückfedern und Wiederausdehnen. Der Wärmedämmköφer weist nur eine geringe mechanische Stabilität auf.
Beispiel 2
Zu dem Gemisch gemass Beispiel 1 werden verschiedene Mengen synthetischer Xonotlit (Promaxon ®, Handelsprodukt der Firma Promat N.V., Belgien) zugemischt und wie im Beispiel 1 veφresst. Die Rückfederung und Wiederausdehnung wird durch zunehmende Mengen von Xonotlit deutlich vermindert. Die Daten sind nachfolgend zusammengestellt und in der Figur 1 dargestellt:
Figure imgf000010_0001
Der Zusatz von Xonotlit erhöht die Biegefestigkeit gemäß nachfolgender Zusammenstellung und Figur 2.
Figure imgf000010_0002
Diesen Daten und der Figur 2 kann entnommen werden, dass der Zusatz von Xonotlit bis zu etwa 20 Gew.% auch die Biegefestigkeit verbessert.

Claims

Patentansprüche
1. Mikroporöser Wärmedämmköφer bestehend aus veφresstem Wärmedämmmaterial enthaltend 30 bis 90 Gew.-% feinteiliges Metalloxid, 0 bis 30 Gew.-% Trübungsmittel, 0 bis 10 Gew.-% anorganisches Fasermaterial und 0 bis 15 Gew.-% anorganisches Bindemittel, dadurch gekennzeichnet, dass der Köφer zusätzlich 2 bis 45 Gew.-%, vorzugsweise 5 bis 15 Gew.-% Xonotlit enthält.
2. Mikroporöser Wärmedämmköφer gemäß Anspruch 1, dadurch gekennzeichnet, dass eine oder beide Oberflächen eine Abdeckung aus hitzebeständigem Material aufweisen.
3. Mikroporöser Wärmedämmköφer gemäß Anspruch 2, dadurch gekennzeichnet, dass die Abdeckung gleich oder verschieden ist und aus vorveφresstem Xonotlit, Glimmer oder Graphit besteht.
4. Mikroporöser Wärmedämmköφer gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Abdeckung auf beiden Seiten aus einem vorgefertigten Film aus Glimmer besteht.
PCT/EP1999/010003 1998-12-19 1999-12-16 Mikroporöser wärmedämmkörper WO2000037389A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU24324/00A AU2432400A (en) 1998-12-19 1999-12-16 Microporous heat insulating body
JP2000589464A JP4616482B2 (ja) 1998-12-19 1999-12-16 微孔性断熱体
EP99967948A EP1140729B1 (de) 1998-12-19 1999-12-16 Mikroporöser wärmedämmkörper
DK99967948T DK1140729T3 (da) 1998-12-19 1999-12-16 Mikroporøst varmeisoleringslegeme
AT99967948T ATE248137T1 (de) 1998-12-19 1999-12-16 Mikroporöser wärmedämmkörper
DE59906802T DE59906802D1 (de) 1998-12-19 1999-12-16 Mikroporöser wärmedämmkörper
PL349445A PL192902B1 (pl) 1998-12-19 1999-12-16 Mikroporowaty izolator cieplny
US09/857,181 US6936326B1 (en) 1998-12-19 1999-12-16 Microporous heat insulating body
CA002356143A CA2356143C (en) 1998-12-19 1999-12-16 Microporous heat insulation body
BRPI9916379-9A BR9916379B1 (pt) 1998-12-19 1999-12-16 corpo microporoso de isolamento tÉrmico.
NO20013019A NO331414B1 (no) 1998-12-19 2001-06-18 Mikroporost varmeisolerende legeme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19859084.9 1998-12-19
DE19859084A DE19859084C1 (de) 1998-12-19 1998-12-19 Mikroporöser Wärmedämmkörper

Publications (1)

Publication Number Publication Date
WO2000037389A1 true WO2000037389A1 (de) 2000-06-29

Family

ID=7892008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/010003 WO2000037389A1 (de) 1998-12-19 1999-12-16 Mikroporöser wärmedämmkörper

Country Status (16)

Country Link
US (1) US6936326B1 (de)
EP (1) EP1140729B1 (de)
JP (1) JP4616482B2 (de)
KR (1) KR100666385B1 (de)
AT (1) ATE248137T1 (de)
AU (1) AU2432400A (de)
BR (1) BR9916379B1 (de)
CA (1) CA2356143C (de)
CZ (1) CZ298998B6 (de)
DE (2) DE19859084C1 (de)
DK (1) DK1140729T3 (de)
ES (1) ES2207335T3 (de)
NO (1) NO331414B1 (de)
PL (1) PL192902B1 (de)
PT (1) PT1140729E (de)
WO (1) WO2000037389A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159208A1 (de) * 2008-08-28 2010-03-03 PROMAT GmbH Wärmedämmkörper mit Haftvermittler

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683067B1 (ko) * 1998-12-19 2007-02-15 프로매트 인터내셔널 엔.브이. 미소다공성 단열체
DE19928011A1 (de) * 1999-06-19 2000-12-21 Porextherm Daemmstoffe Gmbh Isolierplatte, insbesondere für den Niedertemperaturbereich
ATE282013T1 (de) * 2001-05-08 2004-11-15 Promat Internat N V Hitzebeständiges und feuerbeständiges formteil
EP1340729A1 (de) * 2002-02-28 2003-09-03 E.G.O. ELEKTRO-GERÄTEBAU GmbH Wärmedämmformkörper
DE10339679A1 (de) * 2003-08-28 2005-03-31 Wacker-Chemie Gmbh Kontinuierliches Verfahren zur Herstellung einer Wärmedämmplatte
EP1892226A3 (de) * 2006-08-25 2010-02-17 H+H Deutschland GmbH Verfahren zur Reduzierung der Wärmeleitfähigkeit von Bausteinen aus einem kalzium-Silikate-Material sowie Baustein aus einem Kalzium-Silikat-Material mit verbesserter Wärmeleitfähigkeit
JP4396761B2 (ja) * 2007-11-26 2010-01-13 株式会社デンソー 回転電機の固定子および回転電機
DE202008016782U1 (de) 2008-12-20 2009-04-30 Promat Gmbh Schließeinrichtung für Brandschutztüren oder -fenster
KR101162562B1 (ko) 2009-06-05 2012-07-05 오씨아이 주식회사 불연 고성능 단열재 및 이의 제조방법
JP4860005B1 (ja) * 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法
DE202011002155U1 (de) 2011-01-31 2011-04-07 Holzbau Schmid Gmbh & Co. Kg Beschichtete Baustoffplatte
JP5409939B2 (ja) * 2012-02-21 2014-02-05 日本インシュレーション株式会社 断熱材及びその製造方法
CZ2012195A3 (cs) * 2012-03-19 2013-07-17 Vysoká skola chemicko - technologická v Praze Zdravotne nezávadné anorganické pojivo pro anorganická tepelne izolacní vlákna a anorganická tepelne izolacní vlákna s tímto pojivem
WO2013141189A1 (ja) * 2012-03-23 2013-09-26 井前工業株式会社 断熱材組成物、これを用いた断熱材、及び断熱材の製造方法
CN103848615B (zh) * 2012-11-29 2016-02-10 上海柯瑞冶金炉料有限公司 一种纳米微孔保温材料的制造方法
EP2921465A1 (de) 2014-03-20 2015-09-23 PROMAT GmbH Verwendung eines Dämmkörpers als Klimaplatte
US10234069B2 (en) 2015-03-09 2019-03-19 Johns Manville High temperature flexible blanket for industrial insulation applications
CN111018504B (zh) * 2019-12-27 2022-05-13 山东鲁阳浩特高技术纤维有限公司 一种复合纳米板及其制备方法
CN113045323B (zh) * 2021-04-08 2022-11-29 中钢洛耐科技股份有限公司 梯度截热保温材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915725A (en) * 1970-04-28 1975-10-28 Agency Ind Science Techn Process for producing hollow spherical aggregates of xonotlite
EP0078119A1 (de) * 1981-10-28 1983-05-04 William George Horton Calzium-Silikat-Material
DE4106727A1 (de) * 1991-03-02 1992-09-03 Porotherm Daemmstoffe Gmbh Waermedaemmformkoerper mit umhuellung und verfahren zu deren herstellung
US5399397A (en) * 1993-04-21 1995-03-21 Martin Marietta Energy Systems, Inc. Calcium silicate insulation structure
EP0829346A2 (de) * 1996-09-05 1998-03-18 Porextherm-Dämmstoffe GmbH Wärmedämmformkörper
WO1998026928A1 (de) * 1996-12-18 1998-06-25 Porextherm-Dämmstoffe Gmbh Warmedämmformkörper mit umhüllung und verfahren zu deren herstellung
JPH11185939A (ja) * 1997-12-17 1999-07-09 Matsushita Electric Ind Co Ltd ヒータ装置及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US399397A (en) * 1889-03-12 garst
US915A (en) * 1838-09-12 stewart
DE3033515A1 (de) * 1980-09-05 1982-04-29 Wacker-Chemie GmbH, 8000 München Waermedaemmplatte
US4399191A (en) * 1981-03-11 1983-08-16 Mitsubishi Denki Kabushiki Kaisha Thin insulating mica sheet and insulated coil
WO1985002839A1 (en) * 1983-12-28 1985-07-04 Kabushiki Kaisha Osaka Packing Seizosho Formed article of calcium silicate and method of the preparation thereof
JPS6283388A (ja) * 1985-10-07 1987-04-16 日東紡績株式会社 無機質繊維体
US4783365A (en) * 1986-04-09 1988-11-08 Essex Group, Inc. Mica product
DE3816979A1 (de) * 1988-05-18 1989-11-30 Wacker Chemie Gmbh Waermedaemmformkoerper auf der basis von verpresstem, mikroporoesem waermedaemmstoff mit einer umhuellung auf der basis von metallen
US5631097A (en) * 1992-08-11 1997-05-20 E. Khashoggi Industries Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture
DE4310613A1 (de) * 1993-03-31 1994-10-06 Wacker Chemie Gmbh Mikroporöser Wärmedämmformkörper
KR100683067B1 (ko) * 1998-12-19 2007-02-15 프로매트 인터내셔널 엔.브이. 미소다공성 단열체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915725A (en) * 1970-04-28 1975-10-28 Agency Ind Science Techn Process for producing hollow spherical aggregates of xonotlite
EP0078119A1 (de) * 1981-10-28 1983-05-04 William George Horton Calzium-Silikat-Material
DE4106727A1 (de) * 1991-03-02 1992-09-03 Porotherm Daemmstoffe Gmbh Waermedaemmformkoerper mit umhuellung und verfahren zu deren herstellung
US5399397A (en) * 1993-04-21 1995-03-21 Martin Marietta Energy Systems, Inc. Calcium silicate insulation structure
EP0829346A2 (de) * 1996-09-05 1998-03-18 Porextherm-Dämmstoffe GmbH Wärmedämmformkörper
WO1998026928A1 (de) * 1996-12-18 1998-06-25 Porextherm-Dämmstoffe Gmbh Warmedämmformkörper mit umhüllung und verfahren zu deren herstellung
JPH11185939A (ja) * 1997-12-17 1999-07-09 Matsushita Electric Ind Co Ltd ヒータ装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12 29 October 1999 (1999-10-29) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159208A1 (de) * 2008-08-28 2010-03-03 PROMAT GmbH Wärmedämmkörper mit Haftvermittler

Also Published As

Publication number Publication date
AU2432400A (en) 2000-07-12
BR9916379A (pt) 2001-09-11
ATE248137T1 (de) 2003-09-15
JP4616482B2 (ja) 2011-01-19
ES2207335T3 (es) 2004-05-16
DK1140729T3 (da) 2003-12-08
PL349445A1 (en) 2002-07-29
NO20013019L (no) 2001-08-17
BR9916379B1 (pt) 2008-11-18
PT1140729E (pt) 2004-01-30
NO20013019D0 (no) 2001-06-18
EP1140729A1 (de) 2001-10-10
DE19859084C1 (de) 2000-05-11
CZ298998B6 (cs) 2008-04-02
CZ20012210A3 (cs) 2002-07-17
DE59906802D1 (de) 2003-10-02
PL192902B1 (pl) 2006-12-29
NO331414B1 (no) 2011-12-19
EP1140729B1 (de) 2003-08-27
JP2002533286A (ja) 2002-10-08
CA2356143A1 (en) 2000-06-29
US6936326B1 (en) 2005-08-30
KR20010105315A (ko) 2001-11-28
KR100666385B1 (ko) 2007-01-09
CA2356143C (en) 2009-11-10

Similar Documents

Publication Publication Date Title
EP1140729B1 (de) Mikroporöser wärmedämmkörper
DE2806367C2 (de) Thermisch isolierendes Material und seine Verwendung
EP0850206B1 (de) Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
DE10114484C2 (de) Verfahren für die Herstellung eines Komposit-Werkstoffs mit einem SiO¶2¶-Gehalt von mindestens 99 Gew.-%, und Verwendung des nach dem Verfahren erhaltenen Komposit-Werkstoffs
EP0618399B1 (de) Mikroporöser Wärmedämmformkörper
EP0027264B1 (de) Wärmeisolierkörper sowie Verfahren zu seiner Herstellung
DE19702239A1 (de) Mehrschichtige Verbundmaterialien, die mindestens eine aerogelhaltige Schicht und mindestens eine Schicht, die Polyethylenterephthalat-Fasern enthält, aufweisen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP0029227B1 (de) Verfahren zur Herstellung eines Wärmedämmformkörpers
EP0164006A1 (de) Wärmedämmformkörper mit Umhüllung
DE2748307A1 (de) Waermedaemmplatte und verfahren zu ihrer herstellung
AT406350B (de) Poröser metallischer werkstoff mit anisotropen eigenschaften
DE19618968A1 (de) Mischung und Verfahren zur Herstellung wärmedämmender Formkörper
EP3225728B1 (de) Füllkern für vakuumisolierungen und verfahren zu dessen herstellung
DE4432896C2 (de) Evakuierter, wärmedämmender Formkörper
EP1304315B1 (de) Mikroporöser Wärmedämmformkörper enthaltend Lichtbogenkieselsäure
DE3105534C2 (de) Verfahren zur Herstellung eines Formteiles und seine Verwendung
CH665204A5 (de) Verfahren zur herstellung eines ungebrannten feuerfesten bauteils in form einer platte fuer die verlorene auskleidung von metallurgischen gefaessen und seine verwendung.
DE2941606C2 (de) Wärmedämmkörper sowie ein Verfahren zu seiner Herstellung
DE3105595C2 (de) Feuerfestes oder feuerbeständiges Verbundbauteil mit einem Formteil aus beliebigem, feuerfesten oder feuerbeständigen Werkstoff und einer Isolierschicht mit höherer Wärmedämmung bzw. einer Dehnungsausgleichsschicht und Verfahren zur Herstellung dieses Verbundbauteils
EP0752978A1 (de) Wärmedämmformteile
DE3105596C2 (de) Verfahren zur Herstellung eines Formteils und seine Verwendung
EP1140728B1 (de) Mikroporöser wärmedämmkörper
EP3403821A1 (de) Verfahren zur herstellung eines formteils mit einem mehrschichtigen aufbau und formteil
DE2942087A1 (de) Waermeisolierkoerper sowie verfahren zu seiner herstellung
EP2921465A1 (de) Verwendung eines Dämmkörpers als Klimaplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM EE GD HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK SL TR TT TZ UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999967948

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2356143

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2356143

Ref document number: 2000 589464

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2001-2210

Country of ref document: CZ

Ref document number: 1020017007641

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09857181

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999967948

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017007641

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2001-2210

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1999967948

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017007641

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV2001-2210

Country of ref document: CZ