WO2000031496A1 - Optical impact generator capable of being incorporated - Google Patents

Optical impact generator capable of being incorporated Download PDF

Info

Publication number
WO2000031496A1
WO2000031496A1 PCT/FR1999/002862 FR9902862W WO0031496A1 WO 2000031496 A1 WO2000031496 A1 WO 2000031496A1 FR 9902862 W FR9902862 W FR 9902862W WO 0031496 A1 WO0031496 A1 WO 0031496A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
target
laser beam
impact generator
plasma
Prior art date
Application number
PCT/FR1999/002862
Other languages
French (fr)
Inventor
Jean-Louis Labaste
Michel Doucet
Didier Brisset
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP99956104A priority Critical patent/EP1133668B1/en
Priority to DE69909825T priority patent/DE69909825T2/en
Publication of WO2000031496A1 publication Critical patent/WO2000031496A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/113Initiators therefor activated by optical means, e.g. laser, flashlight

Definitions

  • the invention relates to an on-board optical impact generator, with miniaturized laser source and three-layer target.
  • This invention finds applications in fields requiring the generation of a shock in an energetic or non-energetic material.
  • optical impact generators also called opto-detonating initiators with protected element (IODEP) when it comes to explosive materials.
  • IODEP opto-detonating initiators with protected element
  • These initiators generally include a laser source which emits a laser beam towards a target.
  • This target is generally deposited on a substrate transparent to the laser beam.
  • This substrate can be, for example, a silica window or the end of an optical fiber.
  • the target is conventionally deposited on the end of the substrate by sputtering. This deposit is generally metallic.
  • FIG. 1A and 1B Such a device is shown in Figures 1A and 1B.
  • reference has been made to 1 the transparent substrate, 2 the plasma and 3 the projectile, with 2 and 3 which form the target.
  • FIG. 1A shows an impact generator during the laser / material interaction phase, that is to say when the laser beam vaporizes the first atomic layers of the target, thus generating a plasma 2, at the substrate / target interface.
  • this same impact generator is shown during the projectile speed-up phase.
  • the plasma generated under the interaction of the laser beam expands after a very short time and accelerates the solid part of the target, namely the projectile 3.
  • the projectile 3 can then reach a speed V of several kilometers per second ; this speed V depends on the nature and thickness of the projectile.
  • the target described in this document has three layers:
  • a first metal layer capable of generating a plasma, under the effect of the laser beam
  • a third, metallic layer which constitutes the projectile
  • - a second, intermediate layer of insulating material which provides insulation between the first and the third layer.
  • the thickness of the first two layers is a few tenths of a micron, while that of the projectile is 2 to 10 ⁇ m.
  • This document relates to targets having a second layer of alumina and first and third layers of alumniu.
  • the performance of such a three-layer target is not optimized; more precisely, the ratio of the kinetic energy of the projectile to the laser energy is less than 30%. This requires the use of a sufficiently powerful laser (not on-board) to generate a projectile with sufficient kinetic energy for the intended application.
  • the object of the invention is precisely to solve the problems of the impact generators described above. To this end, it offers an efficient impact generator that can operate with a miniaturized laser source whose power is fixed and low.
  • the invention relates to an optical impact generator comprising a laser source emitting a laser beam and a window confinement transparent to the laser beam, at the end of which is deposited a three-layer target comprising:
  • a second layer ensuring the isolation of the third layer from the plasma, characterized in that it is embeddable, the laser source being miniaturized and in that the first layer of the target is made of a material having :
  • the material of the first layer of the target is a semiconductor.
  • the material of the first layer of the target is indium arsenide, of thickness less than 0.5 ⁇ m.
  • the material of the first layer of the target is germanium, of thickness less than 0.5 ⁇ m.
  • Figures 1A and 1B already described, show the operating principle of a conventional optical impact generator, and Figure 2 shows atically the optical impact generator according to the invention.
  • the invention relates to an on-board optical impact generator; for this, it comprises a miniaturized laser source, with fixed wavelength, such as that described in the French patent application filed on 09/19/1998 under the number 98 11558.
  • Miniaturized laser sources have a relatively lower power than a conventional laser source.
  • the target must therefore be chosen so that the impact generator has a good output in order to be able to eject the projectile, whatever the amount of energy available at the source.
  • the target configuration must therefore be optimized.
  • the ablating material rapidly transforms into plasma.
  • This plasma is the engine of the impact generator: it generates the mechanical effects in the projectile, in particular its setting in speed.
  • the invention proposes to use a three-layer target whose nature and thickness of the first layer (or ablating material) depend on the wavelength emitted by the laser source as well as on the nature and / or thickness second and third layers.
  • the material constituting the first layer of the target has:
  • the ablating material must have a very high absorption, at the wavelength of the laser beam, when it is used at low temperature, that is to say at the beginning of the interaction, before the plasma does not start to form.
  • semiconductors respond well to this condition, in particular for a wavelength of 1.06 ⁇ m;
  • the thickness of this ablating material must be small; on the contrary, if the ablating material 5 is not very dense compared to the density of the insulating material 4, then the thickness of this ablating material is relatively large. However, in any case, the thickness of the ablating material must be less than 1 ⁇ m.
  • FIG. 2 there is shown schematically the impact generator according to the invention, in which the target is of the type three-layer. More specifically, this FIG. 2 shows the substrate 1 transparent to the laser beam and the target consisting of the layer of ablating material 5, the insulating layer 4 and the projectile 3.
  • the target can advantageously consist of the following layers: • projectile 3 made of aluminum or copper with a thickness between 2 and 20 ⁇ m ;
  • the impact generator of the invention achieves a yield of the order of 50% for a wavelength of 1.06 ⁇ m.

Abstract

The invention concerns an optical impact generator, capable of being incorporated, comprising a miniaturised laser source emitting a laser beam and confinement window transparent to the laser beam, at the end of which is deposited a three-layered target comprising: a first layer (5) generating a plasma; a third layer (3) constituting a projectile; and a second layer (4) insulating the third layer from the plasma. The material forming the target first layer has: low reflection to the wavelength of the laser beam derived from the miniaturised laser source; and a thickness of 1 νm determined on the basis of said material density compared to the density of the material forming the target second layer.

Description

GENERATEUR OPTIQUE D'IMPACT EMBARQUABLE ON-BOARD IMPACT OPTICAL GENERATOR
Domaine de 1 ' inventionField of the invention
L'invention concerne un générateur optique d'impact embarquable, avec source laser miniaturisée et cible tricouche.The invention relates to an on-board optical impact generator, with miniaturized laser source and three-layer target.
Cette invention trouve des applications dans les domaines nécessitant la génération d'un choc dans un matériau énergétique ou non-énergétique.This invention finds applications in fields requiring the generation of a shock in an energetic or non-energetic material.
En particulier, elle trouve des applications dans les domaines de la démolition de bâtiments, des carrières ainsi que dans l'industrie spatiale pour initier des matériaux explosifs ; elle trouve aussi des applications pour les études de matériaux non- énergétiques sous sollicitation dynamique élevée ou pour la simulation d'impacts de micrométéorites et de débris de l'espace.In particular, it finds applications in the fields of building demolition, quarries as well as in the space industry to initiate explosive materials; it also finds applications for the study of non-energetic materials under high dynamic stress or for the simulation of impacts of micrometeorites and space debris.
Etat de la techniqueState of the art
Pour générer des impacts dans des matériaux, il est possible d'utiliser des générateurs optiques d'impacts, appelés aussi initiateurs opto-détonants à élément protégé (IODEP) lorsqu'il s'agit des matériaux explosifs. Ces initiateurs comportent généralement une source laser qui émet un faisceau laser en direction d'une cible. Cette cible est généralement déposée sur un substrat transparent au faisceau laser. Ce substrat peut être, par exemple, une fenêtre en silice ou bien l'extrémité d'une fibre optique. La cible est classiquement déposée sur l'extrémité du substrat par pulvérisation cathodique. Ce dépôt est généralement métallique.To generate impacts in materials, it is possible to use optical impact generators, also called opto-detonating initiators with protected element (IODEP) when it comes to explosive materials. These initiators generally include a laser source which emits a laser beam towards a target. This target is generally deposited on a substrate transparent to the laser beam. This substrate can be, for example, a silica window or the end of an optical fiber. The target is conventionally deposited on the end of the substrate by sputtering. This deposit is generally metallic.
Un tel dispositif est représenté sur les figures 1A et 1B. Sur ces figures, on a référencé 1, le substrat transparent, 2 le plasma et 3 le projectile, avec 2 et 3 qui forment la cible.Such a device is shown in Figures 1A and 1B. In these figures, reference has been made to 1, the transparent substrate, 2 the plasma and 3 the projectile, with 2 and 3 which form the target.
Sur la figure 1A, on a représenté un générateur d'impact lors de la phase d'interaction laser/matière, c'est-à-dire lorsque le faisceau laser vaporise les premières couches atomiques de la cible, générant ainsi un plasma 2, à l'interface substrat/cible.FIG. 1A shows an impact generator during the laser / material interaction phase, that is to say when the laser beam vaporizes the first atomic layers of the target, thus generating a plasma 2, at the substrate / target interface.
Sur la figure 1B, on a représenté ce même générateur d'impact lors de la phase de mise en vitesse du projectile. En effet, le plasma généré sous l'interaction du faisceau laser se détend après un temps très court et met en vitesse la partie solide de la cible, à savoir le projectile 3. Le projectile 3 peut alors atteindre une vitesse V de plusieurs kilomètres par seconde ; cette vitesse V dépend de la nature et de l'épaisseur du projectile.In FIG. 1B, this same impact generator is shown during the projectile speed-up phase. Indeed, the plasma generated under the interaction of the laser beam expands after a very short time and accelerates the solid part of the target, namely the projectile 3. The projectile 3 can then reach a speed V of several kilometers per second ; this speed V depends on the nature and thickness of the projectile.
Il existe par ailleurs des générateurs d'impacts à cible tricouche, comme celui décrit dans la demande de brevet américaine US-A-5 046 423.There are also three-layer target impact generators, such as the one described in American patent application US-A-5,046,423.
La cible décrite dans ce document comporte trois couches :The target described in this document has three layers:
- une première couche en métal, apte à générer un plasma, sous l'effet du faisceau laser, - une troisième couche, métallique, qui constitue le projectile, - une seconde couche, intermédiaire, en matériau isolant qui assure l'isolation entre la première et la troisième couche.- a first metal layer, capable of generating a plasma, under the effect of the laser beam, - a third, metallic layer, which constitutes the projectile, - a second, intermediate layer of insulating material which provides insulation between the first and the third layer.
L'épaisseur des deux premières couches est de quelques dixièmes de micron, tandis que celle du projectile est de 2 à 10 μm.The thickness of the first two layers is a few tenths of a micron, while that of the projectile is 2 to 10 μm.
L'utilisation d'une cible tricouche, telle que décrite dans ce document permet de générer un choc calibré, c'est-à-dire qu'elle permet de maîtriser le choc induit dans le matériau impacté, pour une épaisseur du projectile fixée à l'avance.The use of a three-layer target, as described in this document makes it possible to generate a calibrated shock, that is to say that it makes it possible to control the shock induced in the impacted material, for a thickness of the projectile fixed at advance.
Ce document concerne des cibles ayant une seconde couche en alumine et des première et troisième couches en alumniu . Cependant, le rendement d'une telle cible tricouche n'est pas optimisé ; plus précisément, le rapport de l'énergie cinétique du projectile sur l'énergie laser est inférieur à 30 % . Cela nécessite l'utilisation d'un laser assez puissant (non embarquable) pour générer un projectile d'une énergie cinétique suffisante pour l'application envisagée.This document relates to targets having a second layer of alumina and first and third layers of alumniu. However, the performance of such a three-layer target is not optimized; more precisely, the ratio of the kinetic energy of the projectile to the laser energy is less than 30%. This requires the use of a sufficiently powerful laser (not on-board) to generate a projectile with sufficient kinetic energy for the intended application.
Exposé de l'inventionStatement of the invention
L'invention a justement pour but de résoudre les problèmes des générateurs d'impacts décrits précédemment. A cette fin, elle propose un générateur d'impact à bon rendement pouvant fonctionner avec une source laser miniaturisée dont la puissance est fixe et peu élevée.The object of the invention is precisely to solve the problems of the impact generators described above. To this end, it offers an efficient impact generator that can operate with a miniaturized laser source whose power is fixed and low.
De façon plus précise, l'invention concerne un générateur optique d'impact comportant une source laser émettant un faisceau laser et une fenêtre de confinement transparente au faisceau laser, à l'extrémité de laquelle est déposée une cible tricouche comprenant :More specifically, the invention relates to an optical impact generator comprising a laser source emitting a laser beam and a window confinement transparent to the laser beam, at the end of which is deposited a three-layer target comprising:
- une première couche assurant la génération d'un plasma,- a first layer ensuring the generation of a plasma,
- une troisième couche constituant un projectile, eta third layer constituting a projectile, and
- une seconde couche assurant l'isolation de la troisième couche vis-à-vis du plasma, caractérisé en ce qu'il est embarquable, la source laser étant miniaturisée et en ce que la première couche de la cible est réalisée dans un matériau présentant :a second layer ensuring the isolation of the third layer from the plasma, characterized in that it is embeddable, the laser source being miniaturized and in that the first layer of the target is made of a material having :
- une faible réflexion à la longueur d'onde du faisceau laser émis par la source laser miniaturisée ; et - une épaisseur inférieure à 1 μm, déterminée en fonction de la densité dudit matériau, comparée à la densité du matériau constituant la seconde couche de la cible.- weak reflection at the wavelength of the laser beam emitted by the miniaturized laser source; and - a thickness of less than 1 μm, determined as a function of the density of said material, compared with the density of the material constituting the second layer of the target.
Avantageusement, le matériau de la première couche de la cible est un semi-conducteur.Advantageously, the material of the first layer of the target is a semiconductor.
Selon un mode de réalisation de l'invention, le matériau de la première couche de la cible est de l'arséniure d'indium, d'épaisseur inférieure à 0,5μm.According to one embodiment of the invention, the material of the first layer of the target is indium arsenide, of thickness less than 0.5 μm.
Selon un autre mode de réalisation de l'invention, le matériau de la première couche de la cible est du germanium, d'épaisseur inférieure à 0,5 μm. Brève description des figuresAccording to another embodiment of the invention, the material of the first layer of the target is germanium, of thickness less than 0.5 μm. Brief description of the figures
- Les figures 1A et 1B, déjà décrites, montrent le principe de fonctionnement d'un générateur optique d'impact classique, et la figure 2 représente sché atiquement le générateur optique d'impact conforme à l'invention.- Figures 1A and 1B, already described, show the operating principle of a conventional optical impact generator, and Figure 2 shows atically the optical impact generator according to the invention.
Description détaillée de modes de réalisationDetailed description of embodiments
L'invention concerne un générateur optique d'impact embarquable ; pour cela, il comporte une source laser miniaturisée, à longueur d'onde fixe, telle que celle décrite dans la demande de brevet française déposée le 19/09/1998 sous le n°98 11558.The invention relates to an on-board optical impact generator; for this, it comprises a miniaturized laser source, with fixed wavelength, such as that described in the French patent application filed on 09/19/1998 under the number 98 11558.
Les sources laser miniaturisées ont une puissance relativement moins élevée qu'une source laser classique. La cible doit donc être choisie de façon à ce que le générateur d'impact ait un bon rendement afin de pouvoir éjecter le projectile, quelle que soit la quantité d'énergie disponible à la source. La configuration de la cible doit donc être optimisée.Miniaturized laser sources have a relatively lower power than a conventional laser source. The target must therefore be chosen so that the impact generator has a good output in order to be able to eject the projectile, whatever the amount of energy available at the source. The target configuration must therefore be optimized.
En effet, sous l'irradiation du faisceau laser, le matériau ablateur se transforme rapidement en plasma. Ce plasma est le moteur du générateur d'impact : il génère les effets mécaniques dans le projectile, en particulier sa mise en vitesse. Les pertes d'énergie au cours de la phase transitoire précédant sa formation (états solide et liquide) , ainsi que l'état énergétique atteint par le plasma, conditionnent fortement le rendement global de 1 ' interaction. L'invention propose d'utiliser une cible tricouche dont la nature et l'épaisseur de la première couche (ou matériau ablateur) dépendent de la longueur d'onde émise par la source laser ainsi que de la nature et/ou de l'épaisseur des seconde et troisième couches.In fact, under the irradiation of the laser beam, the ablating material rapidly transforms into plasma. This plasma is the engine of the impact generator: it generates the mechanical effects in the projectile, in particular its setting in speed. The energy losses during the transient phase preceding its formation (solid and liquid states), as well as the energy state reached by the plasma, strongly condition the overall efficiency of the interaction. The invention proposes to use a three-layer target whose nature and thickness of the first layer (or ablating material) depend on the wavelength emitted by the laser source as well as on the nature and / or thickness second and third layers.
Plus précisément, ' selon l'invention, le matériau constituant la première couche de la cible présente :More precisely, according to the invention, the material constituting the first layer of the target has:
* une faible réflexion à la longueur d'onde du faisceau laser, c'est-à-dire de faibles pertes optiques ; autrement dit, le matériau ablateur doit présenter une très grande absorption, à la longueur d'onde du faisceau laser, lorsqu'il est utilisé à basse température, c'est-à-dire au début de l'interaction, avant que le plasma ne commence à se former. D'une façon générale, les semiconducteurs répondent bien à cette condition, en particulier pour une longueur d' onde de 1,06 μm ;* low reflection at the wavelength of the laser beam, that is to say low optical losses; in other words, the ablating material must have a very high absorption, at the wavelength of the laser beam, when it is used at low temperature, that is to say at the beginning of the interaction, before the plasma does not start to form. In general, semiconductors respond well to this condition, in particular for a wavelength of 1.06 μm;
* une épaisseur déterminée en fonction de la densité du matériau lui-même, comparée avec la densité du matériau isolant constituant la seconde couche de la cible. Autrement dit, si le matériau ablateur 5 a une densité très forte par rapport à la densité du matériau isolant 4, l'épaisseur de ce matériau ablateur doit être faible ; au contraire, si le matériau ablateur 5 est peu dense par rapport à la densité du matériau isolant 4, alors l'épaisseur de ce matériau ablateur est relativement importante. Mais, de toute façon, l'épaisseur du matériau ablateur doit être inférieure à 1 μm.* a thickness determined as a function of the density of the material itself, compared with the density of the insulating material constituting the second layer of the target. In other words, if the ablating material 5 has a very high density relative to the density of the insulating material 4, the thickness of this ablating material must be small; on the contrary, if the ablating material 5 is not very dense compared to the density of the insulating material 4, then the thickness of this ablating material is relatively large. However, in any case, the thickness of the ablating material must be less than 1 μm.
Sur la figure 2, on a représenté schématiquement le générateur d'impact conforme à l'invention, dans lequel la cible est de type tricouche. Plus précisément, cette figure 2 montre le substrat 1 transparent au faisceau laser et la cible constituée de la couche de matériau ablateur 5, de la couche isolante 4 et du projectile 3. Dans le cas de la micro-source laser décrite dans la demande enregistrée sous le n°98 11558, qui délivre 300 mJ à une longueur d'onde de 1,06 μm, la cible peut être avantageusement constituée des couches suivantes : • projectile 3 en aluminium ou en cuivre avec une épaisseur comprise entre 2 et 20 μm ;In Figure 2, there is shown schematically the impact generator according to the invention, in which the target is of the type three-layer. More specifically, this FIG. 2 shows the substrate 1 transparent to the laser beam and the target consisting of the layer of ablating material 5, the insulating layer 4 and the projectile 3. In the case of the laser micro-source described in the registered application under No. 98 11558, which delivers 300 mJ at a wavelength of 1.06 μm, the target can advantageously consist of the following layers: • projectile 3 made of aluminum or copper with a thickness between 2 and 20 μm ;
• couche isolante 4 en alumine, avec une épaisseur inférieure à 1 μm ; et• insulating layer 4 of alumina, with a thickness of less than 1 μm; and
• matériau ablateur en arséniure d'indium ou en germanium, avec une épaisseur inférieure à 0,5 μm.• ablating material of indium arsenide or germanium, with a thickness of less than 0.5 μm.
Avec une telle cible, le générateur d'impact de l'invention atteint un rendement de l'ordre de 50% pour une longueur d'onde de 1,06 μm. With such a target, the impact generator of the invention achieves a yield of the order of 50% for a wavelength of 1.06 μm.

Claims

REVENDICATIONS
1. Générateur optique d'impact comportant une source laser émettant un faisceau laser et une fenêtre de confinement transparente au faisceau laser, à l'extrémité de laquelle est déposée une cible tricouche comprenant :1. Optical impact generator comprising a laser source emitting a laser beam and a confinement window transparent to the laser beam, at the end of which is deposited a three-layer target comprising:
- une première couche (5) assurant la génération d'un plasma,- a first layer (5) ensuring the generation of a plasma,
- une troisième couche (3) constituant un projectile, et- a third layer (3) constituting a projectile, and
- une seconde couche (4) assurant l'isolation de la troisième couche vis-à-vis du plasma, caractérisé en ce qu'il est embarquable, la source laser étant miniaturisée et en ce que la première couche de la cible est réalisée dans un matériau présentant :- a second layer (4) ensuring the isolation of the third layer from the plasma, characterized in that it is embeddable, the laser source being miniaturized and in that the first layer of the target is produced in a material having:
- une faible réflexion à la longueur d'onde du faisceau laser issu de la source laser miniaturisée, eta weak reflection at the wavelength of the laser beam coming from the miniaturized laser source, and
- une épaisseur inférieure à 1 μm, déterminée en fonction de la densité dudit matériau, comparée à la densité du matériau constituant la seconde couche de la cible.- a thickness of less than 1 μm, determined as a function of the density of said material, compared to the density of the material constituting the second layer of the target.
2. Générateur optique d'impact selon la revendication 1, caractérisé en ce que le matériau de la première couche de la cible est un semi-conducteur.2. Optical impact generator according to claim 1, characterized in that the material of the first layer of the target is a semiconductor.
3. Générateur optique d'impact selon la revendication 1 ou 2, caractérisé en ce que le matériau de la première couche de la cible est de l'arséniure d'indium, d'épaisseur inférieure à 0,5μm. 3. Optical impact generator according to claim 1 or 2, characterized in that the material of the first layer of the target is indium arsenide, of thickness less than 0.5 μm.
4. Générateur optique d'impact selon la revendication 1 ou 2, caractérisé en ce que le matériau de la première couche de la cible est du germanium, d'épaisseur inférieure à 0,5 μm. 4. Optical impact generator according to claim 1 or 2, characterized in that the material of the first layer of the target is germanium, of thickness less than 0.5 μm.
PCT/FR1999/002862 1998-11-23 1999-11-22 Optical impact generator capable of being incorporated WO2000031496A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99956104A EP1133668B1 (en) 1998-11-23 1999-11-22 Optical impact generator capable of being incorporated
DE69909825T DE69909825T2 (en) 1998-11-23 1999-11-22 PORTABLE, OPTICAL GENERATOR FOR GENERATING AN IMPACT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/14718 1998-11-23
FR9814718A FR2786324B1 (en) 1998-11-23 1998-11-23 ON-BOARD IMPACT OPTICAL GENERATOR

Publications (1)

Publication Number Publication Date
WO2000031496A1 true WO2000031496A1 (en) 2000-06-02

Family

ID=9533063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002862 WO2000031496A1 (en) 1998-11-23 1999-11-22 Optical impact generator capable of being incorporated

Country Status (5)

Country Link
EP (1) EP1133668B1 (en)
DE (1) DE69909825T2 (en)
ES (1) ES2204172T3 (en)
FR (1) FR2786324B1 (en)
WO (1) WO2000031496A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223170B (en) * 2014-05-30 2017-12-12 中国科学院空间科学与应用研究中心 A kind of device and method simulated micro space debris and hit induced discharge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708060A (en) * 1985-02-19 1987-11-24 The United States Of America As Represented By The United States Department Of Energy Semiconductor bridge (SCB) igniter
US5029528A (en) * 1990-04-02 1991-07-09 The United States Of America As Represented By The United States Department Of Energy Fiber optic mounted laser driven flyer plates
US5046423A (en) * 1990-04-02 1991-09-10 The United States Of America As Represented By The Department Of Energy Laser-driven flyer plate
FR2690239A1 (en) * 1992-04-17 1993-10-22 Davey Bickford Optical primer for plasma pyrotechnic generator - having readily vaporised metallic coating on end of fibre=optic
US5301612A (en) * 1993-05-28 1994-04-12 The United States Of America As Represented By The United States Department Of Energy Carbon-assisted flyer plates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708060A (en) * 1985-02-19 1987-11-24 The United States Of America As Represented By The United States Department Of Energy Semiconductor bridge (SCB) igniter
US5029528A (en) * 1990-04-02 1991-07-09 The United States Of America As Represented By The United States Department Of Energy Fiber optic mounted laser driven flyer plates
US5046423A (en) * 1990-04-02 1991-09-10 The United States Of America As Represented By The Department Of Energy Laser-driven flyer plate
FR2690239A1 (en) * 1992-04-17 1993-10-22 Davey Bickford Optical primer for plasma pyrotechnic generator - having readily vaporised metallic coating on end of fibre=optic
US5301612A (en) * 1993-05-28 1994-04-12 The United States Of America As Represented By The United States Department Of Energy Carbon-assisted flyer plates

Also Published As

Publication number Publication date
DE69909825D1 (en) 2003-08-28
FR2786324A1 (en) 2000-05-26
EP1133668B1 (en) 2003-07-23
ES2204172T3 (en) 2004-04-16
EP1133668A1 (en) 2001-09-19
DE69909825T2 (en) 2004-04-15
FR2786324B1 (en) 2000-12-15

Similar Documents

Publication Publication Date Title
EP0451047B1 (en) Environmentally protected integrated optical component and method of manufacturing the same
FR2525410A1 (en) PIEZO-ELECTRIC MOTOR
FR2834584A1 (en) SOLAR ENERGY CONCENTRATOR DEVICE FOR SPACE VEHICLE AND SOLAR GENERATOR PANEL
EP0559501B1 (en) Non-coated diamond laser window
WO2001080308A2 (en) Method for cutting out at least a thin layer in a substrate or ingot, in particular made of semiconductor material(s)
FR3052603A1 (en) LASER DEVICE AND METHOD FOR MANUFACTURING SAME
EP1875568A2 (en) Device for generating laser impulses amplified by optical fibres provided with photon layers
EP0251830B1 (en) Multiple beam lasertron
EP1133668B1 (en) Optical impact generator capable of being incorporated
EP0390663B1 (en) Deflection unit for high power laser beams
EP0751594B1 (en) Solid state microlaser, actively Q-switched by a micromodulator
FR2729797A1 (en) ACTIVE TRIP LASER AND MICROLASER
EP0812067B1 (en) Photoconductive electric switch
EP0298817B1 (en) Process and device for the production of electrons using a field coupling and the photoelectric effect
EP2153052A2 (en) Power unit with enhanced performance
EP1745531B1 (en) Inclined pump beam radiation emitter
EP3624255A1 (en) Assembly for guiding radio waves and antenna comprising such an assembly
FR2628201A1 (en) PIEZOELECTRIC MIRROR FOR LASER GYROMETER
EP1454394B1 (en) Micro-cavity light emitting device and method for making same
WO2024061934A1 (en) Fibre laser amplifier comprising a lateral pumping device
EP1383628B1 (en) Method for assembling elements by localised heating
WO2009138309A1 (en) Power single-mode laser device and amplification system including said laser device
FR2690239A1 (en) Optical primer for plasma pyrotechnic generator - having readily vaporised metallic coating on end of fibre=optic
FR2856472A1 (en) DEVICE FOR A PROPULSIVE BODY OF A PROJECTILE FOR A RAIL GUN
FR2754114A1 (en) SOLID MICROLASER HAVING ELECTRODETIC ELECTRODE SENSING WITH INDEPENDENT ELECTRODES, AND METHOD OF MAKING SAME

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999956104

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999956104

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999956104

Country of ref document: EP