WO2000028653A1 - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
WO2000028653A1
WO2000028653A1 PCT/JP1999/005284 JP9905284W WO0028653A1 WO 2000028653 A1 WO2000028653 A1 WO 2000028653A1 JP 9905284 W JP9905284 W JP 9905284W WO 0028653 A1 WO0028653 A1 WO 0028653A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
cooling
gas
thermoelectric conversion
hydrogen storage
Prior art date
Application number
PCT/JP1999/005284
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyoshi Tsuji
Original Assignee
Techno Bank Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Bank Co., Ltd. filed Critical Techno Bank Co., Ltd.
Priority to AU57608/99A priority Critical patent/AU5760899A/en
Publication of WO2000028653A1 publication Critical patent/WO2000028653A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the present invention relates to a heat energy conversion device having a heat conversion system for giving a heat energy to a medium to generate a gas and an electric conversion system for performing an electric conversion from a liquid fluid force by a gas pressure. It converts the fluid flow force due to gas pressure into electricity.
  • a typical power generation device using a high-temperature heat source so far is a power generation device that utilizes vaporization and expansion of a medium by a high-temperature heat source as seen in power generation of thermal power and nuclear power.
  • the power generation device and the like using the high-temperature heat source are characterized by having a large power and a large power generation, they have problems with respect to carbon dioxide and radioactivity.
  • power generators using medium temperature heat sources are geothermal power generators, etc., which use natural energy and have clean characteristics, and are provided as a power source as such.
  • a common feature of both high-temperature and medium-temperature heat generators is a turbine whose rotating system uses the gas flow force due to the vaporization and expansion of the medium.
  • a turbine which rotating system uses the gas flow force due to the vaporization and expansion of the medium.
  • thermoelectric conversion device capable of: Disclosure of the invention
  • the heat conversion system of the present invention comprises a gas generating means for generating a gas by a hydrogen storage alloy, and a hydrogen storage alloy, a thermoelectric conversion element, a heating / cooling device of the gas generating means, and a heating medium and a cooling medium.
  • Heating and cooling means including a medium circulation system, biston means for expanding and contracting bistons according to changes in the pressure of gas generated by the heating and cooling means, and electronic control means for controlling the volume of the piston.
  • the electric conversion system includes a plurality of heat conversion systems each having a heat conversion system inside the cylinder, and pump means for flowing the liquid inside the cylinder by gas pressure, and liquid flow force by the pump means. And a generator for electrical conversion.
  • the apparatus in this manner, in the heat conversion system, when the heating medium flows into the heating / cooling unit of the heating / cooling means, the hydrogen storage alloy is heated and a hydrogen release reaction occurs to release gaseous hydrogen. At the same time, the thermoelectric conversion element generates power by the Seebeck effect from the temperature difference between the unit and the external cooling water due to the temperature rise of the hydrogen storage alloy. Next, the gaseous hydrogen pressure inside the biston increases, and the accordion part of the biston is pushed and expanded, and the cooling water in the cylinder is pushed out by the gas pressure.
  • FIG. 1 is a cross-sectional view of an embodiment of the present invention.
  • This embodiment includes a heat conversion system for performing hydrogenation and hydrogen release of a hydrogen storage alloy inside a piston, control of a reaction, and thermoelectric conversion. .
  • FIG. 2 is an external view of an embodiment of the present invention. This embodiment includes a heating medium circulation pipe and a cooling water pipe. BEST MODE FOR CARRYING OUT THE INVENTION
  • thermoelectric conversion elements 10 and 11 are bonded together on the outer surface of each hydrogen storage alloy, and the outer surface of the thermoelectric conversion element and the inner surface of the unit case 18 are in close contact to form a sealed unit. Make up the interior.
  • thermoelectric conversion element In the case of a unit that does not use a thermoelectric conversion element, a structure in which a hydrogen storage alloy is bonded to both surfaces of a heating / cooling device, or a laminated structure in which a heating / cooling device and a hydrogen storage alloy are alternately bonded is adopted.
  • a heating medium circulating pipe 28 and a cooling medium circulating pipe, which communicate with the inside of the heating / cooling unit 9 inside the unit, are connected to one of the two sides of the unit case 18 via a solenoid valve.
  • a heating medium circulation pipe 29 and a cooling medium circulation pipe which are also connected to the inside of the heating / cooling unit 9 are connected to each other via a solenoid valve by switching to a joint portion.
  • a switching electromagnetic valve is controlled by the controller 14, so that the heating medium flows in and circulates from the outside by the external pump pressure in the heating stroke, and the cooling water in the cylinder 1 in the cooling stroke.
  • the cooling medium to be cooled is supplied and circulated by the internal pump pressure.
  • the unit case 18 is provided so as to be open so that the outer peripheral surface thereof is always in contact with the cooling water 19, so that a cooling effect can be obtained. There is no need to touch.
  • the hydrogen distribution pipe 17 is provided so as to communicate between the inside of the unit case and the inside of the biston, and the flow of the hydrogen gas by the heating and cooling means is free.
  • the reaction rate of the thin plate-shaped hydrogen storage alloy can be increased, and at the same time, the heat propagation to the thermoelectric conversion element also becomes faster, and the heating medium is heated during the heating process. At the same time as the inflow, power generation is started due to the net effect, and power for control can be supplied.
  • the method of producing this thin plate-shaped hydrogen storage alloy is common to the production of any combination of alloys.However, the alloy is made amorphous and pulverized, or the alloy is absorbed with hydrogen and subjected to an initial pulverization step to form particles. A metal coating such as copper (Cu) with a thickness of about 1 ⁇ is applied to the powder having a diameter adjusted to about 10 to 20 / m by wet electroless plating. Next, compression molding into a thin plate according to the outer dimensions of the thermoelectric conversion element and solidification are performed. Mixing of amorphous powder and metal-coated powder, or mixing of either with copper powder and solidification may be performed. .
  • Cu copper
  • the bistone means is a hollow flat donut-shaped thin polymer material, each of which is formed by opening the inner periphery so that the cross section becomes U-shaped, and a metal ring 5 for reinforcement is provided on the inner bottom of the U-shaped. It is embedded.
  • the accordion portion 4 is formed by joining the ends of the U-shaped outer surfaces of the plurality of thin plate members via the thin members.
  • both ends of the accordion portion are adhered to the biston head 8 on one side and the sealing ring 7 on the other side, and the interior of the biston is provided in a closed state.
  • the intermittent current of the solenoid valve is electronically controlled by the controller 14. This is controlled by the data set in advance and the temperature, pressure, and position detection sensors arranged inside to enable automatic operation.
  • each cylinder 1 is provided with a piston inside, and cooling water pipes 24, 25 each having a one-way valve are provided at the upper and lower parts.
  • the multiple cylinders identified to obtain the required output for power generation consist of cooling water pipes connected in parallel and connected to each other, and the cooling water is combined in a one-way flow and linked with the generator It is supplied to the rotating system.
  • cooling water when storing cooling water for power generation, the cooling water is pushed up to the required height and pooled, and when necessary, water is dropped into a rotating system that works with the generator to generate power.
  • heating medium circulation pipes 28 and 29 are provided so as to be connected to the heating / cooling unit of the internal unit, and the heating medium is supplied and circulated into the heating / cooling unit by an external pump pressure.
  • Heat sources include inexhaustible solar heat and geothermal heat, as well as waste heat from factories and incineration heat.
  • thermal and nuclear power plants have the advantage of reducing carbon dioxide and improving environmental conservation by enabling secondary power generation using waste heat in the middle temperature range. Therefore, it can be applied to the wide area industrial field.

Abstract

A thermoelectric conversion device, characterized in that a thermal conversion system comprises a gas producing means for producing gas by a hydrogen absorbing alloy, a heating/cooling means forming a unit consisting of the hydrogen absorbing alloy of the gas producing means, a thermoelectric conversion element, and a heater/cooler and including circulation systems for a heating medium and a cooling medium, a piston means for extending and contracting a piston in response to a change in the gas pressure produced by the heating/cooling means, and an electronic control means for controlling the volume of the piston; and an electric conversion system comprises a plurality of cylinders having the thermal conversion systems contained therein, a pump means for forcing the fluids in the cylinders to flow under gas expansion pressure, and a generator for electric conversion from the liquid flow by the pump means.

Description

明細書  Specification
熱電変換装置 技術分野 Thermoelectric converter Technical field
この発明は、 熱エネルギーを媒体に与えて気体を発生させる熱変換系と、 気体圧 力による液体流動力から電気変換する電気変換系を有する熱エネルギーの変換装 置に係り、 特に低温熱源での気体圧力による液体流動力を電気変換するものである。 背景技術  The present invention relates to a heat energy conversion device having a heat conversion system for giving a heat energy to a medium to generate a gas and an electric conversion system for performing an electric conversion from a liquid fluid force by a gas pressure. It converts the fluid flow force due to gas pressure into electricity. Background art
これまでの代表的な高温熱源による発電装置は、 火力、 原子力等の発電で見られ るように高温熱源による媒体の気化膨張を利用した発電装置が代表的である。  A typical power generation device using a high-temperature heat source so far is a power generation device that utilizes vaporization and expansion of a medium by a high-temperature heat source as seen in power generation of thermal power and nuclear power.
前記高温熱源による発電装置等は、 パワーが大きく大発電力が得られる特徴では あるが、 反面二酸化炭素や放射能等に関する課題がある。  Although the power generation device and the like using the high-temperature heat source are characterized by having a large power and a large power generation, they have problems with respect to carbon dioxide and radioactivity.
一方、 中温熱源による発電装置は、 地熱発電装置などであり、 自然エネルギー利 用でクリーンな特徴があり、 それなりに電源として提供されている。  On the other hand, power generators using medium temperature heat sources are geothermal power generators, etc., which use natural energy and have clean characteristics, and are provided as a power source as such.
これらの高温熱源及び中温熱源の両発電装置ともに共通しているのは、 回転系が 媒体の気化膨張による気体流動力を利用するタービンであり、 これを、 例えば自然 エネルギーの太陽光や風力で得た熱を蓄熱して利用する場合や、 工場や燃料電池等 からの排熱を利用する場合などでは、 低温熱源なために気体膨張度が低いことで気 体流動力も小さくタービンを駆動するには効率が悪い。  A common feature of both high-temperature and medium-temperature heat generators is a turbine whose rotating system uses the gas flow force due to the vaporization and expansion of the medium. In cases where the obtained heat is stored and used, or when waste heat from factories, fuel cells, etc. is used, it is necessary to use a low-temperature heat source, which has a low gas expansion degree and therefore has a low gas fluidity and thus drives a turbine. Is inefficient.
低温熱源による気体膨張力でタービンを回転駆動させる改善策として、 熱媒体に 大量のアンモニアを用いる大規模な温度差発電が実証されている。 これは、 海洋上 において、 大量の熱媒体を海面寄りの海水により気化膨張させタービンを回転させ たのち、 海底寄りの海水により熱媒体を凝縮させるものである。  Large-scale temperature difference power generation using a large amount of ammonia as a heat medium has been demonstrated as an improvement measure to rotate the turbine with the gas expansion force of a low-temperature heat source. In the ocean, a large amount of heat medium is vaporized and expanded by seawater near the sea surface, the turbine is rotated, and then the heat medium is condensed by seawater near the seabed.
しかし、 この方法でも、 設置場所が制限され、 装置は大きく効率も悪いため、 改 善の余地があった。 - 本発明は、 上述の点を考慮してなされたもので、 これまで発電には不向きであつ た低温熱源の熱エネルギーを水素吸蔵合金に与え、 ビス トン内の気体圧力で液体を 流動させ、 その流体摩擦の大きな液体流動力で回転系を回転させ電気変換をするこ とができる熱電変換装置を目的とする。 発明の開示 However, even with this method, the installation location is limited, and the equipment is large and inefficient, so there is room for improvement. -The present invention has been made in consideration of the above points, and provides heat energy of a low-temperature heat source, which has been unsuitable for power generation, to a hydrogen storage alloy so that a liquid is caused to flow by a gas pressure in bistons. The rotating system is rotated by the fluid flow force with large fluid friction to perform electrical conversion. A thermoelectric conversion device capable of: Disclosure of the invention
本発明の熱変換系は、 水素吸蔵合金により気体を発生させる気体発生手段と、 前 記気体発生手段の水素吸蔵合金、 熱電変換素子、 加熱冷却器、 でュニッ トを構成し、 加熱媒体および冷却媒体の循環系を含む加熱冷却手段と、 前記加熱冷却手段により 発生する気体の圧力の変化に応じてビス トンを伸縮させるビス トン手段と、前記ピ ス トンの容積を制御する電子制御手段とをそなえ、 また、 電気変換系は、 熱変換系 をシリンダ一の内部に備えたものを複数で構成し、 シリンダー内部の液体を気体圧 力で流動させるポンプ手段と、 前記ポンプ手段による液体流動力から電気変換をす る発電機と、 を備える。  The heat conversion system of the present invention comprises a gas generating means for generating a gas by a hydrogen storage alloy, and a hydrogen storage alloy, a thermoelectric conversion element, a heating / cooling device of the gas generating means, and a heating medium and a cooling medium. Heating and cooling means including a medium circulation system, biston means for expanding and contracting bistons according to changes in the pressure of gas generated by the heating and cooling means, and electronic control means for controlling the volume of the piston. In addition, the electric conversion system includes a plurality of heat conversion systems each having a heat conversion system inside the cylinder, and pump means for flowing the liquid inside the cylinder by gas pressure, and liquid flow force by the pump means. And a generator for electrical conversion.
このよ うに装置を構成したことで、 熱変換系において、 加熱冷却手段の加熱冷却 器内へ加熱媒体を流入させると、水素吸蔵合金は加熱され水素放出反応が起こり気 体水素を放出する。 同時に熱電変換素子が水素吸蔵合金の温度上昇によりュニッ ト 外部の冷却水との温度差からゼーベック効果で発電をする。 次いでビス トン内の気 体水素圧も高まり ビス トンのアコーディオン部を押し広げ、 シリンダー内の冷却水 を気体圧力で外部に押し出す。 一方、 加熱冷却手段の加熱冷却器内へ加熱媒体から 冷却媒体へ切り替えて流入させると、 水素吸蔵合金が冷却され水素化反応が起こり 気体水素が水素吸蔵合金内に吸蔵される。 次いでビス トン内の気体水素圧が下がり、 ピス トンのアコーディオン部が縮み、 シリンダー内へ冷却水を流入させる。 また、 このポンプ手段からの液体流動力で発電機が駆動され発電を行う。 図面の簡単な説明  By configuring the apparatus in this manner, in the heat conversion system, when the heating medium flows into the heating / cooling unit of the heating / cooling means, the hydrogen storage alloy is heated and a hydrogen release reaction occurs to release gaseous hydrogen. At the same time, the thermoelectric conversion element generates power by the Seebeck effect from the temperature difference between the unit and the external cooling water due to the temperature rise of the hydrogen storage alloy. Next, the gaseous hydrogen pressure inside the biston increases, and the accordion part of the biston is pushed and expanded, and the cooling water in the cylinder is pushed out by the gas pressure. On the other hand, when the heating medium is switched from the heating medium to the cooling medium into the heating / cooling unit of the heating / cooling means, the hydrogen storage alloy is cooled and a hydrogenation reaction occurs, and gaseous hydrogen is stored in the hydrogen storage alloy. Next, the gaseous hydrogen pressure in the biston decreases, and the accordion part of the piston shrinks, causing cooling water to flow into the cylinder. Further, the generator is driven by the liquid fluid force from the pump means to generate power. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施例の断面図であって、 この実施例はピス トン内部の水素 吸蔵合金の水素化及び水素放出と、反応の制御および熱電変換をする熱変換系をそ なえる。  FIG. 1 is a cross-sectional view of an embodiment of the present invention. This embodiment includes a heat conversion system for performing hydrogenation and hydrogen release of a hydrogen storage alloy inside a piston, control of a reaction, and thermoelectric conversion. .
図 2は、 本発明の実施例における外観図であって、 この実施例は、 加熱媒体循環 パイプと冷却水パイプをそなえて構成する。 発明を実施するための最良の形態 FIG. 2 is an external view of an embodiment of the present invention. This embodiment includes a heating medium circulation pipe and a cooling water pipe. BEST MODE FOR CARRYING OUT THE INVENTION
図 1の実施例によって説明すると、 内部に補強材を設けた中空な加熱冷却器 9の 両面に必要な水素量から割り出された復数枚の薄板状の水素吸蔵合金 1 2、 1 3を 敷き詰めて張り合わせ、 さらに個々の水素吸蔵合金の外面には熱電変換素子 1 0、 1 1を張り合わせて、 その熱電変換素子の外側面とュニッ トケース 1 8の内面とが 密着されて、 密閉なユニッ ト内部を構成している。  Explaining with reference to the embodiment of FIG. 1, a plurality of thin plate-shaped hydrogen storage alloys 12 and 13 calculated from the required amount of hydrogen on both surfaces of a hollow heating and cooling device 9 provided with a reinforcing material therein are used. The thermoelectric conversion elements 10 and 11 are bonded together on the outer surface of each hydrogen storage alloy, and the outer surface of the thermoelectric conversion element and the inner surface of the unit case 18 are in close contact to form a sealed unit. Make up the interior.
また、 熱電変換素子を使用しないュニッ 卜の場合は、 加熱冷却器の両面に水素吸 蔵合金を張り合わせた構造、 または、 加熱冷却器と水素吸蔵合金を交互に張り合わ せた積層構造とする。  In the case of a unit that does not use a thermoelectric conversion element, a structure in which a hydrogen storage alloy is bonded to both surfaces of a heating / cooling device, or a laminated structure in which a heating / cooling device and a hydrogen storage alloy are alternately bonded is adopted.
また、 ュニッ トケース 1 8の両側の一方には、 ュニッ ト内部の加熱冷却器 9の内 部と連通する加熱媒体循環パイプ 2 8 と冷却媒体循環パイプが接合部分に切り替 え電磁弁を介して接続連通され、 一方には、 同様に加熱冷却器 9の内部と連通する 加熱媒体循環パイプ 2 9と冷却媒体循環パイプが接合部分に切り替え電磁弁を介 して接続連通されている。  A heating medium circulating pipe 28 and a cooling medium circulating pipe, which communicate with the inside of the heating / cooling unit 9 inside the unit, are connected to one of the two sides of the unit case 18 via a solenoid valve. On the other hand, a heating medium circulation pipe 29 and a cooling medium circulation pipe which are also connected to the inside of the heating / cooling unit 9 are connected to each other via a solenoid valve by switching to a joint portion.
加熱冷却器 9内には、切り替え電磁弁がコントローラー 1 4により制御されるこ とによって、加熱行程では外部ポンプ圧により加熱媒体を外部より流入循環させ、 また、 冷却行程ではシリンダ 1内部の冷却水に冷却される冷却媒体が内部ポンプ圧 で流入循環される。  In the heating / cooling unit 9, a switching electromagnetic valve is controlled by the controller 14, so that the heating medium flows in and circulates from the outside by the external pump pressure in the heating stroke, and the cooling water in the cylinder 1 in the cooling stroke. The cooling medium to be cooled is supplied and circulated by the internal pump pressure.
また、 ュニッ トケース 1 8は、 外周面が冷却水 1 9と常時接するように開放して 設けられ、 冷却効果が得られるようにされているが、 熱電変換素子を組み込まない 場合は、 冷却水に接する必要性はない。  In addition, the unit case 18 is provided so as to be open so that the outer peripheral surface thereof is always in contact with the cooling water 19, so that a cooling effect can be obtained. There is no need to touch.
また、 水素流通パイプ 1 7は、 ュニッ トケース内部とビス トン内部を連通して設 けられ、 加熱冷却手段による水素気体の流動が自由にされている。  Further, the hydrogen distribution pipe 17 is provided so as to communicate between the inside of the unit case and the inside of the biston, and the flow of the hydrogen gas by the heating and cooling means is free.
ユニッ トがこのように構成されたことで、 薄板状の水素吸蔵合金の反応速度を早 めることができ、 また、 同時に熱電変換素子への熱伝播も早くなり、 加熱行程で加 熱媒体の流入と同時にゼ一^ ^ック効果により発電が開始され制御用の電源供給も できる。  With this configuration of the unit, the reaction rate of the thin plate-shaped hydrogen storage alloy can be increased, and at the same time, the heat propagation to the thermoelectric conversion element also becomes faster, and the heating medium is heated during the heating process. At the same time as the inflow, power generation is started due to the net effect, and power for control can be supplied.
水素吸蔵合金は、 使用目的によって組み合わせが 1 0 0種ほどあるが、 本装置で は常圧 ·常水温域で水素化及び放出の反応が起きやすいカルシウム,ニッケル系の 合金 (C a N i M m A l ) を使用した。 There are about 100 combinations of hydrogen storage alloys depending on the purpose of use, but this equipment uses calcium and nickel-based alloys, which easily undergo hydrogenation and release reactions at normal pressure and normal water temperature. An alloy (CaNiMmAl) was used.
この薄い板状の水素吸蔵合金の製造方法は、 いかなる組み合わせの合金の製造に も共通であるが、 合金をアモルファス化して粉砕したもの、 または、 合金に水素を 吸収させ初期粉砕工程を経て粒子の径が約 1 0〜 2 0 / mに調整した粉末のもの に、 湿式の無電解メツキによって、 約 1 μ ιηの厚さの銅 (C u ) などの金属被覆を 施す。 次いで、 熱電変換素子の外寸に合わせて薄板状に圧縮成型して固形化するが、 アモルファス粉末および金属被覆の粉末の混合、 または、 どちらかと銅粉を混合し て固形化してもよレ、。  The method of producing this thin plate-shaped hydrogen storage alloy is common to the production of any combination of alloys.However, the alloy is made amorphous and pulverized, or the alloy is absorbed with hydrogen and subjected to an initial pulverization step to form particles. A metal coating such as copper (Cu) with a thickness of about 1 μιη is applied to the powder having a diameter adjusted to about 10 to 20 / m by wet electroless plating. Next, compression molding into a thin plate according to the outer dimensions of the thermoelectric conversion element and solidification are performed. Mixing of amorphous powder and metal-coated powder, or mixing of either with copper powder and solidification may be performed. .
ビス トン手段は、 中空な平たいドーナツ状の高分子薄材で断面が U字になるよう に内周部を開放して個々が形成され、 U字の内底に補強用の金属のリング 5が埋め 込まれている。 また、 複数枚の薄板材は、 U字の外面の端どう しが薄材を介して接 着されてアコーディオン部 4が構成されている。  The bistone means is a hollow flat donut-shaped thin polymer material, each of which is formed by opening the inner periphery so that the cross section becomes U-shaped, and a metal ring 5 for reinforcement is provided on the inner bottom of the U-shaped. It is embedded. The accordion portion 4 is formed by joining the ends of the U-shaped outer surfaces of the plurality of thin plate members via the thin members.
また、 アコーディオン部の両端は一方をビス トンへッ ド 8と、 一方をシールリン グ 7とに接着され、 ビス トン内部が密閉にして設けられている。  Also, both ends of the accordion portion are adhered to the biston head 8 on one side and the sealing ring 7 on the other side, and the interior of the biston is provided in a closed state.
ビス トンがこのように構成されたことで、加熱冷却手段による水素圧の圧力の変 化に応じてビス トンの伸縮が容易にできる。  With this configuration of the bistone, it is possible to easily expand and contract the biston according to the change in the hydrogen pressure by the heating and cooling means.
電子制御手段は、 コン トローラー 1 4により、 電磁弁の電流の断続が電子制御さ れている。 これは、 あらかじめ設定されたデータと、 内部に配置された温度、 圧力、 位置検知のセンサーにより、 自動運転ができるように制御をしている。  In the electronic control means, the intermittent current of the solenoid valve is electronically controlled by the controller 14. This is controlled by the data set in advance and the temperature, pressure, and position detection sensors arranged inside to enable automatic operation.
図 2の実施例によって電気変換系を説明すると、 個々のシリ ンダー 1は、 内部 にピス トンを備えて、 上下部にはそれぞれ一方向弁を備えた冷却水パイプ 2 4、 2 5が設けられ、発電量に必要な出力を得るために割り出された複数のシリンダ一は、 冷却水パイプどうしを並列に接合連通して構成し、 冷却水は一方向流動で合流され て発電機と連動する回転系へ供給されている。  Explaining the electric conversion system according to the embodiment of FIG. 2, each cylinder 1 is provided with a piston inside, and cooling water pipes 24, 25 each having a one-way valve are provided at the upper and lower parts. The multiple cylinders identified to obtain the required output for power generation consist of cooling water pipes connected in parallel and connected to each other, and the cooling water is combined in a one-way flow and linked with the generator It is supplied to the rotating system.
また、 発電用に冷却水を備蓄する場合は、 必要な高さまで冷却水を押し上げてプ ールさせ、 必要時に発電機と連動する回転系へ落水させて発電をする。  In addition, when storing cooling water for power generation, the cooling water is pushed up to the required height and pooled, and when necessary, water is dropped into a rotating system that works with the generator to generate power.
また、 内部のユニッ トの加熱冷却器と接続連通する加熱媒体循環パイプ 2 8、 2 9が設けられて、外部ポンプ圧によって加熱媒体が加熱冷却器内へ供給及び循環が されている。 産業上の利用可能性 Further, heating medium circulation pipes 28 and 29 are provided so as to be connected to the heating / cooling unit of the internal unit, and the heating medium is supplied and circulated into the heating / cooling unit by an external pump pressure. Industrial applicability
水素吸蔵合金によるため機構が簡単で、 騒音もない。 また、 熱源には、 無尽蔵な 太陽熱や地熱のほか、 工場の排熱、 ごみ焼却熱等が利用できる。 また、 火力や原子 力発電プラントにおいては、 中温域の廃熱を利用して二次発電も可能とすることで 二酸化炭素を削減し環境保全にもよいという利点がある。 このため広域産業分野に 適用できる。  The mechanism is simple and no noise due to the hydrogen storage alloy. Heat sources include inexhaustible solar heat and geothermal heat, as well as waste heat from factories and incineration heat. In addition, thermal and nuclear power plants have the advantage of reducing carbon dioxide and improving environmental conservation by enabling secondary power generation using waste heat in the middle temperature range. Therefore, it can be applied to the wide area industrial field.

Claims

請求の範囲 The scope of the claims
1 . 変換系は、 水素吸蔵合金により気体を発生させる気体発生手段と、 1. The conversion system includes gas generating means for generating gas by using a hydrogen storage alloy,
前記気体発生手段の水素吸蔵合金、 熱電変換素子、 加熱冷却器、 でュニッ トを構 成し、 加熱媒体および冷却媒体の循環系を含む加熱冷却手段と、  A heating / cooling means comprising a unit with the hydrogen storage alloy of the gas generating means, a thermoelectric conversion element, a heating / cooling device, and a heating medium and a circulation system of the cooling medium;
前記加熱冷却手段により発生する気体の圧力の変化に応じてビス トンを伸縮さ せるビス トン手段と、  Biston means for expanding and contracting bistons according to a change in pressure of gas generated by the heating and cooling means,
前記ビス トンの容積を制御する電子制御手段とをそなえ、  Electronic control means for controlling the volume of the bistone;
また、 電気変換系は、 Also, the electrical conversion system
熱変換系をシリンダ一の内部に備えたものを複数で構成し、 シリンダー内部の液 体を気体圧力で流動させるポンプ手段と、  A pump means for providing a heat conversion system inside the cylinder and comprising a plurality of pumps for flowing the liquid inside the cylinder by gas pressure;
前記ポンプ手段による液体流動力から電気変換をする発電機と、  A generator that performs electrical conversion from liquid fluid force by the pump means,
を備えたことを特徴とする熱電変換装置。 A thermoelectric conversion device comprising:
2 . 加熱冷却手段のュニッ トは、 加熱冷却器の両面に薄板状の水素吸蔵合金を張り 合わせ、 さらに両水素吸蔵合金の外面に熱電変換素子を張り合わせる積層構造であ ることを特徴とする請求の範囲第 1項記載の熱電変換装置。  2. The unit of the heating and cooling means has a laminated structure in which a thin plate-shaped hydrogen storage alloy is attached to both sides of the heating and cooling device, and a thermoelectric conversion element is attached to the outer surfaces of both hydrogen storage alloys. The thermoelectric conversion device according to claim 1.
PCT/JP1999/005284 1998-11-11 1999-09-28 Thermoelectric conversion device WO2000028653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57608/99A AU5760899A (en) 1998-11-11 1999-09-28 Thermoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33505698 1998-11-11
JP10/335056 1998-11-11

Publications (1)

Publication Number Publication Date
WO2000028653A1 true WO2000028653A1 (en) 2000-05-18

Family

ID=18284266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005284 WO2000028653A1 (en) 1998-11-11 1999-09-28 Thermoelectric conversion device

Country Status (2)

Country Link
AU (1) AU5760899A (en)
WO (1) WO2000028653A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012739A (en) * 2004-06-29 2006-01-12 Sinanen Co Ltd Fuel cell exhaust heat utilization system capable of effectively utilizing exhaust heat of fuel cell and building
CN106930861A (en) * 2017-04-25 2017-07-07 吉林大学 A kind of piston temperature difference electricity generation device for forcing to cool down

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463214A (en) * 1982-03-16 1984-07-31 Atlantic Richfield Company Thermoelectric generator apparatus and operation method
JPS61108831A (en) * 1984-11-01 1986-05-27 Japan Steel Works Ltd:The Power generating method by means of metallic hydride
JPS63111268A (en) * 1986-10-29 1988-05-16 Mazda Motor Corp Exhaust heat utilizing device for engine
JPH01199008A (en) * 1988-01-30 1989-08-10 Nippon Steel Corp Actuator using hydrogen occlusion alloy and using method thereof
JPH05231242A (en) * 1992-02-17 1993-09-07 Isuzu Motors Ltd Hydrogen storage alloy having compound thermoelectric element
JPH0826700A (en) * 1994-07-21 1996-01-30 Matsushita Electric Ind Co Ltd Raising and lowering device
JPH08240106A (en) * 1995-03-03 1996-09-17 Kansai Electric Power Co Inc:The Power generation device utilizing hydrogen storage alloy
JPH09256425A (en) * 1996-03-21 1997-09-30 Japan Steel Works Ltd:The Water supply device
JPH1140863A (en) * 1997-07-22 1999-02-12 Nissan Motor Co Ltd Thermoelectric generator
JPH1168176A (en) * 1997-08-08 1999-03-09 Agency Of Ind Science & Technol Thermoelectric conversion device
US5891097A (en) * 1994-08-12 1999-04-06 Japan Storage Battery Co., Ltd. Electrochemical fluid delivery device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463214A (en) * 1982-03-16 1984-07-31 Atlantic Richfield Company Thermoelectric generator apparatus and operation method
JPS61108831A (en) * 1984-11-01 1986-05-27 Japan Steel Works Ltd:The Power generating method by means of metallic hydride
JPS63111268A (en) * 1986-10-29 1988-05-16 Mazda Motor Corp Exhaust heat utilizing device for engine
JPH01199008A (en) * 1988-01-30 1989-08-10 Nippon Steel Corp Actuator using hydrogen occlusion alloy and using method thereof
JPH05231242A (en) * 1992-02-17 1993-09-07 Isuzu Motors Ltd Hydrogen storage alloy having compound thermoelectric element
JPH0826700A (en) * 1994-07-21 1996-01-30 Matsushita Electric Ind Co Ltd Raising and lowering device
US5891097A (en) * 1994-08-12 1999-04-06 Japan Storage Battery Co., Ltd. Electrochemical fluid delivery device
JPH08240106A (en) * 1995-03-03 1996-09-17 Kansai Electric Power Co Inc:The Power generation device utilizing hydrogen storage alloy
JPH09256425A (en) * 1996-03-21 1997-09-30 Japan Steel Works Ltd:The Water supply device
JPH1140863A (en) * 1997-07-22 1999-02-12 Nissan Motor Co Ltd Thermoelectric generator
JPH1168176A (en) * 1997-08-08 1999-03-09 Agency Of Ind Science & Technol Thermoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012739A (en) * 2004-06-29 2006-01-12 Sinanen Co Ltd Fuel cell exhaust heat utilization system capable of effectively utilizing exhaust heat of fuel cell and building
CN106930861A (en) * 2017-04-25 2017-07-07 吉林大学 A kind of piston temperature difference electricity generation device for forcing to cool down

Also Published As

Publication number Publication date
AU5760899A (en) 2000-05-29

Similar Documents

Publication Publication Date Title
US4884953A (en) Solar powered pump with electrical generator
US10519923B2 (en) Near isothermal combined compressed gas/pumped-hydro electricity storage with waste heat recovery capabilities
Raja et al. Novel parabolic trough solar collector and solar photovoltaic/thermal hybrid system for multi-generational systems
Venkataramani et al. Experimental investigation on small capacity compressed air energy storage towards efficient utilization of renewable sources
CN102242698A (en) Distributed-type heat and power cogeneration set capable of accumulating energy and heat
CN106104082B (en) Power conversion system is directly driven for the wind turbine suitable for energy stores
Dwivedi et al. Importance of Phase Change Material (PCM) in solar thermal applications: A review
JP5878132B2 (en) Energy converter using Stirling cycle
CN102242697A (en) Distributed-type non-tracking solar power generation and poly-generation system
Mendecka et al. Evaluating the potential of phase-change induced volumetric expansion in thermal energy storage media for passive solar tracking in high-temperature solar energy systems
WO2000028653A1 (en) Thermoelectric conversion device
JP2021032252A (en) Power generation device, system, and method
JPWO2002068882A1 (en) Thermoelectric conversion and cooling / heating / refrigeration equipment using hydrogen storage alloy unit
KR102084796B1 (en) A system for saving and generating the electric power using supercritical carbon dioxide
Lloyd A low temperature differential Stirling engine for power generation
Al‐Madhhachi et al. Thermal, environmental, and cost analysis of effective solar portable vaccine refrigerator by COMSOL Multiphysics
CN112228853B (en) Porous medium heat transfer and storage device, heat transfer and storage power generation system and energy storage power station
CN113482889A (en) Underwater isobaric compressed air hybrid energy storage system and method
Haggag et al. Experimental study of solar thermal energy storage in sand system
WO2016078566A1 (en) Supercritical fluid power system and control method therefor
US11094956B2 (en) High pressure hydrogen electrical power generator
JP2003336573A (en) Novel heat cycle and composite power generation system and device thereof
JP2009052879A (en) Electric power storage system
Alqahtani Performance assessment and optimization of concentrated solar power plants with paired metal hydride-based thermochemical energy storage
JPS61108831A (en) Power generating method by means of metallic hydride

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase