WO2000020518A1 - Concentrated stripper composition and method - Google Patents

Concentrated stripper composition and method Download PDF

Info

Publication number
WO2000020518A1
WO2000020518A1 PCT/US1999/021764 US9921764W WO0020518A1 WO 2000020518 A1 WO2000020518 A1 WO 2000020518A1 US 9921764 W US9921764 W US 9921764W WO 0020518 A1 WO0020518 A1 WO 0020518A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
water
accordance
solvent mixture
alkyl
Prior art date
Application number
PCT/US1999/021764
Other languages
French (fr)
Inventor
Paul M. Hernandez
Lance D. Brown
Original Assignee
S.C. Johnson Commercial Markets, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.C. Johnson Commercial Markets, Inc. filed Critical S.C. Johnson Commercial Markets, Inc.
Priority to AT99954639T priority Critical patent/ATE254650T1/en
Priority to NZ510701A priority patent/NZ510701A/en
Priority to EP99954639A priority patent/EP1119591B1/en
Priority to BRPI9914188-4A priority patent/BR9914188B1/en
Priority to JP2000574622A priority patent/JP4606585B2/en
Priority to AU10941/00A priority patent/AU756614B2/en
Priority to CA002345692A priority patent/CA2345692C/en
Priority to DE69912976T priority patent/DE69912976T2/en
Publication of WO2000020518A1 publication Critical patent/WO2000020518A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D9/00Chemical paint or ink removers
    • C09D9/005Chemical paint or ink removers containing organic solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D9/00Chemical paint or ink removers
    • C09D9/04Chemical paint or ink removers with surface-active agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/044Hydroxides or bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • C11D3/2034Monohydric alcohols aromatic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2068Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines

Definitions

  • This invention relates to compositions and methods of using compositions to strip or remove coatings such as typical floor finishes and cleaning of such surfaces. More particularly, it relates to a stripping composition which can be diluted and still provide efficient stripping.
  • U.S. Patent 5,637,559 from 3M discloses a floor stripping composition which includes a phenyl substituted alkyl alcohol which preferably is benzyl alcohol having a water solubility of at least 0.1 weight percent, a coupler consisting of a fatty acid of C8 in chain length and water. The coupler is at least 3.0 times the amount necessary to completely solubilize the phenyl substituted alkyl alcohol in the water.
  • Preferred couplers are the salt of a mono functional water- soluble amine and an organic acid comprising at least one water-insoluble organic acid having from 6-10 carbon atoms.
  • Patents 5,080,831; 5,080,822 and 5,158,710 from Buckeye International, Inc. teach the use of sparingly water soluble solvents when used with a hydrotrope to form a aqueous solution or microemulsion that can used as a stripper.
  • the solvents, such as benzyl alcohol, cited in these patents have a water solubility ranging from 0.2 to approximately 6 weight percent in water.
  • the solubilizing agent is present in an amount not exceeding approximately twofold that required to completely solubilize the organic solvent.
  • Japanese Patent JP 9689885 assigned to S.C. Johnson Inc.
  • compositions containing at least two specific solvents from the select class of slightly water-soluble organic solvents and a specific coupler, wherein the coupler is present at greater than 2.0 times that required to completely solubilize the solvent are much more efficient in removing a variety of floor finishes at higher dilutions than prior art compositions.
  • the other unique property of the inventive composition is the ability to remove these floor finishes of higher dilutions than the prior art compositions and the ability to remain stable in the concentrate as well as in dilution.
  • Another surprising attribute that has been uncovered is the ability of these compositions to be diluted in hard water and still being stable and effacaeous.
  • the objects of the invention therefore are: a. Providing an improved floor coating stripper composition. b. Providing an improved stripper composition of the foregoing kind which is compatible with water of various compositions. c. Providing an improved stripper composition of the foregoing kind which can be diluted in the 1:30-1:50 range and still be effective. d. Providing an improved stripper of the foregoing kind which can be dispensed with automated dispensing systems.
  • compositions of this invention which are suitable for stripping of various floor finish coatings, such as acrylic, urethane and epoxy polymer base, from a variety of surfaces, such as vinyl composition, terrazzo, marble, linoleum, concrete and the like as well as an effective cleaner/degreaser after being diluted with water from 1 part of said compositions to 50 parts of water and still remove the finish.
  • the compositions may be formulated comprising: a.
  • a solvent mixture composed of a phenyl substituted alkyl alcohol and about an equal amount of an alkyl or aryl glycol ether or an alkyl or aromatic alcohol, the solvent mixture effective in removing at least 20% of a standard acrylic floor sealer/finish from a composition vinyl tile in fewer than 2.5 minutes;
  • a coupler composed of a salt formed from a water soluble organic amine and an acid comprising at least one C7-C18 ethoxylated anionic surfactant, the coupler and the solvent mixture present in a weight ratio of about.1:1.2 to about 1:2.0 wherein the amount of the coupler is at least 2.0 times the amount necessary to completely solubilize the solvent mixture; and c. optionally water.
  • the water-soluble organic amine is monoethanolamine or a combination of monoethanolamine and potassium hydroxide.
  • the acid is a C9-C11 ethoxylated anionic surfactant and has 4 moles of ethoxylation.
  • the phenyl substituted alkyl alcohol is benzyl alcohol
  • the alkyl glycol ether is ethylene glycol monohexyl ether
  • the coupler includes tall oil.
  • Disposable with water as used herein means the inventive compositions are reduced in actives concentration by adding from 0.1 part of 100 parts of water per part of inventive composition. Specific dilution ratio are dependent on the end use, as shown in the following Examples. Additionally the water hardness described is from 0 ppm to 450 ppm hardness as CaCO 3 . "Effective amount" when referring to the solvent blend of phenyl substituted alkyl alcohol and alkyl glycol ether means that is present in an amount which removes at least 20 percent of a standard urethane/acrylic floor finish from a composition vinyl tile within fewer than 2.5 minutes, in accordance with a standard test (see Test Methods section).
  • the term "coupler” refers to a compound or a physical or chemical combination of compounds having the capability of increasing the phase-stability of the compositions of the invention.
  • the couplers that are preferred comprise low molecular weight (molecular weights in the 300 to 800 range) organic monoethanolamine and alkaline salts either sodium hydroxide or potassium hydroxide with organic acid (tall oil) and ethoxylated carboxylic acid (C9-C11 carboxylic acid with 4 moles of ethoxylation; trade name of Neodox 1-4).
  • compositions can also include an effective amount of chelating agents (e.g. ethylene diaminietriacetic acid) and other surfactants for added stability and enhanced hard water stability but are not crucial to this invention.
  • chelating agents e.g. ethylene diaminietriacetic acid
  • Water soluble solvents such as ethylene glycol monobutyl ether can also be used with this invention to enhance cleaning and stripping ability.
  • compositions of the invention are substantially more effective in removing multiple/difficult to remove floor sealer/finishes comprising of urethane/acrylic polymers than the previously described patented compositions, as shown in the Examples.
  • Another aspect of the invention is a method of removing a sealer/finish coating from a surface, the method comprising: a. applying to the coating a composition within the invention; and b. allowing the composition to contact the coating for a time sufficient to at least partially remove the coating.
  • coating is meant to include a single layer or multiple layers of the same composition and coatings comprising two or more layers, each layer comprising of dissimilar compositions.
  • Preferred methods comprise of abrading the coating after a predetermined contact time between the coating and the composition, such as with an open three dimensional non-woven pad which is attached to a conventional floor maintenance machine.
  • composition may be applied and removed using other natural and synthetic fiber-based cloth. Further aspects and advantages of the invention will become apparent from the description of the preferred embodiments which follows.
  • compositions of the present invention are especially useful in stripping a variety of difficult to strip "sealer/finishes" from flooring materials such as composition vinyl tiles, linoleum, marble, terrazzo, concrete and the like.
  • the compositions of the invention may also be employed in degreasing grease, oil, cooking oils and the like from a variety of floors in restaurants, homes, automobile shops and the like.
  • the compositions of the invention may also be employed in cleaning a variety of other surfaces other than floors.
  • the various ingredients are discussed in more detail.
  • Phenyl substituted alkyl alcohols are the first solvents and function as the coating dissolver and/or grease solubilizing component of the compositions of the invention.
  • the phenyl substituted alkyl alcohols are from the class of "sparingly” or “slightly” water soluble organic solvents which have water solubility of at least 0.1 weight percent, more preferable ranging from about 0.2 to about 6 weight percent.
  • Phenyl substituted alkyl alcohols useful in the invention include benzyl alcohol, alpha-phenylethyl alcohol, betaphenylethyl alcohol, ethylene glycol phenyl ether, and the like.
  • One of the preferred phenyl substituted alkyl alcohols which is slightly water-soluble is benzyl alcohol.
  • the second solvent used in the invention is from the alkyl glycol ether family and it functions in that it increases the wetting as well as the dissolving ability of the benzyl alcohol.
  • the preferred secondary solvent is ethylene glycol hexyl ether (Trade name Hexyl Cellosolve) and it too is a "sparing soluble" solvent with similar properties of low toxicity, availability, relative nonhazardous to transport with a essentially a non-odor as benzyl alcohol.
  • alkyl as used herein means an alkyl group having 1-10 carbon atoms.
  • phenyl substituted alkyl alcohols and the alkyl glycol ether employed in the invention have a relatively low volatility or high flash point (in excess of 60 C.) exhibit a low level of odor, be chemically stable, non-toxic, nonhazardous and commercially available.
  • compositions within the invention preferably have the following weight ratios of active ingredients: Phenyl substituted alkyl alcohol to coupler, from 1:1 to 1:2.0. Preferably 1:1.6. Alkyl glycol ether to coupler, from 1:1 to 1:2.0. Preferably 1:16.
  • Phenyl substituted alkyl alcohol to anionic surfactant from 1:10.
  • the weight percentage of phenyl substituted alkyl alcohols/alkyl glycol ethers in the ready-to-use composition may be as high as 10 weight percent.
  • a preferred ready-to-use composition includes from 1.0 to 3.5 wt % of solvent. These concentrations of solvent combinations may be diluted as the concentrates listed in Table 1. For cleaning compositions the solvent mixture will have the power to remove greasy residues at less than 1 weight percent.
  • Table 1 illustrates two of the preferred compositions of this invention.
  • Neodox 1-4 5.0 10.0
  • Couplers function to increase the phase stability of the composition by increasing the apparent water solubility of the solvent mix.
  • Suitable couplers for use in the compositions of the present invention include the salt of a low molecular weight monofunctional amine as well as alkaline salts such as sodium hydroxide and potassium hydroxide as well as organic acid. These couplers allow the use of high concentration of solvent coupled/emulsified and are instrumental in the stability of the product as well as stability of the diluted product.
  • Particularly preferred monofunctional amines include water soluble organic amines such as monoethanolamine (MEA), 2-aminomethylprpanol (AMPS), and other n-alkyl substituted derivatives of these.
  • Preferred acids include fatty acids (tall oil) as well as C7-C18 carboxylic acids with ethoxylation of 1 -10 moles of ethylene oxide.
  • tall oil and the carboxylate Neodox 1-4 available from Shell Chemical Co. is especially preferred.
  • ethoxylated organic acid that it not only improves product stability but enhances the stability of the concentrate when diluted in hard water so that no additional builder or chelate is necessary.
  • alkaline salts like sodium hydroxide and potassium hydroxide.
  • the couplers are present in ready-to-use compositions of the invention such that the amount of the coupler is always less than or equal to the solvent blend used. This a departure from previous taught patents where said coupler are either equal to or as much as 3.0 times necessary to solubilize the solvents in water.
  • Other optional surfactants that can be used in this invention are nonionics, in particular the Tergitols, such as Tergitol 15-S-9, which has been found to be useful in making formulations not containing ethoxylated carboxylates, however they are not the preferred surfactants.
  • Tergitol is a trademark of Union Carbide Corporation for C8-C18 nonionic surfactants with 1-15 moles of ethylene oxide.
  • anionic surfactants that have found utility are the well known hydrotropes like sodium xylene sulfonate as well as the following: dodecylbenzene sulfonic acid, sodium dodecylbenzene sulfonate, potassium dodecylbenzene sulfonate, triethanolamine dodecylbenzene sulfonate, morpholinium dodecylbenzene sulfonate, ammonium dodecylbenzene sulfonate, isopropylamine dodecylbenzene sulfonate, sodium tridecylbenzene sulfonate, sodium dinonylbenzene sulfonate, potassium didodecylbenzene sulfonate, dodecyl diphenyloxide disulfonic acid, sodium dodecyl diphenyloxide disulfonate, isopropylamine decyl dipheny
  • compositions of the invention can also be thickened and used for various other applications especially for vertical surfaces and as an aerosol applications.
  • Prior art describes the use of specific ingredients that are useful for those applications.
  • the compositions of the invention may be applied with a mop, poured onto the surface to be cleaned or stripped as well as dispensed from a suitable dispenser such as one of the venture type (J-Fill dispenser).
  • the compositions may also be applied by conventional floor maintenance machines, or they may be sprayed as an aerosol or non-aerosol upon the surface to be cleaned.
  • Spraying can be accomplished by conventional mechanical spraying devices or by using an aerosol dispensing container with a sufficient amount of suitable aerosol propellant, for example, low boiling alkanes or mixtures thereof, such as a mixture of isobutane and propane.
  • suitable aerosol propellant for example, low boiling alkanes or mixtures thereof, such as a mixture of isobutane and propane.
  • compositions shown in Table 1 above were diluted with water at the dilutions indicated in Table 2 to formulate the compositions of Examples 1-2.
  • Table 2 also shows additional formulations and the various key compositions tested to arrive at the compositions of this invention.
  • the compositions of comparative Examples A-C in Table 3 were formulated in accordance with the teaching of U.S. Patent No. 5,158,710; U.S. Patent No. 5,637,559 and Japanese Patent 9689885 and are provided in prior art Examples A-C.
  • Example 1-7 and Comparative Examples A-C were tested to determine their proficiency in removing 10 coats of a commercially available acrylic finishes from a composition vinyl tile strip, the finish available from SC Johnson Professional, Racine, WI under the trade designation of Signature. To clean previously stripped tiles 10 coats of finish was applied. After each coat a crayon marker was used to identify each coat. The Signature coated tiles were burnished (high speed burnisher) after 3, 6 and 10th coat prior to oven aging in order to enhance and duplicate actual aged coatings found in commerce. After all 10 coats were applied the tiles were aged in a oven at 125 F for 100 hours to allow the coating to fully harden and thus simulate aged coating.
  • compositions of Examples 1-7 as well as Comparative Examples A-C were then tested via the use of a Gardner Scrubber by placing strips of tiles treated and identified onto the bed of the Scrubber. Each strip of tile was stripped with a red non- woven nylon pad which was attached to a pulley and is dragged over the tile to simulate the type of abrasion done in actual practice. To each strip of tile 15 mis of diluted concentrated stripper solutions were applied to the tile. Immediately after the solution was applied the Gardner Scrubber was started and number of coats removed versus cycles was recorded. In all Examples, the number of maximum cycles used was 100 cycles or less depending on complete removal.
  • composition stability was to make up the composition and subject it to both 40 F and 125 F in a refrigerator or oven for at least 3 days The results are also included.
  • a second test which determined the stability of the diluted product was done by diluting the concentrates in synthetic 300 ppm hard water (as CaCO3). The results from this test is also indicated in the Tables. These tests are used by those skilled in the art of developing compositions and are readily accepted as an indication of the overall micro- emulsion properties and efficiency of the surfactants/solvents used.
  • the third test run was viscosity at 44 F which gives a good indication of the rheology of the composition and is crucial in dispensing from venturi type dispenser (J-Fill), The lower the viscosity the more accurate the dilutions which are critical in performance. Viscosities greater than 50 cps can be used but viscosities less than 40 cps are preferred.
  • Neodox 1-4 5.0 10.0
  • Neodox 45-6 5.0 5.0
  • Pcpt- refers to substantial precipitation when concentrate is diluted.
  • alkyl and aryl ethers as well as alkyl alcohols have been indicated for use with the phenyl substituted alkyl alcohols of this invention, other alkyl and aryl ethers as well as alkyl and aromatic alcohols can be employed which are described as follows according to their water solubility.
  • compositions of this invention are useful in stripping and removing coatings such as floor finishes as well as the cleaning of such surfaces. They can be diluted with water and still provide stripping and cleaning properties.

Abstract

The present invention is directed to a composition for stripping coatings from a surface, the composition including: a. A solvent mixture composed of a phenyl substituted alkyl alcohol and an alkyl or aryl glycol ether or an alkyl or aromatic alcohol; b. A coupler composed of a salt formed from a water soluble organic amine and an acid comprising at least one C7-C18 ethoxylated anionic surfactant; c. Optionally water. The use of the C7-C18 ethoxylated anionic surfactant provides a stripper which can be diluted in water of various compositions yet provides an effective stripping/cleaning agent.

Description

CONCENTRATED STRIPPER COMPOSITION AND METHOD
CROSS-REFERENCE TO RELATED APPLICATIONS: None
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT: None
BACKGROUND OF THE INVENTION
Technical Field This invention relates to compositions and methods of using compositions to strip or remove coatings such as typical floor finishes and cleaning of such surfaces. More particularly, it relates to a stripping composition which can be diluted and still provide efficient stripping.
Background Art There are available numerous concentrated stripper and cleaner/degreaser formulations for use in conjunction with floors. U.S. Patent 5,637,559 from 3M discloses a floor stripping composition which includes a phenyl substituted alkyl alcohol which preferably is benzyl alcohol having a water solubility of at least 0.1 weight percent, a coupler consisting of a fatty acid of C8 in chain length and water. The coupler is at least 3.0 times the amount necessary to completely solubilize the phenyl substituted alkyl alcohol in the water. Preferred couplers are the salt of a mono functional water- soluble amine and an organic acid comprising at least one water-insoluble organic acid having from 6-10 carbon atoms. U.S. Patents 5,080,831; 5,080,822 and 5,158,710 from Buckeye International, Inc. teach the use of sparingly water soluble solvents when used with a hydrotrope to form a aqueous solution or microemulsion that can used as a stripper. The solvents, such as benzyl alcohol, cited in these patents have a water solubility ranging from 0.2 to approximately 6 weight percent in water. In the '831 Patent the solubilizing agent is present in an amount not exceeding approximately twofold that required to completely solubilize the organic solvent. Japanese Patent JP 9689885 assigned to S.C. Johnson Inc. teaches the use of a phenyl substituted alkyl alcohol having a water solubility of at least 0.1 weight percent. Benzyl alcohol is also disclosed with Tall Oil Fatty Acid as the organic acid which when combined with a monofunctional water-soluble amine as the coupler form an aqueous floor finish stripper. Other cleaning compositions with a specific solvent or surface active agent are described in U.S. Patents 4,749,509 and 5,543,073.
SUMMARY OF THE INVENTION Contrary to the teachings of the art, the inventors have discovered that compositions containing at least two specific solvents from the select class of slightly water-soluble organic solvents and a specific coupler, wherein the coupler is present at greater than 2.0 times that required to completely solubilize the solvent are much more efficient in removing a variety of floor finishes at higher dilutions than prior art compositions. The other unique property of the inventive composition is the ability to remove these floor finishes of higher dilutions than the prior art compositions and the ability to remain stable in the concentrate as well as in dilution. Another surprising attribute that has been uncovered is the ability of these compositions to be diluted in hard water and still being stable and effacaeous. The use of a new coupling agent has also given these compositions the ability to be prepared using alkaline salts such as NaOH and KOH and still be stable in the concentrate as well as in dilution which the prior art compositions are not. The use of a new coupler has also the added feature of being less viscous and therefore is easier to be diluted via dispensing equipment and other typical dilution methods.
The objects of the invention therefore are: a. Providing an improved floor coating stripper composition. b. Providing an improved stripper composition of the foregoing kind which is compatible with water of various compositions. c. Providing an improved stripper composition of the foregoing kind which can be diluted in the 1:30-1:50 range and still be effective. d. Providing an improved stripper of the foregoing kind which can be dispensed with automated dispensing systems. The foregoing objects are accomplished and the shortcomings of the prior art are accomplished by the compositions of this invention which are suitable for stripping of various floor finish coatings, such as acrylic, urethane and epoxy polymer base, from a variety of surfaces, such as vinyl composition, terrazzo, marble, linoleum, concrete and the like as well as an effective cleaner/degreaser after being diluted with water from 1 part of said compositions to 50 parts of water and still remove the finish. In one embodiment, the compositions may be formulated comprising: a. About 1 -55% by weight of a solvent mixture composed of a phenyl substituted alkyl alcohol and about an equal amount of an alkyl or aryl glycol ether or an alkyl or aromatic alcohol, the solvent mixture effective in removing at least 20% of a standard acrylic floor sealer/finish from a composition vinyl tile in fewer than 2.5 minutes; b. a coupler composed of a salt formed from a water soluble organic amine and an acid comprising at least one C7-C18 ethoxylated anionic surfactant, the coupler and the solvent mixture present in a weight ratio of about.1:1.2 to about 1:2.0 wherein the amount of the coupler is at least 2.0 times the amount necessary to completely solubilize the solvent mixture; and c. optionally water. In another embodiment, the water-soluble organic amine is monoethanolamine or a combination of monoethanolamine and potassium hydroxide.
In yet another embodiment, the acid is a C9-C11 ethoxylated anionic surfactant and has 4 moles of ethoxylation.
In still another embodiment, the phenyl substituted alkyl alcohol is benzyl alcohol, and the alkyl glycol ether is ethylene glycol monohexyl ether. In yet another embodiment, the coupler includes tall oil.
"Diluted with water" as used herein means the inventive compositions are reduced in actives concentration by adding from 0.1 part of 100 parts of water per part of inventive composition. Specific dilution ratio are dependent on the end use, as shown in the following Examples. Additionally the water hardness described is from 0 ppm to 450 ppm hardness as CaCO3. "Effective amount" when referring to the solvent blend of phenyl substituted alkyl alcohol and alkyl glycol ether means that is present in an amount which removes at least 20 percent of a standard urethane/acrylic floor finish from a composition vinyl tile within fewer than 2.5 minutes, in accordance with a standard test (see Test Methods section). As used herein the term "coupler" refers to a compound or a physical or chemical combination of compounds having the capability of increasing the phase-stability of the compositions of the invention. The couplers that are preferred comprise low molecular weight (molecular weights in the 300 to 800 range) organic monoethanolamine and alkaline salts either sodium hydroxide or potassium hydroxide with organic acid (tall oil) and ethoxylated carboxylic acid (C9-C11 carboxylic acid with 4 moles of ethoxylation; trade name of Neodox 1-4).
The compositions can also include an effective amount of chelating agents (e.g. ethylene diaminietriacetic acid) and other surfactants for added stability and enhanced hard water stability but are not crucial to this invention. Water soluble solvents such as ethylene glycol monobutyl ether can also be used with this invention to enhance cleaning and stripping ability.
The compositions of the invention are substantially more effective in removing multiple/difficult to remove floor sealer/finishes comprising of urethane/acrylic polymers than the previously described patented compositions, as shown in the Examples. Another aspect of the invention is a method of removing a sealer/finish coating from a surface, the method comprising: a. applying to the coating a composition within the invention; and b. allowing the composition to contact the coating for a time sufficient to at least partially remove the coating. As used herein "coating" is meant to include a single layer or multiple layers of the same composition and coatings comprising two or more layers, each layer comprising of dissimilar compositions. Preferred methods comprise of abrading the coating after a predetermined contact time between the coating and the composition, such as with an open three dimensional non-woven pad which is attached to a conventional floor maintenance machine.
Alternatively, the composition may be applied and removed using other natural and synthetic fiber-based cloth. Further aspects and advantages of the invention will become apparent from the description of the preferred embodiments which follows.
DESCRIPTION OF PREFERRED EMBODIMENTS
The compositions of the present invention are especially useful in stripping a variety of difficult to strip "sealer/finishes" from flooring materials such as composition vinyl tiles, linoleum, marble, terrazzo, concrete and the like. The compositions of the invention may also be employed in degreasing grease, oil, cooking oils and the like from a variety of floors in restaurants, homes, automobile shops and the like. The compositions of the invention may also be employed in cleaning a variety of other surfaces other than floors. The various ingredients are discussed in more detail. Phenyl Substituted Alkyl Alcohols
Phenyl substituted alkyl alcohols are the first solvents and function as the coating dissolver and/or grease solubilizing component of the compositions of the invention. The phenyl substituted alkyl alcohols are from the class of "sparingly" or "slightly" water soluble organic solvents which have water solubility of at least 0.1 weight percent, more preferable ranging from about 0.2 to about 6 weight percent. Phenyl substituted alkyl alcohols useful in the invention include benzyl alcohol, alpha-phenylethyl alcohol, betaphenylethyl alcohol, ethylene glycol phenyl ether, and the like. One of the preferred phenyl substituted alkyl alcohols which is slightly water-soluble is benzyl alcohol.
The second solvent used in the invention is from the alkyl glycol ether family and it functions in that it increases the wetting as well as the dissolving ability of the benzyl alcohol. The preferred secondary solvent is ethylene glycol hexyl ether (Trade name Hexyl Cellosolve) and it too is a "sparing soluble" solvent with similar properties of low toxicity, availability, relative nonhazardous to transport with a essentially a non-odor as benzyl alcohol.
The term "alkyl" as used herein means an alkyl group having 1-10 carbon atoms. In addition to the water solubility criteria mentioned previously, it is also desirable but not essential that the phenyl substituted alkyl alcohols and the alkyl glycol ether employed in the invention have a relatively low volatility or high flash point (in excess of 60 C.) exhibit a low level of odor, be chemically stable, non-toxic, nonhazardous and commercially available.
We have found the use of phenyl substituted alkyl alcohol in conjunction with the use of alkyl or aryl glycol ether or an alkyl or aromatic alcohol in equal proportions in the composition as having unexpected results not found by the use of either one individually. This solvent mix is in an amount sufficient to remove the coating to which it is applied, the amount varying with the coating or residue to be removed. Further compositions within the invention preferably have the following weight ratios of active ingredients: Phenyl substituted alkyl alcohol to coupler, from 1:1 to 1:2.0. Preferably 1:1.6. Alkyl glycol ether to coupler, from 1:1 to 1:2.0. Preferably 1:16.
Phenyl substituted alkyl alcohol to anionic surfactant from 1:10. Preferably 1 :1.5. Alkyl glycol ether to anionic surfactant from 1:10. Preferably 1 :5.5.
For particularly hard to remove coatings the weight percentage of phenyl substituted alkyl alcohols/alkyl glycol ethers in the ready-to-use composition may be as high as 10 weight percent. For easier to strip finishes or cleaning, one may dilute the concentrates so that the weight percentage of phenyl substituted alkyl alcohols/alkyl glycol ethers is as low as 0.5 weight percent. A preferred ready-to-use composition includes from 1.0 to 3.5 wt % of solvent. These concentrations of solvent combinations may be diluted as the concentrates listed in Table 1. For cleaning compositions the solvent mixture will have the power to remove greasy residues at less than 1 weight percent.
The following Table 1 illustrates two of the preferred compositions of this invention. Table 1
Concentrate 1 Concentrate 2
Ingredient
Benzyl alcohol 27.5 27.5
Hexyl Cellosolve 27.5 27.5
Monoethanolamine 35.0 17.0
Tall Oil Fatty acid 5.0
Neodox 1-4 5.0 10.0
Potassium hydroxide ~ 18.0 Couplers
Couplers function to increase the phase stability of the composition by increasing the apparent water solubility of the solvent mix. Suitable couplers for use in the compositions of the present invention include the salt of a low molecular weight monofunctional amine as well as alkaline salts such as sodium hydroxide and potassium hydroxide as well as organic acid. These couplers allow the use of high concentration of solvent coupled/emulsified and are instrumental in the stability of the product as well as stability of the diluted product. Particularly preferred monofunctional amines include water soluble organic amines such as monoethanolamine (MEA), 2-aminomethylprpanol (AMPS), and other n-alkyl substituted derivatives of these.
Preferred acids include fatty acids (tall oil) as well as C7-C18 carboxylic acids with ethoxylation of 1 -10 moles of ethylene oxide. For this invention tall oil and the carboxylate Neodox 1-4 available from Shell Chemical Co. is especially preferred. We have also found that by the inclusion of the ethoxylated organic acid that that it not only improves product stability but enhances the stability of the concentrate when diluted in hard water so that no additional builder or chelate is necessary. Another key attribute found with the unique use of alkaline salts like sodium hydroxide and potassium hydroxide. We have also found that by the use of these carboxylic acids combinations we obtained less viscous compositions which are much easier dispensed from venturi type dispenser than prior art compositions.
The couplers are present in ready-to-use compositions of the invention such that the amount of the coupler is always less than or equal to the solvent blend used. This a departure from previous taught patents where said coupler are either equal to or as much as 3.0 times necessary to solubilize the solvents in water. Other optional surfactants that can be used in this invention are nonionics, in particular the Tergitols, such as Tergitol 15-S-9, which has been found to be useful in making formulations not containing ethoxylated carboxylates, however they are not the preferred surfactants. Tergitol is a trademark of Union Carbide Corporation for C8-C18 nonionic surfactants with 1-15 moles of ethylene oxide. Other anionic surfactants that have found utility are the well known hydrotropes like sodium xylene sulfonate as well as the following: dodecylbenzene sulfonic acid, sodium dodecylbenzene sulfonate, potassium dodecylbenzene sulfonate, triethanolamine dodecylbenzene sulfonate, morpholinium dodecylbenzene sulfonate, ammonium dodecylbenzene sulfonate, isopropylamine dodecylbenzene sulfonate, sodium tridecylbenzene sulfonate, sodium dinonylbenzene sulfonate, potassium didodecylbenzene sulfonate, dodecyl diphenyloxide disulfonic acid, sodium dodecyl diphenyloxide disulfonate, isopropylamine decyl diphenyloxide disulfonate, sodium hexadecyloxypoly (ethyleneoxy) (10) ethyl sulfonate, potassium octylphenoxypoly (ethyleneoxy) (9) ethyl sulfonate, sodium alpha C12.14 olefin sulfonate, sodium hexadecane-1 sulfonate, sodium ethyl oleate sulfonate, potassium octadecenylsuccinate, sodium oleate, potassium laurate, triethanolamine myristate, morpholinium tallate, potassium tallate, sodium lauryl sulfate, diethanolamine lauryl sulfate, sodium laureth (3) sulfate, ammonium laureth (2) sulfate, sodium nonylphenoxypoly (ethyleneoxy) (4) sulfate, sodium diisobutylsulfosuccinate, disodium laurylsulfosuccinate, tetrasodium N-laurylsulfosuccinimate, sodium mono decyloxypoly (ethyleneoxy) (4) phosphate, sodium di decyloxypoly (ethyleneoxy) (6) phosphate, and postassium mono/di-octylphenoxypoly (ethyleneoxy) (9) phosphate. These surfactants and hydrotropes were found to be especially useful in formulating other compositions that contained water soluble solvents like butyl Cellosolve.
These compositions can also be thickened and used for various other applications especially for vertical surfaces and as an aerosol applications. Prior art describes the use of specific ingredients that are useful for those applications. In the methods of the invention, the compositions of the invention may be applied with a mop, poured onto the surface to be cleaned or stripped as well as dispensed from a suitable dispenser such as one of the venture type (J-Fill dispenser). The compositions may also be applied by conventional floor maintenance machines, or they may be sprayed as an aerosol or non-aerosol upon the surface to be cleaned. Spraying can be accomplished by conventional mechanical spraying devices or by using an aerosol dispensing container with a sufficient amount of suitable aerosol propellant, for example, low boiling alkanes or mixtures thereof, such as a mixture of isobutane and propane.. Further application of the compositions and methods of the invention will be understood with reference to the following Examples wherein all parts and percentages are by weight unless otherwise specified. These Examples are set forth to illustrate the invention and are not intended to limit the invention in any way. EXAMPLES
The concentrated compositions shown in Table 1 above were diluted with water at the dilutions indicated in Table 2 to formulate the compositions of Examples 1-2. Table 2 also shows additional formulations and the various key compositions tested to arrive at the compositions of this invention. The compositions of comparative Examples A-C in Table 3 were formulated in accordance with the teaching of U.S. Patent No. 5,158,710; U.S. Patent No. 5,637,559 and Japanese Patent 9689885 and are provided in prior art Examples A-C.
The composition of Examples 1-7 and Comparative Examples A-C were tested to determine their proficiency in removing 10 coats of a commercially available acrylic finishes from a composition vinyl tile strip, the finish available from SC Johnson Professional, Racine, WI under the trade designation of Signature. To clean previously stripped tiles 10 coats of finish was applied. After each coat a crayon marker was used to identify each coat. The Signature coated tiles were burnished (high speed burnisher) after 3, 6 and 10th coat prior to oven aging in order to enhance and duplicate actual aged coatings found in commerce. After all 10 coats were applied the tiles were aged in a oven at 125 F for 100 hours to allow the coating to fully harden and thus simulate aged coating.
The compositions of Examples 1-7 as well as Comparative Examples A-C were then tested via the use of a Gardner Scrubber by placing strips of tiles treated and identified onto the bed of the Scrubber. Each strip of tile was stripped with a red non- woven nylon pad which was attached to a pulley and is dragged over the tile to simulate the type of abrasion done in actual practice. To each strip of tile 15 mis of diluted concentrated stripper solutions were applied to the tile. Immediately after the solution was applied the Gardner Scrubber was started and number of coats removed versus cycles was recorded. In all Examples, the number of maximum cycles used was 100 cycles or less depending on complete removal.
As a second method to determine stability of both the concentrate as well as dilution, comparative as well as compositions were tested via two methods. The first method for composition stability was to make up the composition and subject it to both 40 F and 125 F in a refrigerator or oven for at least 3 days The results are also included. A second test which determined the stability of the diluted product was done by diluting the concentrates in synthetic 300 ppm hard water (as CaCO3). The results from this test is also indicated in the Tables. These tests are used by those skilled in the art of developing compositions and are readily accepted as an indication of the overall micro- emulsion properties and efficiency of the surfactants/solvents used.
The third test run was viscosity at 44 F which gives a good indication of the rheology of the composition and is crucial in dispensing from venturi type dispenser (J-Fill), The lower the viscosity the more accurate the dilutions which are critical in performance. Viscosities greater than 50 cps can be used but viscosities less than 40 cps are preferred.
Table 2
Ingredient Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7
Monoethanol Amine 35 17 35.0 35 35 35 35
Benzyl Alcohol 27.5 27.5 27.5 13.75 41.25
Hexyl Cellosolve 27.5 27.5 27.5 41.25 13.75 27.5 27.5
1-Butoxy Propanol 27.5
Ethylene Glycol Phenyl Ether 27.5
Tall Oil Fatty Acid 5.0 5.0 10.0 10.0 5.0 5.0
T Teerrggiittooll 1155--SS--99 5.0
Neodox 1-4 5.0 10.0
Neodox 45-6 5.0 5.0
Potassium Hydroxide 18.0
No. of coats Signature Removed
Dilution ® 1:15 9 1 100 8
@ 1:25 8 8 8 6
Dilution Stability-Cone. pass* ppaasss ppaassss sseepp** sseepp sep sep
@l:15(hard water) pass ppaasss pass sep sep
@l :25(hard water) pass ppaasss pass
@l:256(hard water) pass ppaasss pass
Viscosity @44 F(cps) 44.8 7 766..58 44.8
Pass-refers to solution/emulsion is stable for 24 hours Sep. refers to separation or precipitation after dilution PRIOR ART EXAMPLES
Example A - 3M Formulation
Ingredient %/wt
Monoethanolamine 33.9
Benzyl Alcohol 39.9 n-Octanoic Acid 25.0
FC-135 0.20
Dye 0.50
Chelating Agent 0.50
Example B - Butchers Full Impact
Ingredient %/wt
Monoethanolamine 23.2
Benzyl Alcohol 47.9
Dipropylene Glycol n-Butyl Ether 13.5 (water soluble solvent)
Tall Oil FA Salt (Amine) 15.4
Example C - Japan Power - Go
Ingredient %/Wt
Monoethanolamine 18.0
N-(,B Aminoethyl) Ethanolamine 15.0
Benzyl Alcohol 35.0
Tall Oil Fatty Acid 5.0
Fluoroalcohol Phosphate and Eto 0.1
Quatermonium Salt
Perfluoro Alky Phosphate (15%) 0.6
Fluorinated Acrylic Ester
Copolymer (20%) 0.1
Water 26.2
Table 3
Comparative Examples A-C
3M Formulation Butchers Full Impact B
Japan Power-Go
No. of coats Signature Removed Dilution @1 :15 7 8 7 @1:25 6 7 3
Dilution Stability -Cone pass pass pass
@ 1 : 15 (hard water) pcpt pcpt pcpt @1 :25(hard water) pcpt pcpt pcpt @l :256(hard water) pcpt pcpt pcpt Viscosity @ 44F(cps) 102.4 25.6 27.0
Pcpt-refers to substantial precipitation when concentrate is diluted.
These Examples A-C as well as Examples 1-7 illustrate the importance of the ethoxylated anionic surfactant coupler if it is to be diluted and still act as an effective stripper.
While certain alkyl and aryl ethers as well as alkyl alcohols have been indicated for use with the phenyl substituted alkyl alcohols of this invention, other alkyl and aryl ethers as well as alkyl and aromatic alcohols can be employed which are described as follows according to their water solubility.
WATER SOLUBLE: >6.0 Wt. Percent soluble in water
Ethylene Glycol Monobutyl Ether Triethylene Glycol n-Butyl Ether Propylene Glycol methyl ether Diethylene Glycol Methyl Ether 2-Tertiary Butoxy Ethanol Triethylene Glycol Methyl Ether
Dipropylene Glycol Methyl Ether Ethylene Glycol Monopropyl Ether Tripropylene Glycol Methyl Ether Diethylene Glycol Monomethyl Ether Propylene Glycol n-Propyl Ether Methoxytriglycol Dipropylene Glycol n-Propyl Ether Ethoxytriglycol Diethylene Glycol n-Butyl Ether Butoxytriglycol SPARINGLY WATER SOLUBLE: <6.0 Wt. Percent soluble in water 1 -phenoxy-2-propanol Cyclohexanol
Propylene Glycol n-Butyl Ether iso-octanol Dipropylene Glycol n-Butyl Ether Texanol (Eastman) Tripropylene Glycol n-Butyl Ether n-decanol
Propylene Glycol Phenyl Ether Diethylene Glycol mono hexyl Ether
2-Octanol 2-Ethyl Hexanol
INDUSTRIAL APPLICABILITY
The compositions of this invention are useful in stripping and removing coatings such as floor finishes as well as the cleaning of such surfaces. They can be diluted with water and still provide stripping and cleaning properties.

Claims

What is claimed is:
1. A composition suitable for stripping coatings from a surface the composition comprising: a. 1 -55% by weight of a solvent mixture composed of a phenyl substituted alkyl alcohol and about an equal amount by weight of an alkyl or aryl glycol ether or an alkyl or aromatic alcohol, said solvent mixture effective in removing at least 20 % of a standard acrylic floor sealer/finish from a composition vinyl tile in fewer than 2.5 minutes; b. a coupler composed of a salt formed from a water soluble organic amine and an acid comprising at least one C7-C18 ethoxylated anionic surfactant, said coupler and said solvent mixture present in weight ratio of solvent mixture present in a weight ratio of 1 : 1.2 to 1 :2.0 wherein the amount of the coupler is at least 2 times the amount necessary to completely solubilize the solvent mixture; and c. optionally water.
2. Composition in accordance with Claim 1 wherein the water-soluble organic amine is monoethanolamine or a combination of monoethanolamine and potassium hydroxide.
3. Composition in accordance with Claim 1 wherein the acid is a C9-C11 ethoxylated anionic surfactant.
4. Composition in accordance with Claim 2 wherein the acid has 4 moles of ethoxylation.
5. Composition in accordance with Claim 1 wherein the phenyl substituted alkyl alcohol is benzyl alcohol.
6. Composition in accordance with Claim 1 wherein the alkyl glycol ether is ethylene glycol monohexyl ether.
7. The Composition in accordance with Claim 1 wherein the coupler further includes tall oil.
8. Composition in accordance with Claim 1 wherein the solvent mixture has a water solubility of at least 0.1 weight percent.
9. A method of removing a coating from a surface comprising: applying to the coating the composition of Claim 1 ; and allowing the composition to contact the coating for a time sufficient to at least partially remove the coating.
PCT/US1999/021764 1998-10-01 1999-09-22 Concentrated stripper composition and method WO2000020518A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT99954639T ATE254650T1 (en) 1998-10-01 1999-09-22 CONCENTRATED PAINT REMOVAL AGENTS, COMPOSITION AND METHOD
NZ510701A NZ510701A (en) 1998-10-01 1999-09-22 A concentrated stripper composition containing at least two water soluble organic solvents and a coupler that is a water-soluble organic amine
EP99954639A EP1119591B1 (en) 1998-10-01 1999-09-22 Concentrated stripper composition and method
BRPI9914188-4A BR9914188B1 (en) 1998-10-01 1999-09-22 suitable composition for removing surface coatings and process for removing surface coatings.
JP2000574622A JP4606585B2 (en) 1998-10-01 1999-09-22 Concentrated release agent and method
AU10941/00A AU756614B2 (en) 1998-10-01 1999-09-22 Concentrated stripper composition and method
CA002345692A CA2345692C (en) 1998-10-01 1999-09-22 Concentrated stripper composition and method
DE69912976T DE69912976T2 (en) 1998-10-01 1999-09-22 CONCENTRATED FLASHING AGENTS, COMPOSITION AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/164,748 US5977042A (en) 1998-10-01 1998-10-01 Concentrated stripper composition and method
US09/164,748 1998-10-01

Publications (1)

Publication Number Publication Date
WO2000020518A1 true WO2000020518A1 (en) 2000-04-13

Family

ID=22595930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/021764 WO2000020518A1 (en) 1998-10-01 1999-09-22 Concentrated stripper composition and method

Country Status (13)

Country Link
US (1) US5977042A (en)
EP (1) EP1119591B1 (en)
JP (1) JP4606585B2 (en)
KR (1) KR100625147B1 (en)
CN (1) CN1247715C (en)
AT (1) ATE254650T1 (en)
AU (1) AU756614B2 (en)
BR (1) BR9914188B1 (en)
CA (1) CA2345692C (en)
DE (1) DE69912976T2 (en)
ES (1) ES2211190T3 (en)
NZ (1) NZ510701A (en)
WO (1) WO2000020518A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083664A1 (en) * 2000-04-28 2001-11-08 Ecolab Inc. Phase-separating solvent composition
US6558795B2 (en) 2001-04-20 2003-05-06 Ecolab Inc. Strippable coating system
WO2003052004A1 (en) * 2001-12-14 2003-06-26 Aero-Chem, Llc Cyclic ether based paint remover
WO2004022687A1 (en) * 2002-09-06 2004-03-18 Ecolab Inc. Non-surfactant solubilizing agent
US6998369B2 (en) 2000-04-28 2006-02-14 Ecolab Inc. Antimicrobial composition
TWI608311B (en) * 2016-03-25 2017-12-11 達興材料股份有限公司 A photoresist stripper composition and a photolithography process for manufacturing a electronic device utilizing the same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197844B1 (en) * 1996-09-13 2001-03-06 3M Innovative Properties Company Floor finish compositions
US6564814B2 (en) * 1997-05-23 2003-05-20 Shelba F. Bowsman Engine decarbonizing system
US6200940B1 (en) * 1999-07-19 2001-03-13 Napier International Technologies, Inc. Paint stripper compositions
US6303552B1 (en) * 1999-08-04 2001-10-16 Napier International Technologies, Inc. Aerosol paint stripper compositions
US6583101B1 (en) * 1999-08-25 2003-06-24 Ecolab Inc. Aqueous organic dispersions suitable for removing organic films and soils
AU764440B2 (en) * 1999-08-25 2003-08-21 Ecolab Inc. Method for removing an ultraviolet light cured floor finish, removable ultraviolet light curable floor finish and strippable finished floor
US6583097B2 (en) 2000-01-21 2003-06-24 Mary E. McDonald Universal cleaner that cleans tough oil, grease and rubber grime and that is compatible with many surfaces including plastics
US6544942B1 (en) * 2000-04-28 2003-04-08 Ecolab Inc. Phase-separating solvent composition
AU5377801A (en) * 2000-04-28 2001-11-12 Ecolab Inc Strippable laminate finish
US6800353B1 (en) 2000-09-08 2004-10-05 Ecolab Inc. Scratch-resistant strippable finish
US20030125226A1 (en) * 2000-11-28 2003-07-03 Lewis Paul F. Anti-slip floor coating remover composition
US7482316B2 (en) * 2001-01-04 2009-01-27 Henkel Kommanditgesellschaft Auf Aktien Water-based flushing solution for paints and other coatings
KR100779037B1 (en) * 2001-09-26 2007-11-27 주식회사 동진쎄미켐 A color resist remover composition for tft-lcd preparation
US20030220213A1 (en) * 2002-05-24 2003-11-27 Bober Andrew M. Color changing floor finish stripper
US7071155B2 (en) * 2002-10-02 2006-07-04 Eoclab, Inc. Non-polymer thickening agent and cleaning composition
US7211551B2 (en) * 2002-10-21 2007-05-01 Mcdonald Mary E Universal cleaner that cleans tough oil, grease and rubber grime and that is compatible with many surfaces including plastics
KR100805014B1 (en) * 2003-08-27 2008-02-20 가켄 테크 가부시키가이샤 Cleaning agent for removing solder flux and method for cleaning solder flux
DE10357389B4 (en) * 2003-12-07 2005-12-15 Benda, Jürgen Michael Process for cleaning soapstone
JP4610920B2 (en) * 2004-03-30 2011-01-12 スイショウ油化工業株式会社 Release agent composition and method for producing the same
SE528010C2 (en) * 2004-12-30 2006-08-01 Stripp Chemicals Ab Means for removing paint, varnish glue, rubber, plastic or the like from objects and use of said agents
CN1743965B (en) * 2005-09-30 2010-05-05 廊坊开发区普瑞特科工贸有限公司 Environmental-protection type regenerative PS plate ink and photoresists stripping agent and its preparing method
US20070087952A1 (en) * 2005-10-18 2007-04-19 Ecolab Inc. Floor stripper/cleaner containing aliphatic acid-organic base pair
US7674760B2 (en) * 2005-10-18 2010-03-09 Ecolab Inc. Floor stripper/cleaner containing organic acid-base pair
US20090131296A1 (en) * 2007-11-21 2009-05-21 Ecolab Inc. Floor Stripper For Chemically-Resistant Crosslinked Floor Finishes
AU2007361442B2 (en) * 2007-11-21 2013-01-31 Ecolab Inc. Floor stripper for chemically-resistant crosslinked floor finishes
WO2010146544A2 (en) * 2009-06-15 2010-12-23 Ecolab Usa Inc. High alkaline solvent-based cleaners, cleaning systems and methods of use for cleaning zero trans fat soils
US8394751B2 (en) * 2010-01-29 2013-03-12 W. M. Barr & Company Organic residue remover composition
WO2011146832A2 (en) * 2010-05-20 2011-11-24 Diversey, Inc. Stripping compositions and methods of making and using the same
ES2663201T3 (en) 2011-05-20 2018-04-11 Ecolab Usa Inc. Non-corrosive oven degreasing concentrate
CN103157621A (en) * 2011-12-13 2013-06-19 贵州黎阳航空动力有限公司 Chemical method for clearing sealant and solution prepared by using chemical method
US9309485B2 (en) 2013-06-26 2016-04-12 Ecolab USA, Inc. Use of nonionics as rheology modifiers in liquid cleaning solutions
US11851637B2 (en) * 2013-08-23 2023-12-26 Ecolab Usa Inc. Adhesive remover compositions and methods of use
JP6310727B2 (en) * 2013-11-29 2018-04-11 株式会社ニイタカ Floor polish release agent and floor polish release method
US10260026B2 (en) * 2014-10-21 2019-04-16 Dow Global Technologies Llc Method for dissolution of polymerized soil
KR102077953B1 (en) 2016-05-10 2020-02-14 아토테크더치랜드게엠베하 Methods of Stripping Organic Coatings from Non-Aqueous Stripping Compositions and Substrates
JP6975969B2 (en) * 2017-11-13 2021-12-01 シーバイエス株式会社 Cleaning agent composition for crosslinked coating film and floor management method
WO2019108990A1 (en) 2017-12-01 2019-06-06 Ecolab Usa Inc. Cleaning compositions and methods for removing baked on grease from fryers and other hot surfaces
JP7280279B2 (en) * 2018-03-20 2023-05-23 ローム アンド ハース カンパニー Neutralizer composition
US20230058960A1 (en) * 2020-01-23 2023-02-23 Reckitt & Colman (Overseas) Hygiene Home Limited Oven cleaning compositions and methods of making and using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080822A (en) * 1990-04-10 1992-01-14 Buckeye International, Inc. Aqueous degreaser compositions containing an organic solvent and a solubilizing coupler
US5411678A (en) * 1994-02-07 1995-05-02 Mcgean-Rohco, Inc. Paint stripper
US5637559A (en) * 1993-03-30 1997-06-10 Minnesota Mining And Manufacturing Company Floor stripping composition and method
WO1997032937A1 (en) * 1996-03-07 1997-09-12 Johnson Company, Ltd. Releasant for aqueous polymer-type floor polish

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414128A (en) * 1981-06-08 1983-11-08 The Procter & Gamble Company Liquid detergent compositions
US4749509A (en) * 1986-11-24 1988-06-07 The Proctor & Gamble Company Aqueous detergent compositions containing diethyleneglycol monohexyl ether solvent
US5158710A (en) * 1989-06-29 1992-10-27 Buckeye International, Inc. Aqueous cleaner/degreaser microemulsion compositions
US5080831A (en) * 1989-06-29 1992-01-14 Buckeye International, Inc. Aqueous cleaner/degreaser compositions
US5454985A (en) * 1992-11-06 1995-10-03 Gage Products Company Paint stripping composition
US5543073A (en) * 1993-04-14 1996-08-06 Colgate-Palmolive Company Microemulsion cleaning composition
US5636559A (en) * 1993-10-07 1997-06-10 Smithwick, Jr.; James M. Elastomeric scrap ejector for a cutting die
JPH0889885A (en) * 1994-09-20 1996-04-09 Bridgestone Corp Transfer coating method for roller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080822A (en) * 1990-04-10 1992-01-14 Buckeye International, Inc. Aqueous degreaser compositions containing an organic solvent and a solubilizing coupler
US5637559A (en) * 1993-03-30 1997-06-10 Minnesota Mining And Manufacturing Company Floor stripping composition and method
US5411678A (en) * 1994-02-07 1995-05-02 Mcgean-Rohco, Inc. Paint stripper
WO1997032937A1 (en) * 1996-03-07 1997-09-12 Johnson Company, Ltd. Releasant for aqueous polymer-type floor polish

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083664A1 (en) * 2000-04-28 2001-11-08 Ecolab Inc. Phase-separating solvent composition
US6593283B2 (en) 2000-04-28 2003-07-15 Ecolab Inc. Antimicrobial composition
US6998369B2 (en) 2000-04-28 2006-02-14 Ecolab Inc. Antimicrobial composition
US6558795B2 (en) 2001-04-20 2003-05-06 Ecolab Inc. Strippable coating system
WO2003052004A1 (en) * 2001-12-14 2003-06-26 Aero-Chem, Llc Cyclic ether based paint remover
WO2004022687A1 (en) * 2002-09-06 2004-03-18 Ecolab Inc. Non-surfactant solubilizing agent
US7008911B2 (en) 2002-09-06 2006-03-07 Ecolab, Inc. Non-surfactant solubilizing agent
TWI608311B (en) * 2016-03-25 2017-12-11 達興材料股份有限公司 A photoresist stripper composition and a photolithography process for manufacturing a electronic device utilizing the same

Also Published As

Publication number Publication date
BR9914188A (en) 2001-08-14
NZ510701A (en) 2002-05-31
EP1119591B1 (en) 2003-11-19
CA2345692A1 (en) 2000-04-13
CN1320143A (en) 2001-10-31
EP1119591A1 (en) 2001-08-01
BR9914188B1 (en) 2008-11-18
CA2345692C (en) 2005-01-18
JP4606585B2 (en) 2011-01-05
KR100625147B1 (en) 2006-09-20
AU756614B2 (en) 2003-01-16
ES2211190T3 (en) 2004-07-01
DE69912976T2 (en) 2004-09-02
ATE254650T1 (en) 2003-12-15
DE69912976D1 (en) 2003-12-24
KR20010073199A (en) 2001-07-31
JP2002526629A (en) 2002-08-20
US5977042A (en) 1999-11-02
AU1094100A (en) 2000-04-26
CN1247715C (en) 2006-03-29

Similar Documents

Publication Publication Date Title
US5977042A (en) Concentrated stripper composition and method
CA2159611C (en) Improved floor stripping composition and method
CA1277887C (en) Cleaner - all-purpose concentrate
AU668201B2 (en) Thickened acid microemulsion composition
AU2002251786B2 (en) Floor cleaner and gloss enhancer
JPH09509438A (en) Dual-purpose cleaning composition for paint and waxed surfaces
WO1994023003A1 (en) Cleaning compositions and methods of use
EP3027695A1 (en) Aqueous cleaning compositions including an alkyl 3-hydroxybutyrate
JPH02242900A (en) Liquid detergent composition used for rigid surface
EP0900270A1 (en) Thickened acid composition
US6465411B2 (en) Pine oil cleaning composition
US5472631A (en) Method of removing oil-based paint from painting articles
JP2020519720A (en) Compositions and methods for floor cleaning or repair
JP2608327B2 (en) Bathroom cleaning composition
US5837667A (en) Environmentally safe detergent composition and method of use
MXPA01003342A (en) Concentrated stripper composition and method
CN1052028C (en) Improved floor stripping composition and method
JPS631359B2 (en)
CN117025311A (en) Deep cleaning agent for station building counter facilities
JP2935194B2 (en) Aerosol foaming detergent composition
CA2504646C (en) Cleaning composition and method of use
JP2003206498A (en) Cleanser composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811567.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 10941

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 510701

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2345692

Country of ref document: CA

Ref document number: 2345692

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/003342

Country of ref document: MX

Ref document number: 1020017004066

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 574622

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999954639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10941/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020017004066

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999954639

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 10941/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999954639

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017004066

Country of ref document: KR