WO2000018686A1 - Method for production of amorphous titanium peroxide solution and anatase titanium oxide sol - Google Patents

Method for production of amorphous titanium peroxide solution and anatase titanium oxide sol Download PDF

Info

Publication number
WO2000018686A1
WO2000018686A1 PCT/JP1999/005236 JP9905236W WO0018686A1 WO 2000018686 A1 WO2000018686 A1 WO 2000018686A1 JP 9905236 W JP9905236 W JP 9905236W WO 0018686 A1 WO0018686 A1 WO 0018686A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
amorphous
peroxide solution
hydroxide gel
washing
Prior art date
Application number
PCT/JP1999/005236
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Ogata
Yoshimitsu Matsui
Original Assignee
Tao Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tao Inc. filed Critical Tao Inc.
Publication of WO2000018686A1 publication Critical patent/WO2000018686A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/04Metal peroxides or peroxyhydrates thereof; Metal superoxides; Metal ozonides; Peroxyhydrates thereof
    • C01B15/047Metal peroxides or peroxyhydrates thereof; Metal superoxides; Metal ozonides; Peroxyhydrates thereof of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds

Definitions

  • the present invention has excellent adhesiveness, high film forming property, can form a uniform and flat thin film, and has a property that a dry film is insoluble in water.
  • the present invention relates to a novel production method of an amorphous titanium peroxide solution, which is known to be useful as an ultraviolet cut coating, a coloring coating, etc., and particularly to a production method and a production apparatus at an industrial level.
  • the present invention also relates to a novel method for producing an anatase-type titanium oxide sol having excellent photocatalytic ability prepared from an amorphous-type titanium peroxide solution, and particularly to a production method and a production apparatus at an industrial level.
  • the adhesive strength is not sufficient, and there are few materials that can be supported for a long period of time. When it drops There was a problem.
  • a substrate made of an organic polymer resin even if it is rutile-type titanium oxide, whose photocatalytic function is said to be weaker than the anatase type, the photocatalytic reaction proceeds, and the photochemical reaction of the organic polymer resin itself occurs. Combined with the reaction, there is a problem that it is degraded and decomposed over a long period of use.
  • a method for producing the same is disclosed in Japanese Patent Application Laid-Open No. Hei 9-171418. ing. That is, in the same publication, as a method for producing an amorphous titanium peroxide solution according to the present invention, ammonia water (1: 5) was prepared by distilling 5 cc of a 60% titanium tetrachloride solution into 500 cc of distilled water as a raw material. 9) was added dropwise to precipitate titanium hydroxide. After washing with distilled water, 10 cc of a 30% solution of hydrogen peroxide was added and stirred.
  • a yellow viscous solution containing titanium (amorphous titanium peroxide solution) was added. It is described to produce 70 cc.
  • the publication also states that heating this amorphous titanium peroxide solution at 80 ° C. or higher gives an anatase-type titanium oxide sol according to the present invention. Also, in the above-mentioned Japanese Patent Application Laid-Open No.
  • the inventors of the present invention also disclose, as a method for producing an amorphous titanium peroxide solution according to the present invention, an aqueous solution of a titanium salt such as titanium tetrachloride, Water or an alkali hydroxide such as sodium hydroxide is added, and the resulting pale bluish white, amorphous titanium hydroxide is washed, separated, treated with a hydrogen peroxide solution, and pH 6.0 to 7.0. It is described that an amorphous titanium peroxide solution which is a yellow transparent liquid having a particle diameter of 8 to 20 nm can be obtained.
  • an anatase-type titanium oxide sol can be produced by heating an amorphous titanium peroxide solution at a temperature of 100 ° C. or more.
  • An object of the present invention is to provide a method for producing an amorphous titanium peroxide solution or an analog-type titanium oxide sol at an actual production level, which solves these problems.
  • the present inventors conducted intensive research to solve the above-mentioned problems, and reduced the solid concentration of titanium hydroxide gel, which is a product of the neutralization reaction between titanium tetrachloride solution and aqueous ammonia, to reduce the subsequent hydrogen peroxide concentration.
  • the present inventors have found that the above problem can be solved by performing a peroxo-formation reaction with water, and have completed the present invention.
  • the present invention provides a neutralization step of reacting an aqueous solution containing titanium and a basic aqueous solution, and a washing step of washing a titanium hydroxide gel generated by the neutralization reaction. Cleaning step, cooling the washed titanium hydroxide gel, peroxidation step of allowing peroxide to act on the cooled titanium hydroxide gel under cooling, and ⁇ an amorphous titanium peroxide solution generated by the oxo treatment.
  • a method of producing an amorphous titanium peroxide solution comprising: a curing step of curing an amorphous titanium peroxide solution after curing, and a concentration and purification step of, for example, an ultrafiltration-treated amorphous titanium peroxide solution.
  • a method for producing an amorphous titanium peroxide solution wherein the solid content of the titanium hydroxide gel is adjusted to 0.1% by weight or more and less than 1.2% by weight before the process, and an aqueous solution containing titanium and an aqueous solution containing basic titanium.
  • a peroxo-forming step of allowing peroxide to act on the cooled titanium hydroxide gel under cooling Manufacture of anatase-type titanium oxide sol consisting of a heating step of converting the titanium oxide solution into an anatase-type titanium oxide sol, and a concentration and purification step of the anatase-type titanium oxide sol generated by the heating step, for example, by ultrafiltration.
  • the present invention relates to a method for producing an anatase-type titanium oxide sol, wherein the solid content concentration of the titanium hydroxide gel is 0.1% by weight or more and less than 1.2% by weight after the washing step and before the peroxo-forming step.
  • the present invention provides a neutralization reaction means for reacting an aqueous solution containing titanium and a basic aqueous solution, a washing means for washing a titanium hydroxide gel produced by a neutralization reaction, and a solid content concentration of the titanium hydroxide gel after washing.
  • Peroxotification means consisting of a reaction tank equipped with, and amorphous titanium peroxide produced by the peroxotization reaction
  • An amorphous type titanium oxide solution production apparatus comprising a curing means for curing a solution and an ultrafiltration means, and in particular, adopting a closed system as a neutralization reaction means and a peroxo-forming means, wherein a closed system is employed.
  • Type Titanium peroxide solution manufacturing equipment neutralization reaction means for reacting aqueous solution containing titanium with basic substance, washing means for washing titanium hydroxide gel generated by neutralization reaction, water after washing A concentration adjusting means for adjusting the solid content concentration of the titanium oxide gel; a means for cooling the titanium oxide gel having a solid concentration adjusted by, for example, a heat exchanger (cooling); and a peroxide added to the cooled titanium hydroxide gel.
  • a peroxotization means consisting of a reaction tank equipped with a cooling device, for example, and an amorphous titanium peroxide produced by the peroxotation reaction
  • An apparatus for producing an anatase-type titanium oxide sol comprising: a curing means for curing a solution; a heating means for converting an amorphous titanium peroxide solution after curing to an anatase-type titanium oxide sol; and an ultrafiltration means.
  • the present invention relates to an apparatus for producing an anatase-type titanium oxide sol, which employs a closed system as a neutralization reaction means and a peroxo conversion means.
  • Examples of the raw materials used for producing the amorphous titanium peroxide solution according to the present invention include a titanium salt aqueous solution, an alkali hydroxide, a hydrogen peroxide solution, and pure water for dilution and washing, and preferably distilled water. be able to.
  • a titanium salt titanium tetrachloride which is a chloride is preferable.
  • the hydroxide include ammonia water and sodium hydroxide, and it is preferable to use ammonia water.
  • T i C 1 4 Four highly concentrated solution of titanium chloride T i C 1 4 is distilled 2 0-2 0 0 times - be used by diluting with water. If used at a concentration lower than 200-fold dilution, there is a problem that the volume of the reaction vessel for performing the neutralization reaction becomes large and the cost is increased. The temperature of the liquid may increase due to the heat of the reaction during the unification, and metatitanic acid insoluble in water may precipitate. In addition, since heat is generated when diluting, it is desirable to reduce the heat generation and perform dilution.
  • titanium hydroxide is formed and precipitated by a neutralization reaction between a titanium tetrachloride solution adjusted to a predetermined concentration and aqueous ammonia.
  • the precipitated titanium hydroxide is in a gel state due to polymerization of hydroxyl groups and hydrogen bonding.
  • the neutralization reaction is desirably carried out so that the pH is 6.0 to 7.5, preferably pH 6.8 to 7.0. If the pH is less than 6.0, a problem arises in that the amorphous titanium peroxide solution tends to be jelly-like, but this method is used for producing an amorphous titanium peroxide viscous body.
  • the reaction solution is left for a while after the neutralization reaction, and the supernatant is discarded by decantation.
  • This washing operation is repeated until the conductivity becomes 8 / XSZ cm or less.
  • a centrifugal separation process can be used instead of decantation. In such a washing operation, it is desirable to recover titanium hydroxide contained in the wastewater after washing.
  • a titanium hydroxide gel is separated using a centrifugal separator or a decanter, and the washing wastewater is collected in a single tank, mixed with the washing solution, and then discharged.
  • a method for recovering titanium by solid-liquid separation can be exemplified.
  • the titanium hydroxide After washing, the titanium hydroxide has a solid content concentration of 0.1% by weight or more and less than 1.2% by weight, preferably 0.3 to 1.0% by weight, particularly preferably 0.4% by weight. It is adjusted to. This concentration adjustment step is very important because it directly affects the physical properties such as the particle size of the amorphous titanium oxide sol and the titanium oxide sol which is the target product.
  • the solid concentration is 1.2% by weight or more, the temperature of the solution increases due to the heat of reaction in the next step of the peroxotification reaction, and the viscosity of the amorphous titanium peroxide solution increases.
  • the solid content is less than 1.2% by weight, and especially less than 1.0% by weight, the physical properties such as the particle size of the anatase-type titanium oxide sol
  • the lower limit is preferably at least 0.1% by weight, particularly preferably at least 0.3% by weight from the viewpoint of economic efficiency such as reaction efficiency.
  • the titanium hydroxide gel whose solid content concentration has been adjusted is cooled to 1 to 5 ° C by a heat exchanger or the like.
  • the titanium hydroxide gel freezes and becomes a substance that does not undergo a peroxidation reaction such as metatitanic acid, and at 5 ° C or higher, the reaction rate in peroxotification increases as the temperature of the solution increases. It becomes faster and the liquid temperature rises due to the heat of reaction.
  • the degree of polymerization of the amorphous titanium peroxide increases, and the viscosity of the solution increases, so that the produced amorphous titanium peroxide solution becomes difficult to coat, which is not preferable.
  • a titanium hydroxide gel adjusted to have a solid content of 0.1% by weight or more and less than 1.2% by weight, preferably 0.3% by weight or more and 1.0% by weight or less, particularly preferably 0.4% by weight.
  • Hydroperoxide solution is added to the mixture, and the mixture is stirred for about 12 hours while maintaining the temperature at 1 to 5 ° C to perform the peroxo-formation reaction.
  • the amount of the hydrogen peroxide solution to be added is determined by the pH after the neutralization reaction, the pH after the washing, and the solid content of the titanium hydroxide gel. For example, a hydrogen peroxide solution having a concentration of 35% by weight is used.
  • titanium hydroxide gel When used, in order to completely react the titanium hydroxide gel, it is necessary to add several times more than twice the amount of the raw material titanium tetrachloride solution (in terms of stock solution), for example, 1.25 times the amount. desirable. When the peroxidation reaction is completed, an amorphous titanium peroxide solution is generated.
  • the amorphous titanium peroxide solution after the completion of the peroxo-formation reaction is then subjected to a curing process.
  • the curing step is carried out by stirring the amorphous titanium peroxide solution generated by the peroxo-forming reaction for several days while maintaining the temperature at room temperature. Curing ends when the pH of the amorphous titanium peroxide solution becomes 6.0 or more.
  • This curing step is desirable for the purpose of completely terminating the peroxo-forming reaction and also for naturally decomposing the hydrogen peroxide solution added excessively during the reaction to neutralize the amorphous titanium peroxide solution. . (Concentration and purification of amorphous titanium peroxide solution)
  • the amorphous titanium peroxide solution that has undergone the curing step is concentrated by removing the miscellaneous ions by ultrafiltration. If the solution is treated with an ultrafilter, the temperature of the solution will increase. Therefore, it is preferable to perform the concentration while cooling. By the ultrafiltration treatment, an amorphous titanium peroxide solution having a solid content of 1.6 to 1.7% by weight can be obtained.
  • the anatase-type titanium oxide sol first has a solid content of 0.1% by weight or more and less than 1.2% by weight, preferably 0.3% by weight or more and 1.0% by weight or less, particularly preferably 0.3% by weight or less, after the curing step.
  • the amorphous titanium peroxide solution adjusted to 4% by weight is heated at a heating temperature of 100 to 200 ° C. for 1 to 20 hours, preferably at a solution temperature of 90 ° C. or higher and 100 ° C. It is prepared by heat treatment at C or lower for about 5 hours.
  • the crystal particle size of the anatase-type titanium oxide sol is easily increased, and the photocatalytic function is increased. May decrease. At lower concentrations By performing the heat treatment, the crystal particle size of the anatase-type titanium oxide sol becomes smaller, and the photocatalytic function is improved.
  • heated at 100 ° C for 8 hours a pale yellowish one with slightly suspended fluorescence is obtained.
  • heated at 100 ° C for 16 hours an extremely pale yellowish one is obtained.
  • the dry adhesion is slightly lower than that heated at 100 C for 5 hours.
  • the viscosity of this titanium oxide sol is lower than that of an amorphous titanium peroxide solution, so that in the case of a coating liquid having a low viscosity such as a dip coating, it may be up to 2.4% by weight. Use at a higher concentration.
  • the anatase-type titanium oxide sol produced by the above-mentioned heat treatment is subjected to ultrafiltration treatment to remove miscellaneous ions and to be concentrated.
  • ultrafiltration treatment an analog-type titanium oxide sol having a solid content of 2.3 to 2.4% by weight and a pH of 7.5 to 9.0 can be obtained.
  • FIGS. 1 and 2 As an apparatus for producing the amorphous titanium peroxide solution and the anatase titanium oxide sol, those shown in FIGS. 1 and 2 can be exemplified.
  • the open-type production equipment shown in Fig. 1 is used for the production of titanium salt solution such as titanium tetrachloride, aluminum hydroxide such as ammonium hydroxide, and peroxide such as hydrogen peroxide solution.
  • Neutralization reaction means consisting of raw material tanks 1 to 3, titanium tank solution and alkaline hydroxide dilution tanks 4 and 5, neutralization reaction tank 6 of titanium salt solution and alkali hydroxide, and neutralization
  • a washing means comprising a washing tank 7 by decantation of the reaction product; a cooling means comprising a heat exchanger (cooling) 8; a peroxo-forming means comprising a peroxo-forming reaction tank 9 having a cooling mechanism; and a peroxo-forming reaction product.
  • a curing means consisting of a curing tank 10 for a certain amorphous titanium peroxide solution, and an ultrafiltration device 11 consisting of an ultrafiltration device 11 for removing and condensing impurities in the amorphous titanium peroxide solution after curing Means, storage tank 12 of titanium oxide as the final product, heat exchanger (heating) 13, heat treatment for converting the amorphous titanium peroxide solution after curing into an analogous titanium oxide sol.
  • Heating means consisting of water bath 14; heat exchanger (cooling) 15 for stopping crystallization of anatase-type titanium oxide sol produced by heat treatment; Anathese-type oxidation produced by heat treatment It comprises an ultrafiltration means comprising an ultrafiltration device 16 for removing and concentrating miscellaneous ions in titanium sol, and a storage tank 17 for titanium oxide, which is the final product. Further, a centrifuge or an ultrafilter 18 may be used instead of the washing tank 7.
  • the production apparatus for the closed amorphous titanium oxide solution and the analytic titanium oxide sol shown in Fig. 2 uses a tubular mixing mixer, for example, a static mixer (manufactured by Noritake Co.), as a raw material liquid. It is characterized in that it employs a closed system that replaces the mixing tank ⁇ , washing tank, neutralization reaction tank, and peroxotification reaction tank. An example of the production of a titanium solution and an anatase type titanium oxide is shown.
  • the titanium salt aqueous solution from the raw material tank 21 of the titanium salt aqueous solution is mixed with the distilled water from the diluting distilled water storage tank 23 equipped with the distilled water producing device 22. Mix and dilute with Mixer 24.
  • the diluent concentration is adjusted by a flow control valve 25 provided downstream of each tank.
  • the mixing hydroxide 27 from the alkali hydroxide hydroxide raw material tank 26 and the distilled water from the diluting distilled water storage tank 23 are mixed and diluted by the mixing mixer 27.
  • the concentration of the diluent is adjusted by the flow control valve 25 provided downstream of each tank.
  • the diluted titanium salt aqueous solution and the diluted alkali hydroxide were mixed at a desired ratio by a flow rate control device 28, and a neutralization reaction was performed by a mixing mixer 29 provided downstream thereof.
  • the pH is measured by a pH measuring device 30 and the measured value is fed back to the flow control device 28.
  • Titanium hydroxide which is the product of the neutralization reaction, is then introduced into a washing water inlet pipe at the top and a drain pipe in the middle, into a sinker 31 equipped with a liquid level gauge and a solenoid valve. Then, decantation cleaning is performed. Decanting is performed by mixing the mixing mixer provided downstream of the thickener 31 by introducing washing water from the washing distilled water storage tank 33 through the washing water introduction pipe and discharging the washing wastewater from the drain pipe. After the stirring by 2, the measurement is automatically repeated until the measured value by the conductivity measuring device 34 becomes a specific value.
  • the washing wastewater is collected in a reslurry tank 35, and the titanium hydroxide obtained by solid-liquid separation is combined with the titanium hydroxide after washing.
  • the solid content of titanium is measured by a solid content (or specific gravity) measuring instrument 36 provided downstream of the titanium, and distilled water is added according to the measured value to obtain the desired solid content. .
  • the peroxide from the storage tank 37 of peroxide such as aqueous hydrogen peroxide and the titanium hydroxide having the above-mentioned desired solid concentration are mixed with a cooling mechanism prior to mixing.
  • the mixture is mixed with a mixer 38 to perform a peroxo-formation reaction.
  • the peroxotized reaction product is stirred and aged in a reaction aging tank 39. It is desirable that the peroxo conversion reaction be performed at 1 to 5 ° C.
  • the amorphous titanium peroxide solution which is a peroxidation reaction product after aging, is then cured in a curing tank 40 at room temperature for several days. Curing can be carried out even at low temperatures, but it takes time, so it is preferable to carry out curing at room temperature.
  • the amorphous titanium peroxide solution is purified and concentrated by an ultrafiltration device 42 having an ultrafilter 41 and a mixing mixer 38 with a cooling mechanism. Purification and concentration by the ultrafiltration unit 42 circulates the material to be processed several tens of times in Z minutes, removing wastewater from the ultrafiltration unit 41 in the circulation process, and adding distilled water to that amount. I do.
  • the amorphous titanium peroxide solution is filtered by a filter 43 to remove impurities, and then, for example, as a 1.7% by weight amorphous titanium peroxide solution in a product storage tank 44. Stored below 15 ° C.
  • FIG. 1 is a schematic illustration of an apparatus for producing an open-type amorphous titanium peroxide solution and an analog-type titanium oxide sol.
  • FIG. 2 is a schematic illustration of a production apparatus for a closed type amorphous titanium oxide solution and an analytic titanium oxide sol. -Best mode for carrying out the invention
  • Example 1 Open-type manufacturing apparatus
  • Titanium hydroxide gel of color 6 10 L was cooled to 3 ° C, and 24 L of 35% hydrogen peroxide solution (manufactured by Nippon Peroxysite Co., Ltd.) was added twice every 30 minutes. After stirring and aging at about 5 ° C overnight, about 640 L of a yellow transparent amorphous titanium peroxide solution was obtained. This amorphous titanium peroxide solution was cured while stirring in a curing tank 9 at room temperature for 4 days to prepare an amorphous titanium peroxide solution having a solid concentration of 1.0% by weight.
  • an ultrafiltration apparatus 10 manufactured by Nippon Nishui Co., Ltd. was used to prevent the temperature of the solution from rising by 20 °. While cooling to C, distilled water was added to the solution until the conductivity of the waste water from the ultrafilter became 2 S / cm. By this ultrafiltration treatment, 250 L of the desired amorphous titanium peroxide solution having a solid content of 1.7% by weight and a pH of 6.5 was obtained.
  • the amorphous titanium peroxide solution having a solid content of 1.0% by weight was heated in a heat treatment tank 12 at 100 ° C. for 6 hours in a warm bath, and then heated.
  • a titanium sol was obtained.
  • the anatase-type titanium oxide sol produced by the above-mentioned heat treatment is subjected to ultrafiltration by an ultrafiltration device 13 until the conductivity becomes 2 SZ cm or less, thereby removing contaminating ions and being concentrated.
  • Example 2 [Closed-type manufacturing apparatus] was obtained, which was a target titanium oxide sol having a solid content of 2.3 to 2.4% by weight, a pH of 7.8, and a particle size of 8 to 20 nm. ]
  • 50% titanium tetrachloride solution (Sumitomo Citix Co., Ltd.) was 1. O four and titanium chloride aqueous solution from the raw material tank 2 1 m 3, 3. 2 O m 3 dilution of distilled water storage tank with distilled water production system 2 2 having a production capacity of 2 m 3 / h The distilled water from 23 was mixed and diluted by a mixing mixer 24, and adjusted to 70 times the dilution. Similarly, the hydroxide Anmoniumu solution from the raw material tank 2 6 1.
  • a flow control device 28 An equal amount of the diluted titanium salt aqueous solution and the diluted alkaline hydroxide were mixed by a flow control device 28, and a neutralization reaction was performed by a mixing mixer 29 provided downstream thereof. .
  • the flow rate in the mixing mixer 29 was approximately 180 kgZh.
  • the mixing ratio of the flow control device 28 was controlled at pH 6.9 ⁇ 0.2 by controlling each inflow rate based on the measured value of the pH meter 30.
  • the titanium hydroxide gel is an automated thickener 31 that combines a liquid level gauge and a solenoid valve, and has a mixing mixer 32 and a distilled water storage tank 33 for washing. It was washed by a washing mechanism. Washing was performed by adding 9 times the amount of distilled water for washing to the titanium hydroxide gel in the thickener 31 until the value measured by the conductivity measuring device 34 became 8 SZcm. The washing wastewater in the thickener 31 was collected in a reslurry tank 35, and the titanium hydroxide obtained by solid-liquid separation was combined with the washed titanium hydroxide. The washed titanium hydroxide gel was adjusted to a solid content concentration of 0.7% by weight with distilled water using a solid content concentration measuring device 36.
  • the cured amorphous titanium peroxide solution was purified and concentrated by an ultrafiltration device 42 equipped with an ultrafilter 41. Purification and concentration by ultrafiltration unit 4 2 0. Circulates 8 3 m 3 / h of processing speed, and at the same time to remove waste water from the ultrafilter 4 1 in the circulation process, and Ho ⁇ the amount of distilled water The operation was performed until the conductivity of the waste water from the ultrafilter 41 became 2 / cm. After the ultrafiltration treatment, the amorphous titanium peroxide solution is filtered through a filter 43 to remove contaminants, and then a 1.7 wt% solids concentration, pH 6.2 ammonium peroxide peroxide solution. A titanium solution was obtained. This amorphous titanium peroxide solution is stored at 15 ° C. or lower in the product storage tank 44.
  • the cured amorphous titanium peroxide solution is converted to an anatase-type titanium oxide sol by heating at 100 ° C. for 5 hours in a container 46 with a heating device via a mixing mixer 45 with a heating mechanism.
  • the anatase-type titanium oxide sol after the filtration was subjected to an ultrafiltration treatment using an ultrafiltration device 47 in the same manner as the above amorphous titanium peroxide solution.
  • the anatase-type titanium oxide sol that has been subjected to ultrafiltration is filtered to remove impurities, and then has a solid concentration of 2.4% by weight, a pH of 8.2, and a particle size of 8 to 20 nm. It is stored as a type titanium oxide sol in a product storage tank 48 at 15 ° C or less.
  • the amorphous titanium peroxide solution or the anatase type titanium oxide sol does not have a large crystal, does not have a danger due to heat generation, and the yield does not decrease. It can be produced at the actual production level of analytic and titanium oxide sol.

Abstract

In the production of an amorphous titanium peroxide solution which comprising subjecting an aqueous solution containing titanium to a neutralization reaction with a basic substance, to form a titanium hydroxide gel, washing the gel followed by cooling, reacting the gel with a peroxide to form an amorphous titanium peroxide solution, allowing to stand for aging, concentrating and purifying, and, in the production of an anatase titanium oxide sol which comprises heating the solution after the aforementioned aging to thereby convert it to an anatase titanium oxide sol, and concentrating and purifying the resultant anatase titanium oxide sol, the improvement comprising adjusting the concentration of solids in the above titanium hydroxide gel after washing to 0.2 wt.% or more and less than 1.5 wt.%. The improvement provides a practical process for producing an amorphous titanium peroxide solution and an anatase titanium oxide sol which are homogeneous and have excellent quality.

Description

明 細 書 -  Specification -
ァモルファス型過酸化チタン溶液及びアナ夕一ゼ型酸化チタンゾルの 製造法 ― Preparation of Amorphous Titanium Peroxide Solution and Analytic Titanium Oxide Sol
技術分野 Technical field
この発明は、 密着性に優れ、 成膜性が高く、 均一でフラッ トな薄膜を 作成することができ、 かつ、 乾燥被膜は水に溶けないという性質を有し、 各種材料の保護被膜、 光触媒、 紫外線カッ ト被膜、 着色コーティ ングな どとして有用であることが知られているアモルファス型過酸化チタン溶 液の新規製造法、 特に工業レベルでの製造法や製造装置に関する。 また この発明は、 アモルファス型過酸化チタン溶液から調製される光触媒能 に優れたアナターゼ型酸化チタンゾルの新規製造法、 特に工業レベルで の製造法や製造装置に関する。  INDUSTRIAL APPLICABILITY The present invention has excellent adhesiveness, high film forming property, can form a uniform and flat thin film, and has a property that a dry film is insoluble in water. The present invention relates to a novel production method of an amorphous titanium peroxide solution, which is known to be useful as an ultraviolet cut coating, a coloring coating, etc., and particularly to a production method and a production apparatus at an industrial level. The present invention also relates to a novel method for producing an anatase-type titanium oxide sol having excellent photocatalytic ability prepared from an amorphous-type titanium peroxide solution, and particularly to a production method and a production apparatus at an industrial level.
背景技術 Background art
最近、 光触媒を用いて、 日常の生活環境で生じる有害物質、 悪臭成分、 油分などを分解 · 浄化したり、 殺菌したりする試みがあり、 光触媒の適 用範囲が急速に拡大している。 これに伴い、 光触媒粒子をあらゆる基体 上に、 その光触媒機能を損なわせることなく、 強固に、 かつ、 長期間に わたって担持させる方法が求められている。 特に、 光触媒機能に優れた アナターゼ型酸化チタンゾルを光触媒として使用する場合、 基体へのバ ィンダ一機能が弱いことから、その付着性の改良が特に求められていた。  Recently, there have been attempts to use photocatalysts to decompose, purify, and sterilize harmful substances, odorous components, oils, and other substances that occur in daily living environments, and the application range of photocatalysts is expanding rapidly. Accordingly, there is a demand for a method for supporting photocatalyst particles on any substrate firmly and for a long period of time without impairing the photocatalytic function. In particular, when an anatase-type titanium oxide sol having excellent photocatalytic function is used as a photocatalyst, improvement of its adhesiveness has been particularly demanded because the binder function to the substrate is weak.
しかしながら、 前記の従来技術の方法では、 接着強度が十分ではなく、 長期間にわたって坦持することができるものが少なく、 接着強度を高め 長期間坦持できるものを作ろうとすると、 逆に光触媒機能が低下すると いう問題があった。 有機高分子樹脂からなる基体を用いる場合において は、 アナターゼ型に比べてその光触媒機能が弱いといわれているルチル 型の酸化チタンであっても、 光触媒反応が進行し、 有機高分子樹脂自体 の光化学反応と相俟って、 長期間の使用により劣化分解するという^題 があった。 また、 基体として有機高分子系樹脂を使用する場合には、 シ リカゾル等であらかじめコ一ティ ングすることが考えられていたが、 シ リカゾルの凝集 · 乾燥の過程で割れや空孔が発生し、 バインダーとして の性能上機能上問題があった。 However, in the method of the above-mentioned prior art, the adhesive strength is not sufficient, and there are few materials that can be supported for a long period of time. When it drops There was a problem. When a substrate made of an organic polymer resin is used, even if it is rutile-type titanium oxide, whose photocatalytic function is said to be weaker than the anatase type, the photocatalytic reaction proceeds, and the photochemical reaction of the organic polymer resin itself occurs. Combined with the reaction, there is a problem that it is degraded and decomposed over a long period of use. When an organic polymer resin is used as the substrate, coating with silica sol or the like has been considered in advance.However, cracks and voids are generated in the process of aggregation and drying of silica sol. However, there was a problem in performance as a binder and in function.
そして、 光触媒粒子をあらゆる基体上に、 その光触媒機能を損なわせ ることなく、 強固に、 かつ、 長期間にわたって担持させる方法について 探索した結果、特開平 9 - 2 6 2 4 8 1号公報に記載されているように、 光触媒能を有しないアモルファス型過酸化チタン溶液をバインダ一とし て使用すると、 光触媒粒子をあらゆる基体上に、 その光触媒機能を損な わせることなく、 強固に、 かつ、 長期間にわたって担持させることがで きることが本発明者らによって見い出された。  As a result of a search for a method for supporting photocatalyst particles on all substrates firmly and for a long period of time without impairing the photocatalytic function, the results are described in Japanese Patent Application Laid-Open No. 9-246248. As described above, when an amorphous titanium peroxide solution having no photocatalytic ability is used as a binder, the photocatalyst particles can be firmly and long-lasting on any substrate without impairing the photocatalytic function. It has been found by the inventors that they can be loaded over a period of time.
そして上記アモルファス型過酸化チタン溶液やアモルファス型過酸化 チタン溶液から作られる光触媒能を有するアナ夕一ゼ型酸化チタンゾル については、 特開平 9 一 7 1 4 1 8号公報にその製造法が開示されてい る。 すなわち、 同公報には、 本発明にかかるアモルファス型過酸化チタ ン溶液の製法として、 原料として四塩化チタン 6 0 %溶液 5 c c を蒸留 水で 5 0 0 c c とした溶液にアンモニア水 ( 1 : 9 ) を滴下し、 水酸化 チタンを沈殿させ、 蒸留水で洗浄後、 過酸化水素水 3 0 %溶液を 1 0 c c加えかき混ぜ、 チタンを含む黄色粘性溶液 (アモルファス型過酸化チ 夕ン溶液) 7 0 c c を作製することが記載されている。 また同公報には、 このアモルファス型過酸化チタン溶液を 8 0 °C以上で加熱すると本発明 にかかるアナターゼ型酸化チタンゾルが得られることが記載されている, また、 本発明者らによる上記特開平 9 - 2 6 2 4 8 1号公報にも、 本 発明にかかるアモルファス型過酸化チタン溶液の製法として、 四塩化チ タンのようなチタン塩水溶液に、 アンモニア水ないし水酸化ナトリウム のような水酸化アルカリを加え、 生じる淡青味白色、 無定形の水酸—化チ タンを洗浄 ' 分離後、 過酸化水素水で処理し、 p H 6 . 0〜 7 . 0、 粒 子径 8〜 2 0 n mの黄色透明の液体であるァモルファス型過酸化チタン 溶液が得られることが記載されている。 そして同公報には、 ァモルファ ス型過酸化チタン溶液を 1 0 0 °C以上の温度で加熱することによりアナ タ一ゼ型酸化チタンゾルが製造できることも記載されている。 For the above-mentioned amorphous titanium peroxide solution and an analog-type titanium oxide sol having a photocatalytic activity produced from the amorphous titanium peroxide solution, a method for producing the same is disclosed in Japanese Patent Application Laid-Open No. Hei 9-171418. ing. That is, in the same publication, as a method for producing an amorphous titanium peroxide solution according to the present invention, ammonia water (1: 5) was prepared by distilling 5 cc of a 60% titanium tetrachloride solution into 500 cc of distilled water as a raw material. 9) was added dropwise to precipitate titanium hydroxide. After washing with distilled water, 10 cc of a 30% solution of hydrogen peroxide was added and stirred. A yellow viscous solution containing titanium (amorphous titanium peroxide solution) was added. It is described to produce 70 cc. The publication also states that heating this amorphous titanium peroxide solution at 80 ° C. or higher gives an anatase-type titanium oxide sol according to the present invention. Also, in the above-mentioned Japanese Patent Application Laid-Open No. 9-246248, the inventors of the present invention also disclose, as a method for producing an amorphous titanium peroxide solution according to the present invention, an aqueous solution of a titanium salt such as titanium tetrachloride, Water or an alkali hydroxide such as sodium hydroxide is added, and the resulting pale bluish white, amorphous titanium hydroxide is washed, separated, treated with a hydrogen peroxide solution, and pH 6.0 to 7.0. It is described that an amorphous titanium peroxide solution which is a yellow transparent liquid having a particle diameter of 8 to 20 nm can be obtained. The publication also describes that an anatase-type titanium oxide sol can be produced by heating an amorphous titanium peroxide solution at a temperature of 100 ° C. or more.
発明の開示 Disclosure of the invention
しかしながら、 上記公報に記載されたアモルファス型過酸化チタン溶 液やアナターゼ型酸化チタンゾルの製造条件は、 実験室レベルでのもの であり、 工場規模でのものではなく、 小規模生産においては適用できる が、 大規模に生産しょうとすると、 工程上の反応発熱により、 アナ夕一 ゼ型過酸化チタンゾルの結晶粒子が大きくなつたり、 不純物が析出して くるなどの問題点があることがわかった。 本発明の課題は、 これら問題 を解決した、 アモルファス型過酸化チタン溶液やアナ夕一ゼ型酸化チタ ンゾルの実生産レベルでの製造方法を提供することにある。  However, the production conditions for the amorphous titanium peroxide solution and the anatase titanium oxide sol described in the above publication are laboratory-level, not factory-scale, but applicable to small-scale production. However, it was found that large-scale production caused problems such as the increase in the crystal size of the analog titanium oxide sol and the precipitation of impurities due to the heat generated during the process. An object of the present invention is to provide a method for producing an amorphous titanium peroxide solution or an analog-type titanium oxide sol at an actual production level, which solves these problems.
本発明者らは、 上記課題を解決すべく鋭意研究し、 四塩化チタン溶液 とアンモニア水との中和反応の生成物である水酸化チタンゲルの固形分 濃度を低く して、 以後の過酸化水素水によるペルォキソ化反応を行うこ とにより上記課題が解決しうることを見出し、 本発明を完成するに至つ た。  Means for Solving the Problems The present inventors conducted intensive research to solve the above-mentioned problems, and reduced the solid concentration of titanium hydroxide gel, which is a product of the neutralization reaction between titanium tetrachloride solution and aqueous ammonia, to reduce the subsequent hydrogen peroxide concentration. The present inventors have found that the above problem can be solved by performing a peroxo-formation reaction with water, and have completed the present invention.
すなわち本発明は、 チタンを含む水溶液と塩基性水溶液とを反応させ る中和工程と、 中和反応により生成した水酸化チタンゲルを洗浄する洗 浄工程と、 洗浄後の水酸化チタンゲルを冷却する工程と、 冷却後の水酸 化チタンゲルに過酸化物を冷却下で作用させるペルォキソ化工程と、 ぺ ルォキソ化により生成したアモルファス型過酸化チタン溶液を養生する 養生工程と、 養生後のァモルファス型過酸化チタン溶液の例えば限外濾 過処理による濃縮 · 精製工程とからなる、 アモルファス型過酸化チタン 溶液を製造する方法において、 洗浄工程後でペルォキソ化工程前に水酸 化チタンゲルの固形分濃度を 0 . 1重量%以上 1 . 2重量%未満とする ことを特徴とするアモルファス型過酸化チタン溶液の製造法や、 チタン を含む水溶液と塩基性水溶液とを反応させる中和工程と、 中和反応によ り生成した水酸化チタンゲルを洗浄する洗浄工程と、 洗浄後の水酸化チ 夕ンゲルを冷却する工程と、 冷却後の水酸化チタンゲルに過酸化物を冷 却下で作用させるペルォキソ化工程と、 ペルォキソ化により生成したァ モルファス型過酸化チタン溶液を養生する養生工程と、 養生後のァモル ファス型過酸化チタン溶液をアナタ一ゼ型酸化チタンゾルに変換する加 熱工程と、 加熱工程により生成したアナターゼ型酸化チタンゾルの例え ば限外濾過処理による濃縮 · 精製工程とからなる、 アナターゼ型酸化チ タンゾルを製造する方法において、 洗浄工程後でペルォキソ化工程前に 水酸化チタンゲルの固形分濃度を 0 . 1重量%以上 1 . 2重量%未満と することを特徴とするアナターゼ型酸化チタンゾルの製造法に関する。 That is, the present invention provides a neutralization step of reacting an aqueous solution containing titanium and a basic aqueous solution, and a washing step of washing a titanium hydroxide gel generated by the neutralization reaction. Cleaning step, cooling the washed titanium hydroxide gel, peroxidation step of allowing peroxide to act on the cooled titanium hydroxide gel under cooling, and ぺ an amorphous titanium peroxide solution generated by the oxo treatment. A method of producing an amorphous titanium peroxide solution, comprising: a curing step of curing an amorphous titanium peroxide solution after curing, and a concentration and purification step of, for example, an ultrafiltration-treated amorphous titanium peroxide solution. A method for producing an amorphous titanium peroxide solution, wherein the solid content of the titanium hydroxide gel is adjusted to 0.1% by weight or more and less than 1.2% by weight before the process, and an aqueous solution containing titanium and an aqueous solution containing basic titanium. A washing step of washing the titanium hydroxide gel generated by the neutralization reaction, and cooling the washed hydroxide gel. A peroxo-forming step of allowing peroxide to act on the cooled titanium hydroxide gel under cooling; Manufacture of anatase-type titanium oxide sol consisting of a heating step of converting the titanium oxide solution into an anatase-type titanium oxide sol, and a concentration and purification step of the anatase-type titanium oxide sol generated by the heating step, for example, by ultrafiltration. The present invention relates to a method for producing an anatase-type titanium oxide sol, wherein the solid content concentration of the titanium hydroxide gel is 0.1% by weight or more and less than 1.2% by weight after the washing step and before the peroxo-forming step.
また本発明は、 チタンを含む水溶液と塩基性水溶液とを反応させる中 和反応手段と、 中和反応により生成した水酸化チタンゲルを洗浄するに 洗浄手段と、 洗浄後の水酸化チタンゲルの固形分濃度を調整する濃度調 整手段と、 例えば熱交換機 (冷却) からなる固形分濃度が調整された水 酸化チタンゲルを冷却する手段と、 冷却された水酸化チタンゲルに過酸 化物を作用させる例えば冷却装置を備えた反応槽からなるペルォキソ化 手段と、 ペルォキソ化反応により生成したアモルファス型過酸化チタン 溶液を養生する養生手段と、 限外濾過手段とを備えたアモルファス型過 酸化チタン溶液の製造装置、 特に中和反応手段及びペルォキソ化手段と して、 クローズドシステムを採用することを特徴とするアモルファス型 過酸化チタン溶液の製造装置や、 チタンを含む水溶液と塩基性物質-とを 反応させる中和反応手段と、 中和反応により生成した水酸化チタンゲル を洗浄するに洗浄手段と、 洗浄後の水酸化チタンゲルの固形分濃度を調 整する濃度調整手段と、 例えば熱交換機 (冷却) からなる固形分濃度が 調整された水酸化チタンゲルを冷却する手段と、 冷却された水酸化チタ ンゲルに過酸化物を作用させる例えば冷却装置を備えた反応槽からなる ペルォキソ化手段と、 ペルォキソ化反応により生成したアモルファス型 過酸化チタン溶液を養生する養生手段と、 養生後のアモルファス型過酸 化チタン溶液をアナターゼ型酸化チタンゾルに変換する加熱手段と、 限 外濾過手段とを備えたアナ夕一ゼ型酸化チタンゾルの製造装置、 特に中 和反応手段及びペルォキソ化手段として、 クローズドシステムを採用す ることを特徴とするアナ夕ーゼ型酸化チタンゾルの製造装置に関する。 Further, the present invention provides a neutralization reaction means for reacting an aqueous solution containing titanium and a basic aqueous solution, a washing means for washing a titanium hydroxide gel produced by a neutralization reaction, and a solid content concentration of the titanium hydroxide gel after washing. A concentration adjusting means for adjusting the temperature, a means for cooling the titanium hydroxide gel having a solid concentration adjusted by, for example, a heat exchanger (cooling), and a cooling device for allowing a peroxide to act on the cooled titanium hydroxide gel. Peroxotification means consisting of a reaction tank equipped with, and amorphous titanium peroxide produced by the peroxotization reaction An amorphous type titanium oxide solution production apparatus comprising a curing means for curing a solution and an ultrafiltration means, and in particular, adopting a closed system as a neutralization reaction means and a peroxo-forming means, wherein a closed system is employed. Type Titanium peroxide solution manufacturing equipment, neutralization reaction means for reacting aqueous solution containing titanium with basic substance, washing means for washing titanium hydroxide gel generated by neutralization reaction, water after washing A concentration adjusting means for adjusting the solid content concentration of the titanium oxide gel; a means for cooling the titanium oxide gel having a solid concentration adjusted by, for example, a heat exchanger (cooling); and a peroxide added to the cooled titanium hydroxide gel. A peroxotization means consisting of a reaction tank equipped with a cooling device, for example, and an amorphous titanium peroxide produced by the peroxotation reaction An apparatus for producing an anatase-type titanium oxide sol comprising: a curing means for curing a solution; a heating means for converting an amorphous titanium peroxide solution after curing to an anatase-type titanium oxide sol; and an ultrafiltration means. The present invention relates to an apparatus for producing an anatase-type titanium oxide sol, which employs a closed system as a neutralization reaction means and a peroxo conversion means.
(原材料) (Raw materials)
本発明にかかるアモルファス型過酸化チタン溶液の製造に用いられる 原料としては、 チタン塩水溶液、 水酸化アルカリ、 過酸化水素水、 及び 希釈用 · 洗浄用等としての純水、 好ましくは蒸留水を挙げることができ る。 チタン塩としては塩化物である四塩化チタンが好ましい。 また、 水 酸化アル力リ としてはアンモニア水や水酸化ナトリゥムを例示すること ができるが、 アンモニア水を用いることが好ましい。 水酸化ナトリウム 水溶液を使用した場合、 これで製造したアモルファス型過酸化チタン溶 液及びアナタ一ゼ型酸化チタンゾル中に N aイオンが残りやすく、 これ らを造膜したとき光触媒機能を阻害するチタン酸ソ一ダという不純物質 ができる。 - (希釈工程) Examples of the raw materials used for producing the amorphous titanium peroxide solution according to the present invention include a titanium salt aqueous solution, an alkali hydroxide, a hydrogen peroxide solution, and pure water for dilution and washing, and preferably distilled water. be able to. As the titanium salt, titanium tetrachloride which is a chloride is preferable. Examples of the hydroxide include ammonia water and sodium hydroxide, and it is preferable to use ammonia water. When an aqueous solution of sodium hydroxide is used, Na ions tend to remain in the amorphous titanium peroxide solution and the anatase-type titanium oxide sol thus produced, and when these are formed into a film, titanic acid which inhibits the photocatalytic function is formed. Impurity called soda Can be. -(Dilution process)
四塩化チタン T i C 1 4の高濃度溶液は、 2 0〜2 0 0倍に蒸留—水で 希釈して使用する。 2 0 0倍希釈より低濃度で用いると、 中和反応を行 う反応容器の容積が大きくなりコストアップとなるという問題があり、 1 . 5重量%ょり高濃度で用いるとアンモニア水で中和するときの反応 熱により液の温度が上昇し、 水に不溶のメタチタン酸が析出する可能性 がある。 また、 希釈する際にも発熱するので発熱を抑えて希釈すること が望ましい。 Four highly concentrated solution of titanium chloride T i C 1 4 is distilled 2 0-2 0 0 times - be used by diluting with water. If used at a concentration lower than 200-fold dilution, there is a problem that the volume of the reaction vessel for performing the neutralization reaction becomes large and the cost is increased. The temperature of the liquid may increase due to the heat of the reaction during the unification, and metatitanic acid insoluble in water may precipitate. In addition, since heat is generated when diluting, it is desirable to reduce the heat generation and perform dilution.
(中和反応) (Neutralization reaction)
次いで所定濃度に調整された四塩化チタン溶液とアンモニア水との中 和反応により水酸化チタンを生成 · 沈殿させる。 沈殿した水酸化チタン は、 水酸基同士の重合や水素結合によりゲル状態となっている。 中和反 応は、 p Hが 6 . 0〜7 . 5、 好ましくは p H 6 . 8〜7 . 0になるよ うに行うことが望ましい。 p Hが 6 . 0未満であるとアモルファス型過 酸化チタン溶液がゼリ一状になりやすいという問題が生じるが、 ァモル ファス型過酸化チタン粘稠体の製造にはこの方法を使用する。 また、 P Hが 7 . 5を越えると純水洗浄時に洗浄を繰り返し行うと早くアルカリ 性側になり、 析出した水酸化チタンが再溶解して収率が下がるという問 題が生じる。 さらに、 この中和反応は、 1〜 5 °Cの低温で反応させると 重合度が低くなり成膜時の膜密度が上がる。 中和反応に際しては、 四塩 化チタン溶液にアンモニア水を攪拌しながら少量ずつ添加することが好 ましい。 (洗浄) - 生成 · 沈殿した水酸化チタンゲルから、 未反応の原料や C 1 —イオン や N H 4 +イオン生成物である塩化アンモニゥムを取り除くために、 蒸 留水を用いて反応物を洗浄する。 まず、 中和反応後しばらく放置し—てか ら上澄液をデカンテーシヨンにより捨てる。 次いで、 残った水酸化チタ ンゲル (導電率 ; 約 4 0, 0 0 0 x S / c m ) の約 4〜 1 0倍量の蒸留 水を加え充分に攪拌してから放置し、 上澄み液をデカンテーショ ンによ り捨てる。 この洗浄操作を、 導電率が 8 /X S Z c m以下となるまで繰り 返す。 また、 この水酸化チタンの洗浄操作において、 デカンテ一シヨン に代えて遠心分離処理を利用することもできる。 そして、 かかる洗浄操 作においては、 洗浄後の排水中に含まれる水酸化チタンを回収すること が望ましい。 この水酸化チタンを回収する方法としては、 洗浄の最初か ら遠心分離機又はデカンター装置を使用して水酸化チタンゲルを分離し 洗浄排液をリスラリ一槽に集めて洗浄液に混じって流出する水酸化チタ ンを固液分離により回収する方法を例示することができる。 Next, titanium hydroxide is formed and precipitated by a neutralization reaction between a titanium tetrachloride solution adjusted to a predetermined concentration and aqueous ammonia. The precipitated titanium hydroxide is in a gel state due to polymerization of hydroxyl groups and hydrogen bonding. The neutralization reaction is desirably carried out so that the pH is 6.0 to 7.5, preferably pH 6.8 to 7.0. If the pH is less than 6.0, a problem arises in that the amorphous titanium peroxide solution tends to be jelly-like, but this method is used for producing an amorphous titanium peroxide viscous body. On the other hand, when the pH exceeds 7.5, repeated washing during washing with pure water becomes alkaline sooner, and the precipitated titanium hydroxide is re-dissolved to lower the yield. Furthermore, in the neutralization reaction, when the reaction is performed at a low temperature of 1 to 5 ° C., the degree of polymerization is reduced, and the film density during film formation is increased. In the neutralization reaction, it is preferable to add aqueous ammonia little by little to the titanium tetrachloride solution with stirring. (Washing)-Production · Wash the reaction product with distilled water to remove unreacted raw materials and ammonium chloride, which is a product of C 1 — ion and NH 4 + ion, from the precipitated titanium hydroxide gel. First, the reaction solution is left for a while after the neutralization reaction, and the supernatant is discarded by decantation. Next, add about 4 to 10 times the amount of distilled water of the remaining titanium hydroxide gel (conductivity; about 40,000 x S / cm), stir well, leave to stand, and decant the supernatant. Throw away. This washing operation is repeated until the conductivity becomes 8 / XSZ cm or less. In the washing operation of titanium hydroxide, a centrifugal separation process can be used instead of decantation. In such a washing operation, it is desirable to recover titanium hydroxide contained in the wastewater after washing. As a method for recovering the titanium hydroxide, from the beginning of the washing, a titanium hydroxide gel is separated using a centrifugal separator or a decanter, and the washing wastewater is collected in a single tank, mixed with the washing solution, and then discharged. A method for recovering titanium by solid-liquid separation can be exemplified.
(固形分濃度調整) (Solid content adjustment)
洗浄の終わった水酸化チタンは、脱水により固形分濃度は 0 . 1重量% 以上 1 . 2重量%未満、 好ましくは 0 . 3〜 1 . 0重量%、 特に好まし くは 0 . 4重量%に調整される。 この濃度調整工程は、 目的生産物であ るアモルファス型過酸化チタン溶液やアナ夕ーゼ型酸化チタンゾルの粒 子の大きさなどの物性に直接影響することから非常に重要である。 固形 分濃度が 1 . 2重量%以上であると、 次工程であるペルォキソ化反応に おいて反応熱で溶液の温度が上昇し、 アモルファス型過酸化チタン溶液 の粘度が高くなる。 このように、 固形分濃度は 1 . 2重量%未満、 特に 1 . 0重量以下であればアナタ一ゼ型酸化チタンゾルの粒子径等の物性 の点から特に問題はないが、反応効率等の経済的一な面からその下限は 0 . 1重量%以上、 特に 0 . 3重量%以上が好ましい。 After washing, the titanium hydroxide has a solid content concentration of 0.1% by weight or more and less than 1.2% by weight, preferably 0.3 to 1.0% by weight, particularly preferably 0.4% by weight. It is adjusted to. This concentration adjustment step is very important because it directly affects the physical properties such as the particle size of the amorphous titanium oxide sol and the titanium oxide sol which is the target product. When the solid concentration is 1.2% by weight or more, the temperature of the solution increases due to the heat of reaction in the next step of the peroxotification reaction, and the viscosity of the amorphous titanium peroxide solution increases. As described above, if the solid content is less than 1.2% by weight, and especially less than 1.0% by weight, the physical properties such as the particle size of the anatase-type titanium oxide sol However, the lower limit is preferably at least 0.1% by weight, particularly preferably at least 0.3% by weight from the viewpoint of economic efficiency such as reaction efficiency.
(冷却) ― 固形分濃度調整の終わった水酸化チタンゲルは、 熱交換機等により 1 〜 5 °Cに冷却される。 例えば、 0 °C以下に冷却すると水酸化チタンゲル が凍り、 メタチタン酸等の過酸化反応をしない物質になり、 また、 5 °C 以上になると溶液の温度が上昇するにしたがってペルォキソ化における 反応速度が速くなり、 反応熱により液の温度が上昇してくる。 そのため アモルファス型過酸化チタンの重合度が進み、溶液の粘度が高くなつて、 製造されたアモルファス型過酸化チタン溶液がコーティ ングしにくいも のとなり、 好ましくない。 (Cooling)-The titanium hydroxide gel whose solid content concentration has been adjusted is cooled to 1 to 5 ° C by a heat exchanger or the like. For example, when cooled to 0 ° C or lower, the titanium hydroxide gel freezes and becomes a substance that does not undergo a peroxidation reaction such as metatitanic acid, and at 5 ° C or higher, the reaction rate in peroxotification increases as the temperature of the solution increases. It becomes faster and the liquid temperature rises due to the heat of reaction. As a result, the degree of polymerization of the amorphous titanium peroxide increases, and the viscosity of the solution increases, so that the produced amorphous titanium peroxide solution becomes difficult to coat, which is not preferable.
(ペルォキソ化) (Peroxo)
次に、 固形分濃度 0 . 1重量%以上 1 . 2重量%未満、 好ましくは 0 . 3重量%以上 1 . 0重量%以下、 特に好ましくは 0 . 4重量%に調整さ れた水酸化チタンゲルに過酸化水素水を加えて、 温度 1〜 5 °Cに保ちな がら 1 2時間程度攪拌することによりペルォキソ化反応を行う。 過酸化 水素水の添加量は、 前記中和反応後の P Hや洗浄後の p Hや水酸化チタ ンゲルの固形分濃度により決定されるが、 例えば濃度 3 5重量%の過酸 化水素水を用いる場合、 水酸化チタンゲルを完全に反応させるため、 原 料である四塩化チタン溶液 (原液換算) の約 2倍以上の量、 例えば 1 . 2 5倍量を数回に分けて添加することが望ましい。 そして、 ペルォキソ 化反応が終了するとアモルファス型過酸化チタン溶液が生成する。  Next, a titanium hydroxide gel adjusted to have a solid content of 0.1% by weight or more and less than 1.2% by weight, preferably 0.3% by weight or more and 1.0% by weight or less, particularly preferably 0.4% by weight. Hydroperoxide solution is added to the mixture, and the mixture is stirred for about 12 hours while maintaining the temperature at 1 to 5 ° C to perform the peroxo-formation reaction. The amount of the hydrogen peroxide solution to be added is determined by the pH after the neutralization reaction, the pH after the washing, and the solid content of the titanium hydroxide gel. For example, a hydrogen peroxide solution having a concentration of 35% by weight is used. When used, in order to completely react the titanium hydroxide gel, it is necessary to add several times more than twice the amount of the raw material titanium tetrachloride solution (in terms of stock solution), for example, 1.25 times the amount. desirable. When the peroxidation reaction is completed, an amorphous titanium peroxide solution is generated.
(養生) ペルォキソ化反応が終了したアモルファス型過酸化チタン溶液は次い で養生工程に付される。 養生工程は、 ペルォキソ化反応により生成した アモルファス型過酸化チタン溶液を室温に保ちながら数日間攪拌するこ とにより行われる。養生はアモルファス型過酸化チタン溶液の p Hが 6 . 0以上になった時点で終了する。 この養生工程はペルォキソ化反応を完 全に終了させる目的と、 反応時に過剰に添加している過酸化水素水を自 然に分解させてアモルファス型過酸化チタン溶液を中性にするためにも 望ましい。 (アモルファス型過酸化チタン溶液の濃縮精製) (Curing) The amorphous titanium peroxide solution after the completion of the peroxo-formation reaction is then subjected to a curing process. The curing step is carried out by stirring the amorphous titanium peroxide solution generated by the peroxo-forming reaction for several days while maintaining the temperature at room temperature. Curing ends when the pH of the amorphous titanium peroxide solution becomes 6.0 or more. This curing step is desirable for the purpose of completely terminating the peroxo-forming reaction and also for naturally decomposing the hydrogen peroxide solution added excessively during the reaction to neutralize the amorphous titanium peroxide solution. . (Concentration and purification of amorphous titanium peroxide solution)
次に、 養生工程を経たアモルファス型過酸化チタン溶液は、 限外濾過 処理により雑イオンが除去されるとともに、 濃縮される。 限外濾過器で 処理すると溶液の温度が上昇するので冷却しながら濃縮処理するのが好 ましい。 かかる限外濾過処理により、 固形分濃度 1 . 6〜 1 . 7重量% のアモルファス型過酸化チタン溶液が得られる。  Next, the amorphous titanium peroxide solution that has undergone the curing step is concentrated by removing the miscellaneous ions by ultrafiltration. If the solution is treated with an ultrafilter, the temperature of the solution will increase. Therefore, it is preferable to perform the concentration while cooling. By the ultrafiltration treatment, an amorphous titanium peroxide solution having a solid content of 1.6 to 1.7% by weight can be obtained.
(アナ夕ーゼ型酸化チタンゾルの生成) (Formation of Anaase-type titanium oxide sol)
一方、 アナターゼ型酸化チタンゾルは、 まず上記養生工程後の固形分 濃度 0 . 1重量%以上 1 . 2重量%未満、 好ましくは 0 . 3重量%以上 1 . 0重量%以下、 特に好ましくは 0 . 4重量%に調整されたァモルフ ァス型過酸化チタン溶液を加熱温度 1 0 0〜 2 0 0 °Cで、 1〜 2 0時間 加熱処理、 好ましくは溶液温度 9 0 °C以上 1 0 0 °C以下で 5時間程度加 熱処理を行うことにより調製される。 また、 アモルファス型過酸化チタ ン溶液の濃縮生成された固形分濃度 1 . 6〜 1 . 7重量%以上のものを 加熱処理すると、 アナターゼ型酸化チタンゾルの結晶粒子径が大きくな り易く、 光触媒機能が低下する可能性がある。 このようにより低濃度で 加熱処理をすることにより、 アナ夕ーゼ型酸化チタンゾルの結晶粒子径 がより小さくなり、 光触媒機能もアップする。 また、 1 0 0 °Cで 8時間 加熱すると、 淡黄色やや懸濁蛍光を帯びたものが得られ、 1 0 0 °C 1 6 時間加熱すると極淡黄色のものが得られるが、 これらは上記 1 0 0 C 5 時間加熱したものに比べて乾燥密着度が多少低下する。 そして、 このァ ナ夕一ゼ型酸化チタンゾルはアモルファス型過酸化チタン溶液に比べて 粘性が低下しているのでディ ピングコ一ト等粘度が低いコ一ト液の場合 には 2 . 4重量%まで濃度を上げて使用する。 On the other hand, the anatase-type titanium oxide sol first has a solid content of 0.1% by weight or more and less than 1.2% by weight, preferably 0.3% by weight or more and 1.0% by weight or less, particularly preferably 0.3% by weight or less, after the curing step. The amorphous titanium peroxide solution adjusted to 4% by weight is heated at a heating temperature of 100 to 200 ° C. for 1 to 20 hours, preferably at a solution temperature of 90 ° C. or higher and 100 ° C. It is prepared by heat treatment at C or lower for about 5 hours. When the amorphous titanium peroxide solution is subjected to heat treatment at a solid content of 1.6 to 1.7% by weight or more, the crystal particle size of the anatase-type titanium oxide sol is easily increased, and the photocatalytic function is increased. May decrease. At lower concentrations By performing the heat treatment, the crystal particle size of the anatase-type titanium oxide sol becomes smaller, and the photocatalytic function is improved. When heated at 100 ° C for 8 hours, a pale yellowish one with slightly suspended fluorescence is obtained.When heated at 100 ° C for 16 hours, an extremely pale yellowish one is obtained. The dry adhesion is slightly lower than that heated at 100 C for 5 hours. The viscosity of this titanium oxide sol is lower than that of an amorphous titanium peroxide solution, so that in the case of a coating liquid having a low viscosity such as a dip coating, it may be up to 2.4% by weight. Use at a higher concentration.
また、 中和反応時、 調整した p Hが酸性側にあるときには、 加熱処理 時間を短縮しないと結晶化が早く進行し、 例えば 1 1 0 °Cで 4〜 5時間 加熱処理を行えばよい。 他方、 中和反応時、 調整した p Hがアルカリ性 側にあるときには、 結晶化が遅く、 例えば 1 2 0 °Cで 6時間程度加熱処 理を行うなど、 加熱温度を高くすることが望ましい。 (アナタ一ゼ型酸化チタンゾルの濃縮精製)  In addition, during the neutralization reaction, when the adjusted pH is on the acidic side, crystallization proceeds rapidly unless the heat treatment time is shortened. For example, heat treatment may be performed at 110 ° C for 4 to 5 hours. On the other hand, when the adjusted pH is on the alkaline side during the neutralization reaction, crystallization is slow, and it is desirable to increase the heating temperature, for example, by performing a heat treatment at 120 ° C. for about 6 hours. (Concentration and purification of anatase type titanium oxide sol)
次いで、上記加熱処理により生成したアナ夕一ゼ型酸化チタンゾルは、 限外濾過処理が施され、 雑イオンが除去されると共に、 濃縮される。 か かる限外濾過処理により、 固形分濃度 2 . 3〜 2 . 4重量%、 p H 7 . 5〜 9 . 0のアナ夕一ゼ型酸化チタンゾルが得られる。  Next, the anatase-type titanium oxide sol produced by the above-mentioned heat treatment is subjected to ultrafiltration treatment to remove miscellaneous ions and to be concentrated. By such an ultrafiltration treatment, an analog-type titanium oxide sol having a solid content of 2.3 to 2.4% by weight and a pH of 7.5 to 9.0 can be obtained.
(製造装置) (manufacturing device)
これらアモルファス型過酸化チタン溶液及びアナターゼ型酸化チタン ゾルの製造装置としては図 1及び図 2記載のものを例示することができ る。  As an apparatus for producing the amorphous titanium peroxide solution and the anatase titanium oxide sol, those shown in FIGS. 1 and 2 can be exemplified.
図 1 に示される開放型の製造装置は、四塩化チタン等のチタン塩溶液、 水酸化アンモニゥム等の水酸化アル力リ、 過酸化水素水等の過酸化物の それぞれの原料タンク 1 〜 3 と、 チタン塩溶液と—水酸化アル力リの希釈 槽 4、 5 と、 チタン塩溶液と水酸化アルカリの中和反応槽 6からなる中 和反応手段と、 中和反応生成物のデカンテーショ ンによる洗浄槽 7から なる洗浄手段と、 熱交換機 (冷却) 8からなる冷却手段と、 冷却機構を 有するペルォキソ化反応槽 9からなるペルォキソ化手段と、 ペルォキソ 化反応生成物であるアモルファス型過酸化チタン溶液の養生槽 1 0から なる養生手段と、 養生後のアモルファス型過酸化チタン溶液中の雑ィォ ンを除去して濃縮する限外濾過装置 1 1からなる限外濾過手段と、 最終 製品である過酸化チタンの貯留槽 1 2と、 熱交換機 (加熱) 1 3と、 養 生後のァモルファス型過酸化チタン溶液をアナ夕一ゼ型酸化チタンゾル にするための加熱処理槽 1 4からなる加熱手段と、 加熱処理により生成 したアナタ一ゼ型酸化チタンゾルの結晶化を止める熱交換機 (冷却) 1 5からなる冷却手段と、 加熱処理により生成したアナ夕ーゼ型酸化チタ ンゾル中の雑イオンを除去して濃縮する限外濾過装置 1 6からなる限外 濾過手段と、 最終製品である酸化チタンの貯留槽 1 7 とから構成されて いる。 また、 上記洗浄槽 7に代えて遠心分離機又は限外濾過器 1 8を用 いることもできる。 The open-type production equipment shown in Fig. 1 is used for the production of titanium salt solution such as titanium tetrachloride, aluminum hydroxide such as ammonium hydroxide, and peroxide such as hydrogen peroxide solution. Neutralization reaction means consisting of raw material tanks 1 to 3, titanium tank solution and alkaline hydroxide dilution tanks 4 and 5, neutralization reaction tank 6 of titanium salt solution and alkali hydroxide, and neutralization A washing means comprising a washing tank 7 by decantation of the reaction product; a cooling means comprising a heat exchanger (cooling) 8; a peroxo-forming means comprising a peroxo-forming reaction tank 9 having a cooling mechanism; and a peroxo-forming reaction product. A curing means consisting of a curing tank 10 for a certain amorphous titanium peroxide solution, and an ultrafiltration device 11 consisting of an ultrafiltration device 11 for removing and condensing impurities in the amorphous titanium peroxide solution after curing Means, storage tank 12 of titanium oxide as the final product, heat exchanger (heating) 13, heat treatment for converting the amorphous titanium peroxide solution after curing into an analogous titanium oxide sol. Heating means consisting of water bath 14; heat exchanger (cooling) 15 for stopping crystallization of anatase-type titanium oxide sol produced by heat treatment; Anathese-type oxidation produced by heat treatment It comprises an ultrafiltration means comprising an ultrafiltration device 16 for removing and concentrating miscellaneous ions in titanium sol, and a storage tank 17 for titanium oxide, which is the final product. Further, a centrifuge or an ultrafilter 18 may be used instead of the washing tank 7.
また、 図 2に示される閉鎖型のアモルファス型過酸化チタン溶液及び アナ夕一ゼ型酸化チタンゾルの製造装置は、 管状の混合ミキサー、 例え ばスタテイクミキサー (ノリタケ C o . 製) を、 原料液の混合槽ゃ、 洗 浄槽や、 中和反応槽、 ペルォキソ化反応槽の代わりに使用するクローズ ドシステムを採用する点に特徴を有するものであり、 以下、 この装置を 用いたアモルファス型過酸化チタン溶液及びアナタ一ゼ型酸化チタンゾ ルの製造例を示す。  In addition, the production apparatus for the closed amorphous titanium oxide solution and the analytic titanium oxide sol shown in Fig. 2 uses a tubular mixing mixer, for example, a static mixer (manufactured by Noritake Co.), as a raw material liquid. It is characterized in that it employs a closed system that replaces the mixing tank ゃ, washing tank, neutralization reaction tank, and peroxotification reaction tank. An example of the production of a titanium solution and an anatase type titanium oxide is shown.
チタン塩水溶液の原料タンク 2 1からのチタン塩水溶液と、 蒸留水製 造装置 2 2を備えた希釈用蒸留水貯留タンク 2 3からの蒸留水とを、 混 合ミキサー 2 4によって混合希釈する。 希釈物め濃度は、 各タンクの下 流に設けられた流量コントロール弁 2 5により調整する。 同様に、 水酸 化アルカリの原料タンク 2 6からの水酸化アル力リと、 希釈用蒸留水貯 留タンク 2 3からの蒸留水とを、 混合ミキサー 2 7によって混合希釈す る。 希釈物の濃度も同様に、 各タンクの下流に設けられた流量コント口 —ルバルブ 2 5により調整する。 The titanium salt aqueous solution from the raw material tank 21 of the titanium salt aqueous solution is mixed with the distilled water from the diluting distilled water storage tank 23 equipped with the distilled water producing device 22. Mix and dilute with Mixer 24. The diluent concentration is adjusted by a flow control valve 25 provided downstream of each tank. Similarly, the mixing hydroxide 27 from the alkali hydroxide hydroxide raw material tank 26 and the distilled water from the diluting distilled water storage tank 23 are mixed and diluted by the mixing mixer 27. Similarly, the concentration of the diluent is adjusted by the flow control valve 25 provided downstream of each tank.
次に、 希釈されたチタン塩水溶液と希釈された水酸化アルカリ とを、 流量コントロール装置 2 8により所望の割合で混合し、 その下流に設け られた混合ミキサー 2 9により中和反応を行った後、 p H測定器 3 0に より p Hを測定し、 その測定値を流量コントロール装置 2 8にフィード バックする。  Next, the diluted titanium salt aqueous solution and the diluted alkali hydroxide were mixed at a desired ratio by a flow rate control device 28, and a neutralization reaction was performed by a mixing mixer 29 provided downstream thereof. The pH is measured by a pH measuring device 30 and the measured value is fed back to the flow control device 28.
中和反応生成物である水酸化チタンは、 次いで、 その上部に洗浄水導 入管及びその中程に排水管が配設され、 液面水位計と電磁弁を備えたシ ックナ 3 1内に導入され、 デカンテ一シヨン洗浄が行われる。 デカンテ —シヨン洗浄は、 洗浄用蒸留水貯留タンク 3 3から洗浄水導入管を介し ての洗浄水の導入と排水管からの洗浄排水の排出により、 シックナ 3 1 の下流に設けられた混合ミキサー 3 2により攪拌された後、 導電測定器 3 4による測定値が特定値となるまで自動的に繰り返し行われる。また、 上記洗浄排水はリスラリー槽 3 5に集められ、 固液分離により得られる 水酸化チタンを洗浄後の水酸化チタンと合わせるように構成されている, このようにして得られる洗浄後の水酸化チタンは、 その下流に設けられ た固形分濃度 (又は比重) 測定器 3 6により固形分濃度が測定され、 測 定値に応じて蒸留水が添加され所望の固形分濃度となるようになってい る。  Titanium hydroxide, which is the product of the neutralization reaction, is then introduced into a washing water inlet pipe at the top and a drain pipe in the middle, into a sinker 31 equipped with a liquid level gauge and a solenoid valve. Then, decantation cleaning is performed. Decanting is performed by mixing the mixing mixer provided downstream of the thickener 31 by introducing washing water from the washing distilled water storage tank 33 through the washing water introduction pipe and discharging the washing wastewater from the drain pipe. After the stirring by 2, the measurement is automatically repeated until the measured value by the conductivity measuring device 34 becomes a specific value. The washing wastewater is collected in a reslurry tank 35, and the titanium hydroxide obtained by solid-liquid separation is combined with the titanium hydroxide after washing. The solid content of titanium is measured by a solid content (or specific gravity) measuring instrument 36 provided downstream of the titanium, and distilled water is added according to the measured value to obtain the desired solid content. .
過酸化水素水等の過酸化物の貯留槽 3 7からの過酸化物と、 上記所望 の固形分濃度となった水酸化チタンとは、 混合に先立ち冷却機構付混合 ミキサー 3 8により混合しペルォキソ化反応を行う。 ペルォキソ化反応 物は、 反応熟成槽 3 9で攪拌熟成される。 そしてかかるペルォキソ化反 応は 1〜 5 °Cで行うのが望ましい。 熟成が終わったペルォキソ化反応物 であるアモルファス型過酸化チタン溶液は、 次いで養生槽 4 0中で室温 中数日間養生に付される。 養生は低温でも実施することができるが、 時 間がかかるので、 室温で実施するのが好ましい。 The peroxide from the storage tank 37 of peroxide such as aqueous hydrogen peroxide and the titanium hydroxide having the above-mentioned desired solid concentration are mixed with a cooling mechanism prior to mixing. The mixture is mixed with a mixer 38 to perform a peroxo-formation reaction. The peroxotized reaction product is stirred and aged in a reaction aging tank 39. It is desirable that the peroxo conversion reaction be performed at 1 to 5 ° C. The amorphous titanium peroxide solution, which is a peroxidation reaction product after aging, is then cured in a curing tank 40 at room temperature for several days. Curing can be carried out even at low temperatures, but it takes time, so it is preferable to carry out curing at room temperature.
養生後のアモルファス型過酸化チタン溶液は、 限外濾過器 4 1 と冷却 機構付混合ミキサー 3 8 とを備えた限外濾過装置 4 2により精製濃縮さ れる。 限外濾過装置 4 2による精製濃縮は数十回 Z分で被処理物を循環 し、 循環過程において限外濾過器 4 1から排水を除去すると同時に、 そ の分蒸留水を補添して実施する。 限外濾過処理を終えたアモルファス型 過酸化チタン溶液は濾過器 4 3で濾過され、 夾雑物を除いた後、 例えば 1 . 7重量%のアモルファス型過酸化チタン溶液として製品貯留タンク 4 4内で 1 5 °C以下で貯留される。  After curing, the amorphous titanium peroxide solution is purified and concentrated by an ultrafiltration device 42 having an ultrafilter 41 and a mixing mixer 38 with a cooling mechanism. Purification and concentration by the ultrafiltration unit 42 circulates the material to be processed several tens of times in Z minutes, removing wastewater from the ultrafiltration unit 41 in the circulation process, and adding distilled water to that amount. I do. After the ultrafiltration treatment, the amorphous titanium peroxide solution is filtered by a filter 43 to remove impurities, and then, for example, as a 1.7% by weight amorphous titanium peroxide solution in a product storage tank 44. Stored below 15 ° C.
他方、 養生後のアモルファス型過酸化チタン溶液は、 加熱機構付混合 ミキサー 4 5を経て、 加熱装置付容器 4 6中で加熱されアナターゼ型酸 化チタンゾルに変換される。 このアナ夕一ゼ型酸化チタンゾルへの変換 を 1 0 0 °C以上で行う場合等、 必要に応じて加熱装置付容器としてォ一 トクレーブを用いることもできる。このアナ夕一ゼ型酸化チタンゾルは、 次いで上記アモルファス型過酸化チタン溶液と同様に限外濾過装置 4 7 により限外濾過処理に付される。 限外濾過処理を終えたアナ夕一ゼ型酸 化チタンゾルは、 例えば 2 . 4重量%のアナタ一ゼ型酸化チタンゾルと して製品貯留タンク 4 8内で 1 5 °C以下で貯留される。 図面の簡単な説明 第 1図は開放型のアモルファス型過酸化チタン溶液やアナ夕一ゼ型酸 化チタンゾルの製造装置の概略説明図である。 On the other hand, the cured amorphous titanium peroxide solution passes through a mixing mixer 45 with a heating mechanism, is heated in a vessel 46 with a heating device, and is converted into an anatase-type titanium oxide sol. When the conversion to the titanium oxide sol is performed at a temperature of 100 ° C. or more, an autoclave can be used as a container with a heating device, if necessary. This titanium oxide sol is then subjected to ultrafiltration by an ultrafiltration device 47 in the same manner as the amorphous titanium peroxide solution. After the ultrafiltration treatment, the anatase-type titanium oxide sol is stored, for example, as a 2.4% by weight anatase-type titanium oxide sol in a product storage tank 48 at 15 ° C or lower. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a schematic illustration of an apparatus for producing an open-type amorphous titanium peroxide solution and an analog-type titanium oxide sol.
第 2図は閉鎖型のアモルファス型過酸化チタン溶液やアナ夕一ゼ型酸 化チタンゾルの製造装置の概略説明図である。 ― 発明を実施するための最良の形態  FIG. 2 is a schematic illustration of a production apparatus for a closed type amorphous titanium oxide solution and an analytic titanium oxide sol. -Best mode for carrying out the invention
以下に、 実施例を掲げてこの発明を更に具体的に説明するが、 この発 明の技術的範囲はこれらの例示に限定されるものではない。 実施例 1 [開放型の製造装置]  Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples. Example 1 [Open-type manufacturing apparatus]
(アモルファス型過酸化チタン溶液の製造)  (Production of amorphous titanium peroxide solution)
原料タンク 1 中の四塩化チタン T i C 1 4の 5 0 %溶液 (住友シチッ クス株式会社製) を蒸留水で 7 0倍に希釈槽 4中で希釈した溶液に、 原 料タンク 2中の水酸化アンモニゥム N H 4 O Hの 2 5 %溶液 (高杉製薬 株式会社製) を蒸留水で 1 0倍に希釈槽 5中で希釈した溶液を、 中和反 応槽 6中に容量比 7 : 1で混合し、 中和反応を行った。 中和反応に際し ては、 希四塩化チタン溶液 1 2 0 0 Lに希水酸化アンモニゥム溶液 1 7 0 Lを攪拌しながら少量ずつ添加していき、 中和反応後 p Hが 6 . 8〜 7 . 1 に調整した。 中和反応後脱水 · 濃縮槽 7にしばらく放置し、 その 上澄液を捨て、 残った水酸化チタン T i ( O H ) 4のゲル量の約 4倍の 蒸留水を加え十分に攪拌し放置し、 上澄液を捨てた。 未反応の原料や塩 化アンモニゥムを取り除くために、 このような操作を 7回繰り返し、 上 澄液の導電率が 8 S / c mになったところで、 上澄液を捨てて水酸化 チタンゲルのみを残した。 この洗浄に使用した蒸留水は 1 6 7 6 0しで あった。 Raw material tank 1 of titanium tetrachloride T i C 1 4 5 0% solution to a solution prepared by diluting (Sumitomo Shichi' Box Co., Ltd.) in dilution tank 4 to 7 0-fold with distilled water, the raw material tank 2 A solution obtained by diluting a 25% solution of ammonium hydroxide NH 4 OH (manufactured by Takasugi Pharmaceutical Co., Ltd.) with distilled water 10 times in a dilution tank 5 is added to a neutralization reaction tank 6 at a volume ratio of 7: 1. After mixing, a neutralization reaction was performed. During the neutralization reaction, 170 mL of a dilute ammonium hydroxide solution was added little by little to 1200 L of a dilute titanium tetrachloride solution while stirring, and after the neutralization reaction, the pH was 6.8 to 7 Adjusted to 1. Dehydration after neutralization reaction ・ Leave in the concentration tank 7 for a while, discard the supernatant, add distilled water about 4 times the gel amount of the remaining titanium hydroxide T i (OH) 4 and stir well. The supernatant was discarded. This operation was repeated seven times to remove unreacted raw materials and chloride ammonium.When the conductivity of the supernatant reached 8 S / cm, the supernatant was discarded to leave only the titanium hydroxide gel. Was. The amount of distilled water used for this washing was 1,670.
脱水等により固形分濃度を 1 . 0重量%に調整した、 洗浄後の青味白 色の水酸化チタンゲル 6 1 0 Lを 3 °Cに冷却しだものに、 3 5 %過酸化 水素水 (日本パーォキサイ ト株式会社製) 2 4 Lを 3 0分毎 2回に分け て添加し、 約 5 °Cで一晩攪拌し熟成すると黄色透明のアモルファス型過 酸化チタン溶液約 6 4 0 Lが得られた。 このァモルファス型過酸化チタ ン溶液を室温で 4 日間養生槽 9中で攪拌しながら養生し、固形分濃度 1 . 0重量%のアモルファス型過酸化チタン溶液を調製した。 The bluish white color after washing was adjusted to a solid concentration of 1.0% by dehydration. Titanium hydroxide gel of color 6 10 L was cooled to 3 ° C, and 24 L of 35% hydrogen peroxide solution (manufactured by Nippon Peroxysite Co., Ltd.) was added twice every 30 minutes. After stirring and aging at about 5 ° C overnight, about 640 L of a yellow transparent amorphous titanium peroxide solution was obtained. This amorphous titanium peroxide solution was cured while stirring in a curing tank 9 at room temperature for 4 days to prepare an amorphous titanium peroxide solution having a solid concentration of 1.0% by weight.
次いで、 養生後のアモルファス型過酸化チタン溶液を、 雑イオンの除 去と濃縮するために、 日本練水株式会社製限外濾過装置 1 0を用いて、 溶液の温度が上昇しないよう 2 0 °Cに冷却しながら、 また蒸留水を加え て、 限外濾過器からの排水の導電率が 2 S / c mとなるまで行った。 この限外濾過処理により、 固形分濃度 1 . 7重量%、 p H 6 . 5の目的 とするアモルファス型過酸化チタン溶液 2 5 0 Lが得られた。  Next, in order to remove and concentrate the miscellaneous ions from the cured amorphous titanium peroxide solution, an ultrafiltration apparatus 10 manufactured by Nippon Nishui Co., Ltd. was used to prevent the temperature of the solution from rising by 20 °. While cooling to C, distilled water was added to the solution until the conductivity of the waste water from the ultrafilter became 2 S / cm. By this ultrafiltration treatment, 250 L of the desired amorphous titanium peroxide solution having a solid content of 1.7% by weight and a pH of 6.5 was obtained.
(アモルファス型過酸化チタン溶液からのアナターゼ型酸化チタンゾル の製造) (Production of anatase titanium oxide sol from amorphous titanium peroxide solution)
上記養生後の固形分濃度 1 . 0重量%のアモルファス型過酸化チタン 溶液を、 加熱処理槽 1 2中で温浴により 1 0 0 °Cで 6時間加熱し、 加熱 後のアナ夕一ゼ型酸化チタンゾルが得られた。 上記加熱処理により生成 したアナ夕ーゼ型酸化チタンゾルは、 限外濾過装置 1 3により導電率が 2 S Z c m以下となるまで限外濾過処理が施され、 雑イオンが除去さ れるとともに濃縮され、 固形分濃度 2 . 3〜 2 . 4重量%、 p H 7 . 8、 粒度 8〜 2 0 n mの目的とするアナ夕一ゼ型酸化チタンゾルが得られた, 実施例 2 [閉鎖型の製造装置]  After the curing, the amorphous titanium peroxide solution having a solid content of 1.0% by weight was heated in a heat treatment tank 12 at 100 ° C. for 6 hours in a warm bath, and then heated. A titanium sol was obtained. The anatase-type titanium oxide sol produced by the above-mentioned heat treatment is subjected to ultrafiltration by an ultrafiltration device 13 until the conductivity becomes 2 SZ cm or less, thereby removing contaminating ions and being concentrated. Example 2 [Closed-type manufacturing apparatus] was obtained, which was a target titanium oxide sol having a solid content of 2.3 to 2.4% by weight, a pH of 7.8, and a particle size of 8 to 20 nm. ]
(ァモルファス型過酸化チタン溶液の製造)  (Production of Amorphous Titanium Peroxide Solution)
四塩化チタンの 5 0 %溶液 (住友シチックス株式会社製) が収容され た 1. O m3の原料タンク 2 1からの四塩化チタン水溶液と、 3. 2 m 3/ hの製造能力を有する蒸留水製造装置 2 2を備えた 2 O m3希釈用 蒸留水貯留タンク 2 3からの蒸留水とを、 混合ミキサー 24によって混 合希釈し、 7 0倍に希釈調整した。同様に、水酸化アンモニゥムの 2—5 % 溶液 (高杉製薬株式会社製) が収納された 1. O m3の原料タンク 2 6 からの水酸化アンモニゥム溶液と、 希釈用蒸留水貯留タンク 24からの 蒸留水とを、 混合ミキサー 2 7によって混合希釈し、 1 0倍に希釈調整 した。 希釈はオーパル液量計の液量値により電磁弁をコントロールする ことにより調整した。 また、 混合ミキサーとしてはス夕テイクミキサー (ノ リタケ C o. 製) を使用した (以下同じ)。 50% titanium tetrachloride solution (Sumitomo Citix Co., Ltd.) Was 1. O four and titanium chloride aqueous solution from the raw material tank 2 1 m 3, 3. 2 O m 3 dilution of distilled water storage tank with distilled water production system 2 2 having a production capacity of 2 m 3 / h The distilled water from 23 was mixed and diluted by a mixing mixer 24, and adjusted to 70 times the dilution. Similarly, the hydroxide Anmoniumu solution from the raw material tank 2 6 1. O m 3 to 2-5% solution of hydroxide Anmoniumu (manufactured by Takasugi Pharmaceutical Co., Ltd.) is housed, from dilute water for the storage tank 24 Distilled water was mixed and diluted with a mixing mixer 27 to adjust the dilution to 10 times. Dilution was adjusted by controlling the solenoid valve according to the liquid value of the opal liquid meter. The mixing mixer used was a Suita Take Mixer (manufactured by Noritake Co.) (the same applies hereinafter).
次に、 希釈されたチタン塩水溶液と希釈された水酸化アル力リとを、 流量コントロール装置 2 8により等量混合し、 その下流に設けられた混 合ミキサー 2 9により中和反応を行った。 その際、 混合ミキサー 2 9に おける流速は、 ほぼ 1 8 0 k gZhであった。 また、 流量コント口一ル 装置 2 8による混合比率は、 pH測定器 3 0の測定値により各流入量を コントロールし、 p H 6. 9 ± 0. 2になるようにした。  Next, an equal amount of the diluted titanium salt aqueous solution and the diluted alkaline hydroxide were mixed by a flow control device 28, and a neutralization reaction was performed by a mixing mixer 29 provided downstream thereof. . At that time, the flow rate in the mixing mixer 29 was approximately 180 kgZh. In addition, the mixing ratio of the flow control device 28 was controlled at pH 6.9 ± 0.2 by controlling each inflow rate based on the measured value of the pH meter 30.
中和反応生成物である水酸化チタンゲルは、 液面水位計と電磁弁を組 み合わせて自動化されたシックナ 3 1で、 混合ミキサー 3 2と洗浄用蒸 留水貯留タンク 3 3とを備えた洗浄機構により洗浄した。 洗浄は、 導電 度測定器 3 4による測定値が 8 SZc mの値となるまで、 シックナ 3 1における水酸化チタンゲルにその 9倍量の洗浄用蒸留水を添加して行 つた。 また、 シックナ 3 1における洗浄排水はリスラリー槽 3 5に集め られ、 固液分離により得られる水酸化チタンを洗浄後の水酸化チタンと 合わせた。 洗浄を終えた水酸化チタンゲルは、 固形分濃度測定器 3 6に より蒸留水で、 固形分濃度を 0. 7重量%に調整した。  The titanium hydroxide gel, a neutralization reaction product, is an automated thickener 31 that combines a liquid level gauge and a solenoid valve, and has a mixing mixer 32 and a distilled water storage tank 33 for washing. It was washed by a washing mechanism. Washing was performed by adding 9 times the amount of distilled water for washing to the titanium hydroxide gel in the thickener 31 until the value measured by the conductivity measuring device 34 became 8 SZcm. The washing wastewater in the thickener 31 was collected in a reslurry tank 35, and the titanium hydroxide obtained by solid-liquid separation was combined with the washed titanium hydroxide. The washed titanium hydroxide gel was adjusted to a solid content concentration of 0.7% by weight with distilled water using a solid content concentration measuring device 36.
3 5 %過酸化水素水 (日本パ一ォキサイ ト株式会社製) の貯留槽 3 7 からの過酸化水素水と、 固形分濃度 0 . 9重量%に調整した水酸化チタ ンとは、 冷却機構付混合ミキサー 3 8により混合しペルォキソ化反応を 行った。ペルォキソ化反応物は、冷却装置を備えた反応熟成槽 3 9で 3 °C . 1 8時間攪拌熟成した。 熟成が終わったペルォキソ化反応物であるァモ ルファス型過酸化チタン溶液は、 次いで養生槽 4 0中で室温中 9 6時間 程度養生に付した。 3 5% Hydrogen peroxide water (Nippon Parksite Co., Ltd.) storage tank 3 7 The hydrogen peroxide solution from the above and titanium hydroxide adjusted to a solid content concentration of 0.9% by weight were mixed by a mixing mixer 38 with a cooling mechanism to perform a peroxo-formation reaction. The peroxotized reaction product was stirred and aged at 3 ° C. for 18 hours in a reaction aging tank 39 equipped with a cooling device. The amorphous titanium peroxide solution, which was the peroxidation reaction product after aging, was then cured in a curing tank 40 at room temperature for about 96 hours.
養生後のアモルファス型過酸化チタン溶液は、 限外濾過器 4 1 を備え た限外濾過装置 4 2により精製濃縮した。 限外濾過装置 4 2による精製 濃縮は、 0 . 8 3 m 3 / hの処理速度で循環し、 循環過程において限外 濾過器 4 1から排水を除去すると同時に、 その分蒸留水を補添し、 限外 濾過器 4 1からの排水の導電率が 2 / c mとなるまで行った。 限外 濾過処理を終えたアモルファス型過酸化チタン溶液は濾過器 4 3で濾過 され、 夾雑物を除いた後、 固形分濃度 1 . 7重量%、 p H 6 . 2のァモ ルファス型過酸化チタン溶液が得られた。 このアモルファス型過酸化チ タン溶液は製品貯留タンク 4 4内で 1 5 °C以下で貯留される。 The cured amorphous titanium peroxide solution was purified and concentrated by an ultrafiltration device 42 equipped with an ultrafilter 41. Purification and concentration by ultrafiltration unit 4 2 0. Circulates 8 3 m 3 / h of processing speed, and at the same time to remove waste water from the ultrafilter 4 1 in the circulation process, and Ho添the amount of distilled water The operation was performed until the conductivity of the waste water from the ultrafilter 41 became 2 / cm. After the ultrafiltration treatment, the amorphous titanium peroxide solution is filtered through a filter 43 to remove contaminants, and then a 1.7 wt% solids concentration, pH 6.2 ammonium peroxide peroxide solution. A titanium solution was obtained. This amorphous titanium peroxide solution is stored at 15 ° C. or lower in the product storage tank 44.
(アモルファス型過酸化チタン溶液からのアナ夕ーゼ型酸化チタンゾル の製造) (Manufacture of Anasose-type titanium oxide sol from amorphous-type titanium peroxide solution)
他方、 養生後のアモルファス型過酸化チタン溶液は、 加熱機構付混合 ミキサー 4 5を経て加熱装置付容器 4 6中で 1 0 0 °C 5時間加熱しアナ タ一ゼ型酸化チタンゾルに変換した後濾過し、 この濾過後のアナタ一ゼ 型酸化チタンゾルは、 次いで上記アモルファス型過酸化チタン溶液と同 様に限外濾過装置 4 7により限外濾過処理に付した。 限外濾過処理を終 えたアナタ一ゼ型酸化チタンゾルは濾過され、 夾雑物を除いた後、 固形 分濃度 2 . 4重量%、 p H 8 . 2、 粒度 8〜 2 0 n mのアナ夕一ゼ型酸 化チタンゾルとして製品貯留タンク 4 8内で 1 5 °C以下で貯留される。 産業上の利用可能性 On the other hand, the cured amorphous titanium peroxide solution is converted to an anatase-type titanium oxide sol by heating at 100 ° C. for 5 hours in a container 46 with a heating device via a mixing mixer 45 with a heating mechanism. After filtration, the anatase-type titanium oxide sol after the filtration was subjected to an ultrafiltration treatment using an ultrafiltration device 47 in the same manner as the above amorphous titanium peroxide solution. The anatase-type titanium oxide sol that has been subjected to ultrafiltration is filtered to remove impurities, and then has a solid concentration of 2.4% by weight, a pH of 8.2, and a particle size of 8 to 20 nm. It is stored as a type titanium oxide sol in a product storage tank 48 at 15 ° C or less. Industrial applicability
本発明によると、 アモルファス型過酸化チタン溶液やアナタ一ゼ型酸 化チタンゾルの結晶が大きなものとなったり、発熱による危険性がない、 収率が低下することのない、 アモルファス型過酸化チタン溶液やアナ夕 ーゼ型酸化チタンゾルの実生産レベルで製造することができる。  According to the present invention, the amorphous titanium peroxide solution or the anatase type titanium oxide sol does not have a large crystal, does not have a danger due to heat generation, and the yield does not decrease. It can be produced at the actual production level of analytic and titanium oxide sol.

Claims

請求の範囲 ― The scope of the claims -
1 . チタンを含む水溶液と塩基性水溶液とを反応させる中和工程と、 中 和反応により生成した水酸化チタンゲルを洗浄する洗浄工程と、 洗浄後 の水酸化チタンゲルを冷却する工程と、 冷却後の水酸化チタンゲルに過 酸化物を冷却下で作用させるペルォキソ化工程と、 ペルォキソ化により 生成したアモルファス型過酸化チタン溶液を養生する養生工程と、 養生 後のアモルファス型過酸化チタン溶液の濃縮 · 精製工程とからなる、 ァ モルファス型過酸化チタン溶液を製造する方法において、 洗浄工程後で ペルォキソ化工程前に水酸化チタンゲルの固形分濃度を 0 . 1重量%以 上 1 . 2重量%未満とすることを特徴とするアモルファス型過酸化チタ ン溶液の製造法。 1. A neutralization step of reacting an aqueous solution containing titanium with a basic aqueous solution, a washing step of washing the titanium hydroxide gel generated by the neutralization reaction, a step of cooling the washed titanium hydroxide gel, Peroxidation process in which peroxide acts on titanium hydroxide gel under cooling, curing process for amorphous titanium peroxide solution generated by peroxolation, and concentration and purification process of amorphous titanium peroxide solution after curing In the method for producing an amorphous titanium peroxide solution, the solid concentration of the titanium hydroxide gel should be 0.1% by weight or more and less than 1.2% by weight after the washing step and before the peroxo-forming step. A method for producing an amorphous titanium peroxide solution, comprising:
2 . 濃縮 · 精製工程が、 限外濾過処理により行われることを特徴とする 請求項 1記載のアモルファス型過酸化チタン溶液の製造法。  2. The method for producing an amorphous titanium peroxide solution according to claim 1, wherein the concentration and purification steps are performed by ultrafiltration.
3 . チタンを含む水溶液と塩基性水溶液とを反応させる中和工程と、 中 和反応により生成した水酸化チタンゲルを洗浄する洗浄工程と、 洗浄後 の水酸化チタンゲルを冷却する工程と、 冷却後の水酸化チタンゲルに過 酸化物を冷却下で作用させるペルォキソ化工程と、 ペルォキソ化により 生成したアモルファス型過酸化チタン溶液を養生する養生工程と、 養生 後のアモルファス型過酸化チタン溶液をアナ夕一ゼ型酸化チタンゾルに 変換する加熱工程と、 加熱工程により生成したアナ夕一ゼ型酸化チタン ゾルの濃縮 · 精製工程とからなる、 アナ夕一ゼ型酸化チタンゾルを製造 する方法において、 洗诤工程後でペルォキソ化工程前に水酸化チタンゲ ルの固形分濃度を 0 . 1重量%以上 1 . 2重量%未満とすることを特徴 とするアナターゼ型酸化チタンゾルの製造法。 3. A neutralization step of reacting an aqueous solution containing titanium with a basic aqueous solution, a washing step of washing the titanium hydroxide gel generated by the neutralization reaction, a step of cooling the washed titanium hydroxide gel, A peroxidation process in which peroxide acts on the titanium hydroxide gel under cooling; a curing process in which the amorphous titanium peroxide solution generated by the peroxidation is cured; and an amorphous titanium peroxide solution after curing In the method for producing an analog-type titanium oxide sol, which comprises a heating step of converting into an titanium-type sol of titanium oxide and a step of concentrating and purifying the analog-type titanium oxide sol generated in the heating step, after the washing step The anatase type wherein the solid concentration of the titanium hydroxide gel is adjusted to 0.1% by weight or more and less than 1.2% by weight before the peroxo-forming step. The process of reduction sol.
4 . 濃縮 · 精製工程が、 限外濾過処理により行われることを特徴とする 請求項 3記載のアナ夕一ゼ型酸化チタンゾルの製造法。 4. The process of concentration and purification is performed by ultrafiltration 4. The method for producing an analog-type titanium oxide sol according to claim 3.
5 .チタンを含む水溶液と塩基性水溶液とを反応させる中和反応手段と、 中和反応により生成した水酸化チタンゲルを洗浄するに洗浄手段と、 洗 浄後の水酸化チタンゲルの固形分濃度を調整する濃度調整手段と、 面形 分濃度が調整された水酸化チタンゲルを冷却する手段と、 冷却された水 酸化チタンゲルに過酸化物を作用させるペルォキソ化手段と、 ペルォキ ソ化反応により生成したアモルファス型過酸化チタン溶液を養生する養 生手段と、 限外濾過手段とを備えたアモルファス型過酸化チタン溶液の 製造装置。 5.Adjusting the neutralization reaction means for reacting the aqueous solution containing titanium with the basic aqueous solution, the washing means for washing the titanium hydroxide gel formed by the neutralization reaction, and adjusting the solid content of the washed titanium hydroxide gel. Concentration controlling means, means for cooling the titanium hydroxide gel having a controlled surface concentration, peroxo-forming means for allowing peroxide to act on the cooled titanium hydroxide gel, and amorphous type produced by the peroxo-forming reaction. An apparatus for producing an amorphous titanium peroxide solution, comprising: a curing means for curing the titanium peroxide solution; and an ultrafiltration means.
6 . 冷却する手段が熱交換機 (冷却) であり、 ペルォキソ化手段が冷却 装置を備えた反応槽であることを特徴とする請求項 5記載のァモルファ ス型過酸化チタン溶液の製造装置。 6. The apparatus for producing an amorphous titanium peroxide solution according to claim 5, wherein the means for cooling is a heat exchanger (cooling) and the means for peroxotification is a reaction tank provided with a cooling device.
7 . 中和反応手段及びペルォキソ化手段として、 クローズドシステムを 採用することを特徴とする請求項 5又は 6記載のアモルファス型過酸化 チタン溶液の製造装置。  7. The apparatus for producing an amorphous titanium peroxide solution according to claim 5, wherein a closed system is employed as the neutralization reaction means and the peroxotification means.
8 .チタンを含む水溶液と塩基性水溶液とを反応させる中和反応手段と、 中和反応により生成した水酸化チタンゲルを洗浄するに洗浄手段と、 洗 浄後の水酸化チタンゲルの固形分濃度を調整する濃度調整手段と、 固形 分濃度が調整された水酸化チタンゲルを冷却する手段と、 冷却された水 酸化チタンゲルに過酸化物を作用させるペルォキソ化手段と、 ペルォキ ソ化反応により生成したアモルファス型過酸化チタン溶液を養生する養 生手段と、 養生後のアモルファス型過酸化チタン溶液をアナタ一ゼ型酸 化チタンゾルに変換する加熱手段と、 限外濾過手段とを備えたアナ夕一 ゼ型酸化チタンゾルの製造装置。  8.Adjusting the neutralization reaction means for reacting the aqueous solution containing titanium with the basic aqueous solution, the washing means for washing the titanium hydroxide gel formed by the neutralization reaction, and adjusting the solid concentration of the washed titanium hydroxide gel. Concentration adjusting means, means for cooling the titanium hydroxide gel of which the solid content concentration is adjusted, peroxo-forming means for allowing peroxide to act on the cooled titanium hydroxide gel, and amorphous peroxide generated by the peroxo-forming reaction. An anodizing titanium oxide sol comprising a curing means for curing a titanium oxide solution, a heating means for converting an amorphous titanium peroxide solution after curing to an anatase titanium oxide sol, and an ultrafiltration means. Manufacturing equipment.
9 . 冷却する手段が熱交換機 (冷却) であり、 ペルォキソ化手段が冷却 装置を備えた反応槽であることを特徴とする請求項 8記載のアナターゼ 型酸化チタンゾルの製造装置。 ― 9. The anatase according to claim 8, wherein the means for cooling is a heat exchanger (cooling) and the means for peroxotification is a reaction tank provided with a cooling device. Equipment for manufacturing titanium oxide sol. ―
1 0 . 中和反応手段及びペルォキソ化手段として、 クローズドシステ ムを採用することを特徴とする請求項 8又は 9記載のアナ夕一ゼ型酸 化チタンゾルの製造装置。 ―  10. The apparatus for producing an analog-type titanium oxide sol according to claim 8 or 9, wherein a closed system is employed as the neutralization reaction means and the peroxo-formation means. ―
PCT/JP1999/005236 1998-09-28 1999-09-27 Method for production of amorphous titanium peroxide solution and anatase titanium oxide sol WO2000018686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27278298 1998-09-28
JP10/272782 1998-09-28

Publications (1)

Publication Number Publication Date
WO2000018686A1 true WO2000018686A1 (en) 2000-04-06

Family

ID=17518683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005236 WO2000018686A1 (en) 1998-09-28 1999-09-27 Method for production of amorphous titanium peroxide solution and anatase titanium oxide sol

Country Status (1)

Country Link
WO (1) WO2000018686A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041723A1 (en) * 2002-11-07 2004-05-21 Sustainable Titania Technology Incorporated Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
US6884753B2 (en) 2002-05-27 2005-04-26 Sumitomo Chemical Company, Limited Method for producing ceramic dispersion composition
US6974611B2 (en) 2002-06-25 2005-12-13 Sumitomo Chemical Company, Limited Titanium oxide dispersion composition, and method and container for preserving the same
US7045005B2 (en) 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
US7303738B2 (en) 2002-12-20 2007-12-04 Sumitomo Chemical Company, Limited Method for producing titanium oxide
CN101747453B (en) * 2008-12-02 2011-08-03 中国石油天然气股份有限公司 Aging process of multiple-catalytic agent in solution polymerization system and device
US8007721B2 (en) 1999-07-08 2011-08-30 Lee Angros In Situ heat induced antigen recovery and staining apparatus and method
US9267868B2 (en) 2008-08-29 2016-02-23 Lee H. Angros In Situ heat induced antigen recovery and staining apparatus and method
EP1742788A4 (en) * 2004-04-16 2016-04-13 Tioxoclean Inc Metal peroxide films
CN113751294A (en) * 2021-09-09 2021-12-07 成都先进金属材料产业技术研究院股份有限公司 Method for preparing titanium-based nano anticorrosive film by taking titanium tetrachloride as titanium source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
JPH0967125A (en) * 1995-08-30 1997-03-11 Showa Denko Kk Fine powder of titanium oxide and its production
JPH0971418A (en) * 1995-08-31 1997-03-18 Saga Pref Gov Method for forming titania film
JPH09221324A (en) * 1996-02-09 1997-08-26 Nippon Parkerizing Co Ltd Titanium dioxide ceramic coating material and its production
JPH1053437A (en) * 1996-08-06 1998-02-24 Tao:Kk Coating with amorphous type titanium peroxide
JPH1067516A (en) * 1996-05-07 1998-03-10 Saga Pref Gov Anatase dispersion and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229139A (en) * 1986-10-29 1988-09-26 Catalysts & Chem Ind Co Ltd Titanium oxide sol and preparation of same
JPH0967125A (en) * 1995-08-30 1997-03-11 Showa Denko Kk Fine powder of titanium oxide and its production
JPH0971418A (en) * 1995-08-31 1997-03-18 Saga Pref Gov Method for forming titania film
JPH09221324A (en) * 1996-02-09 1997-08-26 Nippon Parkerizing Co Ltd Titanium dioxide ceramic coating material and its production
JPH1067516A (en) * 1996-05-07 1998-03-10 Saga Pref Gov Anatase dispersion and its production
JPH1053437A (en) * 1996-08-06 1998-02-24 Tao:Kk Coating with amorphous type titanium peroxide

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007721B2 (en) 1999-07-08 2011-08-30 Lee Angros In Situ heat induced antigen recovery and staining apparatus and method
US8092742B2 (en) 1999-07-08 2012-01-10 Lee Angros In situ heat induced antigen recovery and staining apparatus and method
US8071023B2 (en) 1999-07-08 2011-12-06 Lee Angros In situ heat induced antigen recovery and staining apparatus and method
US7045005B2 (en) 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
US6884753B2 (en) 2002-05-27 2005-04-26 Sumitomo Chemical Company, Limited Method for producing ceramic dispersion composition
US6974611B2 (en) 2002-06-25 2005-12-13 Sumitomo Chemical Company, Limited Titanium oxide dispersion composition, and method and container for preserving the same
US8158270B2 (en) 2002-11-07 2012-04-17 Sustainable Titania Technology Incorporated Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
US8518174B2 (en) 2002-11-07 2013-08-27 Sustainable Titania Technology Incorporated Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
CN1729145B (en) * 2002-11-07 2010-04-28 萨斯提那普尔科技股份有限公司 Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
WO2004041723A1 (en) * 2002-11-07 2004-05-21 Sustainable Titania Technology Incorporated Titania-metal composite and method for preparation thereof, and film forming method using dispersion comprising the composite
US7303738B2 (en) 2002-12-20 2007-12-04 Sumitomo Chemical Company, Limited Method for producing titanium oxide
EP1742788A4 (en) * 2004-04-16 2016-04-13 Tioxoclean Inc Metal peroxide films
US9267868B2 (en) 2008-08-29 2016-02-23 Lee H. Angros In Situ heat induced antigen recovery and staining apparatus and method
US9766165B2 (en) 2008-08-29 2017-09-19 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US10048177B2 (en) 2008-08-29 2018-08-14 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US10281376B2 (en) 2008-08-29 2019-05-07 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US10386275B2 (en) 2008-08-29 2019-08-20 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US10768079B2 (en) 2008-08-29 2020-09-08 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US11668629B2 (en) 2008-08-29 2023-06-06 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
CN101747453B (en) * 2008-12-02 2011-08-03 中国石油天然气股份有限公司 Aging process of multiple-catalytic agent in solution polymerization system and device
CN113751294A (en) * 2021-09-09 2021-12-07 成都先进金属材料产业技术研究院股份有限公司 Method for preparing titanium-based nano anticorrosive film by taking titanium tetrachloride as titanium source

Similar Documents

Publication Publication Date Title
RU2719832C2 (en) Method of treating silicon-containing waste water and method of use thereof, as well as method and system for producing molecular sieve
CA2299187C (en) Processes of producing a titanium oxide-forming solution and a dispersion with crystalline titanium oxide particles
EP3369710B1 (en) Wastewater treatment method, wastewater treatment system, molecular sieve manufacturing method and manufacturing system
US20120007023A1 (en) Sodium Silicate Solutions
WO2000018686A1 (en) Method for production of amorphous titanium peroxide solution and anatase titanium oxide sol
CN103687815A (en) Method for treating aqueous solution containing hexavalent chromium
KR20020092067A (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
KR101101333B1 (en) Wastewater treatment agent
JP3122658B1 (en) Solution for forming titanium oxide and method for producing the same
CN107537468A (en) A kind of preparation method for the bismuth tungstate based photocatalyst for loading graphite oxide
BE1001314A4 (en) METHOD FOR PRODUCING hydrated aluminas, AND METHOD FOR PROCESSING WASTE ACID.
Grzmil et al. Effects of processing parameters on hydrolysis of TiOSO
JPH1034161A (en) Treatment of silica-containing waste water
LU81989A1 (en) INDUSTRIAL PROCESS FOR THE SEMI-CONTINUOUS MANUFACTURE OF ZEOLITE A
CZ290971B6 (en) Process for preparing pure solutions of alkali aluminates
CN1067962C (en) Process for producing poly-iron chloride
CN108499541B (en) A kind of titanium sulfate-chitosan compounding filter aid and preparation method thereof
JP4625177B2 (en) Silica recovery method and silica recovery device
JP3741269B2 (en) Waste water treatment agent, waste water treatment method and apparatus
CN210340349U (en) Production device for improving purity of silica sol
JPH0466546A (en) Production of armatic hydroxy compound
JPH01226718A (en) Basic aluminum chlorosulfonate, and its production and application thereof as flocculant
CA2879552A1 (en) Purification process for partly-hydrolyzed cellulose
JP2000095519A (en) Zinc oxide powder and its synthesis
CN107200689A (en) A kind of chlorogenic acid purifies method for concentration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase