WO2000015141A1 - Preformed curved prosthesis that is adapted to the external iliac vessels - Google Patents

Preformed curved prosthesis that is adapted to the external iliac vessels Download PDF

Info

Publication number
WO2000015141A1
WO2000015141A1 PCT/US1999/020929 US9920929W WO0015141A1 WO 2000015141 A1 WO2000015141 A1 WO 2000015141A1 US 9920929 W US9920929 W US 9920929W WO 0015141 A1 WO0015141 A1 WO 0015141A1
Authority
WO
WIPO (PCT)
Prior art keywords
prosthesis
radius
curvature
prosthesis according
approximately
Prior art date
Application number
PCT/US1999/020929
Other languages
French (fr)
Inventor
Philippe Pajotin
Original Assignee
C.R. Bard, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C.R. Bard, Inc. filed Critical C.R. Bard, Inc.
Priority to AU58219/99A priority Critical patent/AU5821999A/en
Priority to US09/786,811 priority patent/US6740122B1/en
Priority to CA002343381A priority patent/CA2343381C/en
Publication of WO2000015141A1 publication Critical patent/WO2000015141A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes

Definitions

  • the present invention relates to an implantable prosthesis, and more particularly to a prosthesis for repairing a hernia.
  • a flat sheet of an implantable, non-resorbable, flexible mesh material such as BARD MESH, has been employed for the parietal repair of hernias and eventrations of the abdominal wall.
  • BARD MESH implantable, non-resorbable, flexible mesh material
  • a surgeon may experience some difficulty positioning the mesh between the parietal peritoneum and the abdominopelvic wall. The mesh may also fold or wrinkle and be difficult to maintain in position.
  • the prosthesis which is disclosed in WO 95/07666 and is assigned to C.R. Bard, the assignee of the present application, is made of an implantable, nonabsorbable and flexible material that is formed to independently assume a curved shape adapted to conform to the anatomical shape of the wall.
  • the prosthesis includes a body comprised of a first portion formed in the shape of a cap and a second portion having a substantially spherical shape connected to a lower edge of the first portion.
  • the second portion has a radius of curvature that is less than the radius of curvature of the first portion.
  • the second portion includes an outer edge that meets the lower edge of the first portion at the apex of the body, which is the highest point of the curved prosthesis.
  • This prosthesis has proven useful and has become established in the practice of muscle or tissue wall repair in the inguinofemoral region.
  • the prosthesis is not subject to stresses when deformed and, therefore, has no tendency to shift upon implantation.
  • the prosthesis reinforces the abdominal wall at the anatomical region of concern.
  • the present invention is an implantable prosthesis for repairing a defect in a muscle or tissue wall.
  • the prosthesis includes a body of prosthetic material having a preformed three- dimensional contoured shape that independently assumes a curved shape adapted to conform to the wall.
  • the body is configured to adapt to the inclination of the external iliac vessels to facilitate a desired placement of the prosthesis when employed for repairing an inguinal hernia.
  • the body includes a first portion with a first lower edge and a second portion with a second outer edge, the second portion being connected to the first portion at the first lower edge.
  • the first portion is configured to have a shape of a cap and the second portion is configured with a substantially spherical shape.
  • the first portion has a first radius of curvature and the second portion has a second radius of curvature that is less than the first radius of curvature.
  • the second outer edge and the first lower edge meet at an apex of the body, the second outer edge forming an angle with the first lower edge that is greater than approximately 100° at the apex.
  • the angle is between approximately 101 ° and approximately 120°.
  • the first portion includes a first outer edge and the second portion includes a second outer edge
  • the body further includes a third portion with a third lower edge and a fourth portion.
  • the third portion is connected to the first outer edge and the fourth portion is connected to the third lower edge and to the second outer edge.
  • a depression may be formed between the second and fourth portions which is configured to be placed proximate the external iliac vessels when the prosthesis is positioned on a wall to repair an inguinal hernia.
  • the angular orientation between the first lower edge and the second outer edge and the depression between the second and fourth portions are adapted to the inclination of the external iliac vessels to facilitate placement of and to minimize shifting of the prosthesis when positioned on the wall.
  • the angular orientation and the depression also provide a degree of deformation for matching adjacent contours.
  • the prosthesis is configured with a ratio of the surface area of the third portion to the total surface area of the prosthesis from approximately 0.25 to approximately 0.40.
  • the third portion has a third radius of curvature that is substantially equal to the first radius of curvature along the first outer edge. This configuration reduces the incidence of wrinkles or folds occuring between the first portion and the third portion so that the first and third portions do not partially cover each other upon or after implantation, thereby ensuring that the overall size of the prosthesis is sufficient to adequately cover the desired portion of the wall.
  • Figure 1 is a plan view of a prosthesis according to one illustrative embodiment of the invention
  • Figure 2 is a cross-sectional view of the prosthesis taken along section line II-II in Figure 1 ;
  • Figure 3 is a cross-sectional view of the prosthesis taken along section line III-III in Figure 1.
  • FIGS. 1-3 illustrate one embodiment of a prosthesis for repairing a defect in a muscle or tissue wall, such as a hernia.
  • the prosthesis includes a body of prosthetic material that is preformed with a three-dimensional configuration that conforms to the anatomical shape of the defective wall to facilitate placement and minimize shifting of the prosthesis when positioned on the wall.
  • the body includes a plurality of shaped portions that are joined to each other to create a desired configuration. The particular orientation between several portions of the body is adapted to the inclination of the external iliac vessels to facilitate a desired placement of the prosthesis when employed for repairing an inguinal hernia.
  • the body includes first, second, third and fourth portions 1, 6, 10, 15, respectively, that are connected to each other to form a unitary structure.
  • Each of the portions includes a curved surface that provide the prosthesis with the preformed contoured shape.
  • the first portion 1 is formed with a substantially spherical shape and includes a first outer edge 2 and a first lower edge 3 joined to each other at an apex 4 of the prosthesis, which is the highest point thereof.
  • the first portion 1 also includes a circular inner edge 5 that extends in the same plane as the outer and lower edges 2, 3.
  • the second portion 6 is disposed below the first portion 1 and includes an upper edge 7, a second outer edge 8 and a curved second lower edge 9. As shown, the upper edge 7 merges with the first lower edge 3 of the first portion.
  • the first and second portions 1, 6 are configured with an angle A at the apex 4 between the first lower edge 3 and the third outer edge 8 that positions the third outer edge 8 substantially opposite the external iliac vessels when implanted to repair an inguinal hernia. In one embodiment, the angle A is greater than 100° with an illustrative range of approximately 101 ° to 120°.
  • the third portion 10, which lies adjacent the first portion 1, includes a third lower edge
  • the third portion 10 is connected to the first portion 1 along the first outer edge 2.
  • the fourth portion 15 is positioned below the third portion 10 and adjacent the second portion 6.
  • the fourth portion 15 is defined by and is connected to the third lower edge 11 of the third portion 10 and the second outer edge 8 of the second portion 6.
  • the fourth portion also includes a curved fourth lower edge 16.
  • the inner edge 5, the third outer edge 14 and the second and fourth lower edges 9, 16 form a generally D-shaped peripheral edge of the prosthesis.
  • the peripheral edge may be welded or fused so that the body can regain its contoured shape after being deformed during implantation.
  • Each of the second and fourth portions 6, 15 may also have substantially spherical shapes to enhance conformance to a particular anatomical shape.
  • the radius of curvature of the second and fourth portions is less than the radius of curvature of the first portion to form surfaces in the second and fourth portions that have a steeper incline relative to the first portion.
  • the second and fourth portions are shaped to form a depression in the surface of the body that is configured to receive the external iliac vessels when the prosthesis is employed for inguinal hernia repair.
  • the depression extends inwardly from the peripheral edge between the second and fourth lower edges 9, 16 toward the apex 4.
  • the particular angular orientation between the first lower edge 3 and the second outer edge 8 and the depression between the second and fourth portions 6, 15 are adapted to the inclination of the external iliac vessels to facilitate placement of and to minimize shifting of the prosthesis when positioned on the wall.
  • the angular orientation and the depression also provide a degree of deformation for matching adjacent contours.
  • the prosthesis may also be configured to substantially reduce the incidence of wrinkles or folds between the first and third portions so that the first and third portions do not partially cover each other upon or after implantation, thereby ensuring that the overall size of the prosthesis is sufficient to adequately cover the desired portion of the wall.
  • the first portion 1 has a first radius of curvature and the third portion 14 has a third radius of curvature that is substantially equal to the first radius of curvature along the first outer edge 2.
  • the prosthesis may be formed from an implantable, biologically compatible material that is nonabsorbable and flexible.
  • the prosthesis is formed of a knitted fabric of implantable polypropylene filament, such as BARD MESH, that includes a plurality of interstices (not shown) for promoting tissue ingrowth to the prosthesis. It is to be understood, however, that the prosthesis may be formed of any suitable material.
  • the prosthesis may be configured to have any shape and size suitable for a particular application. In one embodiment, the height H of the prosthesis from a plane defined by the peripheral edge and the apex 4 is approximately 21 mm.
  • the first portion 1 has a substantially spherical shape with a radius of curvature of approximately 120 mm, particularly along the first outer edge 2.
  • the third portion 10 has substantially the same radius of curvature of approximately 120 mm adjacent the first outer edge 2.
  • the second and fourth portions 6, 15 each has a substantially spherical shape with a radius of curvature of approximately 35 mm.
  • the total surface area of the prosthesis is approximately 44,780 mm 2 , with the second portion 10 having a surface area of approximately 12,735 mm 2 .
  • the disclosed configuration is particularly suited for repairing an inguinal hernia. It is to be appreciated, however, that this configuration is exemplary and that the prosthesis may be configured to have other shapes and sizes suitable for a particular application.
  • the preformed curved shape of the prosthesis may be obtained using any suitable manufacturing process.
  • the prosthesis is fabricated using a thermoforming procedure that includes placing a sheet of mesh fabric in a mold having the desired shape for the prosthesis, heating the fabric in the mold at an approximate temperature of 100°C to 200 °C for a period of approximately 5 to 60 minutes, and subsequently cooling the fabric in the mold with an air flow having an approximate temperature of l5°C to 30°C for a period of approximately 5 to 60 minutes.
  • the edges of the prosthesis may be welded by fusing the meshes and the material using an ultrasonic welding procedure. During this procedure, the prosthesis is maintained between an element generating vibrations and an anvil that is configured to the particular dimensions of the prosthesis. In one embodiment, the edges are welded at a pressure of approximately 150 kPa to 800 kPa and an energy of approximately 100 to 5000 joules for a period of approximately 50 to 5000 milliseconds.
  • any excess fabric extending beyond the welded edges is separated from the body of the prosthesis using a manual cutting procedure to form the completed prosthesis.
  • the prosthesis may be packed in an internal packing (shell and insert) that has been designed specifically according to the three-dimensional characteristics of the prosthesis so as to comply with and protect the preformed curved shape of the prosthesis.
  • the internal packing may be subsequently placed and packaged in a external packing for additional protection.
  • the entire assembly may then be sterilized using any suitable method, such as with ethylene oxide, to provide a sterile prosthesis that is ready for implantation.

Abstract

A prosthesis is provided for repairing a defect in a muscle or tissue wall. The prosthesis has a performed shape that conforms to the wall to facilitate placement and minimize shifting of the prosthesis when positioned on the wall. The prosthesis may include a body formed of a sheet of surgical mesh fabric having a flexible body surrounded by a peripheral edge that may be welded or fused so that the body is capable of resuming the preformed shape after being temporarily deformed to allow for implantation. The body is adapted to the inclination of the external iliac vessels. In one embodiment, the body includes a first portion (1) configured with a shape of a cap and a second portion (6) with a substantially spherical shape that is connected to the first portion at a lower edge (2) thereof. The first portion has a first radius of curvature and the second portion has a second radius of curvature that is less than the first radius of curvature. The second portion (6) includes an outer edge (8) that forms an angle with the lower edge (2) of the first portion that is greater than 100° at the apex (4) of the prosthesis.

Description

PREFORMED CURVED PROSTHESIS THAT IS ADAPTED TO THE EXTERNAL ILIAC VESSELS
Background of the Invention 1. Field of the Invention
The present invention relates to an implantable prosthesis, and more particularly to a prosthesis for repairing a hernia.
2. Description of the Related Art A defect in a muscle or tissue wall, such as a hernia, is commonly repaired with an implantable prosthesis that is configured to cover and/or fill the defect. In many instances, a flat sheet of an implantable, non-resorbable, flexible mesh material, such as BARD MESH, has been employed for the parietal repair of hernias and eventrations of the abdominal wall. However, a surgeon may experience some difficulty positioning the mesh between the parietal peritoneum and the abdominopelvic wall. The mesh may also fold or wrinkle and be difficult to maintain in position.
Applicant previously developed an implantable prosthesis for repairing a defect in a muscle or tissue wall to alleviate some of these concerns. The prosthesis, which is disclosed in WO 95/07666 and is assigned to C.R. Bard, the assignee of the present application, is made of an implantable, nonabsorbable and flexible material that is formed to independently assume a curved shape adapted to conform to the anatomical shape of the wall. The prosthesis includes a body comprised of a first portion formed in the shape of a cap and a second portion having a substantially spherical shape connected to a lower edge of the first portion. The second portion has a radius of curvature that is less than the radius of curvature of the first portion. The second portion includes an outer edge that meets the lower edge of the first portion at the apex of the body, which is the highest point of the curved prosthesis.
This prosthesis has proven useful and has become established in the practice of muscle or tissue wall repair in the inguinofemoral region. The prosthesis is not subject to stresses when deformed and, therefore, has no tendency to shift upon implantation. The prosthesis reinforces the abdominal wall at the anatomical region of concern.
It has nevertheless been observed that the reinforcement of the abdominal wall offered by the prosthesis could be extended. It is an object of the present invention to provide an improved prosthesis for repairing a defect in a muscle or tissue wall by configuring the prosthesis with regard to certain anatomical zones.
Summary of the Invention
The present invention is an implantable prosthesis for repairing a defect in a muscle or tissue wall. The prosthesis includes a body of prosthetic material having a preformed three- dimensional contoured shape that independently assumes a curved shape adapted to conform to the wall. The body is configured to adapt to the inclination of the external iliac vessels to facilitate a desired placement of the prosthesis when employed for repairing an inguinal hernia.
According to one embodiment of the invention, the body includes a first portion with a first lower edge and a second portion with a second outer edge, the second portion being connected to the first portion at the first lower edge. The first portion is configured to have a shape of a cap and the second portion is configured with a substantially spherical shape. The first portion has a first radius of curvature and the second portion has a second radius of curvature that is less than the first radius of curvature. The second outer edge and the first lower edge meet at an apex of the body, the second outer edge forming an angle with the first lower edge that is greater than approximately 100° at the apex. According to one aspect of the invention, the angle is between approximately 101 ° and approximately 120°.
According to another aspect of the invention, the first portion includes a first outer edge and the second portion includes a second outer edge, and the body further includes a third portion with a third lower edge and a fourth portion. The third portion is connected to the first outer edge and the fourth portion is connected to the third lower edge and to the second outer edge.
A depression may be formed between the second and fourth portions which is configured to be placed proximate the external iliac vessels when the prosthesis is positioned on a wall to repair an inguinal hernia. The angular orientation between the first lower edge and the second outer edge and the depression between the second and fourth portions are adapted to the inclination of the external iliac vessels to facilitate placement of and to minimize shifting of the prosthesis when positioned on the wall. The angular orientation and the depression also provide a degree of deformation for matching adjacent contours.
According to a further aspect of the invention, the prosthesis is configured with a ratio of the surface area of the third portion to the total surface area of the prosthesis from approximately 0.25 to approximately 0.40. According to still another aspect of the invention, the third portion has a third radius of curvature that is substantially equal to the first radius of curvature along the first outer edge. This configuration reduces the incidence of wrinkles or folds occuring between the first portion and the third portion so that the first and third portions do not partially cover each other upon or after implantation, thereby ensuring that the overall size of the prosthesis is sufficient to adequately cover the desired portion of the wall.
Brief Description of the Drawings
The foregoing and other objects and advantages of the invention will be appreciated more fully from the following drawings, given solely by way of example, in which: Figure 1 is a plan view of a prosthesis according to one illustrative embodiment of the invention;
Figure 2 is a cross-sectional view of the prosthesis taken along section line II-II in Figure 1 ; and
Figure 3 is a cross-sectional view of the prosthesis taken along section line III-III in Figure 1.
Detailed Description
FIGS. 1-3 illustrate one embodiment of a prosthesis for repairing a defect in a muscle or tissue wall, such as a hernia. The prosthesis includes a body of prosthetic material that is preformed with a three-dimensional configuration that conforms to the anatomical shape of the defective wall to facilitate placement and minimize shifting of the prosthesis when positioned on the wall. The body includes a plurality of shaped portions that are joined to each other to create a desired configuration. The particular orientation between several portions of the body is adapted to the inclination of the external iliac vessels to facilitate a desired placement of the prosthesis when employed for repairing an inguinal hernia.
In one illustrative embodiment, the body includes first, second, third and fourth portions 1, 6, 10, 15, respectively, that are connected to each other to form a unitary structure. Each of the portions includes a curved surface that provide the prosthesis with the preformed contoured shape.
The first portion 1 is formed with a substantially spherical shape and includes a first outer edge 2 and a first lower edge 3 joined to each other at an apex 4 of the prosthesis, which is the highest point thereof. The first portion 1 also includes a circular inner edge 5 that extends in the same plane as the outer and lower edges 2, 3.
The second portion 6 is disposed below the first portion 1 and includes an upper edge 7, a second outer edge 8 and a curved second lower edge 9. As shown, the upper edge 7 merges with the first lower edge 3 of the first portion. The first and second portions 1, 6 are configured with an angle A at the apex 4 between the first lower edge 3 and the third outer edge 8 that positions the third outer edge 8 substantially opposite the external iliac vessels when implanted to repair an inguinal hernia. In one embodiment, the angle A is greater than 100° with an illustrative range of approximately 101 ° to 120°. The third portion 10, which lies adjacent the first portion 1, includes a third lower edge
11 and a circular third outer edge 14. The third portion 10 is connected to the first portion 1 along the first outer edge 2.
The fourth portion 15 is positioned below the third portion 10 and adjacent the second portion 6. The fourth portion 15 is defined by and is connected to the third lower edge 11 of the third portion 10 and the second outer edge 8 of the second portion 6. The fourth portion also includes a curved fourth lower edge 16.
As illustrated in FIG. 1, the inner edge 5, the third outer edge 14 and the second and fourth lower edges 9, 16 form a generally D-shaped peripheral edge of the prosthesis. The peripheral edge may be welded or fused so that the body can regain its contoured shape after being deformed during implantation.
Each of the second and fourth portions 6, 15 may also have substantially spherical shapes to enhance conformance to a particular anatomical shape. In one illustrative embodiment, the radius of curvature of the second and fourth portions is less than the radius of curvature of the first portion to form surfaces in the second and fourth portions that have a steeper incline relative to the first portion.
The second and fourth portions are shaped to form a depression in the surface of the body that is configured to receive the external iliac vessels when the prosthesis is employed for inguinal hernia repair. The depression extends inwardly from the peripheral edge between the second and fourth lower edges 9, 16 toward the apex 4.
The particular angular orientation between the first lower edge 3 and the second outer edge 8 and the depression between the second and fourth portions 6, 15 are adapted to the inclination of the external iliac vessels to facilitate placement of and to minimize shifting of the prosthesis when positioned on the wall. The angular orientation and the depression also provide a degree of deformation for matching adjacent contours.
The prosthesis may also be configured to substantially reduce the incidence of wrinkles or folds between the first and third portions so that the first and third portions do not partially cover each other upon or after implantation, thereby ensuring that the overall size of the prosthesis is sufficient to adequately cover the desired portion of the wall. In one illustrative embodiment, the first portion 1 has a first radius of curvature and the third portion 14 has a third radius of curvature that is substantially equal to the first radius of curvature along the first outer edge 2. The prosthesis may be formed from an implantable, biologically compatible material that is nonabsorbable and flexible. In one embodiment, the prosthesis is formed of a knitted fabric of implantable polypropylene filament, such as BARD MESH, that includes a plurality of interstices (not shown) for promoting tissue ingrowth to the prosthesis. It is to be understood, however, that the prosthesis may be formed of any suitable material. The prosthesis may be configured to have any shape and size suitable for a particular application. In one embodiment, the height H of the prosthesis from a plane defined by the peripheral edge and the apex 4 is approximately 21 mm. The first portion 1 has a substantially spherical shape with a radius of curvature of approximately 120 mm, particularly along the first outer edge 2. The third portion 10 has substantially the same radius of curvature of approximately 120 mm adjacent the first outer edge 2. The second and fourth portions 6, 15 each has a substantially spherical shape with a radius of curvature of approximately 35 mm. The total surface area of the prosthesis is approximately 44,780 mm2, with the second portion 10 having a surface area of approximately 12,735 mm2.
The disclosed configuration is particularly suited for repairing an inguinal hernia. It is to be appreciated, however, that this configuration is exemplary and that the prosthesis may be configured to have other shapes and sizes suitable for a particular application. The preformed curved shape of the prosthesis may be obtained using any suitable manufacturing process. In one illustrative embodiment, the prosthesis is fabricated using a thermoforming procedure that includes placing a sheet of mesh fabric in a mold having the desired shape for the prosthesis, heating the fabric in the mold at an approximate temperature of 100°C to 200 °C for a period of approximately 5 to 60 minutes, and subsequently cooling the fabric in the mold with an air flow having an approximate temperature of l5°C to 30°C for a period of approximately 5 to 60 minutes.
The edges of the prosthesis may be welded by fusing the meshes and the material using an ultrasonic welding procedure. During this procedure, the prosthesis is maintained between an element generating vibrations and an anvil that is configured to the particular dimensions of the prosthesis. In one embodiment, the edges are welded at a pressure of approximately 150 kPa to 800 kPa and an energy of approximately 100 to 5000 joules for a period of approximately 50 to 5000 milliseconds.
Once the sheet of mesh fabric has been shaped and the edges of the shaped prosthesis have been welded, any excess fabric extending beyond the welded edges is separated from the body of the prosthesis using a manual cutting procedure to form the completed prosthesis.
After inspection, the prosthesis may be packed in an internal packing (shell and insert) that has been designed specifically according to the three-dimensional characteristics of the prosthesis so as to comply with and protect the preformed curved shape of the prosthesis. The internal packing may be subsequently placed and packaged in a external packing for additional protection. The entire assembly may then be sterilized using any suitable method, such as with ethylene oxide, to provide a sterile prosthesis that is ready for implantation.
It should be understood that the foregoing description of the invention is intended merely to be illustrative thereof and that other embodiments, modifications, and equivalents of the invention are within the scope of the invention recited in the claims appended hereto.
What is claimed is:

Claims

Claims
1. An implantable prosthesis for repairing a defect in a muscle or tissue wall, the prosthesis comprising: a body of prosthetic material having a preformed three-dimensional contoured shape that independently assumes a curved shape adapted to conform to the wall, the body including a first portion (1) with a first lower edge (3) and a second portion (6) with a second outer edge (8), the second portion being connected to the first portion at the first lower edge (2), the first portion configured to have a shape of a cap and the second portion configured with a substantially spherical shape, the first portion having a first radius of curvature and the second portion having a second radius of curvature that is less than the first radius of curvature, the second outer edge (8) and the first lower edge (3) meeting at an apex (4) of the body, the second outer edge (8) forming an angle with the first lower edge (3) that is greater than approximately 100┬░ at the apex (4).
2. The prosthesis according to claim 1, wherein the angle is between approximately 101 ┬░ and approximately 120┬░.
3. The prosthesis according to claim 1 or 2, wherein the first portion (1) includes a first outer edge (2) and the second portion (6) includes a second outer edge (8), and wherein the body further includes a third portion (10) with a third lower edge (11) and a fourth portion (15), the third portion being connected to the first outer edge (2) and the fourth portion (15) being connected to the third lower edge (11) and to the second outer edge (8).
4. The prosthesis according to claim 3, wherein the third portion has a surface area and the body has a total surface area, the prosthesis being configured with a ratio of the surface area of the third portion to the total surface area that ranges from approximately 0.25 to approximately 0.40.
5. The prosthesis according to claim 3 or 4, wherein the third portion (10) has a third radius of curvature that is substantially equal to the first radius of curvature along the first outer edge (2).
6. The prosthesis according to claim 4, wherein the total surface area is greater than approximately 40,000 mm2.
7. The prosthesis according to one of claims 3 to 6, wherein the fourth portion (15) is configured with a substantially spherical shape.
8. The prosthesis according to one of claims 3 to 7, wherein the body includes a permanent depression between the second portion (6) and the fourth portion (15), the depression being constructed and arranged to be placed proximate the external iliac vessels when the prosthesis is positioned on the wall to repair an inguinal hernia.
9. The prosthesis according to claim 8, wherein the body includes an apex (4), the depression extending inwardly from a peripheral edge of the body toward the apex.
10. The prosthesis according to one of claims 3 to 9, wherein the fourth portion
(15) has a fourth radius of curvature that is substantially equal to the second radius of curvature.
11. The prosthesis according to one of claims 3 to 10, each of the second and fourth portions (6, 15) includes a curved lower edge (9, 16).
12. The prosthesis according to any of the preceding claims, wherein the body includes a peripheral edge that is generally D-shaped.
13. The prosthesis according to any of the preceding claims, wherein the first radius of curvature is approximately 120mm.
14. The prosthesis according to any of the preceding claims, wherein the second radius of curvature is approximately 35mm.
15. The prosthesis according to any of the preceding claims, wherein the body of prosthetic material includes surgical mesh.
PCT/US1999/020929 1998-09-11 1999-09-10 Preformed curved prosthesis that is adapted to the external iliac vessels WO2000015141A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU58219/99A AU5821999A (en) 1998-09-11 1999-09-10 Preformed curved prosthesis that is adapted to the external iliac vessels
US09/786,811 US6740122B1 (en) 1998-09-11 1999-09-10 Preformed curved prosthesis that is adapted to the external iliac vessels
CA002343381A CA2343381C (en) 1998-09-11 1999-09-10 Preformed curved prosthesis that is adapted to the external iliac vessels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9811332A FR2783156B1 (en) 1998-09-11 1998-09-11 GALBE PROSTHETIC NET FITTING TO EXTERNAL ILIAC VESSELS
FR98/11332 1998-09-11

Publications (1)

Publication Number Publication Date
WO2000015141A1 true WO2000015141A1 (en) 2000-03-23

Family

ID=9530319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/020929 WO2000015141A1 (en) 1998-09-11 1999-09-10 Preformed curved prosthesis that is adapted to the external iliac vessels

Country Status (4)

Country Link
AU (1) AU5821999A (en)
CA (1) CA2343381C (en)
FR (1) FR2783156B1 (en)
WO (1) WO2000015141A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723133B1 (en) 1998-09-11 2004-04-20 C. R. Bard, Inc. Performed curved prosthesis having a reduced incidence of developing wrinkles or folds
WO2005044143A1 (en) * 2003-10-31 2005-05-19 Mpathy Medical Devices Limited Hernia prosthesis
US8118727B2 (en) 2000-10-12 2012-02-21 Coloplast A/S Method for supporting pelvic anatomy
US8157822B2 (en) 2001-03-30 2012-04-17 Coloplast A/S Surgical implant and methods of use
US8182412B2 (en) 2000-10-12 2012-05-22 Coloplast A/S Pelvic implant with fibrous anchor
US8215310B2 (en) 2004-05-21 2012-07-10 Coloplast A/S Implant for treatment of vaginal and/or uterine prolapse
US8668635B2 (en) 2000-10-12 2014-03-11 Coloplast A/S Pelvic implant with suspending system
US8920304B2 (en) 2000-07-05 2014-12-30 Coloplast A/S Method and device for treating urinary incontinence
US9005222B2 (en) 2002-08-02 2015-04-14 Coloplast A/S Self-anchoring sling and introducer system
US9186489B2 (en) 2003-03-27 2015-11-17 Coloplast A/S Implantable delivery device system for delivery of a medicament to a bladder
US11413129B2 (en) 2020-06-19 2022-08-16 Davol Inc. Implantable prosthesis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559214A (en) * 1968-10-17 1971-02-02 William J Pangman Compound prosthesis
WO1995007666A1 (en) * 1993-09-13 1995-03-23 C.R. Bard, Inc. Curved prosthetic mesh and method of manufacture
US5584884A (en) * 1995-07-27 1996-12-17 Anthony S. Pignataro Mammary prosthesis and method of surgically implanting same
EP0836838A1 (en) * 1996-10-18 1998-04-22 Cogent Anatomical prosthesis for hernia repair via open of laparoscopic surgery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559214A (en) * 1968-10-17 1971-02-02 William J Pangman Compound prosthesis
WO1995007666A1 (en) * 1993-09-13 1995-03-23 C.R. Bard, Inc. Curved prosthetic mesh and method of manufacture
US5584884A (en) * 1995-07-27 1996-12-17 Anthony S. Pignataro Mammary prosthesis and method of surgically implanting same
EP0836838A1 (en) * 1996-10-18 1998-04-22 Cogent Anatomical prosthesis for hernia repair via open of laparoscopic surgery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723133B1 (en) 1998-09-11 2004-04-20 C. R. Bard, Inc. Performed curved prosthesis having a reduced incidence of developing wrinkles or folds
US10278800B2 (en) 2000-07-05 2019-05-07 Coloplast A/S Method and device for treating urinary incontinence
US8920304B2 (en) 2000-07-05 2014-12-30 Coloplast A/S Method and device for treating urinary incontinence
US8852075B2 (en) 2000-10-12 2014-10-07 Coloplast A/S Pelvic implant systems and methods with expandable anchors
US8469877B2 (en) 2000-10-12 2013-06-25 Coloplast A/S System for introducing a pelvic implant
US8118728B2 (en) 2000-10-12 2012-02-21 Coloplast A/S Method for implanting an adjustable surgical implant for treating urinary incontinence
US8123673B2 (en) 2000-10-12 2012-02-28 Coloplast A/S Adjustable surgical implant for treating urinary incontinence
US10449025B2 (en) 2000-10-12 2019-10-22 Coloplast A/S Surgical device implantable to treat female urinary incontinence
US10076394B2 (en) 2000-10-12 2018-09-18 Coloplast A/S Method of treating urinary incontinence
US8911347B2 (en) 2000-10-12 2014-12-16 Coloplast A/S System and method for treating urinary incontinence
US8182412B2 (en) 2000-10-12 2012-05-22 Coloplast A/S Pelvic implant with fibrous anchor
US8182413B2 (en) 2000-10-12 2012-05-22 Coloplast A/S Method for fibrous anchoring of a pelvic support
US9968430B2 (en) 2000-10-12 2018-05-15 Coloplast A/S Surgical device implantable to treat female urinary incontinence
US8273011B2 (en) 2000-10-12 2012-09-25 Coloplast A/S Adjustable surgical implant and method for treating urinary incontinence
US8449450B2 (en) 2000-10-12 2013-05-28 Coloplast A/S Pass through introducer and sling
US8454492B2 (en) 2000-10-12 2013-06-04 Coloplast A/S Absorbable anchor and method for mounting mesh to tissue
US8932202B2 (en) 2000-10-12 2015-01-13 Coloplast A/S Incontinence implant with soft tissue anchors and length not allowing abdominal wall penetration
US8512223B2 (en) 2000-10-12 2013-08-20 Coloplast A/S Pelvic implant with selective locking anchor
US8574148B2 (en) 2000-10-12 2013-11-05 Coloplast A/S System for introducing soft tissue anchors
US9918817B2 (en) 2000-10-12 2018-03-20 Coloplast A/S Method of post-operatively adjusting a urethral support in treating urinary incontinence of a woman
US9113992B2 (en) 2000-10-12 2015-08-25 Coloplast A/S Apparatus and method for treating urinary incontinence
US8888678B2 (en) 2000-10-12 2014-11-18 Coloplast A/S Pelvic implant with suspending system
US8668635B2 (en) 2000-10-12 2014-03-11 Coloplast A/S Pelvic implant with suspending system
US8801596B2 (en) 2000-10-12 2014-08-12 Coloplast A/S Sling with support and suspending members formed from same polymer
US8821370B2 (en) 2000-10-12 2014-09-02 Coloplast A/S Device, system and methods for introducing soft tissue anchors
US8821369B2 (en) 2000-10-12 2014-09-02 Colorplast A/S Method for soft tissue anchoring with introducer
US9089394B2 (en) 2000-10-12 2015-07-28 Coloplast A/S Pelvic implant with suspending system
US8118727B2 (en) 2000-10-12 2012-02-21 Coloplast A/S Method for supporting pelvic anatomy
US8162818B2 (en) 2000-10-12 2012-04-24 Coloplast A/S Adjustable surgical implant for pelvic anatomy
US9089396B2 (en) 2000-10-12 2015-07-28 Coloplast A/S Urinary incontinence treatment and devices
US8920308B2 (en) 2000-10-12 2014-12-30 Coloplast A/S Surgical implant with anchor introducer channel
US8632554B2 (en) 2001-03-30 2014-01-21 Coloplast A/S Low mass density surgical implant having strands and methods of use
US8157822B2 (en) 2001-03-30 2012-04-17 Coloplast A/S Surgical implant and methods of use
US10682213B2 (en) 2001-03-30 2020-06-16 Coloplast A/S Surgical implant consisting of non-absorbable material
US8157821B2 (en) 2001-03-30 2012-04-17 Coloplast A/S Surgical implant
US8603119B2 (en) 2001-03-30 2013-12-10 Coloplast A/S Surgical implant having strands and methods of use
US9943390B2 (en) 2001-03-30 2018-04-17 Coloplast A/S Method of treating pelvic organ prolapse in a female patient by accessing a prolapsed organ trans-vaginally through a vagina
US9248011B2 (en) 2001-03-30 2016-02-02 Coloplast A/S Surgical implant and methods of use
US8603120B2 (en) 2001-03-30 2013-12-10 Coloplast A/S Low mass density surgical implant and methods of use
US9872750B2 (en) 2002-08-02 2018-01-23 Coloplast A/S Self-anchoring sling and introducer system
US9532862B2 (en) 2002-08-02 2017-01-03 Coloplast A/S Self-anchoring sling and introducer system
US9532861B2 (en) 2002-08-02 2017-01-03 Coloplast A/S Self-anchoring sling and introducer system
US9005222B2 (en) 2002-08-02 2015-04-14 Coloplast A/S Self-anchoring sling and introducer system
US9555168B2 (en) 2003-03-27 2017-01-31 Coloplast A/S System for delivery of medication in treatment of disorders of the pelvis
US9345867B2 (en) 2003-03-27 2016-05-24 Coloplast A/S Device implantable in tissue of a prostate gland or a bladder
US9186489B2 (en) 2003-03-27 2015-11-17 Coloplast A/S Implantable delivery device system for delivery of a medicament to a bladder
GB2423030B (en) * 2003-10-31 2008-01-30 Mpathy Medical Devices Ltd Hernia prosthesis
WO2005044143A1 (en) * 2003-10-31 2005-05-19 Mpathy Medical Devices Limited Hernia prosthesis
GB2423030A (en) * 2003-10-31 2006-08-16 Mpathy Medical Devices Ltd Hernia prosthesis
US8215310B2 (en) 2004-05-21 2012-07-10 Coloplast A/S Implant for treatment of vaginal and/or uterine prolapse
US10064714B2 (en) 2004-05-21 2018-09-04 Coloplast A/S Implantable device configured to treat pelvic organ prolapse
US9060838B2 (en) 2004-05-21 2015-06-23 Coloplast A/S Tissue supported implantable device
US10639138B2 (en) 2008-02-28 2020-05-05 Coloplast A/S Method for providing support to a urethra in treating urinary incontinence
US11413129B2 (en) 2020-06-19 2022-08-16 Davol Inc. Implantable prosthesis

Also Published As

Publication number Publication date
CA2343381A1 (en) 2000-03-23
AU5821999A (en) 2000-04-03
FR2783156A1 (en) 2000-03-17
CA2343381C (en) 2007-12-04
FR2783156B1 (en) 2001-01-05

Similar Documents

Publication Publication Date Title
US6740122B1 (en) Preformed curved prosthesis that is adapted to the external iliac vessels
US6723133B1 (en) Performed curved prosthesis having a reduced incidence of developing wrinkles or folds
US5954767A (en) Curved prosthetic mesh and its method of manufacture
JP4243189B2 (en) Complete universal implant for repair of anterior pathway hernia
EP1847233B1 (en) Implantable prosthesis
US6066776A (en) Self-forming prosthesis for repair of soft tissue defects
CA2343381C (en) Preformed curved prosthesis that is adapted to the external iliac vessels
US11452588B2 (en) Implantable prosthesis for soft tissue repair
WO2000067663A1 (en) Prosthetic repair fabric
EP1112038B1 (en) Preformed curved prosthesis having a reduced incidence of developing wrinkles or folds
US8603117B2 (en) Prosthetic mesh for laparoscopic repair of inguinal hernia
US20130282035A1 (en) Prosthetic Mesh for Laparoscopic Repair of Inguinal Hernia

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2343381

Country of ref document: CA

Ref country code: CA

Ref document number: 2343381

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09786811

Country of ref document: US

122 Ep: pct application non-entry in european phase