WO2000013037A1 - Procede de recherche tridimensionnel, procede d'affichage de donnees de voxels tridimensionnelles, et dispositif de realisation de ces procedes - Google Patents

Procede de recherche tridimensionnel, procede d'affichage de donnees de voxels tridimensionnelles, et dispositif de realisation de ces procedes Download PDF

Info

Publication number
WO2000013037A1
WO2000013037A1 PCT/JP1999/004670 JP9904670W WO0013037A1 WO 2000013037 A1 WO2000013037 A1 WO 2000013037A1 JP 9904670 W JP9904670 W JP 9904670W WO 0013037 A1 WO0013037 A1 WO 0013037A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
data
poxel
medium
voxel
Prior art date
Application number
PCT/JP1999/004670
Other languages
English (en)
French (fr)
Inventor
Hideki Hayakawa
Akira Kawanaka
Yasuhiro Takesue
Original Assignee
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10245345A external-priority patent/JP2000075025A/ja
Application filed by Osaka Gas Co., Ltd. filed Critical Osaka Gas Co., Ltd.
Priority to US09/763,939 priority Critical patent/US6573855B1/en
Publication of WO2000013037A1 publication Critical patent/WO2000013037A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing

Definitions

  • the present invention radiates a wave signal due to an electromagnetic wave or a sound wave into a medium while moving on a surface in the medium, receives a reflected signal from an object existing in the medium, and processes the received signal.
  • the present invention relates to a three-dimensional poxel data display method and apparatus for displaying three-dimensional poxel data generated using a reflection time t as coordinates ( ⁇ , y, t).
  • a three-dimensional exploration device is used to search for buried objects or cavities underground using the reflection of electromagnetic waves.
  • threshold value for the binarization process which is used as a criterion for determining the presence or absence of an object.
  • the symbol display of each section (for example, the binary symbol display of the presence / absence of an object based on the intensity of the reflected signal) is connected in three dimensions, so the threshold value for symbolization is set.
  • the threshold value for symbolization is set.
  • the ability to be judged as a pipe or whether it is judged as a lump depends greatly on it.
  • low SZN for underground exploration the intensity of the reflected signal from the object changes greatly when the search position is changed. Therefore, in the case of binarization based on the intensity of the reflected signal, if the threshold value is lowered to a point where the pipe can be detected, a large amount of noise area such as an unnecessary reflected signal is generated. This is due to the fact that no information on adjacent cross sections is used when binarizing.
  • the buried pipe is buried perpendicular to the scanning direction of the device. Therefore, under such preconditions, the symbolization method described above is useful, but if the buried pipe is not buried perpendicular to the scanning direction of the device, the reliability of the exploration will be low. There is.
  • the 3D probe radiates electromagnetic waves toward the ground, receives reflected signals from buried objects, and receives signals at regular intervals of reflection time t. Measure the signal strength s. Therefore, if the positions (x, y) on the ground surface of the 3D spacecraft are arranged in a grid pattern at regular intervals, complete 3D poxel data in which data values (received signal strength s) exist in all poxels s (X, y, t) can be constructed.
  • data values received signal strength s
  • a voxel having a data value is defined as a source voxel
  • a poxel having a missing data value is defined as a missing voxel
  • a method of interpolating missing poxels that are non-uniformly present in the X-y plane in such three-dimensional voxel cell data is known as a second prior art, and a method of weighting interpolation based on a distance from a source poxel.
  • this conventional method when the distance between a missing voxel and a source poxel (vocell value s) is D, the missing poxel is interpolated by the value s' obtained by the following equation (1).
  • E for adjusting the degree of weighting, for example, a number such as 3.5 Values are used, but appropriate values are used according to the density of interpolated data and the variance of the poxel values.
  • a Delaunay triangulation diagram is calculated from the two-dimensional distribution of the source poxels in the X-y plane, and the missing poxels inside each triangle are calculated.
  • interpolation is performed by weighting according to the distance based on the data values of the source poxels at the vertices of a triangle.
  • the determined Mel by calculation dough port one Natick triangulation diagram, for example, Sosubotaseru of X - when the number of two-dimensional distribution of the y plane is n, enormous that order from n 2 n 3
  • the third problem still exists without being solved.
  • the above-described three-dimensional poxel data display is, for example, in exploration of an underground object, radiating a wave signal by electromagnetic waves or sound waves into the ground while moving on the ground surface, and existing in the ground.
  • the signal (x, y) and the reflection time t on the ground surface with respect to the intensity of the received reflection signal are coordinate (X, y, t), and usually displays a large number of images obtained from the three-dimensional poxel data along a vertical or horizontal section, and performs enormous work requiring labor and skill to compare and verify these.
  • FIG. 26 shows an image display example in which the three-dimensional vota cell data in the embedding condition shown in FIG. 13 is displayed along a horizontal section. In the case of this cross-section display, only a cross-section of a certain depth can be displayed, so in order to grasp the state of the buried object at other depths, the depth must be changed and displayed again.
  • FIGS. 27 to 29 show display examples in which the technique of the surface display type in the fourth prior art is applied to the three-dimensional poxel data in the embedding condition shown in FIG.
  • three different threshold values are shown in Fig. 27, Fig. 28, and Fig. 29 in the order of high, medium and low.
  • the threshold is high, the reflected signal from the buried object is interrupted and intermittent, making it difficult to identify the buried object.
  • the threshold is low, the reflected signal with a weak signal strength can be displayed, but Since the signal-to-noise ratio of the signal itself is low, a noise component is also displayed at the same time, and it is understood that visibility deteriorates.
  • the present invention has been made in view of such circumstances, and a first object of the present invention is to provide a three-dimensional processing using values of adjacent cross-sections (poxels) and an effective intervention of an artificial operation, thereby achieving an underground Is to detect the position of the buried object with high SZN.
  • the second object is to provide a method or means for easily interpolating such missing votacells in the presence of missing votacells in the three-dimensional poxel data, so that the position of the buried object in the ground can be efficiently determined.
  • the third purpose is to grasp the objects and the like existing in the medium with simple 2D image display even for 3D poxel data with low SN ratio.
  • An object of the present invention is to provide a three-dimensional voxel data display method and apparatus that can be easily and accurately performed. Disclosure of the invention
  • the three-dimensional exploration method according to the present invention for achieving the first object has the following first to seventh characteristic configurations.
  • a first characteristic configuration is a transmitting / receiving step of radiating a wave signal by an electromagnetic wave or a sound wave into the medium while moving on a surface of the medium, and receiving a reflected signal from an object existing in the medium, and a reception signal.
  • a three-dimensional poxel data generating step of generating three-dimensional poxel data with coordinates (X, y, t) on a position (x, y) on the surface of the medium with respect to intensity and a reflection time t,
  • one or more object vota cells are selected according to an artificial operation input.
  • Object binacell selection step and a binarization step of extracting a candidate votacell group in which poxels whose magnitude is either positive or negative and whose absolute value is larger than a predetermined threshold value are connected to each other. Extracting, from the candidate poxels extracted in the binarization step, a connection candidate voxel group connected to the object voxel selected in the object poxel selection step, and extracting the connection candidate voxel group with the object poxel; And a concatenated compositing step of compositing into an object poxel group.
  • the object voxel selecting step, the binarizing step, and the connection forming step are performed to determine whether the signal is a reflection signal from an object such as an unnecessary reflection signal having a low reflection signal intensity. From the group of candidate poxels including the low noise region, only a group of candidate botasels connected to an object poxel that is likely to be a reflection signal from an object is extracted, and this is connected and synthesized with an object votacel to obtain an object.
  • the object poxel which is a part of the object, is first selected by an artificial operation, and the object connected to the object poxel is selected.
  • Poxel groups can be extracted appropriately, so continuous objects such as buried pipes can be extracted.
  • a second feature is that the predetermined threshold value used in the binarization step is set based on the amplitude value of the object voxel selected in the object voxel selection step.
  • the distance to the surface of the medium of the object that is, in the case of a buried object, the reflected signal intensity changes relatively depending on the buried depth, so when exploring an area where the distance is short, set the threshold value higher.
  • the predetermined threshold value used in the binarization step is set based on the amplitude value of the object poxel selected in the object poxel selection step.
  • the amplitude value of the object button cell is large, it is determined that the distance to the medium surface of the object is short, and the threshold value can be set large, and vice versa.
  • the threshold value can be set large, and vice versa.
  • a third characteristic configuration is that, in the object poxel selecting step, the three-dimensional voxel data generated in the three-dimensional poxel data generating step is displayed in a cross-section, and a coordinate point on the displayed cross-section is designated. The point is that one or more object bottle cells are selected.
  • the specified vota cell when selecting the object vota cell from the three-dimensional voxel data, the specified vota cell is limited to a predetermined cross section, so that a normal CRT monitor and a two-dimensional plane such as a liquid crystal display panel are used.
  • the object poxel selection step can be easily executed by a computer screen display and a computer input operation such as a cursor operation by mouse or keyboard input.
  • a fourth characteristic configuration is that, for the three-dimensional poxel data generated in the three-dimensional poxel data generation step, the absolute value of the amplitude value in the t-axis direction in the reflection time for each position (X, y) on the surface of the medium maximum value and the maximum value extraction step and the maximum value extraction step position on extracted said medium surface by (X, y) for each of said maximum value to extract the reflection time t MA x taking the maximum value of And the reflection time ⁇ ⁇ ⁇ ⁇ are respectively arranged on the X—y plane with a predetermined reflection time t.
  • the X—y with the maximum value arranged is executed.
  • plane is displayed, and by specifying the coordinate points on the displayed plane, by specifying its the designated coordinate point and the reflection time t MA x corresponding thereto, select the one or more objects Pokuseru Is to do.
  • the reflection time takes the maximum value of the absolute value of the amplitude value in the t-axis direction and the reflection that takes the maximum value.
  • a time t ⁇ ⁇ ⁇ is extracted, and the maximum value and the reflection time t MAX for each position (X, y) on the extracted medium surface are defined as X-y planes inside and outside the three-dimensional Vota cell data.
  • a cross section can be displayed for the maximum value for each position (X, y ) on the medium surface.
  • This single cross-section display (X-y plane display) makes it easy to understand the plane arrangement of buried objects at all depths without performing multiple cross-section displays at various depths (reflection time t). In addition, it is possible to quickly select the object poxels, that is, to extract a buried object.
  • the fifth feature configuration is, in addition to the third or fourth feature configuration, in the object voxel selection step, in the vicinity of the designated coordinate point, and an amplitude value of the coordinate point.
  • the one or more object poxels are selected by replacing the coordinate point having the same sign and the absolute value having the maximum amplitude value with the designated coordinate point.
  • a sixth characteristic configuration is that synthetic aperture processing or migration processing is performed on the three-dimensional voxel data or the candidate voxel group or the object voxel group.
  • the resolution in the (X, y) plane parallel to the medium surface can be improved by performing the synthetic aperture processing or the migration processing.
  • a 3D button is used. Since the cell data becomes data (information converted into a depth scale) that can approximate the state of burying an object, the threshold can be set while considering this, and the analysis can proceed, thereby improving the usability.
  • a seventh characteristic configuration is that, in the three-dimensional voxel data generating step, a Wiener filter process or an amplitude correction process is performed on the reflection time t-axis direction of the three-dimensional voxel data, and the original three-dimensional button before processing is performed. The point is that it is replaced with cell data.
  • the Wiener filter processing By performing the Wiener filter processing with this characteristic configuration, the resolution in the reflection time t-axis direction is improved. In addition, by performing the amplitude adjustment processing, the amplitude of a weak reflected signal having a slow reflection time can be emphasized.
  • the three-dimensional exploration device for achieving the first object has the following eighth and ninth characteristic configurations.
  • An eighth characteristic configuration is that, while moving on the surface of the medium, a wave signal due to an electromagnetic wave or a sound wave is emitted into the medium, and a transmitting / receiving unit that receives a reflected signal from an object present in the medium, From the received signal obtained by the means, the position (x, y) on the medium surface and the reflection time t with respect to the received signal strength are defined as coordinates (X, y, t).
  • a three-dimensional poxel data generating means for generating three-dimensional poxel data; and a three-dimensional searching device for searching for a position of an object existing in the medium, wherein the three-dimensional button generated by the three-dimensional poxel data generating means is provided.
  • An object vota cell selecting means for selecting one or more object poxels according to an artificial operation input with respect to cell data, and a poxel whose amplitude value is either positive or negative and whose absolute value is larger than a predetermined threshold value is connected to each other.
  • Binarizing means for extracting a set of candidate voxels, and a connection candidate voxel connected to the object voxel selected by the object voxel selecting means from the candidate voxel group extracted by the binarization means.
  • a connection combining means for extracting a group of connection candidate poxels with the object poxels to form an object poxel group. There to that point.
  • the three-dimensional voxel data generated by the three-dimensional poxel data generation unit is reflected on an object such as an unnecessary reflection signal having a low reflection signal intensity extracted by the binarization unit.
  • an object such as an unnecessary reflection signal having a low reflection signal intensity extracted by the binarization unit.
  • connection and synthesis unit extracts only the xel group, and further connects this to the object poxel to form an object poxel group, so that even if the threshold value is set low, the noise generated in large quantities Since the region can be effectively excluded by distinguishing it from the object poxel group, it is possible to simply set the threshold value to a high value to determine whether the signal is a reflection signal from the object. There object Pokuseru can be prevented from being missing unnecessarily is the high S Z exploration possible three-dimensional exploration device at the N can be provided.
  • the three-dimensional exploration method according to the present invention having the first characteristic configuration can be used, so that the operation and effect of the first characteristic configuration can be exhibited.
  • a ninth characteristic configuration is that the object poxel selection means includes: a cross-section display means for selecting and displaying an arbitrary cross-section of the three-dimensional poxel data generated by the three-dimensional poxel data generation means in accordance with an artificial operation input; The coordinate points on the cross section are changed to points provided with cross-section coordinate point designating means that can be designated according to a predetermined artificial operation input. According to this characteristic configuration, an arbitrary cross section of the three-dimensional poxel data generated by the three-dimensional poxel data generation unit by the cross-section display unit can be selected and displayed by an artificial operation.
  • the coordinate point on the displayed cross-section can be specified by a predetermined artificial operation, so when selecting the object vota cell from the three-dimensional pixel data, the specified vota cell is limited to a predetermined cross section.
  • the object poxel selection process can be easily performed by a two-dimensional computer screen display such as a normal CRT monitor or a liquid crystal display, and a computer input operation such as a cursor operation using a mouse or a keyboard.
  • the X-y plane on which the maximum value is arranged according to the fourth characteristic configuration is included in a part of the three-dimensional poxel data by being arranged inside and outside the three-dimensional poxel data, or The area of the three-dimensional poxel data is substantially extended in the reflection time t-axis direction. Therefore, the X-y plane on which the maximum value is arranged is displayed as one section of the three-dimensional poxel data by the section display means.
  • the feature configuration of the three-dimensional search method according to the present invention for achieving the second object is the following tenth to twelfth feature configurations.
  • a tenth characteristic configuration is that, while moving on the surface of the medium, a wave signal caused by an electromagnetic wave or a sound wave is emitted into the medium, and a transmission / reception step of receiving a reflected signal from an object existing in the medium is provided.
  • the three-dimensional exploration method for exploring the position of an object present in the three-dimensional voxel data if the three-dimensional voxel data generated in the three-dimensional voxel data generation step has a missing voxel, The point is to execute a linear interpolation process that applies one-dimensional linear interpolation in a predetermined direction in the X-y plane including the missing Vota cell.
  • one-dimensional linear interpolation linearly interpolates between two source poxels and interpolates a missing poxel between them, so that when one source poxel is viewed from a missing voxel, the other in the same direction. Even if the source poxel is present, the results of the intercept will not be affected at all by the data value of the farther source votacell. Due to the same principle, extrapolation processing with low reliability is not executed. Also source Assuming that the number of two-dimensional distributions in the x-y plane of the Vota cell is n, the computational complexity is on the order of n, so the processing time can be greatly reduced.
  • the first characteristic configuration is that the linear interpolation step is performed twice or more by changing the direction in which the one-dimensional linear interpolation is performed.
  • the interpolation can be performed sufficiently densely without missing poxels.
  • a twelfth characteristic configuration is that, in the linear interpolation step, when a distance at which the defective poxels continuously exist in a direction in which one-dimensional linear interpolation is performed is equal to or less than a wavelength of the wave signal in the medium. The point is that the one-dimensional linear interpolation is performed.
  • the basis for using the wavelength of the wave signal in the medium in determining whether to perform one-dimensional linear interpolation is based solely on experimental results.
  • the feature configuration of the three-dimensional search device according to the present invention for achieving the second object is the following thirteenth feature configuration.
  • a thirteenth characteristic configuration is that, while moving on the surface of the medium, transmitting and receiving means for radiating a wave signal by an electromagnetic wave or a sound wave into the medium, and receiving a reflected signal from an object existing in the medium, From the received signal obtained by the transmitting and receiving means, the position (x, y) on the medium surface and the reflection time t with respect to the received signal strength are defined as coordinates (x, y, t).
  • a three-dimensional voxel data generating means for generating three-dimensional voxel data, wherein the three-dimensional searching device searches for a position of an object existing in the medium; If the voxel data has missing data voxels, linear interpolation means for performing one-dimensional linear interpolation on the missing voxels in a predetermined direction in the X-y plane containing the missing voxels is provided. is there.
  • the linear interpolation means performs one-dimensional linear interpolation in a predetermined direction on the X-y plane, thereby executing the linear interpolation step in the tenth feature configuration.
  • the means performs one-dimensional linear interpolation in the first direction on the X-y plane, changes the direction in which the one-dimensional linear interpolation is performed, performs one-dimensional linear interpolation again, and if necessary, performs one-dimensional linear interpolation in the same manner.
  • the linear interpolation step in the eleventh feature configuration is performed, so that the same operation and effects as those of the tenth feature configuration or the tenth and eleventh feature configurations are achieved. You can do it.
  • the feature configuration of the three-dimensional poxel data display method according to the present invention for achieving the third object is the following fourteenth to twentieth feature configurations.
  • a fourteenth feature configuration is that a position (x, y) and a reflection time t on the surface of the medium are defined as coordinates (X, y, t) based on the reflection signal intensity of the wave signal radiated from the surface of the medium into the medium.
  • a display method of the generated three-dimensional poxel data wherein a maximum absolute value of an amplitude value in a reflection time t-axis direction for each position (x, y) on the surface of the medium is determined with respect to the three-dimensional poxel data.
  • a maximum absolute value extracting step of extracting a plane arranging step of arranging the maximum absolute value for each position (X, y) on the medium surface extracted in the maximum absolute value extracting step on a predetermined plane;
  • the point is to execute a plane display step of displaying the maximum absolute value arranged on a predetermined plane.
  • the maximum absolute value of the amplitude value in the direction of the reflection time t-axis is extracted for each position (x, y) on the surface of each medium with respect to the three-dimensional Vota cell data, and The maximum absolute value for each position (x, y) is arranged and displayed on a predetermined plane. Therefore, even if the S / N ratio of the three-dimensional Vota cell data is low and the area of the object in the medium is relatively small with respect to the entire search area, a high contrast can be achieved if a strong reflected signal area exists locally.
  • the display allows you to easily grasp the planar arrangement of objects with high visibility. Will be able to
  • a fifteenth characteristic configuration is that a maximum value and a minimum value are obtained from the maximum absolute values extracted in the maximum absolute value extraction step, and the maximum value and the minimum value are respectively defined as an upper limit and a lower limit of a display gradation. The point is to normalize the maximum absolute value so that
  • the maximum absolute value for each position (x, y) on the surface of each medium is arranged and displayed on a predetermined plane, the maximum value and the minimum value are selected from the maximum absolute values. Since the maximum absolute value is normalized so that the maximum value and the minimum value are the upper and lower limits of the display gradation, respectively, the contrast can be further increased and the visibility can be improved.
  • a sixteenth characteristic configuration is that, in the maximum absolute value extracting step, when the maximum absolute value is extracted for each position (X, y) on the medium surface, a reflection time t at which the maximum absolute value is taken ⁇ ⁇ ⁇ is also extracted.
  • the reflection time t MAX that takes the maximum absolute value is also added. It is easy to know at which reflection time t (the distance from the surface of the medium, the depth in the case of underground buried object exploration) the object region that reflects a strong signal. Can be.
  • a seventeenth characteristic configuration is that when the maximum absolute value is extracted for each position (X, y) on the medium surface in the maximum absolute value extracting step, the maximum absolute value is within a predetermined range of a reflection time t. The point is that the amplitude value is excluded.
  • the amplitude value within the predetermined range of the reflection time t In the case of underground exploration, areas where the reflected signal intensity in the medium is extremely strong, such as near the surface of the ground or underground water, can be excluded. As a result, the object area in the medium (underground buried objects) In the case of exploration, the visibility to the buried object area) can be improved.
  • An eighteenth characteristic configuration is that, in the maximum absolute value extracting step, when the maximum absolute value is extracted for each position (X, y) on the medium surface, the polarity of the amplitude value is either positive or negative. The point is that only one of the poxels is considered. According to this characteristic configuration, when the maximum absolute value of the amplitude value in the reflection time t-axis direction is extracted for each position (X, y) on the surface of each medium, the polarity of the amplitude value is either positive or negative. By targeting only the bottom cell, only the amplitude value of the polarity with the higher SN ratio of the reflected signal from the object in the medium is extracted, and the visibility to the object region in the medium is improved.
  • a nineteenth characteristic configuration is that, prior to the maximum absolute value extracting step, the three-dimensional poxel data consisting of the reflected signal intensity is subjected to a synthetic aperture process or a migration process to generate the three-dimensional poxel data to be displayed. Is to do.
  • the resolution in the (x, y) plane parallel to the medium surface is improved by performing the synthetic aperture processing or the migration processing.
  • the three-dimensional poxel data obtained by subjecting the original three-dimensional poxel data composed of the raw data of the reflected signal intensities to synthetic aperture processing or migration processing produces data (approx. (Converted information), so that the visibility is further improved.
  • a twentieth feature configuration is that the synthetic aperture processing or the migration processing is executed at a propagation velocity in a plurality of media to generate the three-dimensional poxel data for each of the propagation velocities, and the three-dimensional poxel data for each of the propagation velocities
  • the maximum absolute value extracting step, the plane arranging step, and the plane displaying step are individually performed on the poxel data, and an appropriate value is obtained from the display result of the three-dimensional Vota cell data in the plane displaying step for each of the propagation speeds. The point is to select a processing result with a high propagation speed.
  • the synthetic aperture processing or the migration processing is performed using the propagation velocities in a plurality of media, and the three-dimensional poxel data generated for each propagation velocity is displayed in the plane display step.
  • a three-dimensional poxel data display device for achieving the third object. Is a feature configuration of the second H ⁇ ⁇ below.
  • the second feature is that the position (x, y) and the reflection time t on the surface of the medium are represented by coordinates (X, y, t) based on the reflection signal strength of the wave signal radiated from the surface of the medium into the medium.
  • a maximum absolute value extracting means for extracting a maximum absolute value of the amplitude value in the reflection time t-axis direction for each (X, y), and a position on the medium surface extracted by the maximum absolute value extracting means.
  • Plane arrangement means for arranging the maximum absolute value for each (X, y) on a predetermined plane; and plane display means for displaying the maximum absolute value arranged on the predetermined plane.
  • This three-dimensional poxel data display device can be used for each of the three-dimensional voxel data display methods according to the fourteenth to twentieth features, and the basic operation and effect are based on the fourteenth feature. It has the same functions and effects as the three-dimensional poxel data display method.
  • Figure 1 is a block diagram of the three-dimensional exploration device
  • FIG. 2 is an explanatory diagram of waveforms of a transmission signal and a reception signal.
  • FIG. 3 is a functional block diagram of the data analysis device according to the first embodiment
  • FIG. 4 is a flowchart showing a data processing procedure of the first embodiment
  • FIG. 5 is a flowchart of the first embodiment. It is an explanatory diagram showing the burial status of the place where the exploration data used in the data processing procedure was collected,
  • FIG. 6 is an explanatory view schematically showing the exploration data (original three-dimensional bottle cell data before the migration processing) used in the data processing procedure of the first embodiment
  • FIG. FIG. 9 is an explanatory diagram schematically showing a result obtained by performing normal binarization processing on the exploration data (three-dimensional poxel data after migration processing) used in the data processing procedure of the form;
  • FIG. 8 schematically shows the processing results (cross-section of the three-dimensional Vota cell data after migration processing) obtained from the exploration data used in the data processing procedure of the first embodiment.
  • FIG. 9 is an explanatory view showing the attribute values of the object vota cell obtained from the exploration data used in the data processing procedure of the first embodiment
  • FIG. 10 is an explanatory diagram schematically showing a processing result (an extracted object button cell group) obtained from the exploration data used in the data processing procedure of the first embodiment, and FIG. Processing results obtained from the exploration data used in the data processing procedure of the present invention in another embodiment of the first embodiment (after executing the maximum value extraction step and the plane arrangement step for the 3D poxel data after the migration processing)
  • FIG. 10 is an explanatory diagram schematically showing a processing result (an extracted object button cell group) obtained from the exploration data used in the data processing procedure of the first embodiment, and FIG. Processing results obtained from the exploration data used in the data processing procedure of the present invention in another embodiment of the first embodiment (after executing the maximum value extraction step and the plane arrangement step for the 3D poxel data after the migration processing)
  • FIG. 10 is an explanatory diagram schematically showing a processing result (an extracted object button cell group) obtained from the exploration data used in the data processing procedure of the first embodiment, and FIG. Processing results obtained from the exploration data used in the data processing procedure of the present invention
  • FIG. 12 is a functional block diagram of the data analyzer according to the second embodiment.
  • FIG. 13 is a place where the exploration data used in the data processing procedures of the second and third embodiments is collected. It is an explanatory view showing the state of burial,
  • FIG. 14 is an explanatory diagram showing the movement route of the three-dimensional search device when the search data used in the data processing procedure of the second embodiment is collected
  • FIG. 15 is a flowchart showing the data processing procedure of the second embodiment
  • FIG. 16 is a result of the middleing process of the exploration data (original three-dimensional poxel data) as it is in the second embodiment
  • Fig. 17 is a three-dimensional visualization of the exploration data (original three-dimensional poxel data) in the second embodiment, and the result of the migration process performed in the second embodiment. It is a figure that
  • FIG. 18 is an explanatory diagram showing a migration processing result after performing a linear interpolation process under different conditions in the second embodiment.
  • FIG. 19 is a functional block diagram of the data analysis device according to the third embodiment
  • FIG. 20 is a flowchart showing a three-dimensional poxel data display method of the third embodiment
  • FIG. 21 is a display image example showing a processing result obtained by the three-dimensional Vota cell data display method of the third embodiment
  • FIG. 22 is a display image example showing a processing result obtained by a three-dimensional poxel data display method according to another embodiment of the third embodiment
  • FIG. 23 is a display image example (the relative permittivity in the ground is 4) showing the processing result obtained by the three-dimensional Vota cell data display method according to another embodiment of the third embodiment
  • FIG. 4 is a display image example (the relative permittivity in the ground is 9) showing the processing result obtained by the three-dimensional Vota cell data display method according to another embodiment of the third embodiment.
  • FIG. It is a display image example showing the processing result in one horizontal section of the prior art for the third embodiment
  • FIG. 27 is an example of a display image showing a processing result when the image is displayed by the surface display type of the related art with respect to the third embodiment
  • FIG. 28 is an example of a display image showing a processing result when the image is displayed by the surface display type of the related art with respect to the third embodiment
  • FIG. 29 is an example of a display image showing a processing result when the image is displayed by the surface display type of the related art with respect to the third embodiment
  • FIG. 30 is an example of a display image showing a processing result in the case of displaying in the integral type of the prior art with respect to the third embodiment.
  • one embodiment of the three-dimensional exploration apparatus includes a transceiver 10 as a transmission / reception means, and a data analyzer 20 for processing a signal obtained by the transceiver 10. And as main equipment. And, in the present application, the analysis processing in the data analysis device 20 has the characteristic.
  • an object 2 such as a steel pipe for delivering a fluid such as a gas is buried in a soil 1 serving as a medium, and an exploration device 3 including a transceiver 10 and a data analysis device 20 is used as a ground. Exploring the burying position of object 2 while moving the surface.
  • the moving direction is the X direction in the display example of FIG.
  • the y direction front and back direction in Fig. 1
  • X-direction data is collected sequentially while repeating a predetermined amount of movement.
  • the object 2 shown in FIG. 1 is a typical example of an object to be searched. For example, a part of the buried pipe 50 in the buried state as shown in FIG. 5 or FIG. It indicates that.
  • the transceiver 10 generates a single-shot pulse signal, for example, as shown in FIG. 2 (B) (1) of 10 OMHz to 1 GHz in the transmission circuit 13, and the transmission antenna 13 converts the pulse signal into an electromagnetic wave from the transmission antenna 11. Radiates on soil 1. For example, as shown in Fig. 2 (A), when moving on the surface of the object 2, the incident wave 4 incident on the soil in the electromagnetic wave radiated from the transmitting antenna 11 is reflected and scattered on the surface of the object 2. After the reflected wave 5 therein is received by the receiving antenna 12, it is demodulated and amplified in the receiving circuit 14 as a received signal as illustrated in FIGS. 2 (B) and 2 (2).
  • a single line corresponds to a plurality of received signal groups received at fixed positions with a time difference.
  • the time difference between the radiation from the transmitting antenna 1 1 and the reception by the receiving antenna 1 2 (this is the actual reflection time) t is the distance from the surface of the soil 1 to the object 2 and the relative permittivity of the soil 1 £ or electromagnetic wave It is uniquely determined from the propagation speed of
  • the transmitting antenna 11 and the receiving antenna 12 are arranged facing the ground surface at a fixed interval.
  • the movement in the X direction is performed so as to cross the object 2.
  • the transceiver 10 is provided with signal intensity modulating means 15 for modulating the gain of the amplifying section of the receiving circuit 14 according to the time difference t, so that the time difference t becomes longer.
  • the loss of the pulse signal propagating through the soil 1 increases, and the amplitude of the received signal strength is attenuated, and the received signal strength distribution that does not attenuate rapidly with the increase in the time difference t, that is, the reflection time t It has been.
  • this configuration it is possible to secure the signal strength necessary for the subsequent signal processing.
  • FIG. 1 the data analyzer 20 to which a received signal is sent will be described with reference to FIGS. 1 and 3.
  • FIG. 1 the data analyzer 20 to which a received signal is sent will be described with reference to FIGS. 1 and 3.
  • FIG. 1 the data analyzer 20 to which a received signal is sent.
  • the data analyzer 20 includes a data processing unit 21 composed of a microcomputer, a semiconductor memory, and the like; an input unit 22 such as a mouse and a keyboard for inputting operation instructions from outside; and image data at each processing stage. And CRT monitor to display output results It has a display unit 23 such as a liquid crystal display. Further, an external auxiliary storage unit 24 such as a magnetic disk for storing data and output results at each processing stage is provided.
  • the data processing unit 21 sorts and processes the received signal input from the receiving circuit 14 in the relationship between the position (X, y) on the medium surface and the time t.
  • a three-dimensional bottle cell data generating means 31 is provided.
  • the three-dimensional voxel data generation means 31 is for generating three-dimensional voxel data used in the subsequent processing, and receives the received signal strength s as it is on the position (x, y) on the medium surface and time t Generate the original 3D poxel data s (x, y, t) as a function of. Further, if necessary, the original three-dimensional poxel data s (x, y, t) is subjected to migration processing to generate new migration-processed three-dimensional poxel data S (x, y, t).
  • This method is based on the assumption that when X is the spatial coordinate, only X is the observation line on the surface of the medium, z is the depth that takes a positive direction into the medium, and t is the propagation time. Is represented by u (X, z, t), and U (X,, ⁇ ) is the three-dimensional Fourier transform of u (X, z, t), and the migration method is obtained for t> 0.
  • phase shift method which is a kind of the migration method
  • the following processing is performed. 1. Two-dimensional Fourier transform is performed on the observed data with respect to x and t to find U ( ⁇ , 0, ⁇ ).
  • the F-II migration method which is a type of migration method, performs the following processing.
  • the data processing section 21 is provided with a migration processing means 32 capable of performing a migration process on data obtained in a three-dimensional poxel state.
  • a synthetic aperture processing which is also a known method, may be performed.
  • a synthetic aperture processing means is provided in place of the migration processing means 32. This situation is shown in parentheses in the figure.
  • the data processing unit 21 artificially converts one or more object poxels into the three-dimensional poxel data S (X, y, t) generated by the three-dimensional voxel data generating means 31.
  • Object poxel selection means 3 selected by operation3 Binary candidate cell group in which poxels whose absolute value is greater than a predetermined threshold value while the polarity of the amplitude value of the reflected signal intensity is either positive or negative are connected to each other
  • connection candidate poxel group to be connected to the object votacel selected by 3 3 is extracted, and the connection candidate votacel group is combined with the object poxel to form an object poxel group.
  • the object vota cell selecting means 33 outputs an arbitrary cross section of the three-dimensional poxel data S (x, y, t) generated by the three-dimensional poxel data generating means 31 from an input unit 22 such as a mouse.
  • a section display means 3 3 a that is selected by operation and displayed on the display section 23, and a coordinate point on the displayed section is designated by a manual operation from the input section 22 such as a mouse, and the coordinates are designated.
  • Section coordinate point designating means 33b for selecting a vota cell at a point as an object poxel.
  • the luminance of the received signal is displayed in a plurality of gradations in accordance with the intensity
  • the positive value of the signal intensity is white (high luminance)
  • the negative value of the signal intensity is black (low luminance)
  • the signal intensity is 0.
  • this gray scale is represented by an 8-bit (256) gray scale, where the gray scale 1 28 has an amplitude value 0 of the reflected signal intensity, and the gray scale level of 1 29 or higher has an amplitude value of 1 29 or more. It is a positive value, and the amplitude value is a negative value at a gradation of 127 or less.
  • the digitized reception signal is represented by the position (X, y) on the medium surface and the reflection time t of the reflected wave 5 from the object 2 by the quantization bit width when the AZD conversion processing is performed.
  • the coordinates (x, y, t) determined by are encoded as an address signal, and are stored in a predetermined area of the memory 21 a in the data processing unit as original three-dimensional poxel data s (X, y, t) of a plurality of gradations. Is stored in Generated and stored in this way
  • Figure 6 shows the result of normal binarization of the original 3D poxel data s (x, y, t).
  • Fig. 6 is a model of the actual screen display. In addition, in practice, all the vota cells in the area hold their respective gradation values.
  • FIG. 7 shows the three-dimensional poxel data S (X, y, t) obtained by performing the migration process on the original three-dimensional vota cell data s (x, y, t).
  • Fig. 7 is a model of the actual screen display.
  • the three-dimensional vota cell data S (X, y, t) is displayed after being subjected to normal binarization processing. Holds the tonal value.
  • Fig. 7 shows the case where migration processing is performed, but the processing result is almost the same when synthetic aperture processing is performed.
  • FIG. 7 (A) shows that the threshold value of the binarization processing is set to a high gradation of 17.5 in order to see the reflection signal of the manhole 51 near the ground surface
  • FIG. 7 (B) shows The threshold value of the binarization process is set to a low gradation of 15.5 to see the reflection signal of the deep buried pipe. It is impossible to detect both reflected signals with different depths by ordinary binarization processing.In other words, deep buried pipes cannot be detected at a high threshold, noise areas increase at a low threshold, and near the ground surface It can be seen that the reflected signal of the buried object cannot be detected.
  • the three-dimensional pixel data S (X, y, t) after the migration process obtained in this way is replaced with the original data s (X, y, t), and is output as the output of the three-dimensional voxel data generating means 31. , Is passed to the subsequent steps.
  • the three-dimensional poxel data S (x, y, t) subjected to migration processing by the cross-section display means 33a is converted to an appropriate reflection time T D X —
  • the section is displayed in the y plane, and the operator moves the cursor display on the displayed section by artificial operation from the input unit 21 such as a mouse, and the section coordinate point designation means 3 3 b is based on the cursor position.
  • selection of the reflection time T beta for example, Proc of T 1 of coordinate table representing each coordinate value of the plurality of objects Pokuseru shown in FIG.
  • FIG. 8 ( ⁇ ) is a perspective view of the cross-sectional view
  • Fig. 8 ( ⁇ ) is a display screen of the same cross-sectional view as seen from the ground surface side.
  • gradation display is originally performed. However, in the drawing of the present application, the high luminance portion is displayed white (ground on paper) and the low luminance portion is displayed black (high density display). Dotted display).
  • cross the coordinate point specifying unit 3 3 b is the designated by the selected coordinates (X 13, Y D, T u) in the vicinity of Botaseru of, and the amplitude value at an amplitude value of the same sign of the specified Pokuseru is Search for the largest poxel and set it as the object poxel.
  • the search range is a square range of ⁇ 6 poxels around the specified poxel in the XY plane of the reflection time Tc .
  • the cross section is displayed on the X-y plane, and the search is performed within a certain square area on the X-y plane of the reflection time T D , but the X-t plane or the y-t plane or May be displayed in a plane in any direction.
  • the search area is not limited to the square area in the display cross section, but may be a rectangular parallelepiped or other arbitrary-shaped poxel area.
  • cross the coordinate point specifying unit 3 3 b are without the search process, the designated by the selected coordinates (X D, Y D, The poxel of T D ) may be used as an object poxel as it is.
  • the binarizing means 34 determines whether the absolute value of the three-dimensional voxel data S (X, y, t) subjected to the migration process is positive or negative while the absolute value is a predetermined value.
  • Candidate poxels whose poxels larger than the threshold value are connected to each other Extract groups. Specifically, when the amplitude value of the object voxel selected in the object poxel process is a positive value, a candidate poxel group having an amplitude value greater than the threshold value is extracted, and when the amplitude value of the object poxel is a negative value. Then, a candidate poxel group having a negative amplitude value whose absolute value is larger than the threshold value is extracted.
  • the threshold value is set to half the absolute value of the amplitude value of the object button cell.
  • gradation 1 64 If the gradation value of the selected object vota cell is 0, the amplitude value is ⁇ 128, so the threshold value is set so that the amplitude value is half the absolute value of the object poxel amplitude value. 6 Automatically set to 4.
  • the threshold used for the binarization processing based on the absolute value of the amplitude value of the object poxel
  • the threshold used for extracting the candidate poxel group in the region where the embedding depth is shallow is set.
  • the absolute value of the amplitude value of the object button cell selected in the area is naturally large, so that a large threshold value is automatically set.
  • a small threshold is automatically set in a region with a deep burial depth, and a threshold suitable for extracting candidate poxels at a high SZN is automatically set.
  • this threshold can be changed according to the result of other processing.
  • the threshold value may be adjusted based on the result of the subsequent consolidation synthesis step, and the recalculation from the binarization step to the consolidation synthesis step may be performed again.
  • the threshold value thus readjusted corresponds to the display block in the computer screen display shown in Fig. 9.
  • connection synthesizing means 35 extracts a connection candidate voxel group to be connected to the object voxel selected in the object vota cell selection step from the candidate voxel group extracted in the binarization step, and The candidate voxel group is combined with the object voxel to form an object voxel group.
  • a connection candidate voxel group adjacent to or including the object voxel is extracted from the candidate poxel group in a brute force manner and added to the object voxel group.
  • the candidate candidate voxels are extracted from the candidate voxels in a round robin manner, and the connected candidate voxels are added to the object voxels. These operations are repeated until no more poxels are added.
  • FIGS. 10A and 10B show examples of the object poxels obtained by the connection synthesis step. From the figure, it can be seen that buried objects can be detected clearly from shallow to deep.
  • FIG. 10 (B) is a display screen of the object poxels viewed from the ground surface side in a plan view.
  • FIG. 10 is a model of an actual screen display, similar to FIGS. 6 and 7.
  • a maximum value extraction step for extracting the maximum value of the absolute value of the amplitude value in the reflection time t-axis direction and a reflection time t MAX that takes the maximum value, and the medium extracted in the maximum value extraction step
  • the cross section display means 3 33 3 also displays “ ⁇ 7” cross section of 0 plane, and the operator The cursor is moved on the displayed cross section by an artificial operation from the input unit 21 such as a mouse or the like, and the cross-section coordinate point designating means 33 b is used to calculate the plane coordinates on the cross section based on the cursor position.
  • the section coordinate point designating means 33b searches for a poxel having the maximum value in the vicinity of the poxel selected by the designation, and calculates the coordinate value of the obtained object button cell as (Xl, Y 1) (in the case of the first choice).
  • the value of the reflection time t MAX stored in (Xl, Y 1, 85) is read out, and is set as the value of the reflection time T 1.
  • the finally obtained (Xl, Y1, T1) is used as the object poxel, and the process proceeds to the normal binarization process.
  • the finally obtained result was the same as that shown in FIG. 10 in the above embodiment.
  • the migration processing is performed on the original three-dimensional poxel data s (x, y, t) after the amplitude correction, and the migration processing is used for the subsequent processing.
  • the migration processing or the synthetic aperture processing may be performed after obtaining the original three-dimensional poxel data and before performing the binarization step, or may be performed after the connection and synthesis.
  • the amplitude correction in the t-axis direction was performed by the signal intensity modulation means 15 provided in the transceiver in order to emphasize a weak signal having a slow reflection time in the t-axis direction.
  • the received signal s is taken into the memory 2 la while being assigned to the coordinates (x, y, t) address as it is, with the processing by the signal intensity modulation means 15, and the original 3D poxel data is softened. It may be configured to perform a typical amplitude adjustment process.
  • the average of the original three-dimensional poxel data s (X, y, t) in the (X, y) direction is calculated for each reflection time t, and the received signal strength in the t-axis direction is obtained.
  • the amplitude is adjusted so that the attenuation of the signal does not increase (this is performed by the amplitude adjustment processing means 37).
  • An operation for improving the resolution in the t-axis direction includes a Wien filter process in the t-axis direction.
  • the original three-dimensional vota cell data s (X, y, t) is to be subjected to the binarization processing (when this information is used as the output of the three-dimensional poxel data generation step)
  • the original 3D poxel data s (x, y, t) composed of the received signal strength s corresponding to the coordinates (x, y, t) has its reflection time Wiener filter processing is performed in the t-axis direction (this is performed by the Wiener filter processing means 36), and the processed three-dimensional voxel data is subjected to subsequent processing.
  • Equation 2 When the impulse response of the received waveform V (t) is filtered by the filter represented by h, (t) and represented by W (t), it is expressed by Equation 2. Also, the Fourier transform H, (f) of h, (t) in Equation 2 is given by Equation 3.
  • (f) is the Fourier transform of a typical reflected waveform that is usually measured.
  • the three-dimensional poxel data processed through such a Wiener filter is subjected to the above-described synthetic aperture processing and migration processing, and is subjected to subsequent binarization processing and concatenated synthesis processing. 3D poxel data may be generated.
  • the data processing unit 21 according to the second embodiment includes a three-dimensional poxel data generation unit 31, a migration processing unit 32, and an output processing unit. It has 3 8. Although the same various means as those of the first embodiment may be provided, FIG. 12 shows only those directly related to the second embodiment.
  • the three-dimensional voxel data generating means 31 is for generating three-dimensional voxel data used in the subsequent processing, and receives the received signal strength s as it is on the medium surface as the position (X, y). Generate the original 3D poxel data s (X, y, t) as a function of time t.
  • the three-dimensional pixel corresponding to the receiving position is The other three-dimensional Vota cells have a received signal strength as a data value, but do not have a substantial data value, and data is missing.
  • the former three-dimensional vota cell is defined as a source voxel
  • the latter three-dimensional vota cell is defined as a missing voxel.
  • the data processing unit 21 includes a linear interpolation means 26 for performing one-dimensional linear interpolation on the missing voxel, since a missing poxel is generated depending on the movement path described above. This interpolation processing will be described later.
  • the three-dimensional poxel data s (X, y, t) after the interpolation processing is subjected to migration processing by the migration processing means 32 to obtain new migration-processed three-dimensional poxel data S. (X, y, t) is generated.
  • a synthetic aperture processing may be performed as in the first embodiment.
  • the linear interpolation means 26 is a step of interpolating missing poxel data with respect to original three-dimensional poxel data s (x, y, t) of a plurality of gradations in the following manner.
  • the distance at which the missing poxels continuously exist in the y-axis direction is determined by the wavelength of the electromagnetic wave in the ground (in the burial situation shown in Fig. 13, the relative permittivity £ r is 9, the frequency of the electromagnetic wave is 30 OMHz, and the wavelength; I is about 33 cm.) Only when the frequency is less than or equal to, linear interpolation is performed on those missing poxels, and the distance is equal to the wavelength. In the above case, the missing poxels are left without performing linear interpolation. Subsequently, one-dimensional linear interpolation is performed along the X-axis direction in the same manner as performed along the y-axis direction.
  • the raw S-dimensional poxel data s (X, y, t) thus obtained is subjected to a migration process S if necessary, and is converted to three-dimensional poxel data S (x, y, t).
  • a migration process S if necessary, and is converted to three-dimensional poxel data S (x, y, t).
  • FIG. 16 shows 3D poxel data visualized in 3D without using this linear interpolation process.
  • FIG. 17 shows three-dimensional Vota cell data visualized three-dimensionally using this linear interpolation process. Note that the displays in Fig. 16 and Fig. 17 are 3D-migrated before output and displayed, so that they can be easily understood visually. Has been given. In Fig. 16 there is much noise and the buried pipe is interrupted, but in Fig. 17 it was confirmed that good visualization was performed and that the linear interpolation process could improve the exploration accuracy. .
  • FIGS. 16 and 17 are schematic drawings of actual screen displays.
  • Fig. 18 shows that in the linear interpolation step, one-dimensional linear interpolation is performed only when the distance at which the missing Vota cell exists continuously in the y-axis direction is 10 cm, 20 cm, or 30 cm or less.
  • the results of migration processing of an exploration image with a relative dielectric constant of 9 (wavelength is about 30 cm) are shown.
  • the vertical axis shows the migration value
  • the horizontal axis shows the relative permittivity.
  • the distance at which the missing poxels continuously exist in the y-axis direction is 30 cm, that is, when the wavelength exceeds the wavelength of the electromagnetic wave in the ground in the buried condition shown in Fig. 4, the migration processing effect is reduced. It turns out that the interpolation process is not appropriate.
  • one-dimensional linear interpolation is performed along the X-axis direction and the y-axis direction, but one-dimensional linear interpolation is performed in any direction not along these coordinate axes. No problem.
  • the three-dimensional exploration device provided with the three-dimensional Vota cell data display device comprises a transceiver 10 and a data analysis device 20 as in the first and second embodiments. It is configured to be provided as main equipment. And, in the present application, the analysis processing in the data analysis device 20 has the characteristic.
  • an object 2 such as a steel pipe for delivering a fluid such as a gas is buried in a soil 1 serving as a medium, and an exploration device 3 including a transceiver 10 and a data analysis device 20 is used as a ground. Exploring the burying position of object 2 while moving the surface.
  • the moving direction is the X direction in the display example of FIG.
  • the X direction data is sequentially moved while repeating a predetermined amount of movement in the y direction (the front and back direction in FIG. 1). collect.
  • the object 2 shown in FIG. 1 is a typical example of an object to be searched.
  • FIG. 13 shows a part of a buried pipe 50 in a buried state as shown in FIG.
  • the configuration and functions of the entire three-dimensional exploration device according to the third embodiment including the transceiver 10 and the data analysis device 20 are common to the first and second embodiments, and have already been described with reference to FIGS. Since the explanation is based on the figure, the explanation is omitted.
  • the data processing unit 21 includes a three-dimensional poxel data generating unit 31 and a middleation processing unit 32, as in the first or second embodiment. ing. Although the same various means as those of the first or second embodiment may be provided, FIG. 19 shows only those directly related to the third embodiment.
  • the three-dimensional voxel data generation means 31 is for generating three-dimensional voxel data used in the subsequent processing, and receives the received signal strength s as it is on the position (x, y) on the medium surface and time t Generate the original 3D poxel data s (X, y, t) as a function of. Further, if necessary, the original three-dimensional poxel data s (x, y, t) is subjected to migration processing by the migration processing means 32, and new three-dimensional poxel data S (X, y, t) subjected to the migration processing is obtained. Generated. Further, instead of the migration processing, a synthetic opening processing may be performed as in the first embodiment.
  • both s (X, y, t) and S (x, y, t) belong to the three-dimensional poxel data, and the data generated by the three-dimensional poxel data generating means 31. Group.
  • the data processing unit 21 receives the three-dimensional poxel data s (X, y, t) generated by the three-dimensional poxel data generating unit 31 or the three-dimensional poxel data generated by the migration processing unit 32.
  • the maximum absolute value which is the maximum value of the absolute value of the amplitude value in the direction of the reflection time t-axis is extracted for each position (x, y) on the surface of the medium.
  • a plane display means 29 for outputting the maximum absolute value arranged on the plane and displaying the maximum absolute value on the display section 23.
  • the maximum absolute value extracting means 27 calculates a reflection time for each position (X, y) on each medium surface.
  • the amplitude value in the t-axis direction is sequentially read from the memory 21a, and the maximum absolute value which is the maximum value of the absolute value is extracted.
  • the reflection time t ⁇ that takes the maximum absolute value is also extracted.
  • the maximum absolute value for each position (x, y) on the surface of each medium extracted in the maximum absolute value extraction step is arranged on a predetermined plane by the plane arrangement means 28.
  • efficient processing is performed by continuously performing the maximum absolute value extraction step and the plane arrangement step for each position (X, y) on each medium surface.
  • the maximum absolute value and the reflection time t t extracted for each position (x, y) on the surface of each medium are stored in a predetermined area of the memory 21a .
  • the maximum absolute value for each position (x, y) on the surface of each medium is finally arranged on a predetermined plane. Will be.
  • the plane display means 29 outputs the maximum absolute value laid out in the plane arranging step in the plane arranging step and displays it on the display section 23.
  • Fig. 21 shows an example of the result of processing the three-dimensional vota cell data obtained by exploring the buried pipe shown in Fig. 13 in this process.
  • Table shown in Fig. 21 It can be seen that the displayed images have improved visibility as compared with those according to the prior art shown in FIGS. 26 to 30, and the planar arrangement of the buried state can be easily grasped.
  • the maximum absolute value extraction step when extracting the maximum absolute value in the reflection time t-axis direction for each position (X, y) on each medium surface, the amplitude within the predetermined range of the reflection time t Excluding values is also a preferred embodiment.
  • FIG. 22 shows an example in which the maximum absolute value extracted in this manner is displayed as an image in the planar display step in the same manner as in the above embodiment.
  • the range of the reflection time t of the three-dimensional bottle cell data S (X, y, t) is 8 ns to 78 ns (0.4 m to buried depth).
  • the maximum absolute value is extracted only for the amplitude value of 3.9 m).
  • a plurality of synthetic aperture processes are performed on the original three-dimensional poxel data s (X, y, t) using a plurality of underground propagation velocities (propagation velocities in a medium).
  • a migration process is performed to generate the three-dimensional Vota cell data S (x, y, t) for each of the plurality of propagation velocities, and the maximum absolute value extraction step and the plane display step are executed for each of them. You can do it.
  • the three-dimensional exploration method and apparatus and the three-dimensional poxel data display method and apparatus of the present invention emit a wave signal due to an electromagnetic wave or a sound wave into a medium while moving on a surface in the medium, and exist in the medium. It can be used for three-dimensional exploration to detect the position of an object that exists in a medium by receiving the reflected signal from the object and processing the received signal. For example, it can be applied to three-dimensional exploration of underground objects such as gas pipes.

Description

明 細 書
3次元探査方法、 3次元ポクセルデータ表示方法及びそれらの装置 技術分野
本発明は、 媒質中の表面を移動しながら、 電磁波または音波による波動信号を 媒質中へ放射し、 この媒質中に存在する物体からの反射信号を受信し、 受信され た受信信号を信号処理して、 媒質中に存在する物体の位置を探査する 3次元探査 方法及び装置、 または、 媒質表面から媒質中へ放射した波動信号の反射信号強度 に基づいて媒質表面上の位置 (X , y ) と反射時間 tを座標 (χ, y , t ) と し て生成された 3次元ポクセルデータを表示する 3次元ポクセルデータ表示方法及 び装置に関する。 背景技術
このような 3次元探査にあたっては、 電磁波の反射を用いて地中にある埋設物 または空洞を探査する 3次元探査装置が使用される。
従来技術の典型例として、 昭和 6 3年電気学会全国大会 1 3 7 2ページ 「地中 埋設物探查レ一ダシステム (その 3 ) 3次元探查画像処理」 が知られている。 この技術 (第 1従来技術) では、 複数回の走査による測定断面情報を用い、 複 数のすべての断面画像中の同一位置に埋設物の像が得られたときには、 管が埋設 されているものと判断し、 またそれよりも少ない数の断面の同一位置に埋設物の 像が得られるときには塊状物が埋設されたものと判断し、 このようにして異なる 断面に存在する像との結合是非を判断し、 3次元的構造を求める。
ここで、 物体存否の判断基準となる 2値化処理の閾値は、 1種のみが使用され ている。
上述した従来技術では、 各断面のシンボル表示 (例えば反射信号の強さによる 物体の有無の 2値化シンボル表示) を 3次元的に連結しているので、 シンボル化 する際の閾値を如何に設定するかにより、 パイプとして判断される力、、 塊状物と して判断されるかが大きく左右される。 特に、 地中探査の場合には S Z Nが低い うえ、 探査位置を変えると物体からの反射信号の強さが大きく変化する。 従って、 反射信号の強さにより 2値化する場合、 パイプが検出できるぐらいまで閾値を大 きく下げると、 不要反射信号などのノイズ領域が多量に発生してしまう。 これは 2値化する際に隣接する断面の情報を全く使用していないことに起因する。
更に、 この従来技術では、 埋設管が装置の走査方向に垂直に埋設されているこ とが予定されている。 従って、 かかる前提条件下では上記のようなシンボル化手 法が有用であるが、 埋設管が装置の走査方向に対して垂直に埋設されていない場 合は、 探査の信頼性が低くなるという問題がある。
また、 3次元探査装置は地表面上の位置 (X , y ) において、 電磁波を地中に 向けて放射し、 埋設物からの反射信号を受信して、 一定間隔の反射時間 t毎の受 信信号強度 sを測定する。 従って、 3次元探査装置の地表面上の位置 (x, y ) を一定間隔の格子状に取れば、 全てのポクセルにデータ値 (受信信号強度 s ) が 存在する完全な 3次元ポクセルセルデータ s ( X , y , t ) を構成することがで きる。 しかし、 3次元探査装置を地表面上で走査する場合、 地表面が道路上であ る場合の実際の現場環境によっては、 安全性或いは時間的制約から必ずしも正確 な格子状の走査ができるとは限らないことから、 反射時間 t方向には密なデータ を測定することができるが、 X — y平面内ではデータ値の存在するポクセルとデ ータ値の欠損したボタセルとが混在することになる。 ここで、 かかる 3次元ポク セルセルデータにおいて、 データ値の存在するポクセルをソースボクセル、 デー タ値の欠損したポクセルを欠損ボタセルと定義する。
従来、 かかる 3次元ボタセルセルデータにおいて X — y平面内で不均一に存在 する欠損ポクセルを補間する方法が、 第 2従来技術として、 ソースポクセルとの 距離で補間の重み付けを行う方法が周知であった。 この従来法では、 欠損ボクセ ルとソースポクセル (ボタセル値 s ) との距離を Dと した場合に、 以下の数式 1 で求められる値 s ' で当該欠損ポクセルの補間を行う。 s ' = (∑D - E s ) / (∑D - E ) ( 1 ) ここで、 Eは重み付けの程度を調整するためのもので、 例えば、 3 . 5等の数 値が使用されるが、 補間するデータの密度やポクセル値の分散に応じて適切な数 値が用いられる。 また、 この補間は 3次元的に行うことも可能であるが、 反射時 間 t方向には密にデータが存在するため、 X — y平面内での 2次元データの補間 として考え、 求められた 2次元平面上での重み付けを用いて、 各反射時間 t毎に 補間を行う方が計算量を大幅に低減することができる。
上記の従来法で 3次元ポクセルデータの補間を行った場合、 3次元的な補間で ある力、、 2次元的な補間であるかに拘らず、 以下の三つの問題点が生じる。
第一に、 補間の対象となる一つの欠損ポクセルを基準としたときに、 或る一つ のソースボクセルへ向かう方向のやや遠い距離に他のソ一スボクセルが存在し、 この二つのソースポクセルのデータ値が大きく異なる場合 (例えば、 正負の符号 が異なる場合等)、 補間される欠損ポクセルの値が距離の遠い側のソースボクセ ノレにも依存してしまうという問題がある。
第二に、 方向性を考慮せずに距離のみで補間を行うために、 補間値の信頼性の 低い外揷処理も行われてしまうという問題がある。
第三に、 欠損ポクセルの近くにソースポクセルがない場合、 遠く離れたソース ポクセルのデータ値を用いて無理やり補間してしまうため補間値の精度が著しく 低下するという問題がある。
この第一と第二の問題点を解決する方法として、 ソースポクセルの X — y平面 内での 2次元分布から ドウローネー三角形分割図を計算により求め、 各三角形の 内部にある欠損ポクセルに対して、 その三角形の頂点にあるソースポクセルのデ —タ値により、 その距離に応じた重み付けで内挿処理を行い補間するという第二 の従来法がある。 しかしながら、 このドウ口一ネー三角形分割図を計算により求 める場合、 例えば、 ソースボタセルの X — y平面内での 2次元分布の個数を nと したとき、 n 2から n 3のオーダーという膨大な計算量が必要となる問題があり、 また、 前記第三の問題点は解決されずに依然として存在している。
更に、 第 3従来技術として、 上記の 3次元ポクセルデータ表示は、 例えば、 地 中埋設物探査においては、 地表面を移動しながら、 電磁波または音波による波動 信号を地中へ放射し、 地中に存在する物体からの反射信号を受信し、 その受信し た反射信号強度に対する地表面上の位置 (x, y ) と反射時間 tを座標 (X , y , t ) とする 3次元ポクセルデータを生成し、 通常、 かかる 3次元ポクセルデータ を垂直あるいは水平断面に沿って得られる画像を多数表示し、 これらを比較検証 するという手間並びに熟練度を要する膨大な作業を行なっていた。 例えば、 第 1 3図に示す埋設状況における 3次元ボタセルデータを水平断面に沿って表示し た画像表示例を第 2 6図に示す。 この断面表示の場合、 一定の深さの断面しか表 示できないため、 他の深さの埋設物の様子を把握するためには、 深さを変えて再 表示しなければならない。
上記した第 3従来技術の問題を解決すべく、 第 4従来技術として、 3次元デー タの全情報を如何に 2次元画像と して表示するかという手法が、 電子情報通信学 会論文誌 D (Vol. J71-D No. 10 pp. 2002- 2009) の 「雪中レーダシステムのための 3次元データ表示方法」 において提案されている。
上記第 4従来技術の中の表面表示型という手法を、 第 1 3図に示す埋設状況に おける 3次元ポクセルデータに適用した表示例を第 2 7図〜第 2 9図に示す。 こ の場合、 適切な閾値を探る目的で閾値を、 第 2 7図、 第 2 8図、 第 2 9図の順に 高中低と変化させたものを 3通り示している。 これより、 閾値が高いときは埋設 物からの反射信号が途切れて断続的になり埋設物が判別しにく く、 また、 閾値が 低いときは、 信号強度の弱い反射信号まで表示できるものの、 反射信号自体の S N比が低いためノィズ成分も同時に表示され視認性が悪化することが分かる。 次に、 超音波診断等でも用いられている上記第 4従来技術の中の積分型という 手法を、 同じく第 1 3図に示す埋設状況における 3次元ポクセルデータに対して 反射時間 t軸方向に適用した表示例を第 3 0図に示す。 この場合も、 反射信号自 体の S N比が低く、 埋設物の領域が探査領域全体に対して比較的小さいため、 積 分効果によりコン トラス トが低下してしまい、 視認性が悪い。 他にも、 差分和型、 積和型等も提案されているが、 これらの手法では隣接値との差分を用いるため、 S N比の低いデータの場合には細かいノイズが強調されてしまうという問題があ る。
本発明は、 かかる実情に鑑みてなされたものであり、 その第一の目的は、 隣接 する断面 (ポクセル) の値を使用する 3次元処理と人為的操作の効果的な介在に よって、 地中の埋設物の位置を高い S Z Nで検出することであり、 また、 その第 二の目的は、 3次元ポクセルデータにデータの欠損するボタセルが存在する場合 に、 かかる欠損ボタセルを簡易的に補間する方法或いは手段を提供することによ り、 地中の埋設物の位置を高効率且つ高精度で検出することであり、 更に、 その 第三の目的は、 S N比の低い 3次元ポクセルデータに対しても、 簡単な 2次元画 像表示で、 媒質中に存在する物体等の把握を容易且つ的確にできる 3次元ボクセ ルデータ表示方法及び装置を提供することである。 発明の開示
上記第一の目的を達成するための本発明に係る 3次元探査方法の特徴構成は、 以下の第一乃至第七の特徴構成である。
第一の特徴構成は、 媒質の表面を移動しながら、 電磁波または音波による波動 信号を前記媒質中へ放射し、 前記媒質中に存在する物体からの反射信号を受信す る送受信工程と、 受信信号強度に対する前記媒質表面上の位置 (x, y ) と反射 時間 tを座標 (X , y , t ) とする 3次元ポクセルデータを生成する 3次元ポク セルデータ生成工程とを順次実行し、 前記媒質中に存在する物体の位置を探査す る 3次元探査方法において、 前記 3次元ポクセルデータ生成工程で生成された前 記 3次元ポクセルデータに対して、 1つ以上の物体ボタセルを人為的操作入力に 従って選択する物体ボタセル選択工程と、 振幅値の極性が正負何れか一方でその 絶対値が所定の閾値より大きいポクセルが相互に連接してなる候補ボタセル群を 抽出する 2値化工程と、 前記 2値化工程において抽出された前記候補ポクセル群 の中から前記物体ポクセル選択工程において選択された前記物体ボタセルに連結 する連結候補ボタセル群を抽出し、 その連結候補ポクセル群を前記物体ポクセル と合成して物体ポクセル群とする連結合成工程とを実行する点にある。
この特徴構成によれば、 前記物体ボクセル選択工程と前記 2値化工程と前記連 結合成工程とを実行して、 反射信号強度の弱い不要反射信号等の物体からの反射 信号である可能性の低いノィズ領域を包含する前記候補ポクセル群の中から、 物 体からの反射信号である可能性の高い物体ポクセルに連結した連結候補ボタセル 群のみを抽出し、 これを物体ボタセルに連結合成し、 物体ポクセル群とすること によって、 前記閾値の設定を低く しても、 それに伴って多量に発生する前記ノィ ズ領域を前記物体ボタセル群と区別して効果的に除外できるため、 前記閾値を単 純に高く設定することで物体からの反射信号である可能性の高い物体ポクセルが 不必要に欠落してしまうのを防止でき、 高 S Z Nでの探査が可能となる。
また、 探査位置を変えると物体からの反射信号強度が大きく変化するような場 合であっても、 物体の一部である前記物体ポクセルを人為的操作により先ず選択 することで、 それに連続する物体ポクセル群を適切に抽出できるため、 埋設管の ような連続的な物体を抽出できる。
更に、 このような連結合成工程の処理は、 3次元的に行うことができるため、 装置の走査方向に対して垂直に埋設されていない埋設管等を対象とする場合であ つても、 良好な探査結果を得ることができる。
第二の特徴構成は、 前記 2値化工程で使用する前記所定の閾値を、 前記物体ボ クセル選択工程において選択された前記物体ポクセルの振幅値に基づいて設定す る点、にある。
ところで、 物体の媒質表面までの距離つまり埋設物の場合では埋設深さに依存 して反射信号強度が相対的に変化するため、 その距離が短い領域を探査する場合 は、 前記閾値を高く設定して効果的にノイズ成分を除去し、 逆にその距離が長い 領域を探査する場合は、 前記閾値を低く設定して物体ボタセルの欠落を防止する 必要がある。
従って、 上記第二の特徴構成によれば、 前記 2値化工程で使用する前記所定の 閾値は、 前記物体ポクセル選択工程において選択された前記物体ポクセルの振幅 値に基づいて設定されるため、 前記物体ボタセルの振幅値が大きい場合は、 物体 の媒質表面までの距離が短いと判断して、 前記閾値を大きく設定することができ、 また、 その逆の設定も可能となる。 この結果、 前記物体ポクセルの選択によって、 その物体ボタセルに対応する物体を高 S / Nで抽出するのに適した閾値の設定が 可能となり、 更には、 自動的に当該閾値の設定を行うこともできる。
更に、 前記物体ポクセルの振幅値の極性に合わせて前記 2値化工程での候補ボ クセル群の極性を設定した場合、 その極性に応じて前記閾値を変化させる必要が ある。 例えば、 振幅値のゼロ値がオフセッ トしている場合等においても、 前記物 体ボタセルの振幅値の極性に基づいて前記閾値を適正に調整することができる。 第三の特徴構成は、 前記物体ポクセル選択工程において、 前記 3次元ポクセル データ生成工程で生成された前記 3次元ボタセルデータを断面表示し、 その表示 された断面上の座標点を指定することにより、 前記 1つ以上の物体ボタセルを選 択する点にある。
この特徴構成によれば、 前記 3次元ポクセルデータから前記物体ボタセルを選 択する際に、 指定するボタセルを所定の断面上に限定するため、 通常の C R Tモ ニタゃ液晶表示パネル等の 2次元平面の計算機画面表示とマウスやキーボード入 力によるカーソル操作等の計算機入力操作で、 容易に前記物体ポクセル選択工程 が実行できる。
第四の特徴構成は、 前記 3次元ポクセルデータ生成工程で生成された前記 3次 元ポクセルデータに対して、 前記媒質表面上の位置 (X , y ) 毎に反射時間 t軸 方向における振幅値の絶対値の最大値及びその最大値をとる反射時間 t M A xを抽 出する最大値抽出工程と、 前記最大値抽出工程で抽出された前記媒質表面上の位 置 (X , y ) 毎の前記最大値と前記反射時間 ΐ Μ Λ Χを夫々所定の反射時間 tの X — y平面上に配置する平面配置工程を実行し、 前記物体ポクセル選択工程にお いて、 前記最大値を配置した前記 X — y平面を表示し、 その表示された平面上の 座標点を指定して、 その指定された座標点とそれに対応する反射時間 t M A xとで 特定することにより、 前記 1つ以上の物体ポクセルを選択する点にある。
この特徴構成によれば、 前記 3次元ポクセルデータに対して、 前記媒質表面上 の位置 (X , y ) 毎に反射時間 t軸方向における振幅値の絶対値の最大値及びそ の最大値をとる反射時間 t Μ Λ Χを抽出し、 抽出された前記媒質表面上の位置 (X , y ) 毎の前記最大値と前記反射時間 t M A Xを前記 3次元ボタセルデータ内外の所 定の X — y平面上に夫々配置し、 前記媒質表面上の位置 (X , y ) 毎の最大値に 対して断面表示を行なうことができる。 この単一の断面表示 (X — y平面表示) により、 種々の深さ (反射時間 t ) の断面表示を複数行なわなくても、 全ての深 さの埋設物の平面配置の様子が分かり、 容易且つ迅速に前記物体ポクセルの選択 つまり埋設物の抽出ができる。
第五の特徴構成は、 上記第三または第四の特徴構成に加えて、 前記物体ボクセ ル選択工程において、 前記指定された座標点近傍にあって、 その座標点の振幅値 と同符号でその絶対値が最大の振幅値を有する座標点を前記指定された座標点と 置換することにより、 前記 1つ以上の物体ポクセルを選択する点にある。
この特徴構成によれば、 前記 3次元ボタセルデータから前記物体ポクセルを選 択する際に、 オペレータ等がマウス操作等の計算機入力操作を誤って本来指定す べき物体ポクセルを指定できずに、 その近傍のポクセルを指定した場合であって も、 本来指定すべき反射信号強度の大きい物体ボタセルを正しく選択することが できる。
第六の特徴構成は、 前記 3次元ボタセルデータ若しくは前記候補ボクセル群若 しくは前記物体ポクセル群に対して合成開口処理若しくはマイグレーション処理 を施す点にある。
この特徴構成によれば、 合成開口処理若しくはマイグレーショ ン処理を施すこ とによって、 媒質表面に平行な (X , y ) 面内の分解能を向上することができる。 ここで、 反射信号の生データから構成される原 3次元ポクセルデータに、 合成 開口処理若しくはマイグレ―ション処理を施し、 得られた 3次元ポクセルデータ に対して 2値化処理を行う場合は、 3次元ボタセルデータが、 物体の埋設状況等 に近似できるデータ (深度スケールに変換された情報) となるため、 これを見な がら前記閾値を設定して解析を進めることができ、 使用勝手が向上する。
第七の特徴構成は、 前記 3次元ボタセルデータ生成工程で、 前記 3次元ボクセ ルデータの反射時間 t軸方向に対してウイ一ナフィルタ処理若しくは振幅補正処 理を施し、 処理前の原 3次元ボタセルデータと置換する点にある。
この特徴構成のウィナーフィルター処理を施すことによって、 反射時間 t軸方 向の分解能が向上する。 また、 振幅調整処理を施すことによって、 反射時間の遅 い弱い反射信号の振幅を強調することができる。
また、 上記第一の目的を達成するための本発明に係る 3次元探査装置の特徴構 成は、 以下の第八及び第九の特徴構成である。
第八の特徴構成は、 媒質の表面を移動しながら、 電磁波または音波による波動 信号を前記媒質中へ放射し、 前記媒質中に存在する物体からの反射信号を受信す る送受信手段と、 前記送受信手段で得られた受信信号から、 受信信号強度に対す る前記媒質表面上の位置 (x, y ) と反射時間 tを座標 (X , y , t ) とする 3 次元ポクセルデータを生成する 3次元ポクセルデータ生成手段とを備え、 前記媒 質中に存在する物体の位置を探查する 3次元探查装置において、 前記 3次元ポク セルデータ生成手段により生成された前記 3次元ボタセルデータに対して、 1つ 以上の物体ポクセルを人為的操作入力に従って選択する物体ボタセル選択手段と、 振幅値の極性が正負何れか一方でその絶対値が所定の閾値より大きいポクセルが 相互に連接してなる候補ポクセル群を抽出する 2値化手段と、 前記 2値化手段に より抽出された前記候補ボクセル群の中から前記物体ポクセル選択手段によって 選択された前記物体ポクセルに連結する連結候補ポクセル群を抽出し、 その連結 候補ポクセル群を前記物体ポクセルと合成して物体ポクセル群とする連結合成手 段とを備えてなる点にある。
この特徴構成によれば、 前記 3次元ポクセルデータ生成手段により生成された 3次元ボタセルデータを対象と して、 前記 2値化手段が抽出した反射信号強度の 弱い不要反射信号等の物体からの反射信号である可能性の低いノィズ領域を包含 する前記候補ボタセル群の中から、 物体からの反射信号である可能性の高い前記 物体ポクセル選択手段によつて選択した前記物体ポクセルに連結した連結候補ボ クセル群のみを前記連結合成手段が抽出し、 更に、 これを物体ポクセルに連結合 成し物体ポクセル群とすることによって、 前記閾値の設定を低く しても、 それに 伴って多量に発生する前記ノィズ領域を前記物体ポクセル群と区別して効果的に 除外できるため、 前記閾値を単純に高く設定することで物体からの反射信号であ る可能性の高い物体ポクセルが不必要に欠落してしまうのを防止でき、 高 S Z N での探査が可能な 3次元探査装置が提供できるのである。
更に、 この特徴構成により、 上記第一の特徴構成の本発明に係る 3次元探査方 法を使用することができるため、 上記第一の特徴構成の作用効果を発揮すること ができる。
第九の特徴構成は、 前記物体ポクセル選択手段は、 前記 3次元ポクセルデータ 生成手段によって生成された前記 3次元ポクセルデータの任意の断面を人為的操 作入力に従って選択表示する断面表示手段と、 その表示された断面上の座標点を 所定の人為的操作入力に従って指定可能な断面座標点指定手段とを備えている点 にめる。 この特徴構成によれば、 前記断面表示手段によって前記 3次元ポクセルデータ 生成手段によって生成された前記 3次元ポクセルデータの任意の断面を人為的操 作により選択して表示でき、 更に、 前記断面座標点指定手段によってその表示さ れた断面上の座標点を所定の人為的操作により指定できるため、 前記 3次元ポク セルデータから前記物体ボタセルを選択する際に、 指定するボタセルを所定の断 面上に限定することができ、 通常の C R Tモニタや液晶ディスプレイ等の 2次元 平面の計算機画面表示とマウスやキーボード入力によるカーソル操作等の計算機 入力操作で、 容易に前記物体ポクセル選択工程が実行できる。
また、 上記第四の特徴構成による前記最大値を配置した前記 X — y平面は、 前 記 3次元ポクセルデータの内外に配置されることで、 前記 3次元ポクセルデータ の一部に含まれるか、 或いは、 前記 3次元ポクセルデータの領域を実質的に反射 時間 t軸方向に拡張する。 従って、 前記最大値を配置した前記 X — y平面は、 前 記断面表示手段により前記 3次元ポクセルデータの一断面として表示される。 上記第二の目的を達成するための本発明に係る 3次元探査方法の特徴構成は、 以下の第十乃至第十二の特徴構成である。
第十の特徴構成は、 媒質の表面を移動しながら、 電磁波または音波による波動 信号を前記媒質中へ放射し、 前記媒質中に存在する物体からの反射信号を受信す る送受信工程と、 受信信号強度に対する前記媒質表面上の位置 (X , y ) と反射 時間 tを座標 (X , y , t ) とする 3次元ポクセルデータを生成する 3次元ポク セルデータ生成工程とを順次実行し、 前記媒質中に存在する物体の位置を探査す る 3次元探査方法において、 前記 3次元ポクセルデータ生成工程で生成された前 記 3次元ボタセルデータがデータの欠損したポクセルを有する場合、 その欠損ボ クセルに対してその欠損ボタセルを含む X — y平面内の所定方向に 1次元線形補 間を施す線形補間工程を実行する点にある。
この特徴構成によれば、 1次元線形補間は二つのソースポクセルの間を線形補 間して、 その間の欠損ポクセルを補間するため、 欠損ボタセルから一つのソース ポクセルを見た場合に同方向に他のソースポクセルが存在していても、 捕間の結 果が、 遠い方のソースボタセルのデータ値によって影響されることは全くない。 同様の原理から、 信頼性の低い外挿処理が実行されることもない。 また、 ソース ボタセルの x— y平面内での 2次元分布の個数を nとしたとき、 計算量は nのォ ーダ一になるため、 処理時間を大幅に短縮することができる。
この結果、 補間値の信頼性をある程度維持しながら、 欠損ボタセルを高速で補 間できるため、 媒質表面上における制約により完全な 3次元ポクセルデータの生 成が困難な状況であっても、 高効率且つ高精度で埋設物の探査が可能となる。 第 ^一の特徴構成は、 1次元線形補間を行う方向を変更して前記線形補間工程 を 2回以上実行する点にある。
この特徴構成によれば、 ソースポクセルの X ― y平面内での 2次元分布がラン ダムであっても、 最終的に欠損ポクセルを余すことなく十分密に補間することが できる。
第十二の特徴構成は、 前記線形補間工程において、 1次元線形補間を行う方向 に前記欠損ポクセルが連続して存在する距離が、 前記波動信号の前記媒質中にお ける波長以下の場合に、 前記 1次元線形補間を行う点にある。
この特徴構成によれば、 1次元線形補間を行う際に、 精度良く線形補間を行う には遠く離れ過ぎた二つのソースポクセル間での補間処理が適度に制限されるた め、 精度の悪い補間が無闇に実行されるのを防止でき、 かかる欠損ポクセルが欠 損ポクセルと して認識されることで、 測定不能領域が明確になり、 その分、 測定 可能領域における探査精度の向上が図れるのである。 また、 上記第 ^—の特徴構 成との組み合わせにおいては、 ある方向での 1次元線形補間が不能であっても、 別の方向での 1次元線形補間が可能な場合があり得るため、 敢えて精度の悪い補 間が実行されるのが防止でき、 探査精度の向上が図れる。
尚、 1次元線形補間を行うか否かの判定において、 前記波動信号の媒質中にお ける波長を使用する根拠は、 専ら実験結果に基づくものである。
上記第二の目的を達成するための本発明に係る 3次元探査装置の特徴構成は以 下の第十三の特徴構成である。
第十三の特徴構成は、 媒質の表面を移動しながら、 電磁波または音波による波 動信号を前記媒質中へ放射し、 前記媒質中に存在する物体からの反射信号を受信 する送受信手段と、 前記送受信手段で得られた受信信号から、 受信信号強度に対 する前記媒質表面上の位置 (x, y ) と反射時間 tを座標 (x, y, t ) とする 3次元ボタセルデータを生成する 3次元ポクセルデータ生成手段とを備え、 前記 媒質中に存在する物体の位置を探査する 3次元探査装置において、 前記 3次元ボ クセルデータ生成手段により生成された前記 3次元ボタセルデータがデータの欠 損したポクセルを有する場合、 その欠損ボタセルに対してその欠損ポクセルを含 む X — y平面内の所定方向に 1次元線形補間を施す線形補間手段を備えてなる点 にある。
この特徴構成によれば、 前記線形補間手段が X — y平面上の所定の一方向に 1 次元線形補間を行うことにより、 上記第十の特徴構成における線形補間工程が実 行され、 前記線形補間手段が X — y平面上の第一の方向に 1次元線形補間を行い、 1次元線形補間を行う方向を変更して再度 1次元線形補間を行い、 必要に応じて、 同じ要領で 1次元線形補間を繰り返すことにより、 上記第十一の特徴構成におけ る線形補間工程が実行されるため、 上記第十の特徴構成、 または、 第十及び第十 一の特徴構成と同じ作用効果を奏することができるのである。
上記第三の目的を達成するための本発明に係る 3次元ポクセルデータ表示方法 の特徴構成は、 以下の第十四乃至第二十の特徴構成である。
第十四の特徴構成は、 媒質表面から媒質中へ放射した波動信号の反射信号強度 に基づいて前記媒質表面上の位置 (x, y ) と反射時間 tを座標 (X , y , t ) として生成された 3次元ポクセルデータの表示方法であって、 前記 3次元ポクセ ルデータに対して、 前記媒質表面上の位置 (x, y ) 毎に反射時間 t軸方向にお ける振幅値の最大絶対値を抽出する最大絶対値抽出工程と、 前記最大絶対値抽出 工程で抽出された前記媒質表面上の位置 (X , y ) 毎の前記最大絶対値を所定平 面上に配置する平面配置工程と、 前記所定平面上に配置された前記最大絶対値を 表示する平面表示工程を実行する点にある。
この特徴構成によれば、 3次元ボタセルデータに対して、 各媒質表面上の位置 ( x , y ) 毎に反射時間 t軸方向における振幅値の最大絶対値を抽出し、 各媒質 表面上の位置 (x, y ) 毎の前記最大絶対値を所定平面上に配置して表示する。 従って、 3次元ボタセルデータの S N比が低く、 媒質中の物体の領域が探査領域 全体に対して比較的小さくても、 強い反射信号の領域が局所的に存在すれば、 高 いコントラス トで表示されるため、 物体の平面配置を高い視認性で容易に把握す ることができるようになる。
第十五の特徴構成は、 前記最大絶対値抽出工程で抽出された前記最大絶対値の 中から最大値と最小値を求め、 その最大値と最小値が夫々表示階調の上限及び下 限となるように前記最大絶対値を正規化する点にある。
この特徴構成によれば、 各媒質表面上の位置 (x, y ) 毎の前記最大絶対値を 所定平面上に配置して表示する際に、 前記最大絶対値の中から最大値と最小値を 求め、 その最大値と最小値が夫々表示階調の上限及び下限となるように前記最大 絶対値の正規化を行なうため、 更にコン トラス トを高め、 視認性を向上すること ができる。
第十六の特徴構成は、 前記最大絶対値抽出工程において、 前記媒質表面上の位 置 (X , y ) 毎に前記最大絶対値を抽出する際に、 その最大絶対値をとる反射時 間 t Μ Λ Χも併せて抽出する点にある。
この特徴構成によれば、 各媒質表面上の位置 (x, y ) 毎に反射時間 t軸方向 における振幅値の最大絶対値を抽出する際に、 その最大絶対値をとる反射時間 t M A Xも併せて抽出するため、 強い信号を反射する物体領域がどの反射時間 t (媒質表面からの距離、 地中埋設物探査の場合では埋設深さに相当。) に存在す るかを容易に把握することができる。
第十七の特徴構成は、 前記最大絶対値抽出工程において、 前記媒質表面上の位 置 ( X , y ) 毎に前記最大絶対値を抽出する際に、 反射時間 tの所定範囲内にあ る振幅値を除外する点にある。
この特徴構成によれば、 各媒質表面上の位置 (x, y ) 毎に反射時間 t軸方向 における振幅値の最大絶対値を抽出する際に、 反射時間 tの所定範囲内にある振 幅値を除外するため、 地中探査の場合では地表付近や地下水面等の媒質中の反射 信号強度が極端に強くなる領域を除外することができ、 その結果、 媒質中の物体 領域 (地中埋設物探査の場合では埋設物領域) に対する視認性を向上させること ができる。
第十八の特徴構成は、 前記最大絶対値抽出工程において、 前記媒質表面上の位 置 (X , y ) 毎に前記最大絶対値を抽出する際に、 振幅値の極性が正または負の 何れか一方のポクセルのみを对象とする点にある。 この特徴構成によれば、 各媒質表面上の位置 (X , y ) 毎に反射時間 t軸方向 における振幅値の最大絶対値を抽出する際に、 振幅値の極性が正または負の何れ か一方のボタセルのみを対象とすることによって、 媒質中の物体からの反射信号 の S N比の高い方の極性の振幅値についてのみ抽出するため、 媒質中の物体領域 に対する視認性が向上する。 これは、 地中埋設物探査の場合、 放射信号の埋設物 での反射係数が埋設物の材質によってその極性が異なることによるもので、 例え ば、 金属管の場合は反射係数が負で、 樹脂管や空洞の場合は正の反射係数となる。 第十九の特徴構成は、 前記最大絶対値抽出工程前に、 前記反射信号強度からな る 3次元ポクセルデータに対して合成開口処理若しくはマイグレーション処理を 施して、 表示対象となる前記 3次元ポクセルデータを生成する点にある。
この特徴構成によれば、 合成開口処理若しくはマイグレーション処理を施すこ とによって、 媒質表面に平行な (x, y ) 面内の分解能が向上する。 また、 反射 信号強度の生データから構成される原 3次元ポクセルデータに、 合成開口処理若 しくはマイグレーション処理を施して得られた 3次元ポクセルデータは、 物体の 埋設状況等に近似できるデータ (深度スケールに変換された情報) となるため、 視認性が一層向上する。
第二十の特徴構成は、 前記合成開口処理若しくはマイグレーション処理を複数 の媒質中の伝搬速度で実行して、 前記伝搬速度毎に前記 3次元ポクセルデータを 生成し、 前記伝搬速度毎の前記各 3次元ポクセルデータに対して、 前記最大絶対 値抽出工程と前記平面配置工程と前記平面表示工程を各別に実行し、 前記各伝搬 速度毎の前記平面表示工程における前記 3次元ボタセルデータの表示結果から、 適切な伝搬速度による処理結果を選択する点にある。
この特徴構成によれば、 複数の媒質中の伝搬速度を用いて前記合成開口処理若 しくはマイグレーション処理を実行して、 伝搬速度毎に生成した 3次元ポクセル データを平面表示工程において表示し、 その表示結果のフォーカスの良さを判断 することにより、 媒質中の伝搬速度が未知な場合であっても、 容易に適切な伝搬 速度による処理結果を選択することが可能となるので、 媒質表面に平行な (x, y ) 面内における高い分解能を確保することができる。
上記第三の目的を達成するための本発明に係る 3次元ポクセルデータ表示装置 の特徴構成は以下の第二 H ^—の特徴構成である。
第二 ^一の特徴構成は、 媒質表面から媒質中へ放射した波動信号の反射信号強 度に基づいて前記媒質表面上の位置 (x, y ) と反射時間 tを座標 (X , y , t ) として生成された 3次元ポクセルデータを表示する 3次元ポクセルデータ表 示装置であって、 前記 3次元ポクセルデータに対して、 前記媒質表面上の位置
( X , y ) 毎に反射時間 t軸方向における振幅値の最大絶対値を抽出する最大絶 対値抽出手段と、 前記最大絶対値抽出手段で抽出された前記媒質表面上の位置
( X , y ) 毎の前記最大絶対値を所定平面上に配置する平面配置手段と、 前記所 定平面上に配置された前記最大絶対値を表示する平面表示手段とを備えてなる点 にある。
この 3次元ポクセルデ一タ表示装置は上記第十四から第二十の特徴構成による 夫々の 3次元ボタセルデータ表示方法に使用可能であり、 その基本の作用効果は 上記第十四の特徴構成による 3次元ポクセルデータ表示方法の作用効果と共通す る。 図面の簡単な説明
第 1図は、 3次元探査装置のプロック構成図であり、
第 2図は、 送信信号と受信信号の波形説明図であり、
第 3図は、 第 1実施形態に係るデータ解析装置の機能プロック図であり、 第 4図は、 第 1実施形態のデータ処理手順を示すフローチャートであり、 第 5図は、 第 1実施形態のデータ処理手順に使用した探査データを採取した場 所の埋設状況を示す説明図であり、
第 6図は、 第 1実施形態のデータ処理手順に使用した探査データ (マイグレー ション処理前の原 3次元ボタセルデータ) を模擬的に示す説明図であり、 第 7図は、 第 1実施形態のデータ処理手順に使用した探査データ (マイグレー ション処理後の 3次元ポクセルデータ) を通常の 2値化処理を施して得られた結 果を模擬的に示す説明図であり、
第 8図は、 第 1実施形態のデータ処理手順に使用した探査データから得られた 処理結果 (マイグレーション処理後の 3次元ボタセルデータの断面) を模擬的に 示す説明図であり、
第 9図は、 第 1実施形態のデータ処理手順に使用した探査データから得られた 物体ボタセルの属性値を示す説明図であり、
第 1 0図は、 第 1実施形態のデータ処理手順に使用した探査データから得られ た処理結果 (抽出された物体ボタセル群) を模擬的に示す説明図であり、 第 1 1図は、 第 1実施形態に対する別実施形態における、 本発明のデータ処理 手順に使用した探査データから得られた処理結果 (マイグレーション処理後の 3 次元ポクセルデータに対して、 最大値抽出工程と平面配置工程を実行した後の断 面) を模擬的に示す説明図であり、
第 1 2図は、 第 2実施形態に係るデータ解析装置の機能ブロック図であり、 第 1 3図は、 第 2実施形態及び第 3実施形態のデータ処理手順に使用した探査 データを採取した場所の埋設状況を示す説明図であり、
第 1 4図は、 第 2実施形態のデータ処理手順に使用した探査データを採取した 時の 3次元探査装置の移動経路を示す説明図であり、
第 1 5図は、 第 2実施形態のデータ処理手順を示すフローチャー トであり、 第 1 6図は、 第 2実施形態において、 探査データ (原 3次元ポクセルデータ) をそのままマイダレ一ション処理した結果を 3次元可視化した図であり、 第 1 7図は、 第 2実施形態において、 探査データ (原 3次元ポクセルデータ) に対して線形補間工程を実行してからマイグレーション処理した結果を 3次元可 視化した図であり、
第 1 8図は、 第 2実施形態において、 異なる条件で線形補間工程を行った後の マイグレーション処理結果を示す説明図であり、
第 1 9図は、 第 3実施形態に係るデータ解析装置の機能ブロック図であり、 第 2 0図は、 第 3実施形態の 3次元ポクセルデータ表示方法を示すフローチヤ ートであり、
第 2 1図は、 第 3実施形態の 3次元ボタセルデータ表示方法により得られた処 理結果を示す表示画像例であり、
第 2 2図は、 第 3実施形態の別実施形態による 3次元ポクセルデータ表示方法 により得られた処理結果を示す表示画像例であり、 第 2 3図は、 第 3実施形態の他の別実施形態による 3次元ボタセルデータ表示 方法により得られた処理結果を示す表示画像例 (地中の比誘電率は 4 ) であり、 第 2 4図は、 第 3実施形態の他の別実施形態による 3次元ボタセルデータ表示 方法により得られた処理結果を示す表示画像例 (地中の比誘電率は 9 ) であり、 第 2 5図は、 第 3実施形態の他の別実施形態による 3次元ポクセルデータ表示 方法により得られた処理結果を示す表示画像例 (地中の比誘電率は 1 9 ) であり、 第 2 6図は、 第 3実施形態に対する従来技術の一水平断面における処理結果を 示す表示画像例であり、
第 2 7図は、 第 3実施形態に対する従来技術の表面表示型で表示した場合の処 理結果を示す表示画像例であり、
第 2 8図は、 第 3実施形態に対する従来技術の表面表示型で表示した場合の処 理結果を示す表示画像例であり、
第 2 9図は、 第 3実施形態に対する従来技術の表面表示型で表示した場合の処 理結果を示す表示画像例であり、
第 3 0図は、 第 3実施形態に対する従来技術の積分型で表示した場合の処理結 果を示す表示画像例である。 発明を実施するための最良の形態
以下に本発明の実施の形態を図面に基づいて説明する。
[第 1実施形態]
第 1図に示すように、 本発明に係る 3次元探査装置の一実施の形態は、 送受信 手段である送受信機 1 0と、 送受信機 1 0で得られた信号を処理するデータ解析 装置 2 0とを、 主な機器として備えて構成されている。 そして、 本願にあっては、 データ解析装置 2 0における解析処理にその特徴がある。
第 1図に示すように、 媒質である土壌 1にガス等の流体を配送する鋼管などの 物体 2が埋設されており、 送受信機 1 0とデータ解析装置 2 0を備えた探査装置 3が地表面を移動しながら、 物体 2の埋設位置を探査する。 その移動方向は、 第 1図の表示例では X方向である。 そして、 本願のように 3次元ポクセルデータを 得る場合は、 X方向のデータの収集を終了した後、 y方向 (第 1図の表裏方向) に所定量の移動を繰り返しながら、 X方向データを逐次、 収集する。 尚、 第 1図 に示す物体 2は、 探査対象である物体を模式的に例示したものであり、 例えば、 第 5図または第 1 3図に示すような埋設状況における埋設管 5 0の一部を示すも のである。
送受信機 1 0は、 例えば 1 0 O M H z〜 1 G H zの第 2図 (B ) ( 1 ) に例示 する単発のパルス信号を送信回路 1 3で発生し、 送信アンテナ 1 1より電磁波と して土壌 1に放射する。 例えば、 第 2図 (A ) に例示するように物体 2表面上を 移動した場合、 送信アンテナ 1 1 より放射された電磁波の中の土壌に入射した入 射波 4は物体 2表面で反射散乱し、 その中の反射波 5が受信アンテナ 1 2で受信 された後、 受信回路 1 4において、 第 2図 (B ) ( 2 ) に例示するような受信信 号と して復調増幅される (この図において単一の線が一定位置で時間差をおいて 受信される複数の受信信号群に対応する)。 送信アンテナ 1 1 より放射され、 受 信アンテナ 1 2で受信されるまでの時間差 (これが実質上の反射時間) tは土壌 1の表面から物体 2までの距離と土壌 1の比誘電率 £ または電磁波の伝搬速度よ り一義的に決定される。
第 1図に示す場合にあっては、 送信アンテナ 1 1 と受信アンテナ 1 2は一定間 隔で地表面に対向して配置される。 X方向移動は、 物体 2を横切るように行われ ることとなる。
第 1図に示すように、 送受信機 1 0には、 受信回路 1 4の増幅部の利得を時間 差 tに応じて変調する信号強度変調手段 1 5が設けられており、 時間差 tが長く なるにつれて土壌 1を伝搬するパルス信号の損失が大きくなり、 受信信号強度が 減衰するのを振幅補正し、 時間差 t、 つまりは反射時間 tの増加に対して急激に 減衰しない受信信号強度分布を得る構成とされている。 この構成により、 後の信 号処理に必要な信号強度を確保できる。
次に、 受信信号が送られるデータ解析装置 2 0について、 第 1図及び第 3図に 基づいて説明する。
データ解析装置 2 0は、 マイクロコンピュータや半導体メモリ等によって構成 されるデータ処理部 2 1 と、 外部からの操作指示を入力するマウスやキーボード 等の入力部 2 2と、 各処理段階での画像データや出力結果を表示する C R Tモニ タゃ液晶ディスプレイ等の表示部 2 3を備えて構成されている。 更に、 各処理段 階でのデータや出力結果等を保管格納する磁気ディスク等の外部補助記憶部 2 4 を備えている。
以上の 3次元探査装置についての説明は、 後述する第 2及び第 3実施形態とも 共通する。 次に、 本発明の第一の目的を達成するための第 1実施形態に特有の部 分について説明する。
第 3図に示すように、 このデータ処理部 2 1は、 受信回路 1 4から入力してく る受信信号を、 媒質表面上の位置 (X , y ) と時間 t との関係において整理、 処 理する 3次元ボタセルデータ生成手段 3 1を備えている。
この 3次元ポクセルデータ生成手段 3 1は、 以降の処理で使用される 3次元ボ クセルデータを生成するためのものであり、 受信信号強度 sをそのまま媒質表面 上の位置 (x, y ) と時間 t との関数とする原 3次元ポクセルデータ s ( x , y, t ) を生成する。 更に、 必要な場合、 この原 3次元ポクセルデータ s ( x , y, t ) は、 マイグレーション処理されて、 マイグレーション処理済の新たな 3次元 ポクセルデータ S ( x , y , t ) が生成される。 これらのデータは 3次元構造を 取るため、 s ( X , y , t ) , S ( x , y, t ) は共に、 3次元ポクセルデータ に属し、 3次元ポクセルデータ生成手段 3 1で生成されるデータ群である。
ここで、 マイグレーション処理とは、 媒質の表面において得られる移動方向情 報 (空間、 深度 = 0、 時間の情報) を、 波の伝播を代表する波動方程式に基づい て、 フーリエ、 逆フーリエ変換手法を利用して媒質の深度方向の情報 (空間、 深 度、 時間 = 0の情報) に変換する公知の手法である。
この手法は、 空間座標として X方向のみを対象とする場合、 Xが媒質表面上の 観測ライン、 zが媒質中に向けて正の方向をとる深度、 tが伝搬時間である場合、 波動の場を u ( X , z , t ) で表し、 u ( X , z , t ) を 3次元フーリエ変換し たものを U ( ξ , , ω ) とすると、 マイグレーション法は t > 0に対して得ら れた観測データ u ( X , 0, t ) (レーダ画像) から時刻 t = 0における深さ方 向の場 u ( x, z , 0 ) (深度断面) を求めるものである。
即ち、 マイグレーション法の一種であるフェーズ ' シフ ト法では、 以下のよう な処理を行う。 1 . 観測されたデータを xと tに関して 2次元フーリエ変換し U ( ξ , 0 , ω ) を求める。
2 . 求めたい深度の 1ラインを、 U , 0 , ω ) から求める。
3 . 2 . の計算を深度を更新しながら繰り返し、 深度断面全体を求める。
一方、 マイグレーション法の一種である F — Κマイグレーション法では、 以下 のような処理を行う。
1 . 観測されたデータを Xと tに関して 2次元フーリエ変換し U ( , 0 , ω ) を求める。
2 . 周波数領域上で深度断面のフーリェ変換の値を求める。
3 . この値を、 , 7?に関して 2次元逆フーリエ変換し、 u ( χ, ζ , 0 ) を得 る。
このようにして、 t = 0における断面構造を得ることができる。 ここでは、 空 間座標として X方向のみに関する説明をしたが、 本願のように x、 y方向を共に 対象とする場合も同様に取扱うことができる。
この目的から、 データ処理部 2 1は、 3次元ポクセルの状態で得られているデ —タを、 マイグレーション処理できるマイグレーション処理手段 3 2を備えてい る。 更に、 マイグレーション処理の代わりに、 同様に公知の方法である合成開口 処理を施すものとしてもよい。 この場合、 マイグレーショ ン処理手段 3 2の代わ りに合成開口処理手段が備えられることとなる。 この状況を図に括弧書きで示し た。
更に、 このデータ処理部 2 1は、 3次元ボタセルデータ生成手段 3 1により生 成された 3次元ポクセルデータ S ( X , y , t ) に対して、 1つ以上の物体ポク セルを人為的操作により選択する物体ポクセル選択手段 3 3、 反射信号強度の振 幅値の極性が正負何れか一方でその絶対値が所定の閾値より大きいポクセルが相 互に連接してなる候補ボタセル群を 2値化処理により抽出する 2値化手段 3 4、 2値化手段 3 4により抽出された候補ポクセル群の中から物体ポクセル選択手段
3 3によって選択された物体ボタセルに連結する連結候補ポクセル群を抽出し、 その連結候補ボタセル群を物体ポクセルと合成して物体ポクセル群とする連結合 成手段 3 5、 及び、 出力処理手段 3 8を備えている。 更に、 物体ボタセル選択手段 3 3は、 3次元ポクセルデータ生成手段 3 1 によ つて生成された 3次元ポクセルデータ S ( x , y , t ) の任意の断面をマウス等 の入力部 2 2からの人為的操作により選択して表示部 2 3に表示する断面表示手 段 3 3 a と、 その表示された断面上の座標点をマウス等の入力部 2 2からの人為 的操作により指定して、 その座標点におけるボタセルを物体ポクセルとして選択 する断面座標点指定手段 3 3 bとを備えている。
次に、 本発明に係る 3次元探査方法の一実施形態を、 第 4図に示すデータ処理 部 2 1での典型的なデータ処理手順のフローチヤ一卜に従い、 第 5図に示す埋設 状況に対して探査した処理結果を示しながら説明する。 ところで、 第 5図に示す 埋設状況では、 マンホール 5 1に接続する配管 5 2とそれらを迂回する配管 5 3 等の埋設管 5 0及びその他の塊状物 5 4が土壌 1の中に埋設されている。
1 . 3次元ボタセルデータ生成工程 (S T 1 )
この工程は、 3次元探査装置 3を移動しながら、 データを収集し、 これを処 理して、 以降の処理に使用される 3次元ポクセルデータ s ( X , y , t ) 若し くは S ( X , y , t ) を生成する工程である。 この工程は、 ディジタル化され た受信信号強度より、 物体を含む土壌 1の断面画像を、 アンテナ 1 1及び 1 2 の媒質表面上の位置 (x, y ) と反射波 5の物体 2からの反射時間 t (実際は 所定の入射信号を発振してから反射信号が受信アンテナにいたるまでの時間) を座標 (X , y , t ) とする原 3次元ポクセルデータ s ( X , y, t ) として 取り込む工程であり、 ここで、 受信信号はその強度に応じて複数階調で輝度表 示され、 信号強度の正値を白 (輝度大)、 信号強度の負値を黒 (輝度小)、 信号 強度 0を中間階調と して取り込まれる。 この階調は、 具体的には、 8ビッ ト ( 2 5 6 ) 階調で表現され、 階調 1 2 8が反射信号強度の振幅値 0で、 1 2 9 以上の階調で振幅値が正値で、 1 2 7以下の階調で振幅値が負値となっている。 更に具体的には、 ディジタル化された受信信号は、 A Z D変換処理されたとき の量子化ビッ ト幅で、 媒質表面上の位置 (X , y ) と反射波 5の物体 2からの 反射時間 tで決定される座標 (x, y , t ) がア ドレス信号としてエンコー ド され、 複数階調の原 3次元ポクセルデータ s ( X , y , t ) としてデータ処理 部内のメモリ 2 1 aの所定の領域に格納される。 このようにして生成格納され た原 3次元ポクセルデータ s ( x, y , t ) に対して通常の 2値化処理を施し たものを、 第 6図に表示する。 尚、 第 6図は実際の画面表示を模擬的に図案化 したものである。 また、 実際には領域内の全てのボタセルが夫々の階調値を保 持している。
次に、 このようにして得られた原 3次元ポクセルデータ s ( X , y , t ) 力 S マイグレーション処理され、 以降の処理の対象となる 3次元ポクセルデータ S
( X , y , t ) とされる。 原 3次元ボタセルデータ s ( x, y , t ) に対して、 マイグレーション処理を施した 3次元ポクセルデータ S ( X , y, t ) を第 7 図に示す。 尚、 第 7図は実際の画面表示を模擬的に図案化したものである。 ま た、 第 7図では、 3次元ボタセルデータ S ( X , y , t ) は通常の 2値化処理 を施されて表示されているが、 実際には領域内のすべてのポクセルがそれぞれ 階調値を保持している。 第 7図ではマイグレーショ ン処理を施した場合を示し たが、 合成開口処理を施した場合も処理結果は、 ほぼ同じようになる。
因みに、 第 7図 (A ) は地表付近のマンホール 5 1の反射信号を見るために、 2値化処理の閾値を階調 1 7 5と高めに設定したもので、 第 7図 (B ) は深い 埋設管の反射信号を見るために、 2値化処理の閾値を階調 1 5 5と低めに設定 したものである。 通常の 2値化処理では、 深度の異なる両方の反射信号を検出 することは不可能であること、 つまり、 高い閾値では深い埋設管が検出できず、 低い閾値ではノィズ領域が増えるとともに、 地表付近の埋設物の反射信号が検 出できなくなることが分かる。
このようにして得られたマイグレーション処理後の 3次元ボタセルデータ S ( X , y , t ) が原データ s ( X , y , t ) と置換され、 3次元ポクセルデー タ生成手段 3 1の出力として、 以降の工程に引き渡される。
. 物体ボタセル選択工程 (S T 2 )
第 8図 (A;)、 ( B ) に示すように、 断面表示手段 3 3 aによってマイグレー シヨン処理を施した 3次元ポクセルデータ S ( x , y, t ) が適当な反射時間 T Dの X — y平面で断面表示され、 オペレータがマウス等の入力部 2 1からの 人為的操作により、 その表示断面上においてカーソル表示を移動させ、 断面座 標点指定手段 3 3 bがそのカーソル位置に基づいてその断面上の平面座標 (Xu, YD) を指定する。 ここで、 反射時間 Τβの選択は、 例えば、 第 9図に 示す複数の物体ポクセルの各座標値を表す座標テーブルの Τ 1 (一番目に選択 された物体プロックの反射時間座標値) のプロック表示をマウス等で選択して、 キーボードからその値を入力して行う力 、 或いは、 第 8図 (Α) に示す画面表 示上で当該断面をマウス操作等で上下に移動させて行う。 ここで、 第 8図
(Α) は断面表示を斜視図で表示したものであり、 第 8図 (Β) は同じ断面表 示を地表面側から平面視した表示画面である。 尚、 第 8図 (Α)、 (Β) は本来 は階調表示されるのであるが、 本願の図面では高輝度部分は白色表示 (紙面地 色)、 低輝度部分は黒色表示 (高密度のドッ ト表示) により模擬的に表示して レ、る。
次に、 断面座標点指定手段 3 3 bが、 前記指定により選択された座標 (X13, YD, Tu) のボタセルの近傍において、 指定したポクセルの振幅値と同符号 で且つ振幅値が最大のポクセルを検索し、 物体ポクセルとする。 ここで、 前記 検索の範囲は反射時間 Tcの X— Y平面内の指定されたポクセルを中心とする ± 6ポクセルの正方形の範囲である。 第 9図に示す計算機画面表示に、 このよ うにして選択された 1 0個の物体ポクセルの座標値 (X i, Y i, T i ), i = 1〜 1 0及び階調値 (MAX 1〜 1 0) が表示されている。
また、 この実施例では、 X — y平面で断面表示を行い反射時間 TDの X — y 平面内で一定の正方形領域内で検索を行ったが、 X — t平面や y — t平面或い は任意の方向の平面で断面表示を行っても構わない。 また、 検索領域も表示断 面内の正方形領域に限らず、 直方体やその他の任意形状のポクセル領域で検索 してもよい。 更には、 例えば、 オペレータが熟練者である場合等の条件下では、 断面座標点指定手段 3 3 bは、 前記検索処理を行わずに、 前記指定により選択 された座標 (XD, YD, TD) のポクセルをそのまま物体ポクセルとしても構 わない。
. 2値化工程 ( S T 3 )
この工程では、 2値化手段 34が、 マイグレーション処理を施した 3次元ボ クセルデータ S ( X , y , t ) に対して、 振幅値の極性が正負何れか一方でそ の絶対値が所定の閾値より大きいポクセルが相互に連接してなる候補ポクセル 群を抽出する。 具体的には、 物体ポクセル工程で選択された物体ボタセルの振 幅値が正値の場合には、 閾値より大きい振幅値を有する候補ポクセル群を抽出 し、 物体ポクセルの振幅値が負値の場合には、 絶対値が閾値より大きな負の振 幅値を有する候補ポクセル群を抽出する。 具体的には、 例えば、 選択された物 体ポクセルの階調値が 2 0 0であれば、 振幅値が 7 2であるので、 閾値をその 振幅値が物体ボタセルの振幅値の絶対値の半分になるように階調 1 6 4に自動 的に設定する。 また、 選択された物体ボタセルの階調値が 0であれば、 振幅値 がー 1 2 8であるので、 閾値をその振幅値が物体ポクセルの振幅値の絶対値の 半分になるように階調 6 4に自動的に設定する。
このよ うに、 2値化処理に使用する閾値を物体ポクセルの振幅値の絶対値に 基づいて自動的に設定することで、 埋設深さの浅い領域での候補ポクセル群の 抽出に使用する閾値を大きく設定するのが好ましい状況においては、 当該領域 で選択された物体ボタセルの振幅値の絶対値が当然に大きいため、 自動的に大 きな閾値が設定されることになる。 また、 逆に埋設深さの深い領域では、 小さ い閾値が自動的に設定され、 高 S Z Nで候補ポクセル群を抽出するのに適した 閾値が自動的に設定されるのである。
更に、 この閾値は、 他の処理結果に応じて変更可能にしておくのも好ましい。 例えば、 後続の連結合成工程の結果を見て、 閾値の調整を行い、 再度 2値化工 程から連結合成工程までを再計算可能に構成するのもよい。 因みに、 このよ う に再調整された閾値が、 第 9図に示す計算機画面表示内の表示ブロック
(M I N 1〜 1 0 ) に表示される。
. 連結合成工程 (S T 4 )
この工程においては、 連結合成手段 3 5が、 2値化工程において抽出された 候補ポクセル群の中から物体ボタセル選択工程において選択された物体ボクセ ルに連結する連結候補ポクセル群を抽出し、 その連結候補ポクセル群を物体ボ クセルと合成して物体ポクセル群とする。
具体的には、 例えば、 物体ポクセルを核にして、 候補ポクセル群の中から物 体ポクセルに隣接或いは物体ポクセルを包含する連結候補ボクセル群を一通り 総当たりで抽出し、 物体ボタセル群に追加する。 そして 1ボタセルでも追加さ れた場合には、 候補ボタセル群の中からこの物体ポクセル群に隣接する連結候 補ポクセル群を一通り総当たりで抽出し、 物体ポクセル群に追加する。 これら の操作を、 追加されるポクセルがなくなるまで繰り返す。
この連結合成工程により得られた物体ポクセル群の例を、 第 1 0図 (A)、 (B) に示す。 同図より、 浅いところから深いところまで明瞭に埋設物が検出 できていることが分かる。 ここで、 第 1 0図 (B) は物体ポクセル群を地表面 側から平面視した表示画面である。 尚、 第 1 0図は、 第 6図、 第 7図と同様に 実際の画面表示を模擬的に図案化したものである。
. 出力処理 (S T 5)
このよ うな処理済のデータを出力処理することにより、 明確に埋設管を探査 することができる。
以下に第 1実施形態の別実施形態を説明する。
< 1 ) 前記 3次元ボタセルデータ生成工程と前記物体ボタセル選択工程の間にお いて、 前記 3次元ポクセルデータ生成工程で生成された前記 3次元ポクセル データに対して、 前記媒質表面上の位置 (X , y ) 毎に反射時間 t軸方向に おける振幅値の絶対値の最大値及びその最大値をとる反射時間 t MAXを抽出 する最大値抽出工程と、 前記最大値抽出工程で抽出された前記媒質表面上の 位置 (X , y ) 毎の前記最大値と前記反射時間 t MAXを反射時間 t = 0、 t = 8 5の X — y平面上、 つまり、 前記 3次元ポクセルデータの最上面と最 下面に夫々配置する平面配置工程を実行する。
そして、 上記実施形態の物体ポクセル選択工程を実行せずに、 別の物体ボ クセル選択工程として、 前記断面表示手段 3 3 3にょっても = 0の — 7平 面の断面表示がなされ、 オペレータがマウス等の入力部 2 1からの人為的操 作により、 その表示断面上においてカーソル表示を移動させ、 前記断面座標 点指定手段 3 3 bが、 そのカーソル位置に基づいてその断面上の平面座標
(XD, YD) を指定する。
次に、 断面座標点指定手段 3 3 bが、 前記指定により選択されたポクセル の近傍において、 最大値が最大となるポクセルを検索し、 得られた物体ボタ セルの座標値を (X l, Y 1 ) とする ( 1番目の選択の場合)。 ここで、 前 記検索の範囲は t = 0の X— Y平面内の指定されたポクセルを中心とする ± 6ポクセルの正方形の範囲である。 そして、 (X l, Y 1 , 8 5 ) に格納 されている前記反射時間 t M A Xの値を読み出し、 反射時間 T 1の値とする。 ここで、 第 1 1図 (A ) は t = 0の断面表示を斜視図で表示したもので、 同 図 (B ) は同じ断面表示を地表面側から平面視したものである。 この後、 最 終的に得られた (X l, Y 1 , T 1 ) を物体ポクセルとして、 通常の 2値化 工程の処理へ移る。 尚、 最終的に得られた結果は、 上記実施形態において第 1 0図で表示したものと同じであった。
〈2〉 上記の実施形態にあっては、 振幅補正後の原 3次元ポクセルデータ s ( x , y, t ) に対して、 マイグレーション処理を施して、 以降の処理に使用する
3次元ポクセルデータを得るものとしたが、 このような処理としては、 先に 説明したように、 合成開口処理を使用してもよい。
更に、 マイグレーション処理あるいは合成開口処理は、 上記のように、 原 3次元ポクセルデータを得た後、 2値化工程を行う前に行ってもよく、 更に、 連結合成後に施す構成としてもよい。
上記の実施の形態にあっては、 t軸方向の反射時間の遅い弱い信号を強調 するために、 t軸方向における振幅補正を送受信機に備えられる信号強度変 調手段 1 5によって行ったが、 受信信号 sを、 信号強度変調手段 1 5による 処理を伴って、 そのまま座標 (x, y , t ) ア ドレスに割り当てた状態でメ モリ 2 l aに取り込み、 この原 3次元ポクセルデータに対してソフ ト的な振 幅調整処理を行う構成としてもよい。 このような振幅調整にあっては、 原 3 次元ポクセルデータ s ( X , y , t ) に関して、 各反射時間 t毎に、 (X , y ) 方向の平均をとり、 t軸方向での受信信号強度の減衰が大きくならない ように、 振幅を調整する処理を行うこととなる (これは、 振幅調整処理手段 3 7で行う)。
また、 t軸方向の分解能の向上を図るための操作として、 t軸方向のウイ —ナフィルタ処理を挙げることができる。
即ち、 例えば、 原 3次元ボタセルデータ s ( X , y , t ) を 2値化処理の 対象とする場合 (この情報を 3次元ポクセルデータ生成工程の出力とする場 合)、 3次元ポクセルデータ生成工程の例えば最終部分で、 座標 (x, y, t ) に対応した受信信号強度 sから構成される原 3次元ポクセルデータ s (x, y, t ) に、 その反射時間 t軸方向に対してウイーナフィルタ処理を 施し (これは、 ウイ一ナフィルタ処理手段 3 6で行う)、 処理後の 3次元ボ クセルデータを以降の処理の対象とするのである。
このウイーナフィルタは以下の構造で働く ものである。
受信波形 V ( t ) に対しインパルス応答が h , ( t ) で表されるフィルタ を施した波形を W ( t ) とすると、 数式 2で表される。 また、 数式 2中の h , ( t ) のフーリエ変換 H, ( f ) は数式 3で与えられる。
W ( t ) = \ V (て) hi( t— て) dて ( 2 )
Wi ( f )
Hi =Wo 0≤v≤ l (3)
(1- 7] ) Wo + 77 I Wi(f )
ここで、 ( f ) は通常計測される代表的な反射波形のフーリエ変換で ある。 また、 W。は数式 4で与えられるフィルタ定数である。
Γ ima , w。 二 \ I Wi(f)|2df (4) このウイーナフィルタは、 0≤ 7}≤ 1を満たすパラメータ 7}によってフィ ルタ特性が変化するフィルタで、 = 1の時はインバースフィルタ (逆フィ ルタ)、 7? = 0の時マッチトフィルター (整合フィルタ) となる。 本願の場 合にあっては、 7] = 0. 5〜0. 9程度に選択することが好ましい。
更に、 このようなウイ一ナフィルタを介した処理済の 3次元ポクセルデー タに対して、 先に説明した合成開口処理、 マイグレーション処理を施して、 後の 2値化処理、 連結合成処理の対象となる 3次元ポクセルデータを生成し てもよい。
[第 2実施形態] 次に、 本発明の第二の目的を達成するための第 2実施形態について説明する。 第 2実施形態に係る 3次元探査装置全体の構成及び機能は、 第 1実施形態と共 通であり、 既に第 1図〜第 3図に基づいて説明してあるので、 説明は割愛する。 また、 第 1 2図に示すように、 第 2実施形態に係るデータ処理部 2 1は、 第 1 実施形態と同じく、 3次元ポクセルデータ生成手段 3 1、 マイグレーション処理 手段 3 2、 及び、 出力処理手段 3 8を備えている。 その他の第 1実施形態と同じ 各種手段を具備していても構わないが、 第 1 2図では、 第 2実施形態に直接関係 するもののみを表示している。
この 3次元ボタセルデータ生成手段 3 1は、 以降の処理で使用される 3次元ボ クセルデータを生成するためのものであり、 受信信号強度 sをそのまま媒質表面 上の位置 (X , y ) と時間 t との関数とする原 3次元ポクセルデータ s ( X , y , t ) を生成する。
ところで、 この 3次元ポクセルデータ生成手段 3 1によって生成された 3次元 ポクセルにおいて、 第 1 4図に示すような移動経路上において前記反射波 5を受 信した場合、 受信位置に対応する 3次元ボタセルは、 データ値として受信信号強 度を有しているが、 それ以外の 3次元ボタセルは、 実質的なデータ値を持たず、 データが欠損している状態にある。 ここで、 便宜上前者の 3次元ボタセルをソー スボクセルと、 後者の 3次元ボタセルを欠損ポクセルと定義する。
前記データ処理部 2 1は、 上記した移動経路によっては欠損ポクセルが発生す るため、 かかる欠損ボタセルに対して 1次元線形補間を行い補間する線形補間手 段 2 6を備えている。 この補間処理については後述する。
更に、 必要な場合、 この補間処理後の 3次元ポクセルデータ s ( X , y , t ) は、 マイグレーション処理手段 3 2によってマイグレーショ ン処理されて、 マイ グレーシヨン処理済の新たな 3次元ポクセルデータ S ( X , y , t ) が生成され る。 また、 マイグレーション処理の代わりに、 第 1実施形態と同様に合成開口処 理を施すものとしてもよい。
次に、 第 2実施形態に係る 3次元探査方法を、 第 1 5図に示すデータ処理部 2 1での典型的なデータ処理手順のフローチヤ一卜に基づいて説明する。 . 3次元ボタセルデータ生成工程 (S T 6 )
この工程は、 先に説明した第 1実施形態と同じであるので説明を割愛する。 . 線形補間工程 (S Τ 7 )
この工程は、 前記線形補間手段 2 6が、 複数階調の原 3次元ポクセルデータ s ( x , y , t ) に対して、 以下の要領で欠損ポクセルのデータの補間を行う 工程である。
原 3次元ポクセルデータ s ( x , y , t ) の反射時間 t方向に対してはデー タが密に存在しているため、 X — y平面での 2次元データの補間として考えて、 求められた 2次元平面上での重み付けを用いて各反射時間 t毎に補間を行う。
X — y平面での 2次元データの補間を行うに、 先ず y軸方向に沿って 1次元 線形補間を行う。 この 1次元線形補間を行う際に、 欠損ポクセルが y軸方向に 連続して存在する距離が、 地中での電磁波の波長 (第 1 3図に示す埋設状況で は、 比誘電率 £ r が 9で、 当該電磁波の周波数が 3 0 O M H zであり、 波長; I は約 3 3 c mである。) 以下となる場合のみ、 それらの欠損ポクセルに対して 線形補間を行い、 前記距離が前記波長以上の場合は、 線形補間を行わずに欠損 ポクセルのまま放置しておく。 引き続き、 y軸方向に沿って行ったのと同じ要 領で X軸方向に沿つて 1次元線形補間を行う。
. 出力処理 (S T 8 )
次に、 このようにして得られた原 3次元ポクセルデータ s ( X , y , t ) 力 S 必要に応じてマイグレーション処理され、 3次元ポクセルデータ S ( x , y , t ) とされる。 このような処理済のデータを出力処理することにより、 明確に 埋設管を探査することができる。
次に、 線形補間工程 (S T 7 ) の効果について、 第 1 3図に示す埋設状況の 埋設管 5 0を、 第 1 4図に示す移動経路に沿って探査を行った場合の 3次元ボ クセルデータを用いて説明する。
第 1 6図に、 この線形補間工程を用いずに 3次元可視化した 3次元ポクセル データを示す。 また、 第 1 7図に、 この線形補間工程を用いて 3次元可視化し た 3次元ボタセルデータを示す。 尚、 第 1 6図及び第 1 7図の表示は、 視覚的 に分かりやすいように、 出力表示する前に、 夫々 3次元マイグレーション処理 を施している。 第 1 6図では、 ノイズが多く、 埋設管が途切れているが、 第 1 7図では良好な可視化が行われ、 線形補間工程を施すことによって、 探査精 度の向上が図れることが確認できた。 尚、 第 1 6図及び第 1 7図は、 実際の画 面表示を模擬的に図案化したものである。
更に、 第 1 8図に、 線形補間工程において、 欠損ボタセルが y軸方向に連続 して存在する距離が、 1 0 c m、 2 0 c m , 3 0 c m以下の場合にのみ 1次元 線形補間を行った比誘電率 9 (波長は約 3 0 c m ) の探査画像のマイグレーシ ヨン処理結果を示す。 縦軸はマイグレーション値を、 横軸は比誘電率を示す。 第 1 8図に示すように、 欠損ポクセルが y軸方向に連続して存在する距離が 3 0 c m , 即ち第 4図に示す埋設状況における電磁波の地中での波長を超える とマイグレーション処理効果が減衰してしまい、 補間処理が適切でないことが 分かる。
上記実施形態では、 線形補間工程 (S T 6 ) において、 X軸方向と y軸方向 に沿って 1次元線形補間を行ったが、 これらの座標軸に沿わない任意の方向に 1次元線形補間を行っても構わない。
[第 3実施形態]
次に、 本発明の第三の目的を達成するための第 3実施形態である 3次元ボクセ ルデータ表示方法について説明する。
第 1図に示すように、 本発明に係る 3次元ボタセルデータ表示装置を具備した 3次元探査装置は、 第 1及び第 2実施形態と同じく、 送受信機 1 0とデータ解析 装置 2 0とを主な機器として備えて構成されている。 そして、 本願にあっては、 データ解析装置 2 0における解析処理にその特徴がある。
第 1図に示すように、 媒質である土壌 1にガス等の流体を配送する鋼管などの 物体 2が埋設されており、 送受信機 1 0とデータ解析装置 2 0を備えた探査装置 3が地表面を移動しながら、 物体 2の埋設位置を探査する。 その移動方向は、 第 1図の表示例では X方向である。 そして、 本願のように 3次元ポクセルデータを 得る場合は、 X方向のデータの収集を終了した後、 y方向 (第 1図の表裏方向) に所定量の移動を繰り返しながら、 X方向データを逐次、 収集する。 尚、 第 1図 に示す物体 2は、 探査対象である物体を模式的に例示したものであり、 例えば、 第 1 3図に示すような埋設状況における埋設管 5 0の一部を示すものである。 送受信機 1 0及びデータ解析装置 2 0を含む第 3実施形態に係る 3次元探査装 置全体の構成及び機能については、 第 1及び第 2実施形態と共通であり、 既に第 1図〜第 3図に基づいて説明してあるので、 説明は割愛する。
また、 第 1 9図に示すように、 第 3実施形態に係るデータ処理部 2 1は、 第 1 または第 2実施形態と同じく、 3次元ポクセルデータ生成手段 3 1及びマイダレ ーション処理手段 3 2を備えている。 その他の第 1または第 2実施形態と同じ各 種手段を具備していても構わないが、 第 1 9図では、 第 3実施形態に直接関係す るもののみを表示している。
この 3次元ポクセルデータ生成手段 3 1は、 以降の処理で使用される 3次元ボ クセルデータを生成するためのものであり、 受信信号強度 sをそのまま媒質表面 上の位置 (x, y ) と時間 t との関数とする原 3次元ポクセルデータ s ( X , y , t ) を生成する。 更に、 必要な場合、 この原 3次元ポクセルデータ s ( x , y, t ) は、 マイグレーション処理手段 3 2によってマイグレーション処理されて、 マイグレーション処理済の新たな 3次元ポクセルデータ S ( X , y , t ) が生成 される。 また、 マイグレーション処理の代わりに、 第 1実施形態と同様に合成開 口処理を施すものと してもよい。 これらのデータは 3次元構造を取るため、 s ( X , y , t )、 S ( x , y , t ) は共に、 3次元ポクセルデータに属し、 3次 元ポクセルデータ生成手段 3 1で生成されるデータ群である。
更に、 このデータ処理部 2 1は、 前記 3次元ポクセルデータ生成手段 3 1によ り生成された 3次元ポクセルデータ s ( X , y , t ) または前記マイグレーショ ン処理手段 3 2により生成された 3次元ポクセルデータ S ( x , y, t ) に対し て、 前記媒質表面上の位置 (x, y ) 毎に反射時間 t軸方向における振幅値の絶 対値の最大値である最大絶対値を抽出する最大絶対値抽出手段 2 7と、 前記最大 絶対値抽出手段 2 7で抽出された前記媒質表面上の位置 (X , y ) 毎の前記最大 絶対値を所定平面上に配置する平面配置手段 2 8と、 その平面配置された前記最 大絶対値を出力処理して前記表示部 2 3に表示する平面表示手段 2 9とを備えて いる。
次に、 本発明に係る 3次元ボタセルデータ表示方法の一実施形態を、 第 2 0図 に示すデータ処理部 2 1での典型的なデータ処理手順のフローチヤ一卜に基づい て説明する。
1. 3次元ポクセルデータ生成工程 (S T 9)
この工程は、 先に説明した第 1実施形態と同じであるので説明を割愛する。 2. 最大絶対値抽出工程 (S T 1 0)
3次元ポクセルデータ生成工程において生成された 3次元ボタセルデータ S (x, y, t) に対して、 前記最大絶対値抽出手段 2 7が各媒質表面上の位置 ( X , y ) 毎に反射時間 t軸方向における振幅値を前記メモリ 2 1 aから逐次 読み出し、 その絶対値の最大値である最大絶対値を抽出する。 各媒質表面上の 位置 (X , y ) 毎に最大絶対値を抽出したときに、 その最大絶対値をとる反射 時間 t ΜΛΧも併せて抽出する。 これにより、 処理後においても、 強い信号を反 射する埋設物領域がどの反射時間 t (埋設深さに相当) に存在するかを容易に 把握することが可能となる。
3. 平面配置工程 (S T 1 1 )
前記最大絶対値抽出工程において抽出された各媒質表面上の位置 (x, y ) 毎の最大絶対値を前記平面配置手段 2 8によって所定平面上に配置する。
実際には、 各媒質表面上の位置 (X , y ) 毎に、 最大絶対値抽出工程と平面 配置工程を連続して実行することにより効率的に処理される。 具体的には、 各 媒質表面上の位置 (x, y ) 毎に抽出した最大絶対値と反射時間 t ΜΛΧを前記 メモリ 2 1 aの所定領域に格納する。 全ての媒質表面上の位置 (X , y ) に対 して両工程を実行すると、 最終的に、 各媒質表面上の位置 (x, y ) 毎の最大 絶対値が所定平面上に配置されることになる。 このとき、 最大絶対値の格納領 域を t = 0と割り当てることにより、 当該平面が 3次元ポクセルデータ S (x, y, t ) の最上面に配置される結果となる。
4. 平面表示工程 (S T 1 2)
前記平面表示手段 29が、 平面配置工程において平面配置された最大絶対値 を出力処理して前記表示部 2 3に表示する。
第 1 3図に示す埋設管を探査した 3次元ボタセルデータを処理した結果につ いて、 本工程において画像表示した例を第 2 1図に示す。 第 2 1図に示した表 示画像は、 第 26図〜第 30図に示す従来技術によるものと比べて視認性が改 善され、 埋設状況の平面配置が容易に把握できることが分かる。
以下に第 3実施形態の別実施形態を説明する。
〈 1〉 前記最大絶対値抽出工程において、 各媒質表面上の位置 (X , y ) 毎に反 射時間 t軸方向における最大絶対値を抽出する際に、 反射時間 tの所定範囲 内にある振幅値を除外するのも好ましい実施の形態である。 このようにして 抽出した最大絶対値を、 上記実施例と同様に平面表示工程で画像表示した例 を第 2 2図に示す。 尚、 第 2 2図に示す実施例では、 3次元ボタセルデータ S ( X , y, t ) の反射時間 tの範囲を 8 n s〜 7 8 n s (埋設深さに換算 して 0. 4m〜3. 9 m) の振幅値のみを対象として前記最大絶対値の抽出 を行なっている。
第 2 2図より、 深い埋設管の弱い反射信号がより明解に把握できるように なったことが分かる。
また、 各媒質表面上の位置 (X , y ) 毎に反射時間 t軸方向における最大 絶対値を抽出する際に、 振幅値の極性が正または負の何れか一方のボタセル のみを対象とすることも S N比の改善という観点から好ましい。
〈2〉 前記 3次元ポクセルデータ生成工程において、 前記原 3次元ポクセルデー タ s ( X , y , t ) に対して、 複数の地中伝搬速度 (媒質中の伝搬速度) を 用いて複数の合成開口処理若しくはマイグレーション処理を施して前記複数 の伝搬速度毎の 3次元ボタセルデータ S (x, y , t ) を生成し、 夫々に対 して前記最大絶対値抽出工程と前記平面表示工程を各別に実行するようにし ても構わない。
この結果、 前記各伝搬速度毎の前記平面表示工程における前記 3次元ボタ セルデータ S (x, y , t ) の前記最大絶対値の表示結果から、 適切な伝搬 速度による処理結果を選択することができるのである。
地中伝搬速度を 0. 50 C。、 0. 3 3 C0, 0. 2 3 C。の 3通りに設定 した実施結果を第 2 3図、 第 2 4図、 第 2 5図の順に示す。 ここで、 C。は 真空中での電磁波の伝搬速度であり、 各伝搬速度に対応する地中の比誘電率 は 4、 9、 1 9である。 第 2 3図、 第 24図、 第 2 5図より、 地中伝搬速度 が 0 . 3 3 C。 (比誘電率 9 ) の時のフォーカス (第 2 4図) が最も良いの で、 この処理結果を適切な地中伝搬速度による処理結果と判断することがで さる。 産業上の利用可能性
本発明の 3次元探査方法及び装置、 並びに、 3次元ポクセルデータ表示方法及 び装置は、 媒質中の表面を移動しながら、 電磁波または音波による波動信号を媒 質中へ放射し、 この媒質中に存在する物体からの反射信号を受信し、 受信された 受信信号を信号処理して、 媒質中に存在する物体の位置を探査する 3次元探査に 利用することができる。 例えば、 ガス配管等の地中埋設物の 3次元探査に適用す ることができる。

Claims

請 求 の 範 囲
1 . 媒質の表面を移動しながら、 電磁波または音波による波動信号を前記媒質 中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送受信工程と、 受信信号強度に対する前記媒質表面上の位置 (x, y ) と反射時間 tを座標 (X , y , t ) とする 3次元ポクセルデータを生成する 3次元ボタセルデータ生成工程 とを順次実行し、 前記媒質中に存在する物体の位置を探査する 3次元探査方法に おいて、
前記 3次元ボタセルデータ生成工程で生成された前記 3次元ポクセルデータに 対して、 1つ以上の物体ポクセルを人為的操作入力に従って選択する物体ボクセ ル選択工程と、
振幅値の極性が正負何れか一方でその絶対値が所定の閾値より大きいボタセル が相互に連接してなる候補ポクセル群を抽出する 2値化工程と、
前記 2値化工程において抽出された前記候補ボクセル群の中から前記物体ポク セル選択工程において選択された前記物体ポクセルに連結する連結候補ボタセル 群を抽出し、 その連結候補ポクセル群を前記物体ポクセルと合成して物体ボクセ ル群とする連結合成工程とを実行することを特徴とする 3次元探査方法。
2 . 前記 2値化工程で使用する前記所定の閾値は、 前記物体ポクセル選択工程 において選択された前記物体ボタセルの振幅値に基づいて設定することを特徴と する請求項 1記載の 3次元探査方法。
3 . 前記物体ボタセル選択工程において、 前記 3次元ポクセルデータ生成工程 で生成された前記 3次元ポクセルデータを断面表示し、 その表示された断面上の 座標点を指定することにより、 前記 1つ以上の物体ボタセルを選択する請求項 1 記載の 3次元探查方法。
4 . 前記 3次元ポクセルデータ生成工程で生成された前記 3次元ポクセルデー タに対して、 前記媒質表面上の位置 (x, y ) 毎に反射時間 t軸方向における振 幅値の絶対値の最大値及びその最大値をとる反射時間 t M A Xを抽出する最大値抽 出工程と、 前記最大値抽出工程で抽出された前記媒質表面上の位置 (x, y ) 毎 の前記最大値と前記反射時間 t M A yを夫々所定の反射時間 tの X — y平面上に配 置する平面配置工程を実行し、
前記物体ポクセル選択工程において、 前記最大値を配置した前記 X — y平面を 表示し、 その表示された平面上の座標点を指定して、 その指定された座標点とそ れに対応する反射時間 t M A Xとで特定することにより、 前記 1つ以上の物体ポク セルを選択する請求項 1記載の 3次元探査方法。
5 . 前記物体ポクセル選択工程において、 前記指定された座標点近傍にあって、 その座標点の振幅値と同符号でその絶対値が最大の振幅値を有する座標点を前記 指定された座標点と置換することにより、 前記 1つ以上の物体ポクセルを選択す る請求項 3または 4記載の 3次元探査方法。
6 . 前記 3次元ポクセルデータ若しくは前記候補ボタセル群若しくは前記物体 ポクセル群に対して合成開口処理若しくはマイグレーション処理を施すことを特 徴とする請求項 1記載の 3次元探査方法。
7 . 前記 3次元ボタセルデータ生成工程で、 前記 3次元ポクセルデータの反射 時間 t軸方向に対してウイーナフィルタ処理若しくは振幅補正処理を施し、 処理 前の原 3次元ポクセルデータと置換する請求項 1記載の 3次元探査方法。
8 . 媒質の表面を移動しながら、 電磁波または音波による波動信号を前記媒質 中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送受信手段と、 前記送受信手段で得られた受信信号から、 受信信号強度に対する前記媒質表面上 の位置 (x, y ) と反射時間 tを座標 (x, y , t ) とする 3次元ポクセルデ一 タを生成する 3次元ポクセルデータ生成手段とを備え、 前記媒質中に存在する物 体の位置を探査する 3次元探査装置において、
前記 3次元ポクセルデータ生成手段により生成された前記 3次元ポクセルデー タに対して、 1つ以上の物体ポクセルを人為的操作入力に従って選択する物体ボ クセル選択手段と、
振幅値の極性が正負何れか一方でその絶対値が所定の閾値より大きいボタセル が相互に連接してなる候補ポクセル群を抽出する 2値化手段と、
前記 2値化手段により抽出された前記候補ボクセル群の中から前記物体ボクセ ル選択手段によって選択された前記物体ポクセルに連結する連結候補ポクセル群 を抽出し、 その連結候補ボタセル群を前記物体ポクセルと合成して物体ポクセル 群とする連結合成手段とを備えてなる 3次元探査装置。
9 . 前記物体ポクセル選択手段は、 前記 3次元ボタセルデータ生成手段によつ て生成された前記 3次元ボタセルデータの任意の断面を人為的操作入力に従って 選択表示する断面表示手段と、 その表示された断面上の座標点を所定の人為的操 作入力に従って指定可能な断面座標点指定手段とを備えている請求項 8記載の 3 次元探査装置。
1 0 . 媒質の表面を移動しながら、 電磁波または音波による波動信号を前記媒質 中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送受信工程と、 受信信号強度に対する前記媒質表面上の位置 (x, y ) と反射時間 tを座標 (x, y , t ) とする 3次元ボタセルデータを生成する 3次元ポクセルデータ生成工程 とを順次実行し、 前記媒質中に存在する物体の位置を探査する 3次元探査方法に おいて、
前記 3次元ポクセルデータ生成工程で生成された前記 3次元ボタセルデータが データの欠損したポクセルを有する場合、 その欠損ボタセルに対してその欠損ボ クセルを含む X— y平面内の所定方向に 1次元線形補間を施す線形補間工程を実 行することを特徴とする 3次元探査方法。
1 1 . 1次元線形補間を行う方向を変更して前記線形補間工程を 2回以上実行す ることを特徴とする請求項 1 0記載の 3次元探査方法。
1 2 . 前記線形補間工程において、 1次元線形補間を行う方向に前記欠損ボクセ ルが連続して存在する距離が、 前記波動信号の前記媒質中における波長以下の場 合に、 前記 1次元線形補間を行うことを特徴とする請求項 1 0または 1 1記載の 3次元探査方法。
1 3 . 媒質の表面を移動しながら、 電磁波または音波による波動信号を前記媒質 中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送受信手段と、 前記送受信手段で得られた受信信号から、 受信信号強度に対する前記媒質表面上 の位置 (x, y ) と反射時間 tを座標 (X , y , t ) とする 3次元ボタセルデー タを生成する 3次元ボタセルデータ生成手段とを備え、 前記媒質中に存在する物 体の位置を探査する 3次元探査装置において、
前記 3次元ポクセルデータ生成手段により生成された前記 3次元ポクセルデ一 タがデータの欠損したボタセルを有する場合、 その欠損ボタセルに対してその欠 損ボタセルを含む X — y平面内の所定方向に 1次元線形補間を施す線形補間手段 を備えてなる 3次元探査装置。
1 4 . 媒質表面から媒質中へ放射した波動信号の反射信号強度に基づいて前記媒 質表面上の位置 (X , y ) と反射時間 tを座標 (X , y , t ) として生成された
3次元ボタセルデータの表示方法であって、
前記 3次元ポクセルデータに対して、 前記媒質表面上の位置 (x, y ) 毎に反 射時間 t軸方向における振幅値の最大絶対値を抽出する最大絶対値抽出工程と、 前記最大絶対値抽出工程で抽出された前記媒質表面上の位置 (x, y ) 毎の前記 最大絶対値を所定平面上に配置する平面配置工程と、 前記所定平面上に配置され た前記最大絶対値を表示する平面表示工程を実行する 3次元ポクセルデータ表示 方法。
1 5 . 前記最大絶対値抽出工程で抽出された前記最大絶対値の中から最大値と最 小値を求め、 その最大値と最小値が夫々表示階調の上限及び下限となるように前 記最大絶対値を正規化することを特徴とする請求項 1 4記載の 3次元ポクセルデ ータ表示方法。
1 6 . 前記最大絶対値抽出工程において、 前記媒質表面上の位置 (X , y ) 毎に 前記最大絶対値を抽出する際に、 その最大絶対値をとる反射時間 ΐ Μ Λ Χも併せて 抽出することを特徴とする請求項 1 4または 1 5記載の 3次元ポクセルデータ表 示方法。
1 7 . 前記最大絶対値抽出工程において、 前記媒質表面上の位置 (X , y ) 毎に 前記最大絶対値を抽出する際に、 反射時間 tの所定範囲内にある振幅値を除外す ることを特徴とする請求項 1 4または 1 5記載の 3次元ボクセルデータ表示方法。
1 8 . 前記最大絶対値抽出工程において、 前記媒質表面上の位置 (x, y ) 毎に 前記最大絶対値を抽出する際に、 振幅値の極性が正または負の何れか一方のボタ セルのみを対象とすることを特徴とする請求項 1 4または 1 5記載の 3次元ポク セルデータ表示方法。
1 9 . 前記最大絶対値抽出工程前に、 前記反射信号強度からなる 3次元ボタセル データに対して合成開口処理若しくはマイグレーション処理を施して、 表示対象 となる前記 3次元ボタセルデ一タを生成することを特徴とする請求項 1 4記載の 3次元ポクセルデータ表示方法。
2 0 . 前記合成開口処理若しくはマイグレーション処理を複数の媒質中の伝搬速 度で実行して、 前記伝搬速度毎に前記 3次元ポクセルデータを生成し、 前記伝搬 速度毎の前記各 3次元ボタセルデータに対して、 前記最大絶対値抽出工程と前記 平面配置工程と前記平面表示工程を各別に実行し、 前記各伝搬速度毎の前記平面 表示工程における前記 3次元ポクセルデータの表示結果から、 適切な伝搬速度に よる処理結果を選択することを特徴とする請求項 1 9記載の 3次元ボタセルデー タ表示方法。
2 1 . 媒質表面から媒質中へ放射した波動信号の反射信号強度に基づいて前記媒 質表面上の位置 (X , y ) と反射時間 tを座標 (X , y , t ) と して生成された 3次元ポクセルデータを表示する 3次元ポクセルデータ表示装置であって、 前記 3次元ポクセルデータに対して、 前記媒質表面上の位置 (X , y ) 毎に反 射時間 t軸方向における振幅値の最大絶対値を抽出する最大絶対値抽出手段と、 前記最大絶対値抽出手段で抽出された前記媒質表面上の位置 (x, y ) 毎の前記 最大絶対値を所定平面上に配置する平面配置手段と、 前記所定平面上に配置され た前記最大絶対値を表示する平面表示手段とを備えてなる 3次元ポクセルデータ 表示装置。
補正書の請求の範囲
[ 2 0 0 0年 1月 1 7日 (1 7 . 0 1 . 0 0 ) 国際事務局受理:出願当初の請求の範囲 3, 4及び 9は 取り下げられた;出願当初の請求の範囲 1及び 8は補正された;他の請求の範囲は変更なし。 (3頁) ]
1 . (補正後) 媒質の表面を移動しながら、 電磁波または音波による波動信号 を前記媒質中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送
5 受信工程と、 受信信号強度に対する前記媒質表面上の位置 (X , y ) と反射時間
tを座標 (X , y , t ) とする 3次元ポクセルデータを生成する 3次元ポクセル データ生成工程とを順次実行し、 前記媒質中に存在する物体の位置を探査する 3 次元探査方法において、
前記 3次元ボクセルデータ生成工程で生成された前記 3次元ボタセルデータに 10 対して、 前記媒質表面上の位置 (X , y ) 毎に反射時間 t軸方向における振幅値
の絶対値の最大値及びその最大値をとる反射時間 t M A Xを抽出する最大値抽出ェ 程と、
前記最大値抽出工程で抽出された前記媒質表面上の位置 (X , y ) 毎の前記最 大値と前記反射時間 t M A Xを夫々所定の反射時間 tの X — y平面上に配置する平 15 面配置工程と、
前記最大値を配置した前記 X — y平面を表示し、 その表示された平面上の座標 点を人為的操作入力に従って指定して、 その指定された座標点とそれに対応する 前記反射時間 t Μ Λ Χとで特定することにより、 1つ以上の物体ポクセルを選択す る物体ポクセル選択工程と、
20 振幅値の極性が正負何れか一方でその絶対値が所定の閾値より大きいポクセル
が相互に連接してなる候補ボタセル群を抽出する 2値化工程と、
前記 2値化工程において抽出された前記候補ボクセル群の中から前記物体ポク セル選択工程において選択された前記物体ボタセルに連結する連結候補ポクセル 群を抽出し、 その連結候補ポクセル群を前記物体ポクセルと合成して物体ボクセ 25 ル群とする連結合成工程とを実行することを特徴とする 3次元探査方法。
2 . 前記 2値化工程で使用する前記所定の閾値は、 前記物体ポクセル選択工程 において選択された前記物体ボタセルの振幅値に基づいて設定することを特徴と する請求項 1記載の 3次元探査方法。
3 . (削除)
補正された用紙 (条約第 19条)
4 . (削除)
5 . 前記物体ボタセル選択工程において、 前記指定された座標点近傍にあって、 その座標点の振幅値と同符号でその絶対値が最大の振幅値を有する座標点を前記 指定された座標点と置換することにより、 前記 1つ以上の物体ポクセルを選択す る請求項 3または 4記載の 3次元探査方法。
6 . 前記 3次元ポクセルデータ若しくは前記候補ポクセル群若しくは前記物体 ポクセル群に対して合成開口処理若しくはマイグレーション処理を施すことを特 徴とする請求項 1記載の 3次元探査方法。
7 . 前記 3次元ポクセルデータ生成工程で、 前記 3次元ボタセルデータの反射 時間 t軸方向に対してウイーナフィルタ処理若しくは振幅補正処理を施し、 処理 前の原 3次元ポクセルデータと置換する請求項 1記載の 3次元探査方法。
8 . (補正後) 媒質の表面を移動しながら、 電磁波または音波による波動信号 を前記媒質中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送 受信手段と、 前記送受信手段で得られた受信信号から、 受信信号強度に対する前 記媒質表面上の位置 (X , y ) と反射時間 tを座標 (x, y , t ) とする 3次元 ポクセルデータを生成する 3次元ポクセルデータ生成手段とを備え、 前記媒質中 に存在する物体の位置を探査する 3次元探査装置において、
前記 3次元ポクセルデータ生成手段が生成した前記 3次元ポクセルデータに対 して、 前記媒質表面上の位置 ( X , y ) 毎に反射時間 t軸方向における振幅値の 絶対値の最大値及びその最大値をとる反射時間 t M A Xを抽出する最大値抽出手段 と、
前記最大値抽出手段が抽出した前記媒質表面上の位置 (x, y ) 毎の前記最大 値と前記反射時間 t Μ Λ Χを夫々所定の反射時間 tの X — y平面上に配置する平面 配置手段と、
前記最大値を配置した前記 X — y平面を表示し、 その表示された平面上の座標 点を人為的操作入力に従って指定して、 その指定された座標点とそれに対応する 前記反射時間 t Μ Λ Χとで特定することにより、 1つ以上の物体ポクセルを選択す る物体ポクセル選択手段と、
振幅値の極性が正負何れか一方でその絶対値が所定の閾値より大きいポクセル
補正された用紙 (条約第 19条) が相互に連接してなる候補ポクセル群を抽出する 2値化手段と、
前記 2値化手段により抽出された前記候補ポクセル群の中から前記物体ボクセ ル選択手段によって選択された前記物体ポクセルに連結する連結候補ポクセル群 を抽出し、 その連結候補ボタセル群を前記物体ポクセルと合成して物体ポクセル 群とする連結合成手段とを備えてなる 3次元探査装置。
9 . (削除)
1 0 . 媒質の表面を移動しながら、 電磁波または音波による波動信号を前記媒質 中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送受信工程と、 受信信号強度に対する前記媒質表面上の位置 (X , y ) と反射時間 tを座標 (x, y , t ) とする 3次元ポクセルデータを生成する 3次元ポクセルデータ生成工程 とを順次実行し、 前記媒質中に存在する物体の位置を探査する 3次元探査方法に おいて、
前記 3次元ポクセルデータ生成工程で生成された前記 3次元ポクセルデータが データの欠損したポクセルを有する場合、 その欠損ボタセルに対してその欠損ボ クセルを含む X — y平面内の所定方向に 1次元線形補間を施す線形補間工程を実 行することを特徴とする 3次元探査方法。
1 1 . 1次元線形補間を行う方向を変更して前記線形補間工程を 2回以上実行す ることを特徴とする請求項 1 0記載の 3次元探査方法。
1 2 . 前記線形補間工程において、 1次元線形補間を行う方向に前記欠損ボクセ ルが連続して存在する距離が、 前記波動信号の前記媒質中における波長以下の場 合に、 前記 1次元線形補間を行うことを特徴とする請求項 1 0または 1 1記載の 3次元探査方法。
1 3 . 媒質の表面を移動しながら、 電磁波または音波による波動信号を前記媒質 中へ放射し、 前記媒質中に存在する物体からの反射信号を受信する送受信手段と、 前記送受信手段で得られた受信信号から、 受信信号強度に対する前記媒質表面上 の位置 (X , y ) と反射時間 tを座標 (X , y , t ) とする 3次元ボタセルデー タを生成する 3次元ポクセルデータ生成手段とを備え、 前記媒質中に存在する物 体の位置を探査する 3次元探査装置において、
前記 3次元ポクセルデータ生成手段により生成された前記 3次元ボタセルデ一
補正された用紙 (条約第 19条)
PCT/JP1999/004670 1998-08-31 1999-08-27 Procede de recherche tridimensionnel, procede d'affichage de donnees de voxels tridimensionnelles, et dispositif de realisation de ces procedes WO2000013037A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/763,939 US6573855B1 (en) 1998-08-31 1999-08-27 Three-dimensional questing method, three-dimensional voxel data displaying method, and device therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10/245345 1998-08-31
JP10245345A JP2000075025A (ja) 1998-08-31 1998-08-31 3次元探査方法及び装置
JP10/332459 1998-11-24
JP33245998 1998-11-24
JP33359698 1998-11-25
JP10/333596 1998-11-25

Publications (1)

Publication Number Publication Date
WO2000013037A1 true WO2000013037A1 (fr) 2000-03-09

Family

ID=27333351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004670 WO2000013037A1 (fr) 1998-08-31 1999-08-27 Procede de recherche tridimensionnel, procede d'affichage de donnees de voxels tridimensionnelles, et dispositif de realisation de ces procedes

Country Status (2)

Country Link
US (1) US6573855B1 (ja)
WO (1) WO2000013037A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628119B1 (en) 1998-08-28 2003-09-30 Den Norske Stats Oljeselskap A.S. Method and apparatus for determining the content of subterranean reservoirs
US6696839B2 (en) 2001-08-07 2004-02-24 Statoil Asa Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
US6717411B2 (en) 2001-08-07 2004-04-06 Statoil Asa Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
EP1407295A1 (en) * 2001-06-20 2004-04-14 ExxonMobil Upstream Research Company Method for performing object-based connectivity analysis in 3-d seismic data volumes
US6859038B2 (en) 2000-02-02 2005-02-22 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US7202669B2 (en) 2000-08-14 2007-04-10 Electromagnetic Geoservices As Method and apparatus for determining the nature of subterranean reservoirs
GB2500246A (en) * 2012-03-15 2013-09-18 Echopilot Marine Electronics Ltd Sonar apparatus
US8717847B2 (en) 2012-03-15 2014-05-06 Echopilot Marine Electronics Limited Sonar apparatus
US9030909B2 (en) 2006-02-06 2015-05-12 Statoil Petroleum As Method of conducting a seismic survey

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854062B2 (ja) * 2000-04-28 2006-12-06 株式会社モリタ製作所 断層面画像の表示方法、表示装置、この表示方法を実現するプログラムを記録した記録媒体
JP4669661B2 (ja) * 2001-06-15 2011-04-13 イーベーエーオー アウトモビール センサー ゲーエムベーハー 複数のオプトエレクトロニクス・センサのデータの修正方法
GB2382875B (en) * 2001-12-07 2004-03-03 Univ Southampton Electromagnetic surveying for hydrocarbon reservoirs
US6901332B2 (en) * 2002-11-22 2005-05-31 Western Geco, L.L.C. Technique for velocity analysis
US6885942B2 (en) * 2003-01-09 2005-04-26 Schlumberger Technology Corporation Method to detect and visualize changes in formation parameters and borehole condition
AU2003289487A1 (en) * 2003-01-16 2004-08-10 Toray Fine Chemicals Co, . Ltd. Processes for the recovery of optically active diacyltartatic acids
US7095357B1 (en) * 2003-05-14 2006-08-22 Joseph Ralph Johler Method and apparatus for transmitting electromagnetic signals into the earth at frequencies below 500 KHz from a capacitor emplaced on the surface of the earth or raised aloft in an aircraft
GB2409593A (en) * 2003-12-19 2005-06-29 Audiotel Internat Ltd Counter surveillance detector apparatus having a position determining means
GB2409900B (en) 2004-01-09 2006-05-24 Statoil Asa Processing seismic data representing a physical system
US7230564B2 (en) * 2004-06-11 2007-06-12 1M International Corporation Microwave method and system for material inspection
US7609876B2 (en) * 2004-10-22 2009-10-27 Siemens Medical Solutions Usa, Inc. Virtual grid alignment of sub-volumes
WO2006078570A2 (en) * 2005-01-21 2006-07-27 Safeview, Inc. Surveillance imaging with increased precision
US8253619B2 (en) 2005-02-15 2012-08-28 Techtronic Power Tools Technology Limited Electromagnetic scanning imager
US7821448B2 (en) * 2005-03-10 2010-10-26 Honeywell International Inc. Constant altitude plan position indicator display for multiple radars
US7646328B2 (en) * 2005-03-10 2010-01-12 Honeywell International Inc. Versatile constant altitude plan position indicator for radars
GB2435693A (en) 2006-02-09 2007-09-05 Electromagnetic Geoservices As Seabed electromagnetic surveying
GB2439378B (en) 2006-06-09 2011-03-16 Electromagnetic Geoservices As Instrument for measuring electromagnetic signals
WO2008036811A1 (en) * 2006-09-20 2008-03-27 Eastway Fair Company Limited Apparatus and method of determining location of an object
US20080079625A1 (en) * 2006-10-03 2008-04-03 William Weems System and method for stereoscopic anomaly detection using microwave imaging
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
GB2445582A (en) 2007-01-09 2008-07-16 Statoil Asa Method for analysing data from an electromagnetic survey
US8044838B1 (en) * 2008-08-13 2011-10-25 The Boeing Company Methods and systems for determining the phase constant for a dielectric medium
SE534215C2 (sv) * 2009-10-15 2011-06-07 Totalfoersvarets Forskningsins Anordning och metod för detektering av vattenflöde
US9075143B2 (en) * 2010-04-30 2015-07-07 Applied Physical Sciences Corp. Sparse array RF imaging for surveillance applications
US8711028B2 (en) * 2010-08-26 2014-04-29 Lawrence Livermore National Security, Llc Buried object detection in GPR images
KR101640404B1 (ko) * 2010-09-20 2016-07-18 엘지전자 주식회사 휴대 단말기 및 그 동작 제어방법
CN101975971B (zh) * 2010-09-30 2013-01-23 中国科学院国家天文台 探月卫星微波探测仪的星上定标方法
SE535666C2 (sv) 2011-03-11 2012-10-30 Totalfoersvarets Forskningsins Metod och anordning för genomsökning av rasmassor
US8670021B2 (en) * 2011-07-19 2014-03-11 Apstec Systems Ltd Method for stand off inspection of target in monitored space
JP6004311B2 (ja) * 2012-01-31 2016-10-05 パナソニックIpマネジメント株式会社 超音波センサ
DE102012207186A1 (de) * 2012-03-29 2013-10-02 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Detektion von Strukturen in einem zu untersuchenden Objekt
JP2013234967A (ja) * 2012-05-11 2013-11-21 Furuno Electric Co Ltd 物標探知機、高分解能化処理装置、高分解能化処理方法および高分解能化処理プログラム
IL221596A (en) * 2012-08-23 2017-12-31 Beeri Amir METHOD AND DEVICE FOR VOLUME VISUALIZATION IN A WIDE RADAR IMAGING SYSTEM
FR3009413B1 (fr) * 2013-08-02 2015-07-17 Thales Sa Dispositif d'aide a la detection d'objets poses sur le sol a partir d'images du sol issues d'un dispositif d'imagerie par reflexion d'ondes
US10007996B2 (en) * 2015-03-02 2018-06-26 Lawrence Livermore National Security, Llc System for detecting objects in streaming 3D images formed from data acquired with a medium penetrating sensor
JP7020954B2 (ja) * 2018-02-13 2022-02-16 キヤノン株式会社 画像処理装置、画像処理方法、プログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138250A (ja) * 1992-10-27 1994-05-20 Osaka Gas Co Ltd 比誘電率の測定方法および装置ならびに埋設物の探査方法および装置
JPH0854476A (ja) * 1994-08-12 1996-02-27 Japan Radio Co Ltd 地中レーダ装置
JPH0854477A (ja) * 1994-08-12 1996-02-27 Japan Radio Co Ltd 地中レーダ装置
JPH08299341A (ja) * 1995-05-08 1996-11-19 Aloka Co Ltd 超音波体積演算装置
JPH09281229A (ja) * 1996-04-12 1997-10-31 Osaka Gas Co Ltd 埋設物の探査方法および装置
JPH1039041A (ja) * 1996-07-26 1998-02-13 Osaka Gas Co Ltd 探査能力導出方法並びに装置、及び、探査装置
JPH11271440A (ja) * 1998-03-25 1999-10-08 Osaka Gas Co Ltd 3次元探査方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671136A (en) * 1995-12-11 1997-09-23 Willhoit, Jr.; Louis E. Process for seismic imaging measurement and evaluation of three-dimensional subterranean common-impedance objects
US5673697A (en) * 1996-04-24 1997-10-07 Raytheon Company High-resolution three, dimensional ultrasound imaging device
JP3076270B2 (ja) 1997-06-24 2000-08-14 キヤノン販売株式会社 レジスト膜の除去方法及び半導体装置の製造方法
US6177903B1 (en) * 1999-06-14 2001-01-23 Time Domain Corporation System and method for intrusion detection using a time domain radar array
US6218979B1 (en) * 1999-06-14 2001-04-17 Time Domain Corporation Wide area time domain radar array

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138250A (ja) * 1992-10-27 1994-05-20 Osaka Gas Co Ltd 比誘電率の測定方法および装置ならびに埋設物の探査方法および装置
JPH0854476A (ja) * 1994-08-12 1996-02-27 Japan Radio Co Ltd 地中レーダ装置
JPH0854477A (ja) * 1994-08-12 1996-02-27 Japan Radio Co Ltd 地中レーダ装置
JPH08299341A (ja) * 1995-05-08 1996-11-19 Aloka Co Ltd 超音波体積演算装置
JPH09281229A (ja) * 1996-04-12 1997-10-31 Osaka Gas Co Ltd 埋設物の探査方法および装置
JPH1039041A (ja) * 1996-07-26 1998-02-13 Osaka Gas Co Ltd 探査能力導出方法並びに装置、及び、探査装置
JPH11271440A (ja) * 1998-03-25 1999-10-08 Osaka Gas Co Ltd 3次元探査方法及び装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026819B2 (en) 1998-08-28 2006-04-11 Statoil Asa Electromagnetic surveying for mapping the content of subterranean reservoirs
US6628119B1 (en) 1998-08-28 2003-09-30 Den Norske Stats Oljeselskap A.S. Method and apparatus for determining the content of subterranean reservoirs
US7145341B2 (en) 2000-02-02 2006-12-05 Electromagnetic Geoservices As Method and apparatus for recovering hydrocarbons from subterranean reservoirs
US6859038B2 (en) 2000-02-02 2005-02-22 Statoil Asa Method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US7202669B2 (en) 2000-08-14 2007-04-10 Electromagnetic Geoservices As Method and apparatus for determining the nature of subterranean reservoirs
EP1407295A1 (en) * 2001-06-20 2004-04-14 ExxonMobil Upstream Research Company Method for performing object-based connectivity analysis in 3-d seismic data volumes
EP1407295A4 (en) * 2001-06-20 2006-02-08 Exxonmobil Upstream Res Co METHOD FOR PERFORMING OBJECT-BASED CONNECTIVITY ANALYSIS IN THREE-DIMENSIONAL SEISMIC DATA VOLUMES
US6900639B2 (en) 2001-08-07 2005-05-31 Statoil Asa Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US6864684B2 (en) 2001-08-07 2005-03-08 Statoil Asa Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
US6717411B2 (en) 2001-08-07 2004-04-06 Statoil Asa Electromagnetic method and apparatus for determining the nature of subterranean reservoirs using refracted electromagnetic waves
US6696839B2 (en) 2001-08-07 2004-02-24 Statoil Asa Electromagnetic methods and apparatus for determining the content of subterranean reservoirs
US9030909B2 (en) 2006-02-06 2015-05-12 Statoil Petroleum As Method of conducting a seismic survey
GB2500246A (en) * 2012-03-15 2013-09-18 Echopilot Marine Electronics Ltd Sonar apparatus
US8717847B2 (en) 2012-03-15 2014-05-06 Echopilot Marine Electronics Limited Sonar apparatus
GB2500246B (en) * 2012-03-15 2014-06-11 Echopilot Marine Electronics Ltd Sonar apparatus

Also Published As

Publication number Publication date
US6573855B1 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
WO2000013037A1 (fr) Procede de recherche tridimensionnel, procede d&#39;affichage de donnees de voxels tridimensionnelles, et dispositif de realisation de ces procedes
JPS61107181A (ja) 物体探査装置及び探査方法
JPH05249239A (ja) 三次元測定及び地形イメージングソナー
EP0331728A1 (en) Apparatus for detecting materials buried under the ground
CN104730148A (zh) 基于超声检测技术的金属材料内部夹杂物三维重构方法
JP3299221B2 (ja) 埋設物探査処理方法及び装置、並びに埋設物探査処理プログラムを記録した記録媒体
JP4168040B2 (ja) 埋設物探査処理方法及び装置、埋設物探査処理プログラム、並びにそれらのプログラムを記録した記録媒体
JP3256655B2 (ja) 埋設物の探査方法および装置
JP2003098263A (ja) 隠蔽物体探査方法
JP3409002B2 (ja) 3次元探査方法及び装置
JP3409001B2 (ja) 3次元ボクセルデータ表示方法及び装置
JPH116879A (ja) 3次元探査方法及び装置
JP2528148B2 (ja) 地下埋設物の探知方法および装置
JPH06138250A (ja) 比誘電率の測定方法および装置ならびに埋設物の探査方法および装置
JPH11271440A (ja) 3次元探査方法及び装置
JP6478557B2 (ja) 探査方法
JP2000075025A (ja) 3次元探査方法及び装置
JP2003035772A (ja) 隠蔽物体探査方法
JPH05288835A (ja) 隠蔽場所の断面検出装置
JPH0572332A (ja) 不可視物体探査方法
JPH09211121A (ja) 探査方法及び装置
JP4073987B2 (ja) 地中レーダ装置の出力表示方法
JP4059609B2 (ja) 3次元ボクセルデータ表示方法
JP2004053512A (ja) 隠蔽物体探査方法
JPH05232220A (ja) 比誘電率の測定方法および装置ならびに埋設物の探査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09763939

Country of ref document: US

122 Ep: pct application non-entry in european phase