WO2000005778A1 - Insulated waveguide and semiconductor production equipment - Google Patents

Insulated waveguide and semiconductor production equipment Download PDF

Info

Publication number
WO2000005778A1
WO2000005778A1 PCT/JP1998/003274 JP9803274W WO0005778A1 WO 2000005778 A1 WO2000005778 A1 WO 2000005778A1 JP 9803274 W JP9803274 W JP 9803274W WO 0005778 A1 WO0005778 A1 WO 0005778A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
microwave
insulated
plasma
reaction chamber
Prior art date
Application number
PCT/JP1998/003274
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Ueno
Satoshi Takemori
Yasunori Nakano
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to KR1020007002936A priority Critical patent/KR20010024167A/en
Priority to PCT/JP1998/003274 priority patent/WO2000005778A1/en
Publication of WO2000005778A1 publication Critical patent/WO2000005778A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/042Hollow waveguide joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices

Definitions

  • Insulated waveguide and semiconductor manufacturing equipment are Insulated waveguide and semiconductor manufacturing equipment
  • the present invention relates to an insulated waveguide and a semiconductor manufacturing apparatus, and particularly to an insulated waveguide suitable for transmitting a microphone mouth wave transmitted from a transmitter to a load, and using the insulated waveguide.
  • Background Art on Semiconductor Manufacturing Equipment such as Plasma CVD Equipment
  • Fig. 5 shows the cleaning speed when RF (high frequency) is applied to the plasma reaction chamber wall in a high-density plasma CVD apparatus.
  • RF high frequency
  • ECR plasma and surface wave plasma which are a kind of high-density plasma, use a microphone mouth wave as a power source.
  • a waveguide having a smaller loss of the microphone mouth wave and larger electric capacity than a coaxial cable is used, and is used for transmission of a high-output microwave for plasma generation or the like.
  • This waveguide is a hollow conductor tube, and its cross section is generally rectangular or circular.
  • the material is made of aluminum or other conductor, and a microwave-generating oscillator and a microphone-absorbing load are absorbed. And are electrically connected.
  • Waveguides are not only straight, but also have various configurations, such as corners such as E corners and H corners, and T-branches. These are connected to transmit the microphone mouth wave to the load.
  • connection of these various waveguide components generally uses a flange or the like defined in the JIS standard.
  • the issues in connecting the waveguides are to minimize the leakage of the microphone mouth wave and to prevent the transmission of the microphone mouth wave.
  • a choke flange is known as one of the structures for solving the above problems.
  • Fig. 4 shows the general structure of this choke flange.
  • the choke flange is formed by providing an L-shaped waveguide 3a outside one waveguide 2a and joining the two waveguides 1a and 2a. I have.
  • the length of the waveguide parallel to the waveguide perpendicular to the waveguide is about 1 Z4, which is the wavelength of the microphone mouth wave, and it is indispensable at this waveguide junction.
  • this choke flange was commonly used to insulate waveguides because of the possibility of inserting edges.
  • the waveguide for transmitting the microwave is made of aluminum or the like and the oscillator and the load are electrically connected, the waveguide is electrically connected to the load side where the waveguide is joined. Can not be added. In other words, in high-density plasma using microphone mouth waves, RF cannot be applied to the wall of the plasma reaction chamber on which the waveguide is mounted, so that cleaning of the wall of the plasma reaction chamber cannot be performed. Become.
  • the choke flange is one-wavelength of the microwave in the direction perpendicular to and parallel to the waveguide.
  • a waveguide length of about Z4 is required, and an increase in size is inevitable.
  • semiconductor manufacturing equipment must be used in a clean room, and miniaturization of equipment is an important issue as well as low cost.
  • the connection of the waveguide through which microwaves pass is disclosed in Japanese Utility Model Laid-Open Publication No. 63-131401, and the structure for preventing leakage of microphone mouth waves is disclosed in Japanese Utility Model Application Laid-Open Publication No. 62-126831. I have.
  • the present invention has been made in view of the above points, and its purpose is to not only enable high-speed cleaning of various plasma sources using a microwave waveguide, but also reduce the amount of microwave leakage.
  • An object of the present invention is to provide an insulated waveguide that is small and does not hinder microwave transmission, and a semiconductor manufacturing apparatus using the insulated waveguide. Disclosure of the invention
  • an insulated waveguide according to the present invention has a structure in which at least two waveguides are connected to each other via an insulating structure.
  • a waveguide for forming a standing wave of a microwave is provided in the waveguide, and at least two waveguides are provided from the short-circuited end of the waveguide at a position which is an odd multiple of a quarter of the wavelength in the waveguide of the microphone mouth wave.
  • the coupling portion is located via the insulation of the waveguide, and further, a waveguide for forming a standing wave of the microphone mouth wave is provided in the waveguide, and the length of the waveguide is set to the length of the microwave mouth wave.
  • the wavelength is set to an integral multiple of one-half of the wavelength in the waveguide, and at least two at a position that is an odd multiple of one-fourth of the wavelength in the waveguide of the microphone mouth wave from the short-circuit end of the waveguide. It is characterized in that a coupling portion is located via insulation of the waveguide.
  • a semiconductor manufacturing apparatus comprising: a microwave oscillator that generates a microwave; a waveguide that transmits a microwave wave from the microwave oscillator; A plasma processing apparatus for generating plasma by a microwave from a tube to execute various processes, and a high-frequency oscillator for applying a high frequency to a wall of a plasma reaction chamber of the plasma processing apparatus;
  • the portion is formed of an insulated waveguide that insulates in the middle thereof, and the insulated waveguide is configured as described above.
  • FIG. 1 is a cross-sectional view showing one embodiment of the insulated waveguide of the present invention
  • FIG. 2 is a cross-sectional view taken along line X--X of FIG. 1
  • FIG. Fig. 4 is a sectional view showing a conventional waveguide
  • Fig. 5 Is a characteristic diagram showing the relationship between the RF power applied to the plasma reaction chamber wall and the cleaning speed
  • FIG. 6 is a diagram showing the relationship between the distance from the short-circuited end in the waveguide and the impedance
  • FIG. FIG. 9 is a cross-sectional view showing another embodiment of the insulated waveguide of the present invention.
  • FIG. 8 is a cross-sectional view showing still another embodiment of the insulated waveguide of the present invention.
  • FIG. 10 is a characteristic diagram showing the amount of microwave leakage measured at a position around the insulated waveguide of the embodiment
  • FIG. 10 is a cross-sectional view showing still another embodiment of the insulated waveguide of the present invention
  • FIG. 12 is a schematic diagram showing a system simulating the point A of the insulated waveguide shown in FIG. 1 under a short-circuit condition.
  • Fig. 13 shows a waveguide that was simulated using the system shown in Fig. 12 and examined the effect of the waveguide on the transmission of microphone mouth-waves in the waveguide.
  • Characteristic diagram showing the relationship between the value of the AC distance normalized by wavelength ⁇ and the reflection coefficient.Fig.
  • FIG. 14 shows a system simulating the insulated waveguide ⁇ point shown in Fig. 1 under open conditions.
  • Fig. 15 is a schematic configuration diagram
  • Fig. 15 is a simulation of the system shown in Fig. 14 to examine the leakage rate in the waveguide.
  • FIG. 4 is a characteristic diagram showing the relationship of. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 3 shows the configuration of the plasma CVD system. As shown in the figure, this configuration consists of a microwave oscillator 11 that generates microwaves, an isolator 10 that absorbs reflected waves, a detector 9 that measures the incident and reflected microphone mouth-wave power, and matching with the load impedance.
  • Matching device 8 to insulate the waveguide It consists of an edge waveguide 5, a plasma reaction chamber 6 for generating plasma and performing various processes, and an RF oscillator 7 for applying RF to the wall of the plasma reaction chamber 6.
  • FIG. 11 shows details of the plasma reaction chamber 6 to which the insulating waveguide 5 is attached.
  • reference numeral 6 denotes a plasma reaction chamber in which plasma is formed in a substantially cylindrical shape.
  • This plasma reaction chamber 6 has side walls 21, a top plate 22, a waveguide section 23 a23 b, and a gas inlet 27. a, 27 b, and insulating plate 26.
  • Waveguides 23a and 23b for introducing microwaves are integrally formed on the side wall 21.
  • An insulating waveguide 5 is connected to the waveguides 23a and 23b.
  • a quartz window 28 is provided at the boundary between the two, for passing microwaves and sealing vacuum.
  • a substrate electrode 24 for holding a substrate (not shown) is provided in the plasma reaction chamber 6 at a position facing the top plate 22, and the waveguide portions 23 a and 23 b are substantially flush with the surface of the substrate.
  • the microphone mouth wave is provided in parallel so as to be introduced into the plasma reaction chamber 6. Further, the plasma reaction chamber 6 is installed on the base plate 30 via the insulating plate 26 and is evacuated by the evacuation device 29 provided below the base plate 30. I have.
  • the side wall 21 is electrically insulated from the base plate 30 via an insulator 26, and the top plate 22 and the substrate electrode 24 are at a reference potential. Electrically isolated from 30.
  • the high frequency power supplies 7 1a and 7 1b apply, for example, a high frequency voltage of 13.56 Mhz to the top plate 22 and the substrate electrode 24 via matching boxes 72a and 72b, respectively. It is connected to the.
  • the top plate 22 is connected to the high-frequency power supply 71a via the first switching switch 73a or grounded.
  • the side wall 21 is connected to or grounded to the high-frequency power supply 71a via the second switching switch 73b.
  • the first switching switch 73 a and the second switching switch 73 b are switched when a process or cleaning is performed by the controller 74.
  • the raw material gas in the process processing or cleaning is introduced into the plasma reaction chamber 6 from the gas inlets 27a and 27b provided in the side wall 21.
  • the permanent magnets 25 are arranged concentrically with their polarities changed in order.
  • a plurality of permanent magnets 25 for changing the polarities to each other to form a cusp magnetic field are provided.
  • the material of the plasma reactor 30 and the base plate 30 is aluminum, and although not shown, a heater, water cooling, or the like is used to adjust the wall temperature to be constant.
  • dielectrics 29 through which microphone mouth waves pass, and the tip of the dielectric 29 on the side of the plasma reaction chamber 6 is connected to the plasma reaction chamber. It is installed so as to roughly match the inner surface of 6.
  • FIG. 1 the insulating waveguide 5 employed in the above-described plasma CVD device will be described with reference to FIGS. 1 and 2.
  • FIG. 1 the insulating waveguide 5 employed in the above-described plasma CVD device will be described with reference to FIGS. 1 and 2.
  • the insulating waveguide 5 comprises a waveguide 2 on the side of the microwave oscillator 11 and a waveguide 1 on the side of the plasma reaction chamber 6, and these are insulators for electrically separating the two.
  • a waveguide 3 is provided between the waveguide 1 and the waveguide 2 so that a standing wave is generated between the waveguide 1 and the waveguide 2.
  • the waveguide 3 has a substantially L-shaped cross section formed by a portion perpendicular to the direction of the microwave mouthwave transmission in the waveguide and a portion parallel to the direction, and the parallel portion is vertical. It is longer than the part.
  • the waveguide 3 and the insulator 4 are formed in a rectangular shape so as to surround the rectangular waveguide.
  • the insulator 4 uses a teflon having good high-frequency characteristics, and not only insulates the waveguides 1 and 2 but also fixes the waveguide 2 in the waveguide 1. It also plays the role of a sponsor.
  • the length AC of the waveguide 3 is defined to be an integral multiple of half the wavelength of the microwave propagating through the waveguide, and the length AC of the insulating portion B and the short-circuit end C is defined.
  • the length is specified to be an odd multiple of 1/4 of the wavelength of the microphone mouth wave propagating through the waveguide.
  • the length A C of the waveguide 3 is defined as an integral multiple of half the wavelength of the microwave propagating in the waveguide.
  • Point B in Fig. 1 was set to the open condition, and a simulation was performed using a simulated system as shown in Fig. 14, and the leakage rate of the microphone mouth wave in the waveguide was examined.
  • the results are shown in FIG.
  • the horizontal axis shows the normalized value of the distance between the BCs of the waveguides at the wavelength ⁇
  • the vertical axis shows the microwave leakage rate (leakage power input power) (the product of the microwave input amount and the actual Leakage (W)).
  • B CZ A around 0.25, 0.75, 1.25, that is, the BC distance is an odd multiple of ⁇ ⁇ 4 (XI, 3, 5, ... It can be seen that the leakage rate of the microphone mouth wave is minimized near ()).
  • the leakage rate is minimized not only at the point where the distance between B and C is an odd-numbered multiple of Peno4, but has a certain allowable width. For example, consider the point of 0.25.
  • the leakage limit at a distance of 5 cm from the waveguide in the radial direction is 5 mW / cm 2 (according to JIS C 9250), and leakage from one point (the most severe condition. Assuming the case of leakage from the insulating surface of
  • FIG. 9 shows the result of measuring the amount of microwave leakage of the insulated waveguide of this example.
  • the measurement results shown in Fig. 9 are for the case where the sum of the incident and reflected powers of the microwave is 1 kW, and the leakage amount is measured at a position 5 cm away from the exposed part of the insulator from which the microwave leaks. It was done.
  • the amount of microwave leakage is 1 (mWZcm 2 ) or less
  • C 9 2 5 0 standard of "microwave oven” meets (microphone port wave leakage amount 5 (m W / cm 2) be less is).
  • Fig. 6 shows the impedance of the short-circuited waveguide. From the figure, the position of the quarter-wavelength from the short-circuited end of the waveguide is open, and the short-circuit is further shorted at the quarter-position. It turns out to be in a state, and it is understood that opening and short-circuiting are repeated periodically every quarter wavelength from the short-circuit end. As shown in Fig. 7, when the waveguide 3 is provided around the rectangular waveguides 1 and 2, the waveguide having an integral multiple of one-half wavelength of the microwave is the same as the waveguides 1 and 2.
  • a short circuit occurs at the wall surface (near junction A), the effect on the microwave transmission in the waveguide is small, and the intensity of the microwave propagating to the waveguide 3 is smaller than in the waveguide. This is because, when the waveguide 3 is viewed from the waveguides 1 and 2, the junction A is in a short-circuit state, that is, under the same condition as the conductor wall, and it is difficult for the microphone mouth wave to enter the waveguide 3. That's why.
  • the junction B of the waveguides 1 and 2 is located at an odd multiple of one-quarter wavelength from the short-circuit end C, the junction B is open and the leakage of the microphone mouth wave is small.
  • the junction B is in the open / closed state, the current flowing perpendicularly to the junction surface on the wall surface of the waveguide 3 becomes small, and the radiation clogging leakage of the microphone mouth wave is suppressed to a small value.
  • the insulating position B of the waveguide it is also meaningful to position the insulating position B of the waveguide at the linear portion.
  • the generally used choke flange as shown in Fig. 4 has a microwave leakage rate of 0.0033 because the insulating part of the waveguide is at the corner.
  • the leak rate of the microphone mouth wave is 0.000013 (the leak rate of the microwave is based on the simulation result). By positioning the insulation position B of the Can be kept low.
  • the waveguide is installed in the direction along the waveguide, the dimension in the direction perpendicular to the waveguide is very small, and the waveguide is placed in the plasma reaction chamber.
  • Semiconductor manufacturing equipment such as plasma CVD equipment, including waveguides, can be miniaturized because they can be arranged close to each other.
  • the other waveguide is inserted into one of the waveguides via an insulator (fitting structure), it is possible to easily join the waveguides. In other words, in general waveguide joining, it is necessary to join the flange portion with a plurality of nuts in order to reduce microwave leakage. There is no need to fix the waveguide, and the joining of the waveguides can be performed with a mating structure, which simplifies and removes the waveguide very easily.
  • the waveguide 13 may be provided in a direction perpendicular to the waveguides 11 and 12 as shown in FIG. 8 without being limited to the shape shown in FIG.
  • the length of must be an integral multiple of one-half wavelength of the microwave, and the junction should be an odd multiple of one-quarter wavelength to reduce the current flowing vertically through the junction.
  • FIG. 10 shows another embodiment of the insulating waveguide of the present invention.
  • the insulating waveguide is miniaturized and integrated with the plasma reaction chamber by using a quartz window for vacuum sealing of the plasma reaction chamber as the waveguide of the insulating waveguide.
  • the left side of the quartz 14 is a plasma reaction chamber, and the quartz 14 simultaneously functions as a vacuum seal for the plasma reaction chamber and as an insulating waveguide.
  • the quartz 14 and the waveguide 18 are fixed to the wall 19 of the plasma reaction chamber by an insulator 17 and mounting jigs 15 and 16.
  • the length AC of the waveguide is an integral multiple of one-half the wavelength of the microwave in the waveguide
  • the distance BC from the short-circuit end to the waveguide connection is BC It should be an odd multiple of 1/4 of the wavelength. Since the wavelength in a dielectric such as quartz becomes shorter in proportion to the half power of the dielectric constant of the dielectric, the size can be reduced by filling the waveguide with a dielectric such as quartz. .
  • the waveguide is rectangular, but the invention is not limited to this, and the waveguide may be circular or coaxial.
  • the waveguide may be fixed with an insulating bolt, as shown in FIG. A structure in which the waveguide 2 is inserted into the waveguide 1 may be used.
  • the structure of the insulator is not limited to FIGS. 1 and 10. It can be changed according to the structure of the waveguide and the mounting jig, and it goes without saying that a space may be provided between the waveguides 1 and 2 without an insulator.
  • At least two waveguides are connected by a fitting structure via insulation, and a waveguide for forming a standing wave of a microwave is provided in the waveguide.
  • the coupling portion is located at a position of an odd multiple of one-fourth of the wavelength in the waveguide of the microphone mouth wave from the short-circuited end in the waveguide via the insulation of at least two waveguides;

Abstract

A method for producing an insulated waveguide while suppressing leakage of microwave without causing any trouble in the transmission of microwave and permitting various plasma sources employing a microwave waveguide to be cleaned at high speed, characterized in that at least two waveguides are coupled by a fitting structure through insulation, that the waveguide is provided with a waveguide for forming a standing microwave and a coupling part is located through insulation of at least two waveguides at a position of odd times of a quarter of the wavelength of a microwave in the waveguide from the short-circuitted termination thereof, that the waveguide is further provided with a waveguide for forming a standing microwave, the length of the waveguide being present to be equal to integer times of one half of the wavelength of a microwave in the waveguide, and a coupling part is located through insulation of at least two waveguides at a position of odd times of a quarter of the wavelength of a microwave in the waveguide from the short-circuitted termination thereof.

Description

明 細 書  Specification
絶縁導波管及び半導体製造装置 技術分野  Insulated waveguide and semiconductor manufacturing equipment
本発明は絶縁導波管及び半導体製造装置に係り、 特に、 発信器から発 信されたマイク口波を負荷に伝送するものに好適な絶縁導波管、 及びこ の絶縁導波管を用いたプラズマ C V D装置等の半導体製造装置に関する, 背景技術  The present invention relates to an insulated waveguide and a semiconductor manufacturing apparatus, and particularly to an insulated waveguide suitable for transmitting a microphone mouth wave transmitted from a transmitter to a load, and using the insulated waveguide. Background Art on Semiconductor Manufacturing Equipment such as Plasma CVD Equipment
半導体プロセスにおいては、 製品の低価格化や高信頼性確保のために 高スループッ 卜化, 微細化技術が必要不可欠である。  In semiconductor processes, high-throughput and miniaturization technologies are indispensable in order to reduce the price of products and ensure high reliability.
近年、 特にプラズマを用いた半導体プロセス技術が注目されており、 サブミクロンのエッチングや各種薄膜形成に応用され成果を上げてきた, 薄膜形成技術においては、 高密度プラズマ C V D装置を使用することに より、 アスペク ト比の高い配線間への高速埋め込みが可能となる。 この 高密度プラズマ C V D装置は、 ガス種を変えるだけで比較的簡単にプロ セスを変更することが可能であり、 S i 0 2 膜だけでなく S i O Fゃァ モルファス力一ボン等の低誘電率の層間絶縁膜の形成が可能である。 高密度プラズマ C V D装置においては、 高スループッ ト化, 低パーテ ィクルの実現のためにク リ一二ング技術が重要な開発課題である。 クリ 一ニングには N F 3 等のフッ素系のガスをプラズマ化して行われるのが 一般的である。 In recent years, semiconductor process technology using plasma has attracted attention, and it has been applied to submicron etching and various thin film formation, and has achieved good results. In addition, high-speed embedding between wires having a high aspect ratio becomes possible. The high-density plasma CVD apparatus, it is possible to relatively easily change the process by changing the gas type, low dielectric such as S i OF Yaa Amorphous force one carbon not only S i 0 2 film It is possible to form an interlayer insulating film with a high efficiency. In high-density plasma CVD equipment, cleaning technology is an important development issue for realizing high throughput and low particles. Chestnut one training is generally performed by a plasma of fluorine-based gas such as NF 3.
第 5図に高密度プラズマ C V D装置におけるプラズマ反応室壁面に R F (高周波) を印加した際のク リーニング速度を示すが、 該図からも ク リ一二ング速度の向上には、 プラズマ反応室の壁面に R Fを印加する ことが有効な手段であることが解る。 これは、 R Fを印加することによ リプラズマ反応室の壁面近傍でフッ素ラジカルゃィオンが生成されたた めであり、 R Fは同時にバイアス電位を増大させて生成したイオンを壁 面に叩きつけることによりクリーニング速度を増大させている。 Fig. 5 shows the cleaning speed when RF (high frequency) is applied to the plasma reaction chamber wall in a high-density plasma CVD apparatus. Apply RF to the wall This proves to be an effective means. This is because the application of RF generated fluorine radical diions near the wall of the re-plasma reaction chamber, and the RF simultaneously increased the bias potential and struck the generated ions against the wall to increase the cleaning speed. Is increasing.
高密度プラズマの一種である E C Rプラズマや表面波プラズマ等は、 パワー源としてマイク口波を使用している。 このマイク口波を伝送する ために、 同軸ケーブルよりマイク口波の損失が少なく電気容量が大きい 導波管が用いられ、 プラズマ発生用等の高出力マイクロ波の伝送に利用 されている。  ECR plasma and surface wave plasma, which are a kind of high-density plasma, use a microphone mouth wave as a power source. In order to transmit this microphone mouth wave, a waveguide having a smaller loss of the microphone mouth wave and larger electric capacity than a coaxial cable is used, and is used for transmission of a high-output microwave for plasma generation or the like.
この導波管は中空の導体の管であり、 断面形状は矩形、 又は円形が一 般的で、 その素材はアルミニウム等の導体からなり、 マイクロ波を発生 する発振器とマイク口波を吸収する負荷とを電気的に接続している。 導 波管には直線状のものだけでなく Eコーナ, Hコーナ等のコーナ部や T 分岐等の各種の形状の構成があり、 それらを接続してマイク口波を負荷 へ伝送している。  This waveguide is a hollow conductor tube, and its cross section is generally rectangular or circular. The material is made of aluminum or other conductor, and a microwave-generating oscillator and a microphone-absorbing load are absorbed. And are electrically connected. Waveguides are not only straight, but also have various configurations, such as corners such as E corners and H corners, and T-branches. These are connected to transmit the microphone mouth wave to the load.
これらの各種導波管構成物の接続は、 J I S規格に規定されているフ ランジ等を使用するのが一般的である。 導波管の接続における課題はマ ィク口波の漏洩を極力小さくすること、 及びマイク口波の伝送を阻害し ないことである。  The connection of these various waveguide components generally uses a flange or the like defined in the JIS standard. The issues in connecting the waveguides are to minimize the leakage of the microphone mouth wave and to prevent the transmission of the microphone mouth wave.
上記課題を解決する構造の一つとしてチョークフランジが知られてい る。 このチョークフランジの一般的な構造を第 4図に示す。 第 4図に示 すごとく、 チョークフランジは一方の導波管 2 aの外側に L字型の導波 路 3 aを設けて二つの導波管 1 aと 2 aを接合して構成されている。 L 字型の導波路 3 aのうち導波管に垂直な導波路と平行な導波路の長さは それぞれマイク口波の波長の 1 Z 4程度であり、 この導波管接合部に絶 縁物を挿入することが可能であるために、 従来、 導波管の絶縁にはこの チョークフランジが一般的に使用されている。 A choke flange is known as one of the structures for solving the above problems. Fig. 4 shows the general structure of this choke flange. As shown in Fig. 4, the choke flange is formed by providing an L-shaped waveguide 3a outside one waveguide 2a and joining the two waveguides 1a and 2a. I have. Of the L-shaped waveguide 3a, the length of the waveguide parallel to the waveguide perpendicular to the waveguide is about 1 Z4, which is the wavelength of the microphone mouth wave, and it is indispensable at this waveguide junction. In the past, this choke flange was commonly used to insulate waveguides because of the possibility of inserting edges.
ところで、 上述したごとく、 マイ クロ波を伝送する導波管はアルミ二 ゥム等でできており発振器と負荷は電気的に接続されるため、 導波管の 接合されている負荷側に電気的な作用を加えられない。 つまり、 マイク 口波を使用する高密度プラズマでは、 導波管の取り付けてあるプラズマ 反応室の壁面に R Fを印加することができないために、 プラズマ反応室 壁面のク リ一ニングが行えないことになる。  By the way, as described above, since the waveguide for transmitting the microwave is made of aluminum or the like and the oscillator and the load are electrically connected, the waveguide is electrically connected to the load side where the waveguide is joined. Can not be added. In other words, in high-density plasma using microphone mouth waves, RF cannot be applied to the wall of the plasma reaction chamber on which the waveguide is mounted, so that cleaning of the wall of the plasma reaction chamber cannot be performed. Become.
また、 チョークフランジの導波管接合部に絶縁物を挿入し絶縁するこ とは可能である力'、'、 チョークフランジは導波管に垂直方向、 及び平行方 向にマイクロ波の波長の 1 Z 4程度の長さの導波路を必要とし、 寸法の 増大が避けられない。 特に、 半導体製造装置はク リーンルームでの使用 が必須であり、 装置の小型化が低コス 卜と同様に重要な課題である。 尚、 マイクロ波を通す導波管の接続に関しては実開昭 63— 1 3 140 1号公 報, マイク口波の漏洩防止構造に関しては実開昭 62— 1 2683 1号公報に開 示されている。  In addition, it is possible to insulate by inserting an insulator into the waveguide junction of the choke flange. ',' The choke flange is one-wavelength of the microwave in the direction perpendicular to and parallel to the waveguide. A waveguide length of about Z4 is required, and an increase in size is inevitable. In particular, semiconductor manufacturing equipment must be used in a clean room, and miniaturization of equipment is an important issue as well as low cost. The connection of the waveguide through which microwaves pass is disclosed in Japanese Utility Model Laid-Open Publication No. 63-131401, and the structure for preventing leakage of microphone mouth waves is disclosed in Japanese Utility Model Application Laid-Open Publication No. 62-126831. I have.
本発明は上述の点に鑑みなされたもので、 その目的とするところは、 マイクロ波導波管を使用する各種プラズマ源の高速ク リ一ニングを可能 にすることは勿論、 マイクロ波の漏洩量が少なく、 かつ、 マイクロ波の 伝送を阻害しない絶縁導波管、 及びこの絶縁導波管を使用した半導体製 造装置を提供するにある。 発明の開示  The present invention has been made in view of the above points, and its purpose is to not only enable high-speed cleaning of various plasma sources using a microwave waveguide, but also reduce the amount of microwave leakage. An object of the present invention is to provide an insulated waveguide that is small and does not hinder microwave transmission, and a semiconductor manufacturing apparatus using the insulated waveguide. Disclosure of the invention
本発明の絶縁導波管は、 上記目的を達成するために、 少なく とも二つ の導波管が絶縁を介して嵌め合い構造で結合されていること、 また、 導 波管にマイクロ波の定在波を形成する導波路を設け、 該導波路中の短絡 端からマイク口波の導波路中の波長の 4分の 1 の奇数倍の位置に少なく とも二つの導波管の絶縁を介して結合部が位置すること、 更には、 導波 管にマイク口波の定在波を形成する導波路を設け、 該導波路の長さをマ イク口波の該導波路中の波長の 2分の 1 の整数倍に設定し、 かつ、 該導 波路中の短絡端からマイク口波の導波路中の波長の 4分の 1の奇数倍の 位置に少なく とも二つの導波管の絶縁を介した結合部が位置することを 特徴とする。 In order to achieve the above object, an insulated waveguide according to the present invention has a structure in which at least two waveguides are connected to each other via an insulating structure. A waveguide for forming a standing wave of a microwave is provided in the waveguide, and at least two waveguides are provided from the short-circuited end of the waveguide at a position which is an odd multiple of a quarter of the wavelength in the waveguide of the microphone mouth wave. The coupling portion is located via the insulation of the waveguide, and further, a waveguide for forming a standing wave of the microphone mouth wave is provided in the waveguide, and the length of the waveguide is set to the length of the microwave mouth wave. The wavelength is set to an integral multiple of one-half of the wavelength in the waveguide, and at least two at a position that is an odd multiple of one-fourth of the wavelength in the waveguide of the microphone mouth wave from the short-circuit end of the waveguide. It is characterized in that a coupling portion is located via insulation of the waveguide.
また、 本発明の半導体製造装置は、 上記目的を達成するために、 マイ クロ波を発生するマイクロ波発振器と、 該マイクロ波発振器からのマイ ク口波を伝送する導波管と、 該導波管からのマイクロ波によりプラズマ を生成して各種プロセスを実行するプラズマ処理装置と、 該プラズマ処 理装置のプラズマ反応室の壁面に高周波を印加する高周波発振器とを備 え、 前記導波管の一部がその途中を絶縁する絶縁導波管で形成されてい ると共に、 該絶縁導波管が、 上述したように構成されていることを特徴 とする。  According to another aspect of the present invention, there is provided a semiconductor manufacturing apparatus, comprising: a microwave oscillator that generates a microwave; a waveguide that transmits a microwave wave from the microwave oscillator; A plasma processing apparatus for generating plasma by a microwave from a tube to execute various processes, and a high-frequency oscillator for applying a high frequency to a wall of a plasma reaction chamber of the plasma processing apparatus; The portion is formed of an insulated waveguide that insulates in the middle thereof, and the insulated waveguide is configured as described above.
本発明では少なく とも二つの導波管が絶縁を介して結合されているこ とから各種プラズマ源の高速クリーニングが可能となり、 しかも、 それ らが嵌め合い構造で結合されているのでマイク口波の漏洩が少なく、 か つ、 マイクロ波の伝送を阻害しない絶縁導波管が得られる。 図面の簡単な説明  In the present invention, since at least two waveguides are connected via insulation, high-speed cleaning of various plasma sources is possible, and furthermore, since they are connected by a fitting structure, a microphone mouth wave can be reduced. An insulated waveguide that has little leakage and does not hinder microwave transmission can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の絶縁導波管の一実施例を示す断面図、 第 2図は第 1 図の X— X線に沿った断面図、 第 3図は絶縁導波管を半導体製造装置に 適用した際の装置構成図、 第 4図は従来の導波管を示す断面図、 第 5図 はプラズマ反応室壁面に印加する R Fパワーとク リ一二ング速度との関 係を示す特性図、 第 6図は導波路中の短絡端からの距離とィンピーダン スの関係を示す図、 第 7図は本発明の絶縁導波管の他の実施例を示す断 面図、 第 8図は本発明の絶縁導波管の更に他の実施例を示す断面図、 第 9図は本発明の一実施例の絶縁導波管回りの位置で測定したマイクロ波 漏洩量を示す特性図、 第 1 0図は本発明の絶縁導波管の更に他の実施例 を示す断面図、 第 1 1 図は本発明の絶縁導波管を使用したプラズマ CVD 装置の一実施例を示す断面図、 第 1 2図は第 1 図に示した絶縁導波管の A点を短絡条件に模擬した体系を示す概略構成図、 第 1 3図は第 1 2図 の体系でシミ レーションを行って導波路が導波管のマイク口波の伝送に 与える影響を検討した導波路の A C間距離を波長 λで規格化した値と反 射係数との関係を示す特性図、 第 1 4図は第 1 図に示した絶縁導波管の Β点を開放条件に模擬した体系を示す概略構成図、 第 1 5図は第 1 4図 の体系でシミ レーションを行って導波路における漏洩率を検討した導波 路の B C間距離を波長 λで規格化した値とマイクロ波漏洩率との関係を 示す特性図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view showing one embodiment of the insulated waveguide of the present invention, FIG. 2 is a cross-sectional view taken along line X--X of FIG. 1, and FIG. Fig. 4 is a sectional view showing a conventional waveguide, Fig. 5 Is a characteristic diagram showing the relationship between the RF power applied to the plasma reaction chamber wall and the cleaning speed, FIG. 6 is a diagram showing the relationship between the distance from the short-circuited end in the waveguide and the impedance, and FIG. FIG. 9 is a cross-sectional view showing another embodiment of the insulated waveguide of the present invention. FIG. 8 is a cross-sectional view showing still another embodiment of the insulated waveguide of the present invention. FIG. 10 is a characteristic diagram showing the amount of microwave leakage measured at a position around the insulated waveguide of the embodiment, FIG. 10 is a cross-sectional view showing still another embodiment of the insulated waveguide of the present invention, and FIG. Sectional view showing one embodiment of the plasma CVD apparatus using the insulated waveguide of the present invention. FIG. 12 is a schematic diagram showing a system simulating the point A of the insulated waveguide shown in FIG. 1 under a short-circuit condition. Fig. 13 shows a waveguide that was simulated using the system shown in Fig. 12 and examined the effect of the waveguide on the transmission of microphone mouth-waves in the waveguide. Characteristic diagram showing the relationship between the value of the AC distance normalized by wavelength λ and the reflection coefficient.Fig. 14 shows a system simulating the insulated waveguide に point shown in Fig. 1 under open conditions. Fig. 15 is a schematic configuration diagram, and Fig. 15 is a simulation of the system shown in Fig. 14 to examine the leakage rate in the waveguide. FIG. 4 is a characteristic diagram showing the relationship of. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例を図面に基づいて説明する。 本発明は各種半 導体製造装置、 例えばプラズマ C V D装置, エッチング装置等に適用可 能であるが、 本実施例はプラズマ C V D装置を例にと り説明していく。 第 3図にプラズマ C V D装置の装置構成を示す。 該図に示すごとく、 本構成はマイクロ波を発生するマイクロ波発振器 1 1 , 反射波を吸収す るアイソレータ 1 0, 入射及び反射マイク口波パワーを計測する検波器 9, 負荷のインピーダンスに整合を取る整合器 8, 導波管を絶縁する絶 縁導波管 5, プラズマを発生して各種プロセスを実行するプラズマ反応 室 6, プラズマ反応室 6の壁面に R Fを印加する R F発振器 7 より構成 されている。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Although the present invention is applicable to various semiconductor manufacturing apparatuses, for example, a plasma CVD apparatus, an etching apparatus, and the like, the present embodiment will be described using a plasma CVD apparatus as an example. Fig. 3 shows the configuration of the plasma CVD system. As shown in the figure, this configuration consists of a microwave oscillator 11 that generates microwaves, an isolator 10 that absorbs reflected waves, a detector 9 that measures the incident and reflected microphone mouth-wave power, and matching with the load impedance. Matching device 8 to insulate the waveguide It consists of an edge waveguide 5, a plasma reaction chamber 6 for generating plasma and performing various processes, and an RF oscillator 7 for applying RF to the wall of the plasma reaction chamber 6.
R F発振器 7 を除いた他の構成物は、 各種プロセスを実行するプラズ マ反応室 6にプラズマ源のパワーとしてマイクロ波を導入するための導 波管構成に、 プラズマ反応室 6の壁面を高速に ドライクリーニングする ための R Fを印加する目的で絶縁導波管 5 を取り付けたものである。 この絶縁導波管 5 を取り付けたプラズマ反応室 6の詳細を第 1 1 図に 示す。 該図において、 6はプラズマがほぼ円筒状に形成されるプラズマ 反応室で、 このプラズマ反応室 6は側壁 2 1 , 天板 2 2, 導波部 2 3 a 2 3 b , ガス導入口 2 7 a, 2 7 b, 絶縁板 2 6よリ構成されている。 側壁 2 1 にはマイクロ波導入用の導波部 2 3 a, 2 3 bが一体に形成さ れ、 この導波部 2 3 a, 2 3 bには絶縁導波管 5が接続されており、 両 者の境界部にはマイクロ波は通し、 真空は封止する石英窓 2 8が設けら れている。 また、 プラズマ反応室 6には天板 2 2 と対向する位置に基板 (図示せず)を保持する基板電極 2 4が設けられ、 導波部 2 3 a, 2 3 b は基板の面とほぼ平行にマイク口波がプラズマ反応室 6内に導入される ように設けられている。 更に、 プラズマ反応室 6は絶縁板 2 6 を介して ベースプレート 3 0の上に設置され、 ベ一スプレー 卜 3 0の下側に設け られた真空排気装置 2 9により真空排気される構造となっている。 側壁 2 1 は、 絶縁物 2 6 を介してべ一スプレ一 卜 3 0より電気的に絶 縁されており、 かつ、 天板 2 2 と基板電極 2 4は基準電位となっている ベースプレー卜 3 0から電気的に絶縁されている。 天板 2 2 と基板電極 2 4にはそれぞれマツチングボックス 7 2 a , 7 2 b を介して例えば周 波数 1 3 . 5 6 M h zの高周波電圧を印加する高周波電源 7 1 a, 7 1 b に接続されている。 天板 2 2は、 第一の切り替えスィ ッチ 7 3 aを介し て高周波電源 7 1 aに接続、 あるいは接地される。 側壁 2 1 は、 第二の 切リ替えスィツチ 7 3 bを介して高周波電源 7 1 aに接続、 あるいは接 地される。 第一の切り替えスィッチ 7 3 a及び第二の切り替えスィッチ 7 3 bは、 コン トローラ 7 4によりプロセス処理又はクリーニングを行 うときに切り替えられる。 プロセス処理又はク リ一二ングにおける原料 ガスは側壁 2 1 に設けられたガス導入口 2 7 a, 2 7 bよりプラズマ反 応室 6中に導入される。 Except for the RF oscillator 7, the other components are a waveguide structure for introducing microwaves as the power of the plasma source into the plasma reaction chamber 6 that executes various processes, and the wall of the plasma reaction chamber 6 is accelerated. An insulating waveguide 5 is attached for the purpose of applying RF for dry cleaning. FIG. 11 shows details of the plasma reaction chamber 6 to which the insulating waveguide 5 is attached. In the figure, reference numeral 6 denotes a plasma reaction chamber in which plasma is formed in a substantially cylindrical shape. This plasma reaction chamber 6 has side walls 21, a top plate 22, a waveguide section 23 a23 b, and a gas inlet 27. a, 27 b, and insulating plate 26. Waveguides 23a and 23b for introducing microwaves are integrally formed on the side wall 21. An insulating waveguide 5 is connected to the waveguides 23a and 23b. A quartz window 28 is provided at the boundary between the two, for passing microwaves and sealing vacuum. A substrate electrode 24 for holding a substrate (not shown) is provided in the plasma reaction chamber 6 at a position facing the top plate 22, and the waveguide portions 23 a and 23 b are substantially flush with the surface of the substrate. The microphone mouth wave is provided in parallel so as to be introduced into the plasma reaction chamber 6. Further, the plasma reaction chamber 6 is installed on the base plate 30 via the insulating plate 26 and is evacuated by the evacuation device 29 provided below the base plate 30. I have. The side wall 21 is electrically insulated from the base plate 30 via an insulator 26, and the top plate 22 and the substrate electrode 24 are at a reference potential. Electrically isolated from 30. The high frequency power supplies 7 1a and 7 1b apply, for example, a high frequency voltage of 13.56 Mhz to the top plate 22 and the substrate electrode 24 via matching boxes 72a and 72b, respectively. It is connected to the. The top plate 22 is connected to the high-frequency power supply 71a via the first switching switch 73a or grounded. The side wall 21 is connected to or grounded to the high-frequency power supply 71a via the second switching switch 73b. The first switching switch 73 a and the second switching switch 73 b are switched when a process or cleaning is performed by the controller 74. The raw material gas in the process processing or cleaning is introduced into the plasma reaction chamber 6 from the gas inlets 27a and 27b provided in the side wall 21.
円板状の天板 2 2の上にはカスプ磁場を形成するために、 順に極性を 変えて同心円状に永久磁石 2 5が配置されている。 一方、 プラズマ反応 室 6の側壁 2 1 の周囲にも、 互いに極性を変えてカスプ磁場を形成する ための複数の永久磁石 2 5が備えられている。 プラズマ反応室 6 とべ一 スプレー卜 3 0の材質はアルミニゥムであり、 図示してないがヒータや 水冷等によリ壁温が一定になるように調節されている。 マイクロ波の導 波部 2 3 a, 2 3 bの内部にはマイク口波を通す誘電体 2 9がそれぞれ 設けられ、 その誘電体 2 9のプラズマ反応室 6側の先端部が、 プラズマ 反応室 6の内面と概略一致するように設置されている。  On the disk-shaped top plate 22, in order to form a cusp magnetic field, the permanent magnets 25 are arranged concentrically with their polarities changed in order. On the other hand, also around the side wall 21 of the plasma reaction chamber 6, a plurality of permanent magnets 25 for changing the polarities to each other to form a cusp magnetic field are provided. The material of the plasma reactor 30 and the base plate 30 is aluminum, and although not shown, a heater, water cooling, or the like is used to adjust the wall temperature to be constant. Inside the microwave waveguides 23a and 23b, there are provided dielectrics 29 through which microphone mouth waves pass, and the tip of the dielectric 29 on the side of the plasma reaction chamber 6 is connected to the plasma reaction chamber. It is installed so as to roughly match the inner surface of 6.
次に、 上述したプラズマ C V D装置に採用されている絶縁導波管 5に ついて第 1 図、 及び第 2図を用いて説明する。  Next, the insulating waveguide 5 employed in the above-described plasma CVD device will be described with reference to FIGS. 1 and 2. FIG.
該図に示すごとく、 絶縁導波管 5はマイ クロ波発振器 1 1側の導波管 2とプラズマ反応室 6側の導波管 1 とからなり、 これらは両者を電気的 に分離する絶縁物 4 を介して嵌め合い構造で結合されて構成され、 導波 管 1 と導波管 2との間には定在波が生じる導波路 3が設けられている。 この導波路 3は、 導波管内のマイ ク口波伝送方向に対して垂直な部分と 平行な部分とからなリ断面がほぼ L字状に形成され、 平行な部分が垂直 な部分より長くなっている。 導波路 3及び絶縁物 4は第 2図から判るよ うに、 方形導波管の回りを取り巻くよう方形に形成されている。 絶縁物 4は本実施例では高周波特性の良いテフ口ンを使用しており、 導波管 1 と導波管 2 を絶縁することは勿論、 導波管 1 中に導波管 2を固定するた めのスぺ一サの役目も果たしている。 As shown in the figure, the insulating waveguide 5 comprises a waveguide 2 on the side of the microwave oscillator 11 and a waveguide 1 on the side of the plasma reaction chamber 6, and these are insulators for electrically separating the two. A waveguide 3 is provided between the waveguide 1 and the waveguide 2 so that a standing wave is generated between the waveguide 1 and the waveguide 2. The waveguide 3 has a substantially L-shaped cross section formed by a portion perpendicular to the direction of the microwave mouthwave transmission in the waveguide and a portion parallel to the direction, and the parallel portion is vertical. It is longer than the part. As can be seen from FIG. 2, the waveguide 3 and the insulator 4 are formed in a rectangular shape so as to surround the rectangular waveguide. In this embodiment, the insulator 4 uses a teflon having good high-frequency characteristics, and not only insulates the waveguides 1 and 2 but also fixes the waveguide 2 in the waveguide 1. It also plays the role of a sponsor.
そして、 本実施例の絶縁導波管 5は、 導波路 3の長さ A Cが導波路を 伝播するマイクロ波の波長の 2分の 1 の整数倍に規定され、 絶縁部 Bと 短絡端 Cの長さは導波路を伝播するマイク口波の波長の 4分の 1 の奇数 倍に規定されている。  In the insulating waveguide 5 of the present embodiment, the length AC of the waveguide 3 is defined to be an integral multiple of half the wavelength of the microwave propagating through the waveguide, and the length AC of the insulating portion B and the short-circuit end C is defined. The length is specified to be an odd multiple of 1/4 of the wavelength of the microphone mouth wave propagating through the waveguide.
以下、 これについて説明する。 まず、 導波路 3の長さ A Cが導波路を 伝播するマイクロ波の波長の 2分の 1の整数倍に規定した理由について 説明する。  Hereinafter, this will be described. First, the reason why the length A C of the waveguide 3 is defined as an integral multiple of half the wavelength of the microwave propagating in the waveguide will be described.
第 1 図における A点を短絡条件にし、 第 1 2図のように模擬した体系 にてシミュレーションを行い、 導波路が導波管のマイク口波の伝送に与 える影響 (導波路が存在することにより導波管中のマイク口波に反射を 引き起こすか) を検討した。 その結果を第 1 3図に示す。 第 1 3図は横 軸に導波路の A C間距離を波長 λで規格化した値を示し、 縦軸は導波管 の反射係数 ( 1 =完全反射, 0 =反射ゼロ) を示す。 反射係数がゼロで あればマイク口波の反射がゼロであり、 導波路が存在しても導波管中の マイクロ波伝送に影響を与えないことになり、 第 1 3図でこの条件を満 足するのは A C Z A = 0, 0 . 5 , 1 のとき、 つまり、 導波路の長さが ぇ 2の整数倍 (Χ 0 , 1, 2—) であればこの条件を満たすことが解 る。  A simulation was performed using a system simulated as shown in Fig. 12 with point A in Fig. 1 as a short-circuit condition, and the effect of the waveguide on the transmission of the microphone mouth wave of the waveguide (the existence of the waveguide Causes reflection in the microphone mouth wave in the waveguide). The results are shown in FIG. In Fig. 13, the horizontal axis shows the value obtained by normalizing the distance between A and C of the waveguide by wavelength λ, and the vertical axis shows the reflection coefficient (1 = perfect reflection, 0 = reflection zero) of the waveguide. If the reflection coefficient is zero, the reflection of the microphone mouth wave is zero, and the presence of the waveguide does not affect the microwave transmission in the waveguide, and this condition is satisfied in Fig. 13. It can be seen that this condition is satisfied when ACZA = 0, 0.5, 1 if the length of the waveguide is an integral multiple of ぇ 2 (Χ0, 1, 2—).
次に、 絶縁部 Βと短絡端 Cの長さは導波路を伝播するマイクロ波の波 長の 4分の 1の奇数倍に規定した理由について説明する。 第 1 図における B点を開放条件にし、 第 1 4図のように模擬した体系 にてシミユレ一ションを行い、 導波路におけるマイク口波の漏洩率を検 討した。 その結果を第 1 5図に示す。 第 1 5図は横軸に導波路の B C間 距離を波長 λで規格化した値を示し、 縦軸はマイクロ波漏洩率 (漏洩パ ヮーノ入力パワー) (マイクロ波入力量との積が実際の漏洩量 (W) ) を示す。 第 1 5図から明らかなごとく、 B CZ A = 0. 2 5, 0. 7 5, 1 . 2 5の近辺、 つまり、 B C間距離が Λノ4の奇数倍 (X I , 3 , 5 ···) の近辺でマイク口波の漏洩率が最小になることが解る。 Next, the reason why the lengths of the insulating part Β and the short-circuited end C are specified as odd-numbered quarters of the microwave propagating in the waveguide will be explained. Point B in Fig. 1 was set to the open condition, and a simulation was performed using a simulated system as shown in Fig. 14, and the leakage rate of the microphone mouth wave in the waveguide was examined. The results are shown in FIG. In Fig. 15, the horizontal axis shows the normalized value of the distance between the BCs of the waveguides at the wavelength λ, and the vertical axis shows the microwave leakage rate (leakage power input power) (the product of the microwave input amount and the actual Leakage (W)). As is evident from Fig. 15, B CZ A = around 0.25, 0.75, 1.25, that is, the BC distance is an odd multiple of Λ ノ 4 (XI, 3, 5, ... It can be seen that the leakage rate of the microphone mouth wave is minimized near ()).
尚、 第 1 5図からも解るように、 漏洩率が最小になるのは、 B C間距 離がぇノ4の奇数倍の点のみでなるわけではなく、 ある許容幅をもって いる。 例えば 0. 2 5 の点で考えてみる。  As can be seen from FIG. 15, the leakage rate is minimized not only at the point where the distance between B and C is an odd-numbered multiple of Peno4, but has a certain allowable width. For example, consider the point of 0.25.
導波管から半径方向に 5cm離れたところの漏洩限界値は 5 mW/cm2 ( J I S規格 C 9 2 5 0による) であり、 1点から漏洩 (最も厳しい条 件。 実際は絶縁導波管外周の絶縁面上から漏洩) した場合を想定し、 半 径 5 cmの球面上にて試算すると、 The leakage limit at a distance of 5 cm from the waveguide in the radial direction is 5 mW / cm 2 (according to JIS C 9250), and leakage from one point (the most severe condition. Assuming the case of leakage from the insulating surface of
Ρ Χ α< 3 Χ ( 4 Χ π Χ δ 2 ) → α< 1 0 0 π β / Ρ Ρ Χ α <3 Χ (4 Χ π Χ δ 2 ) → α <1 0 0 π β /
(但し、 Ρ : パワー(W), α : 漏洩率, : 漏洩限界(W/cm2)) P - 1 0 0 0 W, 3 = 5 mW/cm2とすると α< 0. 0 0 1 5 7であり、 第 1 5図から B C間の距離の許容幅は、 0. 2 2 λ < Β〇ぐ 0. 2 6 3 Α となる。 (However, Ρ: Power (W), α: Leakage rate,: Leakage limit (W / cm 2 )) If P-100 W 0, 3 = 5 mW / cm 2 , α <0.0 0 15 7, and the allowable width of the distance between the BCs from FIG. 15 is 0.22λ <<0.263 3.
本実施例の絶縁導波管のマイクロ波漏洩量を測定した結果を第 9図に 示す。 第 9図に示す測定結果は、 マイクロ波の入射及び反射パワーの和 が 1 kW時のものであり、 マイクロ波が漏洩してくる絶縁物の露出部か ら 5cm離れた位置で漏洩量を測定したものである。 第 9図から明らかな ごとく、 マイクロ波漏洩量は 1 (mWZcm2 ) 以下であり、 J I S規格 C 9 2 5 0 「電子レンジ」 の規定 (マイク口波漏洩量は 5 ( m W /cm2 ) 以下であること) を満たしている。 FIG. 9 shows the result of measuring the amount of microwave leakage of the insulated waveguide of this example. The measurement results shown in Fig. 9 are for the case where the sum of the incident and reflected powers of the microwave is 1 kW, and the leakage amount is measured at a position 5 cm away from the exposed part of the insulator from which the microwave leaks. It was done. As is clear from Fig. 9, the amount of microwave leakage is 1 (mWZcm 2 ) or less, C 9 2 5 0 standard of "microwave oven" meets (microphone port wave leakage amount 5 (m W / cm 2) be less is).
第 6図に短絡された導波管のィンピーダンスを示すが、 該図より導波 路中の短絡端から 4分の 1波長の位置は開放状態にあリ更に 4分の 1の 位置では短絡状態となり、 短絡端から 4分の 1波長ごとに開放, 短絡を 周期的に繰り返すことが解る。 第 7図に示すように、 方形の導波管 1, 2の周りに導波路 3 を設けた場合、 マイクロ波の 2分の 1波長の整数倍 の導波路は、 導波管 1, 2の壁面部 (接合部 A付近) で短絡状態となり、 導波管中のマイクロ波伝送に対する影響が小さく、 導波路 3に伝播して くるマイクロ波の強度も導波管内よりも小さくなる。 これは、 導波管 1 , 2からこの導波路 3 を見た場合、 接合部 Aが短絡状態つまり導体壁と同 一条件にあり、 マイク口波はこの導波路 3には進入しがたくなるためで ある。  Fig. 6 shows the impedance of the short-circuited waveguide. From the figure, the position of the quarter-wavelength from the short-circuited end of the waveguide is open, and the short-circuit is further shorted at the quarter-position. It turns out to be in a state, and it is understood that opening and short-circuiting are repeated periodically every quarter wavelength from the short-circuit end. As shown in Fig. 7, when the waveguide 3 is provided around the rectangular waveguides 1 and 2, the waveguide having an integral multiple of one-half wavelength of the microwave is the same as the waveguides 1 and 2. A short circuit occurs at the wall surface (near junction A), the effect on the microwave transmission in the waveguide is small, and the intensity of the microwave propagating to the waveguide 3 is smaller than in the waveguide. This is because, when the waveguide 3 is viewed from the waveguides 1 and 2, the junction A is in a short-circuit state, that is, under the same condition as the conductor wall, and it is difficult for the microphone mouth wave to enter the waveguide 3. That's why.
一方、 導波管 1, 2の接合部 Bを短絡端 Cから 4分の 1波長の奇数倍 の位置にすれば接合部 Bは開放状態であり、 マイク口波の漏洩量は小さ くなる。 接合部 Bが開閉状態のとき、 導波路 3の壁面上を接合面に垂直 に流れる電流は小さくなり、 マイク口波の放射つまリ漏洩量は小さく抑 えられることになる。  On the other hand, if the junction B of the waveguides 1 and 2 is located at an odd multiple of one-quarter wavelength from the short-circuit end C, the junction B is open and the leakage of the microphone mouth wave is small. When the junction B is in the open / closed state, the current flowing perpendicularly to the junction surface on the wall surface of the waveguide 3 becomes small, and the radiation clogging leakage of the microphone mouth wave is suppressed to a small value.
また、 本実施例では導波管の絶縁位置 Bを直線部に位置させることに も意味がある。 つまり、 第 4図に示したような一般的に用いられている チョークフランジは、 導波管の絶縁部はコーナ部にあるためマイクロ波 の漏洩率は 0 . 0 0 3 3 であるのに対し、 本実施例の絶縁導波管では、 絶縁位置 Bが直線部に位置しているためマイク口波の漏洩率は 0. 00013 であり (マイクロ波の漏洩率はシミュレーション結果による) 、 導波管 の絶縁位置 Bを直線部に位置させることにより、 マイク口波の漏洩を極 めて低く抑えることができる。 Further, in the present embodiment, it is also meaningful to position the insulating position B of the waveguide at the linear portion. In other words, the generally used choke flange as shown in Fig. 4 has a microwave leakage rate of 0.0033 because the insulating part of the waveguide is at the corner. In the insulated waveguide of this embodiment, since the insulating position B is located in the straight line portion, the leak rate of the microphone mouth wave is 0.000013 (the leak rate of the microwave is based on the simulation result). By positioning the insulation position B of the Can be kept low.
このように本実施例とすることにより、 導波路を導波管に沿った方向 に設置しているため、 導波管に垂直な方向の寸法が非常に小さく、 導波 管をプラズマ反応室に接近させて配置することが可能となリ、 導波管を 含めたプラズマ C V D装置等の半導体製造装置を小型化することが可能 となる。 また、 一方の導波管の中に絶縁物を介してもう一方の導波管を 挿入する形状 (嵌合い構造) としているため、 導波管同士の接合を簡単 に行うことができる。 つまり、 一般の導波管の接合は、 マイクロ波の漏 洩を小さくするためにフランジ部を複数個のナツ 卜で接合する必要があ るが、 本実施例の構成とすることにより導波管を固定する必要がなく、 導波管の接合が嵌合い構造で行えるので簡単になるし、 取り外しも非常 に簡単になる。  As described above, according to the present embodiment, since the waveguide is installed in the direction along the waveguide, the dimension in the direction perpendicular to the waveguide is very small, and the waveguide is placed in the plasma reaction chamber. Semiconductor manufacturing equipment such as plasma CVD equipment, including waveguides, can be miniaturized because they can be arranged close to each other. Also, since the other waveguide is inserted into one of the waveguides via an insulator (fitting structure), it is possible to easily join the waveguides. In other words, in general waveguide joining, it is necessary to join the flange portion with a plurality of nuts in order to reduce microwave leakage. There is no need to fix the waveguide, and the joining of the waveguides can be performed with a mating structure, which simplifies and removes the waveguide very easily.
また、 この性質は導波路の形状を限定しない。 従って、 第 7図の形状 にこだわらずに第 8図のように導波管 1 1 , 1 2に対して垂直方向に導 波路 1 3 を設けてもかまわないつ どのような形状にしろ導波路の長さは マイクロ波の 2分の 1波長の整数倍にして、 接合部を 4分の 1波長の奇 数倍にして接合面を垂直に流れる電流を小さくすればよい。  Also, this property does not limit the shape of the waveguide. Therefore, the waveguide 13 may be provided in a direction perpendicular to the waveguides 11 and 12 as shown in FIG. 8 without being limited to the shape shown in FIG. The length of must be an integral multiple of one-half wavelength of the microwave, and the junction should be an odd multiple of one-quarter wavelength to reduce the current flowing vertically through the junction.
第 1 0図に本発明の絶縁導波管の他の実施例を示す。 該図に示す実施 例は、 絶縁導波管の導波路としてプラズマ反応室の真空封じ用の石英窓 を使用することにより、 絶縁導波管を小型化しプラズマ反応室と一体化 したものである。 該図において、 石英 1 4の左側はプラズマ反応室であ り、 この石英 1 4はプラズマ反応室の真空封じの役目と絶縁導波管の役 目を同時に果たしている。 石英 1 4及び導波管 1 8は絶縁物 1 7, 取付 け治具 1 5及び 1 6により、 プラズマ反応室の壁面 1 9に固定されてい る。 このように導波路に石英などの誘電体を満たしても、 導波路の長さ A C及び短絡端から導波管接続部までの距離 B Cの法則は変わらない。 つまり、 導波路の長さ A Cは、 導波路中のマイクロ波の波長の 2分の 1 の整数倍であり、 短絡端から導波管接続部までの距離 B Cは、 導波路中 のマイク口波の波長の 4分の 1の奇数倍にすればよい。 石英などの誘電 体中の波長は、 誘電体の比誘電率の 1 / 2乗に半比例して短くなるので. 導波路を石英などの誘電体で満たすとその寸法を小さくすることができ る。 FIG. 10 shows another embodiment of the insulating waveguide of the present invention. In the embodiment shown in the figure, the insulating waveguide is miniaturized and integrated with the plasma reaction chamber by using a quartz window for vacuum sealing of the plasma reaction chamber as the waveguide of the insulating waveguide. In the figure, the left side of the quartz 14 is a plasma reaction chamber, and the quartz 14 simultaneously functions as a vacuum seal for the plasma reaction chamber and as an insulating waveguide. The quartz 14 and the waveguide 18 are fixed to the wall 19 of the plasma reaction chamber by an insulator 17 and mounting jigs 15 and 16. Even if the waveguide is filled with a dielectric material such as quartz, the law of the length AC of the waveguide and the distance BC from the short-circuit end to the waveguide connection portion do not change. In other words, the length AC of the waveguide is an integral multiple of one-half the wavelength of the microwave in the waveguide, and the distance BC from the short-circuit end to the waveguide connection is BC It should be an odd multiple of 1/4 of the wavelength. Since the wavelength in a dielectric such as quartz becomes shorter in proportion to the half power of the dielectric constant of the dielectric, the size can be reduced by filling the waveguide with a dielectric such as quartz. .
上述した各実施例においては導波管を方形としたが、 これに限定され るわけではなく導波管は円形でもよいし同軸でもよい。 また、 導波管の 固定の仕方も、 第 1 図に示したような導波管 2の中に導波管 1 を挿入す る固定のほかに絶縁ボル卜で固定してもよいし、 導波管 2が導波管 1 の 中に挿入される構造でもよい。 更に、 絶縁物の構造も第 1 図及び第 1 0 図に限定されない。 導波管や取付け治具の構造に合わせて変更可能であ るし、 絶縁物なしで導波管 1 と 2の間に空間を設けてもよいことは勿論 である。 産業上の利用可能性  In each of the embodiments described above, the waveguide is rectangular, but the invention is not limited to this, and the waveguide may be circular or coaxial. In addition to fixing the waveguide 1 in the waveguide 2 as shown in FIG. 1, the waveguide may be fixed with an insulating bolt, as shown in FIG. A structure in which the waveguide 2 is inserted into the waveguide 1 may be used. Further, the structure of the insulator is not limited to FIGS. 1 and 10. It can be changed according to the structure of the waveguide and the mounting jig, and it goes without saying that a space may be provided between the waveguides 1 and 2 without an insulator. Industrial applicability
以上説明した本発明によれば、 少なく とも二つの導波管が絶縁を介し て嵌合い構造で結合されていること、 また、 導波管にマイクロ波の定在 波を形成する導波路を設け、 該導波路中の短絡端からマイク口波の導波 路中の波長の 4分の 1の奇数倍の位置に少なく とも二つの導波管の絶縁 を介して結合部が位置すること、 更には、 導波管にマイクロ波の定在波 を形成する導波路を設け、 該導波路の長さをマイク口波の該導波路中の 波長の 2分の 1の整数倍に設定し、 かつ、 該導波路中の短絡端からマイ ク口波の導波路中の波長の 4分の 1 の奇数倍の位置に少なく とも二つの 導波管の絶縁を介した結合部が位置するように絶縁導波管、 及びマイク 口波を発生するマイク口波発振器と、 該マイク口波発振器からのマイク 口波を伝送する導波管と、 該導波管からのマイクロ波によりプラズマを 生成して各種プロセスを実行するプラズマ処理装置と、 該プラズマ処理 装置のプラズマ反応室の壁面に高周波を印加する高周波発振器とを備え、 前記導波管の一部がその途中を絶縁する絶縁導波管で形成されていると 共に、 該絶縁導波管が上述したように構成されているものであるから、 マイク口波導波管を使用する各種プラズマ源の高速ク リ一ニングを可能 にすることは勿論、 マイクロ波の漏洩量が少なく、 かつ、 マイクロ波の 伝送を阻害しない絶縁導波管、 及びそれを用いた半導体製造装置を得る ことができる。 According to the present invention described above, at least two waveguides are connected by a fitting structure via insulation, and a waveguide for forming a standing wave of a microwave is provided in the waveguide. The coupling portion is located at a position of an odd multiple of one-fourth of the wavelength in the waveguide of the microphone mouth wave from the short-circuited end in the waveguide via the insulation of at least two waveguides; Provides a waveguide for forming a standing wave of microwaves in a waveguide, and sets the length of the waveguide to an integral multiple of one-half of the wavelength of the microphone mouth wave in the waveguide; and From the short-circuit end in the waveguide Generate an insulated waveguide and a microphone so that at least the coupling part of the two waveguides via insulation is located at an odd multiple of 1/4 the wavelength in the waveguide A microwave mouth wave oscillator, a waveguide for transmitting the microphone mouth wave from the microphone mouth wave oscillator, a plasma processing apparatus for generating plasma by microwaves from the waveguide and executing various processes, A high-frequency oscillator for applying a high frequency to the wall surface of the plasma reaction chamber of the plasma processing apparatus, wherein a part of the waveguide is formed by an insulating waveguide that insulates the middle of the waveguide; Is configured as described above, so that it is possible not only to enable high-speed cleaning of various plasma sources using a microphone mouth-wave waveguide, but also to reduce the amount of microwave leakage, and Which hinders the transmission of waves An insulated waveguide without any material, and a semiconductor manufacturing apparatus using the same can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なく とも二つの導波管が絶縁を介して結合されて形成され、 発信 器からのマイクロ波を負荷に伝送する絶縁導波管において、  1. In an insulated waveguide that is formed by connecting at least two waveguides via insulation and transmitting microwaves from a transmitter to a load,
前記少なく とも二つの導波管は、 絶縁を介して嵌合い構造で結合され ていることを特徴とする絶縁導波管。  The insulated waveguide, wherein the at least two waveguides are connected by a fitting structure via insulation.
2 . 少なく とも二つの導波管が絶縁を介して結合されて形成され、 発信 器からのマイクロ波を負荷に伝送する絶縁導波管において、  2. In an insulated waveguide that is formed by connecting at least two waveguides via insulation and transmitting microwaves from a transmitter to a load,
前記導波管にマイク口波の定在波を形成する導波路を設け、 該導波路 中の短絡端からマイク口波の導波路中の波長の 4分の 1 の奇数倍の位置 に少なく とも二つの導波管の絶縁を介した結合部が位置することを特徴 とする絶縁導波管。  A waveguide for forming a standing wave of a microphone mouth wave is provided in the waveguide, and at least a position of an odd multiple of a quarter of the wavelength in the waveguide of the microphone mouth wave from a short-circuit end in the waveguide. An insulated waveguide characterized in that a coupling portion between two waveguides via insulation is located.
3 . 少なく とも二つの導波管が絶縁を介して結合されて形成され、 発信 器からのマイクロ波を負荷に伝送する絶縁導波管において、  3. In an insulated waveguide that is formed by connecting at least two waveguides via insulation and transmitting microwaves from a transmitter to a load,
前記導波管にマイクロ波の定在波を形成する導波路を設け、 該導波路 の長さをマイク口波の該導波路中の波長の 2分の 1 の整数倍に設定し、 かつ、 該導波路中の短絡端からマイクロ波の導波路中の波長の 4分の 1 の奇数倍の位置に少なく とも二つの導波管の絶縁を介した結合部が位置 することを特徴とする絶縁導波管。  A waveguide for forming a standing wave of microwave is provided in the waveguide, and the length of the waveguide is set to an integral multiple of half the wavelength of the microphone mouth wave in the waveguide, and Insulation characterized in that at least a coupling portion of at least two waveguides via insulation is located at a position from the short-circuited end of the waveguide to an odd multiple of one-fourth of the wavelength in the microwave waveguide. Waveguide.
4 . 前記一方の導波管の中に絶縁物を配置し、 かつ、 該絶縁物の中にも う一方の導波管を挿入し、 両者を嵌合い構造で結合されていることを特 徴とする請求項 3記載の絶縁導波管。  4. An insulator is placed in the one waveguide, and the other waveguide is inserted into the insulator, and the two are fitted and connected by a structure. 4. The insulated waveguide according to claim 3, wherein
5 . 前記導波路は、 前記導波管に沿って設けられていることを特徴とす る請求項 3記載の絶縁導波管。  5. The insulated waveguide according to claim 3, wherein the waveguide is provided along the waveguide.
6 . 前記導波路は、 前記導波管に対して垂直方向に設けられていること を特徴とする請求項 3記載の絶縁導波管。 6. The insulated waveguide according to claim 3, wherein the waveguide is provided in a direction perpendicular to the waveguide.
7 . 前記導波路は、 前記導波管内のマイクロ波伝送方向に対して垂直な 部分と平行な部分とからなり断面がほぼ L字状に形成され、 かつ、 平行 な部分が垂直な部分よリ長くなっていることを特徴とする請求項 3記載 の絶縁導波管。 7. The waveguide has a portion substantially perpendicular to the microwave transmission direction in the waveguide and a portion parallel to the microwave transmission direction, and has a substantially L-shaped cross-section. 4. The insulated waveguide according to claim 3, wherein the waveguide is elongated.
8 . 前記導波管同士が結合されている絶縁部が導波管の直線部に位置し ていることを特徴とする請求項 3記載の絶縁導波管。  8. The insulated waveguide according to claim 3, wherein the insulating portion where the waveguides are connected to each other is located at a straight portion of the waveguide.
9 . 前記導波路内に誘電体を配置したことを特徴とする請求項 3記載の 絶縁導波管。  9. The insulated waveguide according to claim 3, wherein a dielectric is disposed in the waveguide.
1 0 . マイクロ波を発生するマイ クロ波発振器と、 該マイクロ波発振器 からのマイクロ波を伝送する導波管と、 該導波管からのマイクロ波によ リプラズマを生成して各種プロセスを実行するプラズマ処理装置と、 該 プラズマ処理装置のプラズマ反応室の壁面に高周波を印加する高周波発 振器とを備えた半導体製造装置において、  10. Microwave oscillator that generates microwaves, waveguide that transmits microwaves from the microwave oscillator, and performs various processes by generating plasma by microwaves from the waveguides A semiconductor manufacturing apparatus comprising: a plasma processing apparatus; and a high-frequency oscillator that applies a high frequency to a wall of a plasma reaction chamber of the plasma processing apparatus.
前記導波管の一部がその途中を絶縁する絶縁導波管で形成されている と共に、 該絶縁導波管は請求項 1 , 2、 又は 3に記載された構成を有す ることを特徴とする半導体製造装置。  A part of the waveguide is formed of an insulating waveguide that insulates the middle of the waveguide, and the insulating waveguide has a configuration described in claim 1, 2, or 3. Semiconductor manufacturing equipment.
1 1 . 前記プラズマ処理装置は、 内部にプラズマを生成するプラズマ反 応室と、 該プラズマ反応室に連結され、 プラズマを生成するためのマイ クロ波を導入する導波部と、 該導波部内に配置され、 前記マイクロ波は 透過しプラズマ反応室の真空は保つ誘電体と、 前記導波部の外周を取り 囲み、 かつ、 該導波部と前記プラズマ反応室内の少なく とも一部で当該 マイクロ波に対する電子サイクロ 卜口ン共鳴磁場を形成する第 1 の永久 磁石と、 前記プラズマ反応室の周囲に≥いに極性を変えて複数配置され た第 2の永久磁石と、 前記プラズマ反応室内に生成されたプラズマに面 して配置され、 そのプラズマにより処理される被処理物を保持する基板 電極と、 プラズマ反応室の一部分を形成する天板部分、 もしくは側壁部 分に対して複数の電力供給系を選択的に接続可能な電力供給手段とを備 えていることを特徴とする請求項 1 0記載の半導体製造装置。 11. The plasma processing apparatus includes: a plasma reaction chamber for generating plasma therein; a waveguide connected to the plasma reaction chamber for introducing a microwave for generating plasma; A dielectric that penetrates the microwaves and keeps the vacuum in the plasma reaction chamber; and a dielectric that surrounds the outer periphery of the waveguide, and at least a part of the microwave in the waveguide and the plasma reaction chamber. A first permanent magnet for forming an electron cyclone resonance magnetic field with respect to the wave, a plurality of second permanent magnets arranged around the plasma reaction chamber with different polarities, and a plurality of second permanent magnets formed in the plasma reaction chamber. A substrate that is placed facing the plasma that has been processed and that holds an object to be processed by the plasma 2. An electrode, and a power supply means capable of selectively connecting a plurality of power supply systems to a top plate portion forming a part of the plasma reaction chamber or a side wall portion. The semiconductor manufacturing apparatus according to 0.
PCT/JP1998/003274 1998-07-22 1998-07-22 Insulated waveguide and semiconductor production equipment WO2000005778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020007002936A KR20010024167A (en) 1998-07-22 1998-07-22 Insulated waveguide and semiconductor manufacturing system
PCT/JP1998/003274 WO2000005778A1 (en) 1998-07-22 1998-07-22 Insulated waveguide and semiconductor production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003274 WO2000005778A1 (en) 1998-07-22 1998-07-22 Insulated waveguide and semiconductor production equipment

Publications (1)

Publication Number Publication Date
WO2000005778A1 true WO2000005778A1 (en) 2000-02-03

Family

ID=14208659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003274 WO2000005778A1 (en) 1998-07-22 1998-07-22 Insulated waveguide and semiconductor production equipment

Country Status (2)

Country Link
KR (1) KR20010024167A (en)
WO (1) WO2000005778A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374101A (en) * 2001-06-13 2002-12-26 New Japan Radio Co Ltd Choke flange
JP2005020415A (en) * 2003-06-26 2005-01-20 Kyocera Corp Connection structure of dielectric waveguide line and waveguide, and antenna device and filter device using its structure
JP2007228223A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Waveguide connector
JP2008244857A (en) * 2007-03-27 2008-10-09 National Institutes Of Natural Sciences Waveguide connector
US7555262B2 (en) 2002-09-24 2009-06-30 Honeywell International Inc. Radio frequency interference monitor
JP2010278752A (en) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp Waveguide choke structure
GB2547211B (en) * 2016-02-10 2022-03-16 Bae Systems Plc Waveguides
EP4047739A1 (en) * 2021-02-17 2022-08-24 Furuno Electric Co., Ltd. Waveguide connecting structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131401U (en) * 1987-02-18 1988-08-29
JPS63271936A (en) * 1987-04-28 1988-11-09 Sumitomo Metal Ind Ltd Plasma processor
JPS63293825A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Plasma processor
JPH01153706U (en) * 1988-04-13 1989-10-23
JPH05275353A (en) * 1992-03-27 1993-10-22 Sumitomo Metal Ind Ltd Plasma processor and method of cleaning that device
JPH07211489A (en) * 1994-01-21 1995-08-11 Sumitomo Metal Ind Ltd Microwave plasma processing device and method for cleaning the device
JPH09266096A (en) * 1996-03-28 1997-10-07 Hitachi Ltd Plasma treatment device, and plasma treatment method using it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131401U (en) * 1987-02-18 1988-08-29
JPS63271936A (en) * 1987-04-28 1988-11-09 Sumitomo Metal Ind Ltd Plasma processor
JPS63293825A (en) * 1987-05-27 1988-11-30 Hitachi Ltd Plasma processor
JPH01153706U (en) * 1988-04-13 1989-10-23
JPH05275353A (en) * 1992-03-27 1993-10-22 Sumitomo Metal Ind Ltd Plasma processor and method of cleaning that device
JPH07211489A (en) * 1994-01-21 1995-08-11 Sumitomo Metal Ind Ltd Microwave plasma processing device and method for cleaning the device
JPH09266096A (en) * 1996-03-28 1997-10-07 Hitachi Ltd Plasma treatment device, and plasma treatment method using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374101A (en) * 2001-06-13 2002-12-26 New Japan Radio Co Ltd Choke flange
US7555262B2 (en) 2002-09-24 2009-06-30 Honeywell International Inc. Radio frequency interference monitor
JP2005020415A (en) * 2003-06-26 2005-01-20 Kyocera Corp Connection structure of dielectric waveguide line and waveguide, and antenna device and filter device using its structure
JP2007228223A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Waveguide connector
JP4575313B2 (en) * 2006-02-23 2010-11-04 三菱電機株式会社 Waveguide connection
JP2008244857A (en) * 2007-03-27 2008-10-09 National Institutes Of Natural Sciences Waveguide connector
JP2010278752A (en) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp Waveguide choke structure
GB2547211B (en) * 2016-02-10 2022-03-16 Bae Systems Plc Waveguides
EP4047739A1 (en) * 2021-02-17 2022-08-24 Furuno Electric Co., Ltd. Waveguide connecting structure
US11644629B2 (en) 2021-02-17 2023-05-09 Furuno Electric Co., Ltd. Waveguide connecting structure

Also Published As

Publication number Publication date
KR20010024167A (en) 2001-03-26

Similar Documents

Publication Publication Date Title
US6325018B1 (en) Flat antenna having openings provided with conductive materials accommodated therein and plasma processing apparatus using the flat antenna
US6155199A (en) Parallel-antenna transformer-coupled plasma generation system
US7430985B2 (en) Plasma processing equipment
JP3136054B2 (en) Plasma processing equipment
EP0318539A1 (en) Microwave plasma generator
TWI469696B (en) Plasma processing device
JPH0563413A (en) Device for generating field of regular microwave
KR101256850B1 (en) Microwave plasma processing apparatus
KR0174070B1 (en) Plasma treatment device and plasma treatment method
WO2000005778A1 (en) Insulated waveguide and semiconductor production equipment
JPS61131454A (en) Microwave plasma process and device therefor
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
JPH09289099A (en) Plasma processing method and device
KR20050047484A (en) Microwave-excited plasma processing apparatus
JP4086450B2 (en) Microwave antenna and microwave plasma processing apparatus
JP4735095B2 (en) Apparatus for measuring electric field distribution of remote plasma generation unit, remote plasma generation unit, processing apparatus, and method for adjusting characteristics of remote plasma generation unit
JP3156492B2 (en) Plasma processing apparatus and plasma processing method
JP3736054B2 (en) Plasma processing equipment
WO2013124898A1 (en) Plasma processing device and plasma processing method
JP2779997B2 (en) Plasma processing equipment
JP3136386B2 (en) Plasma processing equipment
JP3047801B2 (en) Plasma processing method and apparatus
JPH10107011A (en) Plasma processing apparatus
JP2000174009A (en) Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device
JP2002299323A (en) Plasma generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09463439

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998933889

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020007002936

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWW Wipo information: withdrawn in national office

Ref document number: 1998933889

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002936

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007002936

Country of ref document: KR

122 Ep: pct application non-entry in european phase