WO2000001067A2 - Method for software driven generation of multiple simultaneous high speed pulse width modulated signals - Google Patents

Method for software driven generation of multiple simultaneous high speed pulse width modulated signals Download PDF

Info

Publication number
WO2000001067A2
WO2000001067A2 PCT/US1999/014555 US9914555W WO0001067A2 WO 2000001067 A2 WO2000001067 A2 WO 2000001067A2 US 9914555 W US9914555 W US 9914555W WO 0001067 A2 WO0001067 A2 WO 0001067A2
Authority
WO
WIPO (PCT)
Prior art keywords
pulse width
digital signal
timer
pwm
width modulated
Prior art date
Application number
PCT/US1999/014555
Other languages
French (fr)
Other versions
WO2000001067A3 (en
Inventor
Ihor A. Lys
Frederick M. Morgan
Original Assignee
Color Kinetics Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Color Kinetics Incorporated filed Critical Color Kinetics Incorporated
Priority to CA002336184A priority Critical patent/CA2336184A1/en
Priority to JP2000557545A priority patent/JP2002519989A/en
Priority to AU53129/99A priority patent/AU5312999A/en
Priority to EP99938706A priority patent/EP1090459A2/en
Publication of WO2000001067A2 publication Critical patent/WO2000001067A2/en
Publication of WO2000001067A3 publication Critical patent/WO2000001067A3/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • This application relates to systems and methods for the generation of pulse width modulated signals for lighting or for other purposes.
  • Pulse width modulation is a common technique for controlling the "- amount of power that is delivered to a device, such as a motor or a lamp.
  • PWM Pulse width modulation
  • a device such as a motor or a lamp.
  • One of the main benefits of PWM is that it is a technique that allows a digital system to achieve relatively high resolution control over the operation of a particular device.
  • PWM is a technique commonly employed in motor control to allow a digital signal to control the speed of a motor.
  • PWM takes advantage of the fact that a motor is an inductive element that acts like an integrator. Accordingly, the application to that motor of a pulsed digital signal results in the motor integrating over the square ⁇ wave of the pulsed digital signal.
  • pulse width modulation is a technique that allows a digital output signal to effectively achieve control over a device as if the digital output signal could be set to an intermediate voltage level.
  • Other techniques include interrupt driven processes in which a microprocessor, such as one having a watchdog timer, receives periodic interrupts at a known rate. Each time through the interrupt loop the processor updates one or more output pins, thus creating a pulse width modulated signal on each output pin.
  • the rate at which a signal can be modulated is the clock speed multiplied by the number of cycles in the interrupt routine.
  • the number of instructions in the interrupt routine and therefore the number of clock cycles can be quite large.
  • the time period for executing the update instructions can be significant, and the PWM signal may have poor resolution, lacking fine grain control over the system.
  • Still other techniques exist which are effectively combinations of the first two processes, software loops that contain a variable number of instructions for these techniques.
  • the processor uses the hardware timer to generate a periodic interrupt, and then, depending on whether the pulse is to be very short or not, either schedules another interrupt to finish the PWM cycle, or creates the pulse by itself in the first interrupt routine by executing a series of instructions consuming a desired amount of time between two PWM signal updates.
  • the difficulty with this method is that for multiple PWM channels it is very difficult to arrange the timer based signal updates such that they do not overlap, and then to accurately change the update times for a new value of PWM signals.
  • the present disclosure provides methods and systems to generate multiple channels of pulse width modulated signals for any purpose using software techniques at speeds exceeding those commonly achievable with traditional software synthesis.
  • the systems and methods described herein provide, in one aspect, a method for modulating the pulse width of control signals generated on a plurality of separate channels.
  • the methods described herein are suitable for execution on a microprocessor or micro controller platform that includes a timer interrupt mechanism which will generate an interrupt in response to a timer counting down a selected time interval or time period.
  • the timer is set to count _ down a period of time that is representative of a portion, or sub period, of the PWM cycle. For example, the timer can be selected to count down one fourth the time period of one PWM cycle.
  • the timer executes an interrupt that causes the micro controller to enter an interrupt service routine (ISR).
  • ISR interrupt service routine
  • the ISR can review a set of pre-computed values each of which represents the value for a modulated channel for a specific sub period of the PWM cycle.
  • the ISR can then write to the I/O pins that are associated with the different modulated channels to set the level of the respective PWM signal on each of the I/O pins.
  • the ISR can then determine for that duty cycle which channel is to be further modulated. For example, for a PWM signal that has been subdivided into four sub periods, the ISR can determine that for the first of these sub period, the ISR is to further modulate the PWM signal on the first channel. Similarly, when the ISR occurs during the second sub period, the ISR can modulate the second channel.
  • the ISR can modify the signal level on the I/O pin associated with that channel, and execute a delay loop to consume the desired amount of time to maintain the channel in its toggled state.
  • the ISR can execute another I/O write operation to toggle the modulated signal to its previous state.
  • the ISR can then advance the sub-bookkeeping value to point to the next sub period, and terminate processing.
  • the microprocessor or controller platform can go back to normal operation with the timer still being set to trigger upon the lapse of a time interval associated with a sub period of the PWM cycle.
  • the systems and methods described herein provide control systems that allow for the modulation of a lamp that includes a red, green, and blue component.
  • Each color component of the lamp can be associated with a particular channel.
  • Each channel can be separately modulated to control the amount of red, green, or blue in the composite light generated by the lamp. Accordingly, the systems and methods described herein allow for the modulation of the hue of light generated by a colored lamp.
  • Fig. 1 depicts one embodiment of a system for modulating the hue of light generated by a color lamp
  • Fig. 2 depicts pictorially one cycle of a PWM signal generated across three separate channels, each channel being associated with one color component of the lamp depicted in Fig. 1;
  • Fig. 3 depicts a flow chart diagram of an interrupt service routine suitable for use with the system depicted in Fig. 1 ;
  • Fig. 4 depicts two PWM channels modulated by an interrupt service routine as shown in Fig. 3.
  • Fig. 1 depicts one system 10 that includes a microcontroller element 12, an amplifier 14, and a colored light 18 that includes three colored lamps depicted as a red lamp 20, green lamp 22 and blue lamp 24.
  • the microcontroller 12 couples to the amplifier 14 via three separate channels.
  • the amplifier couples to the lamp 18 via three separate channels.
  • Each of the three channels can be associated with one PWM signal that modulates the operation of a respective one of the colored lamps 20, 22 and 24.
  • Each of the elements depicted in Fig. 1 cooperate to provide a system that can modulate the relative intensities of each of the colored lamps 20, 22 and 24 to control the overall hue of the light generated by the lamp 18.
  • the system 10 depicted in Fig. 1 can include a microcontroller 12 that can be a conventional microcontroller such as any of the controllers available commercially including those available from the Microchip Company, including any of the PIC family of microcontrollers including the PICmicro 16CXX/17CXX family of microcontrollers.
  • the system 10 can include a microprocessor that can access an external memory device for receiving instructions for operating as a system according to the invention.
  • other configurations can be employed for providing a data processing platform capable of implementing the systems and methods described herein.
  • the systems and methods described herein provide for low-cost control systems that can be operated on lightweight inexpensive data processing platforms such as one time programmable microcontrollers.
  • the microcontroller 12 can include I/O pins, each of which can be employed for carrying a control signal, such as the PWM signals described herein.
  • Each I/O pin can provide a channel for one of the colored lamp components 20, 22 and 24.
  • the system 10 includes an optional amplifier _ element 14.
  • the amplifier element 14 can be a power amplifier that amplifies a digital control signal, such as a TTL logic level signal usually having low power.
  • the optional amplifier 14 can act to increase the power level of the signal generated by the microcontroller to provide a signal capable of powering the lamp components 20, 22 and 24.
  • the development of such power amplifiers is well-known in the art, and any suitable power amplifier can be practiced with the systems described herein without departing from the scope hereof.
  • the amplifier element 14 is optional and that in some embodiments, no power amplifier will be necessary as the power required to activate either of the lamp components can be sufficiently generated by the microcontroller 12, or by another platform capable of generating the PWM signals.
  • amplifier 14 is depicted as a separate element, the amplifier 14 could be integrated into the lamp component 18.
  • Other suitable modifications to the system 10 for integrating or modifying the system 10 to accommodate the power needs of the devices under control can be practiced herewith without departing from the scope of the invention.
  • Figs. 2 and 3 depict pictorially the operation of the system 10. Specifically, Fig. 2 depicts the PWM signals that can be generated on the I/O pins of the microcontroller
  • the duty cycles shown in Fig. 2 can be generated, in part, by the action of an interrupt service routine (ISR) that operates, for example, as shown in the flow chart diagram of Fig. 3.
  • ISR interrupt service routine
  • Fig. 2 shows that a period P can be subdivided into four sub periods, depicted in Fig. 2 as subperiods 1, 2, 3 and 4.
  • the exemplary period of Fig. 2 lasts for about 1/5,000 seconds in length, with each subperiod being substantially one fourth of that duration.
  • the actual duration of the time period will vary according to the application.
  • the systems described herein can be employed to generate systems with variable time periods P.
  • the time period for each subperiod can be entered into a watchdog timer within the microcontroller.
  • the watchdog timer can trigger an interrupt each time the subperiod lapses so that an interrupt is generated that causes the microcontroller 12 to enter an ISR associated with the timer interrupt.
  • ISR is depicted in Fig. 3. Specifically, Fig. 3 shows an ISR process 50 that begins in a step 52_ wherein in response to an interrupt occurring, the microcontroller exits out of its current control program and enters an ISR that is associated with that interrupt and that will be executed until completion.
  • ISR 50 depicted in Fig. 4 includes a number of steps including step 52 wherein the ISR writes to a port, typically understood as an I/O port on the microcontroller.
  • the ISR chooses a channel or channels wherein these channels are to be further modulated, as will be described in detail below.
  • the additional modulation takes place by operation of steps 58 through 62 wherein a write operation takes place to toggle the value of the channel and wherein a delay loop maintains the channel in this toggled state for a predetermined or preselected period of time.
  • Fig. 4 depicts the modulation of three PWM channels by a system that includes an ISR process such as the ISR process 50 depicted in Fig. 4.
  • the processor of the micro controller can schedule an interrupt of at least N equal sub periods.
  • Each sub period can be associated with a global PWM update procedure, and a vernier update procedure.
  • the sub periods can be denoted by Pi where the first sub period is one, the second is 2 and so on. This is shown in Fig. 2 by the PWM cycle period 40 that shows the PWM cycle as subdivided into four sub periods. Also depicted in Fig. 2 is that the sub period corresponds to the entry of an ISR. This is depicted in Fig. 2 by the demarcations 44 that correspond to the beginning of each of the sub periods.
  • the ISR executes a series of operations that modulates the PWM signals of the channels 32, 34 and 38, each of which corresponds to a respective one of the red, green and blue lamps depicted in Fig. 1.
  • the ISR can update all PWM signals by selecting from a set of pre-computed - values corresponding to the specific sub period. This can entail a single array read, followed by a single write to update the multiple I/O pins on which the PWM signals are generated.
  • Fig. 2 show that when the ISR entry occurs at the beginning of sub period 2, each PWM channel can be modified as a function of the pre-computed values.
  • Fig. 2 shows that upon entry into the ISR at the beginning of sub period 2, the system will toggle the values of channels 32, 34 and 38, such that channels
  • the ISR can cause the microcontroller to further modulate the signal on a selected one or ones of the PWM channels.
  • this further modulation is shown as the toggling of one of the PWM channels for about one fourth of a sub- period.
  • the system in sub period 2 can further modulate the value of the PWM channel 34, such that the value of channel 34 toggles from low to high for about one quarter of the duration of the sub period 2.
  • This vernier modulation can reduce or increase the PWM "on” of "off ' time, by changing the state of the signal for a desired portion of the sub period.
  • the system can advance a sub period bookkeeping value to point to the next sub period, such as for example sub period 3. This positions the system for entering into the ISR upon the next interrupt and modulating the next PWM channel in the series. Using these methods each PWM channel can change multiple times per
  • the methods described herein reduce the amount of processor time employed for controlling the modulation period of the PWM channels. For an example, consider two signals A and B with a resolution of 20 counts programmed to 7 and 14 counts respectively. These signals could be depicted as shown in Fig. 4.
  • the process described herein can asynchronously update any or all of the global or vernier values, in any order, without having to synchronize with the ISR, and without stopping the ISR.
  • the ISR does not have to change any variables which the main code changes or vice-versa. Thus there is no need for interlocks of any kind.
  • This software routine can thus utilize a single timer to generate multiple PWM _ signals, with each signal having the resolution of a single processor cycle.
  • Microchip PIC microprocessor for example, this allows three PWM signals to be generated with a resolution of 1024 counts, each corresponding to only a single instruction. This allows a PWM period of 1024 instruction cycles, i.e 4882Hz at a 20 MHZ clock. Furthermore, for counts between 256 and 792 the PWM waveform is a non-uniform 9765Hz signal, with much lower noise power than the processor's own straight PWM generator. Other processors and controllers can yield other PWM cycles and timing. While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be limited only by the following claims.

Abstract

Systems and methods can provide, in one aspect, a method for modulating the pulse width of control signals generated on a plurality of separate channels. In one practice, the methods described herein are suitable for execution on a microprocessor or micro controller platform that includes a timer interrupt mechanism which will generate an interrupt in response to a timer counting down a selected time interval or time period. In one practice, the timer is set to count down a period of time that is representative of a portion, or sub period, of the PWM cycle. Upon expiration of that time period, the timer executes an interrupt that causes the micro controller to enter an interrupt service routine (ISR) that can further modulate the PWM cycle of one or more signals.

Description

METHOD FOR SOFTWARE DRIVEN GENERATION OF MULTIPLE SIMULTANEOUS HIGH SPEED PULSE WIDTH MODULATED SIGNALS
Cross-Reference to Related Applications
This application claims priority to and incorporates by reference the following United States patent applications: Multicolored LED Lighting Method and Apparatus^ United States patent application, filed August 27, 1997, naming George Mueller and Ihor Lys as inventors; Digitally Controlled Light Emitting Diode Systems and Methods, United States provisional patent application, filed December 17, 1997, naming George Mueller and Ihor Lys as inventors; Multi-Color Intelligent Lighting, United States provisional patent application, filed December 24, 1997, naming George Mueller and Ihor Lys as inventors; Digital Lighting Systems, United States provisional patent application, filed March 20, 1998, naming Ihor Lys as inventor; and System and Method or Controlled Illumination, United States provisional patent application, filed March 25, 1998, naming George Mueller and Ihor Lys as inventors, United States patent application Serial No. 09/215,624 filed on December 17, 1998, United States patent application Serial No. 09/213,537 filed on December 17, 1998, United States patent application Serial No. 09/213,607 filed on December 17, 1998, United States patent application Serial No. 09/213,189 filed on December 17, 1998, United States patent application Serial No. 09/213,548 filed on December 17, 1998, United States patent application Serial No. 09/213,581 filed on December 17, 1998, United States patent application Serial No. 09/213,659 filed on December 17, 1998, United States patent application Serial No. 09/213,540 filed on December 17, 1998, and PCT application No. US98/26853 filed on December 17, 1998.
Field of the Invention
This application relates to systems and methods for the generation of pulse width modulated signals for lighting or for other purposes.
Background of The Invention
Pulse width modulation (PWM) is a common technique for controlling the "- amount of power that is delivered to a device, such as a motor or a lamp. One of the main benefits of PWM is that it is a technique that allows a digital system to achieve relatively high resolution control over the operation of a particular device. For example PWM is a technique commonly employed in motor control to allow a digital signal to control the speed of a motor. Specifically, PWM takes advantage of the fact that a motor is an inductive element that acts like an integrator. Accordingly, the application to that motor of a pulsed digital signal results in the motor integrating over the square^ wave of the pulsed digital signal. By selecting the proper duty cycle and frequency for the PWM signal with respect to the time response of the particular motor under control, the pulsed signal will appear to the motor as a DC signal at a voltage level that is intermediate between the high and low voltage levels of the pulsed digital power signal. Accordingly, pulse width modulation is a technique that allows a digital output signal to effectively achieve control over a device as if the digital output signal could be set to an intermediate voltage level.
Traditional methods of providing pulse width modulated signals include employing data processing systems that have software timers which control the pulse modulation of a particular output. However, although these systems can work quite well, it is often not cost effective to dedicate a data processing platform to the task of running timer modules for a PWM application.
Other techniques include interrupt driven processes in which a microprocessor, such as one having a watchdog timer, receives periodic interrupts at a known rate. Each time through the interrupt loop the processor updates one or more output pins, thus creating a pulse width modulated signal on each output pin. In this case, the rate at which a signal can be modulated is the clock speed multiplied by the number of cycles in the interrupt routine. For interrupt routines that control multiple channels, the number of instructions in the interrupt routine and therefore the number of clock cycles, can be quite large. Thus, the time period for executing the update instructions can be significant, and the PWM signal may have poor resolution, lacking fine grain control over the system. Still other techniques exist which are effectively combinations of the first two processes, software loops that contain a variable number of instructions for these techniques. The processor uses the hardware timer to generate a periodic interrupt, and then, depending on whether the pulse is to be very short or not, either schedules another interrupt to finish the PWM cycle, or creates the pulse by itself in the first interrupt routine by executing a series of instructions consuming a desired amount of time between two PWM signal updates. The difficulty with this method is that for multiple PWM channels it is very difficult to arrange the timer based signal updates such that they do not overlap, and then to accurately change the update times for a new value of PWM signals.
Accordingly, a method is needed to provide multiple PWM channels without the problems of these traditional methods. Moreover, there is a need to provide a PWM technique that provides fine resolution over multiple channels, and be executed on an inexpensive micro controller or microprocessor platform.
Summary Of The Invention
The present disclosure provides methods and systems to generate multiple channels of pulse width modulated signals for any purpose using software techniques at speeds exceeding those commonly achievable with traditional software synthesis.
In particular, the systems and methods described herein provide, in one aspect, a method for modulating the pulse width of control signals generated on a plurality of separate channels. In one practice, the methods described herein are suitable for execution on a microprocessor or micro controller platform that includes a timer interrupt mechanism which will generate an interrupt in response to a timer counting down a selected time interval or time period. In one practice, the timer is set to count _ down a period of time that is representative of a portion, or sub period, of the PWM cycle. For example, the timer can be selected to count down one fourth the time period of one PWM cycle. Upon expiration of that time period, the timer executes an interrupt that causes the micro controller to enter an interrupt service routine (ISR).
The ISR can review a set of pre-computed values each of which represents the value for a modulated channel for a specific sub period of the PWM cycle. The ISR can then write to the I/O pins that are associated with the different modulated channels to set the level of the respective PWM signal on each of the I/O pins. The ISR can then determine for that duty cycle which channel is to be further modulated. For example, for a PWM signal that has been subdivided into four sub periods, the ISR can determine that for the first of these sub period, the ISR is to further modulate the PWM signal on the first channel. Similarly, when the ISR occurs during the second sub period, the ISR can modulate the second channel. In any case, once the ISR has determined which channel to modulate the ISR can modify the signal level on the I/O pin associated with that channel, and execute a delay loop to consume the desired amount of time to maintain the channel in its toggled state. Once the delay loop has been completed the ISR can execute another I/O write operation to toggle the modulated signal to its previous state. The ISR can then advance the sub-bookkeeping value to point to the next sub period, and terminate processing. Upon termination of the ISR, the microprocessor or controller platform can go back to normal operation with the timer still being set to trigger upon the lapse of a time interval associated with a sub period of the PWM cycle.
In one practice, the systems and methods described herein provide control systems that allow for the modulation of a lamp that includes a red, green, and blue component. Each color component of the lamp can be associated with a particular channel. Each channel can be separately modulated to control the amount of red, green, or blue in the composite light generated by the lamp. Accordingly, the systems and methods described herein allow for the modulation of the hue of light generated by a colored lamp.
Brief description of the figures
The systems and methods of invention will be understood more clearly from a review of certain illustrated embodiments, which include the following:
Fig. 1 depicts one embodiment of a system for modulating the hue of light generated by a color lamp; Fig. 2 depicts pictorially one cycle of a PWM signal generated across three separate channels, each channel being associated with one color component of the lamp depicted in Fig. 1;
Fig. 3 depicts a flow chart diagram of an interrupt service routine suitable for use with the system depicted in Fig. 1 ; and
Fig. 4 depicts two PWM channels modulated by an interrupt service routine as shown in Fig. 3.
Detailed Description of the Preferred Illustrated Embodiment
The invention will now be set forth with reference to certain illustrated embodiments, including control systems that allow for the modulation of the hue of colored light generated by a lamp having a red, green and blue component. However, it will be understood by those of ordinary skill in the art that these illustrated embodiments are merely representative of the systems and methods that are provided by the invention and that other embodiments can be realized without departing from the scope of the invention. For example, the systems and methods described herein can further be employed for providing PWM control systems suitable for controlling the operation of a motor, including controlling the speed at which the motor rotates. Further, it will be understood that the systems and methods described herein can be employed for controlling the power delivered to an electronic device, including a traditional incandescent lightbulb, for controlling the brightness at which the light radiates. Other embodiments can be realized, and the actual implementation of these other embodiments can vary depending upon the application at hand.
Fig. 1 depicts one system 10 that includes a microcontroller element 12, an amplifier 14, and a colored light 18 that includes three colored lamps depicted as a red lamp 20, green lamp 22 and blue lamp 24. As shown in Fig. 1, the microcontroller 12 couples to the amplifier 14 via three separate channels. Similarly, the amplifier couples to the lamp 18 via three separate channels. Each of the three channels can be associated with one PWM signal that modulates the operation of a respective one of the colored lamps 20, 22 and 24. Each of the elements depicted in Fig. 1 cooperate to provide a system that can modulate the relative intensities of each of the colored lamps 20, 22 and 24 to control the overall hue of the light generated by the lamp 18.
To this end, the system 10 depicted in Fig. 1 can include a microcontroller 12 that can be a conventional microcontroller such as any of the controllers available commercially including those available from the Microchip Company, including any of the PIC family of microcontrollers including the PICmicro 16CXX/17CXX family of microcontrollers. Alternatively, the system 10 can include a microprocessor that can access an external memory device for receiving instructions for operating as a system according to the invention. It will further be understood that those of ordinary skill in the art that other configurations can be employed for providing a data processing platform capable of implementing the systems and methods described herein. However, it will be understood by those of ordinary skill in the art that the systems and methods described herein provide for low-cost control systems that can be operated on lightweight inexpensive data processing platforms such as one time programmable microcontrollers.
As is generally known, the microcontroller 12 can include I/O pins, each of which can be employed for carrying a control signal, such as the PWM signals described herein. Each I/O pin can provide a channel for one of the colored lamp components 20, 22 and 24.
To aid in controlling the light 18, the system 10 includes an optional amplifier _ element 14. The amplifier element 14 can be a power amplifier that amplifies a digital control signal, such as a TTL logic level signal usually having low power. The optional amplifier 14 can act to increase the power level of the signal generated by the microcontroller to provide a signal capable of powering the lamp components 20, 22 and 24. The development of such power amplifiers is well-known in the art, and any suitable power amplifier can be practiced with the systems described herein without departing from the scope hereof. Moreover, it will be understood that the amplifier element 14 is optional and that in some embodiments, no power amplifier will be necessary as the power required to activate either of the lamp components can be sufficiently generated by the microcontroller 12, or by another platform capable of generating the PWM signals. It will further be understood that although the amplifier 14 is depicted as a separate element, the amplifier 14 could be integrated into the lamp component 18. Other suitable modifications to the system 10 for integrating or modifying the system 10 to accommodate the power needs of the devices under control can be practiced herewith without departing from the scope of the invention.
Figs. 2 and 3 depict pictorially the operation of the system 10. Specifically, Fig. 2 depicts the PWM signals that can be generated on the I/O pins of the microcontroller
12. The duty cycles shown in Fig. 2 can be generated, in part, by the action of an interrupt service routine (ISR) that operates, for example, as shown in the flow chart diagram of Fig. 3. Specifically, Fig. 2 shows that a period P can be subdivided into four sub periods, depicted in Fig. 2 as subperiods 1, 2, 3 and 4. The exemplary period of Fig. 2 lasts for about 1/5,000 seconds in length, with each subperiod being substantially one fourth of that duration. The actual duration of the time period will vary according to the application. Moreover, it will be understood that the systems described herein can be employed to generate systems with variable time periods P.
In one practice, the time period for each subperiod can be entered into a watchdog timer within the microcontroller. The watchdog timer can trigger an interrupt each time the subperiod lapses so that an interrupt is generated that causes the microcontroller 12 to enter an ISR associated with the timer interrupt. One such ISR is depicted in Fig. 3. Specifically, Fig. 3 shows an ISR process 50 that begins in a step 52_ wherein in response to an interrupt occurring, the microcontroller exits out of its current control program and enters an ISR that is associated with that interrupt and that will be executed until completion.
The design and development of such ISRs is well known in the art and follows from general principals in the art of computer science and embedded systems. In particular, ISR 50 depicted in Fig. 4 includes a number of steps including step 52 wherein the ISR writes to a port, typically understood as an I/O port on the microcontroller. Similarly, in a step 56, the ISR chooses a channel or channels wherein these channels are to be further modulated, as will be described in detail below. The additional modulation takes place by operation of steps 58 through 62 wherein a write operation takes place to toggle the value of the channel and wherein a delay loop maintains the channel in this toggled state for a predetermined or preselected period of time. Once that time period has lapsed, the process 50 can proceed from step 60 to step 62 wherein a further write operation can take place to toggle the channel back to its original value. The steps of the ISR depicted in Fig. 4 will now be described in more detail with reference to Fig. 3 which depicts the modulation of three PWM channels by a system that includes an ISR process such as the ISR process 50 depicted in Fig. 4.
To generate a plurality of PWM signals, e.g. N PWM signals, the processor of the micro controller can schedule an interrupt of at least N equal sub periods. Each sub period can be associated with a global PWM update procedure, and a vernier update procedure. The sub periods can be denoted by Pi where the first sub period is one, the second is 2 and so on. This is shown in Fig. 2 by the PWM cycle period 40 that shows the PWM cycle as subdivided into four sub periods. Also depicted in Fig. 2 is that the sub period corresponds to the entry of an ISR. This is depicted in Fig. 2 by the demarcations 44 that correspond to the beginning of each of the sub periods.
In each sub period, which begins with an interrupt, the ISR executes a series of operations that modulates the PWM signals of the channels 32, 34 and 38, each of which corresponds to a respective one of the red, green and blue lamps depicted in Fig. 1. To this end, the ISR can update all PWM signals by selecting from a set of pre-computed - values corresponding to the specific sub period. This can entail a single array read, followed by a single write to update the multiple I/O pins on which the PWM signals are generated. For example, Fig. 2 show that when the ISR entry occurs at the beginning of sub period 2, each PWM channel can be modified as a function of the pre-computed values. For example, Fig. 2 shows that upon entry into the ISR at the beginning of sub period 2, the system will toggle the values of channels 32, 34 and 38, such that channels
32 and 34 toggle from high to low, and channel 38 toggles from low to high. In a next step, the ISR can cause the microcontroller to further modulate the signal on a selected one or ones of the PWM channels. In Fig. 2, this further modulation is shown as the toggling of one of the PWM channels for about one fourth of a sub- period. For example, the system in sub period 2 can further modulate the value of the PWM channel 34, such that the value of channel 34 toggles from low to high for about one quarter of the duration of the sub period 2. This further toggling can be described_as a "vernier modulation." To accomplish this operation, the system can execute a write to the respective I/O pin or pins, execute a series of instructions consuming the desired amount of time, and then execute another update, typically an I/O write.
This vernier modulation can reduce or increase the PWM "on" of "off ' time, by changing the state of the signal for a desired portion of the sub period. There are two possible cases, either the global update places the signal in the "off state and the vernier routine turns it "on" for a portion of the sub period, or the global update is "on" and the vernier routine turns the signal "off for a portion of the sub period.
In a subsequent step, the system can advance a sub period bookkeeping value to point to the next sub period, such as for example sub period 3. This positions the system for entering into the ISR upon the next interrupt and modulating the next PWM channel in the series. Using these methods each PWM channel can change multiple times per
PWM period. This is advantageous because software can use this property to further increase the apparent PWM frequency, while still maintaining a relatively low interrupt rate.
The methods described herein reduce the amount of processor time employed for controlling the modulation period of the PWM channels. For an example, consider two signals A and B with a resolution of 20 counts programmed to 7 and 14 counts respectively. These signals could be depicted as shown in Fig. 4.
In this example the pre-computed update value at Pi=l is both signals high, or
"on." Signal A then spends some time in the "on" state, while the interrupt service routine continues to execute. Signal A then goes low or "off in the vernier step at the first "v", and the interrupt service routine executes time delay code during the time before restoring the signal to the on state at the second "v." For the depicted signal A, the vernier occurs for about three counts, including the interrupt time. The actual time between the multiple update at the beginning of the sub period and the vernier update need not be known, so long as the time spent between the vernier updates is the desired time. While the vernier updates are occurring, signal B which was switched on remains on and un-affected. When the second interrupt occurs, both signals are switched off, and the vernier routine now adds four additional counts to the period of signal B. In this example only 7 out of the 20 counts, or 35% of the processor time plus the time required for 2 interrupts, has been consumed.
Since only one vernier period is required per signal generated, increasing the number of periods per PWM cycle can generate non-uniform PWM waveforms at frequencies higher than those possible on most microprocessors' dedicated hardware PWM outputs for a large number of possible output codes. The microprocessor still executes interrupts at fixed intervals.
To change the duty cycles of the signals produced, the process described herein can asynchronously update any or all of the global or vernier values, in any order, without having to synchronize with the ISR, and without stopping the ISR. The ISR does not have to change any variables which the main code changes or vice-versa. Thus there is no need for interlocks of any kind.
This software routine can thus utilize a single timer to generate multiple PWM _ signals, with each signal having the resolution of a single processor cycle. On a
Microchip PIC microprocessor, for example, this allows three PWM signals to be generated with a resolution of 1024 counts, each corresponding to only a single instruction. This allows a PWM period of 1024 instruction cycles, i.e 4882Hz at a 20 MHZ clock. Furthermore, for counts between 256 and 792 the PWM waveform is a non-uniform 9765Hz signal, with much lower noise power than the processor's own straight PWM generator. Other processors and controllers can yield other PWM cycles and timing. While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be limited only by the following claims.

Claims

Claims
1. A method of generating a plurality of pulse width modulated signals, comprising updating said plurality of pulse width modulated signals from a set of pre-computed values corresponding to a plurality of sub periods of a PWM cycle, modifying one of the signals by executing a write to the I/O pins, executing a series of instructions consuming the desired amount of time, executing a second write to the I/O pins, and advancing the sub period bookkeeping value to point to the next sub period in the PWM cycle.
2. A method according to claim 1, wherein updating said plurality of pulse width modulated signals includes conducting a single array read, followed by a single write to update a plurality of multiple I/O pins on which the signals are generated.
3. A method according to claim 1, including providing a plurality of sets of pre- computed values, each set corresponding to a particular pattern of modulation.
4. A method according to claim 3, including allow a user to select from said plurality of pre-computed values, to provide user control over the selected pattern of modulation.
5. A method according to claim 1, including coupling said pulse width modulated signals to a plurality of lamps, each corresponding to a preselected color, whereby hue of a light generated by said plurality of lamps is controlled as a function of said pulse width modulated signals.
6. A system for modulating the pulse of a digital signal, comprising a memory having stored therein a set of pre-computed values, each being representative of a signal level for said digital signal, and a programmable device having a program memory and a timer, said program memory storing a set of instructions capable of directing said programmable device to monitor said timer, and in response to a signal generated by said timer, to access said set of pre-computed values for selecting a signal level for said digital signal, and an interrupt service routine capable of directing said device to further modulate said digital signal.
7. A system according to claim 6, wherein said programmable device comprises a microcontroller.
8. A system according to claim 6, wherein said programmable device comprises a microprocessor.
9. A system according to claim 6, wherein said interrupt service routine comprises a routine activated in response to a timer interrupt generated by said programmable device.
10. A system according to claim 6, further comprising a plurality of sets of pre- computed values for said digital signal.
11. A system according to claim 6, further comprising an amplifier for adjusting a characteristic of said digital signal.
12. A system according to claim 6, further comprising a lamp coupled to said digital signal, for allowing said digital signal to control an operating characteristic of said lamp.
PCT/US1999/014555 1998-06-26 1999-06-25 Method for software driven generation of multiple simultaneous high speed pulse width modulated signals WO2000001067A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002336184A CA2336184A1 (en) 1998-06-26 1999-06-25 Method for software driven generation of multiple simultaneous high speed pulse width modulated signals
JP2000557545A JP2002519989A (en) 1998-06-26 1999-06-25 Method for generating software-driven simultaneous high-speed pulse-width modulated signals
AU53129/99A AU5312999A (en) 1998-06-26 1999-06-25 Method for software driven generation of multiple simultaneous high speed pulse width modulated signals
EP99938706A EP1090459A2 (en) 1998-06-26 1999-06-25 Method for software driven generation of multiple simultaneous high speed pulse width modulated signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9092098P 1998-06-26 1998-06-26
US60/090,920 1998-06-26

Publications (2)

Publication Number Publication Date
WO2000001067A2 true WO2000001067A2 (en) 2000-01-06
WO2000001067A3 WO2000001067A3 (en) 2000-03-16

Family

ID=22224965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/014555 WO2000001067A2 (en) 1998-06-26 1999-06-25 Method for software driven generation of multiple simultaneous high speed pulse width modulated signals

Country Status (5)

Country Link
EP (1) EP1090459A2 (en)
JP (1) JP2002519989A (en)
AU (1) AU5312999A (en)
CA (1) CA2336184A1 (en)
WO (1) WO2000001067A2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025842A2 (en) 2000-09-19 2002-03-28 Color Kinetics Incorporated Universal lighting network method and system
WO2003028217A2 (en) * 2001-09-19 2003-04-03 Robert Bosch Gmbh Device and method for producing pulse-width modulated output signals
US8840282B2 (en) 2010-03-26 2014-09-23 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8866396B2 (en) 2000-02-11 2014-10-21 Ilumisys, Inc. Light tube and power supply circuit
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US8894430B2 (en) 2010-10-29 2014-11-25 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US8928025B2 (en) 2007-12-20 2015-01-06 Ilumisys, Inc. LED lighting apparatus with swivel connection
US8946996B2 (en) 2008-10-24 2015-02-03 Ilumisys, Inc. Light and light sensor
US9013119B2 (en) 2010-03-26 2015-04-21 Ilumisys, Inc. LED light with thermoelectric generator
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9084314B2 (en) 2006-11-28 2015-07-14 Hayward Industries, Inc. Programmable underwater lighting system
US9101026B2 (en) 2008-10-24 2015-08-04 Ilumisys, Inc. Integration of LED lighting with building controls
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
TWI510004B (en) * 2009-09-18 2015-11-21 Interdigital Patent Holdings Method and apparatus for dimming with rate control for visible light communications (vlc)
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9353939B2 (en) 2008-10-24 2016-05-31 iLumisys, Inc Lighting including integral communication apparatus
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US20170213451A1 (en) 2016-01-22 2017-07-27 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US10176689B2 (en) 2008-10-24 2019-01-08 Ilumisys, Inc. Integration of led lighting control with emergency notification systems
US10718507B2 (en) 2010-04-28 2020-07-21 Hayard Industries, Inc. Underwater light having a sealed polymer housing and method of manufacture therefor
US20200319621A1 (en) 2016-01-22 2020-10-08 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US10976713B2 (en) 2013-03-15 2021-04-13 Hayward Industries, Inc. Modular pool/spa control system
US11168876B2 (en) 2019-03-06 2021-11-09 Hayward Industries, Inc. Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994723B2 (en) * 2005-07-27 2011-08-09 Koninklijke Philips Electronics N.V. Lighting system and method for controlling a plurality of light sources
US8203281B2 (en) 2008-04-29 2012-06-19 Ivus Industries, Llc Wide voltage, high efficiency LED driver circuit
DE102016211737A1 (en) * 2016-06-29 2018-01-04 Bayerische Motoren Werke Aktiengesellschaft motor vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298871A (en) * 1991-12-25 1994-03-29 Nec Corporation Pulse width modulation signal generating circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508845B2 (en) * 1989-07-11 1996-06-19 日本電気株式会社 Pulse width modulation inverter controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298871A (en) * 1991-12-25 1994-03-29 Nec Corporation Pulse width modulation signal generating circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 185 (E-1066), 13 May 1991 (1991-05-13) & JP 03 045166 A (NEC CORP), 26 February 1991 (1991-02-26) *

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803806B2 (en) 2000-02-11 2017-10-31 Ilumisys, Inc. Light tube and power supply circuit
US9752736B2 (en) 2000-02-11 2017-09-05 Ilumisys, Inc. Light tube and power supply circuit
US9222626B1 (en) 2000-02-11 2015-12-29 Ilumisys, Inc. Light tube and power supply circuit
US9739428B1 (en) 2000-02-11 2017-08-22 Ilumisys, Inc. Light tube and power supply circuit
US9746139B2 (en) 2000-02-11 2017-08-29 Ilumisys, Inc. Light tube and power supply circuit
US10557593B2 (en) 2000-02-11 2020-02-11 Ilumisys, Inc. Light tube and power supply circuit
US8866396B2 (en) 2000-02-11 2014-10-21 Ilumisys, Inc. Light tube and power supply circuit
US8870412B1 (en) 2000-02-11 2014-10-28 Ilumisys, Inc. Light tube and power supply circuit
US9777893B2 (en) 2000-02-11 2017-10-03 Ilumisys, Inc. Light tube and power supply circuit
US9970601B2 (en) 2000-02-11 2018-05-15 Ilumisys, Inc. Light tube and power supply circuit
US9416923B1 (en) 2000-02-11 2016-08-16 Ilumisys, Inc. Light tube and power supply circuit
US9759392B2 (en) 2000-02-11 2017-09-12 Ilumisys, Inc. Light tube and power supply circuit
US10054270B2 (en) 2000-02-11 2018-08-21 Ilumisys, Inc. Light tube and power supply circuit
US9006993B1 (en) 2000-02-11 2015-04-14 Ilumisys, Inc. Light tube and power supply circuit
US9006990B1 (en) 2000-02-11 2015-04-14 Ilumisys, Inc. Light tube and power supply circuit
WO2002025842A3 (en) * 2000-09-19 2003-08-28 Color Kinetics Inc Universal lighting network method and system
JP2012039648A (en) * 2000-09-19 2012-02-23 Philips Solid-State Lighting Solutions Inc Universal lighting network methods and systems
WO2002025842A2 (en) 2000-09-19 2002-03-28 Color Kinetics Incorporated Universal lighting network method and system
WO2003028217A2 (en) * 2001-09-19 2003-04-03 Robert Bosch Gmbh Device and method for producing pulse-width modulated output signals
WO2003028217A3 (en) * 2001-09-19 2003-10-02 Bosch Gmbh Robert Device and method for producing pulse-width modulated output signals
US9084314B2 (en) 2006-11-28 2015-07-14 Hayward Industries, Inc. Programmable underwater lighting system
US8928025B2 (en) 2007-12-20 2015-01-06 Ilumisys, Inc. LED lighting apparatus with swivel connection
US9101026B2 (en) 2008-10-24 2015-08-04 Ilumisys, Inc. Integration of LED lighting with building controls
US10713915B2 (en) 2008-10-24 2020-07-14 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US11333308B2 (en) 2008-10-24 2022-05-17 Ilumisys, Inc. Light and light sensor
US11073275B2 (en) 2008-10-24 2021-07-27 Ilumisys, Inc. Lighting including integral communication apparatus
US10973094B2 (en) 2008-10-24 2021-04-06 Ilumisys, Inc. Integration of LED lighting with building controls
US9353939B2 (en) 2008-10-24 2016-05-31 iLumisys, Inc Lighting including integral communication apparatus
US10560992B2 (en) 2008-10-24 2020-02-11 Ilumisys, Inc. Light and light sensor
US9398661B2 (en) 2008-10-24 2016-07-19 Ilumisys, Inc. Light and light sensor
US10182480B2 (en) 2008-10-24 2019-01-15 Ilumisys, Inc. Light and light sensor
US10932339B2 (en) 2008-10-24 2021-02-23 Ilumisys, Inc. Light and light sensor
US10176689B2 (en) 2008-10-24 2019-01-08 Ilumisys, Inc. Integration of led lighting control with emergency notification systems
US9585216B2 (en) 2008-10-24 2017-02-28 Ilumisys, Inc. Integration of LED lighting with building controls
US9635727B2 (en) 2008-10-24 2017-04-25 Ilumisys, Inc. Light and light sensor
US10342086B2 (en) 2008-10-24 2019-07-02 Ilumisys, Inc. Integration of LED lighting with building controls
US10036549B2 (en) 2008-10-24 2018-07-31 Ilumisys, Inc. Lighting including integral communication apparatus
US10571115B2 (en) 2008-10-24 2020-02-25 Ilumisys, Inc. Lighting including integral communication apparatus
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US8946996B2 (en) 2008-10-24 2015-02-03 Ilumisys, Inc. Light and light sensor
TWI510004B (en) * 2009-09-18 2015-11-21 Interdigital Patent Holdings Method and apparatus for dimming with rate control for visible light communications (vlc)
US9013119B2 (en) 2010-03-26 2015-04-21 Ilumisys, Inc. LED light with thermoelectric generator
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US8840282B2 (en) 2010-03-26 2014-09-23 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US9395075B2 (en) 2010-03-26 2016-07-19 Ilumisys, Inc. LED bulb for incandescent bulb replacement with internal heat dissipating structures
US10718507B2 (en) 2010-04-28 2020-07-21 Hayard Industries, Inc. Underwater light having a sealed polymer housing and method of manufacture therefor
US8894430B2 (en) 2010-10-29 2014-11-25 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9807842B2 (en) 2012-07-09 2017-10-31 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US10966295B2 (en) 2012-07-09 2021-03-30 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US11822300B2 (en) 2013-03-15 2023-11-21 Hayward Industries, Inc. Modular pool/spa control system
US10976713B2 (en) 2013-03-15 2021-04-13 Hayward Industries, Inc. Modular pool/spa control system
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US10260686B2 (en) 2014-01-22 2019-04-16 Ilumisys, Inc. LED-based light with addressed LEDs
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US10690296B2 (en) 2015-06-01 2020-06-23 Ilumisys, Inc. LED-based light with canted outer walls
US11028972B2 (en) 2015-06-01 2021-06-08 Ilumisys, Inc. LED-based light with canted outer walls
US11428370B2 (en) 2015-06-01 2022-08-30 Ilumisys, Inc. LED-based light with canted outer walls
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US11096862B2 (en) 2016-01-22 2021-08-24 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11000449B2 (en) 2016-01-22 2021-05-11 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10272014B2 (en) 2016-01-22 2019-04-30 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US20200319621A1 (en) 2016-01-22 2020-10-08 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US11122669B2 (en) 2016-01-22 2021-09-14 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11129256B2 (en) 2016-01-22 2021-09-21 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10219975B2 (en) 2016-01-22 2019-03-05 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US20170213451A1 (en) 2016-01-22 2017-07-27 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
US11720085B2 (en) 2016-01-22 2023-08-08 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10363197B2 (en) 2016-01-22 2019-07-30 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US11168876B2 (en) 2019-03-06 2021-11-09 Hayward Industries, Inc. Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly
US11754268B2 (en) 2019-03-06 2023-09-12 Hayward Industries, Inc. Underwater light having programmable controller and replaceable light-emitting diode (LED) assembly

Also Published As

Publication number Publication date
AU5312999A (en) 2000-01-17
EP1090459A2 (en) 2001-04-11
WO2000001067A3 (en) 2000-03-16
CA2336184A1 (en) 2000-01-06
JP2002519989A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US7113541B1 (en) Method for software driven generation of multiple simultaneous high speed pulse width modulated signals
EP1090459A2 (en) Method for software driven generation of multiple simultaneous high speed pulse width modulated signals
KR101303360B1 (en) Method and device for driving an array of light sources
CA2564659C (en) Modulation method and apparatus for dimming and/or colour mixing leds
CN103906319A (en) Delta-sigma signal density modulation for optical transducer control
CN100561395C (en) Timer construction and microcontroller and light ballast resistor with this timer construction
WO2020205535A1 (en) Systems, devices, and methods for multiple channel pulse width modulation dimming control
US8074085B2 (en) Method for controlling the power supply from a power source to a power consumer
US9155150B2 (en) LED driver operating in different modes
JP2020119772A (en) Control arrangement, luminaire, and program of control arrangement
US8169354B2 (en) Apparatus and methods thereof for reducing energy consumption for PWM controlled integrated circuits in vehicles
JPH01103462A (en) Light quantity correction device in optical printer
EP0308511A4 (en) Laser oscillator control circuit.
JPH0535208A (en) Light emitting device
US7028123B2 (en) Microcomputer, has selection circuit to select either testing-purpose interrupt request signal or interrupt request selection signal based on delayed selection signal, where selected signals are sent to interrupt controller
JP2010217568A (en) Display
US20220080882A1 (en) Vehicle lamp and lamp control module
JPS6118637Y2 (en)
KR0139789Y1 (en) Lamp illuminance control apparatus
JPS6489998A (en) Motor drive system
CN114096035A (en) System and method for switching light intensity output level configuration of navigation light
JPH074626Y2 (en) Clock with luminous hands
SU1569970A1 (en) Multichannel distributor
JPH0235813A (en) Pulse generator
JPH05102526A (en) Orange-color lighting method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2336184

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 53129/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999938706

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 557545

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999938706

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999938706

Country of ref document: EP