WO1999065722A1 - Triebstrangmanagement für ein kraftfahrzeug - Google Patents

Triebstrangmanagement für ein kraftfahrzeug Download PDF

Info

Publication number
WO1999065722A1
WO1999065722A1 PCT/EP1999/003285 EP9903285W WO9965722A1 WO 1999065722 A1 WO1999065722 A1 WO 1999065722A1 EP 9903285 W EP9903285 W EP 9903285W WO 9965722 A1 WO9965722 A1 WO 9965722A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
maps
control unit
quality
transmission
Prior art date
Application number
PCT/EP1999/003285
Other languages
English (en)
French (fr)
Inventor
Rolf Bosse
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to JP2000554577A priority Critical patent/JP4167805B2/ja
Priority to AT99923587T priority patent/ATE215458T1/de
Priority to EP99923587A priority patent/EP1087875B1/de
Priority to DE59901128T priority patent/DE59901128D1/de
Publication of WO1999065722A1 publication Critical patent/WO1999065722A1/de
Priority to US09/740,310 priority patent/US6324456B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2302/00Determining the way or trajectory to new ratio, e.g. by determining speed, torque or time parameters for shift transition
    • F16H2302/02Optimizing the way to the new ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/30Shifting characterised by the way or trajectory to a new ratio, e.g. by performing shift according to a particular algorithm or function

Definitions

  • the invention relates to a powertrain management method for a motor vehicle with a CVT transmission, and in particular to a powertrain management method for online use, and a device for carrying out the method.
  • the invention is therefore based on the object of creating a dynamic method for drive train management and a corresponding drive train management unit.
  • an optimal path through the quality map is set in a predetermined quality map, in which a quality size is plotted as a function of the power and the speed, for setting the speed at a requested power predefined optimization criteria determined.
  • the quality map can be a combination of several maps, each map describing a quality size to be optimized.
  • the characteristic diagrams are preferably standardized characteristic diagrams, each characteristic diagram having its own normalization function. In other words, different standardization functions can be used for different maps, but it is also possible to use a common standardization function.
  • each characteristic diagram can be multiplied by a weight function, whereby the weight function can be a time-dependent factor. This opens up the possibility of introducing temporal effects, such as the aging of an engine, into the quality map to be optimized.
  • a map can be composed of different maps of the same size, whereby an aging effect can also be recorded.
  • the predefined characteristic diagrams can preferably be supplemented by measuring individual quality variables during driving operation, as a result of which the characteristic diagrams used are better adapted to the actual conditions of the motor vehicle.
  • the optimization strategy can preferably be selected online, for example by the driver specifying the optimization strategy by input.
  • Optimization variables include, for example, consumption, NOx emission, particle emission, acoustics and / or performance.
  • the maximum possible adjustment of the power per predetermined time cycle and the maximum possible transmission adjustment option per time cycle are preferably determined by a driving test, these ascertained values being taken into account in the optimization.
  • the device according to the invention for carrying out the method explained above has a control unit for the internal combustion engine, a control unit for the CVT transmission and a control unit for the drive train management, the control units being advantageously connected to one another via a bus, preferably a CAN bus.
  • the drive train control unit outputs the manipulated variable injection quantity to the engine control unit and the steep variable translation to the transmission control unit to control the operating point of the drive train.
  • Fig. 3 shows the functional structure of a device for performing powertrain management.
  • Fig. 1 shows a schematic representation of the method for online determination of an optimal transmission characteristic from predetermined maps.
  • , KF2, ... KF n are determined, which can serve as basic maps, so to speak.
  • a map is defined as a representation of a certain quality variable as a function of the torque and the speed, for example, KF1 could be a map with regard to the NOx emission, KF2 could be a map with regard to the number of soot or particle emissions and KF n could be a map with regard to consumption.
  • the NOx emission of a new engine, KF2 the NOx emission of a retracted engine e.g.
  • the number of maps n used is a natural number greater than or equal to one.
  • , KF2, ... KF n are then standardized, that is, by means of normalization functions N-
  • the normalization function does not have to be linear, but can also be an e-function, for example.
  • the range of the normalized quality size is a value between 0 and 255, whereby it is agreed that small values are "good” values, while large values are “bad” values. This agreement could just as well be inverted. In other words, it becomes Description of the value of the quality size uses one byte, which is generally sufficient. If higher accuracy is required, a correspondingly larger area is used, for example 2 bytes.
  • Characteristic maps consist in making the functional values of the quality variables comparable with one another. Then the standardized maps from the display
  • Transformation is interchangeable. The transformed and standardized
  • Maps are then linked to a common quality map in the next step.
  • One possibility of linking is the addition of the three maps, which with
  • , ⁇ 2, ... ⁇ n are multiplied. In the quality map determined in this way
  • GKF can use an appropriate method to determine an optimal route through the quality map.
  • a suitable method is, for example, the determination of the path with low values, i. H. the sum of the individual values should be as small as possible, with constantly increasing power and speed.
  • the calculation can be carried out online while the vehicle is in operation, a strategy being able to be specified by a suitable choice of the weighting factors ⁇ i, c ⁇ , ... ⁇ n and / or the normalization function N-
  • the method begins with basic maps determined on the test bench, which are updated during the operation of the vehicle by measuring suitable map points, so that a current optimal transmission characteristic curve can virtually always be determined online during operation of the vehicle by specifying a desired strategy .
  • FIG. 2 shows an example of an optimal path through a quality map, which is generated with the method explained in FIG. 1, wherein it is of course also possible to generate a quality map from a single map.
  • Contour lines of a quality size for example the NOx emission
  • provides an example of a fictitious transmission characteristic in which to generate a higher power the speed n is increased accordingly.
  • the fictitious transmission characteristic curve KLi runs in such a way that it touches as much as possible all the emission maxima, ie that this transmission characteristic causes poor emission behavior.
  • the "optimal" gear characteristic KL2 avoids straight areas of high emission, ie large values of the quality map, so that a significantly better emission behavior is achieved.
  • a calculation of the optimal path through the quality map can be carried out according to the following method, provided that the motor reaction time is faster than the reaction time of the transmission.
  • the response time is understood to be the time it takes an aggregate to set a new operating point. In the case of a transmission, it is the time it takes to set a new gear ratio, and in the case of an engine it is the time it takes to set a new torque.
  • a time cycle T x is defined, which is given by the maximum program runtime of the target point calculation process.
  • the maximum power adjustment option (P vs t max ) of the engine per time cycle T x is determined by a driving test.
  • the maximum adjustment of the transmission (n vs t max ) per time cycle T x is also determined once in a driving test.
  • is divided into a n speed steps.
  • LL is the idle value.
  • the number a n of the speed steps results from the distance between the actual value APj s t and the stationary target value AP z j e
  • P vs t max sets boundary conditions.
  • the transmission adjustment interval n VS ⁇ is reduced until the new i-th power adjustment option P vs tj is now equal to the maximum
  • Power adjustment option P vs t max is. However, if the power adjustment option of the i-th interval P vs tj is smaller than the maximum power adjustment option, then the transmission adjustment interval n VS fj is set equal to the maximum interval n vs t max .
  • the number i of the interval under consideration is a natural number less than or equal to the number a n of the speed steps.
  • different quality maps can of course be used for different engine and / or driving conditions, for example a quality map that describes a cold engine or a quality map that describes a engine with operating temperature.
  • the device comprises three control units, namely the drive train management control unit TSM-SG, the engine control unit MSG and the transmission control unit GSG.
  • a driver request F and a manufacturer request H flow into the drive train management control unit TSM-SG.
  • the driver's request F can be a performance request through a corresponding position of the pedal value transmitter (accelerator pedal).
  • the manufacturer's request H contained a strategy with regard to, for example, exhaust gas, consumption, comfort, etc.
  • measured values MW from sensors are added to the drive train management control unit TSM-SG to supplement, for example, the maps and the driver's strategy FS.
  • the powertrain management control unit TSM-SG calculates the optimal value by means of a corresponding quality map when the driver requests performance and gives the corresponding manipulated variables, i. H. Injection quantity M_E and speed n, from the engine control unit MSG or the transmission control unit GSG. In the engine and transmission control units MSG, GSG, the corresponding control parameters are then delivered to the engine M or the transmission G.
  • the gearbox G is a continuously adjustable gearbox (CVT gearbox).
  • An information exchange I as a safety function takes place between the engine control unit and the transmission control unit.
  • a safety function MSF is also implemented in the engine control unit MSG, for example the kick-down function of the pedal value transmitter (accelerator pedal), which can be implemented directly by the driver's request (see dashed line).
  • a safety function GSF in the form of a reserve strategy is also implemented in the transmission control unit GSG.
  • TSM-SG's can also be accommodated in the engine control unit or transmission control unit. LIST OF REFERENCE NUMBERS

Abstract

In einem Verfahren zum Onlinemanagement eines Triebstranges eines Kraftfahrzeuges mit einem CVT-Getriebe wird in einem vorgegebenen Gütekennfeld, in dem eine Gütegröße als Funktion der Leistung und der Drehzahl aufgetragen ist, zur Einstellung der Drehzahl bei einer angeforderten Leistung ein optimaler Weg durch das Gütekennfeld bezüglich vorgegebener Optimierungskriterien online ermittelt.

Description

Triebstrangmanagement für ein Kraftfahrzeug
Die Erfindung betrifft ein Triebstrangmanagementverfahren für ein Kraftfahrzeug mit CVT-Getriebe, und insbesondere ein Triebstrangmanagementverfahren für den Online- Einsatz, sowie eine Vorrichtung zur Durchführung des Verfahrens.
Bei derzeitigen Kraftfahrzeugen findet eine getrennte und unabhängige Steuerung von Motor und Getriebe statt. Dabei wird motorseitig für den angesteuerten Betriebspunkt bei einer Leistungsanforderung des Fahrers in einem Kennfeld die entsprechenden Applikationsparameter ausgewählt und mittels eines Motorsteuergeräts eingestellt. Getriebeseitig wird bei einem Kraftfahrzeug mit einem stufenlos verstellbaren Getriebe (CVT-Getriebe) ein der angeforderten Leistung angepaßte Drehzahl eingestellt. Eine Rückkopplung zwischen Motor und Getriebe zur wechselseitigen Optimierung bezüglich von Gütegrößen wie beispielsweise Emission, Verbrauch, Komfort, Partikelemission , Akustik etc. findet nicht statt. Ferner ist es nicht möglich die Motor- bzw. Getriebeapplikation während der Fahrt bzw. des Betriebs des Kraftfahrzeugs zu ändern.
Der Erfindung liegt daher die Aufgabe zugrunde, ein dynamisches Verfahren zum Triebstrangmanagement sowie eine entsprechende Triebstrangmanagementeinheit zu schaffen.
Die Aufgabe wird durch die Merkmale der Ansprüche 1 und 11 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Bei dem erfindungsgemäßen Verfahren zum Onlinemanagement eines Triebstranges eines Kraftfahrzeuges mit einem CVT-Getriebe wird in einem vorgegebenen Gütekennfeld, in dem eine Gütegröße als Funktion der Leistung und der Drehzahl aufgetragen ist, zur Einstellung der Drehzahl bei einer angeforderten Leistung ein optimaler Weg durch das Gütekennfeld bezüglich vorgegebener Optimierungskriterien ermittelt. Dabei kann das Gütekennfeld eine Zusammenfassung mehrerer Kennfelder sein, wobei jedes Kennfeld eine zu optimierende Gütegröße beschreibt. Vorzugsweise sind die Kennfelder normierte Kennfelder, wobei jedes Kennfeld eine eigene Normierungsfunktion aufweist. Mit anderen Worten es können für unterschiedliche Kennfelder unterschiedliche Normierungsfunktionen verwendet werden, es ist jedoch auch möglich eine gemeinsame Normierungsfunktion zu verwenden.
Ferner kann jedes Kennfeld mit einer Gewichtsfunktion multipliziert werden, wobei die Gewichtsfunktion ein zeitabhängiger Faktor sein kann. Dadurch eröffnet sich die Möglichkeit zeitliche Effekte, wie beispielsweise die Alterung eines Motors, in das zu optimierende Gütekennfeld einzubringen.
Ferner kann ein Kennfeld aus verschiedenen Kennfelder der gleichen Größe zusammengesetzt werden, wodurch ebenfalls ein Alterungseffekt erfaßt werden kann.
Vorzugsweise können die vorgegebenen Kennfelder durch Messung einzelner Gütegrößen im Fahrbetrieb ergänzt werden, wodurch eine bessere Anpassung der eingesetzten Kennfelder an die tatsächlichen Begebenheiten des Kraftfahrzeugs erzielt wird.
Vorzugsweise kann die Optimierungsstrategie online ausgewählt werden, beispielsweise indem der Fahrer per Eingabe die Optimierungsstrategie festlegt.
Als Optimierungsgrößen kommen beispielsweise der Verbrauch, die NOx-Emission, die Partikelemission, die Akustik und/oder die Leistung in Betracht.
Vorzugsweise wird durch einen Fahrversuch die maximal mögliche Verstellmöglichkeit der Leistung pro vorgegebenen Zeittakt und die maximal mögliche Getriebeverstellmöglichkeit pro Zeittakt ermittelt, wobei diese ermittelten Werte bei der Optimierung berücksichtigt werden.
Die erfindungsgemäße Vorrichtung zur Durchführung des oben erläuterten Verfahrens weist ein Steuergerät für den Verbrennungsmotor, ein Steuergerät für das CVT-Getriebe und ein Steuergerät für das Triebstrangmanagement auf, wobei die Steuergeräte über vorteilhaft einen Bus, vorzugsweise einen CAN-Bus, miteinander verbunden sind. Dabei gibt das Triebstrangsteuergerät zur Ansteuerung des Arbeitspunktes des Triebstrangs die Stellgröße Einspritzmenge an das Motorsteuergerät und die Steilgröße Übersetzung an das Getriebesteuergerät aus.
Bevorzugte Ausführungsformen sowie Details der Erfindung werden nachfolgend anhand der Zeichnungen erläutert.
Fig. 1 zeigt eine Schemadarstellung des Verfahrens zur Ermittlung einer optimalen
Getriebekennlinie,
Fig. 2 zeigt ein Beispiel einer Getriebekennlinie in einem Gütekennfeld, und
Fig. 3 zeigt den funktionalen Aufbau einer Vorrichtung zur Durchführung des Triebstrangmanagements.
Fig. 1 zeigt eine schematische Darstellung des Verfahrens zur Online-Ermittlung einer optimalen Getriebekennlinie aus vorgegebenen Kennfeldern. Auf einem Motorprüfstand MPS werden Kennfelder KF-|, KF2, ... KFn ermittelt, die sozusagen als Basiskennfelder dienen können. Dabei ist ein Kennfeld definiert als eine Darstellung einer bestimmten Gütegröße als Funktion des Drehmoments und der Drehzahl, also beispielsweise könnte KF1 ein Kennfeld bezüglich der NOx-Emission, KF2 ein Kennfeld bezüglich der Rußzahl oder Partikelemission und KFn eine Kennfeld hinsichtlich der Verbrauch sein. Es sind auch andere Zuordnungen denkbar, beispielsweise könnte KF-| die NOx-Emission eines neuen Motors, KF2 die NOx-Emission eines eingefahrenen Motors (z. B. mit 10.000 km Laufleistung) und KFn die NOx-Kennlinie eines alten Motors (z. B. 100.000 KM Laufleistung) sein. Ferner ist das Verfahren hier nur beispielhaft für 3 Kennfelder erläutert. Die Anzahl der verwendeten Kennfelder n ist eine natürliche Zahl größer oder gleich Eins. Die Kennfelder KF<|, KF2, ... KFn werden anschließend normiert, d. h. mittels Normierungsfunktionen N-|, N2 und ... Nn in normierte Kennfelder KF-jnorm, KF2norm und ■•• Kfrnnorm abgebildet. Die Normierungsfunktion muß nicht linear sein, sondern kann beispielsweise auch eine e-Funktion sein. Im allgemeinen ist der Bereich der normierten Gütegröße ein Wert zwischen 0 und 255, wobei vereinbart ist, daß kleine Werte "gute" Werte sind, während große Werte "schlechte" Werte sind. Diese Vereinbarung könnte ebensogut invertiert sein. Mit anderen Worten, es wird zur Beschreibung des Werts der Gütegröße ein Byte verwendet, was im allgemeinen ausreichend ist. Wird eine höhere Genauigkeit benötigt, so wird ein entsprechend größerer Bereich verwendet, beispielsweise 2 Byte. Der Sinn der Normierung der
Kennfelder besteht darin, die Funktionswerte der Gütegrößen miteinander vergleichbar zu machen. Anschließend werden die normierten Kennfelder von der Darstellung
Drehzahl gegenüber Drehmoment in eine Darstellung Drehzahl gegenüber Leistung transformiert. Es ist offensichtlich, daß die Reihenfolge der Schritte Normierung und
Transformation miteinander vertauschbar ist. Die transformierten und normierten
Kennfelder werden dann in dem nächsten Schritt zu einem gemeinsamen Gütekennfeld verknüpft. Eine Möglichkeit der Verknüpfung ist die Addition der drei Kennfelder, die mit
Gewichtsfaktoren α-|, α2, ... αn multipliziert sind. In dem so ermittelten Gütekennfeld
GKF kann mit einem geeigneten Verfahren ein optimaler Weg durch das Gütekennfeld bestimmt werden. Ein geeignetes Verfahren ist beispielsweise die Ermittlung des Weges mit geringen Werten, d. h. die Summe der Einzelwerte soll möglichst klein sein, bei stetig steigender Leistung und Drehzahl.
Die Berechnung kann online während des Betriebs des Fahrzeugs durchgeführt werden, wobei eine Strategie durch eine geeignete Wahl der Gewichtsfaktoren αi, c^, ... αn und/oder der Normierungsfunktion N-|, N2, ... Nn vorgegeben werden kann.
Ferner ist es möglich, daß einzelne Werte der in das Verfahren einfließenden Kennfelder während des Betriebs des Fahrzeugs durch geeignete Sensoren gemessen werden, so daß das Verfahren mit entsprechend abgeänderten Kennfelder KF1, KF2 und ... KFn beginnen würde. Mit anderen Worten, das Verfahren beginnt mit auf dem Prüfstand ermittelten Basiskennfeldern, die während des Betriebs des Fahrzeugs durch die Messung geeigneter Kennfeldpunkte aktualisiert werden, so daß sich quasi immer eine aktuelle optimale Getriebekennlinie unter Vorgabe einer gewünschten Strategie online während des Betriebs des Fahrzeugs ermitteln läßt.
Fig. 2 zeigt ein Beispiel eines optimalen Wegs durch ein Gütekennfeld, das mit dem in Fig. 1 erläuterten Verfahren erzeugt wird, wobei es natürlich auch möglich ist, ein Gütekennfeld aus einem einzigen Kennfeld zu erzeugen. Dargestellt in Draufsicht sind Höhenlinien einer Gütegröße, beispielsweise der NOx-Emission, wobei größere Werte eine höhere Emission darstellen, d. h. "schlecht", sind. Die durchgezogenen obere Linie KL-| stellt beispielhaft eine fiktive Getriebekennlinie, bei der zur Erzeugung einer höheren Leistung die Drehzahl n entsprechend erhöht wird. Dabei verläuft die fiktive Getriebekennlinie KLi so, daß sie möglichst sämtliche Emissionsmaximas berührt, d. h. daß mit dieser Getriebekenniinie ein schlechtes Emissionsverhalten bewirkt wird. Demgegenüber vermeidet die "optimale" Getriebekenniinie KL2 gerade Bereiche hoher Emission, d. h. großer Werte des Gütekennfeldes, so daß ein wesentlich besseres Emissionsverhalten erzielt wird.
Eine Berechnung des optimalen Wegs durch das Gütekennfeld kann nach dem nachfolgenden Verfahren durchgeführt werden, wobei vorausgesetzt wird, daß die Motorreaktionszeit schneller als die Reaktionszeit des Getriebes ist. Unter Reaktionszeit wird dabei die Zeit verstanden, die ein Aggregat braucht bis ein neuer Arbeitspunkt eingestellt ist. Im Fall eines Getriebes ist es die Zeit, die zur Einstellung einer neuen Übersetzung benötigt wird, und im Fall eines Motors ist es die Zeit, die zur Einstellung eines neuen Drehmoments benötigt wird.
Es wird ein Zeittakt Tx definiert, der durch die maximale Programmlaufzeit des Zielpunktberechnungsprozesses gegeben ist. Durch einen Fahrversuch wird einmalig die maximale Leistungsverstellmöglichkeit (Pvst max) des Motors pro Zeittakt Tx ermittelt. Außerdem wird einmalig ebenfalls in einem Fahrversuch die maximale Verstellmögiichkeit des Getriebes (nvst max) pro Zeittakt Tx ermittelt.
Der Weg durch das Gütekennfeld vom Ist-Wert APjst zum Zielwert APzje| wird in an Drehzahlschritte unterteilt. Mit LL wird der Leerlaufwert bezeichnet. Die Anzahl an der Drehzahlschritte ergibt aus dem Abstand zwischen dem Ist-Wert APjst und dem stationären Zielwert APzje| und der maximalen Getriebeverstellmöglichkeit nVSf max. Nun ist eine Möglichkeit der Anpassung des Leistungsänderungsverhaltens gegeben, indem man entsprechend einer einstellbaren Strategie des Fahr- bzw. des Komfortverhaltens beispielsweise den Weg geringster Änderungen der Gütegröße mitteis eines geeigneten Optimierungsverfahrens berechnet. Die maximale Leistungsverstellmöglichkeit Pvst max setzt Randbedingungen. Ist im i-ten Schritt die Leistungsänderung Pvst j größer als die maximale Leistungsverstellmöglichkeit Pvst max so wird das Getriebeverstellintervall nVS{ solange verkleinert, bis die neue i-te Leistungsverstellmöglichkeit Pvst j neu gleich der maximalen
Leistungsverstellmöglichkeit Pvst max ist. Ist jedoch die Leistungsverstellmöglichkeit des i-ten Intervalls Pvst j kleiner als die maximale Leistungsverstellmöglichkeit, so wird das Getriebeverstellintervall nVSf j gleich dem maximalen Intervall nvst max eingestellt. Die Nummer i des betrachteten Intervalls ist eine natürliche Zahl kleiner oder gleich der Zahl an der Drehzahlschritte.
Zur Berechnung des optimalen Wegs durch ein Gütekennfeld können natürlich unterschiedliche Gütekennfelder für verschiedene Motor- und/oder Fahrzustände zum Einsatz kommen, beispielsweise ein Gütekennfeld, das einen kalten Motor beschreibt oder ein Gütekennfeld, das einen Motor mit Betriebstemperatur beschreibt.
Fig. 3 beschreibt den funktionalen Aufbau einer Vorrichtung zur Durchführung des Triebstrangmanagements. Das Vorrichtung umfaßt drei Steuereinheiten, nämlich das Triebstrangmanagement-Steuergerät TSM-SG, das Motor-Steuergerät MSG und das Getriebe-Steuergerät GSG. In das Triebstrangmanagement-Steuergerät TSM-SG fließt einerseits ein Fahrerwunsch F und ein Hersteiierwunsch H ein. Der Fahrerwunsch F kann eine Leistungsanforderung durch eine entsprechende Stellung des Pedalwertgebers (Gaspedal) sein. Der Herstellerwunsch H beinhaltete eine Strategie hinsichtlich beispielsweise Abgas, Verbrauch, Komfort etc. Ferner werden in das Triebstrangmanagement-Steuergerät TSM-SG Meßwerte MW von Sensoren zur Ergänzung beispielsweise der Kennfelder und die Strategie FS des Fahrers eingegeben. Das Triebstrangmanagement-Steuergerät TSM-SG errechnet den optimalen Wert durch ein entsprechendes Gütekennfeld bei einer Leistungsanforderung des Fahrers und gibt die entsprechenden Stellgrößen, d. h. Einspritzmenge M_E und Drehzahl n, an das Motorsteuergerät MSG bzw. das Getriebesteuergerät GSG ab. In den Motor- und Getriebesteuergeräten MSG, GSG wird dann die entsprechenden Regelparameter an den Motor M bzw. das Getriebe G abgegeben. Bei dem Getriebe G handelt es sich um ein kontinuierlich verstellbares Getriebe (CVT-Getriebe). Zwischen dem Motorsteuergerät und dem Getriebesteuergerät findet ein Informationsaustausch I als Sicherheitsfunktion statt. Ferner ist im Motorsteuergerät MSG ebenfalls eine Sicherheitsfunktion MSF realisiert, beispielsweise die Kick-down-Funktion des Pedalwertgebers (Gaspedal), die direkt vom Fahrerwunsch umsetzbar ist (siehe gestrichelte Linie). Im Getriebesteuergerät GSG ist ebenfalls eine Sicherheitsfunktion GSF in Form einer Reservestrategie implementiert.
Die Funktionalität der TSM-SG's kann auch in Motorsteuergerät oder Getriebesteuergerät untergebracht werden. BEZUGSZEICHENLISTE
AP|st Ist-Punkt
APziel Zielpunkt
F Fahrerwunsch
FS Fahrerstrategie
G Getriebe
GSF Getriebesicherheitsfunktion
GSG Getriebesteuergerät
H Herstellerwunsch
KL-i Kennlinie
KL2 Kennlinie
LL Leerlauf
M Motor
MSF Motorsicherheitsfunktion
MSG Motorsteuergerät
MW Meßwerte n Drehzahl
P Leistung
TSM-SG Triebstrangmanagement-Steuergerät

Claims

P A T E N T A N S P R U C H E
1. Verfahren zum Onlinemanagement eines Triebstranges eines Kraftfahrzeuges mit einem CVT-Getriebe, dadurch gekennzeichnet, daß in einem vorgegebenen Gütekennfeld (GKF), in dem eine Gütegröße als Funktion der Leistung (P) und der Drehzahl (n) aufgetragen ist, zur Einstellung der Drehzahl (n) bei einer angeforderten Leistung (P) online ein optimaler Weg durch das Gütekennfeld (GKF) bezüglich vorgegebener Optimierungskriterien ermittelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gütekennfeld (GFK) eine Zusammenfassung mehrerer Kennfelder (KF<|, KF2, ... KFn) ist, wobei jedes Kennfeld eine zu optimierende Gütegröße beinhaltet.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Kennfelder normierte Kennfelder (KF-| n0rm' KF2 norm- •■■ KFn norm) sinci> wobei jedes Kennfeld eine eigene Normierungsfunktion (N-j, N2, ... Nn) beinhaltet.
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß jedes Kennfeld mit einer Gewichtsfunktion (α-|, α2, ... αn) multipliziert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Gewichtsfunktion (α-|, cx2, ... αn) zeitabhängig ist.
6. Verfahren nach einem der Ansprüche 2 - 5, dadurch gekennzeichnet, daß ein Kennfeld aus verschiedenen Kennfelder der gleichen Größe berechnet wird.
7. Verfahren nach einem der Ansprüche 2 - 5, dadurch gekennzeichnet, daß ein Kennfeld aus Kennfeldern verschiedener Größen berechnet wird.
8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß einzelne oder mehrere der Kennfelder (KF^, KF2, ... KFn) durch Messung einzelner Gütegrößen im Fahrbetrieb ergänzt werden.
9. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Optimierungsstrategie online ausgewählt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Optimierung bezüglich des Verbrauchs, der Emission, insbesondere der NOx-Emission und/oder der Partikelemission und/oder des Komforts durchgeführt wird.
11. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß durch einen Fahrversuch die maximal mögliche Verstellmöglichkeit der Leistung (Pvst max) pro vorgegebenen Zeittakt (Tx) und die maximal mögliche Getriebeverstellmöglichkeit (nvst max) Pro Zeittakt (Tx) ermittelt wird.
12. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß Vorrichtung ein Steuergerät (MSG) für den Verbrennungsmotor (M), ein Steuergerät (GSG) für das CVT-Getriebe (G) und ein Steuergerät (TSM-SG) für das Triebstrangmanagement aufweist, wobei die Steuergeräte (MSG, GSG, TSM-SG) miteinander verbunden sind.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß das Triebstrangsteuergerät (TSM-SG) zur Ansteuerung des Arbeitspunktes des Triebstrangs die Stellgröße Einspritzmenge (M_E) oder Drehmoment an das Motorsteuergerät (MSG) und die Stellgröße Drehzahl (n) oder die Übersetzung (Ü) an das Getriebesteuergerät (GSG) abgibt.
14. Vorrichtung nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß die Steuergeräte (MSG, GSG, TSM-SG) über einen Bus miteinander verbunden sind.
5. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Bus durch eine CAN-Bus gebildet wird.
PCT/EP1999/003285 1998-06-18 1999-05-12 Triebstrangmanagement für ein kraftfahrzeug WO1999065722A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000554577A JP4167805B2 (ja) 1998-06-18 1999-05-12 自動車のドライブラインの管理方法及びこれを実施する装置
AT99923587T ATE215458T1 (de) 1998-06-18 1999-05-12 Triebstrangmanagement für ein kraftfahrzeug
EP99923587A EP1087875B1 (de) 1998-06-18 1999-05-12 Triebstrangmanagement für ein kraftfahrzeug
DE59901128T DE59901128D1 (de) 1998-06-18 1999-05-12 Triebstrangmanagement für ein kraftfahrzeug
US09/740,310 US6324456B2 (en) 1998-06-18 2000-12-18 Drive train management for a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19827133.6 1998-06-18
DE19827133A DE19827133A1 (de) 1998-06-18 1998-06-18 Triebstrangmanagement für ein Kraftfahrzeug

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/740,310 Continuation US6324456B2 (en) 1998-06-18 2000-12-18 Drive train management for a motor vehicle

Publications (1)

Publication Number Publication Date
WO1999065722A1 true WO1999065722A1 (de) 1999-12-23

Family

ID=7871258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003285 WO1999065722A1 (de) 1998-06-18 1999-05-12 Triebstrangmanagement für ein kraftfahrzeug

Country Status (6)

Country Link
US (1) US6324456B2 (de)
EP (1) EP1087875B1 (de)
JP (1) JP4167805B2 (de)
AT (1) ATE215458T1 (de)
DE (2) DE19827133A1 (de)
WO (1) WO1999065722A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804071A1 (fr) * 2000-01-26 2001-07-27 Toyota Motor Co Ltd Dispositif de commande d'un vehicule equipe d'une transmission variable en continu et procede de commande de celui-ci
EP1279548A1 (de) * 2001-07-26 2003-01-29 Toyota Jidosha Kabushiki Kaisha Getriebesteuerung und Steuerverfahren für ein Kraftfahrzeug mit einem stufenlosen Getriebe

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580260B2 (ja) * 2001-03-01 2004-10-20 日産自動車株式会社 車両の制御装置
ITBO20020479A1 (it) * 2002-07-23 2004-01-23 Tecnomeccanica Srl Apparato per formare automaticamente, con processo continuo, sovrabuste per contenimento di buste filtro contenenti a loro volta una sostanz
EP1570118B1 (de) * 2002-12-10 2007-10-17 DSM IP Assets B.V. Verfahren zur herstellung und verfahren zur konvertierung von polyolefinfasern
DE102004021801A1 (de) * 2004-05-03 2005-12-01 Zf Friedrichshafen Ag Verfahren zur Steuerung eines automatisierten Schaltgetriebes
US7149618B2 (en) * 2004-05-15 2006-12-12 General Motors Corporation Cost structure method including fuel economy and engine emission considerations
US7955217B2 (en) * 2007-11-30 2011-06-07 Caterpillar Inc. Power train control system
US8751192B2 (en) * 2010-08-24 2014-06-10 GM Global Technology Operations LLC Methods and systems for assessing vehicle transmissions
US8591594B2 (en) 2010-09-10 2013-11-26 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis
DE102011101241A1 (de) * 2011-05-11 2012-11-15 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Beschleunigen eines Kraftfahrzeugs und Kraftfahrzeug
US9925052B2 (en) 2013-08-30 2018-03-27 Zimmer, Inc. Method for optimizing implant designs
US10675153B2 (en) 2017-03-10 2020-06-09 Zimmer, Inc. Tibial prosthesis with tibial bearing component securing feature
US10500054B2 (en) 2017-05-12 2019-12-10 Zimmer, Inc. Femoral prostheses with upsizing and downsizing capabilities
US11426282B2 (en) 2017-11-16 2022-08-30 Zimmer, Inc. Implants for adding joint inclination to a knee arthroplasty
AT526204A1 (de) * 2022-06-07 2023-12-15 Avl List Gmbh Verfahren und System zum Optimieren der Systemeffizienz und zum Reduzieren der hör- und/oder spürbaren Schwingungen eines elektrischen Antriebssystems eines Kraftfahrzeugs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913418A (en) * 1973-09-05 1975-10-21 Aisin Seiki System for controlling the drive and dynamic braking of automobiles
US4107776A (en) * 1975-10-23 1978-08-15 U.S. Philips Corporation Vehicle power transmission arrangements and electronic power controls
DE2843256A1 (de) * 1978-10-04 1980-04-17 Bosch Gmbh Robert Vorrichtung zur regelung einer kraftfahrzeug-antriebseinheit
DE2934270A1 (de) * 1979-08-24 1981-03-26 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Automatische regeleinrichtung eines durch eine brennkraftmaschine angetriebenen, stufenlos einstellbaren uebersetzungsgetriebe, insbesondere fuer fahrzeuge
US4291594A (en) * 1977-03-31 1981-09-29 Regie Nationale Des Usines Renault Method of vehicle engine control
EP0352110A2 (de) * 1988-07-20 1990-01-24 Honda Giken Kogyo Kabushiki Kaisha Verfahren zum gemeinsamen Steuern eines stufenlosen Getriebes und einer Gassteuerung eines Verbrennungsmotors
DE4239711A1 (de) * 1992-11-26 1994-06-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811574A1 (de) * 1978-03-17 1979-09-27 Bosch Gmbh Robert Vorrichtung zur regelung einer antriebsmotor-getriebe-einheit eines kraftfahrzeuges
DE3467127D1 (en) * 1983-03-11 1987-12-10 Nissan Motor Control system and control method for a vehicle
US4699025A (en) * 1985-09-30 1987-10-13 Aisin Seiki Kabushiki Kaisha Method and apparatus for controlling a power delivery system having a continuously variable ratio transmission
DE3900320A1 (de) * 1989-01-07 1990-05-10 Rainer Wieland Optimierung der antriebseinheit mit elektronischer abtastung der spezifischen motorkennfelder
GB9019400D0 (en) * 1990-09-05 1990-10-17 Lucas Ind Plc Power unit
JP3200901B2 (ja) * 1991-12-20 2001-08-20 株式会社日立製作所 電気自動車の駆動装置
GB9208363D0 (en) * 1992-04-16 1992-06-03 Greenwood Christopher J Improvements in or relating to control systems for drivelines including continuously-variable-ratio transmissions
DE4432678A1 (de) * 1994-09-14 1996-03-21 Zahnradfabrik Friedrichshafen Verfahren zum Steuern eines stufenlosen Getriebes
DE19600915A1 (de) * 1996-01-12 1997-07-17 Zahnradfabrik Friedrichshafen Verfahren zur Vorgabe der Übersetzung eines stufenlosen Getriebes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913418A (en) * 1973-09-05 1975-10-21 Aisin Seiki System for controlling the drive and dynamic braking of automobiles
US4107776A (en) * 1975-10-23 1978-08-15 U.S. Philips Corporation Vehicle power transmission arrangements and electronic power controls
US4291594A (en) * 1977-03-31 1981-09-29 Regie Nationale Des Usines Renault Method of vehicle engine control
DE2843256A1 (de) * 1978-10-04 1980-04-17 Bosch Gmbh Robert Vorrichtung zur regelung einer kraftfahrzeug-antriebseinheit
DE2934270A1 (de) * 1979-08-24 1981-03-26 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Automatische regeleinrichtung eines durch eine brennkraftmaschine angetriebenen, stufenlos einstellbaren uebersetzungsgetriebe, insbesondere fuer fahrzeuge
EP0352110A2 (de) * 1988-07-20 1990-01-24 Honda Giken Kogyo Kabushiki Kaisha Verfahren zum gemeinsamen Steuern eines stufenlosen Getriebes und einer Gassteuerung eines Verbrennungsmotors
DE4239711A1 (de) * 1992-11-26 1994-06-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804071A1 (fr) * 2000-01-26 2001-07-27 Toyota Motor Co Ltd Dispositif de commande d'un vehicule equipe d'une transmission variable en continu et procede de commande de celui-ci
EP1279548A1 (de) * 2001-07-26 2003-01-29 Toyota Jidosha Kabushiki Kaisha Getriebesteuerung und Steuerverfahren für ein Kraftfahrzeug mit einem stufenlosen Getriebe
US6726594B2 (en) 2001-07-26 2004-04-27 Toyota Jidosha Kabushiki Kaisha Control system and method for vehicle having continuously variable transmission

Also Published As

Publication number Publication date
EP1087875A1 (de) 2001-04-04
JP4167805B2 (ja) 2008-10-22
DE19827133A1 (de) 1999-12-23
DE59901128D1 (de) 2002-05-08
US6324456B2 (en) 2001-11-27
US20010004721A1 (en) 2001-06-21
EP1087875B1 (de) 2002-04-03
JP2002518233A (ja) 2002-06-25
ATE215458T1 (de) 2002-04-15

Similar Documents

Publication Publication Date Title
EP1087875B1 (de) Triebstrangmanagement für ein kraftfahrzeug
EP0907524B1 (de) Verfahren und vorrichtung zur steuerung des antriebsstrangs eines kraftfahrzeugs
EP2010423B1 (de) Geschwindigkeitsregelvorrichtung und kraftfahrzeug mit einer solchen geschwindigkeitsregelvorrichtung
DE10038181B4 (de) Verfahren und Einrichtung zum Ermitteln von Drehmoment-Sollwerten für Antriebsaggregate von Kraftfahrzeugen mit mindestens zwei Antriebsaggregaten
DE102008031826A1 (de) Fahrerinformationsanordnung zur Verbesserung des Kraftstoffverbrauchs eines Hybridfahrzeugs
EP2328788B1 (de) Verfahren und vorrichtung zum betrieb einer hybridantriebsvorrichtung während des startens einer brennkraftmaschine
DE102014117697A1 (de) Schaltsteuerungsvorrichtung und Schaltsteuerungsverfahren eines Automatikgetriebes
DE102013202934A1 (de) Vorrichtung und Verfahren zur Geschwindigkeitsregelung eines Fahrzeugs
DE10138119A1 (de) Elektronisch ansteuerbarer Antriebsstrang in einem Kraftfahrzeug sowie ein zugehöriges Betriebsverfahren
DE102005012864A1 (de) Verfahren zum Steuern von Getriebeschaltpunkten für ein Hybridfahrzeug mit primärer und sekundärer Antriebsquelle
DE102007050773A1 (de) Kraftfahrzeugsteuerungssystem
DE102007017390A1 (de) Verfahren und System zur Steuerung eines Fahrzeuggetriebes
WO1992009448A1 (de) Verfahren zum betreiben einer aus brennkraftmaschine und automatischem getriebe bestehenden antriebseinheit
DE19854254A1 (de) Verfahren zur Steuerung eines Schaltvorganges in Automatikgetrieben
DE602004007805T2 (de) Verfahren zur optimierung einer bremssequenz
DE102012210317A1 (de) Verfahren und Vorrichtung zum Fahren einer Fahrstrecke mit einem vorgegebenen gewünschten mittleren Energieverbrauch
DE2712327A1 (de) Verfahren zur selbsttaetigen regelung von kraftfahrzeugen
DE102012023575B3 (de) Verfahren zur fahrerspezifischen Anpassung eines synthetisch modulierten Geschwindigkeitsprofils entlang einer mit einem Fahrzeug gefahrenen Strecke sowie Steuergerät zur Durchführung des Verfahrens
DE102016102622A1 (de) Verfahren zum Reduzieren der von einem Motor eines Kraftfahrzeugs verbrauchten Kraftstoffmenge
DE102008011082A1 (de) Verfahren zur Adaption einer proportionalen Kupplung
EP0768455A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1354751B1 (de) Vorrichtung zum Steuern des Anfahrvorgangs eines Kraftfahrzeugs mit einem Getriebe
DE102005045265A1 (de) Verfahren zur Verringerung des Kraftstoffverbrauchs eines Kraftfahrzeugs
DE10084468B4 (de) Verfahren und Anordnung zum Steuern eines automatischen Schaltgetriebes
DE112018002443T5 (de) Fahrzeugsteuervorrichtung und fahrzeugsteuerverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999923587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09740310

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999923587

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999923587

Country of ref document: EP