WO1999060618A1 - Semiconductor device and method of manufacture thereof - Google Patents

Semiconductor device and method of manufacture thereof Download PDF

Info

Publication number
WO1999060618A1
WO1999060618A1 PCT/JP1999/002564 JP9902564W WO9960618A1 WO 1999060618 A1 WO1999060618 A1 WO 1999060618A1 JP 9902564 W JP9902564 W JP 9902564W WO 9960618 A1 WO9960618 A1 WO 9960618A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
chips
memory
chip
semiconductor wafer
Prior art date
Application number
PCT/JP1999/002564
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Ikeda
Takeshi Ikeda
Original Assignee
T.I.F. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.I.F. Co., Ltd. filed Critical T.I.F. Co., Ltd.
Publication of WO1999060618A1 publication Critical patent/WO1999060618A1/en
Priority to US09/716,843 priority Critical patent/US6969623B1/en
Priority to US09/716,165 priority patent/US6479306B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device that can be mounted on a memory substrate, a motherboard, or the like, and a method for manufacturing the same.
  • a semiconductor chip such as a memory chip cut from a semiconductor wafer is generally mounted on a printed circuit board or the like in a packaged state.
  • the outer dimensions of the knockout are considerably larger than the size of various semiconductor chips themselves, there are certain restrictions on the number of packages that can be mounted on a printed circuit board or the like.
  • M CM M (M CM) is spreading.
  • the failure rate of each semiconductor chip is accumulated, and the failure rate of the module as a whole increases.
  • the entire module will be defective. Therefore, it was necessary to carry out repair work to replace the defective memory chip or to dispose of the entire module as a defective product, resulting in a low yield and a lot of waste.
  • each semiconductor chip is mounted on the substrate one by one, which complicates the manufacturing process.
  • An object of the present invention is to provide a semiconductor device and a method of manufacturing the same, which can reduce the defect rate in manufacturing a semiconductor device that can be mounted and can simplify the process.
  • a semiconductor device is formed by performing a pass / fail inspection and cutting a semiconductor chip into one or more units according to the result. Since semiconductor chips are separated according to the results of the pass / fail inspection, when a semiconductor device composed of a plurality of semiconductor chips and capable of high-density mounting is manufactured, some of the semiconductor chips in the semiconductor devices are not acceptable. Since the semiconductor device is a non-defective product, the entire semiconductor device does not become defective, and the defect rate in manufacturing the semiconductor device can be reduced. Further, since a semiconductor device including a plurality of semiconductor chips can be used in a subsequent process, the subsequent process is simplified as compared with a case where a plurality of semiconductor devices including a single semiconductor chip are combined. can do.
  • FIG. 1 is a diagram showing a manufacturing process of the memory module of the first embodiment
  • FIG. 2 is a diagram schematically showing a memory chip formed on a semiconductor wafer
  • FIG. 3 is a diagram showing an example of a method for separating memory chips formed on a semiconductor wafer
  • FIG. 4 is a diagram showing a manufacturing process of the memory module of the second embodiment
  • Figure 5 is an enlarged cross-sectional view of a memory chip mounted with CSP.
  • FIG. 6 is a diagram showing a connection state between the mutually connected memory chips.
  • FIG. 1 is a diagram showing a manufacturing process of the memory module of the present embodiment.
  • FIGS. 1 (a) and 1 (b) a semiconductor wafer 2 which is, for example, a silicon single crystal flake is introduced, and the same memory chip 1 is formed on the semiconductor wafer 2 (first step). ).
  • Each area surrounded by a dotted line in FIG. 1B shows one unit of the memory chip 1 (minimum unit of division), and a plurality of memory chips 1 are formed on the semiconductor wafer 2.
  • FIG. 2 is a diagram schematically showing a memory chip 1 formed on a semiconductor wafer 2.
  • the memory chip 1 includes a semiconductor wafer 2 having a predetermined size and a plurality of chip pads 3 formed on the surface of the semiconductor wafer 2.
  • the chip pad 3 is a connection terminal for making an electrical connection with a substrate on which the memory chip 1 is mounted.
  • a pass / fail inspection is performed on each of the memory chips 1 (second step). For example, various functional tests are performed by pressing a test probe against a chip pad 3 formed on each memory chip 1 to make electrical contact therewith. Inspection efficiency is improved by performing the pass / fail inspection of each memory chip 1 on the whole semiconductor wafer 2 as a unit, that is, by conducting pass / fail inspection of a plurality of memory chips 1 formed on the semiconductor wafer 2 at one time. ing.
  • FIG. 3 is a diagram illustrating an example of a method for separating a plurality of memory chips 1 formed on a semiconductor wafer 2.
  • FIG. 3 (a) shows each memory chip in the second step described above.
  • FIG. 9 is a diagram showing the results of a pass / fail inspection of the memory chip 1, in which a mark ⁇ indicates a memory chip 1 determined to be good, and a mark X indicates a memory chip 1 determined to be defective.
  • FIG. 3B is a diagram showing how the memory chip 1 determined to be non-defective in FIG. 3A is cut out, and a range surrounded by a solid line indicates a unit of cutting. As described above, the memory chip 1 is divided into one or more (two or four) units, but it is preferable to divide as many units as possible.
  • the segmentation method shown in Fig. 3 (b) is divided into four when four memory chips 1 can be cut out, and two when four memory chips 1 cannot be cut out. If one memory chip 1 cannot be cut out, the procedure is to cut out only one.
  • this separation method is applied to the results of the pass / fail inspection shown in Fig. 3 (a), as shown in Fig. 3 (b), one set of four memory chips 1 is Three sets are obtained by cutting one memory chip 1, and three sets are obtained by cutting one memory chip 1. In this way, one or more semiconductor devices are manufactured.
  • the divided memory chip 1 is mounted on the substrate 4, and finally, the memory module 10a having four memory chips 1 and the memory module having two memory chips 1 are obtained.
  • Complete one of the module 10b and the memory module 10c taken out (fourth step).
  • a chip pad 3 formed on the memory chip 1 and an electrode (not shown) formed on the substrate 4 are connected using a bonding wire.
  • a memory module 10a having four memory chips 1 is a substrate on which the memory module 10a is mounted, assuming that the bit configuration of each memory chip 1 is 16M x 4 bits, for example.
  • Can be used as any of 16MX16-bit, 32-Mx8-bit, and 64Mx4-bit memory elements, depending on the wiring method of c) Can be handled in the same way as a single memory element, so that the process of mounting on another substrate or the like can be simplified.
  • a memory module 10b including two memory chips 1 implements the memory module 10b when the bit configuration of each memory chip 1 is 16M x 4 bits. Depending on the wiring method of the board to be mounted, it can be used as either a 16 MX 8-bit or a 32 MX 4-bit memory element. In addition, since the memory module 10b can be handled in the same manner as a single memory element, the process of mounting the memory module on another substrate or the like can be simplified.
  • a plurality of the same memory chips 1 are formed on the semiconductor wafer 2, and only those which are determined to be non-defective by the quality inspection are cut out of the memory chips 1 to manufacture the memory module 10.
  • the entire memory module 10 does not become defective because some of the memory chips 1 included in the memory module 10 are defective. Can be reduced.
  • the pass / fail inspection of the plurality of memory chips 1 formed on the semiconductor wafer 2 is performed at once for the entire semiconductor wafer 2, the efficiency of the inspection can be increased. Furthermore, the memory chip 1 is cut from the semiconductor wafer 2 in units of one or more (two or four), but as many as possible are cut into one unit, that is, four chips are cut as much as possible. Thus, the memory module 10a having four memory chips 1 can be efficiently manufactured.
  • the memory module 10a and the memory module 10b are mounted in such a manner that a plurality of the memory chips 1 formed on the semiconductor wafer 2 are collectively cut and separated-that is, a plurality of the memory chips 1 are connected to each other. Since they are mounted in a state, the memory chips 1 are cut out one by one from the semiconductor wafer 2, and compared with the case where the memory modules are formed by mounting the memory chips 1 at intervals, the components of the high-density mounting are reduced. The size can be reduced. In addition, since a plurality of semiconductor chips 1 can be mounted at one time, the manufacturing process can be simplified.
  • FIG. 4 is a diagram showing a manufacturing process of the memory module of the present embodiment.
  • FIGS. 4 (a) and (b) a semiconductor wafer 12 is introduced.
  • the same memory chip 11 is formed on the semiconductor wafer 12 (first step).
  • Each of a plurality of regions surrounded by a dotted line in FIG. 4 (b) indicates one unit (minimum unit of division) of the memory chip 11 after CSP mounting.
  • FIG. 4C CSP mounting is performed on the entire semiconductor wafer 12 in a state where a plurality of memory chips 11 are formed, and after forming wiring and resin sealing, forming terminals.
  • FIG. 5 is an enlarged cross-sectional view of the memory chip 11 mounted with CSP.
  • CSP-mounted memory chip 11 is composed of semiconductor wafer 12, wiring board 13, via 'post 14, norya' metal 15, resin layer 16, and solder ball It is composed including 1 7.
  • the wiring pattern 13 is formed by processing a metal thin film formed on the surface of the semiconductor wafer 12 with a resist, and then performing an electrolytic plating process.
  • the via post 14 is connected to the wiring pattern 13, and a barrier metal 15 is formed on the top of the via post 14.
  • the resin layer 16 seals the surface of the semiconductor wafer 12.
  • the resin layer 16 has a thickness substantially equal to the height of the via post 14, and the barrier metal 15 is exposed to the outside when the resin is sealed.
  • the solder ball 17 is a connection terminal for making an electrical connection with a substrate on which the memory chip 11 is mounted.
  • a pass / fail inspection of each memory chip 11 is performed (third step). For example, various functional tests are performed by pressing a test probe against a solder ball 17 formed corresponding to each memory chip 11 to make it electrically contact.
  • the inspection efficiency is improved. Is being improved.
  • the CSP mounting is performed, and among the memory chips 11 after the CSP mounting, the memory chips 11 are determined to be non-defective by the quality inspection.
  • the memory module 20 as a semiconductor device is manufactured by cutting only the memory module 20.Since some of the memory chips 11 included in the memory module 20 are defective, the entire memory module 20 is defective. Therefore, the defect rate when manufacturing the memory module 20 can be reduced.
  • the memory module 20a and the memory module 20b a plurality of memory chips 11 cut out from the semiconductor wafer 12 are mounted. For this reason, compared to the case where memory chips 11 are cut out from the semiconductor wafer 12 one by one and then mounted at intervals between the memory chips 1, memory components are reduced by high-density mounting. Becomes possible. In particular, since CSP mounting is used, the mounting area is minimized. Further, since the memory modules 20a and the like including as many memory chips 11 as possible are cut out based on the pass / fail pattern, it is possible to efficiently manufacture the multi-cavity memory modules 20a and the like. it can.
  • the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.
  • the corresponding terminals may be connected to each other by wiring in each of the memory chips 1.
  • a common power supply voltage is applied to a power supply terminal of each memory chip 1, and a common operation clock signal is input to a clock terminal. If the terminals to which the same voltage is applied or the signals to which the same signal is input are connected when forming each memory chip 1 and four or two are cut out at the same time, four or two A common voltage is applied to any one of the memory chips 1 or a common signal is input.
  • the amount of wiring between the plurality of memory chips 1 and the board 4 on which the memory chips 1 are mounted can be reduced, and the mounting process can be simplified. become.
  • the same terminals of all the adjacent memory chips 1 are wired to each other. It is preferable to keep it.
  • the case where the power supply terminal and the clock terminal are connected to each other has been described, but other terminals, for example, the address terminal and the data terminal may be connected to each other.
  • the memory module 10 b that cuts out two memory chips 1 at the same time has 16 M x
  • An 8-bit bit configuration can be easily realized with a small amount of wiring
  • a memory module 10a that simultaneously cuts out four memory chips 1 can easily realize a 16-M x 16-bit bit configuration with a small amount of wiring.
  • the memory module 10b that cuts out two memory chips 1 at the same time is 3 2
  • the M x 4 bit configuration can be easily realized with a small amount of wiring
  • the memory module 10a that cuts out four memory chips 1 at the same time can easily realize the 64 MX 4-bit configuration with a small amount of wiring. Can be realized.
  • the corresponding terminals of the respective memory chips 11 included in the semiconductor wafer 12 of the second embodiment described above may be connected to each other by wiring.
  • the wiring formed when performing CSP mounting (the wiring pattern 13 shown in FIG. 5) ) May be used to connect the terminals of each memory chip 11 to each other.
  • the bit configuration of each memory chip 1 is 16 M ⁇ 4 bits
  • the force s may be other bit configurations
  • the memory chip 1 having a different bit configuration or capacity may be used. They may be combined.
  • the case where a memory chip is used as a semiconductor chip and a memory module as a semiconductor device is manufactured has been described as an example.
  • a semiconductor chip other than a memory chip for example, various chips such as a processor chip and an ASIC.
  • the present invention can be applied to the case where a semiconductor device is manufactured using a semiconductor device.
  • a plurality of or one memos are cut out one by one.
  • the rechip 1 is mounted on the substrate 4 to form the memory module 10, the memory chip 1 may be mounted directly on a motherboard or the like of a personal computer.
  • a semiconductor chip is separated from a semiconductor wafer in units of one or a plurality of units according to the result of a pass / fail inspection, so that a high-density mounting composed of a plurality of semiconductor chips is realized.
  • some of the semiconductor chips in them are defective, so that the entire semiconductor device does not become defective, reducing the defect rate when manufacturing semiconductor devices.
  • the subsequent The process can be simplified.

Abstract

A method of manufacturing a semiconductor device of high packing density, which includes a simplified process but is capable of decreasing the fraction defective. A plurality of identical memory chips (1) are formed on a semiconductor wafer (2), and a go/no-go test is conducted on all the memory chips (1). The semiconductor wafer (2) is cut into pieces that each consists of one, or two, or four good memory chips (1) and they are mounted on a substrate (4) to form a memory module (10).

Description

明 細 書 半導体装置およびその製造方法  Description Semiconductor device and method of manufacturing the same
技術分野 Technical field
本発明は、 メモリ基板やマザ一ボードなどに実装可能な半導体装置およびその 製造方法に関する。 背景技術  The present invention relates to a semiconductor device that can be mounted on a memory substrate, a motherboard, or the like, and a method for manufacturing the same. Background art
半導体ウェハから切り出されたメモリチップ等の半導体チップは、 パッケージ ングされた状態でプリント基板等に実装されるのが一般的である。 ところが、 ノ ッケージの外形寸法は、 各種の半導体チップ自体のサイズに比べてかなり大きい ため、 プリント基板等に実装可能なパッケージの数には一定の制限がある。  A semiconductor chip such as a memory chip cut from a semiconductor wafer is generally mounted on a printed circuit board or the like in a packaged state. However, since the outer dimensions of the knockout are considerably larger than the size of various semiconductor chips themselves, there are certain restrictions on the number of packages that can be mounted on a printed circuit board or the like.
一方、 最近では、 複数の半導体チップを基板上に実装したマルチチップモジュ On the other hand, recently, a multi-chip module in which a plurality of semiconductor chips are mounted on a substrate
—ル (M C M) が普及しつつある。 このマルチチップモジュールを用いることに より、 ①実装面積の小型化およびこれに伴う軽量化、 ②高密度配線およびべァチ ップ実装による高性能 ·高速化、 ③高信頼性の確保等が可能になる。 —M (M CM) is spreading. By using this multi-chip module, it is possible to (1) reduce the mounting area and thus the weight, (2) achieve high performance and high speed through high-density wiring and chip mounting, and (3) ensure high reliability. become.
ところで、 上述した高密度実装が可能なマルチチップモジュールにおいては、 複数の半導体チップを 1つの基板上に実装するため、 各半導体チップの不良率が 累積されてモジュール全体としての不良率が大きくなる。 例えば、 4個のメモリ チップを 1つのモジュール基板に実装する場合には、 1つのメモリチップが不良 であってもモジュール全体の不良となる。 したがって、 不良となったメモリチッ プを交換するリペア作業を行ったり、 このモジュール全体を不良品として廃棄す る等の処置を施す必要があり、 歩留まりが悪く、 しかも無駄が多かった。 また、 複数の半導体チップを 1つの基板上に実装する場合には、 それぞれの半導体チッ プを 1個ずつ基板に実装するため、 製造工程が複雑になっていた。  By the way, in the above-described multi-chip module capable of high-density mounting, since a plurality of semiconductor chips are mounted on one substrate, the failure rate of each semiconductor chip is accumulated, and the failure rate of the module as a whole increases. For example, when four memory chips are mounted on one module substrate, even if one memory chip is defective, the entire module will be defective. Therefore, it was necessary to carry out repair work to replace the defective memory chip or to dispose of the entire module as a defective product, resulting in a low yield and a lot of waste. Also, when a plurality of semiconductor chips are mounted on one substrate, each semiconductor chip is mounted on the substrate one by one, which complicates the manufacturing process.
発明の開示 Disclosure of the invention
本発明は、 このような点に鑑みて創作されたものであり、 その目的は、 高密度 実装が可能な半導体装置を製造する際の不良率を低減することができ、 しかもェ 程の簡略化が可能な半導体装置およびその製造方法を提供することにある。 The present invention has been created in view of the above points, An object of the present invention is to provide a semiconductor device and a method of manufacturing the same, which can reduce the defect rate in manufacturing a semiconductor device that can be mounted and can simplify the process.
本発明では、 半導体ウェハに複数の同一の半導体チップ (好ましくはメモリチ ップ) を形成した後に、 あるいはこれらの半導体チップに対して配線、 樹脂封止、 端子形成を行った後に、 各半導体チップの良否検査を行い、 その結果に応じて 1 あるいは複数個を単位として半導体チップを切り分けることにより半導体装置が 形成される。 良否検査の結果に応じて半導体チップの切り分けを行っているため、 複数個の半導体チップによって構成される高密度実装が可能な半導体装置を製造 したときに、 その中の一部の半導体チップが不良品であるために半導体装置全体 が不良品になるということがなく、 半導体装置を製造する際の不良率を低減する ことができる。 また、 複数個の半導体チップからなる半導体装置をその後の工程 で用いることができるため、 単一の半導体チップからなる半導体装置を複数個組 み合わせて用いる場合に比べて、 その後の工程を簡略化することができる。  In the present invention, after forming a plurality of identical semiconductor chips (preferably, memory chips) on a semiconductor wafer or after performing wiring, resin sealing, and terminal formation on these semiconductor chips, A semiconductor device is formed by performing a pass / fail inspection and cutting a semiconductor chip into one or more units according to the result. Since semiconductor chips are separated according to the results of the pass / fail inspection, when a semiconductor device composed of a plurality of semiconductor chips and capable of high-density mounting is manufactured, some of the semiconductor chips in the semiconductor devices are not acceptable. Since the semiconductor device is a non-defective product, the entire semiconductor device does not become defective, and the defect rate in manufacturing the semiconductor device can be reduced. Further, since a semiconductor device including a plurality of semiconductor chips can be used in a subsequent process, the subsequent process is simplified as compared with a case where a plurality of semiconductor devices including a single semiconductor chip are combined. can do.
特に、 半導体ウェハに形成された各半導体チップに対して配線、 樹脂封止、 端 子形成からなる実装工程を実施することにより、 各半導体チップを個別に切り分 けた後にこの実装工程を実施する場合に比べてさらなる工程の簡略化が可能にな る。  In particular, when the mounting process consisting of wiring, resin sealing, and terminal formation is performed on each semiconductor chip formed on the semiconductor wafer, and this mounting process is performed after each semiconductor chip is cut individually This allows further simplification of the process.
また、 良否検査の結果に応じた半導体チップ、 特にメモリチップの切り分けは、 Also, the separation of semiconductor chips, especially memory chips, according to the results of pass / fail inspection
4個が可能な場合には 4個をひとまとまりとして、 4個が不可能であって 2個が 可能な場合には 2個をひとまとまりとして、 2個が不可能な場合には 1個ずつ行 うことが好ましい。 このように、 多数個取りを優先させることにより、 より大き な単位の (4個取りの) 半導体装置を無駄なく効率よく製造することができる。 図面の簡単な説明 If 4 are possible, 4 are bundled together, if 4 is not possible and 2 is possible, 2 is bundled together, and if 2 is not possible, 1 each It is preferable to do this. In this way, by giving priority to multi-cavity production, a semiconductor device in a larger unit (four-cavity production) can be efficiently manufactured without waste. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1の実施形態のメモリモジュールの製造工程を示す図、  FIG. 1 is a diagram showing a manufacturing process of the memory module of the first embodiment,
図 2は、 半導体ウェハに形成されるメモリチップの概略を示す図、  FIG. 2 is a diagram schematically showing a memory chip formed on a semiconductor wafer,
図 3は、 半導体ウェハに形成されたメモリチップの切り分け方法の一例を示す 図、  FIG. 3 is a diagram showing an example of a method for separating memory chips formed on a semiconductor wafer,
図 4は、 第 2の実施形態のメモリモジュールの製造工程を示す図、 図 5は、 C S P実装されたメモリチップの拡大断面図、 FIG. 4 is a diagram showing a manufacturing process of the memory module of the second embodiment, Figure 5 is an enlarged cross-sectional view of a memory chip mounted with CSP.
図 6は、 相互に接続される各メモリチップ間の接続状態を示す図である。 発明を実施するための最良の形態  FIG. 6 is a diagram showing a connection state between the mutually connected memory chips. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した第 1の実施形態のメモリモジュールについて、 図面を 参照しながら具体的に説明する。 図 1は、 本実施形態のメモリモジュールの製造 工程を示す図である。  Hereinafter, the memory module of the first embodiment to which the present invention is applied will be specifically described with reference to the drawings. FIG. 1 is a diagram showing a manufacturing process of the memory module of the present embodiment.
まず、 図 1 ( a ) および (b ) に示すように、 例えばシリコン単結晶の薄片で ある半導体ウェハ 2を導入し、 この半導体ウェハ 2に同一のメモリチップ 1を形 成する (第 1の工程) 。 図 1 ( b ) の点線で囲まれた各領域は、 メモリチップ 1 の 1単位 (切り分けの最小単位) を示しており、 半導体ウェハ 2には、 複数のメ モリチップ 1が形成される。  First, as shown in FIGS. 1 (a) and 1 (b), a semiconductor wafer 2 which is, for example, a silicon single crystal flake is introduced, and the same memory chip 1 is formed on the semiconductor wafer 2 (first step). ). Each area surrounded by a dotted line in FIG. 1B shows one unit of the memory chip 1 (minimum unit of division), and a plurality of memory chips 1 are formed on the semiconductor wafer 2.
図 2は、 半導体ウェハ 2に形成されるメモリチップ 1の概略を示す図である。 図 2に示すように、 メモリチップ 1は、 所定の大きさの半導体ウェハ 2と、 この 半導体ウェハ 2の表面に形成される複数のチップ用パッド 3とを含んで構成され る。 チップ用パッド 3は、 メモリチップ 1が実装される基板との電気的接続を行 うための接続端子である。  FIG. 2 is a diagram schematically showing a memory chip 1 formed on a semiconductor wafer 2. As shown in FIG. 2, the memory chip 1 includes a semiconductor wafer 2 having a predetermined size and a plurality of chip pads 3 formed on the surface of the semiconductor wafer 2. The chip pad 3 is a connection terminal for making an electrical connection with a substrate on which the memory chip 1 is mounted.
このようにして半導体ウェハ 2に複数のメモリチップ 1が形成された状態で、 次に、 メモリチップ 1のそれぞれについて良否検査を行う (第 2の工程) 。 例え ば、 各メモリチップ 1に形成されたチップ用パヅド 3に検査用プローブを押圧し て電気的に接触させることにより、 各種の機能試験を実施する。 各メモリチップ 1の良否検査を半導体ウェハ 2の全体を単位として行うことにより、 すなわち、 半導体ウェハ 2に形成された複数のメモリチップ 1の良否検査を一度に行うこと により、 検査効率の向上を図っている。  With the plurality of memory chips 1 formed on the semiconductor wafer 2 in this manner, next, a pass / fail inspection is performed on each of the memory chips 1 (second step). For example, various functional tests are performed by pressing a test probe against a chip pad 3 formed on each memory chip 1 to make electrical contact therewith. Inspection efficiency is improved by performing the pass / fail inspection of each memory chip 1 on the whole semiconductor wafer 2 as a unit, that is, by conducting pass / fail inspection of a plurality of memory chips 1 formed on the semiconductor wafer 2 at one time. ing.
次に、 第 2の工程における良否検査の結果に基づいて、 図 1 ( c ) に示すよう に、 良品と判定されたメモリチップ 1を 1個あるいは複数個 ( 2個または 4個) を単位として切り分ける (第 3の工程) 。  Next, based on the results of the pass / fail inspection in the second step, as shown in Fig. 1 (c), one or more (two or four) memory chips 1 determined to be non-defective are taken as a unit. Separate (third step).
図 3は、 半導体ウェハ 2に形成された複数のメモリチップ 1の切り分け方法の 一例を示す図である。 図 3 ( a ) は、 上述した第 2の工程における各メモリチッ プ 1の良否検査の結果を示す図であり、 〇印は良品と判定されたメモリチップ 1 を、 X印は不良品と判定されたメモリチップ 1をそれぞれ示している。 また、 図 3 ( b ) は、 図 3 ( a ) において良品と判定されたメモリチップ 1をどのように 切り分けるかを示す図であり、 実線で囲まれた範囲が切り分けの単位を示してい る。 上述したように、 メモリチップ 1は、 1個あるいは複数個 (2個または 4 個) を単位として切り分けられるが、 なるべく多くの個数をひとまとまりとして 切り分けることが好ましい。 したがって、 図 3 ( b ) に示す切り分け方法は、 4 個のメモリチップ 1を切り出すことができる場合は 4個を切り分け、 4個のメモ リチップ 1を切り出すことができない場合は 2個を切り分け、 2個のメモリチッ プ 1を切り出すことができない場合は 1個だけを切り分けるという手順となる。 図 3 ( a ) に示した良否検査の結果に対してこの切り分け方法を適用した場合に は、 図 3 ( b ) に示すように、 4個のメモリチップ 1を切り分けたものが 1組、 2個のメモリチップ 1を切り分けたものが 3組、 1個のメモリチップ 1を切り分 けたものが 3組取り出される。 このようにして、 1個あるいは複数個からなる半 導体装置が製造される。 FIG. 3 is a diagram illustrating an example of a method for separating a plurality of memory chips 1 formed on a semiconductor wafer 2. FIG. 3 (a) shows each memory chip in the second step described above. FIG. 9 is a diagram showing the results of a pass / fail inspection of the memory chip 1, in which a mark 〇 indicates a memory chip 1 determined to be good, and a mark X indicates a memory chip 1 determined to be defective. FIG. 3B is a diagram showing how the memory chip 1 determined to be non-defective in FIG. 3A is cut out, and a range surrounded by a solid line indicates a unit of cutting. As described above, the memory chip 1 is divided into one or more (two or four) units, but it is preferable to divide as many units as possible. Therefore, the segmentation method shown in Fig. 3 (b) is divided into four when four memory chips 1 can be cut out, and two when four memory chips 1 cannot be cut out. If one memory chip 1 cannot be cut out, the procedure is to cut out only one. When this separation method is applied to the results of the pass / fail inspection shown in Fig. 3 (a), as shown in Fig. 3 (b), one set of four memory chips 1 is Three sets are obtained by cutting one memory chip 1, and three sets are obtained by cutting one memory chip 1. In this way, one or more semiconductor devices are manufactured.
次に、 図 1 ( d ) に示すように、 切り分けたメモリチップ 1を基板 4に実装し て、 最終的に、 メモリチップ 1を 4個取りしたメモリモジュール 1 0 a、 2個取 りしたメモリモジュール 1 0 b、 1個取りしたメモリモジュール 1 0 cのいずれ かを完成させる (第 4の工程) 。 例えば基板 4への実装方法としては、 メモリチ ップ 1に形成されたチップ用パッ ド 3と基板 4に形成された電極 (図示せず) と をボンディングワイヤを用いて接続する。  Next, as shown in Fig. 1 (d), the divided memory chip 1 is mounted on the substrate 4, and finally, the memory module 10a having four memory chips 1 and the memory module having two memory chips 1 are obtained. Complete one of the module 10b and the memory module 10c taken out (fourth step). For example, as a mounting method on the substrate 4, a chip pad 3 formed on the memory chip 1 and an electrode (not shown) formed on the substrate 4 are connected using a bonding wire.
メモリチップ 1を 4個取りしたメモリモジュール 1 0 aは、 例えば各メモリチ ヅプ 1のビッ ト構成を 1 6 M x 4ビヅ トとすると、 メモリモジュール 1 0 aを実 装する基板 (図示せず) の配線の仕方によって、 1 6 M X 1 6ビット、 3 2 M x 8ビッ ト、 6 4 M x 4ビヅ トのいずれかのメモリ素子として用いることができる c また、 メモリモジュール 1 0 aは、 単一のメモリ素子と同様に取り扱うことがで きるため、 他の基板等への実装工程の簡略化が可能となる。  A memory module 10a having four memory chips 1 is a substrate on which the memory module 10a is mounted, assuming that the bit configuration of each memory chip 1 is 16M x 4 bits, for example. Can be used as any of 16MX16-bit, 32-Mx8-bit, and 64Mx4-bit memory elements, depending on the wiring method of c) Can be handled in the same way as a single memory element, so that the process of mounting on another substrate or the like can be simplified.
同様に、 メモリチップ 1を 2個含んだメモリモジュール 1 0 bは、 各メモリチ ヅプ 1のビッ ト構成を 1 6 M x 4ビッ トとすると、 メモリモジュール 1 0 bを実 装する基板の配線の仕方によって、 1 6 M X 8ビッ ト、 3 2 M X 4ビッ トのいず れかのメモリ素子として用いることができる。 また、 メモリモジュール 1 0 bは、 単一のメモリ素子と同様に取り扱うことができるため、 他の基板等への実装工程 の簡略化が可能となる。 Similarly, a memory module 10b including two memory chips 1 implements the memory module 10b when the bit configuration of each memory chip 1 is 16M x 4 bits. Depending on the wiring method of the board to be mounted, it can be used as either a 16 MX 8-bit or a 32 MX 4-bit memory element. In addition, since the memory module 10b can be handled in the same manner as a single memory element, the process of mounting the memory module on another substrate or the like can be simplified.
このように、 半導体ウェハ 2に同一のメモリチップ 1を複数個形成し、 これら のメモリチップ 1のうち、 良否検査によって良品であると判定されたもののみを 切り分けてメモリモジュール 1 0が製造されるため、 メモリモジュール 1 0に含 まれる一部のメモリチップ 1が不良品であるためにメモリモジュール 1 0全体が 不良品となってしまうことがなく、 メモリモジュール 1 0の製造の際の不良率を 低減することができる。  As described above, a plurality of the same memory chips 1 are formed on the semiconductor wafer 2, and only those which are determined to be non-defective by the quality inspection are cut out of the memory chips 1 to manufacture the memory module 10. As a result, the entire memory module 10 does not become defective because some of the memory chips 1 included in the memory module 10 are defective. Can be reduced.
また、 半導体ウェハ 2全体を単位としてその半導体ウェハ 2に形成された複数 のメモリチップ 1の良否検査を一度に行っているため、 検査の効率を上げること ができる。 さらに、 メモリチップ 1は、 1個あるいは複数個 (2個または 4個) を単位として半導体ウェハ 2から切り分けられるが、 なるべく多くの個数をひと まとまりとして切り分けて、 すなわちなるべく 4個ずつ切り分けているため、 メ モリチヅプ 1を 4個取りしたメモリモジュール 1 0 aを効率よく製造することが できる。  Further, since the pass / fail inspection of the plurality of memory chips 1 formed on the semiconductor wafer 2 is performed at once for the entire semiconductor wafer 2, the efficiency of the inspection can be increased. Furthermore, the memory chip 1 is cut from the semiconductor wafer 2 in units of one or more (two or four), but as many as possible are cut into one unit, that is, four chips are cut as much as possible. Thus, the memory module 10a having four memory chips 1 can be efficiently manufactured.
また、 メモリモジュール 1 0 aやメモリモジュール 1 0 bは、 半導体ウェハ 2 に形成されたメモリチップ 1を複数個まとめて切り分けたものが実装されている- すなわち、 複数のメモリチップ 1が互いにつながった状態で実装されるため、 半 導体ウェハ 2からメモリチヅプ 1を 1個ずつ切り出し、 各メモリチップ 1同士の 間隔をとつて実装してメモリモジュールを形成する場合と比較すると、 高密度実 装による部品の小型化が可能になる。 また、 一度に複数の半導体チップ 1を実装 することができるため、 製造工程を簡略化することが可能となる。  In addition, the memory module 10a and the memory module 10b are mounted in such a manner that a plurality of the memory chips 1 formed on the semiconductor wafer 2 are collectively cut and separated-that is, a plurality of the memory chips 1 are connected to each other. Since they are mounted in a state, the memory chips 1 are cut out one by one from the semiconductor wafer 2, and compared with the case where the memory modules are formed by mounting the memory chips 1 at intervals, the components of the high-density mounting are reduced. The size can be reduced. In addition, since a plurality of semiconductor chips 1 can be mounted at one time, the manufacturing process can be simplified.
次に、 本発明を適用した第 2の実施形態のメモリモジュールについて説明する。 本実施形態のメモリモジュールは、 チップサイズパッケージ (C S P ; Chip Siz e Package ) 実装技術によって製造される。 図 4は、 本実施形態のメモリモジュ ールの製造工程を示す図である。  Next, a memory module according to a second embodiment of the present invention will be described. The memory module of the present embodiment is manufactured by a chip size package (CSP; Chip Size Package) mounting technology. FIG. 4 is a diagram showing a manufacturing process of the memory module of the present embodiment.
まず、 図 4 ( a ) および (b ) に示すように、 半導体ウェハ 1 2を導入し、 こ の半導体ウェハ 1 2に同一のメモリチップ 1 1を形成する (第 1の工程) 。 図 4 ( b ) の点線で囲まれた複数の各領域は、 C S P実装後のメモリチップ 1 1の 1 単位 (切り分けの最小単位) を示している。 次に、 複数のメモリチップ 1 1が形 成された状態の半導体ウェハ 1 2全体を対象として、 図 4 ( c ) に示すように、 配線と樹脂封止を行った後に端子を形成する C S P実装を行う (第 2の工程) 。 図 5は、 C S P実装されたメモリチップ 1 1の拡大断面図である。 図 5に示す ように、 C S P実装されたメモリチップ 1 1は、 半導体ウェハ 1 2、 配線パ夕一 ン 1 3、 ビア 'ポスト 1 4、 ノ リャ ' メタル 1 5、 樹脂層 1 6、 半田ボール 1 7 を含んで構成される。 First, as shown in FIGS. 4 (a) and (b), a semiconductor wafer 12 is introduced. The same memory chip 11 is formed on the semiconductor wafer 12 (first step). Each of a plurality of regions surrounded by a dotted line in FIG. 4 (b) indicates one unit (minimum unit of division) of the memory chip 11 after CSP mounting. Next, as shown in FIG. 4C, CSP mounting is performed on the entire semiconductor wafer 12 in a state where a plurality of memory chips 11 are formed, and after forming wiring and resin sealing, forming terminals. (Second step). FIG. 5 is an enlarged cross-sectional view of the memory chip 11 mounted with CSP. As shown in Fig. 5, CSP-mounted memory chip 11 is composed of semiconductor wafer 12, wiring board 13, via 'post 14, norya' metal 15, resin layer 16, and solder ball It is composed including 1 7.
配線パターン 1 3は、 半導体ウェハ 1 2の表面に形成された金属薄膜をレジス トで加工した後、 電解メツキ処理を施すことにより形成される。 ビア ·ポスト 1 4は、 配線パターン 1 3に接続されており、 その頂上部にはバリヤ ' メタル 1 5 が形成される。 樹脂層 1 6は、 半導体ウェハ 1 2の表面を封止している。 樹脂層 1 6は、 ビア ·ポスト 1 4の高さとほぼ等しい厚さを有しており、 樹脂封止した ときにバリヤ · メタル 1 5が外部に露出するようになっている。 半田ボール 1 7 は、 メモリチップ 1 1が実装される基板との電気的接続を行うための接続端子で ある。  The wiring pattern 13 is formed by processing a metal thin film formed on the surface of the semiconductor wafer 12 with a resist, and then performing an electrolytic plating process. The via post 14 is connected to the wiring pattern 13, and a barrier metal 15 is formed on the top of the via post 14. The resin layer 16 seals the surface of the semiconductor wafer 12. The resin layer 16 has a thickness substantially equal to the height of the via post 14, and the barrier metal 15 is exposed to the outside when the resin is sealed. The solder ball 17 is a connection terminal for making an electrical connection with a substrate on which the memory chip 11 is mounted.
このようにして半導体ウェハ 1 2に形成された複数のメモリチップ 1 1が C S P実装された状態で、 次に、 各メモリチップ 1 1の良否検査を行う (第 3のェ 程) 。 例えば、 各メモリチップ 1 1に対応して形成された半田ボール 1 7に検査 用プローブを押圧して電気的に接触させることにより、 各種の機能試験を実施す る。 メモリチップ 1 1の良否検査を半導体ウェハ 1 2の全体を単位として行うこ とにより、 すなわち、 半導体ウェハ 1 2に形成された複数のメモリチップ 1 1の 良否検査を一度に行うことにより、 検査効率の向上を図っている。  With the plurality of memory chips 11 thus formed on the semiconductor wafer 12 mounted on the CSP, a pass / fail inspection of each memory chip 11 is performed (third step). For example, various functional tests are performed by pressing a test probe against a solder ball 17 formed corresponding to each memory chip 11 to make it electrically contact. By performing the pass / fail inspection of the memory chip 11 on the whole semiconductor wafer 12 as a unit, that is, by performing pass / fail inspection of a plurality of memory chips 11 formed on the semiconductor wafer 12 at once, the inspection efficiency is improved. Is being improved.
次に、 第 3の工程における良否検査の結果に基づいて、 図 4 ( d ) に示すよう に、 良品と判定された C S P実装後のメモリチップ 1 1を 1個あるいは複数個 Next, based on the results of the pass / fail inspection in the third step, as shown in FIG. 4 (d), one or more memory chips 11 after the mounting of the CSPs determined to be non-defective are mounted.
( 2個または 4個) を単位として切り分けることにより、 最終的に、 メモリチッ プ 1 1を 4個取りしたメモリモジュール 2 0 a、 2個取りしたメモリモジュール(2 or 4) are divided into units, and finally, a memory module 20a with four memory chips 11 and a memory module with two memory chips 11
2 0 b、 1個取りしたメモリモジュール 2 0 cのいずれかを完成させる (第 4の 工程) 。 具体的な切り分け方法は、 上述した第 1の実施形態において、 図 3に示 した切り分け方法が適用される。 Complete one of the memory modules 20 c that has been taken out. Process). As a specific dividing method, the dividing method shown in FIG. 3 in the first embodiment described above is applied.
このように、 半導体ウェハ 1 2に同一のメモリチップ 1 1を複数個形成した後 に C S P実装を行い、 C S P実装後の各メモリチヅプ 1 1のうち、 良否検査によ つて良品であると判定されたもののみを切り分けて半導体装置としてのメモリモ ジュール 2 0が製造されるため、 メモリモジュール 2 0に含まれる一部のメモリ チップ 1 1が不良品であるためにメモリモジュール 2 0全体が不良品となってし まうことがなく、 メモリモジュール 2 0を製造する際の不良率を低減することが できる。  As described above, after forming the same memory chips 11 on the semiconductor wafer 12, the CSP mounting is performed, and among the memory chips 11 after the CSP mounting, the memory chips 11 are determined to be non-defective by the quality inspection. The memory module 20 as a semiconductor device is manufactured by cutting only the memory module 20.Since some of the memory chips 11 included in the memory module 20 are defective, the entire memory module 20 is defective. Therefore, the defect rate when manufacturing the memory module 20 can be reduced.
また、 メモリモジュール 2 0 aやメモリモジュール 2 0 bは、 半導体ウェハ 1 2から複数のメモリチップ 1 1をまとめて切り出したものが実装される。 このた め、 半導体ウェハ 1 2からメモリチップ 1 1を 1個ずつ切り出した後に各メモリ チップ 1の間隔をとつて実装してメモリモジュールを形成する場合と比較すると、 高密度実装による部品の小型化が可能になる。 特に、 C S P実装を行っているた め、 実装面積が最小になる。 また、 良否パターンに基づいて、 できるたけ多くの メモリチップ 1 1を含むようなメモリモジュール 2 0 a等の切り出しが行われる ため、 多数個取りのメモリモジュール 2 0 a等を効率よく製造することができる。 本発明は、 上記実施形態に限定されるものではなく、 本発明の要旨の範囲内で 種々の変形実施が可能である。 例えば、 上述した第 1の実施形態の半導体ウェハ 2に含まれる各メモリチップ 1は、 対応する端子同士を各メモリチップ 1内の配 線によって相互に接続するようにしてもよい。 例えば、 各メモリチップ 1の電源 端子には共通の電源電圧が印加され、 クロック端子には共通の動作クロック信号 が入力される。 同じ電圧が印加される端子同士あるいは同じ信号が入力される信 号同士を各メモリチップ 1を形成する際に接続しておいて、 4個あるいは 2個を 同時に切り出す場合には、 4個あるいは 2個のメモリチヅプ 1の中のいずれか一 つに対して、 共通の電圧を印加し、 あるいは共通の信号を入力するようにする。 このように、 各メモリチップ 1の内部で相互に配線を行うことにより、 複数のメ モリチップ 1とこれを実装する基板 4との間の配線量を減らすことができ、 実装 工程の簡略化が可能になる。 但し、 隣接する各メモリチップ 1をどのように組み合わせて切り出すかは、 良 否検査を行うまでわからないため、 図 6に示すように、 隣接する全てのメモリチ ップ 1同士の同じ端子を相互に配線しておくことが好ましい。 また、 一例として 電源端子やクロック端子を相互に接続する場合を説明したがその他の端子、 例え ばァドレス端子やデータ端子を相互に接続するようにしてもよい。 同じァドレス 端子同士を接続すると、 例えば 1個のメモリチップ 1のビッ ト構成を 1 6 M x 4 ビットとしたときに、 2個のメモリチップ 1を同時に切り出すメモリモジュール 1 0 bでは 1 6 M x 8ビッ トのビット構成を少ない配線量で容易に実現でき、 4 個のメモリチップ 1を同時に切り出すメモリモジュール 1 0 aでは 1 6 M x 1 6 ビットのビット構成を少ない配線量で容易に実現できる。 また、 同じデータ端子 同士を接続すると、 例えば 1個のメモリチヅプ 1のビッ ト構成を 1 6 M x 4ビッ トとしたときに、 2個のメモリチップ 1を同時に切り出すメモリモジュール 1 0 bでは 3 2 M x 4ビッ トのビッ ト構成を少ない配線量で容易に実現でき、 4個の メモリチップ 1を同時に切り出すメモリモジユール 1 0 aでは 6 4 M X 4ビッ ト のビット構成を少ない配線量で容易に実現できる。 In addition, as the memory module 20a and the memory module 20b, a plurality of memory chips 11 cut out from the semiconductor wafer 12 are mounted. For this reason, compared to the case where memory chips 11 are cut out from the semiconductor wafer 12 one by one and then mounted at intervals between the memory chips 1, memory components are reduced by high-density mounting. Becomes possible. In particular, since CSP mounting is used, the mounting area is minimized. Further, since the memory modules 20a and the like including as many memory chips 11 as possible are cut out based on the pass / fail pattern, it is possible to efficiently manufacture the multi-cavity memory modules 20a and the like. it can. The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, in each of the memory chips 1 included in the semiconductor wafer 2 of the first embodiment described above, the corresponding terminals may be connected to each other by wiring in each of the memory chips 1. For example, a common power supply voltage is applied to a power supply terminal of each memory chip 1, and a common operation clock signal is input to a clock terminal. If the terminals to which the same voltage is applied or the signals to which the same signal is input are connected when forming each memory chip 1 and four or two are cut out at the same time, four or two A common voltage is applied to any one of the memory chips 1 or a common signal is input. In this way, by interconnecting the memory chips 1 with each other, the amount of wiring between the plurality of memory chips 1 and the board 4 on which the memory chips 1 are mounted can be reduced, and the mounting process can be simplified. become. However, since it is not known how to combine and cut out adjacent memory chips 1 until a pass / fail inspection is performed, as shown in FIG. 6, the same terminals of all the adjacent memory chips 1 are wired to each other. It is preferable to keep it. Further, as an example, the case where the power supply terminal and the clock terminal are connected to each other has been described, but other terminals, for example, the address terminal and the data terminal may be connected to each other. When the same address terminals are connected to each other, for example, when the bit configuration of one memory chip 1 is 16 M x 4 bits, the memory module 10 b that cuts out two memory chips 1 at the same time has 16 M x An 8-bit bit configuration can be easily realized with a small amount of wiring, and a memory module 10a that simultaneously cuts out four memory chips 1 can easily realize a 16-M x 16-bit bit configuration with a small amount of wiring. . When the same data terminals are connected to each other, for example, when the bit configuration of one memory chip 1 is 16 M x 4 bits, the memory module 10b that cuts out two memory chips 1 at the same time is 3 2 The M x 4 bit configuration can be easily realized with a small amount of wiring, and the memory module 10a that cuts out four memory chips 1 at the same time can easily realize the 64 MX 4-bit configuration with a small amount of wiring. Can be realized.
同様に、 上述した第 2の実施形態の半導体ウェハ 1 2に含まれる各メモリチッ プ 1 1の対応する端子同士を配線によって相互に接続するようにしてもよい。 但 し、 この場合には、 半導体ウェハ 1 2において各メモリチップ 1 1の端子同士を 相互に接続する場合の他に、 C S P実装を行う際に形成する配線 (図 5に示した 配線パターン 1 3 ) を用いて各メモリチヅプ 1 1の端子同士を相互に接続するよ うにしてもよい。  Similarly, the corresponding terminals of the respective memory chips 11 included in the semiconductor wafer 12 of the second embodiment described above may be connected to each other by wiring. However, in this case, in addition to the case of connecting the terminals of each memory chip 11 to each other on the semiconductor wafer 12, the wiring formed when performing CSP mounting (the wiring pattern 13 shown in FIG. 5) ) May be used to connect the terminals of each memory chip 11 to each other.
また、 上述した実施形態では、 各メモリチップ 1のビット構成を 1 6 M x 4ビ ットとした力 s、 他のビッ ト構成でもよく、 また、 異なるビッ ト構成あるいは容量 のメモリチップ 1を組み合わせてもよい。 また、 上述した実施形態では、 半導体 チップとしてメモリチップを用い、 半導体装置としてのメモリモジュールを製造 する場合を例にとって説明したが、 メモリチップ以外の半導体チップ、 例えば、 プロセッサチップや A S I C等の各種チップを用いて半導体装置を製造する場合 に適用することができる。 Further, in the above-described embodiment, the bit configuration of each memory chip 1 is 16 M × 4 bits, the force s may be other bit configurations, and the memory chip 1 having a different bit configuration or capacity may be used. They may be combined. Further, in the above-described embodiment, the case where a memory chip is used as a semiconductor chip and a memory module as a semiconductor device is manufactured has been described as an example. However, a semiconductor chip other than a memory chip, for example, various chips such as a processor chip and an ASIC. The present invention can be applied to the case where a semiconductor device is manufactured using a semiconductor device.
また、 上述した第 1の実施形態では、 複数個あるいは 1個ずつ切り出したメモ リチップ 1を基板 4上に実装してメモリモジュール 1 0を形成したが、 メモリチ ヅプ 1をパーソナルコンピュータのマザーボ一ド等に直接実装するようにしても よい。 産業上の利用可能性 Also, in the first embodiment described above, a plurality of or one memos are cut out one by one. Although the rechip 1 is mounted on the substrate 4 to form the memory module 10, the memory chip 1 may be mounted directly on a motherboard or the like of a personal computer. Industrial applicability
上述したように、 本発明によれば、 良否検査の結果に応じて 1あるいは複数個 を単位として半導体ウェハから半導体チップを切り分けているため、 複数個の半 導体チップによって構成される高密度実装が可能な半導体装置を製造したときに、 その中の一部の半導体チップが不良品であるために半導体装置全体が不良品にな るということがなく、 半導体装置を製造する際の不良率を低減することができる ( また、 複数個の半導体チップからなる半導体装置をその後の工程で用いることが できるため、 単一の半導体チップからなる半導体装置を複数個組み合わせて用い る場合に比べて、 その後の工程を簡略化することができる。 As described above, according to the present invention, a semiconductor chip is separated from a semiconductor wafer in units of one or a plurality of units according to the result of a pass / fail inspection, so that a high-density mounting composed of a plurality of semiconductor chips is realized. When manufacturing possible semiconductor devices, some of the semiconductor chips in them are defective, so that the entire semiconductor device does not become defective, reducing the defect rate when manufacturing semiconductor devices. ( Also, since a semiconductor device composed of a plurality of semiconductor chips can be used in a subsequent step, the subsequent The process can be simplified.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体ウェハに複数の同一の半導体チップを形成した後に、 各半導体チップ の良否検査の結果に応じて 1あるいは複数個を単位として前記半導体チップを切 り分けることにより形成することを特徴とする半導体装置。  1. A plurality of identical semiconductor chips are formed on a semiconductor wafer, and the semiconductor chips are formed by dividing the semiconductor chips into one or more units according to the result of a pass / fail inspection of each semiconductor chip. Semiconductor device.
2 . 前記半導体チップはメモリチップであることを特徴とする請求の範囲第 1項 記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the semiconductor chip is a memory chip.
3 . 半導体ウェハに形成された複数の同一の半導体チップに対して配線、 樹脂封 止、 端子形成を行った後に、 各半導体チップの良否検査の結果に応じて 1あるい は複数個を単位として前記半導体チップを切り分けることにより形成することを 特徴とする半導体装置。  3. After wiring, sealing with resin, and forming terminals for a plurality of identical semiconductor chips formed on a semiconductor wafer, one or more units may be used as a unit depending on the result of the quality inspection of each semiconductor chip. A semiconductor device formed by cutting the semiconductor chip.
4 . 前記半導体チップはメモリチップであることを特徴とする請求の範囲第 3項 記載の半導体装置。  4. The semiconductor device according to claim 3, wherein the semiconductor chip is a memory chip.
5 . 半導体ウェハに複数の同一の半導体チップを形成する第 1の工程と、 前記半導体ウェハに形成された複数の前記半導体チップのそれそれの良否検査 を行う第 2の工程と、  5. A first step of forming a plurality of identical semiconductor chips on a semiconductor wafer, and a second step of performing a pass / fail inspection of each of the plurality of semiconductor chips formed on the semiconductor wafer,
前記良否検査の結果に基づいて 1あるいは複数の前記半導体チップを切り分け る第 3の工程と、  A third step of separating one or more of the semiconductor chips based on a result of the pass / fail inspection;
を備えることを特徴とする半導体装置の製造方法。  A method for manufacturing a semiconductor device, comprising:
6 . 前記半導体チップはメモリチップであることを特徴とする請求の範囲第 5項 記載の半導体装置の製造方法。  6. The method for manufacturing a semiconductor device according to claim 5, wherein the semiconductor chip is a memory chip.
7 . 前記良否検査の後に行われる複数の前記半導体チップの切り分けは、 4個が 可能な場合には 4個をひとまとまりとして、 4個が不可能であって 2個が可能な 場合には 2個をひとまとまりとして、 2個が不可能な場合には 1個ずつ行うこと を特徴とする請求の範囲第 5項記載の半導体装置の製造方法。  7. The separation of the plurality of semiconductor chips performed after the pass / fail inspection is performed by grouping four chips when four are possible, and two when four are impossible and two are possible. 6. The method for manufacturing a semiconductor device according to claim 5, wherein, when two pieces are impossible, one piece is performed when two pieces are impossible.
8 . 半導体ウェハに複数の同一の半導体チップを形成する第 1の工程と、 前記半導体ウェハ上に形成された複数の前記半導体チップに対して配線、 樹脂 封止、 端子形成を行う第 2の工程と、  8. A first step of forming a plurality of identical semiconductor chips on a semiconductor wafer and a second step of performing wiring, resin sealing, and terminal formation on the plurality of semiconductor chips formed on the semiconductor wafer When,
前記第 2の工程によって形成された前記端子を用いて、 前記半導体ウェハに形 成された複数の前記半導体チップのそれそれの良否検査を行う第 3の工程と、 前記良否検査の結果に基づいて 1あるいは複数の前記半導体チップを切り分け る第 4の工程と、 A third step of performing a pass / fail inspection of each of the plurality of semiconductor chips formed on the semiconductor wafer using the terminals formed in the second step; A fourth step of separating one or more of the semiconductor chips based on the result of the pass / fail inspection;
を備えることを特徴とする半導体装置の製造方法。  A method for manufacturing a semiconductor device, comprising:
9 . 前記半導体チップはメモリチップであることを特徴とする請求の範囲第 8項 記載の半導体装置の製造方法。 9. The method for manufacturing a semiconductor device according to claim 8, wherein the semiconductor chip is a memory chip.
1 0 . 前記良否検査の後に行われる複数の前記半導体チップの切り分けは、 4個 が可能な場合には 4個をひとまとまりとして、 4個が不可能であって 2個が可能 な場合には 2個をひとまとまりとして、 2個が不可能な場合には 1個ずつ行うこ とを特徴とする請求の範囲第 8項記載の半導体装置の製造方法。  10. The separation of a plurality of the semiconductor chips performed after the pass / fail inspection is performed by grouping four chips when four chips are possible, and when four chips are impossible and two chips are possible. 9. The method for manufacturing a semiconductor device according to claim 8, wherein two pieces are grouped together, and if two pieces are impossible, one piece is performed.
PCT/JP1999/002564 1998-05-19 1999-05-18 Semiconductor device and method of manufacture thereof WO1999060618A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/716,843 US6969623B1 (en) 1998-05-19 2000-11-17 Semiconductor device and method for manufacturing the same
US09/716,165 US6479306B1 (en) 1998-05-19 2000-11-17 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10153818A JPH11330256A (en) 1998-05-19 1998-05-19 Semiconductor device and its manufacture
JP10/153818 1998-05-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002565 Continuation WO1999060619A1 (en) 1998-05-19 1999-05-18 Semiconductor device and method of manufacture thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/716,843 Continuation US6969623B1 (en) 1998-05-19 2000-11-17 Semiconductor device and method for manufacturing the same
US09/716,165 Continuation US6479306B1 (en) 1998-05-19 2000-11-17 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO1999060618A1 true WO1999060618A1 (en) 1999-11-25

Family

ID=15570772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002564 WO1999060618A1 (en) 1998-05-19 1999-05-18 Semiconductor device and method of manufacture thereof

Country Status (3)

Country Link
JP (1) JPH11330256A (en)
TW (1) TW457425B (en)
WO (1) WO1999060618A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082540A1 (en) * 2001-03-30 2002-10-17 Fujitsu Limited Semiconductor device, method of manufacture thereof, and semiconductor substrate
JP2005072223A (en) * 2003-08-25 2005-03-17 Casio Comput Co Ltd Semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806060B1 (en) * 1999-11-29 2008-02-21 루센트 테크놀러지스 인크 Cluster packaging of IC chips in multi-chip packages
KR100699314B1 (en) * 2002-01-28 2007-03-26 후지쯔 가부시끼가이샤 Semiconductor device, method for manufacturing the semiconductor device, and semiconductor substrate
CN1624919A (en) * 2003-12-05 2005-06-08 三星电子株式会社 Wafer-level electronic modules with integral connector contacts and methods of fabricating the same
JP2010192837A (en) * 2009-02-20 2010-09-02 Showa Denko Kk Method for dicing semiconductor wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935586B1 (en) * 1968-12-14 1974-09-24
JPH06334034A (en) * 1993-05-21 1994-12-02 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPH09199450A (en) * 1996-01-22 1997-07-31 Oki Electric Ind Co Ltd Method and device for dicing semiconductor element on wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935586B1 (en) * 1968-12-14 1974-09-24
JPH06334034A (en) * 1993-05-21 1994-12-02 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPH09199450A (en) * 1996-01-22 1997-07-31 Oki Electric Ind Co Ltd Method and device for dicing semiconductor element on wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082540A1 (en) * 2001-03-30 2002-10-17 Fujitsu Limited Semiconductor device, method of manufacture thereof, and semiconductor substrate
US6972487B2 (en) 2001-03-30 2005-12-06 Fujitsu Limited Multi chip package structure having a plurality of semiconductor chips mounted in the same package
JP2005072223A (en) * 2003-08-25 2005-03-17 Casio Comput Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH11330256A (en) 1999-11-30
TW457425B (en) 2001-10-01

Similar Documents

Publication Publication Date Title
KR100843214B1 (en) Planar multi semiconductor chip with the memory chip connected to processor chip by through electrode and method for fabricating the same
US7119427B2 (en) Stacked BGA packages
USRE36773E (en) Method for plating using nested plating buses and semiconductor device having the same
US7257884B2 (en) Method for fabricating semiconductor component with adjustment circuitry for electrical characteristics or input/output configuration
KR100843213B1 (en) High I/O semiconductor chip with the memory chip connected to processor chip by through electrode arranged in scribe lane and method for fabricating the same
US20100102440A1 (en) High density three dimensional semiconductor die package
US6677219B2 (en) Method of forming a ball grid array package
KR19990006158A (en) Ball grid array package
US6855573B2 (en) Integrated circuit package and manufacturing method therefor with unique interconnector
US6969623B1 (en) Semiconductor device and method for manufacturing the same
WO1999060618A1 (en) Semiconductor device and method of manufacture thereof
JP2003174122A (en) Semiconductor device
WO1999026288A1 (en) Semiconductor device and method for manufacturing the same
WO1999060619A1 (en) Semiconductor device and method of manufacture thereof
US6924557B2 (en) Semiconductor package
JP3977014B2 (en) Semiconductor device and manufacturing method thereof
WO1999026289A1 (en) Semiconductor device and method for manufacturing the same
JP2000260931A (en) Semiconductor device and its manufacture
CN107205315B (en) Printed circuit board and component manufacturing method
US7199460B2 (en) Semiconductor device and method of manufacturing the same
US6159774A (en) Multi-layer interconnection layout between a chip core and peripheral devices
JPH07183320A (en) Connecting structure of bonding wire and connecting method of bonding wire
JPH1093009A (en) Semiconductor chip module, multi-chip module and electronic device
WO1985001390A1 (en) Wafer
JP2002373958A (en) Structure and method for mounting semiconductor chip

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09716843

Country of ref document: US

Ref document number: 09700623

Country of ref document: US

Ref document number: 09716165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase