WO1999060330A1 - Force sensing probe for scanning probe microscopy - Google Patents

Force sensing probe for scanning probe microscopy Download PDF

Info

Publication number
WO1999060330A1
WO1999060330A1 PCT/US1999/010859 US9910859W WO9960330A1 WO 1999060330 A1 WO1999060330 A1 WO 1999060330A1 US 9910859 W US9910859 W US 9910859W WO 9960330 A1 WO9960330 A1 WO 9960330A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloys
mixtures
iron
cantilever
probe
Prior art date
Application number
PCT/US1999/010859
Other languages
French (fr)
Inventor
Stuart M. Lindsay
Tianwei Jing
Original Assignee
Molecular Imaging Corporation
Arizona Board Of Regents
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molecular Imaging Corporation, Arizona Board Of Regents filed Critical Molecular Imaging Corporation
Priority to AT99924287T priority Critical patent/ATE246340T1/en
Priority to EP99924287A priority patent/EP1080340B1/en
Priority to JP2000549903A priority patent/JP2002515592A/en
Priority to DE69910014T priority patent/DE69910014T2/en
Publication of WO1999060330A1 publication Critical patent/WO1999060330A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/40Conductive probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/865Magnetic force probe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/873Tip holder

Definitions

  • the present invention relates to scanning probe microscopy, and in particular to the construction of a microscope and force-sensing probes in the form of cantilevers for use in atomic force microscopy.
  • the deflection of a flexible cantilever is used to monitor the interaction between a probe-tip and a surface under study. As the tip is brought close to the surface, it deflects in response to interactions with the surface under study. These deflections are used to control the distance of the tip from the surface and to measure details of the surface.
  • an atomic force microscope in an oscillating mode. In this mode (known as AC mode), the cantilever is vibrated at a high frequency, and the change in amplitude (or phase) of the cantilever as it approaches a surface is used to control the microscope.
  • AC mode the cantilever is vibrated at a high frequency, and the change in amplitude (or phase) of the cantilever as it approaches a surface is used to control the microscope.
  • the oscillation is used mainly as a means of avoiding the effects of adhesion between the tip and surface.
  • adhesion is easily avoided by chemical means.
  • the microscope may be operated in a fluid which minimizes adhesion.
  • a tip material can be chosen so as to minimize its adhesion to the surface under study. In that case, there is no reason to operate the microscope at a large amplitude of oscillation.
  • the usual method of exciting motion in the AFM cantilever is to drive it with an acoustic excitation.
  • This method works well in air or gas and has been made to work with the tip submerged in water as taught by Hansma et al, "Tapping Mode Atomic Force Microscopy in Liquids," Appl. Phys. Lett. 64: 1738-1740 (1994) and Putman et al, "Tapping Mode Atomic Force Microscopy in Liquid," Appl. Phys. Lett. 64: 2454- 2456 (1994).
  • the motions of the cantilever become viscously damped, so that substantial acoustic amplitude is required to drive motion of the cantilever.
  • the fluid acts as a coupling medium between the source of acoustic excitation and parts of the microscope other than the cantilever.
  • the result is that parts of the microscope other than the cantilever get excited by the acoustic signal used to vibrate the cantilever. If these motions lead to a signal in the detector, a background signal is generated which is spurious and not sensitive to the interaction between the tip and surface.
  • M is the magnetic moment
  • dB/dz is applied along the same direction as the magnetic moment
  • FIG. 2 Another prior art procedure as taught in Lindsay, U.S. Patent No. 5,612,491 , Lindsay, U.S. Patent No. 5,866,805 and Cleveland et al, U.S. Patent No. 5,670,712, is illustrated in Fig. 2.
  • a film or particle 5 is magnetized so that its moment, M, 6, points along the soft axis of the cantilever 2.
  • a magnetic field, B, 7, is directed perpendicular to the magnetic moment on the cantilever 6.
  • the present invention provides force sensing probes for use in scanning probe microscopes and a method for coating such probes with a film comprising a magnetostrictive material.
  • the probes are magnetized by placing them in a magnetic field which can be oriented in any direction with respect to the probe.
  • the magnetostrictive effect leads to a compression or expansion of the magnetic film, altering its length by the strength of the applied field.
  • This causes the probe, which in a preferred embodiment is in the form of a cantilever, and the applied magnetic film, to deflect or bend.
  • the present invention obtains the advantages that the consequent motion of the probe is much greater than that obtained by direct application of a magnetic force and the effect is not sensitive to the direction of the applied field. Because of the greater consequent motion, a large number of magnetostrictive materials may be utilized, including those which are resistant to oxidation and/or corrosion in hostile environments.
  • the magnetostrictive material preferably comprises material selected from the group consisting of nickel; cobalt; alloys and mixtures of terbium and iron such as Terfenol-D, commercially available from ETREMA Products, Inc., Ames, IA; alloys and mixtures of iron, neodymium and boron; alloys and mixtures of nickel and iron; alloys and mixtures of cobalt and iron; alloys and mixtures of nickel and vanadium; alloys and mixtures of nickel and chrome; alloys and mixtures of nickel and manganese; alloys and mixtures of nickel and cobalt; alloys and mixtures of nickel and copper; alloys and mixtures of beryllium and iron; alloys and mixtures of aluminum and iron; alloys and mixtures of germanium and iron; alloys and mixtures of silicon and iron; alloy
  • the probe comprises a cantilever having a top surface and a bottom surface, with the bottom surface including a probe tip disposed downwardly therefrom.
  • the film comprising magnetostrictive material may be coated onto either the top or bottom surface of the cantilever structure.
  • the magnetostrictive material is coated onto the top surface of the cantilever, and the cantilever includes a coating of a different material disposed over the bottom surface and the probe tip.
  • the different material also comprises a magnetostrictive material.
  • the probe is used in a scanning probe microscope such as an atomic force microscope for sensing the properties of a surface or interface.
  • a scanning probe microscope such as an atomic force microscope for sensing the properties of a surface or interface.
  • a microscope includes the probe, and a film comprising a magnetostrictive material on the probe, a source for producing a magnetic field to cause deflection of the probe, and a detector for sensing the deflection of the probe.
  • the invention also includes a method of magnetizing a probe for sensing the properties of a surface or interface comprising the steps of forming a film comprising a magnetostrictive material on a surface of the probe and exposing the probe to a magnetic field in the range of from about 0.1 to about 20,000 Oersteds.
  • the force sensing cantilever is provided and has a top surface, a bottom surface and a probe tip extending downwardly from the bottom surface.
  • the cantilever is placed in a sputter deposition chamber, and a first film comprising a magnetostrictive material is sputter deposited onto the bottom surface of the cantilever followed by sputter depositing a second film of a different material onto the top surface of the cantilever and over the probe tip.
  • the different material is also a magnetostrictive material. Accordingly, it is a feature of the present invention to provide a more sensitive method to create magnetic deflection of scanning probe microscope cantilevers and for magnetic materials which are more resistant to oxidation and/or corrosion than iron-containing alloys.
  • Fig. 1 is a schematic illustration of the deflection of a cantilever with a magnetic particle and a field gradient according to the prior art
  • Fig. 2 is a schematic illustration of the deflection of a cantilever through a field- generated torque acting on the magnetic moment of a cantilever according to the prior art
  • Fig. 3 is a schematic illustration of the dimensional change in a material owing to magnetostriction
  • Fig. 4 is a schematic illustration of a film of magnetostrictive material on a non- magnetostrictive cantilever at zero applied magnetic field
  • Fig. 5 is a schematic illustration of a film of magnetostrictive material on a non- mag netostrictive cantilever at a non-zero applied magnetic field
  • Fig. 6 is a schematic illustration defining an axial angle, q, of orientation between a magnetization and the plane of the cantilever;
  • Fig. 7 is a schematic illustration defining an azimuthal angle, f, of orientation between a magnetization and the plane of the cantilever
  • Fig. 10 is a chart of the magnetization M, vs. applied magnetic field H, for a series of sweeps of H after stepping to successively higher values (1 ,2,3,4) of H after each sweep from the first sweep; and Fig. 11 is a schematic illustration of a scanning probe microscope utilizing the force sensing cantilever of the present invention.
  • the present invention makes use of the magnetostrictive properties of many magnetic materials such as, for example, those listed in Du Tremolet de Lacheisserie, "Magnetostriction, Theory and Applications of Magnetoelasticity," CRC Press (1993).
  • the absolute volume may shrink; alternatively, it may increase.
  • the strain, I is dimensionless, so d 33 has units of inverse applied field, or, in the MKS system, meters/Ampere (m/A).
  • d 33 The magnetostrictivity, d 33 is a complicated function of many parameters, and manufacturers usually quote maximum values, d 33 max . Values for some materials are listed below (data are from Du Tremolet de Lacheisserie):
  • Table 1 Magnetostrictivity for some magnetic materials.
  • Du Tremolet de Lacheisserie also provides data for a number of other materials and estimates can be made from the plots of I vs. H given there. A value of 5x10 9 m/A is typical for a number of materials.
  • the magnetostrictive effect arises from the rotation of domains within a magnetized sample.
  • H s For magnetic fields below the saturation field of the sample, H s , domains exist in all possible orientations, but with a net overall alignment equal to the net magnetization. Therefore, provided that magnetization proceeds by rotation of domains (as opposed to free flow of domain walls), the magnetostriction can be an isotropic effect independent of the orientation between the applied field and any net magnetization of the sample.
  • a film of magnetostrictive material 10 is deposited onto a surface 21 of the cantilever 11 such as, for example, by sputter deposition techniques.
  • Cantilever 11 also includes a bottom surface 22 and a probe tip 23 extending downwardly therefrom.
  • Cantilever 11 has a thickness t 0 a length L, a Young's modulus E c and a Poisson's ratio n 0 .
  • the film 10 changes length to L-IL while the cantilever 11 remains the same length, resulting in a displacement, d, of the end of the cantilever.
  • a material with positive magnetostriction would change length to L+IL, resulting in a downward movement.
  • the displacement, d is defined as
  • magnetostrictive material 10 was deposited onto top surface 21 of the cantilever.
  • An example of a magnetostrictive material which could be so deposited is nickel. It is also within the scope of the invention to deposit the film of magnetostrictive material onto the bottom surface 22 of cantilever 11.
  • deposition of a film on the top or bottom surface only of cantilever 11 may cause the cantilever to have a tendency to curl.
  • a film of a second material which itself may be a magnetostrictive material, may be deposited onto the opposite surface of the cantilever, which in the embodiment shown in Figs. 4 and 5 would be bottom surface 22 of the cantilever.
  • the magnetostrictivity values of the two materials may be chosen to complement one another.
  • one of the materials may be chosen to have a positive magnetostrictivity while the other has a negative magnetostrictivity.
  • a key signature of the magnetostrictive effect is its lack of a strong dependence on the angle between the applied field and the magnetization direction of the film.
  • Fig. 6 illustrates a possible orientation of the magnetization M, 16 with respect to the long axis 19 of the cantilever 11 , denoted by the angle q.
  • the applied magnetic field, H, 15 is shown normal to the plane of the cantilever.
  • FIG. 7 shows another orientation, where the angle j between the magnetization M, 17 and the long axis 19 of cantilever 11 is defined with respect to a line perpendicular to the long axis of the cantilever and lying in the plane of the cantilever.
  • the films magnetized with the applied field lying 45° out of the plane of the cantilever were in fact magnetized in plane, because of the shape anisotropy of thin films which makes it difficult to magnetize them out of the plane.
  • the film magnetized in-plane but perpendicular to its length would produce no displacement of the end of the tip by the direct-force mechanism because the torque would act to twist the cantilever about its long axis. It is clear that the displacement of these films is dominated by a magnetostrictive effect as opposed to a direct magnetic force effect.
  • H s This upper value of field is H s , 6.
  • M R the remnant magnetization, that characterizes the strongest permanent magnet that can be made with the material (corresponding to a remnant field at the magnet pole, B R .).
  • H c the magnetization falls to zero.
  • H c is the coercive field.
  • Equation 10 shows that it is desirable to (a) use a material with a high residual magnetization and (b) magnetize it by bringing it to a field which is on the order of H s /2.
  • H s - 0.5-1T, since it is determined by the density of atomic spins. Therefore, the films need to be treated by bringing them from their virgin (unmagnetized state) into a field of 0.25 to 0.5T (2.5 to 5kOe).
  • Cantilevers have also been coated with about a 100 nanometer thick film of cobalt, obtaining similar results, which implies that d 33 for a cobalt film is on the order of 10 9 m/A. Similar results have been obtained with nickel. Both cobalt and nickel are much less susceptible to oxidation and corrosion than iron-containing magnetic alloys.
  • the cantilevers commercial silicon-nitride devices available as Ultralevers from Park Scientific of Sunnyvale, CA, are coated on one surface, preferably the top surface, with a film of about a 100 nanometer thickness of Co, Ni or Fe-Nd-B alloy by means of argon-ion sputtering of a target.
  • the opposite (bottom) surface of the cantilevers is coated with a 5 to 10 nanometer thickness of a different material such as, for example, chrome to compensate for any bending caused by the application of the magnetostrictive film as described in an earlier patent application, Serial No. 08/710,191.
  • the cantilevers are then magnetized in a field of about 3kOe. They are mounted, for example, in an atomic force microscope close to the pole piece of a solenoid, the field of which may be oriented at any angle to the cantilever.
  • such a microscope includes a cantilever 28, having a film 29 comprising a magnetostrictive material on the top surface thereof.
  • Cantilever 28 includes a probe tip 30 extending from the bottom surface thereof toward sample 32.
  • the probe tip 30 is scanned over the surface 34 of sample 32 by a piezo-electric scanner 36.
  • Deflections of cantilever 28 are detected by directing a focused beam of radiation 38a from, for example, a laser 40 off of the reflective surface of film 29 to form a reflected beam 38b.
  • the angular position of beam 38b is sensed by a position sensitive detector 42.
  • a solenoid 44 in close proximity to cantilever 28 is driven by an AC signal on lines 46 and 48 from an oscillator 50.
  • the resulting alternating magnetic field causes cantilever 28 to oscillate.
  • This oscillating motion appears as an AC signal component in the signal on line 52 which is detected by position sensitive detector 42.
  • This signal on line 52 is fed to a synchronous detector 54.
  • a reference input 56 for synchronous detector 54 is provided by the same oscillator 50 that drives solenoid 44.
  • Output 58 of synchronous detector 54 is used to control the height of cantilever 28 above the sample surface 34 and an AFM image of the surface 34 is formed from the corresponding height adjustments in a conventional manner.
  • magnetostrictive alloys including nickel-iron, cobalt-iron, nickel-vanadium, nickel-chrome, nickel-manganese, nickel-cobalt, nickel-copper, beryllium-iron, aluminum-iron, germanium-iron, silicon-iron and the oxides of titanium-iron, manganese-iron, cobalt-iron, copper-iron, barium-iron and strontium-iron, and the commercial magnetostrictive alloy, Terfenol-D (available from ETREMA Products, Inc, Ames, IA). While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Abstract

Force sensing probes for use in scanning probe microscopes and a method for coating such probes (11) with a film comprising a magnetostrictive material (10) are provided. The probes (11) may be magnetized by placing them in a magnetic field which can be oriented in any direction with respect to the probes. The magnetostrictive effect leads to a compression or expansion of the magnetic film, altering its length by the strength of the applied field. This in turn causes the probe, which in a preferred embodiment is in the form of a cantilever (11), and the applied magnetic film, to deflect or bend. The consequent motion of the probe is much greater than that obtained by direct application of a magnetic force and the effect is not sensitive to the direction of the applied field.

Description

FORCE SENSING PROBE FOR SCANNING PROBE MICROSCOPY
The present invention relates to scanning probe microscopy, and in particular to the construction of a microscope and force-sensing probes in the form of cantilevers for use in atomic force microscopy.
In the conventional atomic force microscope (AFM), the deflection of a flexible cantilever is used to monitor the interaction between a probe-tip and a surface under study. As the tip is brought close to the surface, it deflects in response to interactions with the surface under study. These deflections are used to control the distance of the tip from the surface and to measure details of the surface. It is often desirable to operate an atomic force microscope in an oscillating mode. In this mode (known as AC mode), the cantilever is vibrated at a high frequency, and the change in amplitude (or phase) of the cantilever as it approaches a surface is used to control the microscope. One reason for doing this is because, when oscillated at high amplitude, the probe is less likely to stick to the surface under study. However, this AC mode of operation is also intrinsically more sensitive. AC detection shifts the signal to be detected to sidebands on a carrier signal, avoiding the low frequency noise that DC signals suffer from. In addition, the mechanical Q of a cantilever resonance can be used to enhance the overall signal to noise ratio of a microscope operated this way.
In one version of the AC AFM as taught by Elings et al, U.S. Patent Nos. 5,412,980 and 5,519,212, the oscillation is used mainly as a means of avoiding the effects of adhesion between the tip and surface. However, such adhesion is easily avoided by chemical means. For example, the microscope may be operated in a fluid which minimizes adhesion. Alternatively (or additionally), a tip material can be chosen so as to minimize its adhesion to the surface under study. In that case, there is no reason to operate the microscope at a large amplitude of oscillation.
The usual method of exciting motion in the AFM cantilever is to drive it with an acoustic excitation. This method works well in air or gas and has been made to work with the tip submerged in water as taught by Hansma et al, "Tapping Mode Atomic Force Microscopy in Liquids," Appl. Phys. Lett. 64: 1738-1740 (1994) and Putman et al, "Tapping Mode Atomic Force Microscopy in Liquid," Appl. Phys. Lett. 64: 2454- 2456 (1994). However, in a fluid, the motions of the cantilever become viscously damped, so that substantial acoustic amplitude is required to drive motion of the cantilever. Furthermore, the fluid acts as a coupling medium between the source of acoustic excitation and parts of the microscope other than the cantilever. The result is that parts of the microscope other than the cantilever get excited by the acoustic signal used to vibrate the cantilever. If these motions lead to a signal in the detector, a background signal is generated which is spurious and not sensitive to the interaction between the tip and surface.
A scheme for exciting the cantilever directly has been described by Lindsay et al, " Scanning Tunneling Microscopy and Atomic Force Microscopy Studies of Biomaterials at a Liquid-Solid Interface," J. Vac. Sci. Technol. 11 : 808-815 (1993). In this approach, a magnetic particle or film is attached to the cantilever and a solenoid near the cantilever is used to generate a magnetic force on the cantilever. This arrangement gives extreme sensitivity to surface forces, presumably because of a lack of background spurious signal as would occur in an acoustically-excited microscope. Lindsay, U.S. Patent Nos. 5,515,719 and 5,513,518, the disclosures of which are hereby incorporated by reference, teach this novel form of AC-AFM in which the cantilever is excited by magnetic means.
Magnetic cantilevers are required in order to operate such a microscope. In the prior art at least three approaches were used. Lindsay et al, J. Vac. Sci. Technol. 11 : 808-815 (1993), described a method for fixing a magnetic particle onto the cantilever. However, this method is not suitable for the fabrication of suitable cantilevers in quantity. O'Shea et al, "Atomic Force Microscopy of Local Compliance at Solid-Liquid Interfaces," Chem. Phys. Lett. 223: 336-340 (1994), describe a method for evaporating a magnetic coating onto the cantilevers. In order to avoid bending the cantilevers owing to the interfacial stress introduced by the evaporated film, they place a mask over most of the cantilever so that the magnetic film is deposited only onto the tip of the force-sensing cantilever. This approach requires precision alignment of a mechanical mask and it is not conducive to simple fabrication of suitable coated cantilevers. Other methods for the formation of magnetic films on cantilevers and for calibrating the properties of the films have been described in Lindsay, U.S. Patent No. 5,612,491 , and Lindsay, U.S. Patent No. 5,866,805. Similar procedures have also been described by Cleveland et al, U.S. Patent No. 5,670,712.
These references teach that a cantilever with a magnetic film or particle is deflected by the effect of forces that arise from the interaction of an applied magnetic field and a magnetic moment fixed to the cantilever. One embodiment of this approach, Lindsay, U.S. Patent No. 5,515,719, is illustrated in Fig. 1. There, a magnetic particle or film 1 is attached to the cantilever 2 and magnetized so that its magnetic moment, M, 3 points away from the soft axis of the cantilever. A magnetic field gradient, dB/dz 4 is applied parallel to the magnetic moment on the cantilever tip 3, resulting in a force on the tip given by F=M x dB/dz, (1) where M is the magnetic moment and the magnetic field gradient, dB/dz, is applied along the same direction as the magnetic moment, resulting in a force, F The generation of forces adequate to displace cantilevers of stiffness on the order of a Newton per meter by several nanometers requires either a very large magnetic moment or a very large field gradient.
Another prior art procedure as taught in Lindsay, U.S. Patent No. 5,612,491 , Lindsay, U.S. Patent No. 5,866,805 and Cleveland et al, U.S. Patent No. 5,670,712, is illustrated in Fig. 2. There, a film or particle 5 is magnetized so that its moment, M, 6, points along the soft axis of the cantilever 2. A magnetic field, B, 7, is directed perpendicular to the magnetic moment on the cantilever 6. This
results in a torque, N, on the cantilever given by the equation
N=MxB (2) This is roughly equivalent to a force F (8) on the end of the cantilever, given by the equation
F«N/L (3) where L is the length of the cantilever. This effect has been demonstrated by Han et al, "A Magnetically Driven Oscillating Probe Microscope for Operation in Liquids," Appl. Phys. Lett. 69, 4111-4113 (1996) who measured a motion of a few nanometers for an applied field of a few Oersteds, using a cantilever of stiffness 0.12 Newtons/meter.
The prior art procedures discussed above require a substantial magnetic moment to be affixed to the tip of the cantilever which limits the range of materials that may be used. In particular, iron alloys which have been used in the past oxidize easily, limiting the operation of the microscope to non-oxidizing environments. Accordingly, there is still a need in this art for a more sensitive method to create magnetic deflection of scanning probe microscope cantilevers and for materials which are more resistant to corrosion than iron-containing alloys.
These needs are met by the present invention which provides force sensing probes for use in scanning probe microscopes and a method for coating such probes with a film comprising a magnetostrictive material. The probes are magnetized by placing them in a magnetic field which can be oriented in any direction with respect to the probe. The magnetostrictive effect leads to a compression or expansion of the magnetic film, altering its length by the strength of the applied field. This in turn causes the probe, which in a preferred embodiment is in the form of a cantilever, and the applied magnetic film, to deflect or bend. The present invention obtains the advantages that the consequent motion of the probe is much greater than that obtained by direct application of a magnetic force and the effect is not sensitive to the direction of the applied field. Because of the greater consequent motion, a large number of magnetostrictive materials may be utilized, including those which are resistant to oxidation and/or corrosion in hostile environments.
According to one aspect of the present invention, a force sensing probe for sensing the properties of a surface or interface is provided and includes a probe and a film comprising a magnetostrictive material on the probe. The magnetostrictive material preferably comprises material selected from the group consisting of nickel; cobalt; alloys and mixtures of terbium and iron such as Terfenol-D, commercially available from ETREMA Products, Inc., Ames, IA; alloys and mixtures of iron, neodymium and boron; alloys and mixtures of nickel and iron; alloys and mixtures of cobalt and iron; alloys and mixtures of nickel and vanadium; alloys and mixtures of nickel and chrome; alloys and mixtures of nickel and manganese; alloys and mixtures of nickel and cobalt; alloys and mixtures of nickel and copper; alloys and mixtures of beryllium and iron; alloys and mixtures of aluminum and iron; alloys and mixtures of germanium and iron; alloys and mixtures of silicon and iron; alloys and mixtures of the oxides of titanium and iron; alloys and mixtures of the oxides of manganese and iron; alloys and mixtures of the oxides of cobalt and iron; alloys and mixtures of the oxides of copper and iron; alloys and mixtures of the oxides of barium and iron; and alloys and mixtures of the oxides of strontium and iron. Many of these materials are resistant to oxidation and/or corrosion.
In a preferred embodiment of the invention, the probe comprises a cantilever having a top surface and a bottom surface, with the bottom surface including a probe tip disposed downwardly therefrom. The film comprising magnetostrictive material may be coated onto either the top or bottom surface of the cantilever structure. In a preferred form, the magnetostrictive material is coated onto the top surface of the cantilever, and the cantilever includes a coating of a different material disposed over the bottom surface and the probe tip. Preferably, the different material also comprises a magnetostrictive material.
The probe is used in a scanning probe microscope such as an atomic force microscope for sensing the properties of a surface or interface. Broadly, such a microscope includes the probe, and a film comprising a magnetostrictive material on the probe, a source for producing a magnetic field to cause deflection of the probe, and a detector for sensing the deflection of the probe.
The invention also includes a method of magnetizing a probe for sensing the properties of a surface or interface comprising the steps of forming a film comprising a magnetostrictive material on a surface of the probe and exposing the probe to a magnetic field in the range of from about 0.1 to about 20,000 Oersteds. In a preferred embodiment of the method, the force sensing cantilever is provided and has a top surface, a bottom surface and a probe tip extending downwardly from the bottom surface. The cantilever is placed in a sputter deposition chamber, and a first film comprising a magnetostrictive material is sputter deposited onto the bottom surface of the cantilever followed by sputter depositing a second film of a different material onto the top surface of the cantilever and over the probe tip. In a preferred embodiment, the different material is also a magnetostrictive material. Accordingly, it is a feature of the present invention to provide a more sensitive method to create magnetic deflection of scanning probe microscope cantilevers and for magnetic materials which are more resistant to oxidation and/or corrosion than iron-containing alloys.
In order that the invention may be more readily understood, reference will now be made by way of example to the accompanying drawings in which:
Fig. 1 is a schematic illustration of the deflection of a cantilever with a magnetic particle and a field gradient according to the prior art;
Fig. 2 is a schematic illustration of the deflection of a cantilever through a field- generated torque acting on the magnetic moment of a cantilever according to the prior art;
Fig. 3 is a schematic illustration of the dimensional change in a material owing to magnetostriction;
Fig. 4 is a schematic illustration of a film of magnetostrictive material on a non- magnetostrictive cantilever at zero applied magnetic field; Fig. 5 is a schematic illustration of a film of magnetostrictive material on a non- mag netostrictive cantilever at a non-zero applied magnetic field;
Fig. 6 is a schematic illustration defining an axial angle, q, of orientation between a magnetization and the plane of the cantilever;
Fig. 7 is a schematic illustration defining an azimuthal angle, f, of orientation between a magnetization and the plane of the cantilever; Fig. 8 is a graph of the measured deflection of a cantilever (arbitrary units) coated with Fe-Nd-B alloy as a function of axial angle q between the magnetization and applied field for a constant azimuthal angle (f=0);
Fig. 9 is a graph of the measured deflection of a cantilever (arbitrary units) coated with Fe-Nd-B alloy as a function of azimuthal angle f between the magnetization and applied field for a constant axial angle (q=0);
Fig. 10 is a chart of the magnetization M, vs. applied magnetic field H, for a series of sweeps of H after stepping to successively higher values (1 ,2,3,4) of H after each sweep from the first sweep; and Fig. 11 is a schematic illustration of a scanning probe microscope utilizing the force sensing cantilever of the present invention.
The present invention makes use of the magnetostrictive properties of many magnetic materials such as, for example, those listed in Du Tremolet de Lacheisserie, "Magnetostriction, Theory and Applications of Magnetoelasticity," CRC Press (1993). If a magnetic field H, is applied to a sphere of a magnetic material of diameter d (in the absence of a field, Fig. 3) the material will distort, changing its dimensions from a condition where H=0 to where H≠O. That is, the material will undergo a change in absolute volume. In a general case, as shown in Fig. 3, the absolute volume may shrink; alternatively, it may increase. If the distortion of the material is uniform (i.e., is isotropic), so that d^=d2, then a volume magnetostriction, w(H), is given by (d3-d.,3)/d3. The corresponding fractional change in linear dimension, (d-d^/d is referred to as I. Its value is usually given for the saturation magnetic field, H=HS as ls. In the case of anisotropic deformation, values are given for directions parallel and perpendicular to the applied magnetic field. The operation of a magnetostrictive transducer is based on the change of I with applied magnetic field, H. This quantity is described by the static magnetostricivity, d33. In simple geometries,
Figure imgf000009_0001
The strain, I, is dimensionless, so d33 has units of inverse applied field, or, in the MKS system, meters/Ampere (m/A).
The magnetostrictivity, d33 is a complicated function of many parameters, and manufacturers usually quote maximum values, d33 max. Values for some materials are listed below (data are from Du Tremolet de Lacheisserie):
Table 1 : Magnetostrictivity for some magnetic materials.
Material Source d33 max(m/AJ
"Nickel ^TxlO*
Terfenol-D ETREM A Products, 6x10~8
Ames, I A Alfer (Fe0 13AI087) Johnson Mathey, U.K. 7.1x109
Du Tremolet de Lacheisserie also provides data for a number of other materials and estimates can be made from the plots of I vs. H given there. A value of 5x109 m/A is typical for a number of materials.
The magnetostrictive effect arises from the rotation of domains within a magnetized sample. For magnetic fields below the saturation field of the sample, Hs, domains exist in all possible orientations, but with a net overall alignment equal to the net magnetization. Therefore, provided that magnetization proceeds by rotation of domains (as opposed to free flow of domain walls), the magnetostriction can be an isotropic effect independent of the orientation between the applied field and any net magnetization of the sample.
In the present invention, referring now to Fig. 4, a film of magnetostrictive material 10 is deposited onto a surface 21 of the cantilever 11 such as, for example, by sputter deposition techniques. Cantilever 11 also includes a bottom surface 22 and a probe tip 23 extending downwardly therefrom. Cantilever 11 has a thickness t0 a length L, a Young's modulus Ec and a Poisson's ratio n0. The film 10 has a thickness tf, a Young's modulus, Ef and a Poisson's ratio nf. In the absence of an applied magnetic field (H=0), the film and cantilever are in the position shown.
As shown in Fig. 5, upon application of a magnetic field (H≠O), the film 10 changes length to L-IL while the cantilever 11 remains the same length, resulting in a displacement, d, of the end of the cantilever. A material with positive magnetostriction would change length to L+IL, resulting in a downward movement. The displacement, d, is defined as
Figure imgf000011_0001
where
ε = ~ l — (6)
Ec{\xvf ) } and for a small applied magnetic field l=d33H. (7)
For a wide range of materials, ε~1 and taking L=100mm, fc=0.6mm, f,=0.1 mm, d33=5x10~9m/A and H=1kA/m (about 12 Oe) gives d=50 nanometers. Note that this value for d is larger than the displacement estimated for the direct magnetic effect by Han et al, Appl. Phys. Lett. 69:4111-4113 (1996).
In the embodiment illustrated in Figs. 4 and 5, magnetostrictive material 10 was deposited onto top surface 21 of the cantilever. An example of a magnetostrictive material which could be so deposited is nickel. It is also within the scope of the invention to deposit the film of magnetostrictive material onto the bottom surface 22 of cantilever 11. For some cantilevers and some magnetostrictive materials, deposition of a film on the top or bottom surface only of cantilever 11 may cause the cantilever to have a tendency to curl. To counteract this tendency, a film of a second material, which itself may be a magnetostrictive material, may be deposited onto the opposite surface of the cantilever, which in the embodiment shown in Figs. 4 and 5 would be bottom surface 22 of the cantilever. Further, the magnetostrictivity values of the two materials may be chosen to complement one another. For example, one of the materials may be chosen to have a positive magnetostrictivity while the other has a negative magnetostrictivity. A key signature of the magnetostrictive effect is its lack of a strong dependence on the angle between the applied field and the magnetization direction of the film. Fig. 6 illustrates a possible orientation of the magnetization M, 16 with respect to the long axis 19 of the cantilever 11 , denoted by the angle q. The applied magnetic field, H, 15 is shown normal to the plane of the cantilever. Fig. 7 shows another orientation, where the angle j between the magnetization M, 17 and the long axis 19 of cantilever 11 is defined with respect to a line perpendicular to the long axis of the cantilever and lying in the plane of the cantilever. The displacement of cantilevers coated with a Neodymium-lron-Boron magnetic alloy described in U.S. Patent No. 5,642,491 were measured as a function of orientation for a fixed magnetic field. The results are shown in Fig. 8 for j=0° and for various values of q between 0 and 90°. Results for q=0° and various values of j between 0 and 90° are shown in Fig. 9. It is believed that the films magnetized with the applied field lying 45° out of the plane of the cantilever were in fact magnetized in plane, because of the shape anisotropy of thin films which makes it difficult to magnetize them out of the plane. However, the film magnetized in-plane but perpendicular to its length (q=0°, j=0°) would produce no displacement of the end of the tip by the direct-force mechanism because the torque would act to twist the cantilever about its long axis. It is clear that the displacement of these films is dominated by a magnetostrictive effect as opposed to a direct magnetic force effect.
The foregoing discussion assumed a value for the magnetostricivity, d33, close to the maximum. However, this variable is strongly dependent on the method of preparation of the film and on its magnetization. For films that are sputtered, domain wall movement probably plays less role in magnetization than domain orientation, and, in these circumstances, the volume magnetostriction scales roughly with the square of the magnetization of the material. A schematic plot of the magnetization, M, of a material as a function of applied magnetic field, H, is shown in Fig. 10. Starting with an unmagnetized sample 0 at M=0, H=0, H is increased to cause an increase in M up to point 1. As H is subsequently reduced, M falls more slowly, so that when H is returned to 0, some residual magnetization 5 remains which is termed MR. The curve continues down as the field is reversed, the magnetization only reversing at a substantial negative value of H. As H is brought back up to its former maximum value, HMl the magnetization returns to its former maximum value. If the applied field is now stepped to a new high value 2, the loop is repeated, enclosing a bigger area of the M vs. H plot. A loop for a yet bigger value of HM is shown starting at point 3. Finally, if the field is taken up to the value required to saturate the material (point 4), the saturation magnetization, Ms, is reached and further increase of the field has little effect on M. This upper value of field is Hs, 6. As H is reduced down to zero, the magnetization falls to MR, the remnant magnetization, that characterizes the strongest permanent magnet that can be made with the material (corresponding to a remnant field at the magnet pole, BR.). When the applied field is taken to a negative value, Hc, the magnetization falls to zero. Hc is the coercive field.
It can be seen that a non-magnetized, or weakly magnetized material will have a small magnetostriction because its magnetic moment is small. However, it is also clear that a fully saturated material will have a small magnetostrictivity, because the dependence of the magnetization on applied field is small, since MR=*MS.
Once magnetized, the material will remain at a characteristic remnant field, MR that depends upon HM. The application of a small field will cause the magnetization to vary linearly with a gradient that decreases as HM approaches the saturation field. This behavior may be characterized as follows:
Figure imgf000013_0001
If l(Η)° M(Η)2 , then, in the limit that H→O, it follows from equation 8 that
Figure imgf000013_0002
Equation 10 shows that it is desirable to (a) use a material with a high residual magnetization and (b) magnetize it by bringing it to a field which is on the order of Hs/2. For many materials, Hs-=0.5-1T, since it is determined by the density of atomic spins. Therefore, the films need to be treated by bringing them from their virgin (unmagnetized state) into a field of 0.25 to 0.5T (2.5 to 5kOe).
Cantilevers have also been coated with about a 100 nanometer thick film of cobalt, obtaining similar results, which implies that d33 for a cobalt film is on the order of 109m/A. Similar results have been obtained with nickel. Both cobalt and nickel are much less susceptible to oxidation and corrosion than iron-containing magnetic alloys.
The cantilevers, commercial silicon-nitride devices available as Ultralevers from Park Scientific of Sunnyvale, CA, are coated on one surface, preferably the top surface, with a film of about a 100 nanometer thickness of Co, Ni or Fe-Nd-B alloy by means of argon-ion sputtering of a target. The opposite (bottom) surface of the cantilevers is coated with a 5 to 10 nanometer thickness of a different material such as, for example, chrome to compensate for any bending caused by the application of the magnetostrictive film as described in an earlier patent application, Serial No. 08/710,191. The cantilevers are then magnetized in a field of about 3kOe. They are mounted, for example, in an atomic force microscope close to the pole piece of a solenoid, the field of which may be oriented at any angle to the cantilever.
As shown schematically in Fig. 11 , such a microscope includes a cantilever 28, having a film 29 comprising a magnetostrictive material on the top surface thereof. Cantilever 28 includes a probe tip 30 extending from the bottom surface thereof toward sample 32. The probe tip 30 is scanned over the surface 34 of sample 32 by a piezo-electric scanner 36. Deflections of cantilever 28 are detected by directing a focused beam of radiation 38a from, for example, a laser 40 off of the reflective surface of film 29 to form a reflected beam 38b. The angular position of beam 38b is sensed by a position sensitive detector 42.
A solenoid 44 in close proximity to cantilever 28 is driven by an AC signal on lines 46 and 48 from an oscillator 50. The resulting alternating magnetic field causes cantilever 28 to oscillate. This oscillating motion appears as an AC signal component in the signal on line 52 which is detected by position sensitive detector 42. This signal on line 52 is fed to a synchronous detector 54. A reference input 56 for synchronous detector 54 is provided by the same oscillator 50 that drives solenoid 44. Output 58 of synchronous detector 54 is used to control the height of cantilever 28 above the sample surface 34 and an AFM image of the surface 34 is formed from the corresponding height adjustments in a conventional manner.
Those skilled in the art will recognize that many suitable magnetostrictive alloys are suitable for this task, including nickel-iron, cobalt-iron, nickel-vanadium, nickel-chrome, nickel-manganese, nickel-cobalt, nickel-copper, beryllium-iron, aluminum-iron, germanium-iron, silicon-iron and the oxides of titanium-iron, manganese-iron, cobalt-iron, copper-iron, barium-iron and strontium-iron, and the commercial magnetostrictive alloy, Terfenol-D (available from ETREMA Products, Inc, Ames, IA). While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Claims

1. A force sensing probe for sensing the properties of a surface or interface comprising a probe and a film comprising a magnetostrictive material on said probe.
2. A force sensing probe as claimed in claim 1 in which said magnetostrictive material comprises material selected from the group consisting of nickel; cobalt; alloys and mixtures of terbium and iron; alloys and mixtures of iron, neodymium and boron; alloys and mixtures of nickel and iron; alloys and mixtures of cobalt and iron; alloys and mixtures of nickel and vanadium; alloys and mixtures of nickel and chrome; alloys and mixtures of nickel and manganese; alloys and mixtures of nickel and cobalt; alloys and mixtures of nickel and copper; alloys and mixtures of beryllium and iron; alloys and mixtures of aluminum and iron; alloys and mixtures of germanium and iron; alloys and mixtures of silicon and iron; alloys and mixtures of the oxides of titanium and iron; alloys and mixtures of the oxides of manganese and iron; alloys and mixtures of the oxides of cobalt and iron; alloys and mixtures of the oxides of copper andiron; alloys and mixtures of the oxides of barium and iron; and alloys and mixtures of the oxides of strontium and iron.
3. A force sensing probe as claimed in claim 1 in which said probe comprises a cantilever having a top surface and a bottom surface, said bottom surface including a probe tip disposed downwardly therefrom.
4. A force sensing probe as claimed in claim 3 in which said magnetostrictive material is coated onto said top surface of said cantilever.
5. A force sensing probe as claimed in claim 4 in which cantilever includes a coating comprising a different material disposed over said bottom surface and said probe tip.
6. A force sensing probe as claimed in claim 5 in which said different material comprises a magnetostrictive material.
7. A force sensing cantilever for an atomic force microscope comprising a cantilever structure having a top surface and a bottom surface, said bottom surface including a probe tip disposed downwardly therefrom, a film comprising a magnetostrictive material coated onto one of said surfaces and a film comprising a different material coated onto the other of said surfaces.
8. A force sensing cantilever as claimed in claim 7 in which said different material comprises a magnetostrictive material.
9. A force sensing cantilever as claimed in claim 7 in which said magnetostrictive material is coated onto said top surface of said cantilever.
10. A force sensing cantilever as claimed in claim 9 in which said magnetostrictive material is coated onto said bottom surface of said cantilever and over said probe tip.
11. A scanning probe microscope for sensing the properties of a surface or interface comprising the force sensing probe of claim 1 , a source for producing a magnetic field to cause deflection of said probe, and a detector for sensing the deflection of said probe.
12. A method of magnetizing a probe for sensing the properties of a surface or interface comprising the steps of forming a film comprising a magnetostrictive material on a surface of said probe and exposing said probe to a magnetic field in the range of from about 0.1 to about 20,000 Oersteds.
13. A method of magnetizing a force sensing cantilever for a scanning probe microscope comprising the steps of: forming a cantilever having a top surface, a bottom surface and a probe tip extending downwardly from said bottom surface; placing said cantilever in a sputter deposition chamber; sputter depositing a first film comprising a magnetostrictive material onto said bottom surface of said cantilever; and sputter depositing a second film comprising a different material onto said top surface of said cantilever.
14. A method as claimed in claim 13 in which said magnetostrictive material is coated onto said top surface of said cantilever.
15. A method as claimed in claim 14 in which said magnetostrictive material is coated onto said bottom surface of said cantilever and over said probe tip.
16. A method as claimed in claim 13 in which said magnetostrictive material comprises material selected from the group consisting of nickel; cobalt; alloys and mixtures of terbium and iron; alloys and mixtures of iron, neodymium and boron; alloys and mixtures of nickel and iron; alloys and mixtures of cobalt and iron; alloys and mixtures of nickel and vanadium; alloys and mixtures of nickel and chrome; alloys and mixtures of nickel and manganese; alloys and mixtures of nickel and cobalt; alloys and mixtures of nickel and copper; alloys and mixtures of beryllium and iron; alloys and mixtures of aluminum and iron; alloys and mixtures of germanium and iron; alloys and mixtures of silicon and iron; alloys and mixtures of the oxides of titanium and iron; alloys and mixtures of the oxides of manganese and iron; alloys and mixtures of the oxides of cobalt and iron; alloys and mixtures of the oxides of copper andiron; alloys and mixtures of the oxides of barium and iron; and alloys and mixtures of the oxides of strontium and iron.
PCT/US1999/010859 1998-05-20 1999-05-17 Force sensing probe for scanning probe microscopy WO1999060330A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT99924287T ATE246340T1 (en) 1998-05-20 1999-05-17 BEAM PROBE FOR FORCE MICROSCOPE
EP99924287A EP1080340B1 (en) 1998-05-20 1999-05-17 Force sensing cantilever for atomic force microscope
JP2000549903A JP2002515592A (en) 1998-05-20 1999-05-17 Force-sensing probe for scanning probe microscopy
DE69910014T DE69910014T2 (en) 1998-05-20 1999-05-17 BAR PROBE FOR POWER MICROSCOPE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/082,095 1998-05-20
US09/082,095 US6121611A (en) 1998-05-20 1998-05-20 Force sensing probe for scanning probe microscopy

Publications (1)

Publication Number Publication Date
WO1999060330A1 true WO1999060330A1 (en) 1999-11-25

Family

ID=22169036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/010859 WO1999060330A1 (en) 1998-05-20 1999-05-17 Force sensing probe for scanning probe microscopy

Country Status (6)

Country Link
US (1) US6121611A (en)
EP (1) EP1080340B1 (en)
JP (1) JP2002515592A (en)
AT (1) ATE246340T1 (en)
DE (1) DE69910014T2 (en)
WO (1) WO1999060330A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007617B4 (en) * 1999-03-20 2006-04-20 International Business Machines Corp. Characterization of magnetic fields
GB2444510A (en) * 2006-12-09 2008-06-11 Sheffield University Substance Detection System and Method
EP2090877A2 (en) 2008-02-12 2009-08-19 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Microlever containing a magneto-impedance stress sensor
US10648786B2 (en) 2017-09-01 2020-05-12 Nanohmics, Inc. Magnetoelastic sensor for analyzing strain
US10962535B2 (en) 2016-01-12 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Porous material functionalized nanopore for molecular sensing apparatus

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734438B1 (en) 2001-06-14 2004-05-11 Molecular Imaging Corporation Scanning probe microscope and solenoid driven cantilever assembly
US6748795B1 (en) 2001-07-27 2004-06-15 Molecular Imaging Corporation Pendulum scanner for scanning probe microscope
US6952952B2 (en) * 2002-11-01 2005-10-11 Molecular Imaging Corporation Topography and recognition imaging atomic force microscope and method of operation
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
EP1644937A1 (en) * 2003-07-15 2006-04-12 University Of Bristol Probe for an atomic force microscope
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
WO2005089103A2 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US20060010098A1 (en) 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
DE102004032484B3 (en) * 2004-07-05 2005-11-24 Infineon Technologies Ag Sensor and method for manufacturing a sensor
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
CN101365374B (en) 2005-08-31 2011-11-16 弗吉尼亚大学专利基金委员会 Improving accuracy of continuous glucose sensors
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
EP1968432A4 (en) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Medical device insertion
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US20080071158A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
CN102772212A (en) 2006-10-26 2012-11-14 雅培糖尿病护理公司 Method, device and system for detection of sensitivity decline in analyte sensors
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
CA2683962C (en) 2007-04-14 2017-06-06 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008128210A1 (en) 2007-04-14 2008-10-23 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683953C (en) 2007-04-14 2016-08-02 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683721C (en) 2007-04-14 2017-05-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
WO2009096992A1 (en) 2007-04-14 2009-08-06 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146624B1 (en) 2007-04-14 2020-03-25 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
EP3216390B1 (en) 2007-05-08 2024-04-03 Abbott Diabetes Care, Inc. Analyte monitoring system
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
AU2008265541B2 (en) 2007-06-21 2014-07-17 Abbott Diabetes Care, Inc. Health management devices and methods
CN101686804B (en) 2007-06-21 2013-05-08 雅培糖尿病护理公司 Health monitor
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
EP3659628A1 (en) 2008-04-10 2020-06-03 Abbott Diabetes Care, Inc. Method and system for sterilizing an analyte sensor
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
ES2336635B1 (en) * 2008-10-13 2011-02-07 Consejo Superior De Investigaciones Cientificas (Csic) CORROSION RESISTANT MAGNETOSTRICTIVE MICROMECHANICAL ELEMENT.
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
EP2419015A4 (en) 2009-04-16 2014-08-20 Abbott Diabetes Care Inc Analyte sensor calibration management
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010127187A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8595607B2 (en) 2009-06-04 2013-11-26 Abbott Diabetes Care Inc. Method and system for updating a medical device
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
LT3689237T (en) 2009-07-23 2021-09-27 Abbott Diabetes Care, Inc. Method of manufacturing and system for continuous analyte measurement
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
DK3988470T3 (en) 2009-08-31 2023-08-28 Abbott Diabetes Care Inc Display devices for a medical device
JP5795584B2 (en) 2009-08-31 2015-10-14 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Medical device
WO2011041469A1 (en) 2009-09-29 2011-04-07 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
JP5904500B2 (en) 2010-03-24 2016-04-13 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Apparatus and system for inserting sharp member under skin surface
JP5455781B2 (en) * 2010-05-19 2014-03-26 キヤノン株式会社 Temperature measuring probe, temperature measuring device, and temperature measuring method
WO2011149857A1 (en) 2010-05-24 2011-12-01 Abbott Diabetes Care Inc. Method and system for updating a medical device
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US8726410B2 (en) * 2010-07-30 2014-05-13 The United States Of America As Represented By The Secretary Of The Air Force Atomic force microscopy system and method for nanoscale measurement
US11213226B2 (en) 2010-10-07 2022-01-04 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP2680754B1 (en) 2011-02-28 2019-04-24 Abbott Diabetes Care, Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
DK3575796T3 (en) 2011-04-15 2021-01-18 Dexcom Inc ADVANCED ANALYZE SENSOR CALIBRATION AND ERROR DETECTION
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013070794A2 (en) 2011-11-07 2013-05-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9136820B2 (en) * 2012-07-31 2015-09-15 Tdk Corporation Piezoelectric device
EP2890297B1 (en) 2012-08-30 2018-04-11 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US11229382B2 (en) 2013-12-31 2022-01-25 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
EP3865063A1 (en) 2014-03-30 2021-08-18 Abbott Diabetes Care, Inc. Method and apparatus for determining meal start and peak events in analyte monitoring systems
US10674944B2 (en) 2015-05-14 2020-06-09 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
CN113349766A (en) 2015-07-10 2021-09-07 雅培糖尿病护理公司 System, device and method for dynamic glucose curve response to physiological parameters
US11071478B2 (en) 2017-01-23 2021-07-27 Abbott Diabetes Care Inc. Systems, devices and methods for analyte sensor insertion
EP3600014A4 (en) 2017-03-21 2020-10-21 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
AU2018354120A1 (en) 2017-10-24 2020-04-23 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11203139B2 (en) 2017-12-13 2021-12-21 Becton, Dickinson And Company Medical device with overmolded adhesive patch and method for making same
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644310A (en) * 1984-03-22 1987-02-17 Allied Corporation Actuator system having magnetomechanical cantilever beam formed of ferromagnetic amorphous material
US5513518A (en) * 1994-05-19 1996-05-07 Molecular Imaging Corporation Magnetic modulation of force sensor for AC detection in an atomic force microscope
US5670712A (en) * 1994-08-15 1997-09-23 The Regents Of The University Of California Method and apparatus for magnetic force control of a scanning probe
US5856617A (en) * 1997-09-02 1999-01-05 International Business Machines Corporation Atomic force microscope system with cantilever having unbiased spin valve magnetoresistive strain gauge
US5866805A (en) * 1994-05-19 1999-02-02 Molecular Imaging Corporation Arizona Board Of Regents Cantilevers for a magnetically driven atomic force microscope

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315247A (en) * 1987-11-09 1994-05-24 California Institute Of Technology Method and apparatus for measuring a magnetic field using a deflectable energized loop and a tunneling tip
US5103174A (en) * 1990-02-26 1992-04-07 The United States Of America As Represented By The Secretary Of The Navy Magnetic field sensor and device for determining the magnetostriction of a material based on a tunneling tip detector and methods of using same
US5519212A (en) * 1992-08-07 1996-05-21 Digital Instruments, Incorporated Tapping atomic force microscope with phase or frequency detection
US5412980A (en) * 1992-08-07 1995-05-09 Digital Instruments, Inc. Tapping atomic force microscope
US5515719A (en) * 1994-05-19 1996-05-14 Molecular Imaging Corporation Controlled force microscope for operation in liquids
US5786762A (en) * 1994-06-30 1998-07-28 Sensormatic Electronics Corporation Magnetostrictive element for use in a magnetomechanical surveillance system
JP3042333B2 (en) * 1994-10-18 2000-05-15 オムロン株式会社 Electric signal displacement conversion device, equipment using the conversion device, and method of driving a fluid transfer device using the conversion device
JPH098378A (en) * 1995-06-14 1997-01-10 Alps Electric Co Ltd Magnetostrictive element
US5744799A (en) * 1996-05-20 1998-04-28 Ohara; Tetsuo Apparatus for and method of real-time nanometer-scale position measurement of the sensor of a scanning tunneling microscope or other sensor scanning atomic or other undulating surfaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644310A (en) * 1984-03-22 1987-02-17 Allied Corporation Actuator system having magnetomechanical cantilever beam formed of ferromagnetic amorphous material
US5513518A (en) * 1994-05-19 1996-05-07 Molecular Imaging Corporation Magnetic modulation of force sensor for AC detection in an atomic force microscope
US5866805A (en) * 1994-05-19 1999-02-02 Molecular Imaging Corporation Arizona Board Of Regents Cantilevers for a magnetically driven atomic force microscope
US5670712A (en) * 1994-08-15 1997-09-23 The Regents Of The University Of California Method and apparatus for magnetic force control of a scanning probe
US5856617A (en) * 1997-09-02 1999-01-05 International Business Machines Corporation Atomic force microscope system with cantilever having unbiased spin valve magnetoresistive strain gauge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007617B4 (en) * 1999-03-20 2006-04-20 International Business Machines Corp. Characterization of magnetic fields
GB2444510A (en) * 2006-12-09 2008-06-11 Sheffield University Substance Detection System and Method
GB2444510B (en) * 2006-12-09 2010-04-14 Univ Sheffield Substance detection system and method
US8302478B2 (en) 2006-12-09 2012-11-06 The University Of Sheffield Magnetostrictive substance detection system and method
EP2090877A2 (en) 2008-02-12 2009-08-19 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Microlever containing a magneto-impedance stress sensor
CH705889B1 (en) * 2008-02-12 2013-06-28 Suisse Electronique Microtech Cantilever comprising a strain sensor with magneto-impedance.
US10962535B2 (en) 2016-01-12 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Porous material functionalized nanopore for molecular sensing apparatus
US10648786B2 (en) 2017-09-01 2020-05-12 Nanohmics, Inc. Magnetoelastic sensor for analyzing strain

Also Published As

Publication number Publication date
EP1080340B1 (en) 2003-07-30
DE69910014D1 (en) 2003-09-04
US6121611A (en) 2000-09-19
EP1080340A1 (en) 2001-03-07
ATE246340T1 (en) 2003-08-15
JP2002515592A (en) 2002-05-28
DE69910014T2 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1080340B1 (en) Force sensing cantilever for atomic force microscope
EP0813675B1 (en) Magnetic modulation of force sensor for ac detection in an atomic force microscope
US5866805A (en) Cantilevers for a magnetically driven atomic force microscope
Fujii et al. Application of lead zirconate titanate thin film displacement sensors for the atomic force microscope
US5670712A (en) Method and apparatus for magnetic force control of a scanning probe
CN101472708B (en) Multiple frequency atomic force microscope
Karrai et al. Piezo-electric tuning fork tip—sample distance control for near field optical microscopes
Ekreem et al. An overview of magnetostriction, its use and methods to measure these properties
Yuan et al. Low temperature magnetic force microscope utilizing a piezoresistive cantilever
JP4096303B2 (en) Scanning probe microscope
KR20050043885A (en) Scanning probe microscope
Rogers et al. Tapping mode atomic force microscopy in liquid with an insulated piezoelectric microactuator
US6121771A (en) Magnetic force microscopy probe with bar magnet tip
Majstrzyk et al. Thermomechanically and electromagnetically actuated piezoresistive cantilevers for fast-scanning probe microscopy investigations
US5509300A (en) Non-contact force microscope having a coaxial cantilever-tip configuration
Wandass et al. Magnetic field sensing with magnetostrictive materials using a tunneling tip detector
Chong et al. Scanning Hall probe microscopy on an atomic force microscope tip
Jarvis et al. A new force controlled atomic force microscope for use in ultrahigh vacuum
Yaminsky et al. Magnetic force microscopy
US6476386B1 (en) Method and device for tunnel microscopy
Körner A highly sensitive co-resonant cantilever sensor for materials research: Application to nanomaterial characterization
Wittborn Nanoscale studies of functional materials using scanning probe microscopy
Stadelmann Review of Scanning Probe Microscopy Techniques
De Loos Magnetic Force Microscopy: application to magnetic nanostructures
Liu Magnetic dissipation force microscopy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999924287

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 549903

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999924287

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999924287

Country of ref document: EP