WO1999053991A1 - Trocar for inserting implants - Google Patents

Trocar for inserting implants Download PDF

Info

Publication number
WO1999053991A1
WO1999053991A1 PCT/US1999/008353 US9908353W WO9953991A1 WO 1999053991 A1 WO1999053991 A1 WO 1999053991A1 US 9908353 W US9908353 W US 9908353W WO 9953991 A1 WO9953991 A1 WO 9953991A1
Authority
WO
WIPO (PCT)
Prior art keywords
cannula
implant
trocar according
trocar
spring element
Prior art date
Application number
PCT/US1999/008353
Other languages
French (fr)
Inventor
John R. Peery
Original Assignee
Alza Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alza Corporation filed Critical Alza Corporation
Priority to AU37488/99A priority Critical patent/AU3748899A/en
Publication of WO1999053991A1 publication Critical patent/WO1999053991A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0069Devices for implanting pellets, e.g. markers or solid medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3286Needle tip design, e.g. for improved penetration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3468Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/19Constructional features of carpules, syringes or blisters
    • A61M2205/192Avoiding coring, e.g. preventing formation of particles during puncture
    • A61M2205/195Avoiding coring, e.g. preventing formation of particles during puncture by the needle tip shape

Definitions

  • the invention relates to a tubular member for inserting drag-containing devices into animals and more particularly, the invention relates to a trocar for inserting implants.
  • osmotic delivery implant systems for delivering beneficial agents such as pharmaceuticals for the prevention, treatment, and diagnosis of disease are known in the art.
  • One type of delivery system is the subcutaneous implant which contains a supply of a beneficial agent and is implanted beneath the skin of an animal to deliver the beneficial agent over time.
  • subcutaneous implants include osmotic drug delivery implants, dissolvable or erodable pellet type implants, and diffiisional implants.
  • osmotic delivery implant systems are described in U.S. Patent Nos. 4,111,202; 4,111 ,203; and 4,203,439.
  • a trocar system which is a two- piece system, including a cannula and an obturator.
  • a trocar system which is a two- piece system, including a cannula and an obturator.
  • an incision is first made through the skin of the patient and the cannula and obturator are inserted together through the skin.
  • the obturator is then withdrawn leaving the cannula in place as a guide for inserting the implant.
  • the implant is inserted through the bore of the cannula while the obturator is used to push the implant to the end of the cannula.
  • the obturator is then used to hold the implant in a stable axial position while the cannula is being withdrawn from the patient to deposit the implant in a known position in the channel previously occupied by the cannula.
  • the cannula and obturator are then withdrawn completely leaving the implant in place beneath the skin.
  • Known trocars can also be used with the implant in the trocar during insertion, however this method relies upon the skilled and careful use by the health care practitioner to orient the trocar so as to employ gravity to retain the implant in the cannula.
  • implants capable of distortion may be held in a cannula by interference with a wall of the cannula to keep the implant in place against the force of gravity.
  • Known balling guns have been used in veterinary implantation procedures which retain the implant or bolus tablet in a cannula by either an interference fit or a distortion of the cannula.
  • the cannulas are generally complex and expensive to manufacture.
  • an implant may be retained within the cannula in a simple and economical manner during insertion of the cannula into a patient and the implant is easily pushed out of the cannula and into the patient.
  • the trocar system includes a cannula retaining spring element which is fixed to an inside surface of the cannula to retain an implant within the cannula until the implant is to be delivered by pressure applied by an obturator.
  • a trocar includes a cannula for receiving an implant and inserting the implant into an animal, a spring element received within the cannula, and an obturator for delivering the implant from the cannula into the animal.
  • the spring element has a leaf spring for retaining the implant inside the cannula. The leaf spring applies a frictional force against the 3
  • a trocar in accordance with an additional aspect of the invention, includes a substantially cylindrical cannula body, a distal end of the cannula body having a leading edge formed by a first plane which is at a first angle with respect to a longitudinal access of the cannula body, and a trailing edge formed by a second plane which is at a second angle with respect to the longitudinal access of the cannula body.
  • the first angle of the leading edge is larger than the second angle of the trailing edge.
  • FIG. 1 is a top view of a spring element according to the present invention prior to bending of the leaf spring;
  • FIG 2 is a perspective view of the spring element of FIG. 1 with the leaf spring bent;
  • FIG. 3 is a perspective view of the spring element of FIGS. 1 and 2 which has been bent in an arch for insertion into a cannula;
  • FIG. 4 is a cross-sectional side view of a portion of a cannula of FIG. 3, taken along line 4-4, with the spring element according to the present invention inserted within the cannula;
  • FIG. 5 is a side cross-sectional view of the cannula and leaf spring element of FIG. 4 with an implant and obturator inserted in the cannula;
  • FIG. 6 is a side view of a first embodiment of the cannula tip
  • FIG. 7 is a side cross-sectional view of the cannula tip of FIG. 6
  • FIG. 8 is a side view of a cannula tip according to an alternative embodiment of the invention
  • FIG. 9 is a side cross-sectional view of the cannula tip of FIG. 8
  • FIG. 10 is a side cross-sectional view of a prior art cannula tip with an implant inside the cannula; and
  • FIG. 11 is a side view of the cannula of FIG. 9 with an implant shown at two different positions inside the cannula.
  • the implant retention trocar includes a cannula and an obturator for implanting beneficial agent delivery devices in animals.
  • the cannula may be used to puncture a foil or other covering material of a sterile sealed implant package.
  • the implant package may be opened by screwing, tearing, or cutting.
  • the cannula then may be used to remove the implant from the package or the implant may be placed in the cannula by hand or with forceps.
  • the implant is delivered to an implantation site within an animal, generally just beneath the skin, by the trocar by applying pressure to the obturator.
  • the implant retention trocar causes a minimum of trauma and tearing of tissue during implant insertion.
  • a first aspect of the invention relates to a spring element 10 received within the cannula of the trocar to prevent an implant which is to be inserted into an animal from falling out of the cannula during the implant insertion process.
  • Another aspect of the invention relates to the shape of the distal end of the cannula which prevents trauma and tearing of tissue during implant insertion.
  • the spring element 10 is shown in a finished configuration in FIG. 3 as it is inserted into a cannula 20.
  • the spring element will be described with respect to FIGS. 1-3 according to the steps by which the spring element is formed.
  • the spring element is formed from a thin sheet of metal, such as a stainless steel, titanium, aluminum, copper, or other appropriate spring metal.
  • the sheet is substantially rectangular in shape with a continuous cut 14 forming a T-shaped leaf spring 12.
  • the cut 14 may be made in any known manner such as by punching or photoetching.
  • the leaf spring portion 12 of the spring element 10 has a longitudinal leg 16 and a cross leg 18 extending substantially perpendicular to the longitudinal leg.
  • the spring element 10 may be punched, photoetched, laser cut, or formed in any other known method.
  • the longitudmal leg 16 is folded with a zig-zag shaped bend.
  • the spring element 10 When the spring element 10 is inserted into a cannula it is the zig-zag shaped bend of the longitudinal leg 16 which will retain the implant within the cannula.
  • the cross leg 18 of the leaf spring 12 is wider than the longitudinal leg 16 in the circumferential direction and provides tabs on either end which secures the leaf spring against motion away from the cannula surface toward the cannula axis. Bending of the longitudinal leg 16 in the zig-zag shape has the effect of shortening the distance from the cross leg 18 to an attachment point 22 where the longitudinal leg meets the rest of the spring element.
  • end portions or tabs of the cross leg 18 lie along the surface of the spring element plate guiding the bent longitudinal leg.
  • the cross leg 18 is slidable in a direction parallel to the cannula axis along the cylindrical surface of the cannula as the zig-zag shaped longitudinal leg 16 is extended and retracted.
  • the ends of the cross leg 18 keep the longitudinal leg 16 properly oriented so that the longitudinal leg does not block loading of the implant into the cannula.
  • the number and angle of the bends in the longitudinal leg 16 may be varied as needed to achieve implant retention.
  • FIG. 3 illustrates the spring element 10 once it has been bent about a longitudinal axis into an arch shape for insertion into the cannula 20.
  • the radius of curvature of the arched spring element 10 is preferably approximately the same as or slightly smaller than a radius of the cannula 20 in which the spring element will be inserted.
  • the spring element is preferably fixed inside the cannula by a sterilizable adhesive, such as cyanoacrylate, epoxy, polyester, acrylic, or other adhesive.
  • the adhesive is preferably both biocompatible and compatible with the beneficial agent inside the implant to be delivered by the trocar.
  • the spring element 10 may also be fixed inside the cannula by other known methods such as welding, laser welding, electric resistance welding, or the like.
  • FIGS. 4 and 5 Cross sectional views of the cannula 20 and spring element 10 are shown in FIGS. 4 and 5 with and without an implant 30 and obturator 32.
  • the amount of bend of the longitudinal leg 16 is decreased by the insertion of the implant causing the implant to be retained in the cannula by the spring retention force of the longitudinal leg.
  • FIG. 5 illustrates a distal end of an obturator 32 according to the present invention having a tapered exterior end surface 36 to prevent the spring element 10 from being expelled by motion of the obturator.
  • the distal end of the obturator has a frusto-conical shape which prevents the obturator from becoming caught on either the edge 34 of the spring element 10 or on the edge of the cross leg 18.
  • the spring element 10 has been described as formed of a metal material, the spring element may also be formed of another spring material such as plastic, in the shape described above.
  • the spring element 10 may be formed of plastic by molding, extruding, cold forming, thermo forming or a combination of these processes.
  • the shape of the leaf spring 12 can be modified without departing from the invention.
  • the cross leg 18 of the leaf spring can be formed in any shape as long as it is somewhat larger in width than the longitudinal leg 16.
  • the longitudinal leg 16 may also take on other shapes such as a tapered shape, as long as the leg has sufficient length form the formation of one or more bends.
  • the spring element 10 according to the present invention retains the implant within the cannula without requiring the grinding of special retention features into the cannula inner wall which would require expensive secondary operations.
  • the retention spring element 10 according to the invention can be produced economically by punching, photoetching, or laser cutting and can be inserted in an automated fashion.
  • the implant retention trocar can be inexpensively produced as a single-use device formed of recyclable materials.
  • the preferred embodiments of the cannula tip illustrated in FIGS. 6-11 in combination with the spring element described above provide an improved, easy to use and economical trocar.
  • the cannula tip 40 shown in FIG. 6 includes a distal end having a changing profile between a leading edge 42 and a trailing edge 44 of the distal end opening 46 of the cannula.
  • the distal end of the cannula is cut by a first plane 48 and by a second plane 50.
  • the first plane 48 forms an angle ⁇ , with a longitudinal axis of the cannula and the second plane 50 forms and angle ⁇ 2 with the longitudinal axis.
  • the angle ⁇ j is about 10 to 60 degrees, preferably 20 to 40 degrees, and the angle ⁇ 2 is about 5 to 45 degrees, preferably 5 to 25 degrees.
  • a difference between the angles ⁇ ; and ⁇ 2 is between about 2 and 50 degrees, preferably between about 6 and 35 degrees.
  • a transition section 52 of the cannula distal end between the first plane 48 and the second plane 50 is preferably a gradual or blended transition rather than an abrupt transition.
  • a gradual transition according to the present invention may be a slight rounding just at the intersection between the first and second planes. Alternatively, the gradual transition may include a curved surface extending along up to about one third of the distal end opening.
  • This transition section 52 is located within either a central or top third of the cannula between the top and bottom of the cannula. The transition section provides a slight protruding bump which assists in spreading tissue during cannula insertion.
  • the two different angles ⁇ ,, and ⁇ 2 at the distal end of the cannula according to the present invention provide reduced tissue trauma and tearing during the trocar insertion.
  • the relatively shallow angle at the trailing edge 44 of the cannula 40 avoids coring or tearing tissue during insertion of the cannula and also avoids coring when the cannula is used to puncture it's own foil packaging or the packaging of an implant.
  • the trailing edge 44 of the cannula distal end is preferably fully radiused to prevent tissue from catching on this trailing edge during implant insertion.
  • the radiused edge 44 also prevents coring of tissue by preventing a complete plug of tissue from being cut by the cannula.
  • the radiused trailing edge 44 is blended out around the circumference of the cannula with the radiused portion completely blended out at a blend end 54 which is located within the central third of the cannula.
  • FIGS. 8, 9, and 11 illustrate an alternative of a cannula tip 60 for use with the trocar according to the present invention.
  • the cannula tip 60 has an angled distal end for inserting the cannula into tissue which includes a leading edge 62 and a trailing edge 64 of the cannula.
  • the profile of the distal end includes an angle which is smaller near the trailing edge 62 than near the leading edge 64. This changing angle of the cannula tip profile helps to avoid tearing or coring of tissue during trocar insertion.
  • the cannula tip 60 is provided with a leading edge 62 having a reverse grind
  • the reverse grind 66 is formed by a grinding operation which creates a beveled exterior surface of the cannula.
  • the reverse grind 66 causes the leading cutting edge 68 of the cannula to be moved from the exterior diameter of the cannula to an interior diameter of the cannula.
  • An angle ⁇ between the longitudinal axis of the cannula 60 and the surface of the reverse grind 66 is approximately 5 to 60 degrees, preferably 20 to 45 degrees.
  • the reverse grind 66 is illustrated as having a planar cross-section, the grind may also have a slightly convex or concave cross-section.
  • FIGS. 10 and 11 One of the advantages of the reverse grind is illustrated by a comparison of FIGS. 10 and 11. In FIG.
  • a cannula 80 according to the prior art is illustrated with an implant 82 shown in hidden lines. If the implant 82 protrudes slightly from the cannula 80 during insertion, it can be seen that a gap 84 is present in which tissue can become trapped. This gap 84 of the prior art cannula increases the trauma and tearing of tissue due to trapping of tissue during implant insertion. However, with the reverse grind 66 shown in FIG. 11, the cannula leading cutting edge 68 having the reverse grind forces the tissue away from the implant 82 rather than into a gap between the implant and the cannula preventing tissue entrapment and possible implant jam.
  • the reverse grind 66 involves the improved cannula insertion due to the ability of the angled surface to push tissue apart during insertion. This angled or tapered surface of the reverse grind reduces tissue trauma and tearing.
  • the reverse grind 66 improves tracking of the cannula. For example, a conventional cannula having an angle cut distal end as shown in FIG. 10 will track at an angle with respect to the axis of the cannula due to the angle distal end.
  • the reverse grind 66 of the present invention provides a restoring force during cannula insertion which helps the canula track along a substantially axial path.
  • FIG. 11 also illustrates a leading edge of an implant 82a positioned at a preferred position inside the cannula 60 for implantation.
  • the implant 82a may be held at this position during implantation by the obturator or by another holding means.
  • the implant edge will help to force the tissue apart reducing trauma and tearing of the tissue and preventing coring.
  • the implant 82a is positioned within the cannula with a forward end of the implant located between 1/3 and 2/3 of the way between the leading cutting edge 68 and the trailing edge 64.
  • the cannulas 20, 40, 60 according to the present invention may be formed of any of the known cannula materials such as plastic or metal.
  • the retention trocar may be a single use device or may be reusable.
  • the cannulas and trocars according to the present invention are intended for insertion of implants in animals including humans, livestock, and the like.

Abstract

An implant retention trocar includes a cannula for puncturing the skin of an animal and an obturator for delivering the implant beneath the skin of the animal. The implant retention trocar has a cannula distal tip design which causes a minimum of trauma and tearing of tissue during implant insertion. A spring element received within the cannula prevents an implant which is to be inserted into an animal from falling out of the cannula during the implant insertion process. The spring element includes a longitudinal leg which is folded with a zig-zag shaped bend. When the spring element is inserted into the cannula the zig-zag shaped bend of the longitudinal leg retains the implant within the cannula.

Description

TROCAR FOR INSERTING IMPLANTS
FIELD OF THE INVENTION The invention relates to a tubular member for inserting drag-containing devices into animals and more particularly, the invention relates to a trocar for inserting implants.
BACKGROUND OF THE INVENTION
Many different types of delivery systems for delivering beneficial agents such as pharmaceuticals for the prevention, treatment, and diagnosis of disease are known in the art. One type of delivery system is the subcutaneous implant which contains a supply of a beneficial agent and is implanted beneath the skin of an animal to deliver the beneficial agent over time. Some of the different types of subcutaneous implants include osmotic drug delivery implants, dissolvable or erodable pellet type implants, and diffiisional implants. Some examples of osmotic delivery implant systems are described in U.S. Patent Nos. 4,111,202; 4,111 ,203; and 4,203,439.
The process of placing subcutaneous osmotic implants and other types of implants under the skin is often performed by use of a trocar system which is a two- piece system, including a cannula and an obturator. With this system, an incision is first made through the skin of the patient and the cannula and obturator are inserted together through the skin. The obturator is then withdrawn leaving the cannula in place as a guide for inserting the implant. The implant is inserted through the bore of the cannula while the obturator is used to push the implant to the end of the cannula. The obturator is then used to hold the implant in a stable axial position while the cannula is being withdrawn from the patient to deposit the implant in a known position in the channel previously occupied by the cannula. The cannula and obturator are then withdrawn completely leaving the implant in place beneath the skin. This method of insertion of an implant, including the step of removal of the obturator for insertion of the implant through the cannula followed by reinsertion of the obturator increases the possibility that sterility of the implant site will be compromised during these steps. However, it is difficult to insert the implant into the cannula prior to insertion of the cannula into the patient because the implant will tend to fall out of the cannula during the insertion process.
Known trocars can also be used with the implant in the trocar during insertion, however this method relies upon the skilled and careful use by the health care practitioner to orient the trocar so as to employ gravity to retain the implant in the cannula. Alternatively, implants capable of distortion may be held in a cannula by interference with a wall of the cannula to keep the implant in place against the force of gravity.
Known balling guns have been used in veterinary implantation procedures which retain the implant or bolus tablet in a cannula by either an interference fit or a distortion of the cannula. However, the cannulas are generally complex and expensive to manufacture.
Accordingly, it would be desirable to provide a trocar system in which an implant may be retained within the cannula in a simple and economical manner during insertion of the cannula into a patient and the implant is easily pushed out of the cannula and into the patient.
SUMMARY OF THE INVENTION The trocar system according to a preferred embodiment of the present invention includes a cannula retaining spring element which is fixed to an inside surface of the cannula to retain an implant within the cannula until the implant is to be delivered by pressure applied by an obturator.
According to one aspect of the present invention, a trocar includes a cannula for receiving an implant and inserting the implant into an animal, a spring element received within the cannula, and an obturator for delivering the implant from the cannula into the animal. The spring element has a leaf spring for retaining the implant inside the cannula. The leaf spring applies a frictional force against the 3
implant sufficient to prevent the implant from sliding out of the cannula under the weight of the implant.
In accordance with an additional aspect of the invention, a trocar includes a substantially cylindrical cannula body, a distal end of the cannula body having a leading edge formed by a first plane which is at a first angle with respect to a longitudinal access of the cannula body, and a trailing edge formed by a second plane which is at a second angle with respect to the longitudinal access of the cannula body. The first angle of the leading edge is larger than the second angle of the trailing edge.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in greater detail with reference to the accompanying drawings, in which like elements bear like reference numerals, and wherein: FIG. 1 is a top view of a spring element according to the present invention prior to bending of the leaf spring;
FIG 2 is a perspective view of the spring element of FIG. 1 with the leaf spring bent;
FIG. 3 is a perspective view of the spring element of FIGS. 1 and 2 which has been bent in an arch for insertion into a cannula;
FIG. 4 is a cross-sectional side view of a portion of a cannula of FIG. 3, taken along line 4-4, with the spring element according to the present invention inserted within the cannula;
FIG. 5 is a side cross-sectional view of the cannula and leaf spring element of FIG. 4 with an implant and obturator inserted in the cannula;
FIG. 6 is a side view of a first embodiment of the cannula tip; FIG. 7 is a side cross-sectional view of the cannula tip of FIG. 6; FIG. 8 is a side view of a cannula tip according to an alternative embodiment of the invention; FIG. 9 is a side cross-sectional view of the cannula tip of FIG. 8; FIG. 10 is a side cross-sectional view of a prior art cannula tip with an implant inside the cannula; and
FIG. 11 is a side view of the cannula of FIG. 9 with an implant shown at two different positions inside the cannula.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The implant retention trocar according to the present invention includes a cannula and an obturator for implanting beneficial agent delivery devices in animals. According to one embodiment the cannula may be used to puncture a foil or other covering material of a sterile sealed implant package. Alternatively, the implant package may be opened by screwing, tearing, or cutting. The cannula then may be used to remove the implant from the package or the implant may be placed in the cannula by hand or with forceps. The implant is delivered to an implantation site within an animal, generally just beneath the skin, by the trocar by applying pressure to the obturator. The implant retention trocar causes a minimum of trauma and tearing of tissue during implant insertion.
A first aspect of the invention relates to a spring element 10 received within the cannula of the trocar to prevent an implant which is to be inserted into an animal from falling out of the cannula during the implant insertion process. Another aspect of the invention relates to the shape of the distal end of the cannula which prevents trauma and tearing of tissue during implant insertion.
The spring element 10 is shown in a finished configuration in FIG. 3 as it is inserted into a cannula 20. The spring element will be described with respect to FIGS. 1-3 according to the steps by which the spring element is formed. As shown in FIG. 1, the spring element is formed from a thin sheet of metal, such as a stainless steel, titanium, aluminum, copper, or other appropriate spring metal. The sheet is substantially rectangular in shape with a continuous cut 14 forming a T-shaped leaf spring 12. The cut 14 may be made in any known manner such as by punching or photoetching. The leaf spring portion 12 of the spring element 10 has a longitudinal leg 16 and a cross leg 18 extending substantially perpendicular to the longitudinal leg. The spring element 10 may be punched, photoetched, laser cut, or formed in any other known method.
As shown in FIG. 2, the longitudmal leg 16 is folded with a zig-zag shaped bend. When the spring element 10 is inserted into a cannula it is the zig-zag shaped bend of the longitudinal leg 16 which will retain the implant within the cannula. The cross leg 18 of the leaf spring 12 is wider than the longitudinal leg 16 in the circumferential direction and provides tabs on either end which secures the leaf spring against motion away from the cannula surface toward the cannula axis. Bending of the longitudinal leg 16 in the zig-zag shape has the effect of shortening the distance from the cross leg 18 to an attachment point 22 where the longitudinal leg meets the rest of the spring element. Once shortened, end portions or tabs of the cross leg 18 lie along the surface of the spring element plate guiding the bent longitudinal leg. The cross leg 18 is slidable in a direction parallel to the cannula axis along the cylindrical surface of the cannula as the zig-zag shaped longitudinal leg 16 is extended and retracted. The ends of the cross leg 18 keep the longitudinal leg 16 properly oriented so that the longitudinal leg does not block loading of the implant into the cannula. The number and angle of the bends in the longitudinal leg 16 may be varied as needed to achieve implant retention.
FIG. 3 illustrates the spring element 10 once it has been bent about a longitudinal axis into an arch shape for insertion into the cannula 20. The radius of curvature of the arched spring element 10 is preferably approximately the same as or slightly smaller than a radius of the cannula 20 in which the spring element will be inserted. Once the spring element 10 is placed within the cannula 20, the spring element is preferably fixed inside the cannula by a sterilizable adhesive, such as cyanoacrylate, epoxy, polyester, acrylic, or other adhesive. The adhesive is preferably both biocompatible and compatible with the beneficial agent inside the implant to be delivered by the trocar. The spring element 10 may also be fixed inside the cannula by other known methods such as welding, laser welding, electric resistance welding, or the like. Once the spring element 10 has been fixed within the tip of the cannula 20 and an implant has been inserted into the cannula, the zig-zag configuration of the longitudinal leg 16 exerts a force between an external surface of the implant and an internal surface of the cannula to retain the implant in the cannula until it is expelled by axial sliding of the obturator by the user. Cross sectional views of the cannula 20 and spring element 10 are shown in FIGS. 4 and 5 with and without an implant 30 and obturator 32. As can be seen from the figures, the amount of bend of the longitudinal leg 16 is decreased by the insertion of the implant causing the implant to be retained in the cannula by the spring retention force of the longitudinal leg. FIG. 5 illustrates a distal end of an obturator 32 according to the present invention having a tapered exterior end surface 36 to prevent the spring element 10 from being expelled by motion of the obturator. In particular, the distal end of the obturator has a frusto-conical shape which prevents the obturator from becoming caught on either the edge 34 of the spring element 10 or on the edge of the cross leg 18.
Although the spring element 10 has been described as formed of a metal material, the spring element may also be formed of another spring material such as plastic, in the shape described above. The spring element 10 may be formed of plastic by molding, extruding, cold forming, thermo forming or a combination of these processes. In addition, the shape of the leaf spring 12 can be modified without departing from the invention. For example, the cross leg 18 of the leaf spring can be formed in any shape as long as it is somewhat larger in width than the longitudinal leg 16. The longitudinal leg 16 may also take on other shapes such as a tapered shape, as long as the leg has sufficient length form the formation of one or more bends.
The spring element 10 according to the present invention retains the implant within the cannula without requiring the grinding of special retention features into the cannula inner wall which would require expensive secondary operations. The retention spring element 10 according to the invention can be produced economically by punching, photoetching, or laser cutting and can be inserted in an automated fashion. Thus, the implant retention trocar can be inexpensively produced as a single-use device formed of recyclable materials.
The preferred embodiments of the cannula tip illustrated in FIGS. 6-11 in combination with the spring element described above provide an improved, easy to use and economical trocar. The cannula tip 40 shown in FIG. 6 includes a distal end having a changing profile between a leading edge 42 and a trailing edge 44 of the distal end opening 46 of the cannula. In particular, when viewed in profile, as shown in FIG. 6, the distal end of the cannula is cut by a first plane 48 and by a second plane 50. The first plane 48 forms an angle θ, with a longitudinal axis of the cannula and the second plane 50 forms and angle θ2 with the longitudinal axis. The angle θj is about 10 to 60 degrees, preferably 20 to 40 degrees, and the angle θ2 is about 5 to 45 degrees, preferably 5 to 25 degrees. A difference between the angles θ; and θ2 is between about 2 and 50 degrees, preferably between about 6 and 35 degrees. A transition section 52 of the cannula distal end between the first plane 48 and the second plane 50 is preferably a gradual or blended transition rather than an abrupt transition. A gradual transition according to the present invention may be a slight rounding just at the intersection between the first and second planes. Alternatively, the gradual transition may include a curved surface extending along up to about one third of the distal end opening. This transition section 52 is located within either a central or top third of the cannula between the top and bottom of the cannula. The transition section provides a slight protruding bump which assists in spreading tissue during cannula insertion.
The two different angles θ,, and θ2 at the distal end of the cannula according to the present invention provide reduced tissue trauma and tearing during the trocar insertion. In particular, the relatively shallow angle at the trailing edge 44 of the cannula 40 avoids coring or tearing tissue during insertion of the cannula and also avoids coring when the cannula is used to puncture it's own foil packaging or the packaging of an implant. As shown in FIG. 7, the trailing edge 44 of the cannula distal end is preferably fully radiused to prevent tissue from catching on this trailing edge during implant insertion. The radiused edge 44 also prevents coring of tissue by preventing a complete plug of tissue from being cut by the cannula. The radiused trailing edge 44 is blended out around the circumference of the cannula with the radiused portion completely blended out at a blend end 54 which is located within the central third of the cannula.
FIGS. 8, 9, and 11 illustrate an alternative of a cannula tip 60 for use with the trocar according to the present invention. The cannula tip 60 has an angled distal end for inserting the cannula into tissue which includes a leading edge 62 and a trailing edge 64 of the cannula. As described above, the profile of the distal end includes an angle which is smaller near the trailing edge 62 than near the leading edge 64. This changing angle of the cannula tip profile helps to avoid tearing or coring of tissue during trocar insertion. The cannula tip 60 is provided with a leading edge 62 having a reverse grind
66 around approximately one half of the circumference of the cannula. The reverse grind 66 is formed by a grinding operation which creates a beveled exterior surface of the cannula. The reverse grind 66 causes the leading cutting edge 68 of the cannula to be moved from the exterior diameter of the cannula to an interior diameter of the cannula. An angle α between the longitudinal axis of the cannula 60 and the surface of the reverse grind 66 is approximately 5 to 60 degrees, preferably 20 to 45 degrees. Although the reverse grind 66 is illustrated as having a planar cross-section, the grind may also have a slightly convex or concave cross-section. One of the advantages of the reverse grind is illustrated by a comparison of FIGS. 10 and 11. In FIG. 10, a cannula 80 according to the prior art is illustrated with an implant 82 shown in hidden lines. If the implant 82 protrudes slightly from the cannula 80 during insertion, it can be seen that a gap 84 is present in which tissue can become trapped. This gap 84 of the prior art cannula increases the trauma and tearing of tissue due to trapping of tissue during implant insertion. However, with the reverse grind 66 shown in FIG. 11, the cannula leading cutting edge 68 having the reverse grind forces the tissue away from the implant 82 rather than into a gap between the implant and the cannula preventing tissue entrapment and possible implant jam.
Another advantage provided by the reverse grind 66 involves the improved cannula insertion due to the ability of the angled surface to push tissue apart during insertion. This angled or tapered surface of the reverse grind reduces tissue trauma and tearing. In addition, the reverse grind 66 improves tracking of the cannula. For example, a conventional cannula having an angle cut distal end as shown in FIG. 10 will track at an angle with respect to the axis of the cannula due to the angle distal end. However, the reverse grind 66 of the present invention provides a restoring force during cannula insertion which helps the canula track along a substantially axial path.
FIG. 11 also illustrates a leading edge of an implant 82a positioned at a preferred position inside the cannula 60 for implantation. The implant 82a may be held at this position during implantation by the obturator or by another holding means. When the forward end of the implant 82a is positioned between the leading edge 68 and the trailing edge 64 of the cannula as shown in FIG. 11 the implant edge will help to force the tissue apart reducing trauma and tearing of the tissue and preventing coring. According to a preferred implantation method, the implant 82a is positioned within the cannula with a forward end of the implant located between 1/3 and 2/3 of the way between the leading cutting edge 68 and the trailing edge 64.
The cannulas 20, 40, 60 according to the present invention may be formed of any of the known cannula materials such as plastic or metal. The retention trocar may be a single use device or may be reusable. The cannulas and trocars according to the present invention are intended for insertion of implants in animals including humans, livestock, and the like.
While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made, and equivalence employed, without departing from the spirit and scope of the invention.

Claims

10What is claimed is:
1. A trocar comprising: a cannula for receiving an implant and inserting the implant into an animal; a spring element received within the cannula, the spring element having a leaf spring for retaining the implant inside the cannula, the leaf spring applying a frictional force against the implant sufficient to prevent the implant from sliding out of the cannula under a weight of the implant; and an obturator for delivering the implant from the cannula into the animal.
2. The trocar according to claim 1, wherein the spring element includes a plate which is cut to form the leaf spring.
3. The trocar according to claim 1 , wherein the leaf spring is formed as a T-shaped cut out portion.
4. The trocar according to claim 1 , wherein the leaf spring has a plurality of successive bends and the successive bends are arranged to alternately contact an inside wall of the cannula and an outside of the implant to retain the implant in the cannula.
5. The trocar according to claim 4, wherein the leaf spring has a longitudinal leg arranged substantially parallel to an axis of the cannula and a cross leg substantially perpendicular to the longitudinal leg, and the plurality of successive bends are formed on the longitudinal leg.
6. The trocar according to claim 4, wherein the leaf spring having the plurality of successive bends is compressed in a radial direction of the cannula by the insertion of the implant into the cannula. 11
7. The trocar according to claim 1, wherein the obturator has a tapered distal end to prevent ejection of the spring element from the cannula when the obturator is moved distally to eject the implant from the cannula.
8. The trocar according to claim 1, wherein the spring element is fixed within the cannula.
9. A trocar comprising: a substantially cylindrical cannula body; a distal end of the cannula body having a leading edge formed by a first plane which is at a first angle with respect to a longitudinal axis of the cannula body, and a trailing edge formed by a second plane which is at a second angle with respect to the longitudinal axis of the cannula body; and wherein the first angle of the leading edge is larger than the second angle of the trailing edge.
10. The trocar according to claim 9, wherein a transition between the first plane and the second plane is gradual.
11. The trocar according to claim 9, wherein the trailing edge of the cannula body distal end is radiused to prevent coring or tearing of tissue.
12. The trocar according to claim 9, wherein the first angle is about 20 - 35 degrees and the second angle is about 10 - 25 degrees.
13. The trocar according to claim 9, wherein a difference between the first angle and the second angle is about 2 - 20 degrees. 12
14. The trocar according to claim 9, wherein the leading edge of the cannula distal end has a reverse grind extending along between 25 and 75 percent of an exterior circumference of the cannula.
15. The trocar according to claim 14, wherein the reverse grind is a surface which intersects an interior surface of the cannula and an exterior surface of the cannula.
16. The trocar according to claim 15, wherein a distal most tip of the cannula is located at the intersection of the interior surface and the reverse grind.
17. The trocar according to claim 9, wherein the cannula body includes a leaf spring fixed within the cannula body for retaining an implant.
18. A method of implanting an implant in an animal comprising: positioning an implant at a preferred location within a cannula with a forward end of the implant located between about 1/3 and 2/3 of the way between a leading edge of the cannula and a trailing edge of the cannula; holding the implant at approximately the preferred location while inserting the cannula into the animal; and delivering the implant from the cannula into the animal.
PCT/US1999/008353 1998-04-23 1999-04-16 Trocar for inserting implants WO1999053991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU37488/99A AU3748899A (en) 1998-04-23 1999-04-16 Trocar for inserting implants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8275998P 1998-04-23 1998-04-23
US60/082,759 1998-04-23

Publications (1)

Publication Number Publication Date
WO1999053991A1 true WO1999053991A1 (en) 1999-10-28

Family

ID=22173269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/008353 WO1999053991A1 (en) 1998-04-23 1999-04-16 Trocar for inserting implants

Country Status (7)

Country Link
AR (3) AR015015A1 (en)
AU (1) AU3748899A (en)
CO (1) CO4810293A1 (en)
ID (1) ID22508A (en)
MY (1) MY128127A (en)
TW (1) TW442273B (en)
WO (1) WO1999053991A1 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070328A1 (en) * 2000-03-21 2001-09-27 Promex, Inc. Brachytherapy device
WO2002024275A3 (en) * 2000-09-18 2002-05-30 Cameron Health Inc Unitary subcutaneous only implantable cardioverter-debribillator and optional pacer
WO2002022208A3 (en) * 2000-09-18 2002-06-06 Cameron Health Inc Subcutaneous only implantable cardioverter-defibrillator and optional pacer
US6436068B1 (en) 2000-08-24 2002-08-20 Gust H. Bardy Instrument for implanting sensors and solid materials in a subcutaneous location and method thereof
EP1323450A1 (en) * 2001-12-18 2003-07-02 Risdon Pharma GmbH Syringe device
US6648849B2 (en) 2001-06-27 2003-11-18 Ethicon, Inc. Medicinal implant and device and method for loading and delivering implants containing drugs and cells
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US6778860B2 (en) 2001-11-05 2004-08-17 Cameron Health, Inc. Switched capacitor defibrillation circuit
US6834204B2 (en) 2001-11-05 2004-12-21 Cameron Health, Inc. Method and apparatus for inducing defibrillation in a patient using a T-shock waveform
US6856835B2 (en) 2000-09-18 2005-02-15 Cameron Health, Inc. Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7062329B2 (en) 2002-10-04 2006-06-13 Cameron Health, Inc. Implantable cardiac system with a selectable active housing
US7065407B2 (en) 2000-09-18 2006-06-20 Cameron Health, Inc. Duckbill-shaped implantable cardioverter-defibrillator canister and method of use
US7076296B2 (en) 2000-09-18 2006-07-11 Cameron Health, Inc. Method of supplying energy to subcutaneous cardioverter-defibrillator and pacer
US7090681B2 (en) 2002-09-18 2006-08-15 Allergan, Inc. Methods and apparatus for delivery of ocular implants
EP1377342A4 (en) * 2000-10-25 2006-11-29 Gary A Lamoureux Pre-loaded needle assembly
US7146212B2 (en) 2000-09-18 2006-12-05 Cameron Health, Inc. Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7149575B2 (en) 2000-09-18 2006-12-12 Cameron Health, Inc. Subcutaneous cardiac stimulator device having an anteriorly positioned electrode
US7147644B2 (en) 2002-09-18 2006-12-12 Allergan, Inc. Apparatus for delivery of ocular implants
WO2008033426A1 (en) * 2006-09-12 2008-03-20 Psivida Inc. Injector apparatus and method of use
US7468065B2 (en) 2002-09-18 2008-12-23 Allergan, Inc. Apparatus for delivery of ocular implants
US7655014B2 (en) 2004-12-06 2010-02-02 Cameron Health, Inc. Apparatus and method for subcutaneous electrode insertion
US7657322B2 (en) 2000-09-18 2010-02-02 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
US7751885B2 (en) 2000-09-18 2010-07-06 Cameron Health, Inc. Bradycardia pacing in a subcutaneous device
US7813797B2 (en) 2000-09-18 2010-10-12 Cameron Health, Inc. Cardioverter-defibrillator having a focused shocking area and orientation thereof
US7877139B2 (en) 2006-09-22 2011-01-25 Cameron Health, Inc. Method and device for implantable cardiac stimulus device lead impedance measurement
US7991459B2 (en) 2004-11-29 2011-08-02 Cameron Health, Inc. Method for defining signal templates in implantable cardiac devices
US8014851B2 (en) 2006-09-26 2011-09-06 Cameron Health, Inc. Signal analysis in implantable cardiac treatment devices
US8160697B2 (en) 2005-01-25 2012-04-17 Cameron Health, Inc. Method for adapting charge initiation for an implantable cardioverter-defibrillator
CN102510739A (en) * 2009-05-19 2012-06-20 Ab医疗股份公司 Obturador for trocar and related trocar
US8229563B2 (en) 2005-01-25 2012-07-24 Cameron Health, Inc. Devices for adapting charge initiation for an implantable cardioverter-defibrillator
US8251946B2 (en) 2000-08-24 2012-08-28 Cardiac Science, Inc. Method for constructing an instrument with a two-part plunger for subcutaneous implantation
US8348882B2 (en) 2000-08-24 2013-01-08 Cardiac Science Corporation Instrument with a covered bore for subcutaneous implantation
US8412320B2 (en) 2000-09-18 2013-04-02 Cameron Health, Inc. Nontransvenous and nonepicardial methods of cardiac treatment and stimulus
US8435208B2 (en) 2000-08-24 2013-05-07 Cardiac Science Corporation Subcutaneous implantation instrument with a scissored dissecting tool assembly and method of construction
US8454552B2 (en) 2000-08-24 2013-06-04 Cardiac Science Corporation Method for constructing an instrument with a covered bore for subcutaneous implantation
US8718793B2 (en) 2006-08-01 2014-05-06 Cameron Health, Inc. Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
US8788023B2 (en) 2006-05-26 2014-07-22 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device
US8942802B2 (en) 2003-05-29 2015-01-27 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US8965530B2 (en) 2006-05-26 2015-02-24 Cameron Health, Inc. Implantable cardiac devices and methods using an x/y counter
US9022962B2 (en) 2000-11-22 2015-05-05 Boston Scientific Scimed, Inc. Apparatus for detecting and treating ventricular arrhythmia
US9039761B2 (en) 2006-08-04 2015-05-26 Allergan, Inc. Ocular implant delivery assemblies with distal caps
WO2015128263A1 (en) * 2014-02-26 2015-09-03 Roche Diagnostics Gmbh An implant needle and method for production
US9149645B2 (en) 2013-03-11 2015-10-06 Cameron Health, Inc. Methods and devices implementing dual criteria for arrhythmia detection
US9579065B2 (en) 2013-03-12 2017-02-28 Cameron Health Inc. Cardiac signal vector selection with monophasic and biphasic shape consideration
US9849027B2 (en) 2007-11-08 2017-12-26 Alimera Sciences, Inc. Ocular implantation device
WO2018166963A1 (en) 2017-03-14 2018-09-20 Roche Diabetes Care Gmbh An implant needle
USD851755S1 (en) 2015-10-22 2019-06-18 Eyepoint Pharmaceuticals Us, Inc. Ocular inserter
US10363163B2 (en) 2014-09-11 2019-07-30 EyePoint Pharmaceuticals, Inc. Injector apparatus
WO2020089016A1 (en) 2018-10-30 2020-05-07 F. Hoffmann-La Roche Ag Implantation needle and kit
WO2021001394A1 (en) 2019-07-04 2021-01-07 F. Hoffmann-La Roche Ag Implantation needle for inserting a subcutaneously insertable element into a body tissue

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2587364A (en) * 1948-05-20 1952-02-26 Edith Mitchell Balling gun
FR1225009A (en) * 1959-02-11 1960-06-28 Hypodermic or intravenous needle and its manufacturing process
GB1453698A (en) * 1972-10-26 1976-10-27 Cooper Mcdougall & Robertson Tablet dispensers
US4111202A (en) 1976-11-22 1978-09-05 Alza Corporation Osmotic system for the controlled and delivery of agent over time
US4111203A (en) 1976-11-22 1978-09-05 Alza Corporation Osmotic system with means for improving delivery kinetics of system
US4203439A (en) 1976-11-22 1980-05-20 Alza Corporation Osmotic system with volume amplifier for increasing amount of agent delivered therefrom
US4700692A (en) * 1985-12-23 1987-10-20 Baumgartner George C Surgical implantation method and apparatus
EP0639387A1 (en) * 1993-06-25 1995-02-22 Texas Instruments Incorporated Clamping means for an injector
US5520660A (en) * 1993-06-23 1996-05-28 Hoechst Aktiengesellschaft Device for administering implants
US5536259A (en) * 1995-07-28 1996-07-16 Medisystems Technology Corp Hypodermic cannula
EP0739639A1 (en) * 1995-04-28 1996-10-30 Yoshikuni Saito A medical hollow needle and a method of producing thereof
WO1997022379A2 (en) * 1995-12-18 1997-06-26 Kerisma Medical Products, L.L.C. Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US5672357A (en) * 1994-07-01 1997-09-30 Monsanto Company Method and device for implantation of large diameter objects in bovines
EP0819442A1 (en) * 1996-06-20 1998-01-21 Becton, Dickinson and Company A five beveled point geometry for a hypodermic needle

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2587364A (en) * 1948-05-20 1952-02-26 Edith Mitchell Balling gun
FR1225009A (en) * 1959-02-11 1960-06-28 Hypodermic or intravenous needle and its manufacturing process
GB1453698A (en) * 1972-10-26 1976-10-27 Cooper Mcdougall & Robertson Tablet dispensers
US4111202A (en) 1976-11-22 1978-09-05 Alza Corporation Osmotic system for the controlled and delivery of agent over time
US4111203A (en) 1976-11-22 1978-09-05 Alza Corporation Osmotic system with means for improving delivery kinetics of system
US4203439A (en) 1976-11-22 1980-05-20 Alza Corporation Osmotic system with volume amplifier for increasing amount of agent delivered therefrom
US4700692A (en) * 1985-12-23 1987-10-20 Baumgartner George C Surgical implantation method and apparatus
US5520660A (en) * 1993-06-23 1996-05-28 Hoechst Aktiengesellschaft Device for administering implants
EP0639387A1 (en) * 1993-06-25 1995-02-22 Texas Instruments Incorporated Clamping means for an injector
US5672357A (en) * 1994-07-01 1997-09-30 Monsanto Company Method and device for implantation of large diameter objects in bovines
EP0739639A1 (en) * 1995-04-28 1996-10-30 Yoshikuni Saito A medical hollow needle and a method of producing thereof
US5536259A (en) * 1995-07-28 1996-07-16 Medisystems Technology Corp Hypodermic cannula
WO1997022379A2 (en) * 1995-12-18 1997-06-26 Kerisma Medical Products, L.L.C. Fiberoptic-guided interstitial seed manual applicator and seed cartridge
EP0819442A1 (en) * 1996-06-20 1998-01-21 Becton, Dickinson and Company A five beveled point geometry for a hypodermic needle

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824507B2 (en) 2000-03-21 2004-11-30 Promex Technologies, Llc Device for depositing items into tissue
WO2001070328A1 (en) * 2000-03-21 2001-09-27 Promex, Inc. Brachytherapy device
US6450938B1 (en) 2000-03-21 2002-09-17 Promex, Llc Brachytherapy device
US7429240B2 (en) 2000-03-21 2008-09-30 Promex Technologies, Llc Device for depositing items into tissue
US7780625B2 (en) 2000-08-24 2010-08-24 Bardy Gust H Instrument for implanting sensors and solid materials in a subcutaneous location and method thereof
US6436068B1 (en) 2000-08-24 2002-08-20 Gust H. Bardy Instrument for implanting sensors and solid materials in a subcutaneous location and method thereof
US8251946B2 (en) 2000-08-24 2012-08-28 Cardiac Science, Inc. Method for constructing an instrument with a two-part plunger for subcutaneous implantation
US8348882B2 (en) 2000-08-24 2013-01-08 Cardiac Science Corporation Instrument with a covered bore for subcutaneous implantation
US8394050B2 (en) 2000-08-24 2013-03-12 Cardiac Science Corporation Straight cutting tip for a straight bore subcutaneous implantation instrument
US8454552B2 (en) 2000-08-24 2013-06-04 Cardiac Science Corporation Method for constructing an instrument with a covered bore for subcutaneous implantation
US8435208B2 (en) 2000-08-24 2013-05-07 Cardiac Science Corporation Subcutaneous implantation instrument with a scissored dissecting tool assembly and method of construction
US7076296B2 (en) 2000-09-18 2006-07-11 Cameron Health, Inc. Method of supplying energy to subcutaneous cardioverter-defibrillator and pacer
US7657322B2 (en) 2000-09-18 2010-02-02 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
US6856835B2 (en) 2000-09-18 2005-02-15 Cameron Health, Inc. Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US7065407B2 (en) 2000-09-18 2006-06-20 Cameron Health, Inc. Duckbill-shaped implantable cardioverter-defibrillator canister and method of use
US7835790B2 (en) 2000-09-18 2010-11-16 Cameron Health, Inc. Anterior active housing subcutaneous positioning methods
US7813797B2 (en) 2000-09-18 2010-10-12 Cameron Health, Inc. Cardioverter-defibrillator having a focused shocking area and orientation thereof
WO2002024275A3 (en) * 2000-09-18 2002-05-30 Cameron Health Inc Unitary subcutaneous only implantable cardioverter-debribillator and optional pacer
US7146212B2 (en) 2000-09-18 2006-12-05 Cameron Health, Inc. Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7149575B2 (en) 2000-09-18 2006-12-12 Cameron Health, Inc. Subcutaneous cardiac stimulator device having an anteriorly positioned electrode
US6647292B1 (en) 2000-09-18 2003-11-11 Cameron Health Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
US9144683B2 (en) 2000-09-18 2015-09-29 Cameron Health, Inc. Post-shock treatment in a subcutaneous device
US7774058B2 (en) 2000-09-18 2010-08-10 Cameron Health, Inc. Anterior positioning on opposing sides of sternum
US8160699B2 (en) 2000-09-18 2012-04-17 Cameron Health, Inc. Cardioverter-defibrillator having a focused shocking area and orientation thereof
WO2002022208A3 (en) * 2000-09-18 2002-06-06 Cameron Health Inc Subcutaneous only implantable cardioverter-defibrillator and optional pacer
US7657311B2 (en) 2000-09-18 2010-02-02 Cameron Health, Inc. Subcutaneous only implantable cardioverter-defibrillator and optional pacer
US8412320B2 (en) 2000-09-18 2013-04-02 Cameron Health, Inc. Nontransvenous and nonepicardial methods of cardiac treatment and stimulus
US7720534B2 (en) 2000-09-18 2010-05-18 Cameron Health, Inc. Transthoracic impedance measurement in a subcutaneous device
US7751885B2 (en) 2000-09-18 2010-07-06 Cameron Health, Inc. Bradycardia pacing in a subcutaneous device
US8014862B2 (en) 2000-09-18 2011-09-06 Cameron Health, Inc. Anterior active housing subcutaneous positioning methods
US7774059B2 (en) 2000-09-18 2010-08-10 Cameron Health Anterior positioning inactive housing
EP1377342A4 (en) * 2000-10-25 2006-11-29 Gary A Lamoureux Pre-loaded needle assembly
US9022962B2 (en) 2000-11-22 2015-05-05 Boston Scientific Scimed, Inc. Apparatus for detecting and treating ventricular arrhythmia
US6648849B2 (en) 2001-06-27 2003-11-18 Ethicon, Inc. Medicinal implant and device and method for loading and delivering implants containing drugs and cells
US6834204B2 (en) 2001-11-05 2004-12-21 Cameron Health, Inc. Method and apparatus for inducing defibrillation in a patient using a T-shock waveform
US6778860B2 (en) 2001-11-05 2004-08-17 Cameron Health, Inc. Switched capacitor defibrillation circuit
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
EP1323450A1 (en) * 2001-12-18 2003-07-02 Risdon Pharma GmbH Syringe device
US7147644B2 (en) 2002-09-18 2006-12-12 Allergan, Inc. Apparatus for delivery of ocular implants
US7753916B2 (en) 2002-09-18 2010-07-13 Weber David A Methods and apparatus for delivery of ocular implants
US7468065B2 (en) 2002-09-18 2008-12-23 Allergan, Inc. Apparatus for delivery of ocular implants
US7090681B2 (en) 2002-09-18 2006-08-15 Allergan, Inc. Methods and apparatus for delivery of ocular implants
US7062329B2 (en) 2002-10-04 2006-06-13 Cameron Health, Inc. Implantable cardiac system with a selectable active housing
US11020602B2 (en) 2003-05-29 2021-06-01 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US10183171B2 (en) 2003-05-29 2019-01-22 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US9155485B2 (en) 2003-05-29 2015-10-13 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US8942802B2 (en) 2003-05-29 2015-01-27 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US9555259B2 (en) 2003-05-29 2017-01-31 Cameron Health Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US9968796B2 (en) 2003-05-29 2018-05-15 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
US7991459B2 (en) 2004-11-29 2011-08-02 Cameron Health, Inc. Method for defining signal templates in implantable cardiac devices
US7655014B2 (en) 2004-12-06 2010-02-02 Cameron Health, Inc. Apparatus and method for subcutaneous electrode insertion
US8160697B2 (en) 2005-01-25 2012-04-17 Cameron Health, Inc. Method for adapting charge initiation for an implantable cardioverter-defibrillator
US11083897B2 (en) 2005-01-25 2021-08-10 Cameron Health, Inc. Methods and devices for adapting charge initiation for an implantable defibrillator
US10052487B2 (en) 2005-01-25 2018-08-21 Cameron Health, Inc. Methods and devices for adapting charge initiation for an implantable defibrillator
US8229563B2 (en) 2005-01-25 2012-07-24 Cameron Health, Inc. Devices for adapting charge initiation for an implantable cardioverter-defibrillator
US8670826B2 (en) 2005-01-25 2014-03-11 Cameron Health, Inc. Methods and devices for adapting charge initiation for an implantable defibrillator
US9357969B2 (en) 2006-05-26 2016-06-07 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US8965530B2 (en) 2006-05-26 2015-02-24 Cameron Health, Inc. Implantable cardiac devices and methods using an x/y counter
US10575740B2 (en) 2006-05-26 2020-03-03 Cameron Health Inc. Systems and methods for sensing vector selection in an implantable medical device
US9364677B2 (en) 2006-05-26 2016-06-14 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device
US8788023B2 (en) 2006-05-26 2014-07-22 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device
US9744366B2 (en) 2006-05-26 2017-08-29 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US9216284B2 (en) 2006-08-01 2015-12-22 Cameron Health, Inc. Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
US8718793B2 (en) 2006-08-01 2014-05-06 Cameron Health, Inc. Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
US9039761B2 (en) 2006-08-04 2015-05-26 Allergan, Inc. Ocular implant delivery assemblies with distal caps
US7998108B2 (en) 2006-09-12 2011-08-16 Psivida Us, Inc. Injector apparatus and method of use
WO2008033426A1 (en) * 2006-09-12 2008-03-20 Psivida Inc. Injector apparatus and method of use
US7877139B2 (en) 2006-09-22 2011-01-25 Cameron Health, Inc. Method and device for implantable cardiac stimulus device lead impedance measurement
US8014851B2 (en) 2006-09-26 2011-09-06 Cameron Health, Inc. Signal analysis in implantable cardiac treatment devices
US10016609B2 (en) 2007-02-07 2018-07-10 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US9849027B2 (en) 2007-11-08 2017-12-26 Alimera Sciences, Inc. Ocular implantation device
CN102510739A (en) * 2009-05-19 2012-06-20 Ab医疗股份公司 Obturador for trocar and related trocar
US9844678B2 (en) 2013-03-11 2017-12-19 Cameron Health, Inc. Methods and devices implementing dual criteria for arrhythmia detection
US9421390B2 (en) 2013-03-11 2016-08-23 Cameron Health Inc. Methods and devices implementing dual criteria for arrhythmia detection
US9149645B2 (en) 2013-03-11 2015-10-06 Cameron Health, Inc. Methods and devices implementing dual criteria for arrhythmia detection
US9579065B2 (en) 2013-03-12 2017-02-28 Cameron Health Inc. Cardiac signal vector selection with monophasic and biphasic shape consideration
US10639070B2 (en) 2014-02-26 2020-05-05 Roche Diabetes Care, Inc. Implant needle and method for production
WO2015128263A1 (en) * 2014-02-26 2015-09-03 Roche Diagnostics Gmbh An implant needle and method for production
US10363163B2 (en) 2014-09-11 2019-07-30 EyePoint Pharmaceuticals, Inc. Injector apparatus
USD851755S1 (en) 2015-10-22 2019-06-18 Eyepoint Pharmaceuticals Us, Inc. Ocular inserter
WO2018166963A1 (en) 2017-03-14 2018-09-20 Roche Diabetes Care Gmbh An implant needle
WO2020089016A1 (en) 2018-10-30 2020-05-07 F. Hoffmann-La Roche Ag Implantation needle and kit
WO2021001394A1 (en) 2019-07-04 2021-01-07 F. Hoffmann-La Roche Ag Implantation needle for inserting a subcutaneously insertable element into a body tissue

Also Published As

Publication number Publication date
MY128127A (en) 2007-01-31
AR015015A1 (en) 2001-04-11
TW442273B (en) 2001-06-23
AR058954A2 (en) 2008-03-05
AR058953A2 (en) 2008-03-05
AU3748899A (en) 1999-11-08
CO4810293A1 (en) 1999-06-30
ID22508A (en) 1999-10-28

Similar Documents

Publication Publication Date Title
US7063681B1 (en) Trocar for inserting implants
WO1999053991A1 (en) Trocar for inserting implants
CN112089505B (en) Systems, devices, and methods for treating sinus conditions
EP1959840B1 (en) Delivery system for a barbed fastener
AU2002309204B2 (en) Surgical staple
AU746638B2 (en) Implanter device for subcutaneous implants
EP2156806A1 (en) Implantation device for soft tissue markers and other implants
US20080228193A1 (en) Implantable medicament delivery device and delivery tool and method for use therewith
US20080275401A1 (en) Catheter anchor and system/method regarding same
US20100114325A1 (en) Prophylactic Pancreatic Stent
EP1656908A1 (en) Stent crimper with slit sheath
EP2854930B1 (en) Transcutaneous implant tools and systems
NZ247291A (en) Subcutaneous implantation device for medicinal implants
JP2002543941A (en) Agent supply system
US20100204709A1 (en) Eluting coils and methods of deploying and retrieving
US5669890A (en) Metal tip attachment for plastic needles
WO2007143555A2 (en) Fixation apparatus for a medical device
EP2939605A1 (en) Surgical fastener having a cap
WO2004067062A2 (en) Expandable bore injection needle
US9623219B2 (en) Surgical dilators with tips having curved tapers
US20120157936A1 (en) Delivery needle apparatus with sleeve
EP3257455A1 (en) A fistula treatment device
US10456558B2 (en) Apparatus and methods facilitating the repositioning of implanted medical devices
MXPA97009307A (en) Dye system of inyecc
AU6152096A (en) Injection dart system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase