WO1999050780A1 - Device for generating a rotating magnetic field in space for powering contactless electronic labels - Google Patents

Device for generating a rotating magnetic field in space for powering contactless electronic labels Download PDF

Info

Publication number
WO1999050780A1
WO1999050780A1 PCT/FR1999/000557 FR9900557W WO9950780A1 WO 1999050780 A1 WO1999050780 A1 WO 1999050780A1 FR 9900557 W FR9900557 W FR 9900557W WO 9950780 A1 WO9950780 A1 WO 9950780A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
antennas
space
functions
currents
Prior art date
Application number
PCT/FR1999/000557
Other languages
French (fr)
Inventor
Richard Kalinowski
Original Assignee
Gemplus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemplus filed Critical Gemplus
Priority to JP2000541624A priority Critical patent/JP2002510096A/en
Priority to EP99907697A priority patent/EP1066584A1/en
Publication of WO1999050780A1 publication Critical patent/WO1999050780A1/en

Links

Classifications

    • H04B5/26
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10346Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the far field type, e.g. HF types or dipoles

Definitions

  • the invention relates to the field of contactless electronic labels which are used to identify products by subjecting them to the electromagnetic field of a read or read / write device, the magnetic component of the electromagnetic field being detected by a tuned circuit antenna. whose inductive winding is planar. It relates more particularly to improvements to the device for reading or reading / writing such electronic tags in order to supply them regardless of the orientation in the space of the inductive winding of the tuned circuit of the antenna. To this end, the invention provides for creating, by the reading or reading / writing device, a magnetic field rotating in space.
  • the electronic tags are produced using microcircuits arranged substantially along a plane in which are wound some turns carrying out the inductive winding of the tuned circuit of the antenna.
  • the radiation pattern of such antennas is not omnidirectional because they are not sensitive to the lines of force of a magnetic field which would be coplanar but have a maximum sensitivity to the lines of force which would be orthogonal to the plane of the turns of the winding. .
  • these labels have any orientation in space with respect to the magnetic field emitted by the reading or reading / writing device and this is the case. likewise the plane of the turns of the winding so that certain labels may not be coupled or little coupled to the transmitting antenna and this results in an absence of supply or an insufficient supply of the corresponding labels.
  • the object of the present invention is therefore to produce a device for emitting an electromagnetic field which makes it possible to supply the electronic tags and therefore to communicate with them whatever the orientation in space of the antenna of the 'label, and therefore the position of the product, relative to the emission device. This object is achieved by creating a magnetic field rotating in space using three orthogonal antennas which are supplied by amplitude and phase controlled currents.
  • the invention therefore relates to a device for creating a magnetic field rotating the space with a view to feeding contactless electronic labels, characterized in that it comprises:
  • FIG. 1 schematically represents two windings of orthogonal antennas creating orthogonal magnetic fields as well as their vector composition
  • FIG. 2 is a diagram showing the vector composition of three orthogonal magnetic fields
  • FIG. 3 is a diagram showing the volume described by the vector result of three orthogonal magnetic fields according to the invention.
  • FIG. 4 is a block diagram of a device according to one invention for obtaining a magnetic field rotating in space.
  • a turn 10 supplied by a current Ix represents an antenna Ax which creates a magnetic field Hx oriented along an axis PX; similarly, a turn 12 supplied by a current ly represents an antenna Ay which creates a magnetic field Hy oriented along an axis PY.
  • the magnetic fields Hx and Hy are also orthogonal and located in the plane of Figure 1.
  • the vector composition of these two magnetic fields Hx and Hy gives a resulting field Hr (x, y). This vector composition shows that a variation in the amplitude of one of the vectors representing Hx and Hy affects the amplitude and the direction of the resulting field Hr (x, y).
  • a third antenna Az (not shown) constituted by a planar winding supplied by a current Iz and arranged in the plane of FIG. 1 will create a magnetic field Hz directed perpendicular to the plane defined by the vectors Hx and Hy. As shown in the vector diagram in Figure 2, the magnetic field vector Hz will be combined with the vector Hr (x, y) to create a resulting magnetic field Hr (x, y, z). If, at the same time as the sinusoidal modulation of pulsation w.
  • control of the amplitude and of the phase of the components Hx, Hy and Hz allows the control of the amplitude and of the direction in space of the resulting vector Hr (x, y, z).
  • the diagram in FIG. 3 makes it possible to determine the values of the magnetic fields Hx, Hy and Hz as a function of the value of the field Hr (x, y, z) represented by the vector OH of the angle between the vector Hr (x, y) and the vector Hx and the angle ⁇ between the vector Hr (x, y, z) and the vector Hr (x, y).
  • Hx
  • sin ⁇ .cos ⁇ Hz
  • the device for generating a vector H is represented by the functional diagram of FIG. 4 and consists in controlling the amplitude of the currents Ix, ly and Iz at the carrier frequency F Q which supply the antennas Ax, Ay and Az respectively.
  • the current Icos ⁇ t of the oscillator is multiplied respectively by cos ⁇ (t) .cos ⁇ (t), in the multiplier circuit 50, by sin ⁇ (t) .cos / 3 (t ) in the multiplier circuit 48, by sin3 (t) in the multiplier circuit 46.
  • the sino- (t) and cos ⁇ (t) values are obtained respectively by circuits 30 and 32 from the values of the function (t).
  • the values of sin; 8 (t) and cos / 3 (t) are obtained respectively by circuits 24 and 26 from the values of the function ⁇ (t).
  • the multiplier circuits 34 and 36 respectively carry out the multiplications sin ⁇ (t) .cos / 3 (t) and cos ⁇ (t) .cos3 (t) whose results are applied to the multiplier circuits 48 and 50 respectively.
  • the functions ⁇ (t) and? (t) can be continuous or discrete functions of time.
  • the functions of the elements described in connection with Figure 4 are preferably performed by computer means such as a microprocessor. As indicated above, if ⁇ (t) and / 3 (t) are sinusoidal functions of time, the end of the vector OH will describe a sphere.
  • point H will describe an ellipsoid of revolution, which makes it possible to favor certain directions of the magnetic field.
  • the three elongations can be modified so that the magnetic field vector Hr (x, y, z) has different values according to the directions of space. The modifications of these elongations can be obtained by inserting a circuit for this purpose on the terminal of output of multipliers 46, 48 and 50, which amounts to modifying the value of I.
  • the invention has been described with a constant phase looparia, but the invention can be implemented with a phase ⁇ which is variable over time in a continuous or discrete manner. Similarly, the elongations can be variable over time in a continuous or discrete manner and this independently between the antennas.

Abstract

The invention concerns contactless electronic labels used for identifying products with which they are associated and, more particularly, with the device for powering said labels whatever their orientation in space by generating a rotating magnetic field. In order to obtain such a rotating magnetic field, the device comprises three planar antennae (Ax, Ay and Az) arranged in three orthogonal planes so as to generate three magnetic fields along the axes of a right-angled trihedron. Said antennae are powered with phase currents (Ix, Iy, Iz) at high frequency carrier frequency and amplitude modulated by time functions ( alpha (t), beta (t)) which can be sine-wave functions of different frequencies.

Description

DISPOSITIF POUR CREER UN CHAMP MAGNETIQUE TOURNANT DANSDEVICE FOR CREATING A MAGNETIC FIELD ROTATING IN
L'ESPACE EN VUE D'ALIMENTER DES ETIQUETTESSPACE FOR SUPPLYING LABELS
ELECTRONIQUES SANS CONTACTCONTACTLESS ELECTRONICS
L' invention concerne le domaine des étiquettes électroniques sans contact qui sont utilisées pour identifier des produits en les soumettant au champ électromagnétique d'un dispositif de lecture ou de lecture/écriture, la composante magnétique du champ électromagnétique étant détectée par une antenne à circuit accordé dont 1 ' enroulement inductif est planaire. Elle concerne plus particulièrement des perfectionnements au dispositif de lecture ou de lecture/écriture de telles étiquettes électroniques pour alimenter ces dernières quelle que soit 1 ' orientation dans 1 * espace de 1 ' enroulement inductif du circuit accordé de l'antenne. A cet effet, l'invention prévoit de créer, par le dispositif de lecture ou de lecture/écriture, un champ magnétique tournant dans l'espace.The invention relates to the field of contactless electronic labels which are used to identify products by subjecting them to the electromagnetic field of a read or read / write device, the magnetic component of the electromagnetic field being detected by a tuned circuit antenna. whose inductive winding is planar. It relates more particularly to improvements to the device for reading or reading / writing such electronic tags in order to supply them regardless of the orientation in the space of the inductive winding of the tuned circuit of the antenna. To this end, the invention provides for creating, by the reading or reading / writing device, a magnetic field rotating in space.
Les étiquettes électroniques sont réalisées à l'aide de microcircuits disposés sensiblement suivant un plan dans lequel sont bobinées quelques spires réalisant l'enroulement inductif du circuit accordé de l'antenne. Le diagramme de rayonnement de telles antennes n'est pas omnidirectionnel car elles ne sont pas sensibles aux lignes de force d'un champ magnétique qui seraient coplanaires mais ont une sensibilité maximale aux lignes de force qui seraient orthogonales au plan des spires de l'enroulement.The electronic tags are produced using microcircuits arranged substantially along a plane in which are wound some turns carrying out the inductive winding of the tuned circuit of the antenna. The radiation pattern of such antennas is not omnidirectional because they are not sensitive to the lines of force of a magnetic field which would be coplanar but have a maximum sensitivity to the lines of force which would be orthogonal to the plane of the turns of the winding. .
Or, ces étiquettes ont une orientation quelconque dans 1 ' espace par rapport au champ magnétique émis par le dispositif de lecture ou lecture/écriture et il en est de même du plan des spires de l'enroulement de sorte que certaines étiquettes peuvent ne pas être couplées ou peu couplées à l'antenne émettrice et il en résulte une absence d'alimentation ou une alimentation insuffisante des étiquettes correspondantes.However, these labels have any orientation in space with respect to the magnetic field emitted by the reading or reading / writing device and this is the case. likewise the plane of the turns of the winding so that certain labels may not be coupled or little coupled to the transmitting antenna and this results in an absence of supply or an insufficient supply of the corresponding labels.
Pour pallier cet inconvénient, il a été proposé d'utiliser trois antennes orthogonales qui sont commutées en séquence afin d'orienter séquentiellement le vecteur champ magnétique dans l'une des trois directions définies par les axes d'un trièdre rectangle. Ce dispositif à trois antennes orthogonales représente un progrès sensible par rapport au dispositif d'émission à antenne unique mais ne garantit pas que toutes les étiquettes ont été "illuminées" à un instant donné de manière optimale pour aboutir à une même probabilité de succès de communication. Le but de la présente invention est donc de réaliser un dispositif d'émission d'un champ électromagnétique qui permet d'alimenter les étiquettes électroniques et donc de communiquer avec elles quelle que soit l'orientation dans l'espace de l'antenne de l'étiquette, et donc de la position du produit, par rapport au dispositif d'émission. Ce but est atteint en créant un champ magnétique tournant dans l'espace à l'aide de trois antennes orthogonales qui sont alimentées par des courants d ' amplitude et de phase contrôlées.To overcome this drawback, it has been proposed to use three orthogonal antennas which are switched in sequence in order to sequentially orient the magnetic field vector in one of the three directions defined by the axes of a right-angled trihedron. This device with three orthogonal antennas represents a significant progress compared to the emission device with a single antenna but does not guarantee that all the labels have been "illuminated" at a given instant in an optimal manner to achieve the same probability of communication success. . The object of the present invention is therefore to produce a device for emitting an electromagnetic field which makes it possible to supply the electronic tags and therefore to communicate with them whatever the orientation in space of the antenna of the 'label, and therefore the position of the product, relative to the emission device. This object is achieved by creating a magnetic field rotating in space using three orthogonal antennas which are supplied by amplitude and phase controlled currents.
L'invention concerne donc un dispositif pour créer un champ magnétique tournant l'espace en vue d'alimenter des étiquettes électroniques sans contact, caractérisé en ce qu'il comprend :The invention therefore relates to a device for creating a magnetic field rotating the space with a view to feeding contactless electronic labels, characterized in that it comprises:
- trois antennes planaires disposées dans trois plans orthogonaux de manière à créer trois champs magnétiques orthogonaux dirigés suivant les axes d'un trièdre rectangle, et- three planar antennas arranged in three orthogonal planes so as to create three fields orthogonal magnets directed along the axes of a right-angled trihedron, and
- des moyens pour alimenter respectivement les trois antennes par des courants en phase à la fréquence porteuse FQ et modulés en amplitude par des fonctions du temps de manière à obtenir un vecteur champ magnétique qui prend toutes les directions dansmeans for respectively supplying the three antennas with currents in phase at the carrier frequency F Q and amplitude modulated by time functions so as to obtain a magnetic field vector which takes all directions in
1 ' espace en fonction du temps.1 space as a function of time.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite en relation avec les dessins joints dans lesquels :Other characteristics and advantages of the present invention will appear on reading the following description of a particular embodiment, said description being made in relation to the accompanying drawings in which:
- la figure 1 représente schématiquement deux enroulements d'antennes orthogonales créant des champs magnétiques orthogonaux ainsi que leur composition vectorielle,FIG. 1 schematically represents two windings of orthogonal antennas creating orthogonal magnetic fields as well as their vector composition,
- la figure 2 est un diagramme montrant la composition vectorielle de trois champs magnétiques orthogonaux, - la figure 3 est un diagramme montrant le volume décrit par la résultante vectorielle de trois champs magnétiques orthogonaux selon l'invention, etFIG. 2 is a diagram showing the vector composition of three orthogonal magnetic fields, FIG. 3 is a diagram showing the volume described by the vector result of three orthogonal magnetic fields according to the invention, and
- la figure 4 est un schéma fonctionnel d'un dispositif selon 1 ' invention pour obtenir un champ magnétique tournant dans l'espace.- Figure 4 is a block diagram of a device according to one invention for obtaining a magnetic field rotating in space.
Sur la figure 1, une spire 10 alimentée par un courant Ix représente une antenne Ax qui crée un champ magnétique Hx orienté selon un axe PX ; de même, une spire 12 alimentée par un courant ly représente une antenne Ay qui crée un champ magnétique Hy orienté selon un axe PY. Comme les plans des spires sont orthogonaux et perpendiculaires au plan de la figure 1, les champs magnétiques Hx et Hy sont également orthogonaux et situés dans le plan de la figure 1. La composition vectorielle de ces deux champs magnétiques Hx et Hy donne un champ résultant Hr(x,y) . Cette composition vectorielle montre qu'une variation de l'amplitude de l'un des vecteurs représentant Hx et Hy se répercute sur l'amplitude et la direction du champ résultant Hr(x,y). Ainsi, une modulation sinusoïdale de pulsation v-^ en quadrature des deux vecteurs Hx et Hy créera un champ Hr(x, y) d'amplitude constante tournant à cette même pulsation w-, dans le plan défini par les vecteurs Hr et Hy.In FIG. 1, a turn 10 supplied by a current Ix represents an antenna Ax which creates a magnetic field Hx oriented along an axis PX; similarly, a turn 12 supplied by a current ly represents an antenna Ay which creates a magnetic field Hy oriented along an axis PY. As the planes of the turns are orthogonal and perpendicular to the plane of Figure 1, the magnetic fields Hx and Hy are also orthogonal and located in the plane of Figure 1. The vector composition of these two magnetic fields Hx and Hy gives a resulting field Hr (x, y). This vector composition shows that a variation in the amplitude of one of the vectors representing Hx and Hy affects the amplitude and the direction of the resulting field Hr (x, y). Thus, a sinusoidal modulation of pulsation v- ^ in quadrature of the two vectors Hx and Hy will create a field Hr (x, y) of constant amplitude rotating at this same pulsation w-, in the plane defined by the vectors Hr and Hy.
Une troisième antenne Az (non représentée) constituée d'un enroulement planaire alimenté par un courant Iz et disposé dans le plan de la figure 1 créera un champ magnétique Hz dirigé perpendiculairement au plan défini par les vecteurs Hx et Hy. Comme le montre le diagramme vectoriel de la figure 2, le vecteur champ magnétique Hz se composera avec le vecteur Hr(x, y) pour créer un champ magnétique résultant Hr(x, y, z) . Si, en même temps que la modulation sinusoïdale de pulsation w.^ en quadrature des champs magnétiques Hx et Hy, on réalise une modulation sinusoïdale de pulsation w2 du champ magnétique Hz, cette dernière provoquera la rotation du plan contenant les vecteurs Hx et Hy à cette même pulsation 2 et il en résultera un vecteur résultant Hr(x, y, z) qui prendra toutes les directions dans 1 ' espace.A third antenna Az (not shown) constituted by a planar winding supplied by a current Iz and arranged in the plane of FIG. 1 will create a magnetic field Hz directed perpendicular to the plane defined by the vectors Hx and Hy. As shown in the vector diagram in Figure 2, the magnetic field vector Hz will be combined with the vector Hr (x, y) to create a resulting magnetic field Hr (x, y, z). If, at the same time as the sinusoidal modulation of pulsation w. ^ In quadrature of the magnetic fields Hx and Hy, one carries out a sinusoidal modulation of pulsation w 2 of the magnetic field Hz, this latter will cause the rotation of the plane containing the vectors Hx and Hy at this same pulsation 2 and there will result a resulting vector Hr (x, y, z) which will take all directions in space.
Ainsi, le contrôle de l'amplitude et de la phase des composantes Hx, Hy et Hz permet le contrôle de l'amplitude et de la direction dans l'espace du vecteur résultant Hr(x, y, z) .Thus, the control of the amplitude and of the phase of the components Hx, Hy and Hz allows the control of the amplitude and of the direction in space of the resulting vector Hr (x, y, z).
Le diagramme de la figure 3 permet de déterminer les valeurs des champs magnétiques Hx, Hy et Hz en fonction de la valeur du champ Hr(x, y, z) représentée par le vecteur OH de l'angle entre le vecteur Hr (x, y) et le vecteur Hx et l'angle β entre le vecteur Hr(x, y, z) et le vecteur Hr(x, y) .The diagram in FIG. 3 makes it possible to determine the values of the magnetic fields Hx, Hy and Hz as a function of the value of the field Hr (x, y, z) represented by the vector OH of the angle between the vector Hr (x, y) and the vector Hx and the angle β between the vector Hr (x, y, z) and the vector Hr (x, y).
Les valeurs Hx, Hy et Hz selon les axes x'x, y'y et z'z sont alors définies par : Hx = |0Hx| cosα.cos3 Hy ≈ |0Hy| sinα.cosβ Hz = |0Hz| sin/3The values Hx, Hy and Hz along the axes x'x, y'y and z'z are then defined by: Hx = | 0Hx | cosα.cos3 Hy ≈ | 0Hy | sinα.cosβ Hz = | 0Hz | sin / 3
Le contrôle des angles α et β entre O et 2τr aura pour résultat de générer un vecteur résultant OH d'origine O dont l'extrémité H pourra se situer en un point quelconque de la sphère de centre 0 et de rayon | OH| dans le cas où a et β sont des fonctions sinusoïdales du temps. En donnant une valeur particulière à chaque élongation |0Hx|, |0Hy| et |0Hz| de chacune des composantes Hx, Hy et Hz, le point H décrira cette fois non plus une surface sphérique mais une surface quelconque, un ellipsoïde par exemple, ce qui aura pour intérêt de favoriser une direction préférentielle dans certains cas d'application.The control of the angles α and β between O and 2τr will result in generating a resulting vector OH of origin O whose end H can be located at any point of the sphere with center 0 and radius | OH | in the case where a and β are sinusoidal functions of time. By giving a particular value to each elongation | 0Hx |, | 0Hy | and | 0Hz | of each of the components Hx, Hy and Hz, the point H will this time no longer describe a spherical surface but any surface, an ellipsoid for example, which will have the advantage of favoring a preferential direction in certain cases of application.
Les valeurs des angles α et β et des élongations |0Hx| , |0Hy| et |0Hz| seront choisies pour que le vecteur résultant prenne toutes les valeurs et les directions souhaitées. Le dispositif pour générer un vecteur H est représenté par le schéma fonctionnel de la figure 4 et consiste à contrôler l'amplitude des courants Ix, ly et Iz à la fréquence porteuse FQ qui alimentent respectivement les antennes Ax, Ay et Az. Le dispositif comprend un oscillateur 20 à la fréquence FQ, soit une pulsation Ω = 27tF0 , qui fournit un courant IcosΩt à des boucles de phase 40, 42 et 44 associées respectivement aux antennes Az, Ay et Ax. Ces boucles de phase maintiennent un déphasage Φ de référence 6The values of the angles α and β and of the elongations | 0Hx | , | 0Hy | and | 0Hz | will be chosen so that the resulting vector takes all the desired values and directions. The device for generating a vector H is represented by the functional diagram of FIG. 4 and consists in controlling the amplitude of the currents Ix, ly and Iz at the carrier frequency F Q which supply the antennas Ax, Ay and Az respectively. The device comprises an oscillator 20 at the frequency F Q , ie a pulse Ω = 27tF 0 , which supplies an IcosΩt current to phase loops 40, 42 and 44 associated respectively with the antennas Az, Ay and Ax. These phase loops maintain a reference phase shift Φ 6
fourni par un circuit 38 de manière que tous les courants Ix, ly et Iz soient strictement en phase. Pour obtenir ces courants Ix, ly et Iz, le courant IcosΩt de l'oscillateur est multiplié respectivement par cos α(t).cos β (t) , dans le circuit multiplicateur 50, par sinα(t) .cos/3 (t) dans le circuit multiplicateur 48, par sin3(t) dans le circuit multiplicateur 46. Les valeurs sino-(t) et cosα(t) sont obtenues respectivement par les circuits 30 et 32 à partir des valeurs de la fonction (t) .supplied by a circuit 38 so that all the currents Ix, ly and Iz are strictly in phase. To obtain these currents Ix, ly and Iz, the current IcosΩt of the oscillator is multiplied respectively by cos α (t) .cos β (t), in the multiplier circuit 50, by sinα (t) .cos / 3 (t ) in the multiplier circuit 48, by sin3 (t) in the multiplier circuit 46. The sino- (t) and cosα (t) values are obtained respectively by circuits 30 and 32 from the values of the function (t).
Les valeurs de sin;8(t) et cos/3(t) sont obtenues respectivement par les circuits 24 et 26 à partir des valeurs de la fonction β (t) . Les circuits multiplicateurs 34 et 36 réalisent respectivement les multiplications sinα(t) .cos/3 (t) et cosα(t) .cos3 (t) dont les résultats sont appliqués respectivement aux circuits multiplicateurs 48 et 50. Les fonctions α(t) et ?(t) peuvent être des fonctions continues ou discrètes du temps. Les fonctions des éléments décrits en relation avec la figure 4 sont de préférence réalisées par des moyens informatiques tels qu'un microprocesseur. Comme on l'a indiqué ci-dessus, si α(t) et /3(t) sont des fonctions sinusoïdales du temps, l'extrémité du vecteur OH décrira une sphère. Si, en plus, on modifie la valeur de deux des elongations ou modules | OHx| , |0Hy| ou |0Hz|, le point H décrira un ellipsoïde de révolution, ce qui permet de privilégier certaines directions du champ magnétique. Egalement, les trois elongations peuvent être modifiées de manière que le vecteur champ magnétique Hr(x, y, z) ait des valeurs différentes selon les directions de l'espace. Les modifications de ces elongations peuvent être obtenues en insérant un circuit à cet effet sur la borne de sortie des multiplicateurs 46, 48 et 50, ce qui revient à modifier la valeur de I.The values of sin; 8 (t) and cos / 3 (t) are obtained respectively by circuits 24 and 26 from the values of the function β (t). The multiplier circuits 34 and 36 respectively carry out the multiplications sinα (t) .cos / 3 (t) and cosα (t) .cos3 (t) whose results are applied to the multiplier circuits 48 and 50 respectively. The functions α (t) and? (t) can be continuous or discrete functions of time. The functions of the elements described in connection with Figure 4 are preferably performed by computer means such as a microprocessor. As indicated above, if α (t) and / 3 (t) are sinusoidal functions of time, the end of the vector OH will describe a sphere. If, in addition, we modify the value of two of the elongations or modules | OHx | , | 0Hy | or | 0Hz |, point H will describe an ellipsoid of revolution, which makes it possible to favor certain directions of the magnetic field. Also, the three elongations can be modified so that the magnetic field vector Hr (x, y, z) has different values according to the directions of space. The modifications of these elongations can be obtained by inserting a circuit for this purpose on the terminal of output of multipliers 46, 48 and 50, which amounts to modifying the value of I.
L'invention a été décrite avec une boucle de phase Φ constante, mais l'invention peut être mise en oeuvre avec une phase Φ qui est variable au cours du temps de manière continue ou discrète. De même, les elongations peuvent être variables au cours du temps de manière continue ou discrète et ceci de manière indépendante entre les antennes. The invention has been described with a constant phase loop mais, but the invention can be implemented with a phase Φ which is variable over time in a continuous or discrete manner. Similarly, the elongations can be variable over time in a continuous or discrete manner and this independently between the antennas.

Claims

REVENDICATIONS
1. Dispositif pour créer un champ magnétique tournant dans l'espace en vue d'alimenter des étiquettes électroniques sans contact, caractérisé en ce qu'il comprend : - trois antennes (Ax, Ay, Az) planaires disposées dans trois plans orthogonaux de manière à créer trois champs orthogonaux (Hx, Hy, Hz) dirigés suivant les axes d'un trièdre rectangle, et1. Device for creating a magnetic field rotating in space with a view to supplying contactless electronic labels, characterized in that it comprises: - three planar antennas (Ax, Ay, Az) arranged in three orthogonal planes so to create three orthogonal fields (Hx, Hy, Hz) directed along the axes of a right-angled trihedron, and
- des moyens (20 à 50) pour alimenter respectivement les antennes (Ax, Ay, Az) par des courants (Ix, ly, Iz) en phase à la fréquence porteuse haute fréquence (F0) et modulés en amplitude par des fonctions du temps (α(t), 3(t)) de manière à obtenir un vecteur champ magnétique (Hr(x, y, z) ) qui prend toutes les directions dans 1 • espace en fonction du temps .means (20 to 50) for respectively supplying the antennas (Ax, Ay, Az) with currents (Ix, ly, Iz) in phase at the high frequency carrier frequency (F 0 ) and amplitude modulated by functions of the time (α (t), 3 (t)) so as to obtain a magnetic field vector (Hr (x, y, z)) which takes all directions in 1 • space as a function of time.
2. Dispositif selon la revendication 1, caractérisé en ce que les fonctions du temps (α(t), )3(t)) sont continues.2. Device according to claim 1, characterized in that the time functions (α (t),) 3 (t)) are continuous.
3. Dispositif selon la revendication 1, caractérisé en ce que les fonctions du temps (α(t), )8(t)) sont discrètes.3. Device according to claim 1, characterized in that the time functions (α (t),) 8 (t)) are discrete.
4. Dispositif selon la revendication 1, 2 ou 3, caractérisé en ce que les fonctions (α(t)) et (/3(t)) sont des fonctions sinusoïdales de pulsations différentes (wlf w2) de sorte que l'extrémité du vecteur champ magnétique Hr(x,y,z) décrit une sphère. 4. Device according to claim 1, 2 or 3, characterized in that the functions (α (t)) and (/ 3 (t)) are sinusoidal functions of different pulses (w lf w 2 ) so that the end of the magnetic field vector Hr (x, y, z) describes a sphere.
5. Dispositif selon la revendication 4, caractérisé en ce que deux des modules des courants (Ix, ly, Iz) alimentant les antennes (Ax, Ay, Az) ont des valeurs différentes de sorte que l'extrémité du vecteur champ magnétique Hr(x, y, z) décrit un ellipsoïde.5. Device according to claim 4, characterized in that two of the current modules (Ix, ly, Iz) supplying the antennas (Ax, Ay, Az) have different values so that the end of the magnetic field vector Hr ( x, y, z) describes an ellipsoid.
6. Dispositif selon la revendication 4, caractérisé en ce que les trois modules des courants (Ix, ly, Iz) alimentant respectivement les antennes (Ax, Ay, Az) ont des valeurs différentes de manière que le vecteur champ magnétique Hr(x, y, z) ait des valeurs différentes selon les directions de l'espace.6. Device according to claim 4, characterized in that the three modules of the currents (Ix, ly, Iz) respectively supplying the antennas (Ax, Ay, Az) have different values so that the vector magnetic field Hr (x, y, z) have different values according to the directions of space.
7. Dispositif selon la revendication précédente 6, caractérisé en ce qu'il comprend des moyens pour faire varier les elongations (OHx, OHy, OHz) au cours du temps de manière continue ou discrète.7. Device according to the preceding claim 6, characterized in that it comprises means for varying the elongations (OHx, OHy, OHz) over time continuously or discretely.
8. Dispositif selon l'une des revendications l à 7, caractérisé en ce que les courants (Ix, ly, Iz) alimentant les antennes (Ax, Ay, Az) sont fournis chacun par l'intermédiaire d'une boucle de phase (40, 42, 44) qui maintient les courants (Ix, ly, Iz) en phase.8. Device according to one of claims l to 7, characterized in that the currents (Ix, ly, Iz) supplying the antennas (Ax, Ay, Az) are each supplied via a phase loop ( 40, 42, 44) which keeps the currents (Ix, ly, Iz) in phase.
9. Dispositif selon la revendication 8 , caractérisé en ce qu'il comprend des moyens pour faire varier la phase (Φ) des courants (Ix, ly, Iz) alimentant les antennes (Ax, Ay, Az) au cours du temps de manière continue ou discrète.9. Device according to claim 8, characterized in that it comprises means for varying the phase (Φ) of the currents (Ix, ly, Iz) supplying the antennas (Ax, Ay, Az) over time so continuous or discreet.
10. Dispositif selon l'une des revendications l à 6, caractérisé en ce que les moyens (20 à 50) sont réalisés à l'aide d'un microprocesseur. 10. Device according to one of claims l to 6, characterized in that the means (20 to 50) are produced using a microprocessor.
PCT/FR1999/000557 1998-03-27 1999-03-12 Device for generating a rotating magnetic field in space for powering contactless electronic labels WO1999050780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000541624A JP2002510096A (en) 1998-03-27 1999-03-12 Apparatus for generating a rotating magnetic field in space to power non-contact electronic labels
EP99907697A EP1066584A1 (en) 1998-03-27 1999-03-12 Device for generating a rotating magnetic field in space for powering contactless electronic labels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803832A FR2776864B1 (en) 1998-03-27 1998-03-27 DEVICE FOR CREATING A MAGNETIC FIELD ROTATING IN SPACE FOR SUPPLYING NON-CONTACT ELECTRONIC LABELS
FR98/03832 1998-03-27

Publications (1)

Publication Number Publication Date
WO1999050780A1 true WO1999050780A1 (en) 1999-10-07

Family

ID=9524584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000557 WO1999050780A1 (en) 1998-03-27 1999-03-12 Device for generating a rotating magnetic field in space for powering contactless electronic labels

Country Status (4)

Country Link
EP (1) EP1066584A1 (en)
JP (1) JP2002510096A (en)
FR (1) FR2776864B1 (en)
WO (1) WO1999050780A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642917B2 (en) 2004-12-21 2010-01-05 Tagsys Antenna arrangement
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
CN106961009A (en) * 2017-04-12 2017-07-18 浙江师范大学 A kind of adjustable oscillator of frequency/amplitude based on anisotropy magnetic rheology elastic body
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176542A1 (en) * 2000-07-27 2002-01-30 Häni- Prolectron AG Method and system for generating a quasi-isotropic magnetic field
US20040004789A1 (en) * 2002-07-03 2004-01-08 Christopher Watanabe Replaceable memory element in a single reel tape cartridge
JP4553361B2 (en) * 2005-01-17 2010-09-29 セントラルエンジニアリング株式会社 Antenna device, antenna driving method, and ID tag reader
WO2015151156A1 (en) * 2014-03-31 2015-10-08 富士通株式会社 Wireless power supply system and wireless power supply method
US9929569B2 (en) * 2014-11-07 2018-03-27 The Boeing Company Methods for steering a magnetic field for smart wireless power transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532519A (en) * 1981-10-14 1985-07-30 Rudish Ronald M Phased array system to produce, steer and stabilize non-circularly-symmetric beams
US4642786A (en) * 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
EP0457500A2 (en) * 1990-05-14 1991-11-21 Hughes Aircraft Company Dual linear and dual circular polarization antenna
US5258766A (en) * 1987-12-10 1993-11-02 Uniscan Ltd. Antenna structure for providing a uniform field

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532519A (en) * 1981-10-14 1985-07-30 Rudish Ronald M Phased array system to produce, steer and stabilize non-circularly-symmetric beams
US4642786A (en) * 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US5258766A (en) * 1987-12-10 1993-11-02 Uniscan Ltd. Antenna structure for providing a uniform field
EP0457500A2 (en) * 1990-05-14 1991-11-21 Hughes Aircraft Company Dual linear and dual circular polarization antenna

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642917B2 (en) 2004-12-21 2010-01-05 Tagsys Antenna arrangement
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
CN106961009A (en) * 2017-04-12 2017-07-18 浙江师范大学 A kind of adjustable oscillator of frequency/amplitude based on anisotropy magnetic rheology elastic body
CN106961009B (en) * 2017-04-12 2023-08-01 浙江师范大学 Frequency/amplitude adjustable vibrator based on anisotropic magnetorheological elastomer

Also Published As

Publication number Publication date
FR2776864B1 (en) 2000-10-06
EP1066584A1 (en) 2001-01-10
JP2002510096A (en) 2002-04-02
FR2776864A1 (en) 1999-10-01

Similar Documents

Publication Publication Date Title
WO1999050780A1 (en) Device for generating a rotating magnetic field in space for powering contactless electronic labels
US8190090B2 (en) Method of authenticating an article using microradios
EP2129002B1 (en) Device, system and method for radiofrequency communication
US20110304430A1 (en) Method of tracking a container using microradios
FR2946464A1 (en) CONTACTLESS DATA TRANSMISSION
WO2007132094A1 (en) Device with no radiofrequency contact comprising several antennas and associated antenna selection circuit
EP1043843B1 (en) Portable signal receiver with several antennas
EP1976171A2 (en) Secure communication system between a contactless card reader and a card
EP0462000A1 (en) Resonance magnetometer with optical pumping using a plurality of beams
AU2019418766A1 (en) LIDAR apparatus with rotatable polygon deflector having refractive facets
FR2802652A1 (en) NON-AMBIGUOUS MEASUREMENT OF A PROJECTILE'S ROLL, AND APPLICATION TO THE CORRECTION OF A PROJECTILE'S PATH
FR2809251A1 (en) Electromagnetic transponder read/write interrogator having field generating oscillator and distance set passive oscillating circuit concentrator with third position oscillating circuit detector.
EP0343034A1 (en) Radio system for data transmission with a passive terminal station
US20070109210A1 (en) Flat plate antenna with a rotating field, comprising a central loop and eccentric loops, and system for identification by radiofrequency
US6246356B1 (en) Omnidirectional transponder
CN110414655B (en) Printed RFID tag antenna array with interfering subarrays
EP0529581B1 (en) Locating system by ultrahigh frequency electromagnetic waves
EP1261839A1 (en) Method and device for determining the position or orientation of an object
EP0258072A1 (en) Direction finding method and device using doppler frequency modulation
FR2823309A1 (en) MOBILE ORIENTATION DETERMINATION RECEIVER
JP2005198032A (en) Non-electric source rf tag and interrogator
EP2586166A1 (en) Method for the phase modulation of a carrier signal transmitted from a transmitter to a contactless transponder, and device for implementing same
EP0208588A1 (en) Electric supply
FR2780154A1 (en) Remotely guided aircraft engine
BE835762A (en) VARIABLE AXIS STABILIZATION DEVICE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999907697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09647175

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999907697

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1999907697

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999907697

Country of ref document: EP