WO1999044760A1 - In situ cleaning of the surface inside a vacuum processing chamber - Google Patents

In situ cleaning of the surface inside a vacuum processing chamber Download PDF

Info

Publication number
WO1999044760A1
WO1999044760A1 PCT/US1999/004401 US9904401W WO9944760A1 WO 1999044760 A1 WO1999044760 A1 WO 1999044760A1 US 9904401 W US9904401 W US 9904401W WO 9944760 A1 WO9944760 A1 WO 9944760A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
cleaning
processing chamber
chamber
disposed
Prior art date
Application number
PCT/US1999/004401
Other languages
French (fr)
Inventor
Vijay Parke
Original Assignee
Applied Materials, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials, Inc. filed Critical Applied Materials, Inc.
Priority to JP2000534350A priority Critical patent/JP2002505189A/en
Publication of WO1999044760A1 publication Critical patent/WO1999044760A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0057Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation

Definitions

  • the present invention relates generally to a vacuum processing chamber. More specifically, the present invention relates to a method and apparatus for in situ cleaning of a vacuum chamber surface and a surface of a component in the chamber.
  • substrates are typically held by a substrate chuck which uses either a vacuum, mechanical, electrical or magnetic means to hold a substrate in place.
  • substrate chucks are typically constructed of either ceramic or alurninum.
  • electrostatic ceramic chucks have become widely used, and one exemplary electrostatic ceramic chuck is the MCATM electrostatic ceramic chuck available from Applied Materials, Inc., of Santa Clara, California.
  • electrostatic chucks are used in semiconductor processing chambers and systems such as the EnduraTM system available from Applied Materials, Inc., Santa Clara, California.
  • the chuck To restore the chuck's ability to hold a substrate, the chuck must be periodically cleaned.
  • One method of cleaning a ceramic chuck involves filling the chamber with argon and applying a bias to the chuck that creates a plasma bombardment of the chuck to effect sputter cleaning of the surface.
  • argon plasma bombardment cleaning typically removes about 50 angstroms of material from the chuck, and as repeated cleaning erodes the outer surface of the chuck, the chuck becomes un-useable and needs to be replaced.
  • Another method of cleaning a ceramic chuck is a wet cleaning process which requires the system to be first vented to atmospheric pressure, then opened, cleaned, and subsequently returned to vacuum.
  • Wet cleaning procedures typically require a washing step using an acid, followed by a light base cleaning step.
  • Wet cleaning also typically requires a subsequent drying step which takes up tremendous valuable time and drastically reduces throughput.
  • U.S. Patent No. 5,480,492 cleans a surface of a silicon substrate by heating the contaminants thereon to a temperature greater than 750° C and simultaneously applying ultraviolet rays and oxygen molecules to the surface.
  • this method is unsuitable for chamber cleaning because it requires a high temperature, produced by heaters such as lasers, that can cause damage to some surfaces.
  • United States Patent No. 5,531,857 discloses an apparatus which uses a robot having gas passages and radiation passages therein to deliver UN radiation and gas to clean a surface within a chamber.
  • this device does not meet the needs of modern vacuum semiconductor substrate processing because it is bulky, operates slowly, and is itself subject to the same contamination that threatens the chuck and other interior surfaces of the vacuum processing chamber because it is disposed within the processing chamber.
  • the cleaning device occupies minimal operating space and is shielded from vacuum chamber processing operations.
  • the invention provides generally a method and an apparatus for in situ cleaning of a surface in a semiconductor substrate processing chamber that operates quickly and reduces the process downtime for chamber cleaning.
  • the apparatus comprises an ultraviolet (UN) radiation plate moveable between a cleaning position and a storage position and at least one UN radiation source disposed on the UN radiation plate.
  • the apparatus includes a reflector disposed adjacent the UN radiation source to focus emitted UV radiation and a rotary actuator pivotally attached to a transport arm to move the UN radiation plate between the cleaning position and the storage position.
  • the method comprises the steps of: providing a UN radiation plate having at least one UV radiation source disposed thereon, moving the UN radiation plate into a cleaning position, introducing a cleaning gas into the processing chamber and exposing the surface to UV radiation.
  • One aspect of the invention provides a UV radiation source plate that can be transferred into and out of a processing chamber similarly to a substrate for processing.
  • the UV radiation plate is rigidly mounted on a transfer arm in the processing chamber.
  • Another aspect of the invention provides fast cleaning of a surface inside a chamber without breaking vacuum.
  • Another embodiment of the invention positions the UV radiation source along with, or in the place of, "bake-out" lamps disposed within a substrate processing chamber.
  • Figure 1 is a vertical cross-sectional schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention.
  • FIG. 2 is a bottom view of a UN radiation source plate and a transport arm.
  • Figure 3 is an exploded side view of a UV radiation source plate and a transport arm.
  • Figure 4 is a top schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention.
  • Figure 5 is a perspective view of another embodiment of the invention.
  • the invention generally provides a method and an apparatus for in situ cleaning of a vacuum processing chamber.
  • One embodiment of the invention provides an apparatus which transfers a UV radiation source between a retracted position and an extended position where the UV radiation source is disposed over and directed at a substrate support member to effect enhanced cleaning of the substrate support member, preferably in the presence of ozone. When the cleaning process is complete, the apparatus retracts to a position out of the way of normal handling and processing operations.
  • Other embodiments of the invention provide a UV radiation source mounted along-side or in place of vacuum processing chamber bake-out lamps.
  • FIG. 1 is a vertical cross-sectional schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention.
  • the processing chamber as shown and described is a physical vapor deposition (PVD) chamber used for sputtering a metal coating onto a substrate
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a housing 40 generally encloses a bottom portion of a processing chamber 42 and an anode lid assembly 43 generally encloses an upper portion of the processing chamber 42.
  • a target 44 made of sputterable material is attached to the anode lid assembly 43 and connected to a power supply (not shown) which energizes the target 44 for sputtering deposition material onto a substrate.
  • the anode lid assembly 43 is electrically isolated from the housing 40 by an insulative ring 47 and pneumatically sealed by resilient O-rings 49.
  • a substrate support member 54 disposed at the bottom portion of the chamber is moved by an actuator 58 between a lower position as indicated by the solid line and an upper position as indicated by the dashed lines 54'.
  • the substrate support member 54 comprises a
  • the substrate support member 54 includes vertical bores adapted for lift pins 57 to move up and down to position a substrate on and off the substrate support member 54 to allow transfer of the substrate in and out of the chamber.
  • the lift pins 57 are disposed on a lift assembly 56 attached to a second actuator 59 that moves the lift assembly 56 vertically.
  • a sputtering region 48 is defined by the target 44, the substrate 46 in position 46' and a cathode forming bowl 50 attached to the upper portion of the chamber.
  • the cathode forming bowl 50 includes an upturned wall 36 defining a central opening adapted to allow free movement of the substrate support member 54.
  • the cathode and the anode electrical connections are respectively connected to the chamber components in a manner well known in the art.
  • a clamp ring 52 having an inner periphery 37 that defines a processing aperture or opening is disposed on the cathode forming bowl 50.
  • a substrate 46 positioned on the substrate support member 54 moves up through the central opening defined by the upturned wall 36 and engages the clamp ring 52, and an upper surface of the substrate is exposed through the opening defined by the inner periphery 37 of the clamp ring 52 to receive processing.
  • the processing chamber 42 preferably includes at least one gas inlet 86 disposed at the upper portion of the chamber to supply the processing gas to the sputtering region 48 and a gas exhaust 88 disposed at the bottom portion of the chamber to pump the gas out of the chamber.
  • the gas inlet 86 selectively provides processing gas, cleaning gas and other gases according to the process performed.
  • a suitable pump such as a turbo molecular pump 90, is attached to the gas exhaust 88 to evacuate the chamber and to create a vacuum environment.
  • a robot (not shown) having a robot blade 51 transfers substrates in and out of the vacuum chamber 42 through a slit valve 55 on a side wall of housing 40 and a communicating passageway 41 extending from one side of housing 40.
  • a second housing 60 extends, from a second side of the housing 40, forming a sub-chamber 62 which communicates with the chamber 42 by means of a slit 64.
  • the second housing 60 provides a retraction compartment for a UV
  • the UV radiation source plate 66 is made of a metal such as titanium or stainless steel, or a ceramic such as Al 2 O 3 .
  • the UV radiation source plate 66 includes a UV radiation source 82 disposed on the lower surface of the plate.
  • a UV radiation reflector 84 is preferably disposed adjacent the UV radiation source 82 to focus the UV radiation onto a surface to be cleaned.
  • the UV radiation source plate 66 rests on a supporting surface of a transport arm 68 which is connected to the rotatable shaft 70 of a rotary actuator 72.
  • the rotary actuator 72 rotates the transport arm 68 between a retracted position within the sub-chamber 62 and an extended position in the chamber 42.
  • the rotatable shaft 70 is disposed within the chamber 42, and the rotary actuator 72 is secured on the bottom portion of housing 40.
  • the rotatable shaft 70 and the ratary actuator 72 can be disposed within the sub- chamber 62 and secured on the housing 60.
  • a rotary transport mechanism has been described, other mechanisms of transporting the UV radiation plate 66 are contemplated by the invention.
  • FIG 2 is a bottom view of a UV radiation source plate 66 and a transport arm 68.
  • Figure 3 is an exploded side view of a UV radiation source plate 66 and a transport arm 68 showing the wires 120 disposed through the UV radiation source plate 66 in the conduits 128 inside the UV radiation source plate 66.
  • the UV radiation source plate 66 includes two UV radiation sources 82 disposed at radially opposite positions on two corresponding UV radiation source mountings 118 on a lower surface of the UV radiation source plate 66 and electrically connected to the wires 120.
  • two UV radiation reflectors 84 are positioned adjacent the UV radiation sources 82 to focus the emitted UV radiation onto the surface to be cleaned.
  • any number of sets of UV radiation sources 82, mountings 118 and reflectors 84 can be used depending on the size of the system and the process to be performed.
  • an electrical connector 122 disposed on the UV radiation source plate 66 is provided for each UV radiation source 82 to connect to electrical power through wires 120.
  • the UV radiation sources 82 can be any custom or standard UV radiation bulb or device capable of operation in a vacuum
  • the UV radiation sources 82 are releaseably secured in the UV radiation source mountings 1 18 to allow easy replacement as needed.
  • the UV radiation source plate 66 is removably disposed on the transport arm 68 and secured by lips 69 in the proper orientation.
  • the lips 69 preferably include sockets 124 to accommodate or receive the electrical connectors 122.
  • the sockets 124 further ensure that the UV radiation source plate 66 is aligned in the proper orientation by connecting to the electrical connectors 122.
  • Wires 126 carry power from a power supply 127 to the sockets 124 through the conduit 130 within the transport arm 68 and the rotatable shaft 70 to power the UV radiation source plate 66.
  • FIG 4 is a top schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention.
  • the UV radiation source plate 66 rests on a supporting surface 67 on the transport arm 68 and is secured in place by upstanding lips 69.
  • a rotary actuator 72 (shown in Figures 1 and 3) rotates the transport arm 68 between an operating position as indicated by dashed lines 68' and a retracted position within the sub-chamber 62, and the UV radiation source plate 66 is moved by the transport arm 68 from a retracted position within sub-chamber 62 to an extended position as indicated by dashed lines 66' directly over support member 54 within the chamber 42.
  • a substrate 46 positioned on a robot blade 51 is transported through slit valve 55 into the processing chamber above the support member 54.
  • Lift pins 57 extending through the support member 54 are moved up by actuator 59 to lift the substrate 46 off the robot blade 51.
  • the robot blade 51 then retracts and is withdrawn from the chamber 42, and the substrate support member 54 is raised by actuator 58 into a position immediately below the bottom surface of substrate 46.
  • the electrostatic chuck engages to securely hold the substrate 46 on the support member 54.
  • the substrate 46 and the support member 54 are raised further to the processing position, as indicated by dashed lines 46' and 54', and remain in the processing position for a predetermined period of time to accomplish the processing operation.
  • the substrate support member 54 is lowered, and the lift pins 57 are engaged to lift the processed substrate 46 off the substrate support member 54.
  • the robot blade 51 is reinserted
  • the rotary actuator 72 rotates the transport arm 68 having a UV radiation source plate 66 thereon into a cleaning position directly over the support member 54.
  • a cleaning gas such as oxygen
  • a cleaning gas inlet (not shown) in the support member into the space between the support member 54 and the UN radiation source plate 66.
  • the cleaning gas can be introduced through the gas inlet 86 into the chamber.
  • the temperature of the support member 54 is raised by a heater (not shown) incorporated within the support member 54 to between about 100° C and about 600° C, preferably between about 450° C and about 500° C.
  • the pressure in the region between the surface of the substrate support member 54 and the UV radiation source plate 66 is elevated by the introduction of the cleaning gas into the region through a cleaning gas inlet (not shown) in the support member 54. This higher pressure facilitates heat transfer and enhances the cleaning operation.
  • the UV radiation source 82 is then turned on to emit UV radiation in the desired wavelengths, preferably about 184.9 nm and about 253.7 nm when the cleaning gas is oxygen, directly onto the surface to be cleaned and indirectly by the focusing reflectors 84.
  • the invention provides a cleaning process using a combination of ultraviolet (UV) radiation and a cleaning gas.
  • a cleaning gas such as oxygen is exposed to UV radiation at selected wavelengthes.
  • UV radiation wavelengths of 184.9 nm and 253.7 nm optimizes cleaning using oxygen as the cleaning gas because oxygen absorbs the 184.9 nm wavelength and generates ozone and elemental oxygen, and the 253.7 nm wavelength is absorbed by the ozone, which devolves into both oxygen gas as well as elemental oxygen.
  • the atomic oxygen reaction with the electrostatic chuck contaminants combined with the UV radiation (especially the 253.7 nm wavelength) and heat acting on the contaminants cieate the synergy that effectively cleans the chuck surface.
  • elemental oxygen reacts with hydrocarbons and carbon species that are present on the surface of the chuck to form carbon monoxide and carbon dioxide that can be pumped out of the chamber through the gas
  • UV radiation and cleaning temperature can be determined through experimentation according to the contaminants to be removed. Generally, the energy applied to the contaminants must be sufficient to break the bonds adhering the contaminants to the surface to be cleaned.
  • One embodiment of the invention provides a removable UV radiation source plate of substantially the same shape and size as the substrate being processed in the processing chamber and is capable of "on the fly" exchange of used and new UV radiation source plates.
  • the actuator 72 rotates the transport arm 68 having a used UN radiation source plate 66 thereon into a position directly over support member 54.
  • the lift pins 57 extend upwards and lift the used UV radiation source plate 66 above the transport arm 68.
  • the robot blade 51 then extends into the chamber under the used UV radiation source plate 66 but above the transport arm 68.
  • the lift pins 57 retract and lower the used UV radiation source plate 66 onto the robot blade 51 to be transported out of the chamber 42 and into a discharge bin.
  • a new UV radiation source plate is placed on the robot blade 51 and transferred into the chamber 42 where it is lifted above the robot blade 51 by lift pins 57. After the blade 51 retracts out of the chamber 42, the lift pins 57 retract and lower the new UV radiation source plate 66 onto transport arm 68 to assume its operational role. This completes the "on the fly” exchange of new and used UV radiation source plates, and the robot blade 51 is then ready to pick up the next unprocessed substrate.
  • the UV radiation source plate 66 can be permanently mounted or secured on the transport arm 68.
  • -9- Figure 5 is a perspective view of another embodiment of the invention.
  • a UV radiation lamp 206 is mounted adjacent a bake out lamp 200 or in place of the bake out lamp 200.
  • the UV radiation lamp 206 and the bake out lamp can be mounted and secured by fasteners 202 and 204.
  • the bake out lamps 200 and the UV radiation lamp 206 may need to be repositioned in an upper portion of the processing chamber above the substrate support 54. In operation, after the processed substrate has been removed from the chamber, a cleaning gas is supplied into the chamber, and the UV radiation lamp 206 is simply turned on to clean the surfaces of the chamber.
  • the invention advantageously provides a faster cleaning process than current methods of UV radiation/ozone cleaning, both in the cleaning process itself and the elimination of the system shut down time for cleaning. Because the invention allows cleaning without breaking vacuum, the invention eliminates up to eight hours of downtime that may be required to evacuate a chamber back to vacuum after cleaning and provides continuous substrate processing with n ⁇ iimal interruption. Another advantage is that the invention provides a compact-sized UV cleaning device that is shielded from contamination during substrate processing.

Abstract

The invention provides generally a method and an apparatus for in situ cleaning of a surface in a semiconductor substrate processing chamber (42) which operates quickly and reduces the downtime for chamber cleaning. The apparatus comprises an ultraviolet (UV) radiation plate (66) moveable between a cleaning position and a storage position and at least one UV radiation source (82) disposed on the UV radiation plate. Preferably, the apparatus includes a reflector (84) disposed adjacent the UV radiation source to focus emitted UV radiation and a rotary actuator (72) pivotally attached to a transport arm (68) to move the UV radiation plate between the cleaning position and the storage position. The method comprises: providing a UV radiation plate having at least one UV radiation source disposed thereon, moving the UV radiation plate into a cleaning position, introducing a cleaning gas into the processing chamber and exposing the surface to UV radiation.

Description

IN SITU CLEANING OF THE SURFACE INSIDE A VACUUM PROCESSING CHAMBER
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to a vacuum processing chamber. More specifically, the present invention relates to a method and apparatus for in situ cleaning of a vacuum chamber surface and a surface of a component in the chamber.
Background of the Related Art
During fabrication of integrated circuits and flat panel displays, substrates are typically held by a substrate chuck which uses either a vacuum, mechanical, electrical or magnetic means to hold a substrate in place. These chucks are typically constructed of either ceramic or alurninum. Recently, electrostatic ceramic chucks have become widely used, and one exemplary electrostatic ceramic chuck is the MCA™ electrostatic ceramic chuck available from Applied Materials, Inc., of Santa Clara, California. Typically, electrostatic chucks are used in semiconductor processing chambers and systems such as the Endura™ system available from Applied Materials, Inc., Santa Clara, California. In the case of ceramic electrostatic chucks, it is critical to maintain a good dielectric layer between the chucking electrode and the substrate so that an appropriate electrostatic charge can be established on the chuck to hold the substrate in place. However, as a chuck holds a substrate during processing or is covered during cleaning, material from the process, as well as dirt, metal dust, chemicals, and other debris, can adhere to or react with the chuck, especially at high temperatures. These contaminants hinder the ability of the chuck to establish a charge separation required to properly hold the substrate on the chuck. The formation of a conducting layer on the surface provides an electrical path for the charge, resulting in leakage of the charge to the substrate and a loss of the chuck's ability to hold a substrate. To restore the chuck's ability to hold a substrate, the chuck must be periodically cleaned. One method of cleaning a ceramic chuck involves filling the chamber with argon and applying a bias to the chuck that creates a plasma bombardment of the chuck to effect sputter cleaning of the surface. However, each application of argon plasma bombardment cleaning typically removes about 50 angstroms of material from the chuck, and as repeated cleaning erodes the outer surface of the chuck, the chuck becomes un-useable and needs to be replaced.
Another method of cleaning a ceramic chuck is a wet cleaning process which requires the system to be first vented to atmospheric pressure, then opened, cleaned, and subsequently returned to vacuum. Wet cleaning procedures typically require a washing step using an acid, followed by a light base cleaning step. Wet cleaning also typically requires a subsequent drying step which takes up tremendous valuable time and drastically reduces throughput.
UN radiation/ozone processes have been applied to the cleaning and stripping of contaminants from silicon substrates. One method, as disclosed in U.S. Patent No. 5,480,492, cleans a surface of a silicon substrate by heating the contaminants thereon to a temperature greater than 750° C and simultaneously applying ultraviolet rays and oxygen molecules to the surface. However, this method is unsuitable for chamber cleaning because it requires a high temperature, produced by heaters such as lasers, that can cause damage to some surfaces.
United States Patent No. 5,531,857 discloses an apparatus which uses a robot having gas passages and radiation passages therein to deliver UN radiation and gas to clean a surface within a chamber. However, this device does not meet the needs of modern vacuum semiconductor substrate processing because it is bulky, operates slowly, and is itself subject to the same contamination that threatens the chuck and other interior surfaces of the vacuum processing chamber because it is disposed within the processing chamber.
Therefore, there exists a need for an in situ vacuum processing chamber cleaning device and a process which operates quickly and reduces the process downtime for chamber cleaning. Preferably, the cleaning device occupies minimal operating space and is shielded from vacuum chamber processing operations.
-2- SUMMARY OF THE INVENTION
The invention provides generally a method and an apparatus for in situ cleaning of a surface in a semiconductor substrate processing chamber that operates quickly and reduces the process downtime for chamber cleaning. The apparatus comprises an ultraviolet (UN) radiation plate moveable between a cleaning position and a storage position and at least one UN radiation source disposed on the UN radiation plate. Preferably, the apparatus includes a reflector disposed adjacent the UN radiation source to focus emitted UV radiation and a rotary actuator pivotally attached to a transport arm to move the UN radiation plate between the cleaning position and the storage position. The method comprises the steps of: providing a UN radiation plate having at least one UV radiation source disposed thereon, moving the UN radiation plate into a cleaning position, introducing a cleaning gas into the processing chamber and exposing the surface to UV radiation.
One aspect of the invention provides a UV radiation source plate that can be transferred into and out of a processing chamber similarly to a substrate for processing. Alternatively, the UV radiation plate is rigidly mounted on a transfer arm in the processing chamber. Another aspect of the invention provides fast cleaning of a surface inside a chamber without breaking vacuum. Another embodiment of the invention positions the UV radiation source along with, or in the place of, "bake-out" lamps disposed within a substrate processing chamber.
DESCRIPTION OF THE DRAWINGS
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefor not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Figure 1 is a vertical cross-sectional schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention.
-3- Figure 2 is a bottom view of a UN radiation source plate and a transport arm. Figure 3 is an exploded side view of a UV radiation source plate and a transport arm. Figure 4 is a top schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention.
Figure 5 is a perspective view of another embodiment of the invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
The invention generally provides a method and an apparatus for in situ cleaning of a vacuum processing chamber. One embodiment of the invention provides an apparatus which transfers a UV radiation source between a retracted position and an extended position where the UV radiation source is disposed over and directed at a substrate support member to effect enhanced cleaning of the substrate support member, preferably in the presence of ozone. When the cleaning process is complete, the apparatus retracts to a position out of the way of normal handling and processing operations. Other embodiments of the invention provide a UV radiation source mounted along-side or in place of vacuum processing chamber bake-out lamps.
Figure 1 is a vertical cross-sectional schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention. Although the processing chamber as shown and described is a physical vapor deposition (PVD) chamber used for sputtering a metal coating onto a substrate, the invention can be incorporated as well into a chemical vapor deposition (CVD) chamber, an etch chamber and other processing chambers. As shown in Figure 1, a housing 40 generally encloses a bottom portion of a processing chamber 42 and an anode lid assembly 43 generally encloses an upper portion of the processing chamber 42. A target 44 made of sputterable material is attached to the anode lid assembly 43 and connected to a power supply (not shown) which energizes the target 44 for sputtering deposition material onto a substrate. The anode lid assembly 43 is electrically isolated from the housing 40 by an insulative ring 47 and pneumatically sealed by resilient O-rings 49.
A substrate support member 54 disposed at the bottom portion of the chamber is moved by an actuator 58 between a lower position as indicated by the solid line and an upper position as indicated by the dashed lines 54'. Preferably, the substrate support member 54 comprises a
-4- ceramic outer body enclosing an electrode to form an electrostatic chuck that provides the appropriate charge to hold a substrate 46 on the support member 54. The substrate support member 54 includes vertical bores adapted for lift pins 57 to move up and down to position a substrate on and off the substrate support member 54 to allow transfer of the substrate in and out of the chamber. The lift pins 57 are disposed on a lift assembly 56 attached to a second actuator 59 that moves the lift assembly 56 vertically.
A sputtering region 48 is defined by the target 44, the substrate 46 in position 46' and a cathode forming bowl 50 attached to the upper portion of the chamber. The cathode forming bowl 50 includes an upturned wall 36 defining a central opening adapted to allow free movement of the substrate support member 54. The cathode and the anode electrical connections are respectively connected to the chamber components in a manner well known in the art. A clamp ring 52 having an inner periphery 37 that defines a processing aperture or opening is disposed on the cathode forming bowl 50. During processing, a substrate 46 positioned on the substrate support member 54 moves up through the central opening defined by the upturned wall 36 and engages the clamp ring 52, and an upper surface of the substrate is exposed through the opening defined by the inner periphery 37 of the clamp ring 52 to receive processing.
The processing chamber 42 preferably includes at least one gas inlet 86 disposed at the upper portion of the chamber to supply the processing gas to the sputtering region 48 and a gas exhaust 88 disposed at the bottom portion of the chamber to pump the gas out of the chamber. Preferably, the gas inlet 86 selectively provides processing gas, cleaning gas and other gases according to the process performed. Preferably, a suitable pump, such as a turbo molecular pump 90, is attached to the gas exhaust 88 to evacuate the chamber and to create a vacuum environment.
A robot (not shown) having a robot blade 51 transfers substrates in and out of the vacuum chamber 42 through a slit valve 55 on a side wall of housing 40 and a communicating passageway 41 extending from one side of housing 40. A second housing 60 extends, from a second side of the housing 40, forming a sub-chamber 62 which communicates with the chamber 42 by means of a slit 64. The second housing 60 provides a retraction compartment for a UV
-5- radiation source plate 66 and shields the UV radiation source plate 66 from the processing environment during processing.
Preferably, the UV radiation source plate 66 is made of a metal such as titanium or stainless steel, or a ceramic such as Al2O3. The UV radiation source plate 66 includes a UV radiation source 82 disposed on the lower surface of the plate. A UV radiation reflector 84 is preferably disposed adjacent the UV radiation source 82 to focus the UV radiation onto a surface to be cleaned. The UV radiation source plate 66 rests on a supporting surface of a transport arm 68 which is connected to the rotatable shaft 70 of a rotary actuator 72. The rotary actuator 72 rotates the transport arm 68 between a retracted position within the sub-chamber 62 and an extended position in the chamber 42. As shown in Figure 1, the rotatable shaft 70 is disposed within the chamber 42, and the rotary actuator 72 is secured on the bottom portion of housing 40. Alternatively, the rotatable shaft 70 and the ratary actuator 72 can be disposed within the sub- chamber 62 and secured on the housing 60. Although a rotary transport mechanism has been described, other mechanisms of transporting the UV radiation plate 66 are contemplated by the invention.
Figure 2 is a bottom view of a UV radiation source plate 66 and a transport arm 68. Figure 3 is an exploded side view of a UV radiation source plate 66 and a transport arm 68 showing the wires 120 disposed through the UV radiation source plate 66 in the conduits 128 inside the UV radiation source plate 66. Preferably, the UV radiation source plate 66 includes two UV radiation sources 82 disposed at radially opposite positions on two corresponding UV radiation source mountings 118 on a lower surface of the UV radiation source plate 66 and electrically connected to the wires 120. Also, two UV radiation reflectors 84 are positioned adjacent the UV radiation sources 82 to focus the emitted UV radiation onto the surface to be cleaned. However, any number of sets of UV radiation sources 82, mountings 118 and reflectors 84 can be used depending on the size of the system and the process to be performed. Preferably, an electrical connector 122 disposed on the UV radiation source plate 66 is provided for each UV radiation source 82 to connect to electrical power through wires 120. The UV radiation sources 82 can be any custom or standard UV radiation bulb or device capable of operation in a vacuum
-6- environment. Preferably, the UV radiation sources 82 are releaseably secured in the UV radiation source mountings 1 18 to allow easy replacement as needed.
The UV radiation source plate 66 is removably disposed on the transport arm 68 and secured by lips 69 in the proper orientation. The lips 69 preferably include sockets 124 to accommodate or receive the electrical connectors 122. The sockets 124 further ensure that the UV radiation source plate 66 is aligned in the proper orientation by connecting to the electrical connectors 122. Wires 126 carry power from a power supply 127 to the sockets 124 through the conduit 130 within the transport arm 68 and the rotatable shaft 70 to power the UV radiation source plate 66.
Figure 4 is a top schematic view of a processing chamber having a UV radiation source cleaning device in accordance with the invention. The UV radiation source plate 66 rests on a supporting surface 67 on the transport arm 68 and is secured in place by upstanding lips 69. A rotary actuator 72 (shown in Figures 1 and 3) rotates the transport arm 68 between an operating position as indicated by dashed lines 68' and a retracted position within the sub-chamber 62, and the UV radiation source plate 66 is moved by the transport arm 68 from a retracted position within sub-chamber 62 to an extended position as indicated by dashed lines 66' directly over support member 54 within the chamber 42.
In operation, referring simultaneously to Figures 1 and 4, a substrate 46 positioned on a robot blade 51 is transported through slit valve 55 into the processing chamber above the support member 54. Lift pins 57 extending through the support member 54 are moved up by actuator 59 to lift the substrate 46 off the robot blade 51. The robot blade 51 then retracts and is withdrawn from the chamber 42, and the substrate support member 54 is raised by actuator 58 into a position immediately below the bottom surface of substrate 46. As the substrate is positioned on the support member 54, the electrostatic chuck engages to securely hold the substrate 46 on the support member 54. The substrate 46 and the support member 54 are raised further to the processing position, as indicated by dashed lines 46' and 54', and remain in the processing position for a predetermined period of time to accomplish the processing operation. After processing, the substrate support member 54 is lowered, and the lift pins 57 are engaged to lift the processed substrate 46 off the substrate support member 54. The robot blade 51 is reinserted
-7- into the chamber 42 under the substrate 46, and the lift pins 57 are lowered to position the substrate 46 onto the robot blade 51. The robot blade 51 with the processed substrate 46 thereon then retracts out of the chamber.
As the robot blade 51 retracts, the rotary actuator 72 rotates the transport arm 68 having a UV radiation source plate 66 thereon into a cleaning position directly over the support member 54. Preferably, a cleaning gas, such as oxygen, is introduced through a cleaning gas inlet (not shown) in the support member into the space between the support member 54 and the UN radiation source plate 66. Alternatively, the cleaning gas can be introduced through the gas inlet 86 into the chamber. The temperature of the support member 54 is raised by a heater (not shown) incorporated within the support member 54 to between about 100° C and about 600° C, preferably between about 450° C and about 500° C. With the UV radiation source plate 66 positioned above the substrate support member 54, the pressure in the region between the surface of the substrate support member 54 and the UV radiation source plate 66 is elevated by the introduction of the cleaning gas into the region through a cleaning gas inlet (not shown) in the support member 54. This higher pressure facilitates heat transfer and enhances the cleaning operation. The UV radiation source 82 is then turned on to emit UV radiation in the desired wavelengths, preferably about 184.9 nm and about 253.7 nm when the cleaning gas is oxygen, directly onto the surface to be cleaned and indirectly by the focusing reflectors 84.
The invention provides a cleaning process using a combination of ultraviolet (UV) radiation and a cleaning gas. In this process, a cleaning gas such as oxygen is exposed to UV radiation at selected wavelengthes. For example, UV radiation wavelengths of 184.9 nm and 253.7 nm optimizes cleaning using oxygen as the cleaning gas because oxygen absorbs the 184.9 nm wavelength and generates ozone and elemental oxygen, and the 253.7 nm wavelength is absorbed by the ozone, which devolves into both oxygen gas as well as elemental oxygen. The atomic oxygen reaction with the electrostatic chuck contaminants combined with the UV radiation (especially the 253.7 nm wavelength) and heat acting on the contaminants cieate the synergy that effectively cleans the chuck surface. In the cleaning process, elemental oxygen reacts with hydrocarbons and carbon species that are present on the surface of the chuck to form carbon monoxide and carbon dioxide that can be pumped out of the chamber through the gas
-8- exhaust 88. Heating the support member 54 and creating a higher differential pressure in the region between the UN radiation plate 66 and the support member 54 enhance the reaction rate between elemental oxygen and the contaminants. The resultant volatile reactants and contaminants are pumped out of the chamber to complete the cleaning process. However, if oxygen is chosen as the cleaning gas, it is necessary to use a pump other than a cryogenic pump to evacuate the chamber following the cleaning because ozone absorption by a cryogenic pump creates a safety hazard that can harm the processing system. One particular suitable pump for a cleaning process using oxygen as the cleaning gas is a turbo molecular pump.
Other gases, such as argon and nitrogen, can be used, resulting in similar cleaning effects. The optimal wavelength of the UV radiation and cleaning temperature can be determined through experimentation according to the contaminants to be removed. Generally, the energy applied to the contaminants must be sufficient to break the bonds adhering the contaminants to the surface to be cleaned.
One embodiment of the invention provides a removable UV radiation source plate of substantially the same shape and size as the substrate being processed in the processing chamber and is capable of "on the fly" exchange of used and new UV radiation source plates. When a new UV radiation plate is desired, the actuator 72 rotates the transport arm 68 having a used UN radiation source plate 66 thereon into a position directly over support member 54. The lift pins 57 extend upwards and lift the used UV radiation source plate 66 above the transport arm 68. The robot blade 51 then extends into the chamber under the used UV radiation source plate 66 but above the transport arm 68. The lift pins 57 retract and lower the used UV radiation source plate 66 onto the robot blade 51 to be transported out of the chamber 42 and into a discharge bin. A new UV radiation source plate is placed on the robot blade 51 and transferred into the chamber 42 where it is lifted above the robot blade 51 by lift pins 57. After the blade 51 retracts out of the chamber 42, the lift pins 57 retract and lower the new UV radiation source plate 66 onto transport arm 68 to assume its operational role. This completes the "on the fly" exchange of new and used UV radiation source plates, and the robot blade 51 is then ready to pick up the next unprocessed substrate. Alternatively, the UV radiation source plate 66 can be permanently mounted or secured on the transport arm 68.
-9- Figure 5 is a perspective view of another embodiment of the invention. In this embodiment, a UV radiation lamp 206 is mounted adjacent a bake out lamp 200 or in place of the bake out lamp 200. The UV radiation lamp 206 and the bake out lamp can be mounted and secured by fasteners 202 and 204. To take full advantage of the UV radiation source in this embodiment, the bake out lamps 200 and the UV radiation lamp 206 may need to be repositioned in an upper portion of the processing chamber above the substrate support 54. In operation, after the processed substrate has been removed from the chamber, a cleaning gas is supplied into the chamber, and the UV radiation lamp 206 is simply turned on to clean the surfaces of the chamber.
The invention advantageously provides a faster cleaning process than current methods of UV radiation/ozone cleaning, both in the cleaning process itself and the elimination of the system shut down time for cleaning. Because the invention allows cleaning without breaking vacuum, the invention eliminates up to eight hours of downtime that may be required to evacuate a chamber back to vacuum after cleaning and provides continuous substrate processing with nώiimal interruption. Another advantage is that the invention provides a compact-sized UV cleaning device that is shielded from contamination during substrate processing.
Although a rotary transfer arm configuration has been disclosed as the preferred means of moving a UV radiation source plate into and out of the processing chamber, alternatives such as a reciprocable blade, or other types of plate transport means can be utilized effectively as well. Furthermore, it will be appreciated that the novel combination of functional elements disclosed above is not limited to sputtering applications or electrostatic chucks and in fact will have application in similar apparatus used to implement many other substrate deposition and/or etching processes.
While the foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims which follow.
-10-

Claims

I claim:
1. An apparatus for cleaning a surface in a substrate processing system, comprising: a) an ultraviolet (UV) radiation plate moveable between a cleaning position and a storage position; and b) at least one UV radiation source disposed on the UV radiation plate.
2. The apparatus of claim 1 , further comprising: c) a reflector disposed adjacent the UV radiation source to focus emitted UV radiation.
3. The apparatus of claim 1, further comprising: c) an electrical connector disposed on the UN radiation plate, the connector connectable to a power source to deliver electrical power to the UV radiation source.
4. The apparatus of claim 1, further comprising: c) a transport arm moveable between a cleaning position and a storage position, the transport arm having a UV radiation plate support surface.
5. The apparatus of claim 4, further comprising: d) a rotary actuator pivotally attached to the transport arm to move the UV radiation plate between the cleaning position and the storage position.
6. The apparatus of claim 4 wherein the transport arm includes a lip adjacent the UV radiation plate support surface to hold the UV radiation plate.
7. The apparatus of claim 6, further comprising an electrical socket disposed on the lip, the electrical socket adapted to receive an electrical connector disposed on the UN radiation plate.
-11-
8. A semiconductor processing system comprising: a) a processing chamber having a gas inlet and a gas outlet; b) a substrate support member disposed within the processing chamber; c) a storage chamber connected to the processing chamber; d) a transport arm moveable between a cleaning position above the substrate support member within the processing chamber and a storage position within the storage chamber; e) a UN radiation plate disposed on the transport arm; and f) at least one UV radiation source disposed upon the UV radiation plate.
9. The processing system of claim 8, further comprising: g) a rotary actuator pivotally attached to the transport arm to move the UV radiation plate between the cleaning position and the storage position.
10. The processing system of claim 8 wherein the transport arm includes a UV radiation plate support surface having lips to hold the UV radiation plate.
11. The processing system of claim 8 further comprising a reflector disposed adjacent the UV radiation source to focus emitted UV radiation.
12. The apparatus of claim 8 wherein the UN radiation plate is transportable by a substrate transport robot into and out of the processing chamber.
13. The apparatus of claim 8 wherein the substrate support member includes a cleaning gas inlet.
14 A method of cleaning a surface in a semiconductor substrate processing chamber, comprising: a) providing a UV radiation plate having at least one UV radiation source disposed thereon;
-12- b) moving the UV radiation plate into a cleaning position; c) introducing a cleaning gas into the processing chamber; and d) exposing the surface to UV radiation.
15. The method of claim 14, further comprising: e) raising the temperature of the surface to a cleaning temperature; and f) evacuating the cleaning gas from the processing chamber.
16. The method of claim 14 wherein the cleaning gas is selected from argon, nitrogen, or oxygen.
17. The method of claim 15 wherein the cleaning temperature is between 100┬░C and 600┬░C.
18. The method of claim 15, further comprising: g) providing a turbo molecular pump to evacuate the cleaning gas.
19. The method of claim 14 wherein the UV radiation source emits UV radiation with wavelengths of about 184.9 nm and about 253.7 nm.
20. A semiconductor processing chamber, comprising: a) an enclosure; b) a substrate support member disposed within the enclosure; c) a process gas inlet attached to the enclosure; d) at least one UV radiation source disposed in the enclosure to emit UV radiation onto a surface in the enclosure to be cleaned.
21. The semiconductor processing chamber of claim 20, further comprising: e) a cleaning gas source connected to the process gas inlet.
-13-
22. The semiconductor processing chamber of claim 21 wherein the cleaning gas source comprises a gas selected from argon, nitrogen, or oxygen.
23. The semiconductor processing chamber of claim 20 wherein the substrate support member is a ceramic electrostatic chuck.
24. A method of cleamng a surface in a semiconductor substrate processing chamber, comprising: a) providing at least one UV radiation source disposed in the chamber to emit UV radiation onto a surface in the chamber to be cleaned; b) introducing a cleaning gas into the processing chamber; and c) exposing the surface to UV radiation.
25. The method of claim 24 wherein the cleaning gas is selected from argon, nitrogen, or oxygen.
26. The method of claim 24 wherein the UV radiation source emits UV radiation with wavelengths of about 184.9 nm and about 253.7 nm.
-14-
SUBST1TUTE SHEET (RULE 26)
PCT/US1999/004401 1998-03-03 1999-03-01 In situ cleaning of the surface inside a vacuum processing chamber WO1999044760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000534350A JP2002505189A (en) 1998-03-03 1999-03-01 In-situ cleaning of the inner surface of the vacuum processing chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/034,053 US6098637A (en) 1998-03-03 1998-03-03 In situ cleaning of the surface inside a vacuum processing chamber
US09/034,053 1998-03-03

Publications (1)

Publication Number Publication Date
WO1999044760A1 true WO1999044760A1 (en) 1999-09-10

Family

ID=21874010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/004401 WO1999044760A1 (en) 1998-03-03 1999-03-01 In situ cleaning of the surface inside a vacuum processing chamber

Country Status (4)

Country Link
US (1) US6098637A (en)
JP (1) JP2002505189A (en)
TW (1) TW394710B (en)
WO (1) WO1999044760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007137035A2 (en) * 2006-05-16 2007-11-29 Applied Materials, Inc. In situ cleaning of cvd system exhaust
CN102934204A (en) * 2010-06-18 2013-02-13 应用材料公司 Method and apparatus for inducing turbulent flow of a processing chamber cleaning gas

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863327A (en) * 1997-02-10 1999-01-26 Micron Technology, Inc. Apparatus for forming materials
JP3245112B2 (en) * 1998-04-28 2002-01-07 インターナショナル・ビジネス・マシーンズ・コーポレーション Cleaning method for glass substrate for color filter
FR2785713B1 (en) * 1998-11-10 2000-12-08 Commissariat Energie Atomique CONTROL SYSTEM FOR LIFT AND TELEMANIPULATION UNITS PLACED IN CONFINED ENCLOSURES
US6254689B1 (en) * 1999-03-09 2001-07-03 Lucent Technologies Inc. System and method for flash photolysis cleaning of a semiconductor processing chamber
JP2000294530A (en) * 1999-04-06 2000-10-20 Nec Corp Method for cleaning semiconductor substrate and its cleaner
JP2001077011A (en) * 1999-09-08 2001-03-23 Mitsubishi Electric Corp Semiconductor manufacturing device, its cleaning method and light source unit
US6734443B2 (en) * 2001-05-08 2004-05-11 Intel Corporation Apparatus and method for removing photomask contamination and controlling electrostatic discharge
US6811615B2 (en) * 2001-05-24 2004-11-02 Applied Materials, Inc. Photo-assisted chemical cleaning and laser ablation cleaning of process chamber
US7280883B2 (en) * 2001-09-06 2007-10-09 Dainippon Screen Mfg. Co., Ltd. Substrate processing system managing apparatus information of substrate processing apparatus
US20030192570A1 (en) * 2002-04-11 2003-10-16 Applied Materials, Inc. Method and apparatus for wafer cleaning
US20030192577A1 (en) * 2002-04-11 2003-10-16 Applied Materials, Inc. Method and apparatus for wafer cleaning
KR20050033216A (en) * 2003-10-06 2005-04-12 동부아남반도체 주식회사 High density plasma device
US7253125B1 (en) 2004-04-16 2007-08-07 Novellus Systems, Inc. Method to improve mechanical strength of low-k dielectric film using modulated UV exposure
US20050250346A1 (en) * 2004-05-06 2005-11-10 Applied Materials, Inc. Process and apparatus for post deposition treatment of low k dielectric materials
KR100587688B1 (en) * 2004-07-28 2006-06-08 삼성전자주식회사 Apparatus for chemical vapor deposition
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US7510982B1 (en) 2005-01-31 2009-03-31 Novellus Systems, Inc. Creation of porosity in low-k films by photo-disassociation of imbedded nanoparticles
JP2006278765A (en) * 2005-03-29 2006-10-12 Fujitsu Ltd Cleaning method, tool, and apparatus for laminated substrate manufacturing apparatus
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8137465B1 (en) 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US20060249175A1 (en) * 2005-05-09 2006-11-09 Applied Materials, Inc. High efficiency UV curing system
US7777198B2 (en) 2005-05-09 2010-08-17 Applied Materials, Inc. Apparatus and method for exposing a substrate to a rotating irradiance pattern of UV radiation
US20060251827A1 (en) * 2005-05-09 2006-11-09 Applied Materials, Inc. Tandem uv chamber for curing dielectric materials
US7566891B2 (en) * 2006-03-17 2009-07-28 Applied Materials, Inc. Apparatus and method for treating a substrate with UV radiation using primary and secondary reflectors
US7692171B2 (en) * 2006-03-17 2010-04-06 Andrzei Kaszuba Apparatus and method for exposing a substrate to UV radiation using asymmetric reflectors
US7589336B2 (en) * 2006-03-17 2009-09-15 Applied Materials, Inc. Apparatus and method for exposing a substrate to UV radiation while monitoring deterioration of the UV source and reflectors
US20070284541A1 (en) * 2006-06-08 2007-12-13 Vane Ronald A Oxidative cleaning method and apparatus for electron microscopes using UV excitation in a oxygen radical source
US7993465B2 (en) * 2006-09-07 2011-08-09 Applied Materials, Inc. Electrostatic chuck cleaning during semiconductor substrate processing
KR101293129B1 (en) * 2006-10-27 2013-08-12 엘지디스플레이 주식회사 Sputtering apparatus
US7851232B2 (en) * 2006-10-30 2010-12-14 Novellus Systems, Inc. UV treatment for carbon-containing low-k dielectric repair in semiconductor processing
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US8465991B2 (en) 2006-10-30 2013-06-18 Novellus Systems, Inc. Carbon containing low-k dielectric constant recovery using UV treatment
US20080179288A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Process for wafer backside polymer removal and wafer front side scavenger plasma
US7967996B2 (en) * 2007-01-30 2011-06-28 Applied Materials, Inc. Process for wafer backside polymer removal and wafer front side photoresist removal
US20080179287A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Process for wafer backside polymer removal with wafer front side gas purge
US20080179007A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Reactor for wafer backside polymer removal using plasma products in a lower process zone and purge gases in an upper process zone
JP5190215B2 (en) * 2007-03-30 2013-04-24 東京エレクトロン株式会社 Cleaning method of turbo molecular pump
US8242028B1 (en) 2007-04-03 2012-08-14 Novellus Systems, Inc. UV treatment of etch stop and hard mask films for selectivity and hermeticity enhancement
US8211510B1 (en) 2007-08-31 2012-07-03 Novellus Systems, Inc. Cascaded cure approach to fabricate highly tensile silicon nitride films
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US7964858B2 (en) 2008-10-21 2011-06-21 Applied Materials, Inc. Ultraviolet reflector with coolant gas holes and method
US20100096569A1 (en) * 2008-10-21 2010-04-22 Applied Materials, Inc. Ultraviolet-transmitting microwave reflector comprising a micromesh screen
DE102009033319B4 (en) * 2009-07-15 2019-02-21 Carl Zeiss Microscopy Gmbh Particle beam microscopy system and method of operating the same
US8349125B2 (en) * 2009-07-24 2013-01-08 Xei Scientific, Inc. Cleaning device for transmission electron microscopes
WO2012138866A1 (en) 2011-04-08 2012-10-11 Applied Materials, Inc. Apparatus and method for uv treatment, chemical treatment, and deposition
JP5665679B2 (en) * 2011-07-14 2015-02-04 住友重機械工業株式会社 Impurity introduction layer forming apparatus and electrostatic chuck protecting method
US20160163519A1 (en) * 2013-10-08 2016-06-09 XEI Scientic, Inc. Method and apparatus for plasma ignition in high vacuum chambers
DE102015211090A1 (en) * 2015-06-17 2016-12-22 Vistec Electron Beam Gmbh Particle beam device and method for operating a particle beam device
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
JP6812264B2 (en) * 2017-02-16 2021-01-13 東京エレクトロン株式会社 Vacuum processing equipment and maintenance equipment
CN112088227B (en) * 2018-05-12 2022-09-30 应用材料公司 Pre-clean chamber with integrated shutter library
WO2020164686A1 (en) * 2019-02-12 2020-08-20 Applied Materials, Inc. Method for cleaning a vacuum system, method for vacuum processing of a substrate, and apparatus for vacuum processing a substrate
US11348784B2 (en) 2019-08-12 2022-05-31 Beijing E-Town Semiconductor Technology Co., Ltd Enhanced ignition in inductively coupled plasmas for workpiece processing
US20220267893A1 (en) * 2019-11-11 2022-08-25 Beijing Naura Microelectronics Equipment Co., Ltd. Sputtering device
TW202203319A (en) * 2020-06-24 2022-01-16 日商東京威力科創股份有限公司 Substrate processing apparatus
US20220364261A1 (en) * 2021-05-11 2022-11-17 Applied Materials, Inc. Chamber architecture for epitaxial deposition and advanced epitaxial film applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058238A (en) * 1983-09-09 1985-04-04 Ushio Inc Cleaning method utilizing ultraviolet ray
EP0316835A1 (en) * 1987-11-19 1989-05-24 Oki Electric Industry Company, Limited Method of and device for cleaning substrates
JPH05143981A (en) * 1991-11-25 1993-06-11 Kao Corp Method for cleaning substrate
EP0606648A2 (en) * 1993-01-15 1994-07-20 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
JPH0768162A (en) * 1993-09-02 1995-03-14 Ebara Corp Method for cleaning off deposit and device therefor
JPH07308567A (en) * 1994-05-16 1995-11-28 Ebara Corp Washing method and washing device for vessel
EP0771638A2 (en) * 1995-10-30 1997-05-07 Towa Corporation Mold cleaning mechanism for resin sealing/molding apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699689A (en) * 1985-05-17 1987-10-13 Emergent Technologies Corporation Method and apparatus for dry processing of substrates
US5531857A (en) * 1988-07-08 1996-07-02 Cauldron Limited Partnership Removal of surface contaminants by irradiation from a high energy source
US5223112A (en) * 1991-04-30 1993-06-29 Applied Materials, Inc. Removable shutter apparatus for a semiconductor process chamber
JPH06151395A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Formation of clean surface of si
JP3234091B2 (en) * 1994-03-10 2001-12-04 株式会社日立製作所 Surface treatment equipment
US5863327A (en) * 1997-02-10 1999-01-26 Micron Technology, Inc. Apparatus for forming materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058238A (en) * 1983-09-09 1985-04-04 Ushio Inc Cleaning method utilizing ultraviolet ray
EP0316835A1 (en) * 1987-11-19 1989-05-24 Oki Electric Industry Company, Limited Method of and device for cleaning substrates
JPH05143981A (en) * 1991-11-25 1993-06-11 Kao Corp Method for cleaning substrate
EP0606648A2 (en) * 1993-01-15 1994-07-20 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
JPH0768162A (en) * 1993-09-02 1995-03-14 Ebara Corp Method for cleaning off deposit and device therefor
JPH07308567A (en) * 1994-05-16 1995-11-28 Ebara Corp Washing method and washing device for vessel
EP0771638A2 (en) * 1995-10-30 1997-05-07 Towa Corporation Mold cleaning mechanism for resin sealing/molding apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 536 (P - 1620) 27 September 1993 (1993-09-27) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 188 (C - 295) 3 August 1985 (1985-08-03) *
PATENT ABSTRACTS OF JAPAN vol. 95, no. 6 31 July 1995 (1995-07-31) *
PATENT ABSTRACTS OF JAPAN vol. 96, no. 3 29 March 1996 (1996-03-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007137035A2 (en) * 2006-05-16 2007-11-29 Applied Materials, Inc. In situ cleaning of cvd system exhaust
WO2007137035A3 (en) * 2006-05-16 2008-12-11 Applied Materials Inc In situ cleaning of cvd system exhaust
US20090044699A1 (en) * 2006-05-16 2009-02-19 Applied Materials, Inc. In Situ Cleaning of CVD System Exhaust
US8343317B2 (en) 2006-05-16 2013-01-01 Applied Materials, Inc. In situ cleaning of CVD System exhaust
CN102934204A (en) * 2010-06-18 2013-02-13 应用材料公司 Method and apparatus for inducing turbulent flow of a processing chamber cleaning gas

Also Published As

Publication number Publication date
TW394710B (en) 2000-06-21
JP2002505189A (en) 2002-02-19
US6098637A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
US6098637A (en) In situ cleaning of the surface inside a vacuum processing chamber
KR970000205B1 (en) Apparatus and method for manufacturing integrated circuit & other electronic equipment
KR100401796B1 (en) Compartmentalized substrate processing chamber
KR970000202B1 (en) Apparatus and method for manufacturing integrated circuit & other electronic equipment
KR100257105B1 (en) Film processing apparatus
US4867841A (en) Method for etch of polysilicon film
US5028560A (en) Method for forming a thin layer on a semiconductor substrate
US5178682A (en) Method for forming a thin layer on a semiconductor substrate and apparatus therefor
US5248636A (en) Processing method using both a remotely generated plasma and an in-situ plasma with UV irradiation
US4836905A (en) Processing apparatus
US4949671A (en) Processing apparatus and method
US4911103A (en) Processing apparatus and method
US5861086A (en) Method and apparatus for sputter etch conditioning a ceramic body
KR100297284B1 (en) Treatment Units and Dry Cleaning Methods
US4822450A (en) Processing apparatus and method
KR101141488B1 (en) Method and apparatus for reducing substrate backside deposition during processing
JPH0751754B2 (en) Wafer heat treatment equipment
WO2000022660A1 (en) Method and apparatus for surface treatment
CN110858559B (en) Buffer unit and apparatus and method for processing substrate using the same
KR970000204B1 (en) Apparatus and method for manufacturing integrated circuit & other electronic equipment
US4820378A (en) Process for etching silicon nitride selectively to silicon oxide
JPH02320A (en) Apparatus and method of treatment
JPH06101452B2 (en) Vacuum processing module
WO2000074123A1 (en) Transparent window of process chamber of process apparatus, and method of manufacture thereof
JPH09186108A (en) Clustered tool apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 534350

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase