WO1999041778A1 - Apparatus for controlling temperature of substrate - Google Patents

Apparatus for controlling temperature of substrate Download PDF

Info

Publication number
WO1999041778A1
WO1999041778A1 PCT/JP1999/000636 JP9900636W WO9941778A1 WO 1999041778 A1 WO1999041778 A1 WO 1999041778A1 JP 9900636 W JP9900636 W JP 9900636W WO 9941778 A1 WO9941778 A1 WO 9941778A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
working fluid
temperature control
control device
substrate temperature
Prior art date
Application number
PCT/JP1999/000636
Other languages
French (fr)
Japanese (ja)
Inventor
Kanichi Kadotani
Akihiro Ohsawa
Katsuo Saio
Satoshi Fukuhara
Toshio Yoshimitsu
Toshinobu Tanimura
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to KR1020007006863A priority Critical patent/KR20010033394A/en
Publication of WO1999041778A1 publication Critical patent/WO1999041778A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an apparatus used to control the temperature of a substrate by heating or cooling the substrate in a process of processing a substrate such as a semiconductor wafer or a liquid crystal panel.
  • a substrate temperature control device used for heating and cooling a substrate such as a semiconductor wafer generally has a flat upper surface stage on which the substrate is placed, and a heating and cooling device is provided in or below the stage.
  • a heat source device is arranged. Heating devices, infrared lamps and working fluids are generally used as heating devices, and working fluids are generally used as cooling devices. In particular, working fluids are the most widely used.
  • This type of temperature control device prefers a fluid pipe to flow the working fluid, and typically arranges a meandering elongated fluid pipe inside the stage and flows the working fluid through the meandering pipe. There is something like that. Also, there is a type in which a wide flow path is formed in the entire stage inside the stage and the working fluid flows through this flow path.
  • Performances generally required of substrate temperature control devices include, first, factors called good thermal response, high-speed heating and cooling, and good temperature control. In short, it is the ability to achieve the desired temperature quickly. For that purpose, it is important to reduce the heat capacity of the stage. Second, there is an element that can be called soaking. This is the ability to control the entire substrate at the same temperature without unevenness. However, when working fluid is used, the working fluid flows through the stage and As the temperature changes over time due to heat exchange with the stage, there is a problem that a temperature difference occurs between the upstream part and the downstream part of the flow path.
  • the stage is thermally deformed in the upward and downward directions (for example, the central portion is lifted up or recessed below the peripheral portion), thereby causing a gap between the stage and the substrate.
  • the substrate temperature becomes non-uniform because the temperature varies from place to place.
  • Other important factors are the third, low cost, the fourth, high security, and the fifth, easy manufacturing.
  • the manufacture of fluid piping is generally cumbersome, and the meandering of the piping increases the pressure loss.
  • Another object of the present invention is to provide a substrate temperature control device having good thermal response and good thermal uniformity.
  • Still another object of the present invention is to provide a low-cost substrate temperature control device having good thermal responsiveness, good thermal uniformity, and low cost.
  • Still another object of the present invention is to provide a substrate temperature control device having good heat uniformity.
  • Still another object of the present invention is to provide a low-cost substrate temperature control device having good heat uniformity.
  • Still another object of the present invention is to provide a low-cost, high-safe substrate temperature control device having good thermal responsiveness, good thermal uniformity, and low cost.
  • Still another object of the present invention is to provide a substrate temperature control device which has good heat uniformity and is easy to manufacture.
  • a substrate temperature control device has a main surface facing a substrate.
  • the stage has a flat container, which has a cavity for flowing a working fluid, an inlet and an outlet for the working fluid, and a turbulent flow of the working fluid in the cavity. And a turbulence mechanism for causing it to occur.
  • the “main surface” is the upper surface of the stage when the substrate is placed on the stage, but when the substrate is sucked to the stage by vacuum or the like, the stage can take various postures. Therefore, it refers to the stage surface on the side where the substrate is placed, including such cases.
  • a plurality of ribs are provided in the cavity for connecting the main surface side wall and the reverse side wall, and the ribs disturb the flow of the fluid.
  • the ribs increase the mechanical strength of the container substrate and prevent deformation of the container due to fluid pressure, which also contributes to improvement in heat uniformity.
  • the working fluid is jetted into the cavity as a jet flow or swirled to generate a turbulent flow more positively, thereby improving the heat uniformity and the thermal response. Is being planned.
  • the inlet and outlet are arranged such that the inlet is provided at the periphery of the container and the outlet is provided at the center of the container, or vice versa, or the inlet and the outlet are arranged differently.
  • the temperature distribution of the working fluid is made as uniform as possible within the vessel, which also contributes to the improvement of the heat uniformity.
  • a sheet-shaped heater is provided on one or both of the main surface and the opposite side of the container, and the heating is performed by the sheet-shaped heater, and the cooling is performed by the heater. This is done with a moving fluid.
  • a stage with such a simple structure can be designed so that its heat capacity is considerably small, so that good thermal response can be obtained.
  • the working fluid is used only for cooling, the working fluid system can be simplified, so that the cost is considerably reduced.
  • a substrate temperature control device includes a plate-shaped stage having a main surface facing a substrate, the stage having a plate-shaped container, and the container flowing a working fluid. And a working fluid inlet and outlet, the inlet and outlet being arranged such that the inlet is provided at the periphery of the container and the outlet is provided at the center of the container, or vice versa. Alternatively, both the inlet and outlet are provided at the periphery of the container.
  • the working fluid flows radially from the periphery of the container to the center or vice versa, or in the reciprocating direction, so that the temperature distribution of the working fluid is fairly uniform, and the heat uniformity is improved.
  • the flows from the multiple inlets intersect with each other and become turbulent, so better heat uniformity and thermal responsiveness can be expected.
  • the thermal responsiveness is improved, and the heat uniformity is further improved.
  • one or both of the main surface and the opposite side of the container are provided with a sheet-shaped heater and heating is performed by this heater, and only cooling is performed by the working fluid, the cost will be considerably reduced.
  • a substrate temperature control device includes a plate-shaped stage having a main surface facing a substrate, the stage having a plate-shaped container, and the container flowing a working fluid. And a plurality of ribs connecting the main surface side wall and the reverse side wall of the container in the cavity.
  • this substrate temperature control device since the mechanical strength of the container is increased by the rib, a high-pressure working fluid can be supplied into the container to flow the working fluid at a high speed, and the rib generates turbulent flow. As a result, good thermal responsiveness and uniform temperature can be obtained.
  • This device also explained By adopting a turbulence mechanism, an inlet / outlet arrangement, and a combination with a heater and the like, it is possible to further improve the performance and reduce the cost.
  • a substrate temperature control device includes a plate-like stage having a main surface facing a substrate, and the stage has a plate-like shape having a cavity for flowing a working fluid therein. It has a container and sheet-shaped heaters provided on both the main surface and the opposite side of the container. According to this substrate temperature control device, since the stage has a structure that is thermally and mechanically symmetrical with respect to the main surface side and the opposite side, distortion or bending of the stage due to thermal expansion is reduced, and heat uniformity is improved. However, even with this device, the effects of further improving the performance and reducing the price can be obtained by adding the various measures described above.
  • a substrate temperature control device includes a stage on which a substrate is placed, the stage having a container, and the container has a flow path extending in a region immediately below the substrate. I have it.
  • an inlet for allowing the working fluid to flow into the flow path is provided at a peripheral portion of the flow path.
  • An outlet for the working fluid as well as the inlet can be provided at the periphery of the flow path.
  • providing a plurality of outlets in the peripheral portion is advantageous in improving heat uniformity, as is the advantage of providing a plurality of inlets in the peripheral portion.
  • a plurality of inlets and a plurality of outlets are alternately arranged along the periphery of the flow path.
  • the flow path may be divided into a plurality of small flow paths, and each flow path and each inlet may be connected so that the working fluid flows in opposite directions in the adjacent small flow paths.
  • the heat exchange between the small flow paths reduces the temperature difference depending on the place, and the heat uniformity is improved.
  • a plurality of outgoing flow paths for flowing the working fluid from the peripheral portion to the central portion, and a plurality of return flows for flowing the working fluid from the central portion to the peripheral portion are provided in the flow path. And the outgoing flow path and the return flow path are arranged alternately.
  • the flow path is divided into a plurality of elongated small flow paths that run parallel to each other, and the working fluid flows in opposite directions in adjacent small flow paths.
  • two containers can be stacked so that the flow directions of the working fluid in the two containers are opposite to each other. Even with this, the two containers cancel each other's uneven temperature, and the heat uniformity is improved.
  • a large number of fins can be arranged in the flow path, or a cotton-like or net-like fibrous body can be arranged.
  • the flow of the working fluid in the flow path is disturbed, so that the temperature unevenness is reduced, so that the heat uniformity is improved, and the heat exchange efficiency is expected to be improved by the turbulent flow effect.
  • a flat heat pipe may be joined to the upper surface of the container.
  • the high heat transfer effect of the heat pipe contributes to the improvement of the heat uniformity.
  • a heating wire may be attached to one or both of the upper and lower surfaces of the container. In particular, when the heaters are attached to both sides of the container, the temperature difference between the upper and lower portions of the container becomes smaller, so that the distortion in the vertical direction due to thermal expansion is reduced, which also contributes to the improvement of the heat uniformity.
  • a substrate temperature control device includes a stage for mounting a substrate, the stage including a container having a cavity extending inside a region immediately below the substrate inside, and the container including the stage.
  • An inlet for supplying a working fluid to a cavity provided on the outer periphery of the container, an outlet for discharging the working fluid from the cavity provided on the outer periphery of the container, and one or more guides for partitioning the cavity A curved flow path is formed in the cavity by the guide wall.
  • a number of fins or ribs are located in the cavity.
  • the guide wall comprises one or more bypass holes. The bypass holes are provided in the vicinity of the bent portions of the plurality of flow paths.
  • the working fluid flows at a substantially uniform speed along the entire length of the curved flow path formed by the guide wall.
  • a guide wall guides the working fluid from the inlet to near the outlet before circling the cavity.
  • the guide wall directs the flow in the center of the cavity to both sides, or the flow at the periphery of the cavity to the center of the cavity.
  • the container has an inlet and an outlet at substantially the same location.
  • FIG. 1 is a side sectional view of a stage portion of a substrate temperature control device according to a first embodiment of the present invention.
  • Fig. 2 is a plan sectional view taken along line A-A in Fig. 1.
  • FIG. 3 is a side sectional view of a stage portion of a substrate temperature control device according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional plan view taken along line A_A in FIG.
  • FIG. 5 is a side sectional view of a stage portion of a substrate temperature control device according to a third embodiment of the present invention.
  • FIG. 6 is a plan sectional view taken along line A—A in FIG.
  • FIG. 7 is a side sectional view of a stage portion of a substrate temperature control device according to a fourth embodiment of the present invention.
  • FIG. 8 is a plan sectional view taken along the line A—A in FIG.
  • FIG. 9 is a side sectional view of a stage portion of a substrate temperature control device according to a fifth embodiment of the present invention.
  • FIG. 10 is a plan sectional view taken along line AA of FIG.
  • FIG. 11 is a plan cross-sectional view of a vessel at a stage portion of a substrate temperature control device according to a sixth embodiment of the present invention.
  • FIG. 12 is a plan cross-sectional view of a container at a stage portion of a substrate temperature control device according to a seventh embodiment of the present invention.
  • FIG. 13 is a diagram showing a cross-sectional shape of the jet opening.
  • FIG. 14 is a plan sectional view of a stage of a substrate temperature control device according to an eighth embodiment of the present invention, cut along a horizontal plane.
  • FIG. 15 (A) is a cross-sectional view taken along the line A—A of FIG. 14, and FIG. 15 (B) is a cross-sectional view taken along the line B—B of FIG.
  • FIG. 16 is a cross-sectional plan view showing the guide fins 2 31 in detail by enlarging the fan-shaped flow paths 2 09 A and 2 09 B.
  • FIG. 17 is a plan cross-sectional view of a stage of a substrate temperature control device according to a ninth embodiment of the present invention cut along a horizontal plane.
  • FIG. 18 is a cross-sectional view taken along line C-C of FIG.
  • FIG. 19 is a plan cross-sectional view of the stage of the substrate temperature control device according to the tenth embodiment of the present invention, cut along a horizontal plane.
  • FIG. 20 is a perspective view showing a stage of the substrate temperature control device according to the first embodiment of the present invention.
  • FIG. 21 is a perspective view showing a stage of the substrate temperature control device according to the second embodiment of the present invention.
  • FIG. 22 is a sectional view showing a stage of the substrate temperature control device according to the thirteenth embodiment of the present invention.
  • FIG. 23 is a plan sectional view of two containers constituting the substrate temperature control device according to the fourteenth embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of the stage along the line D-D in FIG.
  • FIG. 25 is a cross-sectional view showing a substrate temperature control device according to a fifteenth embodiment of the present invention.
  • FIG. 26 is a perspective view of a container constituting a stage of the substrate temperature control device according to the sixteenth embodiment of the present invention.
  • FIG. 27 is a cross-sectional view of the container taken along line AA of FIG.
  • Figure 28 is a cross-sectional plan view of a container with a bypass hole in each guide wall.
  • FIG. 29 is a cross-sectional plan view of the container in which the shape of the guide wall 409c is changed.
  • FIG. 30 is a cross-sectional plan view of the container in which the shapes of the guide walls 409 a and 409 b in FIG. 29 are changed.
  • FIG. 31 is a plan sectional view of a container constituting a stage of the substrate temperature control device according to the seventeenth embodiment of the present invention.
  • FIG. 32 is a cross-sectional plan view of the container when the number, shape, and arrangement of the guide walls of the container of FIG. 31 are changed.
  • FIG. 33 is a sectional view of a container constituting a stage of the substrate temperature control device according to the eighteenth embodiment of the present invention.
  • FIG. 34 is a sectional view of a container constituting a stage of the substrate temperature control device according to the nineteenth embodiment of the present invention.
  • FIG. 1 is a side sectional view of a stage portion of a substrate temperature control device according to an embodiment of the present invention
  • FIG. 2 is a plan sectional view taken along line AA of FIG.
  • the stage 1 is a thin circular plate as a whole, and a circular substrate, typically a semiconductor wafer 3, is placed on the flat upper surface thereof. On the top of stage 1 There are small protrusions 5 of the same height (for example, 0.1 mm) at several places, and these protrusions 5 support the wafer 3 and prevent contact with the wafer 3 (this is the wafer 3 To prevent contamination from stage 1). Stage 1 is roughly composed of the following two layers.
  • the first layer is a circular sheet-like thin film heater that forms the upper surface of the stage 1 (a heating wire laminated or embedded in an insulating film by printed wiring technology) 7, and the second layer is It is a thin disk-shaped container 9 for flowing a working fluid inside, and the thin film heater 7 is attached to the upper surface of the container 9.
  • the container 9 has a cavity 11 for allowing a working fluid to pass through the entire area inside the container 9, and is made of a thin plate of a material having good heat conductivity such as aluminum or a copper alloy. It is made by brazing the sheet at its periphery or by other methods.
  • the bottom wall of the container 9 has an inlet 17 for supplying the working fluid to the cavity 11 at a plurality of locations on the peripheral edge, and an outlet for discharging the working fluid from the cavity 11 at a central location. 19 are each opened, and each inlet 17 has a fluid supply pipe 13 connected thereto, and an outlet 19 has a fluid discharge pipe 15 connected thereto (note that Conversely, the central hole 19 may be used as the inlet and the peripheral hole 17 may be used as the outlet.
  • ribs 21 are provided at many places to connect the bottom wall and the ceiling wall.
  • One purpose of the ribs 21 is to increase the mechanical strength of the container 1 and to prevent the swelling of the container 9 particularly due to the pressure of the working fluid. Thereby, a high-pressure working fluid can be supplied to flow at a high speed, so that good thermal responsiveness and uniform temperature can be achieved.
  • the second purpose of the rib 21 is to disturb the flow of the working fluid in the cavity 11 to generate a turbulent flow, thereby increasing heat exchange efficiency and improving uniformity.
  • rib 21 is also made of aluminum or copper alloy.
  • the cavity 11 is basically a closed type without ventilation to the outside air, and the working fluid flows in a state where the cavity 11 is completely filled. However, the cavity 11 may be an open type with ventilation to the outside air, through which the working fluid flows in the form of a mixture with air or a spray.
  • the container 9 is mainly used for cooling the wafer 3 by passing a cold (for example, about room temperature) working fluid through the cavity 11.
  • the heating of wafer 3 is performed in thin film 7.
  • the working fluid should not be used for active heating (especially heating in high temperature range such as 100 ° C or 200 ° C). Is preferred.
  • the first reason is that the working fluid circulation system is originally one of the most expensive elements, but cooling has to use a working fluid system because there is no other suitable alternative, but heating is inexpensive.
  • Replacing the heating wire in a short time can remove the expensive fluid heating device from the working fluid system, resulting in a large price drop.
  • the second reason is that strict safety measures are required when a high-temperature fluid of 100 ° C or 200 ° C flows through the working fluid system, but strict safety measures are required only when a cold working fluid flows. This is because there is no need for any safety measures, and a considerable reduction in price can be expected.
  • the first reason that the thermal responsiveness can be improved is that the heat capacity of stage 1 can be made very small. That is, the stage 1 has a simple configuration of the container 9 and the thin-film heater 7, and most of the heat capacity of the stage 1 is occupied by that of the container 9.
  • the wall of the container 9 and the internal cavity 1 1 are quite thick in the figure, In some cases, they can all be made very thin and have a very low heat capacity.
  • a high heat exchange amount can be maintained unless the flow rate of the working fluid is increased and the flow rate is not decreased by an amount corresponding to the thinner cavity 11.
  • the second reason is that the heat exchange rate of the working fluid is reduced by the action of the ribs 21 and by the turbulence caused by the crossing of the flows from the inlets 1 ⁇ as shown by the arrows in FIG. Because it will be higher.
  • the first reason that the heat uniformity can be improved is that the unevenness of the temperature distribution is eliminated by the turbulence caused by the ribs 21.
  • the second reason is that since the working fluid can flow at a high speed, the working fluid in the container 9 can be exchanged quickly, the turbulence is further increased, and the temperature unevenness is reduced.
  • FIG. 3 is a side sectional view of the stage according to the second embodiment
  • FIG. 4 is a plan sectional view of the stage taken along line AA of FIG.
  • Elements that are functionally the same as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the same applies to other drawings described later.
  • the first characteristic is that a thin film heater 35 having the same size and the same calorie as the thin film heater 7 on the upper surface is attached not only on the upper surface but also on the lower surface of the container 33.
  • the upper and lower thin films 7 and 35 are used simultaneously in principle.
  • the stage 31 has a substantially vertically symmetrical structure thermally and mechanically, so that distortion or bending of the stage due to thermal expansion during heating and cooling can be suppressed.
  • the gap length between the wafer 3 and the stage 31 (the height of the projection 5 when the upper surface of the stage 31 is flat, for example, 0.1 mm, is constant).
  • the cloth may be uneven (for example, a difference in gap length of 0.1 mm results in a temperature difference of about 40 K). Therefore, suppressing the distortion and the radius of the stage 31 greatly contributes to improving the heat uniformity.
  • the second feature is that the container 3 3 has an outer diameter larger than that of the wafer 3 and projects outside the outer periphery of the wafer 3, and the outer peripheral portion 3 7
  • a working fluid inlet 17 is provided on the bottom wall.
  • This annular peripheral portion 37 may be made of the same material as the other portions of the container 33 (for example, aluminum-copper alloy), but from the viewpoint of the thermal effect described below. However, it is preferable to be made of a material having poor thermal conductivity such as ceramics.
  • the working fluid that has flowed in from the inlet 17 of the peripheral portion 37 hits the ceiling wall of the peripheral portion 37, the flow direction is deflected, and flows toward the center. In the previous embodiment shown in FIG.
  • the ceiling wall portion to which the working fluid from the inlet 17 is applied may locally receive too much thermal action of the fluid, which may cause uneven temperature of the wafer 3.
  • the ceiling wall on which the working fluid from the inlet 17 hits is located at a considerable distance from the wafer 3 and has poor thermal conductivity, so that the effect on the temperature of the wafer 3 is small. Therefore, better heat uniformity can be obtained.
  • FIG. 5 is a side sectional view of the stage according to the third embodiment
  • FIG. 6 is a plan sectional view of the stage taken along line AA of FIG.
  • the container 53 of the stage 51 is the same as the container 33 of the second embodiment shown in FIGS.
  • a ring-shaped partition wall 55 is further provided for partitioning into a portion on the center side from 7.
  • the partition wall 55 has a large number (only 10 in the drawing, but a larger number may be used) for sending the working fluid flowing into the peripheral portion 37 as a jet flow toward the center.
  • Partition wall 5 5 is also made of the same material as the body of container 53 (For example, aluminum or copper alloy), but may be made of a material with poor thermal conductivity such as ceramics to reduce thermal effects. As shown in FIG.
  • FIG. 7 is a side sectional view of the stage according to the fourth embodiment
  • FIG. 8 is a plan sectional view of the stage taken along line AA of FIG.
  • a large number (only 12 in the figure, but a larger number) of jet ports 67 are provided on the peripheral wall of the vessel 63 of the stage 61, and the supply pipe 13 is connected thereto.
  • the jets of the working fluid are ejected from these many jets 67 in different directions in the cavity 11. Similar to the embodiment shown in FIGS. 5 and 6, good heat uniformity and thermal responsiveness can be expected.
  • FIG. 9 is a side sectional view of the stage according to the fifth embodiment
  • FIG. 10 is a plan sectional view of the stage taken along line AA of FIG.
  • the working fluid is caused to flow from the center to the outer periphery of the cavity 11 in the container 73 of the stage 71.
  • a fluid inlet 75 At the center of the bottom wall of the container 73, there is a fluid inlet 75, and in the cavity 11, there is a ring-shaped partition wall 77 surrounding a region corresponding to the inlet hole 75.
  • the partition wall 77 is provided with a number of jet ports 79 for radially blowing out the working fluid flowing from the inlet hole 75 in the outer peripheral direction as a jet flow.
  • the outermost peripheral edge 81 of the container 73 is located at a position protruding outward from the wafer 3, and there is no rib 21 inside the peripheral edge 81, and a ring-like shape through which fluid can easily flow.
  • the partition wall 77 and the peripheral portion 81 may be made of the same material as the other parts of the container 73 (for example, aluminum or copper alloy), but in order to reduce the thermal effect, the thermal conductivity of ceramics or the like is low. It may be made of different materials.
  • the working fluid is ejected from the central number of jet holes 79 as jet streams in different directions in the cavity 11, intersecting each other and forming ribs 21. As a result, a strong turbulent flow flows through the cavity 11, and finally flows through the peripheral portion 81 to the discharge pipe 85. Also in the present embodiment, good thermal responsiveness and good thermal uniformity can be expected.
  • FIG. 11 is a cross-sectional plan view of a container of the stage according to the sixth embodiment.
  • This embodiment is a modification of the embodiment shown in FIGS. 7 and 8, in which the direction of the jet port 67 is inclined toward the circumferential tangent, and the jet flow of the working fluid from the jet 67 is performed. Is to form a swirling flow in the cavity 11 in one rotation direction.
  • a similar swirling flow can be formed in other embodiments by tilting the direction of the inlet 17 or the jets 59, 79 in a circumferential tangential direction. Turbulence is more likely to occur due to this swirling flow, and further improvement in thermal response and soaking effect can be expected.
  • FIG. 12 is a cross-sectional plan view of the container of the stage according to the seventh embodiment.
  • a ring-shaped fluid passage 107 for discharging fluid through a partition wall 105 on the outer periphery of the cavity 11 located immediately below the wafer.
  • On its outer periphery there is an annular fluid passage 111 for supplying fluid via a partition wall 109.
  • Fluid outlets 19 are opened at a plurality of locations on the bottom wall of the inner discharge fluid passage 107.
  • suction ports 115 for opening the fluid in the cavity 111 to the passage 107 are opened.
  • Fluid inlets 17 are open at a plurality of locations on the bottom wall of the outer supply fluid passage 111.
  • a plurality of locations on the inner wall 109 of this passage 1 11 pass through the connecting pipe 1 17 and through the inner wall 1 05 to allow the working fluid to be ejected into the cavity 1 1 1.
  • JETRO 1 19 is open.
  • the working fluid from multiple jets 119 around the cavity Jet stream gushes out toward the center of the cavity. Further, the working fluid is guided to the suction port 115 in the flow direction from the center of the cavity to the outer circumference, and is discharged. Also in this embodiment, good thermal responsiveness and uniform temperature can be obtained.
  • the supply and discharge of the fluid may be reversed from the above and supplied from the inside passage 107 and discharged to the outside passage 111.
  • the shape of the jets 59, 67, 79, and 119 is shown in a sectional view in FIG. 13.
  • the outlet can be formed in a shape that expands like a flap like the mouth 12 1.
  • the jet flow ejected therefrom effectively spreads radially in the cavity, and the crossover of the jet flows from a plurality of jetros becomes even better. It is considered to be effective in improving the heat uniformity and thermal response.
  • FIG. 14 is a plan sectional view of a stage of a substrate temperature control device according to an eighth embodiment of the present invention, taken along a horizontal plane.
  • FIGS. 15 (A) and (B) are views of FIG. It is sectional drawing along the A-A line and the BB line.
  • the stage 201 of the substrate temperature control device has a flat disk shape as a whole, and as shown in FIG. 15, a substrate to be processed, for example, a semiconductor wafer 20 5 is placed.
  • the upper surface 203 of the stage has three or more small protrusions 207 supporting the semiconductor wafer 205, and the semiconductor wafer 205 is separated from the upper surface 203 of the stage by a gap having a constant width.
  • the stage 201 is configured as a container having a cavity 209 that extends beyond the area immediately below the semiconductor wafer 205, and the cavity 209 inside the cavity 209 is a flow path for flowing a working fluid.
  • This cavity (flow channel) 209 is composed of a large number (for example, 18) of partition walls arranged along the radial line from the side wall 211 of the periphery of the stage 201 toward the center. 2 1 3 allows many (eg 18) Are divided into fan-shaped small flow paths 209A and 209B. There are two types of these fan-shaped flow paths 2 09 A and 209 B.
  • One type of the fan-shaped flow path 2 09 A allows the working fluid to flow from the periphery of the stage 201 to the center.
  • the fan-shaped return channel is referred to as 2009 B).
  • the fan-shaped outgoing passages 209 A and the fan-shaped return passages 209 B are alternately arranged. All the fan-shaped channels 200A and 209B are open at the center (tip), and are connected to a common central channel 209C. At the center position in the central flow path 209 C, that is, at the center position in the stage 201, a column 216 is set up.
  • annular supply path 219 On the lower surface 2 17 of the stage 201, two annular channels 219 and 221 are joined in a concentric arrangement along the periphery of the stage at the peripheral edge thereof.
  • the outer annular flow path 219 is for supplying a working fluid into the stage 201 (hereinafter referred to as an annular supply path 219), and is a supply pipe 225 for supplying a working fluid from the outside. 3, and communicates with all fan-shaped outgoing channels 209A in the stage 201 via inlet holes 227 in the peripheral portion of each channel 209A.
  • the inner annular flow path 2 21 is for discharging the working fluid from the inside of the stage 201 (hereinafter, referred to as an annular discharge path 2 21), and is a discharge pipe 2 25 for discharging the working fluid to the outside. And is connected to all the fan-shaped return channels 209 B in the stage 201 via outlet holes 229 in the peripheral portion of each channel 209 B. Note that the inlet holes 227 and the outlet holes 229 are alternately arranged along the entire periphery of the outgoing channel 209A and the return channel 209B.
  • FIG. 14 typically shows only one fan-outgoing channel 209A and one fan-shaped return channel 209B (Although not shown.)
  • the working fluid should flow smoothly over the entire surface of each flow path 209A and 209B.
  • a plurality of guide fins (or ribs) 231 are provided for good heat exchange with the working fluid.
  • FIG. 16 shows the guide fins 231 in detail by enlarging the fan-shaped channels 2109A and 209B.
  • the stage 201 described above can be made using a material having good heat conductivity such as aluminum and copper alloy.
  • the working fluid is in the form of one fan-shaped outgoing passage 209A and one fan-shaped return passage 209B.
  • the nine inlet holes 2 27 opened in the peripheral edge of the cartridge it enters the nine fan-shaped outgoing channels 209 A, flows through the outgoing channels 209 A from the rim to the center, After gathering in the central channel 209C, it branches into the nine return channels 209B, flows in the return channels 209B from the center to the peripheral portion, and moves to the peripheral portion of the stage.
  • heat is exchanged between the working fluid and the stage 201, and the temperature of the working fluid changes.
  • both the working fluid inlet hole 227 and the working fluid outlet hole 229 are located at the periphery of the stage 201, and a large number (in this example, nine in each case) of outgoing passages 209A and Since the working fluids are alternately arranged and the working fluid flows in the reciprocating direction in the radial direction, the temperature difference between the periphery and the center of the stage 201 and the outgoing flow passages 2109A The temperature difference between locations such as the temperature difference between the channels 209 B is reduced, and the overall temperature of the stage 201 is improved. Equalized.
  • the stage Since the region where the temperature is particularly excellent and is uniform is the region inside the annular discharge passage 222 of the stage 201, the stage is placed so that the semiconductor wafer 205 is placed on the region inside this region.
  • the diameter of 201 is preferably designed to be sufficiently larger than the diameter of the semiconductor wafer 205.
  • FIG. 17 is a plan cross-sectional view of a stage of a substrate temperature control device according to a ninth embodiment of the present invention, cut along a horizontal plane.
  • FIG. 18 is a sectional view taken along the line CC of FIG.
  • the stage 241 has an overall shape of a flat disk, and a substrate to be processed, for example, a semiconductor wafer 245 is placed on the upper surface 243 as shown in FIG.
  • the stage upper surface 243 has three or more small protrusions 247 that support the semiconductor wafer 245, and the semiconductor wafer 245 is separated from the stage upper surface 243 by a gap having a constant width.
  • the stage 241 is configured as a container having a cavity 249 extending inside the area immediately below the semiconductor wafer 245, and a cavity 249 inside the cavity 249 is a flow path for flowing a working fluid.
  • Used as The cavity (flow passage) 2 49 has a diameter slightly smaller than the side wall 25 1 at the periphery of the stage, and is formed outside the annular wall 25 3 by an annular wall 25 3 arranged concentrically with the side wall 25 1.
  • an annular channel hereinafter referred to as an outer annular channel
  • the inner circular channel is further divided by a number of partition walls 255 that are arranged in parallel with each other. It is divided into a number of elongated small channels 249A and 249B.
  • the downstream flow channel 249 A) and the other type of small flow channel 249 B flow the working fluid upward in the figure (hereinafter referred to as the upstream flow channel 249 B).
  • the down flow channel 249 A and the up flow channel 249 B are alternately arranged.
  • An annular flow path 259 is joined to the lower surface 2570 of the stage 241, along a position directly below the outer ring flow path 249C.
  • the annular flow path 259 serves to supply the working fluid into the stage 241 (hereinafter referred to as an annular supply path 259), and two supply pipes 265 to supply the working fluid from the outside.
  • annular flow path 261 which is adjacent to and concentric with the inner side of the annular supply path 255, is joined to the stage lower surface 257.
  • the inner annular flow path 26 1 is for discharging the working fluid from the inside of the stage 24 1 (hereinafter, referred to as an annular discharge path 26 1). It is connected to the discharge pipe 2 65.
  • the supply pipe 263 and the discharge pipe 265 need not necessarily be two, and may be one or three or more.However, from the viewpoint of heat uniformity, there are two or more and they are arranged at almost constant pitch. It is preferable that
  • All the downstream channels 2 49 A in the stage 24 1 communicate with the outer annular channel 24 9 C through the inlet holes 26 9 formed in the annular walls 25 3 at the upper ends thereof, respectively. It communicates with the annular discharge channel 26 1 through an outlet hole 27 1 formed in the bottom of the lower end of the container.
  • all the upflow channels 249 B communicate with the outer annular divergence 249 C through the inlet holes 269 opened in the annular walls 253 at the lower ends, respectively. It communicates with the annular discharge channel 26 1 through an outlet hole 27 1 formed in the bottom of the container.
  • the inlet holes 269 and the outlet holes 271 are alternately arranged along the periphery of the whole (circular flow path) of the ascending and descending channels 249A and 249B.
  • the stage 241 described above can be made using a material having good heat conductivity such as aluminum and copper alloy.
  • stage 241 which has the above configuration, as shown by arrows in the two downstream flow channels 249A and the two upstream flow channels 249B typically in FIG.
  • stage 24 9 C From the outer ring channel 24 9 C at the periphery, all the down and up channels 24 9 A and 24 9 B through all the inlet holes 2 67 of the annular wall 25 3, and these channels 2 49 It flows from A, 24 9 B inside the stage from top to bottom and from bottom to top, and exits the stage from the exit hole 271, at the periphery of the stage. In this process, heat is exchanged between the working fluid and the stage 241, and the temperature of the working fluid changes.
  • both the working fluid inlet hole 26 9 and the outlet hole 27 1 are located at the periphery of the stage 24 1, and a number of downstream channels 24 9 A and upstream channels 24 9 B Are alternately arranged and the working fluid flows in a reciprocating manner in the vertical direction, so that the temperature difference depending on the location of the stage 241 is reduced, and the temperature of the entire stage 241 is satisfactorily equalized.
  • the region where the temperature becomes particularly excellent and uniform is the circular channel (downstream and upstream channels 249A, 2449B) inside the annular discharge channel 261 of the stage 241,
  • the diameter of the stage 241 is preferably designed to be sufficiently larger than the diameter of the semiconductor wafer 245 so that the semiconductor wafer 245 is placed on the inner area.
  • FIG. 19 is a plan sectional view of the stage of the substrate temperature control device according to the tenth embodiment of the present invention, cut along a horizontal plane.
  • the stage 281 has a flat disk-shaped overall shape, and a substrate to be processed, for example, a semiconductor wafer is placed on the upper surface thereof, as in the above-described embodiment. From the top of the stage with a gap of a certain width.
  • the stage 281 is configured as a container with a cavity 289 that extends beyond the area immediately below the semiconductor wafer, and the cavity 289 inside is used as a flow path for flowing the working fluid .
  • the cavity (flow path) 2 89 has a diameter slightly smaller than the side wall 2 91 of the stage periphery, and is formed by an annular wall 2 93 arranged concentrically with the side wall 2 91. It is divided into an annular channel (hereinafter referred to as an outer ring channel) 289 A and an inner circular channel 289 B. Circular channel 2 8 9 B Inside, an infinite number of pin-shaped fins 295 are erected over the entire area thereof, and these pin fins 295 contribute to heat exchange with the working fluid.
  • the stage 281 has a supply section 297 at one location on the periphery thereof for supplying the working fluid into the stage 281.
  • the supply section 297 supplies the working fluid to the outside.
  • the outer ring channel 289A is connected to the outer ring channel 289A.
  • the drain section 299 has a wider width than the supply section 297 so that the working fluid can be easily collected.
  • a large number of inlet holes 2977 are formed in the annular wall 293 partitioning the outer flow passage 289 A and the circular flow passage 289 B with a substantially constant bite.
  • a portion of the annular wall 293 corresponding to the front of the drain section 299 is cut out to form an outlet hole 307.
  • the stage 281 described above can be made using a material having good heat conductivity such as aluminum and copper alloy.
  • the working fluid flows from the supply section 297 to the outer ring flow path 289A at the periphery of the stage as shown by the arrow in FIG. From 9 A, it flows in the direction toward the center into the circular flow path 2899 B through the majority of the inlet holes 3 05 of the annular wall 2 93, and flows from the periphery to the center in the circular flow path 2 89 B At the same time, it flows from the top to the bottom, and finally exits from the exit hole 307 at the periphery of the stage to the drain section 299 to be discharged out of the stage. In this process, heat is exchanged between the working fluid and the stage 281, and the temperature of the working fluid changes.
  • the working fluid flows into the circular flow passage 289 B in different directions from a number of inlet holes 305 arranged on the peripheral portion of the stage 281, and then flows into the circular flow passage 289 B.
  • Innumerable fins 295 disturb the working fluid flow and stir Therefore, the temperature difference depending on the location of the stage 28 1 is reduced, and the temperature of the entire stage 28 1 is favorably equalized.
  • the region where the temperature is particularly excellent and the temperature is uniform is the region of the circular channel 289 B. Therefore, the diameter of the stage 281 is set so that the semiconductor wafer is placed on the circular channel 289 B. It is preferable that the diameter is designed to be sufficiently larger than the diameter of the semiconductor wafer.
  • the inlet hole located closer to the drain section 299, that is, located downstream. 305 may not actually be an inlet hole, but may function as an outlet hole for the working fluid to exit from the circular channel 289 B to the outer annular channel 289 A. Even so, the flow of the working fluid in the circular flow path 289 B is such that the working fluid flows in different directions from the many inlet holes 305 on the upstream side and flows into the many fins 295. Thus, the mixture is agitated and disturbed, and exits in a different direction from a large number of outlet holes 3005 on the downstream side, so that good heat uniformity can be obtained.
  • the inlet hole 30 upstream of that position is provided.
  • the flow of the working fluid into the circular flow path 2 89 B at step 5 is strengthened, and the inlet hole 3005 downstream from that position is used not as an inlet hole but as an outlet hole. You may do so.
  • the annular wall 293 need not be provided.
  • FIG. 20 is a perspective view showing a stage of the substrate temperature control device according to the first embodiment of the present invention.
  • the stage 3 11 includes a flat disk-shaped container 3 13 according to the principle of the present invention, and a flat disk-shaped heat pipe 3 15 bonded to the upper surface of the container 3 13 .
  • the container 313 can have the same structure as any of the stages shown in FIGS. 14 to 19, for example.
  • Heat pipe 3 15 has a semiconductor Small projections 3 17 are provided to support the wafer. Due to the high heat transfer action of the heat pipes 3 15, better heat uniformity can be expected.
  • FIG. 21 is a perspective view showing a stage of the substrate temperature control device according to the 12th embodiment of the present invention.
  • the stage 3 19 is composed of a flat disk-shaped container 3 21 according to the principle of the present invention, and a film heating wire 3 2 3 attached to the upper surface of the container 3 2 1. Is done.
  • the container 3221 can have a structure similar to any of the stages shown in FIGS. 14 to 19, for example.
  • a small protrusion 325 for supporting the semiconductor wafer is provided on the upper surface of the container 321. It is also possible to compensate for the uneven temperature of the vessel 3 21 that cannot be completely homogenized with the working fluid alone, using a heating wire 3 2 3 to achieve better heat uniformity.
  • the heating wire 3232 may be provided on the lower surface of the container 3221 instead of the upper surface.
  • FIG. 22 is a sectional view showing a stage of the substrate temperature control device according to the thirteenth embodiment of the present invention.
  • the stage 3 27 is composed of a flat disk-shaped container 32 9 according to the principle of the present invention, and a film-shaped heating wire heater 31 1 3 attached to the upper and lower surfaces of the container 32 9. 3 and 3.
  • the container 329 can have the same structure as any of the stages shown in FIGS. 14 to 19, for example.
  • a small protrusion 339 for supporting the semiconductor wafer 337 is provided on the upper surface of the container 329. Since the heating wires 3 3 1 and 3 3 3 are present on both the upper and lower surfaces of the container 3 29, the upper and lower temperatures of the stage 3 27 are equalized, and therefore, especially when switching between cooling and heating is performed. The distortion caused by the thermal expansion of the stage 327 during such a rapid temperature change is suppressed, and the gap between the stage 327 and the semiconductor wafer 337 is maintained evenly, so that better heat uniformity is obtained. Achieved.
  • FIG. 23 shows a stage of the substrate temperature control device according to the 14th embodiment of the present invention.
  • FIG. 3 is a plan cross-sectional view of two containers constituting the above.
  • FIG. 24 is a cross-sectional view of the stage taken along line DD in FIG.
  • the stage 341 is formed by stacking and joining two flat disk-shaped containers 344 and 345 having a flat cross-sectional structure as shown in FIG.
  • Each of the two containers 3 4 3 and 3 45 has a large number of parallel elongated small flow paths 3 that allow the working fluid to flow in the same direction from one peripheral edge of one radius to the other peripheral edge. 47 and 349 are provided inside.
  • the two containers 3 4 3 and 3 45 are joined to each other so that their flow directions are opposite to each other. Since the temperature difference between the upstream side and the downstream side of one container 345 is compensated by the temperature difference between the upstream side and the downstream side of the other container 345, good heat uniformity can be obtained.
  • FIG. 25 is a sectional view showing a stage of the substrate temperature control device according to the fifteenth embodiment of the present invention.
  • the stage 351 for example, has basically the same structure as the stage shown in FIG. 19, but the entire inner circular flow path is made of aluminum or aluminum instead of the pin-type fin shown in FIG.
  • a cotton-like or net-like fibrous body 353 made of copper alloy is packed and contributes to heat exchange with the working fluid.
  • FIG. 26 is a perspective view of a container constituting a stage of the substrate temperature control device according to the sixteenth embodiment of the present invention
  • FIG. 27 is a sectional view taken along line AA of FIG.
  • the container 403 constituting the stage 401 is, for example, a single flat disk having a diameter of 5-1 to 0 cm and a thickness of 0.3 to 5 cm.
  • the container 4003 has a fluid inlet 4111 and an outlet 4113 at the end opposite the peripheral edge, and has a bottom wall and a ceiling wall in a cavity 405 through which the working fluid passes.
  • a number of ribs (or fins) 407 for generating turbulence by connecting to the first and second guide walls, and three guide walls 409a, 409b, 409c.
  • the two guide walls 409a, 409b are straight and parallel to each other, allowing fluid from the inlet 411 through the center of the cavity 403.
  • a flow channel (hereinafter, a central flow channel) 4 15 flowing in the direction of the outlet 4 13 is formed.
  • the central channel 4 15 starts at the inlet 4 11 and ends at a location approximately between the center of the cavity 403 and the outlet 4 13.
  • the other guide wall 403c has a substantially U-shape having a plurality of (for example, three) corners so that fluid coming out of the central flow path 4 15 can be folded back into the U-shaped valley.
  • the two flow paths (hereinafter, intermediate flow paths) 4 17 a and 4 17 b are formed outside the central flow path 4 15 and the fluid flows in the opposite direction to the central flow path 4 15 You.
  • the intermediate flow paths 4 17 a and 4 17 b end near the periphery of the container 3.
  • the fluid coming out of the intermediate flow paths 417a, 417b is further turned back to the outlet 4 through the outer flow paths 419a, 419b along the periphery of the container 403.
  • the width of the central flow path 4 15, intermediate flow path 4 17 a, 4 17 b and outer flow path 4 19 a, 4 19 b is set so that the flow velocity of all flow paths is equal Have been.
  • each of the guide walls 409a, 409b, 409c is provided with a bypass hole 423a, 423b, 423c for further improving the circulation of the fluid.
  • Each bypass hole 423a, 423b, 423c is provided in the vicinity of a place 424a, 424b, 424c where the fluid turns back, and eliminates the stagnation of the fluid generated near this.
  • the bypass holes 423a, 423b, and 423c are formed in the guide walls 409a and 409b near the return locations 424a and 424b of the outlets of the intermediate flow paths 417a and 417b. And a part of the fluid in the central channel 415 is blown out to the return locations 424a and 424b.
  • bypass hole 423 c is formed in the guide wall 403 c near the turn-back location 424 c of the outlet of the central flow path 4 15, and the fluid stagnating at the turn-back location 424 c is directed toward the outlet 4 13. Let go. This allows the fluid to more evenly circulate through the cavity 421, so that the heat uniformity is further improved.
  • a plurality of bypass holes 423a, 423b, 423c may be provided on each guide wall 409a, 409b, 409c.
  • a U-shaped guide wall 427 having a smooth curved surface along a streamline is used.
  • the guide wall 427 allows the fluid to smoothly pass through the cavity 425.
  • the opening 411 of the container is the inlet
  • the opening 413 is the outlet.
  • mouth 4 13 can be an entrance and mouth 4 11 can be an exit.
  • the fluid entering the cavity immediately returns to the guide wall 4 09 c (or
  • the temperature change of the guide wall 4 09 c (or 4 2 7) becomes large, which may adversely affect the heat uniformity.
  • the mouth 4 11 is used as the inlet, the fluid that has entered the cavity first reaches the position beyond the center of the cavity and hits the guide wall 409 c.
  • the temperature change of 9 c can be made relatively small.
  • the number of inlets and outlets of the container is not limited to one.
  • FIG. 31 is a plan cross-sectional view of a container constituting a stage of the substrate temperature control device according to the seventeenth embodiment of the present invention.
  • the container 437 constituting the stage 435 is a substantially circular flat plate, and has a portion 436 slightly extending outward at one location on the outer periphery, and the bottom of the extension 436.
  • In the cavity 447 there are three guide walls 451a, 451b, and 451c.
  • the two outer guide walls 4 5 1 a and 4 5 1 b allow the fluid from the inlets 4 3 9 and 4 4 1 to pass along the periphery of the vessel 4 3 7 and on the opposite side of the fluid inlet and outlet 4
  • the guide walls 451 and 454 allow the fluid to meander through the cavity 447 and circulate at a substantially uniform flow rate.
  • the fluid flowing around the periphery of the cavity 447 is turned back and forced to flow to the center at a uniform flow rate, or the fluid flowing to the center of the cavity 447 is turned back and forced to flow at both sides at an even flow rate.
  • the heat uniformity can be improved.
  • the turbulence generated by the large number of fins 449 further improves the heat uniformity.
  • the fluid inlets 439, 441 and the outlet 443 are provided in the same place, the pipes can be collected at one place, and the pipes can be easily piped.
  • FIG. 32 shows a modification of the embodiment of FIG.
  • auxiliary guide walls 460a to 460d are further disposed between the guide walls 451a, 451b, and 451c.
  • FIG. 33 is a cross-sectional view of a container constituting a stage of the substrate temperature control device according to the eighteenth embodiment of the present invention.
  • any of the containers used in the first to seventeenth embodiments can be adopted.
  • This container 503 is substantially vertically symmetrical as a whole, and the upper surface 503A and the lower surface 503B are joined to the sheet-shaped thin film heaters 505a and 505b shown in FIG. . Since the heating wire sheets 505a and 505b are closest to the wafer (not shown), the heating efficiency is very good.
  • the heating wire sheets 505a and 505b have only one of the upper surface 503A and the lower surface 503B. May be joined. However, by joining to both sides as shown, the stage
  • FIG. 34 is a sectional view of a container constituting a stage of the substrate temperature control device according to the nineteenth embodiment of the present invention.
  • any one of the containers used in the first to seventeenth embodiments can be adopted as the container 529 constituting the stage 509, for example, as in FIG.
  • the whole is substantially vertically symmetrical.
  • a heat plate 533 parallel to the upper and lower surfaces of the container 5229 is provided.
  • the cavity 531 is divided into two layers by the heater plate 533, and a cavity 531a on the upper surface side and a cavity 531b on the lower surface side are formed. The same fluid flows through each of the cavities 531a and 531b.
  • the respective inlets 535a and 535b for supplying fluid to the cavities 531a and 531b, and the respective cavities 531 a, 531b are provided with outlets 537a, 537b for discharging fluid from b.
  • the inlets 535a and 535b and the outlets 537a and 537b are arranged symmetrically with each other.
  • the heating plate 533 is used for heating a substrate (not shown) to be placed or controlling the temperature of the fluid flowing through each cavity 531a, 531b.
  • the heating wire is embedded 5 3 9.
  • a plurality of the plates 5 3 3 can be installed so that the volume of the cavities 5 3 1 is equally divided, in other words, if the configuration inside the container 5 29 is vertically symmetrical. it can. Hee Yu Pre
  • the port 5333 may be provided with an opening (not shown) through which fluid flowing on the upper surface side and the lower surface side can flow to each other.
  • the thin film sheets 505a and 505b shown in FIG. 33 can also be joined to the upper and lower surfaces of the container 529.
  • the functions of the inlets 535a and 535b and the outlets 537a and 537b may be reversed as long as they are vertically symmetrical. For example, let the entrance 5 35 b of the cavity 5 3 1 b be the exit and the exit 5 3 7 b be the entrance. In this way, the directions of the fluid flowing through the cavity 531a on the upper surface side and the cavity 531b on the lower surface side are opposite to each other, so that the temperature distribution of the entire vessel 529 becomes more uniform. I can expect that.
  • two containers as described above may be prepared, and the thin film sheet 505 or the heat plate 533 may be interposed therebetween.
  • some preferred embodiments of the present invention have been described, but these are exemplifications for describing the present invention, and are not intended to limit the scope of the present invention only to these examples.
  • the present invention can be implemented in other various forms.

Abstract

An apparatus for controlling the temperature of a substrate, wherein a stage (5l) on which a semiconductor wafer (3) is placed has a vertically symmetrical structure comprising a thin, flat type container (53) of a metal of a high thermal conductivity, and film type heaters (7, 35) pasted on upper and lower surfaces of this container (53), the vertically symmetrical structure being adapted to prevent the flexure of the stage (5l) which is ascribed to the thermal expansion thereof and improve the soaking characteristics thereof, the container (53) having therein a hollow (ll) for making cooling working fluid flow therein, a plurality of ribs (2l) being provided in the hollow (ll) to heighten the mechanical strength of the container (53), the high-pressure working fluid flowing from a plurality of inlets (l7), which are provided in a circumferential portion of the container (53), thereinto to be supplied as high-speed jet currents into the interior of the hollow (ll) through jet ports (59), the jet currents crossing one another and impinging upon the ribs (2l) to generate violent turbulent flow, whereby a heat exchange rate and soaking characteristics of the apparatus are improved.

Description

明 細 書 基板温度制御装置 技 術 分 野  Description Substrate temperature controller Technical field
本発明は、 半導体ウェハや液晶パネルなどの基板の処理工程において、 基板を加 熱したり冷却したりして基板の温度を制御するために用いられる装置に関する。  The present invention relates to an apparatus used to control the temperature of a substrate by heating or cooling the substrate in a process of processing a substrate such as a semiconductor wafer or a liquid crystal panel.
技 術 背 景  Technology background
例えば半導体製造工程では、 例えばレジスト塗布時に水分やレジスト溶媒を除去 するためにウェハを加熱しその後に冷却するというように、 ウェハの加熱や冷却が 頻繁に行われる。 この半導体ウェハのような基板の加熱 ·冷却に用いられる基板温 度制御装置は、 一般に、 基板を載置する上面の平らなステージを有し、 このステー ジ内またはステージ下に、 加熱や冷却のための熱源デバイスが配置される。 加熱デ バイスとしては電熱線や赤外線ランプや作動流体などが、 冷却デバィスとしては作 動流体が一般に用いられている。 特に作動流体は、 最も広く用いられている。 この 種の温度制御装置は、作動流体を流すために、 流体配管を好んで用い、典型的には、 ステージの内部に蛇行した細長い流体配管を配し、 その蛇行配管内に作動流体を流 すようにしたものがある。 また、 ステージの内部にステージ全域にわたる広い流路 を形成して、 この流路に作動流体を流すようにしたものなどもある。  For example, in a semiconductor manufacturing process, heating and cooling of a wafer are frequently performed, for example, heating a wafer to remove moisture and a resist solvent at the time of applying a resist, and then cooling the wafer. A substrate temperature control device used for heating and cooling a substrate such as a semiconductor wafer generally has a flat upper surface stage on which the substrate is placed, and a heating and cooling device is provided in or below the stage. A heat source device is arranged. Heating devices, infrared lamps and working fluids are generally used as heating devices, and working fluids are generally used as cooling devices. In particular, working fluids are the most widely used. This type of temperature control device prefers a fluid pipe to flow the working fluid, and typically arranges a meandering elongated fluid pipe inside the stage and flows the working fluid through the meandering pipe. There is something like that. Also, there is a type in which a wide flow path is formed in the entire stage inside the stage and the working fluid flows through this flow path.
基板温度制御装置に一般に要求される性能として、 第 1に、 熱応答性の良 さ、 加熱冷却の高速性、 温度制御性の良さなどと呼ばれる要素がある。 要す るに、 迅速に所望の温度が達成できる能力である。 そのためには、 ステージ の熱容量を小さくすることが重要である。 第 2に、 均熱性と呼ぶことができ る要素がある。 これは、 基板全体を温度むらなく同一の温度に制御できる能 力である。 しかし、 作動流体を用いる場合、 作動流体がステージ内を流れて いくうちに、 ステージとの熱交換によって温度が変わっていくため、 流路の 上流側の箇所と下流側の箇所との間で温度差が生じてしまうという問題があ る。 また、 ステージの上下面間でも温度差が生じるため、 ステージが上下方 向で熱変形し (例えば、 中央部分が周辺部分より上に持ち上がる又は下に凹 む)、 それによりステージと基板間の隙間が場所によって異なってくるため、 基板温度が不均一になるという問題もある。その他の要求される要素として、 第 3に低価格であること、 第 4に安全性が高い、 第 5に製作が容易であると いったことも重要な要素である。流体配管の製作は一般に面倒であり、 また、 配管が蛇行しているため圧力損失が大きくなつてしまう。 Performances generally required of substrate temperature control devices include, first, factors called good thermal response, high-speed heating and cooling, and good temperature control. In short, it is the ability to achieve the desired temperature quickly. For that purpose, it is important to reduce the heat capacity of the stage. Second, there is an element that can be called soaking. This is the ability to control the entire substrate at the same temperature without unevenness. However, when working fluid is used, the working fluid flows through the stage and As the temperature changes over time due to heat exchange with the stage, there is a problem that a temperature difference occurs between the upstream part and the downstream part of the flow path. In addition, since a temperature difference occurs between the upper and lower surfaces of the stage, the stage is thermally deformed in the upward and downward directions (for example, the central portion is lifted up or recessed below the peripheral portion), thereby causing a gap between the stage and the substrate. However, there is also a problem that the substrate temperature becomes non-uniform because the temperature varies from place to place. Other important factors are the third, low cost, the fourth, high security, and the fifth, easy manufacturing. The manufacture of fluid piping is generally cumbersome, and the meandering of the piping increases the pressure loss.
従って、 本発明の目的は、 熱応答性が良く且つ低価格な基板温度制御装置 を提供することにある。  Accordingly, it is an object of the present invention to provide a low-cost substrate temperature control device having good thermal responsiveness.
本発明の別の目的は、 熱応答性が良く且つ均熱性も良い基板温度制御装置 を提供することにある。  Another object of the present invention is to provide a substrate temperature control device having good thermal response and good thermal uniformity.
本発明のまた別の目的は、 熱応答性が良く、 均熱性も良く、 且つ低価格で ある基板温度制御装置を提供することにある。  Still another object of the present invention is to provide a low-cost substrate temperature control device having good thermal responsiveness, good thermal uniformity, and low cost.
本発明のさらに別の目的は、 均熱性が良い基板温度制御装置を提供するこ とにある。  Still another object of the present invention is to provide a substrate temperature control device having good heat uniformity.
本発明のまた別の目的は、 均熱性が良く且つ低価格な基板温度制御装置を 提供することにある。  Still another object of the present invention is to provide a low-cost substrate temperature control device having good heat uniformity.
本発明のさらにまた別の目的は、 熱応答性が良く、 均熱性の良く、 低価格 で、 且つ安全性も高い基板温度制御装置を提供することにある。  Still another object of the present invention is to provide a low-cost, high-safe substrate temperature control device having good thermal responsiveness, good thermal uniformity, and low cost.
本発明のさらにまた別の目的は、 均熱性が良く、 製作が容易な基板温度制御装置 を提供することにある。  Still another object of the present invention is to provide a substrate temperature control device which has good heat uniformity and is easy to manufacture.
発 明 の 開 示  Disclosure of the invention
本発明の第 1の側面に従う基板温度制御装置は、 基板に面する主面を有 した平板状のステージを備え、 このステージは平板状の容器を有し、 この容 器は、 作動流体を流すための空洞と、 作動流体の入口及び出口と、 空洞内に 作動流体の乱流を生じさせるための乱流機構とを有している。 この装置によ れば、 容器の空洞内に作動流体が乱流となって流れるので、 良好な均熱性と 熱応答性とが得られる。 なお、 上記 「主面」 とは、 基板をステージ上に載置 する場合はステージ上面であるが、 基板をステージにバキューム等で吸い付 けるような場合は、 ステージは様々な姿勢がとれるようになるので、 そのよ うな場合も含めて基板が配置される側のステージ面を指すものである。 A substrate temperature control device according to a first aspect of the present invention has a main surface facing a substrate. The stage has a flat container, which has a cavity for flowing a working fluid, an inlet and an outlet for the working fluid, and a turbulent flow of the working fluid in the cavity. And a turbulence mechanism for causing it to occur. According to this device, since the working fluid flows in the cavity of the container as a turbulent flow, good heat uniformity and thermal responsiveness can be obtained. The “main surface” is the upper surface of the stage when the substrate is placed on the stage, but when the substrate is sucked to the stage by vacuum or the like, the stage can take various postures. Therefore, it refers to the stage surface on the side where the substrate is placed, including such cases.
乱流機構として、 好適な実施形態では、 空洞内に容器の主面側壁と逆側壁 とを繋ぐリブを複数設けて、 このリブで流体の流れをかき乱すようにしてい るいる。 また、 このリブは、 容器の基板の機械的強度を高めて流体圧力によ る容器の変形を防止するので、 このことも均熱性の向上に寄与する。 更に、 好適な実施形態では、 作動流体をジエツ ト流にして空洞内へ噴出させたり、 旋回流にしたりすることによって、 更に積極的に乱流を生じさせて、 均熱性 と熱応答性の向上を図っている。  As a turbulent flow mechanism, in a preferred embodiment, a plurality of ribs are provided in the cavity for connecting the main surface side wall and the reverse side wall, and the ribs disturb the flow of the fluid. In addition, the ribs increase the mechanical strength of the container substrate and prevent deformation of the container due to fluid pressure, which also contributes to improvement in heat uniformity. Further, in a preferred embodiment, the working fluid is jetted into the cavity as a jet flow or swirled to generate a turbulent flow more positively, thereby improving the heat uniformity and the thermal response. Is being planned.
また、 好適な実施形態では、 入口と出口の配置を、 入口を容器周縁部に設 け、 出口を容器の中央部に設けるか、 又はその逆の配置にするか、 又は入口 と出口をそれそれ容器周縁部に設けることによって、 作動流体の温度分布が 容器内でできるだけ均等になるようにしており、 そのことも均熱性の向上に 寄与する。 さらに、 入口を容器外周壁に容器主面側壁と平行な方向を向けて 設けたり、 或いは、 入口を設けた容器周縁部を基板の外周外へ遠く張り出し た位置になるようにしたりすることにより、 流入当初の作動流体の強い熱作 用が局所に集中しないよう配慮し、 それにより均熱性の向上を図っている。 また、 好適な実施形態では、 容器の主面及び逆側面の一方又は双方にシ一 ト状のヒ一夕を設け、 そして、 加熱はこのシート状ヒー夕で行い、 冷却は作 動流体で行うようにしている。 このようなシンプルな構造のステージは、 そ の熱容量がかなり小さくなるように設計できるので、 良好な熱応答性を得る ことができる。 また、 作動流体を冷却のみに使用するようにすれば、 作動流 体システムが簡素化できるので、 かなり安価になる。 In a preferred embodiment, the inlet and outlet are arranged such that the inlet is provided at the periphery of the container and the outlet is provided at the center of the container, or vice versa, or the inlet and the outlet are arranged differently. By providing it at the periphery of the vessel, the temperature distribution of the working fluid is made as uniform as possible within the vessel, which also contributes to the improvement of the heat uniformity. Further, by providing the inlet on the outer peripheral wall of the container in a direction parallel to the side wall of the main surface of the container, or by setting the peripheral portion of the container provided with the inlet to a position protruding far outside the outer periphery of the substrate, Consideration is made so that the strong thermal action of the working fluid at the beginning of the inflow does not concentrate locally, thereby improving the temperature uniformity. In a preferred embodiment, a sheet-shaped heater is provided on one or both of the main surface and the opposite side of the container, and the heating is performed by the sheet-shaped heater, and the cooling is performed by the heater. This is done with a moving fluid. A stage with such a simple structure can be designed so that its heat capacity is considerably small, so that good thermal response can be obtained. In addition, if the working fluid is used only for cooling, the working fluid system can be simplified, so that the cost is considerably reduced.
本発明の第 2の側面に従う基板温度制御装置は、 基板に面する主面を有し た平板状のステージを備え、 このステージは平板状の容器を有し、 この容器 は、 作動流体を流すための空洞と、 作動流体の入口及び出口とを有し、 入口 と出口の配置は、 入口が容器周縁部に設けられ、 出口が容器中央部に設けら れるか、 又はその逆の配置か、 又は入口も出口も容器周縁部に設けられるよ うになつている。 この装置によれば、 作動流体が容器の周縁から中央へ又は その逆へと放射状に、 あるいはその往復方向へと流れるので、 作動流体の温 度分布がかなり均等になり、 均熱性が向上する。 特に入口が複数箇所にある 構成では、 それら複数の入口からの流れが互いに交錯し合って乱流となるの で、 より良好な均熱性および熱応答性が期待できる。  A substrate temperature control device according to a second aspect of the present invention includes a plate-shaped stage having a main surface facing a substrate, the stage having a plate-shaped container, and the container flowing a working fluid. And a working fluid inlet and outlet, the inlet and outlet being arranged such that the inlet is provided at the periphery of the container and the outlet is provided at the center of the container, or vice versa. Alternatively, both the inlet and outlet are provided at the periphery of the container. According to this device, the working fluid flows radially from the periphery of the container to the center or vice versa, or in the reciprocating direction, so that the temperature distribution of the working fluid is fairly uniform, and the heat uniformity is improved. In particular, in a configuration with multiple inlets, the flows from the multiple inlets intersect with each other and become turbulent, so better heat uniformity and thermal responsiveness can be expected.
更に、 前述したような乱流機構を設ければ、 熱応答性も向上し、 均熱性も いっそう向上する。 また、 容器の主面及び逆側面の一方又は双方にシート状 ヒ一夕を設け、 加熱はこのヒータで行い、 冷却のみを作動流体で行うように すれば、 かなり安価になる。  Further, if the turbulence mechanism as described above is provided, the thermal responsiveness is improved, and the heat uniformity is further improved. Also, if one or both of the main surface and the opposite side of the container are provided with a sheet-shaped heater and heating is performed by this heater, and only cooling is performed by the working fluid, the cost will be considerably reduced.
本発明の第 3の側面に従う基板温度制御装置は、 基板に面する主面を有し た平板状のステージを備え、 このステージは平板状の容器を有し、 この容器 は、 作動流体を流すための空洞と、 空洞内で容器の主面側壁と逆側壁とを繋 いでいる複数のリブとを有している。 この基板温度制御装置によれば、 リブ によって容器の機械的強度を高めているので、 容器内に高圧の作動流体を供 給して作動流体を高速に流すことができ、且つリブが乱流を生じさせるので、 良好な熱応答性と均熱性を得ることができる。 この装置でも、 既に説明した 乱流機構や入口 · 出口配置やヒー夕との組み合わせなどを採用することによ り、 いっそうの性能向上や低価格化の効果を得ることができる。 A substrate temperature control device according to a third aspect of the present invention includes a plate-shaped stage having a main surface facing a substrate, the stage having a plate-shaped container, and the container flowing a working fluid. And a plurality of ribs connecting the main surface side wall and the reverse side wall of the container in the cavity. According to this substrate temperature control device, since the mechanical strength of the container is increased by the rib, a high-pressure working fluid can be supplied into the container to flow the working fluid at a high speed, and the rib generates turbulent flow. As a result, good thermal responsiveness and uniform temperature can be obtained. This device also explained By adopting a turbulence mechanism, an inlet / outlet arrangement, and a combination with a heater and the like, it is possible to further improve the performance and reduce the cost.
本発明の第 4の側面に従う基板温度制御装置は、 基板に面する主面を有し た平板状のステージを備え、 このステージは、 作動流体を流すための空洞を 内部にもった平板状の容器と、 この容器の主面及び逆側面の双方に設けられ たシート状のヒー夕とを有している。 この基板温度制御装置によれば、 ステ 一ジが主面側と逆側について熱的及び機械的に対称な構造であるため、 熱膨 張によるステージの歪み又は撓みが減り、 均熱性が向上する、 この装置でも、 上述した様々な工夫を加えることにより、 さらなる性能向上や低価格化の効 果を得ることができる。  A substrate temperature control device according to a fourth aspect of the present invention includes a plate-like stage having a main surface facing a substrate, and the stage has a plate-like shape having a cavity for flowing a working fluid therein. It has a container and sheet-shaped heaters provided on both the main surface and the opposite side of the container. According to this substrate temperature control device, since the stage has a structure that is thermally and mechanically symmetrical with respect to the main surface side and the opposite side, distortion or bending of the stage due to thermal expansion is reduced, and heat uniformity is improved. However, even with this device, the effects of further improving the performance and reducing the price can be obtained by adding the various measures described above.
本発明の第 5の側面に従う基板温度制御装置は、 基板を載置するためのス テージを備え、 このステージが容器を有し、 この容器は基板直下の領域に広 がった流路を内部にもっている。 そして、 その流路の周縁部に、 作動流体を 流路に流入させるための入口が設けられている。 この基板温度制御装置によ れば、 ステージ内の流路に、 その周縁の複数の箇所から作動流体が流入する ので、 流路内での作動流体の流れの方向が単純な一方向ではなく複雑になる ため、 ステージとの熱交換による作動流体の温度変化が目立たなくなり、 均 熱性が向上する。  A substrate temperature control device according to a fifth aspect of the present invention includes a stage on which a substrate is placed, the stage having a container, and the container has a flow path extending in a region immediately below the substrate. I have it. In addition, an inlet for allowing the working fluid to flow into the flow path is provided at a peripheral portion of the flow path. According to this substrate temperature control device, since the working fluid flows into the flow path in the stage from a plurality of locations on the periphery thereof, the flow direction of the working fluid in the flow path is not a simple one but a complicated direction. Therefore, the temperature change of the working fluid due to heat exchange with the stage becomes less conspicuous, and the heat uniformity is improved.
入口だけでなく、 作動流体の出口も流路の周縁部に設けることができる。 特に周縁部に出口を複数設けると、 周縁部に入口を複数設けることの利点と 同様に、 均熱性の向上に有利である。 好適な実施形態では、 複数の入口と複 数の出口を流路周縁に沿って交互に配置している。 これにより、 上流と下流 の温度差が一層目立たなくなり、 均熱性が向上する。  An outlet for the working fluid as well as the inlet can be provided at the periphery of the flow path. In particular, providing a plurality of outlets in the peripheral portion is advantageous in improving heat uniformity, as is the advantage of providing a plurality of inlets in the peripheral portion. In a preferred embodiment, a plurality of inlets and a plurality of outlets are alternately arranged along the periphery of the flow path. As a result, the temperature difference between the upstream and the downstream becomes less noticeable, and the heat uniformity is improved.
流路を複数の小流路に区分して、 隣り合う小流路では互いに反対方向に作 動流体が流れるように各流路と各入口を繋げることもできる。 こうすると、 小流路間の熱交換によって場所による温度差が緩和され、均熱性が向上する。 その具体例として、 一つの実施形態では、 流路を、 その周縁部から中心部へ と作動流体を流す複数の往流路と、 中心部から周縁部へと作動流体を流す複 数の復流路とに区分し、 往流路と復流路を交互に配置している。 また、 別の 実施形態では、 流路を、 互いに平行に走る複数本の細長い小流路に区分して、 隣り合う小流路では互いに反対方向に作動流体が流れるようにしている。 また、 2枚の容器を積層して、 2枚の容器内での作動流体の流れ方向を反 対にすることもできる。 これによつても、 2枚の容器が互いの温度むらを相 殺して、 均熱性が向上する。 The flow path may be divided into a plurality of small flow paths, and each flow path and each inlet may be connected so that the working fluid flows in opposite directions in the adjacent small flow paths. In this case, The heat exchange between the small flow paths reduces the temperature difference depending on the place, and the heat uniformity is improved. As a specific example, in one embodiment, in the flow path, a plurality of outgoing flow paths for flowing the working fluid from the peripheral portion to the central portion, and a plurality of return flows for flowing the working fluid from the central portion to the peripheral portion are provided. And the outgoing flow path and the return flow path are arranged alternately. In another embodiment, the flow path is divided into a plurality of elongated small flow paths that run parallel to each other, and the working fluid flows in opposite directions in adjacent small flow paths. In addition, two containers can be stacked so that the flow directions of the working fluid in the two containers are opposite to each other. Even with this, the two containers cancel each other's uneven temperature, and the heat uniformity is improved.
また、 流路内に多数のフィ ンを配置したり、 綿状又は網状の繊維体を配置 したりすることもできる。 これにより、 流路内での作動流体の流れが乱され るので、 温度むらが緩和されて均熱性が向上するとともに、 乱流効果による 熱交換効率の向上も期待できる。  Also, a large number of fins can be arranged in the flow path, or a cotton-like or net-like fibrous body can be arranged. As a result, the flow of the working fluid in the flow path is disturbed, so that the temperature unevenness is reduced, so that the heat uniformity is improved, and the heat exchange efficiency is expected to be improved by the turbulent flow effect.
また、 容器の上面に平板形のヒートパイプを接合しても良い。 ヒートパイプの高 い伝熱作用が均熱性の向上に寄与する。 また、 容器の上面及び下面の一方または双 方に電熱線ヒー夕を貼り付けても良い。特に容器の両面にヒータを貼り付けた場合、 容器の上下間での温度差が小さくなるので、 熱膨張による上下方向の歪みが減り、 これも均熱性の向上に寄与する。  Further, a flat heat pipe may be joined to the upper surface of the container. The high heat transfer effect of the heat pipe contributes to the improvement of the heat uniformity. A heating wire may be attached to one or both of the upper and lower surfaces of the container. In particular, when the heaters are attached to both sides of the container, the temperature difference between the upper and lower portions of the container becomes smaller, so that the distortion in the vertical direction due to thermal expansion is reduced, which also contributes to the improvement of the heat uniformity.
本発明の第 6の観点に従う基板温度制御装置は、 基板を載置するためのス テージを備え、 そのステージが、 基板直下の領域に広がった空洞を内部にも つた容器を有し、 その容器が、 容器の外周部に設けられた空洞に作動流体を 供給する入口と、 前記容器の外周部に設けられた前記空洞から前記作動流体 を排出する出口と、 前記空洞を仕切る 1又は複数のガイ ド壁とを備え、 その ガイ ド壁により前記空洞内に屈曲した流路を形成する。  A substrate temperature control device according to a sixth aspect of the present invention includes a stage for mounting a substrate, the stage including a container having a cavity extending inside a region immediately below the substrate inside, and the container including the stage. An inlet for supplying a working fluid to a cavity provided on the outer periphery of the container, an outlet for discharging the working fluid from the cavity provided on the outer periphery of the container, and one or more guides for partitioning the cavity A curved flow path is formed in the cavity by the guide wall.
好適な実施形態では、 空洞内に多数のフィン又はリブが配置されている。 別の好適な実施形態では、 ガイ ド壁が、 1又は複数のバイパス穴を備える。 そのバイパス穴は、 複数の流路の屈曲箇所近傍に設けられている。 In a preferred embodiment, a number of fins or ribs are located in the cavity. In another preferred embodiment, the guide wall comprises one or more bypass holes. The bypass holes are provided in the vicinity of the bent portions of the plurality of flow paths.
また別の好適な実施形態では、 ガイ ド壁による屈曲した流路の全長を作動 流体が略均等な速度で流れる。  In another preferred embodiment, the working fluid flows at a substantially uniform speed along the entire length of the curved flow path formed by the guide wall.
更に別の好適な実施形態では、 ガイ ド壁が、 入口からの作動流体を、 出口 付近まで案内してから空洞を巡らせる。 例えば、 そのガイ ド壁は、 空洞の中 央の流れをその両側へ導く、 又は、 空洞の周縁の流れを空洞の中央へ導く。 更にまた別の好適な実施形態では、 容器が、 入口と出口とを略同一の場所に備え る。  In yet another preferred embodiment, a guide wall guides the working fluid from the inlet to near the outlet before circling the cavity. For example, the guide wall directs the flow in the center of the cavity to both sides, or the flow at the periphery of the cavity to the center of the cavity. In yet another preferred embodiment, the container has an inlet and an outlet at substantially the same location.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態にかかる基板温度制御装置のステージ部 分の側断面図。  FIG. 1 is a side sectional view of a stage portion of a substrate temperature control device according to a first embodiment of the present invention.
図 2は、 図 1の A— A線での平断面図。  Fig. 2 is a plan sectional view taken along line A-A in Fig. 1.
図 3は、 本発明の第 2の実施形態にかかる基板温度制御装置のステージ部 分の側断面図。  FIG. 3 is a side sectional view of a stage portion of a substrate temperature control device according to a second embodiment of the present invention.
図 4は、 図 3の A _ A線での平断面図。  FIG. 4 is a cross-sectional plan view taken along line A_A in FIG.
図 5は、 本発明の第 3の実施形態にかかる基板温度制御装置のステージ部 分の側断面図。  FIG. 5 is a side sectional view of a stage portion of a substrate temperature control device according to a third embodiment of the present invention.
図 6は、 図 5の A— A線での平断面図。  FIG. 6 is a plan sectional view taken along line A—A in FIG.
図 7は、 本発明の第 4の実施形態にかかる基板温度制御装置のステージ部 分の側断面図。  FIG. 7 is a side sectional view of a stage portion of a substrate temperature control device according to a fourth embodiment of the present invention.
図 8は、 図 7の A— A線での平断面図。  FIG. 8 is a plan sectional view taken along the line A—A in FIG.
図 9は、 本発明の第 5の実施形態にかかる基板温度制御装置のステージ部 分の側断面図。  FIG. 9 is a side sectional view of a stage portion of a substrate temperature control device according to a fifth embodiment of the present invention.
図 1 0は、 図 9の A— A線での平断面図。 図 1 1は、 本発明の第 6の実施形態にかかる基板温度制御装置のステージ 部分の容器の平断面図。 FIG. 10 is a plan sectional view taken along line AA of FIG. FIG. 11 is a plan cross-sectional view of a vessel at a stage portion of a substrate temperature control device according to a sixth embodiment of the present invention.
図 1 2は、 本発明の第 7の実施形態にかかる基板温度制御装置のステージ 部分の容器の平断面図。  FIG. 12 is a plan cross-sectional view of a container at a stage portion of a substrate temperature control device according to a seventh embodiment of the present invention.
図 1 3は、 ジェッ ト口の断面形状を示す図。  FIG. 13 is a diagram showing a cross-sectional shape of the jet opening.
図 1 4は、 本発明の第 8の実施形態にかかる基板温度制御装置のステージ を水平な面に沿って切断した平断面図。  FIG. 14 is a plan sectional view of a stage of a substrate temperature control device according to an eighth embodiment of the present invention, cut along a horizontal plane.
図 1 5 ( A ) は図 1 4の A— A線、 図 1 5 ( B ) は図 1 4の B— B線に沿 つた断面図。  FIG. 15 (A) is a cross-sectional view taken along the line A—A of FIG. 14, and FIG. 15 (B) is a cross-sectional view taken along the line B—B of FIG.
図 1 6は、 扇形流路 2 0 9 A , 2 0 9 Bを拡大してガイ ドフィ ン 2 3 1を 詳細に示した平断面図。  FIG. 16 is a cross-sectional plan view showing the guide fins 2 31 in detail by enlarging the fan-shaped flow paths 2 09 A and 2 09 B.
図 1 7は、 本発明の第 9の実施形態にかかる基板温度制御装置のステージ を水平な面に沿って切断した平断面図。  FIG. 17 is a plan cross-sectional view of a stage of a substrate temperature control device according to a ninth embodiment of the present invention cut along a horizontal plane.
図 1 8は、 図 1 7の C一 C線に沿った断面図。  FIG. 18 is a cross-sectional view taken along line C-C of FIG.
図 1 9は、 本発明の第 1 0の実施形態にかかる基板温度制御装置のステー ジを水平な面に沿って切断した平断面図。  FIG. 19 is a plan cross-sectional view of the stage of the substrate temperature control device according to the tenth embodiment of the present invention, cut along a horizontal plane.
図 2 0は、 本発明の第 1 1の実施形態にかかる基板温度制御装置のステ一 ジを示す斜視図。  FIG. 20 is a perspective view showing a stage of the substrate temperature control device according to the first embodiment of the present invention.
図 2 1は、 本発明の第 1 2の実施形態にかかる基板温度制御装置のステー ジを示す斜視図。  FIG. 21 is a perspective view showing a stage of the substrate temperature control device according to the second embodiment of the present invention.
図 2 2は、 本発明の第 1 3の実施形態にかかる基板温度制御装置のステー ジを示す断面図。  FIG. 22 is a sectional view showing a stage of the substrate temperature control device according to the thirteenth embodiment of the present invention.
図 2 3は、 本発明の第 1 4の実施形態にかかる基板温度制御装置を構成す る 2枚の容器の平断面図。  FIG. 23 is a plan sectional view of two containers constituting the substrate temperature control device according to the fourteenth embodiment of the present invention.
図 2 4は、 図 2 3の D— D線に沿ったステージの断面図。 図 2 5は、 本発明の第 1 5の実施形態にかかる基板温度制御装置を示す断 面図。 FIG. 24 is a cross-sectional view of the stage along the line D-D in FIG. FIG. 25 is a cross-sectional view showing a substrate temperature control device according to a fifteenth embodiment of the present invention.
図 2 6は、 本発明の第 1 6の実施形態にかかる基板温度制御装置のステー ジを構成する容器の斜視図。  FIG. 26 is a perspective view of a container constituting a stage of the substrate temperature control device according to the sixteenth embodiment of the present invention.
図 2 7は、 図 2 6の A— A線に沿った容器の断面図。  FIG. 27 is a cross-sectional view of the container taken along line AA of FIG.
図 2 8は、 各ガイ ド壁にバイパス穴を備えた容器の平断面図。  Figure 28 is a cross-sectional plan view of a container with a bypass hole in each guide wall.
図 2 9は、 ガイ ド壁 4 0 9 cの形状を変えた容器の平断面図。  FIG. 29 is a cross-sectional plan view of the container in which the shape of the guide wall 409c is changed.
図 3 0は、 図 2 9のガイ ド壁 4 0 9 a及び 4 0 9 bの形状を変えた容器の 平断面図。  FIG. 30 is a cross-sectional plan view of the container in which the shapes of the guide walls 409 a and 409 b in FIG. 29 are changed.
図 3 1は、 本発明の第 1 7の実施形態にかかる基板温度制御装置のステー ジを構成する容器の平断面図。  FIG. 31 is a plan sectional view of a container constituting a stage of the substrate temperature control device according to the seventeenth embodiment of the present invention.
図 3 2は、 図 3 1の容器のガイ ド壁の数、 形状、 及び配置構成を変えた場 合の容器の平断面図。  FIG. 32 is a cross-sectional plan view of the container when the number, shape, and arrangement of the guide walls of the container of FIG. 31 are changed.
図 3 3は、 本発明の第 1 8の実施形態にかかる基板温度制御装置のステー ジを構成する容器の断面図。  FIG. 33 is a sectional view of a container constituting a stage of the substrate temperature control device according to the eighteenth embodiment of the present invention.
図 3 4は、 本発明の第 1 9の実施形態にかかる基板温度制御装置のステー ジを構成する容器の断面図。  FIG. 34 is a sectional view of a container constituting a stage of the substrate temperature control device according to the nineteenth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明を適用した実施形態を説明する。  Hereinafter, embodiments to which the present invention is applied will be described with reference to the drawings.
図 1は本発明の一実施形態にかかる基板温度制御装置のステージ部分の側 断面図、 図 2は図 1の A— A線での平断面図である。 なお、 図中の各部の寸 法比率は、 図面を分かりやすくするために実際の装置とは異なっており、 こ のことは後述する他の図面についても同様である。  FIG. 1 is a side sectional view of a stage portion of a substrate temperature control device according to an embodiment of the present invention, and FIG. 2 is a plan sectional view taken along line AA of FIG. It should be noted that the dimensional ratios of the respective parts in the drawings are different from those of the actual apparatus in order to make the drawings easier to understand, and the same applies to other drawings described later.
ステージ 1は全体として円形の薄い板状体であり、 その平らな上面上に円 形の基板、 典型的には半導体ウェハ 3が載置される。 ステージ 1の上面には 数箇所に同一高さ (例えば 0 . 1 mm ) の小さな突起 5があり、 これらの突 起 5がウェハ 3を支えて、 ゥヱハ 3との接触を防止している (これは、 ゥェ ハ 3のステージ 1からの汚染を防止するためである)。 ステージ 1は概略次の 2つの層から構成されている。 第 1の層はステージ 1の上面を構成する円形 シート状の薄膜ヒ一夕 (プリント配線技術によって絶縁フィルムにラミネ一 ト又は埋め込まれた電熱線ヒ一夕) 7であり、 第 2の層は内部に作動流体を 流すための薄い円盤形の容器 9であり、 薄膜ヒー夕 7は容器 9の上面に貼り 付けられている。 The stage 1 is a thin circular plate as a whole, and a circular substrate, typically a semiconductor wafer 3, is placed on the flat upper surface thereof. On the top of stage 1 There are small protrusions 5 of the same height (for example, 0.1 mm) at several places, and these protrusions 5 support the wafer 3 and prevent contact with the wafer 3 (this is the wafer 3 To prevent contamination from stage 1). Stage 1 is roughly composed of the following two layers. The first layer is a circular sheet-like thin film heater that forms the upper surface of the stage 1 (a heating wire laminated or embedded in an insulating film by printed wiring technology) 7, and the second layer is It is a thin disk-shaped container 9 for flowing a working fluid inside, and the thin film heater 7 is attached to the upper surface of the container 9.
容器 9は、その内部の全域に作動流体を通すための空洞 1 1を有しており、 アルミニウムや銅合金のような熱伝導性の良好な材料の薄板を用いて、 例え ば、 2枚の薄板をその周縁部でろう接する方法や、 或いはその他の方法によ つて作られている。 この容器 9の底壁には、 周縁部の複数箇所に、 作動流体 を空洞 1 1に供給するための入口 1 7が、 中央の一個所に、 作動流体を空洞 1 1から排出するための出口 1 9がそれそれ開けられており、 そして、 各入 口 1 7の箇所には流体供給管 1 3が、 出口 1 9の箇所には流体排出管 1 5が それそれ結合されている (なお、 これとは逆に中央の穴 1 9を入口とし、 周 縁の穴 1 7を出口としてもよいが、 均熱性の観点からは本実施形態のように 周縁部から流入させて中央から流出させる方が好ましいと考えられる)。 空洞 1 1内には、 多数の箇所に、 底壁と天井壁とを繋く、リブ 2 1が立てられてい る。 このリブ 2 1の一つの目的は、 容器 1の機械強度を高めて、 特に作動流 体の圧力による容器 9の膨らみを防止することである。 これにより、 高圧の 作動流体を供給して高速に流せるので、 良好な熱応答性および均熱性を達成 できる。 また、 リブ 2 1の第 2の目的は、 空洞 1 1内の作動流体の流れを乱 して乱流を生じさせて、 熱交換効率を高め且つ均熱性も良好にすることであ る。 これらの目的及び製造上の観点から、 リブ 2 1もアルミニウムや銅合金 のような熱伝導性が良く且つろう接などの接合加工が容易な材料が好ましい。 作動流体としては、 例えば、 水、 エチレングリコール、 プロピレングリコー ル、 ガルデン (登録商標) あるいはフロリナ一ト (登録商標) などを用いる ことができる。 空洞 1 1は、 基本的には、 外気との通気のない密閉形であつ て、 作動流体が空洞 1 1を完全に満たした状態で流れる。 しかし、 空洞 1 1 が、 外気との通気がある開放型であって、 そこを作動流体が空気との混合体 や噴霧のような形態で流れるようになつていてもよい。 The container 9 has a cavity 11 for allowing a working fluid to pass through the entire area inside the container 9, and is made of a thin plate of a material having good heat conductivity such as aluminum or a copper alloy. It is made by brazing the sheet at its periphery or by other methods. The bottom wall of the container 9 has an inlet 17 for supplying the working fluid to the cavity 11 at a plurality of locations on the peripheral edge, and an outlet for discharging the working fluid from the cavity 11 at a central location. 19 are each opened, and each inlet 17 has a fluid supply pipe 13 connected thereto, and an outlet 19 has a fluid discharge pipe 15 connected thereto (note that Conversely, the central hole 19 may be used as the inlet and the peripheral hole 17 may be used as the outlet. However, from the viewpoint of heat uniformity, it is preferred that the gas flow from the peripheral portion and flow out from the center as in this embodiment. Is considered preferable). In the cavity 11, ribs 21 are provided at many places to connect the bottom wall and the ceiling wall. One purpose of the ribs 21 is to increase the mechanical strength of the container 1 and to prevent the swelling of the container 9 particularly due to the pressure of the working fluid. Thereby, a high-pressure working fluid can be supplied to flow at a high speed, so that good thermal responsiveness and uniform temperature can be achieved. The second purpose of the rib 21 is to disturb the flow of the working fluid in the cavity 11 to generate a turbulent flow, thereby increasing heat exchange efficiency and improving uniformity. For these purposes and in terms of production, rib 21 is also made of aluminum or copper alloy. It is preferable to use a material that has good thermal conductivity and that can be easily joined by brazing or the like. As the working fluid, for example, water, ethylene glycol, propylene glycol, Galden (registered trademark), or Florinato (registered trademark) can be used. The cavity 11 is basically a closed type without ventilation to the outside air, and the working fluid flows in a state where the cavity 11 is completely filled. However, the cavity 11 may be an open type with ventilation to the outside air, through which the working fluid flows in the form of a mixture with air or a spray.
容器 9は、 主として、 冷えた (例えば常温程度の) 作動流体を空洞 1 1に 通してウェハ 3を冷却するために用いられる。 ウェハ 3の加熱は薄膜ヒ一夕 7で行う。 勿論、 高温の作動流体を容器 9内に流して、 これを積極的に加熱 に用いることも可能である。 しかし、 低価格と安全確保のし易さという観点 からは、 作動流体は積極的な加熱 (特に 1 0 0 °Cや 2 0 0 °Cのような高温域 での加熱) には用いない方が好ましい。 その第 1の理由は、 作動流体の循環 システムは元々最も高価な要素の一つであるが、 冷却は他に適当な代替手段 がないので作動流体システムを使わざるを得ないが、 加熱は安価な電熱線ヒ 一夕で代替することにより、 作動流体システムから高価な流体加熱装置が除 去でき、 それによる価格低下は大きいからでる。 第 2の理由は、 作動流体シ ステムに 1 0 0 °Cや 2 0 0 °Cの高温の流体が流れる場合には厳重な安全対策 が必要であるが、 冷えた作動流体が流れるだけなら厳重な安全対策は不要な ので、 やはり、 かなりの低価格化が望めるからである。  The container 9 is mainly used for cooling the wafer 3 by passing a cold (for example, about room temperature) working fluid through the cavity 11. The heating of wafer 3 is performed in thin film 7. Of course, it is also possible to flow a high-temperature working fluid into the container 9 and use it positively for heating. However, from the viewpoint of low cost and ease of safety, the working fluid should not be used for active heating (especially heating in high temperature range such as 100 ° C or 200 ° C). Is preferred. The first reason is that the working fluid circulation system is originally one of the most expensive elements, but cooling has to use a working fluid system because there is no other suitable alternative, but heating is inexpensive. Replacing the heating wire in a short time can remove the expensive fluid heating device from the working fluid system, resulting in a large price drop. The second reason is that strict safety measures are required when a high-temperature fluid of 100 ° C or 200 ° C flows through the working fluid system, but strict safety measures are required only when a cold working fluid flows. This is because there is no need for any safety measures, and a considerable reduction in price can be expected.
本実施形態によれば、 良好な熱応答性と良好な均熱性と上述の低価格とい う利点を得ることができる。 熱応答性を良好にできる第 1の理由は、 ステ一 ジ 1の熱容量が非常に小さくできるからである。 すなわち、 ステージ 1は容 器 9と薄膜ヒータ 7という単純な構成であり、 その熱容量の殆どは容器 9の それが占める。 容器 9の壁や内部の空洞 1 1は、 図ではかなり分厚いが、 実 際にはどれも非常に薄く作ることができ、 かなり小さい熱容量にすることが できる。 なお、 空洞 1 1を薄く した分、 作動流体の流速を上げて流量を低下 させなければ、 高い熱交換量を維持できる。 第 2の理由は、 リブ 2 1の作用 によって、 及び図 2に矢印で示すように複数の入口 1 Ίからの流れが互いに 交錯することによって生じる乱流のために、 作動流体の熱交換率が高くなる からである。 第 3の理由は、 リブ 2 1の存在によって容器 9が堅牢になって いるので、 高圧の作動流体を供給して高速に作動流体を流し得るため、 容器 9内での作動流体の交換が迅速であり、 且つ乱流も一層激しくなるので、 大 きい熱交換量が得られるからである。 均熱性が良好にできる第 1の理由は、 リブ 2 1による乱流により温度分布むらが解消されるからである。 第 2の理 由は、 高速に作動流体が流せるので、 容器 9内での作動流体の交換が迅速で あり、 且つ乱流も一層激しくなり、 温度むらが減るからである。 According to this embodiment, it is possible to obtain the advantages of good thermal responsiveness, good thermal uniformity, and the above-mentioned low cost. The first reason that the thermal responsiveness can be improved is that the heat capacity of stage 1 can be made very small. That is, the stage 1 has a simple configuration of the container 9 and the thin-film heater 7, and most of the heat capacity of the stage 1 is occupied by that of the container 9. The wall of the container 9 and the internal cavity 1 1 are quite thick in the figure, In some cases, they can all be made very thin and have a very low heat capacity. In addition, a high heat exchange amount can be maintained unless the flow rate of the working fluid is increased and the flow rate is not decreased by an amount corresponding to the thinner cavity 11. The second reason is that the heat exchange rate of the working fluid is reduced by the action of the ribs 21 and by the turbulence caused by the crossing of the flows from the inlets 1Ί as shown by the arrows in FIG. Because it will be higher. Third, since the presence of the ribs 21 makes the container 9 rigid, a high-pressure working fluid can be supplied and the working fluid can flow at a high speed, so that the working fluid in the container 9 can be exchanged quickly. In addition, since the turbulence is further increased, a large heat exchange amount can be obtained. The first reason that the heat uniformity can be improved is that the unevenness of the temperature distribution is eliminated by the turbulence caused by the ribs 21. The second reason is that since the working fluid can flow at a high speed, the working fluid in the container 9 can be exchanged quickly, the turbulence is further increased, and the temperature unevenness is reduced.
図 3は第 2の実施形態のステージの側断面図であり、 図 4は図 3の A— A 線による同ステージの平断面図である。 なお、 図 1、 2と機能的に同じ要素 には同一の参照番号を付してあり、 このことは後述する他の図面でも同様で ある。  FIG. 3 is a side sectional view of the stage according to the second embodiment, and FIG. 4 is a plan sectional view of the stage taken along line AA of FIG. Elements that are functionally the same as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the same applies to other drawings described later.
本実施形態は、 図 1、 2に示した前述の実施形態から改良した次の 2つの 特徴を有している。 第 1の特徴は、 容器 3 3の上面だけでなく下面にも、 上 面の薄膜ヒ一夕 7と同サイズで同熱量の薄膜ヒー夕 3 5が貼り付けられてい ることである。 上下の薄膜ヒ一夕 7、 3 5は原則として同時に使用される。 これにより、 ステージ 3 1は熱的及び機械的に概略上下対称の構造となるの で、 加熱 ·冷却時の熱膨張によるステージの歪み又は撓みが抑えられる。 ス テージ 3 1が熱膨張で歪んだり橈んだりすると、 ウェハ 3とステージ 3 1間 のギヤップ長(ステージ 3 1上面が平らな状態では突起 5の高さ、 例えば 0 . l mm、 で一定である) が場所によって異なるようになり、 ウェハ 3の温度分 布にむらができてしまう (例えばギャップ長が 0 . l mm 違うだけで 4 0 K程 度もの温度相違が生じる)。 よって、 ステージ 3 1の歪みや橈みを抑えること は、 均熱性を向上させるのに大きく貢献する。 This embodiment has the following two features improved from the above-described embodiment shown in FIGS. The first characteristic is that a thin film heater 35 having the same size and the same calorie as the thin film heater 7 on the upper surface is attached not only on the upper surface but also on the lower surface of the container 33. The upper and lower thin films 7 and 35 are used simultaneously in principle. Thus, the stage 31 has a substantially vertically symmetrical structure thermally and mechanically, so that distortion or bending of the stage due to thermal expansion during heating and cooling can be suppressed. When the stage 31 is distorted or bent due to thermal expansion, the gap length between the wafer 3 and the stage 31 (the height of the projection 5 when the upper surface of the stage 31 is flat, for example, 0.1 mm, is constant). Is different depending on the location, and the temperature of wafer 3 The cloth may be uneven (for example, a difference in gap length of 0.1 mm results in a temperature difference of about 40 K). Therefore, suppressing the distortion and the radius of the stage 31 greatly contributes to improving the heat uniformity.
第 2の特徴は、 容器 3 3がウェハ 3のそれよりも大きい外径を有していて ウェハ 3の外周外へ張り出しており、 この張り出した部分の最も外側にある 輪状の周縁部分 3 7の底壁に作動流体の入口 1 7が設けられている点である。 この輪状の周縁部分 3 7は、 容器 3 3の他の部分と同じ材料 (例えばアルミ 二ゥムゃ銅合金など) で作られてもよいが、 以下に述べる熱的な作用効果の 観点からは、 例えばセラミックスのような熱伝導性の悪い素材で作られる方 が好ましい。 周縁部分 3 7の入口 1 7から流入した作動流体は、 この周縁部 分 3 7の天井壁に当たって流れ方向を曲げられて、 中心へ向かって流れてい く。 図 1に示した前の実施形態では入口 1 7からの作動流体が当たる天井壁 部分が局所的に流体の熱作用を受け過ぎてウェハ 3の温度むらの原因となる おそれがあるのに対し、 本実施形態では、 入口 1 7からの作動流体が当たる 天井壁はウェハ 3からかなり離れた場所にあり且つその熱伝導性は悪いので、 ウェハ 3の温度に及ぼす影響はずつと小さい。 従って、 より良好な均熱性が 得られる。  The second feature is that the container 3 3 has an outer diameter larger than that of the wafer 3 and projects outside the outer periphery of the wafer 3, and the outer peripheral portion 3 7 The point is that a working fluid inlet 17 is provided on the bottom wall. This annular peripheral portion 37 may be made of the same material as the other portions of the container 33 (for example, aluminum-copper alloy), but from the viewpoint of the thermal effect described below. However, it is preferable to be made of a material having poor thermal conductivity such as ceramics. The working fluid that has flowed in from the inlet 17 of the peripheral portion 37 hits the ceiling wall of the peripheral portion 37, the flow direction is deflected, and flows toward the center. In the previous embodiment shown in FIG. 1, the ceiling wall portion to which the working fluid from the inlet 17 is applied may locally receive too much thermal action of the fluid, which may cause uneven temperature of the wafer 3. In the present embodiment, the ceiling wall on which the working fluid from the inlet 17 hits is located at a considerable distance from the wafer 3 and has poor thermal conductivity, so that the effect on the temperature of the wafer 3 is small. Therefore, better heat uniformity can be obtained.
図 5は第 3の実施形態のステージの側断面図であり、 図 6は図 5の A— A 線による同ステージの平断面図である。  FIG. 5 is a side sectional view of the stage according to the third embodiment, and FIG. 6 is a plan sectional view of the stage taken along line AA of FIG.
本実施形態では、 ステージ 5 1の容器 5 3が、 図 3、 4に示した第 2実施 形態の容器 3 3の構成に加えて、 空洞 1 1を周縁部 3 7内の部分と周縁部 3 7より中央側の部分とに仕切る輪状の隔壁 5 5をさらに有している。 この隔 壁 5 5には、 周縁部 3 7内に流入した作動流体をジヱッ ト流にして中心へ向 けて送るための多数 (図示では 1 0個に過ぎないが、 より多数でよい) のジ エツ トロ 5 9が設けられている。 隔壁 5 5も、 容器 5 3の本体と同じ材料製 (例えばアルミニウムや銅合金など) でもよいが、 熱的な影響を減らすため にセラミックスのような熱伝導性の悪い素材で作られてもよい。 図 6に示す ように、 多数のジエツ トロ 5 9からそれそれ異なる方向へジエツ ト流が勢い 良く吹き出るので、 以前の実施形態よりも激しく作動流体の交錯及び混じり 合いが生じ、 また乱流も激しくなるので、 一層の均熱性と熱応答性の向上が 期待できる。 In the present embodiment, the container 53 of the stage 51 is the same as the container 33 of the second embodiment shown in FIGS. A ring-shaped partition wall 55 is further provided for partitioning into a portion on the center side from 7. The partition wall 55 has a large number (only 10 in the drawing, but a larger number may be used) for sending the working fluid flowing into the peripheral portion 37 as a jet flow toward the center. There is a Jetro 59. Partition wall 5 5 is also made of the same material as the body of container 53 (For example, aluminum or copper alloy), but may be made of a material with poor thermal conductivity such as ceramics to reduce thermal effects. As shown in FIG. 6, since the jet flow gushes out of the large number of jets 59 in different directions in a vigorous manner, the working fluids intersect and mix more vigorously than in the previous embodiment, and the turbulence also increases. Therefore, further improvement in heat uniformity and thermal response can be expected.
図 7は第 4の実施形態のステージの側断面図であり、 図 8は図 7の A— A 線による同ステージの平断面図である。  FIG. 7 is a side sectional view of the stage according to the fourth embodiment, and FIG. 8 is a plan sectional view of the stage taken along line AA of FIG.
本実施形態では、 ステージ 6 1の容器 6 3の周縁壁に多数 (図示では 1 2 個に過ぎないが、 より多数でよい) のジェッ ト口 6 7を設けてそこに供給管 1 3を結合し、 それら多数のジエツ トロ 6 7から空洞 1 1内のそれぞれ異な る方向へ作動流体のジエツ ト流を噴出させるようにしたものである。 図 5、 6に示した実施形態と同様に、 良好な均熱性と熱応答性が期待できる。  In this embodiment, a large number (only 12 in the figure, but a larger number) of jet ports 67 are provided on the peripheral wall of the vessel 63 of the stage 61, and the supply pipe 13 is connected thereto. In addition, the jets of the working fluid are ejected from these many jets 67 in different directions in the cavity 11. Similar to the embodiment shown in FIGS. 5 and 6, good heat uniformity and thermal responsiveness can be expected.
図 9は第 5の実施形態のステージの側断面図であり、 図 1 0は図 9の A— A線による同ステージの平断面図である。  FIG. 9 is a side sectional view of the stage according to the fifth embodiment, and FIG. 10 is a plan sectional view of the stage taken along line AA of FIG.
本実施形態は、 ステージ 7 1の容器 7 3内の空洞 1 1に中心から外周方向 へ作動流体を流すようにしたものである。 容器 7 3の底壁の中心部に流体の 入口 7 5があり、 空洞 1 1内には、 この入口孔 7 5に対応する領域を囲んで 輪状の隔壁 7 7がある。 この隔壁 7 7には、 入口孔 7 5から流入した作動流 体をジエツ ト流として外周方向へ放射状に吹き出すための多数のジエツ ト口 7 9が開けられている。 また、 容器 7 3の最も外周側の周縁部 8 1は、 ゥェ ハ 3から外方へ張り出した位置にあって、 この周縁部 8 1の内部にはリブ 2 1がなく流体が流れ易い輪状の流露路を構成している。 隔壁 7 7や周縁部 8 1は、 容器 7 3の他の部分と同じ材料製 (例えばアルミニウムや銅合金など) でもよいが、 熱的な影響を減らすためにセラミックスのような熱伝導性の悪 い素材で作られてもよい。 図 1 0に矢印で示すように、 作動流体は中央の多 数のジエツ ト穴 7 9から空洞 1 1内のそれぞれ異なる方向へジヱッ ト流とな つて噴出し、 互いに交錯し合い且つリブ 2 1 と衝突して激しい乱流となって 空洞 1 1内を流れ、最終的には周縁部 8 1内を通って排出管 8 5へ流出する。 本実施形態でも、 良好な熱応答性と均熱性とが期待できる。 In the present embodiment, the working fluid is caused to flow from the center to the outer periphery of the cavity 11 in the container 73 of the stage 71. At the center of the bottom wall of the container 73, there is a fluid inlet 75, and in the cavity 11, there is a ring-shaped partition wall 77 surrounding a region corresponding to the inlet hole 75. The partition wall 77 is provided with a number of jet ports 79 for radially blowing out the working fluid flowing from the inlet hole 75 in the outer peripheral direction as a jet flow. Also, the outermost peripheral edge 81 of the container 73 is located at a position protruding outward from the wafer 3, and there is no rib 21 inside the peripheral edge 81, and a ring-like shape through which fluid can easily flow. Of the dew path. The partition wall 77 and the peripheral portion 81 may be made of the same material as the other parts of the container 73 (for example, aluminum or copper alloy), but in order to reduce the thermal effect, the thermal conductivity of ceramics or the like is low. It may be made of different materials. As indicated by the arrows in FIG. 10, the working fluid is ejected from the central number of jet holes 79 as jet streams in different directions in the cavity 11, intersecting each other and forming ribs 21. As a result, a strong turbulent flow flows through the cavity 11, and finally flows through the peripheral portion 81 to the discharge pipe 85. Also in the present embodiment, good thermal responsiveness and good thermal uniformity can be expected.
図 1 1は第 6の実施形態のステージの容器の平断面図である。  FIG. 11 is a cross-sectional plan view of a container of the stage according to the sixth embodiment.
本実施形態は、 図 7、 8に示した実施形態の変形であって、 ジェッ ト口 6 7の方向を円周接線側方向へ傾けさせて、 ジヱッ トロ 6 7からの作動流体の ジエツ ト流が空洞 1 1内で一回転方向へ向かって旋回流を形成するようにし たものである。 同様の旋回流は、 他の実施形態においても、 入口 1 7又はジ エツ トロ 5 9、 7 9の方向を円周接線方向へ傾けさせることにより形成する ことができる。 この旋回流によって乱流がいっそう発生し易くなり、 いっそ うの熱応答性と均熱効果の向上が期待できる。  This embodiment is a modification of the embodiment shown in FIGS. 7 and 8, in which the direction of the jet port 67 is inclined toward the circumferential tangent, and the jet flow of the working fluid from the jet 67 is performed. Is to form a swirling flow in the cavity 11 in one rotation direction. A similar swirling flow can be formed in other embodiments by tilting the direction of the inlet 17 or the jets 59, 79 in a circumferential tangential direction. Turbulence is more likely to occur due to this swirling flow, and further improvement in thermal response and soaking effect can be expected.
図 1 2は第 7の実施形態のステージの容器の平断面図である。  FIG. 12 is a cross-sectional plan view of the container of the stage according to the seventh embodiment.
ステージ 1 0 1の容器 1 0 3内では、 ウェハの真下に位置する空洞 1 1の 外周に、 隔壁 1 0 5を介して、 流体を排出するための輪状の流体通路 1 0 7 があり、 さらにその外周に、 隔壁 1 0 9を介して、 流体を供給するための輪 状の流体通路 1 1 1がある。 内側の排出用流体通路 1 0 7の底壁には、 複数 箇所に流体出口 1 9が開いている。 この通路 1 0 7の内側の隔壁 1 0 5の複 数箇所に、 空洞 1 1内の流体を通路 1 0 7へ吸込むための吸込口 1 1 5が開 いている。 外側の供給用流体通路 1 1 1の底壁には、 複数箇所に流体入口 1 7が開いている。 この通路 1 1 1の内側の隔壁 1 0 9の複数箇所には、 そこ から接続管 1 1 7を通り内側の隔壁 1 0 5を貫通して、 作動流体を空洞 1 1 内へ噴出するためのジェヅ トロ 1 1 9が開いている。  In the vessel 103 of the stage 101, there is a ring-shaped fluid passage 107 for discharging fluid through a partition wall 105 on the outer periphery of the cavity 11 located immediately below the wafer. On its outer periphery, there is an annular fluid passage 111 for supplying fluid via a partition wall 109. Fluid outlets 19 are opened at a plurality of locations on the bottom wall of the inner discharge fluid passage 107. At a plurality of locations of the partition wall 105 inside the passage 107, suction ports 115 for opening the fluid in the cavity 111 to the passage 107 are opened. Fluid inlets 17 are open at a plurality of locations on the bottom wall of the outer supply fluid passage 111. A plurality of locations on the inner wall 109 of this passage 1 11 pass through the connecting pipe 1 17 and through the inner wall 1 05 to allow the working fluid to be ejected into the cavity 1 1 1. JETRO 1 19 is open.
矢印で図示するように、 空洞外周の複数のジエツ トロ 1 1 9から作動流体 のジェッ ト流が空洞中心へ向かって勢い良く噴き出す。 また、 空洞中心から 外周へ向かう流れ方向で作動流体が吸込口 1 1 5へ導かれ排出される。 本実 施形態でも、 良好な熱応答性と均熱性が得られる。 なお、 流体の供給、 排出 は、 上記とは逆に、 内側の通路 1 0 7から供給して外側の通路 1 1 1へ排出 するようにしてもよい。 As shown by the arrows, the working fluid from multiple jets 119 around the cavity Jet stream gushes out toward the center of the cavity. Further, the working fluid is guided to the suction port 115 in the flow direction from the center of the cavity to the outer circumference, and is discharged. Also in this embodiment, good thermal responsiveness and uniform temperature can be obtained. In addition, the supply and discharge of the fluid may be reversed from the above and supplied from the inside passage 107 and discharged to the outside passage 111.
ところで、 図 6、 8、 1 0、 1 1、 1 2に示した実施形態において、 ジェ ッ トロ 5 9、 6 7、 7 9、 1 1 9の形状を、 図 1 3に断面図で示すジェッ ト 口 1 2 1のように出口がラツバ状に拡がっていく形状とすることができる。 このようなジエツ トロ 1 2 1を用いると、 そこから噴出するジエツ ト流が空 洞内で放射状に効果的に拡がり、 且つ複数のジヱッ トロからのジヱッ ト流の 交錯もいつそう良好になるので、 均熱性及び熱応答性の向上に有効であると 考えられる。  By the way, in the embodiment shown in FIGS. 6, 8, 10, 11, and 12, the shape of the jets 59, 67, 79, and 119 is shown in a sectional view in FIG. 13. The outlet can be formed in a shape that expands like a flap like the mouth 12 1. When such a jet 12 1 is used, the jet flow ejected therefrom effectively spreads radially in the cavity, and the crossover of the jet flows from a plurality of jetros becomes even better. It is considered to be effective in improving the heat uniformity and thermal response.
図 1 4は、 本発明の第 8の実施形態にかかる基板温度制御装置のステージ を水平な面に沿って切断した平断面図、 図 1 5 ( A ) 及び (B ) は、 図 1 4 の A— A線及び B— B線に沿った断面図である。  FIG. 14 is a plan sectional view of a stage of a substrate temperature control device according to an eighth embodiment of the present invention, taken along a horizontal plane. FIGS. 15 (A) and (B) are views of FIG. It is sectional drawing along the A-A line and the BB line.
この基板温度制装置のステージ 2 0 1は、 平円板形の全体形状を有し、 図 1 5に示すように、 その上面 2 0 3の上に処理対象基板、 例えば半導体ゥェ ハ 2 0 5が載せられる。 ステージ上面 2 0 3には、 半導体ウェハ 2 0 5を支 える 3個以上の小さい突起 2 0 7があり、 半導体ゥヱハ 2 0 5をステージ上 面 2 0 3から一定幅のギャップをもって離している。  The stage 201 of the substrate temperature control device has a flat disk shape as a whole, and as shown in FIG. 15, a substrate to be processed, for example, a semiconductor wafer 20 5 is placed. The upper surface 203 of the stage has three or more small protrusions 207 supporting the semiconductor wafer 205, and the semiconductor wafer 205 is separated from the upper surface 203 of the stage by a gap having a constant width.
ステージ 2 0 1は、 半導体ウェハ 2 0 5の直下の領域以上に広がった空洞 2 0 9を内部にもった容器として構成され、 その内部の空洞 2 0 9は作動流 体を流すための流路として用いられる。 この空洞 (流路) 2 0 9は、 ステ一 ジ 2 0 1の周縁の側壁 2 1 1から中心部に向かって半径線に沿って配設され た多数本 (例えば 1 8本) の仕切壁 2 1 3によって、 多数個 (例えば 1 8個) の扇形の小流路 2 0 9 A , 2 0 9 Bに区分されている。 それら扇形流路 2 0 9 A , 2 0 9 Bには 2つの種類があり、 一方の種類の扇形流路 2 0 9 Aは、 ステージ 2 0 1の周縁部から中心部へと作動流体を流すための往路として機 能し (以下、 扇形往流路 2 0 9 Aという)、 他方の種類の小流路 2 0 9 Bは、 その逆方向に作動流体を流すための復路として機能する (以下、 扇形復流路 2 0 9 Bという)。 扇形往流路 2 0 9 Aと扇形復流路 2 0 9 Bは交互に配置さ れている。 全ての扇形流路 2 0 9 A , 2 0 9 Bは、 その中心部 (先端部) で 開口していて、 共通の中央流路 2 0 9 Cに繋がっている。 中央流路 2 0 9 C 内の中心位置つまりステージ 2 0 1内の中心位置には支柱 2 1 6が立てられ ている。 The stage 201 is configured as a container having a cavity 209 that extends beyond the area immediately below the semiconductor wafer 205, and the cavity 209 inside the cavity 209 is a flow path for flowing a working fluid. Used as This cavity (flow channel) 209 is composed of a large number (for example, 18) of partition walls arranged along the radial line from the side wall 211 of the periphery of the stage 201 toward the center. 2 1 3 allows many (eg 18) Are divided into fan-shaped small flow paths 209A and 209B. There are two types of these fan-shaped flow paths 2 09 A and 209 B. One type of the fan-shaped flow path 2 09 A allows the working fluid to flow from the periphery of the stage 201 to the center. (Hereinafter referred to as a sector-shaped outgoing passage 209A), and the other type of small passage 209B serves as a return passage for flowing a working fluid in the opposite direction (hereinafter referred to as a returning passage). , The fan-shaped return channel is referred to as 2009 B). The fan-shaped outgoing passages 209 A and the fan-shaped return passages 209 B are alternately arranged. All the fan-shaped channels 200A and 209B are open at the center (tip), and are connected to a common central channel 209C. At the center position in the central flow path 209 C, that is, at the center position in the stage 201, a column 216 is set up.
ステージ 2 0 1の下面 2 1 7には、その周縁部にてステージ円周に沿って、 2本の円環状の流路 2 1 9 , 2 2 1が同心の配置で接合されている。 外側の 環状流路 2 1 9は、 作動流体をステージ 2 0 1内へ供給するためのものであ り (以下、 環状供給路 2 1 9という)、 外部から作動流体を供給する供給管 2 2 3と接続され、 かつ、 ステージ 2 0 1内の全ての扇形往流路 2 0 9 Aに、 各流路 2 0 9 Aの周縁部の入口穴 2 2 7を介して連通している。 内側の環状 流路 2 2 1は、 作動流体をステージ 2 0 1内から排出するためのものであり (以下、 環状排出路 2 2 1という)、 作動流体を外部へ排出する排出管 2 2 5 と接続され、 かつ、 ステージ 2 0 1内の全ての扇形復流路 2 0 9 Bに、 各流 路 2 0 9 Bの周縁部の出口穴 2 2 9を介して連通している。 なお、 入口穴 2 2 7と出口穴 2 2 9は、 往流路 2 0 9 A及び復流路 2 0 9 Bの全体の周縁に 沿って交互に配置されていることになる。  On the lower surface 2 17 of the stage 201, two annular channels 219 and 221 are joined in a concentric arrangement along the periphery of the stage at the peripheral edge thereof. The outer annular flow path 219 is for supplying a working fluid into the stage 201 (hereinafter referred to as an annular supply path 219), and is a supply pipe 225 for supplying a working fluid from the outside. 3, and communicates with all fan-shaped outgoing channels 209A in the stage 201 via inlet holes 227 in the peripheral portion of each channel 209A. The inner annular flow path 2 21 is for discharging the working fluid from the inside of the stage 201 (hereinafter, referred to as an annular discharge path 2 21), and is a discharge pipe 2 25 for discharging the working fluid to the outside. And is connected to all the fan-shaped return channels 209 B in the stage 201 via outlet holes 229 in the peripheral portion of each channel 209 B. Note that the inlet holes 227 and the outlet holes 229 are alternately arranged along the entire periphery of the outgoing channel 209A and the return channel 209B.
全ての扇形流路 2 0 9 A , 2 0 9 B内には (図 1 4では代表的に 1つの扇 形往流路 2 0 9 Aと 1つの扇形復流路 2 0 9 Bにしか図示してないが) 随所 に、 作動流体を各流路 2 0 9 A , 2 0 9 Bの全面にわたって円滑に流すと共 に作動流体と良好に熱交換を行うための複数のガイ ドフィン(又はリブ) 2 3 1が立てられている。 図 1 6は、 扇形流路 2 0 9 A , 2 0 9 Bを拡大してガ イ ドフイン 2 3 1を詳細に示したものである。 図 1 6に示すように、 ガイ ド フィン 2 3 1には幾つかの種類があり、 例えば、 仕切壁 2 1 3に平行に伸び て流れを全体として放射方向に沿わせるためのフィン 2 3 1 A、 各扇形流路 2 0 9 A , 2 0 9 Bの中心線上に点在して中心線上の流れを左右に分けるた めのフィン 2 3 1 B、 入口穴 2 2 7の正面に存在して入口穴 2 2 7から出て きた流れを左右に分けるためのフィン 2 3 1 C、 出口穴 2 2 9の正面に存在 して流れを出口穴 2 3 1へ流れを向かわせるためのフィン 2 3 1 Dなどがあ る。 In all the fan-shaped channels 200A and 209B (Fig. 14 typically shows only one fan-outgoing channel 209A and one fan-shaped return channel 209B) (Although not shown.) In some cases, the working fluid should flow smoothly over the entire surface of each flow path 209A and 209B. A plurality of guide fins (or ribs) 231 are provided for good heat exchange with the working fluid. FIG. 16 shows the guide fins 231 in detail by enlarging the fan-shaped channels 2109A and 209B. As shown in FIG. 16, there are several types of guide fins 2 31, such as fins 2 3 1 that extend parallel to the partition wall 2 13 and allow the flow as a whole to follow the radial direction. A, fins 23 1 B scattered on the center line of each fan-shaped flow path 2 09 A, 2 09 B to separate the flow on the center line into left and right, located in front of the inlet hole 2 27 2 3 1 C to separate the flow coming out of the inlet hole 2 2 7 into right and left, and fins 2 in front of the outlet hole 2 2 9 to direct the flow to the outlet hole 2 3 1 3 1D and others.
上述したステージ 2 0 1は、 アルミニウム、 銅合金などの熱伝導性の良い 材料を用いて作ることができる。  The stage 201 described above can be made using a material having good heat conductivity such as aluminum and copper alloy.
以上の構成のステージ 2 0 1では、 図 1 4にて代表的に 1つの扇形往流路 2 0 9 Aと 1つの扇形復流路 2 0 9 Bに矢印で示すように、 作動流体はステ ージ周縁部に開いた 9個の入口穴 2 2 7から 9個の扇形往流路 2 0 9 Aに入 り、 それら往流路 2 0 9 A内を周縁部から中心部へと流れ、 そして中央流路 2 0 9 Cに集まってから 9個の復流路 2 0 9 Bに分岐して入り、 それら復流 路 2 0 9 B内を中心部から周縁部へと流れてステージ周縁部の 9個の出口穴 2 2 9からステージ外へ出る。 この過程で、 作動流体とステージ 2 0 1との 間で熱交換が行われ、 作動流体の温度は変化していく。 しかし、 作動流体の 入口穴 2 2 7も出口穴 2 2 9もステージ 2 0 1の周縁部に位置し、 そして、 多数個 (この例では 9個づつ) の往流路 2 0 9 Aと復流路 2 0 9 Bとが交互 に配置されて放射方向で往復に作動流体を流しているため、 ステージ 2 0 1 の周縁部と中心部間の温度差や往流路 2 0 9 Aと復流路 2 0 9 B間の温度差 などの、 場所による温度差が緩和され、 ステージ 2 0 1全体の温度は良好に 均等化される。 特に優れて均等温度になる領域は、 ステージ 2 0 1の環状排 出路 2 2 1よりも内側の領域であるため、 この内側の領域上に半導体ウェハ 2 0 5が載置されるように、 ステージ 2 0 1の直径は半導体ウェハ 2 0 5の 直径よりも十分大きく設計されることが好ましい。 In the stage 201 having the above configuration, as shown by arrows in FIG. 14, typically, the working fluid is in the form of one fan-shaped outgoing passage 209A and one fan-shaped return passage 209B. From the nine inlet holes 2 27 opened in the peripheral edge of the cartridge, it enters the nine fan-shaped outgoing channels 209 A, flows through the outgoing channels 209 A from the rim to the center, After gathering in the central channel 209C, it branches into the nine return channels 209B, flows in the return channels 209B from the center to the peripheral portion, and moves to the peripheral portion of the stage. Exit the stage from the 9 exit holes 2 2 9 In this process, heat is exchanged between the working fluid and the stage 201, and the temperature of the working fluid changes. However, both the working fluid inlet hole 227 and the working fluid outlet hole 229 are located at the periphery of the stage 201, and a large number (in this example, nine in each case) of outgoing passages 209A and Since the working fluids are alternately arranged and the working fluid flows in the reciprocating direction in the radial direction, the temperature difference between the periphery and the center of the stage 201 and the outgoing flow passages 2109A The temperature difference between locations such as the temperature difference between the channels 209 B is reduced, and the overall temperature of the stage 201 is improved. Equalized. Since the region where the temperature is particularly excellent and is uniform is the region inside the annular discharge passage 222 of the stage 201, the stage is placed so that the semiconductor wafer 205 is placed on the region inside this region. The diameter of 201 is preferably designed to be sufficiently larger than the diameter of the semiconductor wafer 205.
図 1 7は本発明の第 9の実施形態にかかる基板温度制御装置のステージを 水平な面に沿って切断した平断面図である。 図 1 8は図 1 7の C— C線に沿 つた断面図である。  FIG. 17 is a plan cross-sectional view of a stage of a substrate temperature control device according to a ninth embodiment of the present invention, cut along a horizontal plane. FIG. 18 is a sectional view taken along the line CC of FIG.
ステージ 2 4 1は、 平円板形の全体形状を有し、 図 1 8に示すように、 そ の上面 2 4 3の上に処理対象基板、例えば半導体ウェハ 2 4 5が載せられる。 ステージ上面 2 4 3には、 半導体ウェハ 2 4 5を支える 3個以上の小さい突 起 2 4 7があり、 半導体ウェハ 2 4 5をステージ上面 2 4 3から一定幅のギ ャヅプをもって離している。  The stage 241 has an overall shape of a flat disk, and a substrate to be processed, for example, a semiconductor wafer 245 is placed on the upper surface 243 as shown in FIG. The stage upper surface 243 has three or more small protrusions 247 that support the semiconductor wafer 245, and the semiconductor wafer 245 is separated from the stage upper surface 243 by a gap having a constant width.
ステージ 2 4 1は、 半導体ウェハ 2 4 5の直下の領域以上に広がった空洞 2 4 9を内部にもった容器として構成され、 その内部の空洞 2 4 9は作動流 体を流すための流路として用いられる。 この空洞 (流路) 2 4 9は、 ステー ジ周縁の側壁 2 5 1より若干小さい直径をもち側壁 2 5 1 と同心に配された 環状壁 2 5 3によって、 この環状壁 2 5 3の外側の環状流路 (以下、 外環流 路という) 2 4 9 Cと内側の円形流路とに区分され、 この内側の円形流路は さらに、 互いに平行に並ぶ多数本の仕切壁 2 5 5によって、 多数個の細長い 小流路 2 4 9 A , 2 4 9 Bに区分されている。 それら細長い小流路 2 4 9 A , 2 4 9 Bには 2つの種類があり、 一方の種類の小流路 2 4 9 Aは、 図中下向 きに作動流体を流すものであり (以下、 下り流路 2 4 9 Aという)、 他方の種 類の小流路 2 4 9 Bは、 図中上向きに作動流体を流すものである (以下、 上 り流路 2 4 9 Bという)。 下り流路 2 4 9 Aと上り流路 2 4 9 Bは交互に配置 されている。 ステージ 2 4 1の下面 2 5 7には、外環流路 2 4 9 Cの直下位置に沿って、 円環状の流路 2 5 9が接合されている。 この円環状流路 2 5 9は作動流体を ステージ 2 4 1内へ供給する役目をもち (以下、 環状供給路 2 5 9という)、 外部から作動流体を供給する 2本の供給管 2 6 3と接続され、 かつ、 外環流 路 2 4 9 Cの底にほぼ定ピツチで開けられた多数の導入穴 2 6 7を介して、 外環流路 2 4 9 Cに連通している。 ステージ下面 2 5 7にはまた、 環状供給 路 2 5 9に内側で隣接しかつ同心の配置で、 別の円環状の流路 2 6 1が接合 されている。 この内側の環状流路 2 6 1は、 作動流体をステージ 2 4 1内か ら排出するためのものであり (以下、 環状排出路 2 6 1という)、 作動流体を 外部へ排出する 2本の排出管 2 6 5と接続されている。 供給管 2 6 3と排出 管 2 6 5はそれそれ、 必ずしも 2本ある必要はなく、 1本でも 3本以上でも 良いが、 均熱性の観点からは 2本以上あってほぼ定ピツチで配置されている ことが好ましい。 The stage 241 is configured as a container having a cavity 249 extending inside the area immediately below the semiconductor wafer 245, and a cavity 249 inside the cavity 249 is a flow path for flowing a working fluid. Used as The cavity (flow passage) 2 49 has a diameter slightly smaller than the side wall 25 1 at the periphery of the stage, and is formed outside the annular wall 25 3 by an annular wall 25 3 arranged concentrically with the side wall 25 1. Is divided into an annular channel (hereinafter referred to as an outer annular channel) 249 C and an inner circular channel, and the inner circular channel is further divided by a number of partition walls 255 that are arranged in parallel with each other. It is divided into a number of elongated small channels 249A and 249B. There are two types of these narrow small channels 249A and 249B, and one type of small channels 249A is for flowing the working fluid downward in the figure. The downstream flow channel 249 A) and the other type of small flow channel 249 B flow the working fluid upward in the figure (hereinafter referred to as the upstream flow channel 249 B). The down flow channel 249 A and the up flow channel 249 B are alternately arranged. An annular flow path 259 is joined to the lower surface 2570 of the stage 241, along a position directly below the outer ring flow path 249C. The annular flow path 259 serves to supply the working fluid into the stage 241 (hereinafter referred to as an annular supply path 259), and two supply pipes 265 to supply the working fluid from the outside. And is communicated with the outer ring flow path 249C through a number of introduction holes 267 formed at the bottom of the outer ring flow path 249C with almost constant pitch. Another annular flow path 261, which is adjacent to and concentric with the inner side of the annular supply path 255, is joined to the stage lower surface 257. The inner annular flow path 26 1 is for discharging the working fluid from the inside of the stage 24 1 (hereinafter, referred to as an annular discharge path 26 1). It is connected to the discharge pipe 2 65. The supply pipe 263 and the discharge pipe 265 need not necessarily be two, and may be one or three or more.However, from the viewpoint of heat uniformity, there are two or more and they are arranged at almost constant pitch. It is preferable that
ステージ 2 4 1内の全ての下り流路 2 4 9 Aは、 各々の上端の環状壁 2 5 3に開けられた入口穴 2 6 9を通じて外環流路 2 4 9 Cに連通し、 かつ、 各々 の下端の底部に開けられた出口穴 2 7 1を通じて環状排出路 2 6 1に連通し ている。 また、 全ての上り流路 2 4 9 Bは、 各々の下端の環状壁 2 5 3に開 けられた入口穴 2 6 9を通じて外環流離 2 4 9 Cに連通し、 かつ、 各々の上 端の底部に開けられた出口穴 2 7 1を通じて環状排出路 2 6 1に連通してい る。 なお、 入口穴 2 6 9 と出口穴 2 7 1は、 上り及び下り流路 2 4 9 A , 2 4 9 Bの全体 (円形流路) の周縁に沿って交互に配置されていることになる。 上述したステージ 2 4 1は、 アルミニウム、 銅合金などの熱伝導性の良い 材料を用いて作ることができる。  All the downstream channels 2 49 A in the stage 24 1 communicate with the outer annular channel 24 9 C through the inlet holes 26 9 formed in the annular walls 25 3 at the upper ends thereof, respectively. It communicates with the annular discharge channel 26 1 through an outlet hole 27 1 formed in the bottom of the lower end of the container. In addition, all the upflow channels 249 B communicate with the outer annular divergence 249 C through the inlet holes 269 opened in the annular walls 253 at the lower ends, respectively. It communicates with the annular discharge channel 26 1 through an outlet hole 27 1 formed in the bottom of the container. In addition, the inlet holes 269 and the outlet holes 271 are alternately arranged along the periphery of the whole (circular flow path) of the ascending and descending channels 249A and 249B. . The stage 241 described above can be made using a material having good heat conductivity such as aluminum and copper alloy.
以上の構成のステージ 2 4 1では、 図 1 7にて代表的に 2つの下り流路 2 4 9 Aと 2つの上り流路 2 4 9 Bに矢印で示すように、 作動流体はステージ 周縁部の外環流路 2 4 9 Cから環状壁 2 5 3の全ての入口穴 2 6 7を通じて 全ての下り及び上り流路 2 4 9 A, 2 4 9 Bに入り、 それら流路 2 4 9 A , 2 4 9 B内を上から下へ及び下から上へと流れ、 ステージ周縁部の出口穴 2 7 1からステージ外へ出る。 この過程で、 作動流体とステージ 2 4 1との間 で熱交換が行われ、 作動流体の温度は変化していく。 しかし、 作動流体の入 口穴 2 6 9も出口穴 2 7 1もステージ 2 4 1の周縁部に位置し、 そして、 多 数本の下り流路 2 4 9 Aと上り流路 2 4 9 Bが交互に配置されて上下方向で 往復に作動流体を流しているため、 ステージ 2 4 1の場所による温度差は緩 和され、 ステージ 2 4 1全体の温度は良好に均等化される。 特に優れて均等 温度になる領域は、 ステージ 2 4 1の環状排出路 2 6 1よりも内側の円形流 路 (下り及び上り流路 2 4 9 A , 2 4 9 B ) 領域であるため、 この内側の領 域上に半導体ウェハ 2 4 5が載置されるように、 ステージ 2 4 1の直径は半 導体ウェハ 2 4 5の直径よりも十分大きく設計されることが好ましい。 In the stage 241, which has the above configuration, as shown by arrows in the two downstream flow channels 249A and the two upstream flow channels 249B typically in FIG. From the outer ring channel 24 9 C at the periphery, all the down and up channels 24 9 A and 24 9 B through all the inlet holes 2 67 of the annular wall 25 3, and these channels 2 49 It flows from A, 24 9 B inside the stage from top to bottom and from bottom to top, and exits the stage from the exit hole 271, at the periphery of the stage. In this process, heat is exchanged between the working fluid and the stage 241, and the temperature of the working fluid changes. However, both the working fluid inlet hole 26 9 and the outlet hole 27 1 are located at the periphery of the stage 24 1, and a number of downstream channels 24 9 A and upstream channels 24 9 B Are alternately arranged and the working fluid flows in a reciprocating manner in the vertical direction, so that the temperature difference depending on the location of the stage 241 is reduced, and the temperature of the entire stage 241 is satisfactorily equalized. The region where the temperature becomes particularly excellent and uniform is the circular channel (downstream and upstream channels 249A, 2449B) inside the annular discharge channel 261 of the stage 241, The diameter of the stage 241 is preferably designed to be sufficiently larger than the diameter of the semiconductor wafer 245 so that the semiconductor wafer 245 is placed on the inner area.
図 1 9は本発明の第 1 0の実施形態にかかる基板温度制御装置のステージ を水平な面に沿って切断した平断面図である。  FIG. 19 is a plan sectional view of the stage of the substrate temperature control device according to the tenth embodiment of the present invention, cut along a horizontal plane.
ステージ 2 8 1は、 平円板形の全体形状を有し、 前述の実施形態と同様に、 その上面の上に処理対象基板、 例えば半導体ウェハが載せられ、 ステージ上 面の小さい突起が半導体ウェハをステージ上面から一定幅のギヤップをもつ て離す。  The stage 281 has a flat disk-shaped overall shape, and a substrate to be processed, for example, a semiconductor wafer is placed on the upper surface thereof, as in the above-described embodiment. From the top of the stage with a gap of a certain width.
ステージ 2 8 1は、 半導体ウェハの直下の領域以上に広がった空洞 2 8 9 を内部にもった容器として構成され、 その内部の空洞 2 8 9は作動流体を流 すための流路として用いられる。 この空洞 (流路) 2 8 9は、 ステージ周縁 の側壁 2 9 1より若干小さい直径をもち側壁 2 9 1 と同心に配された環状壁 2 9 3によって、 この環状壁 2 9 3の外側の環状流路 (以下、 外環流路とい う) 2 8 9 Aと内側の円形流路 2 8 9 Bとに区分される。 円形流路 2 8 9 B 内には、 その全域にわたって無数のピン状フイン 2 9 5が立設されており、 これらのピン上フィン 2 9 5は作動流体との熱交換に寄与する。 The stage 281 is configured as a container with a cavity 289 that extends beyond the area immediately below the semiconductor wafer, and the cavity 289 inside is used as a flow path for flowing the working fluid . The cavity (flow path) 2 89 has a diameter slightly smaller than the side wall 2 91 of the stage periphery, and is formed by an annular wall 2 93 arranged concentrically with the side wall 2 91. It is divided into an annular channel (hereinafter referred to as an outer ring channel) 289 A and an inner circular channel 289 B. Circular channel 2 8 9 B Inside, an infinite number of pin-shaped fins 295 are erected over the entire area thereof, and these pin fins 295 contribute to heat exchange with the working fluid.
ステージ 2 8 1は、 その周縁部の 1箇所に、 作動流体をステージ 2 8 1内 に供給するための供給区 2 9 7を有し、 この供給区 2 9 7は、 作動流体を外 部供給する供給管 3 0 1と接続され、かつ外環流路 2 8 9 Aに連通している。 また、 ステージ中心に対して供給区 2 9 7とは対称なステージ周縁部の箇所 には、 ステージ 2 8 1内から作動流体を排出するためのドレイン区 2 9 9が あり、 このドレイン区 2 9 9は外部へ作動流体を排出する排出管 3 0 3と接 続されている。 ドレイン区 2 9 9は、 作動流体を集め易いように、 供給区 2 9 7よりも広い幅にわたって開口している。 外璟流路 2 8 9 Aと円形流路 2 8 9 Bとを仕切る環状壁 2 9 3には、 多数の入口穴 2 9 7がほぼ定ビツチで 開けられている。 また、 環状壁 2 9 3のドレイン区 2 9 9の正面に当たる部 分は切除されて出口穴 3 0 7を形成している。  The stage 281 has a supply section 297 at one location on the periphery thereof for supplying the working fluid into the stage 281.The supply section 297 supplies the working fluid to the outside. And is connected to the outer ring channel 289A. In addition, at the periphery of the stage, which is symmetrical with respect to the supply section 297 with respect to the center of the stage, there is a drain section 299 for discharging working fluid from inside the stage 281. 9 is connected to a discharge pipe 303 for discharging the working fluid to the outside. The drain section 299 has a wider width than the supply section 297 so that the working fluid can be easily collected. A large number of inlet holes 2977 are formed in the annular wall 293 partitioning the outer flow passage 289 A and the circular flow passage 289 B with a substantially constant bite. In addition, a portion of the annular wall 293 corresponding to the front of the drain section 299 is cut out to form an outlet hole 307.
上述したステージ 2 8 1は、 アルミニウム、 銅合金などの熱伝導性の良い 材料を用いて作ることができる。  The stage 281 described above can be made using a material having good heat conductivity such as aluminum and copper alloy.
以上の構成のステージ 2 8 1では、 図 1 9に矢印で示すように、 作動流体 は供給区 2 9 7からステージ周縁部の外環流路 2 8 9 Aに入り、 そして外環 流路 2 8 9 Aから環状壁 2 9 3の大部分の入口穴 3 0 5を通じて円形流路 2 8 9 Bに中心部へ向かう方向で流入し、 円形流路 2 8 9 B内を周縁から中心 へ向かってかつ上から下へ向かって流れ、 最終的にステージ周縁部の出口穴 3 0 7から ドレイン区 2 9 9に出てステージ外へ排出される。 この過程で、 作動流体とステージ 2 8 1との間で熱交換が行われ、 作動流体の温度は変化 していく。 しかし、 ステージ 2 8 1の周縁部に配置された多数の入口穴 3 0 5から作動流体が互いに異なる方向で円形流路 2 8 9 B内に流入し、そして、 円形流路 2 8 9 B内では無数のフィン 2 9 5が作動流体の流れを乱し攪拌す るため、 ステージ 2 8 1の場所による温度差は緩和され、 ステージ 2 8 1全 体の温度は良好に均等化される。 特に優れて均等温度になる領域は、 円形流 路 2 8 9 Bの領域であるため、 この円形流路 2 8 9 B上に半導体ウェハが載 置されるように、 ステージ 2 8 1の直径は半導体ウェハの直径よりも十分大 きく設計されることが好ましい。 In the stage 281, the working fluid flows from the supply section 297 to the outer ring flow path 289A at the periphery of the stage as shown by the arrow in FIG. From 9 A, it flows in the direction toward the center into the circular flow path 2899 B through the majority of the inlet holes 3 05 of the annular wall 2 93, and flows from the periphery to the center in the circular flow path 2 89 B At the same time, it flows from the top to the bottom, and finally exits from the exit hole 307 at the periphery of the stage to the drain section 299 to be discharged out of the stage. In this process, heat is exchanged between the working fluid and the stage 281, and the temperature of the working fluid changes. However, the working fluid flows into the circular flow passage 289 B in different directions from a number of inlet holes 305 arranged on the peripheral portion of the stage 281, and then flows into the circular flow passage 289 B. Innumerable fins 295 disturb the working fluid flow and stir Therefore, the temperature difference depending on the location of the stage 28 1 is reduced, and the temperature of the entire stage 28 1 is favorably equalized. The region where the temperature is particularly excellent and the temperature is uniform is the region of the circular channel 289 B. Therefore, the diameter of the stage 281 is set so that the semiconductor wafer is placed on the circular channel 289 B. It is preferable that the diameter is designed to be sufficiently larger than the diameter of the semiconductor wafer.
なお、 図 1 9に示したステージ 2 8 1おいて、 円形流路 2 8 9 B周囲の多 数の入口穴 3 0 5のうち、 ドレイン区 2 9 9に近いつまり下流側に位置する 入口穴 3 0 5は、 実際には入口穴ではなくて、 円形流路 2 8 9 Bから外環流 路 2 8 9 Aへ作動流体が出るための出口穴として機能するかもしれない。 そ うであっても、 円形流路 2 8 9 B内での作動流体の流れは、 上流側の多数の 入口穴 3 0 5から異なる方向へ作動流体が流入し、 多数のフィン 2 9 5によ つて攪拌され乱され、 そして下流側の多数の出口穴 3 0 5から異なる方向へ 出て行くという複雑なものとなるため、 やはり、 良好な均熱性が得られる。 また、 外環流路 2 8 9 A内の下流側へ或る程度寄った位置に、 作動流体の通 りを阻止又は抑制するプロック又は絞りを設けることにより、 その位置より 上流側の入口穴 3 0 5での作動流体の円形流路 2 8 9 Bへの流入の勢いを強 く し、 かつ、 その位置より下流側の入口穴 3 0 5は入口穴ではなく出口穴と して積極的に用いるようにしてもよい。 また、 上記環状壁 2 9 3は、 設置し なくても良い。  In the stage 281, which is shown in FIG. 19, of the many inlet holes 300 surrounding the circular flow passage 2889B, the inlet hole located closer to the drain section 299, that is, located downstream. 305 may not actually be an inlet hole, but may function as an outlet hole for the working fluid to exit from the circular channel 289 B to the outer annular channel 289 A. Even so, the flow of the working fluid in the circular flow path 289 B is such that the working fluid flows in different directions from the many inlet holes 305 on the upstream side and flows into the many fins 295. Thus, the mixture is agitated and disturbed, and exits in a different direction from a large number of outlet holes 3005 on the downstream side, so that good heat uniformity can be obtained. In addition, by providing a block or throttle that blocks or suppresses the passage of the working fluid at a position that is somewhat closer to the downstream side in the outer ring flow path 289 A, the inlet hole 30 upstream of that position is provided. The flow of the working fluid into the circular flow path 2 89 B at step 5 is strengthened, and the inlet hole 3005 downstream from that position is used not as an inlet hole but as an outlet hole. You may do so. Further, the annular wall 293 need not be provided.
図 2 0は、 本発明の第 1 1の実施形態にかかる基板温度制御装置のステ一 ジを示す斜視図である。  FIG. 20 is a perspective view showing a stage of the substrate temperature control device according to the first embodiment of the present invention.
ステージ 3 1 1は、 本発明の原理に従った平円板形の容器 3 1 3と、 この 容器 3 1 3の上面に接合された平円板形のヒートパイプ 3 1 5とから構成さ れる。 容器 3 1 3は、 例えば図 1 4〜図 1 9に示したいずれかのステージと 同様な構造をもつことができる。 ヒートパイプ 3 1 5の上面には、 半導体ゥ ェハを支えるための小さな突起 3 1 7が設けられている。 ヒートパイプ 3 1 5の高い伝熱作用によつて一層良好な均熱性が期待できる。 The stage 3 11 includes a flat disk-shaped container 3 13 according to the principle of the present invention, and a flat disk-shaped heat pipe 3 15 bonded to the upper surface of the container 3 13 . The container 313 can have the same structure as any of the stages shown in FIGS. 14 to 19, for example. Heat pipe 3 15 has a semiconductor Small projections 3 17 are provided to support the wafer. Due to the high heat transfer action of the heat pipes 3 15, better heat uniformity can be expected.
図 2 1は、 本発明の第 1 2の実施形態にかかる基板温度制御装置のステー ジを示す斜視図である。  FIG. 21 is a perspective view showing a stage of the substrate temperature control device according to the 12th embodiment of the present invention.
ステージ 3 1 9は、 本発明の原理に従った平円板形の容器 3 2 1と、 この 容器 3 2 1の上面に貼り付けられたフィルム状の電熱線ヒ一夕 3 2 3とから 構成される。 容器 3 2 1は、 例えば図 1 4〜図 1 9に示したいずれかのステ —ジと同様な構造をもつことができる。 容器 3 2 1の上面には、 半導体ゥェ ハを支えるための小さな突起 3 2 5が設けられている。 作動流体だけでは完 全には均一化できない容器 3 2 1の温度むらを、 電熱線ヒ一夕 3 2 3で補償 して一層良好な均熱性を達成することも可能である。電熱線ヒー夕 3 2 3は、 容器 3 2 1の上面でなく下面に設けてもよい。  The stage 3 19 is composed of a flat disk-shaped container 3 21 according to the principle of the present invention, and a film heating wire 3 2 3 attached to the upper surface of the container 3 2 1. Is done. The container 3221 can have a structure similar to any of the stages shown in FIGS. 14 to 19, for example. On the upper surface of the container 321, a small protrusion 325 for supporting the semiconductor wafer is provided. It is also possible to compensate for the uneven temperature of the vessel 3 21 that cannot be completely homogenized with the working fluid alone, using a heating wire 3 2 3 to achieve better heat uniformity. The heating wire 3232 may be provided on the lower surface of the container 3221 instead of the upper surface.
図 2 2は、 本発明の第 1 3の実施形態にかかる基板温度制御装置のステー ジを示す断面図である。  FIG. 22 is a sectional view showing a stage of the substrate temperature control device according to the thirteenth embodiment of the present invention.
ステージ 3 2 7は、 本発明の原理に従った平円板形の容器 3 2 9と、 この 容器 3 2 9の上面と下面に貼り付けられたフィルム状の電熱線ヒー夕 3 3 1、 3 3 3とから構成される。 容器 3 2 9は、 例えば図 1 4〜図 1 9に示したい ずれかのステージと同様な構造をもつことができる。容器 3 2 9の上面には、 半導体ウェハ 3 3 7を支えるための小さな突起 3 3 9が設けられている。 電 熱線ヒー夕 3 3 1、 3 3 3が容器 3 2 9の上下両面に存在するため、 ステー ジ 3 2 7の上下の温度が均等になり、 よって、 特に冷却と加熱とを切り替え た時のような急な温度変化時におけるステージ 3 2 7の熱膨張による歪みが 抑制され、 ステージ 3 2 7と半導体ウェハ 3 3 7との間のギヤップが均等に 維持され、 よって、 一層良好な均熱性が達成される。  The stage 3 27 is composed of a flat disk-shaped container 32 9 according to the principle of the present invention, and a film-shaped heating wire heater 31 1 3 attached to the upper and lower surfaces of the container 32 9. 3 and 3. The container 329 can have the same structure as any of the stages shown in FIGS. 14 to 19, for example. On the upper surface of the container 329, a small protrusion 339 for supporting the semiconductor wafer 337 is provided. Since the heating wires 3 3 1 and 3 3 3 are present on both the upper and lower surfaces of the container 3 29, the upper and lower temperatures of the stage 3 27 are equalized, and therefore, especially when switching between cooling and heating is performed. The distortion caused by the thermal expansion of the stage 327 during such a rapid temperature change is suppressed, and the gap between the stage 327 and the semiconductor wafer 337 is maintained evenly, so that better heat uniformity is obtained. Achieved.
図 2 3は本発明の第 1 4の実施形態にかかる基板温度制御装置のステージ を構成する 2枚の容器の平断面図である。 図 2 4は図 2 3の D— D線に沿つ た同ステージの断面図である。 FIG. 23 shows a stage of the substrate temperature control device according to the 14th embodiment of the present invention. FIG. 3 is a plan cross-sectional view of two containers constituting the above. FIG. 24 is a cross-sectional view of the stage taken along line DD in FIG.
ステージ 3 4 1は、 図 2 3に示すような平断面構造をもった 2枚の平円板 型の容器 3 4 3 , 3 4 5を重ねて接合したものである。 2枚の容器 3 4 3, 3 4 5はいずれも、 一つの半径の片側の周縁部から他側の周縁部へと作動流 体を同方向に流す互いに平行な細長い多数本の小流路 3 4 7 , 3 4 9を内部 に有している。 そして、 2枚の容器 3 4 3 , 3 4 5は、 互いの流れ方向が反 対になる姿勢で相互に接合されている。 一方の容器 3 4 3の上流側と下流側 間に生じる温度差が、 他方の容器 3 4 5の上流側と下流側間に生じる温度差 で補償されるので、 良好な均熱性が得られる。  The stage 341 is formed by stacking and joining two flat disk-shaped containers 344 and 345 having a flat cross-sectional structure as shown in FIG. Each of the two containers 3 4 3 and 3 45 has a large number of parallel elongated small flow paths 3 that allow the working fluid to flow in the same direction from one peripheral edge of one radius to the other peripheral edge. 47 and 349 are provided inside. The two containers 3 4 3 and 3 45 are joined to each other so that their flow directions are opposite to each other. Since the temperature difference between the upstream side and the downstream side of one container 345 is compensated by the temperature difference between the upstream side and the downstream side of the other container 345, good heat uniformity can be obtained.
図 2 5は、 本発明の第 1 5の実施形態にかかる基板温度制御装置のステー ジをを示す断面図である。  FIG. 25 is a sectional view showing a stage of the substrate temperature control device according to the fifteenth embodiment of the present invention.
ステージ 3 5 1は、 例えば図 1 9に示したステージと基本的に同じ構造を 有するが、 内部の円形流路にはその全域にわたって、 図 1 9に示したピン型 フィンに代えて、 アルミニウムや銅合金製の綿状又は網状の繊維体 3 5 3が 詰められていて作動流体との熱交換に寄与する。  The stage 351, for example, has basically the same structure as the stage shown in FIG. 19, but the entire inner circular flow path is made of aluminum or aluminum instead of the pin-type fin shown in FIG. A cotton-like or net-like fibrous body 353 made of copper alloy is packed and contributes to heat exchange with the working fluid.
図 2 6は本発明の第 1 6の実施形態にかかる基板温度制御装置のステージ を構成する容器の斜視図であり、 図 2 7は図 2 6の A— A断面図である。 ステージ 4 0 1を構成する容器 4 0 3は、 例えば直径が 5〜 1 ◦ 0 c mで 厚さが 0 . 3〜5 c mの 1枚の平円板である。 この容器 4 0 3は、 周縁部の 反対側の端部に、 流体の入口 4 1 1 と出口 4 1 3を備え、 作動流体を通すた めの空洞 4 0 5内に、 底壁と天井壁とを繋ぎ乱流を生じさせるための多数の リブ(又はフィン) 4 0 7と、 3つのガイ ド壁 4 0 9 a、 4 0 9 b、 4 0 9 c とを備える。 2つのガイ ド壁 4 0 9 a、 4 0 9 bは、 それそれがまっすぐで、 互いに平行に配置され、 入口 4 1 1からの流体を空洞 4 0 3の中央を通して 出口 4 1 3の方向へ流す流路(以下、 中央流路) 4 1 5を形成する。 中央流路 4 1 5は、 入口 4 1 1から始まり、 空洞 403中央と出口 4 1 3との略中央 間の位置で終わる。 他のガイ ド壁 403 cは、 複数(例えば 3つ)の角を持つ 略 U字形をしており、 中央流路 4 1 5から出て来た流体を U字形の谷間で折 り返させるように配置され、 中央流路 4 1 5の外側で流体を中央流路 4 1 5 とは逆方向へ流す 2つの流路(以下、 中間流路) 4 1 7 a、 4 1 7 bを形成す る。 中間流路 4 1 7 a、 4 1 7 bは、 容器 3の周縁付近で終わる。 中間流路 4 17 a, 4 17 bから出て来た流体は、 更に折り返って、 容器 403の周 縁部に沿った外側の流路 4 1 9 a、 4 1 9 bを通って出口 4 1 3に出る。 中 央流路 4 1 5、 中間流路 4 1 7 a、 4 1 7 b及び外側流路 4 1 9 a、 4 1 9 bの幅は、 全ての流路の流速が均等になるように設定されている。 FIG. 26 is a perspective view of a container constituting a stage of the substrate temperature control device according to the sixteenth embodiment of the present invention, and FIG. 27 is a sectional view taken along line AA of FIG. The container 403 constituting the stage 401 is, for example, a single flat disk having a diameter of 5-1 to 0 cm and a thickness of 0.3 to 5 cm. The container 4003 has a fluid inlet 4111 and an outlet 4113 at the end opposite the peripheral edge, and has a bottom wall and a ceiling wall in a cavity 405 through which the working fluid passes. And a number of ribs (or fins) 407 for generating turbulence by connecting to the first and second guide walls, and three guide walls 409a, 409b, 409c. The two guide walls 409a, 409b are straight and parallel to each other, allowing fluid from the inlet 411 through the center of the cavity 403. A flow channel (hereinafter, a central flow channel) 4 15 flowing in the direction of the outlet 4 13 is formed. The central channel 4 15 starts at the inlet 4 11 and ends at a location approximately between the center of the cavity 403 and the outlet 4 13. The other guide wall 403c has a substantially U-shape having a plurality of (for example, three) corners so that fluid coming out of the central flow path 4 15 can be folded back into the U-shaped valley. The two flow paths (hereinafter, intermediate flow paths) 4 17 a and 4 17 b are formed outside the central flow path 4 15 and the fluid flows in the opposite direction to the central flow path 4 15 You. The intermediate flow paths 4 17 a and 4 17 b end near the periphery of the container 3. The fluid coming out of the intermediate flow paths 417a, 417b is further turned back to the outlet 4 through the outer flow paths 419a, 419b along the periphery of the container 403. Exit at 1 3 The width of the central flow path 4 15, intermediate flow path 4 17 a, 4 17 b and outer flow path 4 19 a, 4 19 b is set so that the flow velocity of all flow paths is equal Have been.
この実施形態において、 もしガイ ド壁 409 a、 40 9 b, 409 cが無 い場合は、 空洞 405の中央を流れる流速とその両側を流れる流速に差が出 て、 それにより容器 403上面の温度分布にかなりのむらが生じる。 しかし、 ガイ ド壁 409 a、 40 9 b、 40 9 cを図示のように配置することで、 流 体が空洞 405の 2つの半分領域をそれそれ Z字形に蛇行しつつ略均等な流 速で空洞 405全体を巡る。 換言すれば、 空洞 405の中央の流れをその両 側へ強制的に導く(又は、 口 4 13が入口の場合、 空洞 405の周縁の流れを 中央へ強制的に導く)ことで、 空洞全体の流速を均一にし、 均熱性を向上させ ている。 また、 多数のリブ 407によって生じる乱流によって、 更に均熱性 が向上する。 また、 流体の出入口 4 1 1、 4 1 3が容器 403の外周側に設 けられているので、 流体の出入口 4 1 1、 4 1 3での温度分布が基板に影響 されにく く、 これも均熱性に貢献する。 また、 空洞 40 5をガイ ド壁 40 9 a、 409 b, 409 cで仕切るだけで自由に流路を形成できるので、 容易 に製作できる。 また、 流体通路の蛇行は Z字形という単純なものなので、 圧 力損失は小さい。 In this embodiment, if there is no guide wall 409a, 409b, 409c, there will be a difference between the flow velocity flowing in the center of the cavity 405 and the flow velocity flowing on both sides thereof, thereby causing the temperature of the upper surface of the container 403 to rise. There is considerable unevenness in the distribution. However, by arranging the guide walls 409a, 409b, and 409c as shown, the fluid wraps around the two halves of the cavity 405 in a z-shape with approximately uniform flow velocity. It goes around the whole cavity 405. In other words, by forcing the flow at the center of the cavity 405 to both sides (or forcing the flow at the periphery of the cavity 405 to the center when the mouth 413 is the inlet), The flow velocity is made uniform and the heat uniformity is improved. Further, the turbulence generated by the large number of ribs 407 further improves the heat uniformity. Further, since the fluid inlets and outlets 4 1 1 and 4 13 are provided on the outer peripheral side of the container 403, the temperature distribution at the fluid inlets and outlets 4 1 1 and 4 13 is not easily influenced by the substrate. Also contributes to heat uniformity. In addition, since the flow path can be freely formed only by partitioning the cavity 405 by the guide walls 409a, 409b, and 409c, it can be easily manufactured. Also, since the meandering of the fluid passage is a simple Z-shape, the pressure The power loss is small.
上記空洞 405内のガイ ド壁 409 a、 409 b, 40 9 cの構成には、 いくつかのバリエーションが考えられる。 以下、 例えば 3つのバリエーショ ンを、 図 28、 2 9、 及び 30に示す。  There are some variations in the configuration of the guide walls 409a, 409b, and 409c in the cavity 405. Hereinafter, for example, three variations are shown in FIGS. 28, 29, and 30.
図 28に示す変形例では、 ガイ ド壁 409 a、 409 b, 409 cのそれ それに、 流体の巡りを更に向上させるためのバイパス穴 423 a、 423 b、 423 cが設けられている。 各バイパス穴 423 a、 423 b, 423 cは、 流体が折り返す場所 424 a、 424 b、 424 c付近に備えられ、 この付 近に生じる流体の淀みを解消する。 すなわち、 バイパス穴 423 a、 42 3 b、 423 cは、 中間流路 4 1 7 aと 4 17 bの出口の折り返し場所 424 a、 424 b付近のガイ ド壁 409 aと 409 bに開けられており、 中央流 路 4 1 5内の流体の一部を折り返し場所 424 a、 424 bへ吹き出させる。 また、 バイパス穴 42 3 cは、 中央流路 4 1 5の出口の折り返し場所 424 c付近のガイ ド壁 403 cに開けられ、 この折り返し場所 424 cに淀んだ 流体を出口 4 1 3の方向に逃がす。 これにより、 流体が空洞 42 1をより均 等に巡ることができるので、 均熱性が更に向上する。 バイパス穴 423 a、 423 b、 423 cは、 各ガイ ド壁 409 a、 409 b、 409 cに複数備 えても良い。  In the modification shown in FIG. 28, each of the guide walls 409a, 409b, 409c is provided with a bypass hole 423a, 423b, 423c for further improving the circulation of the fluid. Each bypass hole 423a, 423b, 423c is provided in the vicinity of a place 424a, 424b, 424c where the fluid turns back, and eliminates the stagnation of the fluid generated near this. In other words, the bypass holes 423a, 423b, and 423c are formed in the guide walls 409a and 409b near the return locations 424a and 424b of the outlets of the intermediate flow paths 417a and 417b. And a part of the fluid in the central channel 415 is blown out to the return locations 424a and 424b. In addition, the bypass hole 423 c is formed in the guide wall 403 c near the turn-back location 424 c of the outlet of the central flow path 4 15, and the fluid stagnating at the turn-back location 424 c is directed toward the outlet 4 13. Let go. This allows the fluid to more evenly circulate through the cavity 421, so that the heat uniformity is further improved. A plurality of bypass holes 423a, 423b, 423c may be provided on each guide wall 409a, 409b, 409c.
図 2 9に示す変形例では、 流線に沿った滑らかな曲面を持った U字形のガ ィ ド壁 427が用いられる。 このガイ ド壁 427により、 流体は滑らかに空 洞 425を巡ることができる。  In the modification shown in FIG. 29, a U-shaped guide wall 427 having a smooth curved surface along a streamline is used. The guide wall 427 allows the fluid to smoothly pass through the cavity 425.
図 30に示す変形例では、 全てのガイ ド壁 43 1、 433、 427が、 流 線に沿った滑らかな曲面を有している。 このような構成により、 流体は滑ら かに空洞 429を巡ることができる。  In the modification shown in FIG. 30, all the guide walls 431, 433, and 427 have smooth curved surfaces along the streamlines. With such a configuration, the fluid can smoothly go around the cavity 429.
ところで、 上述の説明では、 容器の口 4 1 1を入口、 口 4 1 3を出口とし たが、 逆に口 4 1 3を入口、 口 4 1 1を出口とすることもできる。 しかし、 口 4 1 3を入口とすると、 空洞に入った流体がすぐにガイ ド壁 4 0 9 c (又はBy the way, in the above description, the opening 411 of the container is the inlet, and the opening 413 is the outlet. However, conversely, mouth 4 13 can be an entrance and mouth 4 11 can be an exit. However, assuming that the mouth 4 13 is the inlet, the fluid entering the cavity immediately returns to the guide wall 4 09 c (or
4 2 7 )に衝突してしまうため、 ガイ ド壁 4 0 9 c (又は 4 2 7 )の温度変化が 大きくなつてしまい、 均熱性に悪影響を及ぼす可能性がある。 一方、 口 4 1 1を入口とすれば、 空洞に入った流体は、 空洞の中央を超える位置まで流れ て初めてガイ ド壁 4 0 9 cにぶつかるようになっているので、 ガイ ド壁 4 0 9 cの温度変化を比較的小さくすることができる。 尚、 容器の入口及び出口 の数は 1つに限定されない。 Since it collides with 4 27), the temperature change of the guide wall 4 09 c (or 4 2 7) becomes large, which may adversely affect the heat uniformity. On the other hand, if the mouth 4 11 is used as the inlet, the fluid that has entered the cavity first reaches the position beyond the center of the cavity and hits the guide wall 409 c. The temperature change of 9 c can be made relatively small. The number of inlets and outlets of the container is not limited to one.
図 3 1は本発明の第 1 7の実施形態にかかる基板温度制御装置のステージ を構成する容器の平断面図である。  FIG. 31 is a plan cross-sectional view of a container constituting a stage of the substrate temperature control device according to the seventeenth embodiment of the present invention.
ステージ 4 3 5を構成する容器 4 3 7は、 略円形の平板であり、 外周の 1 箇所にて外方へ若干延び出た部分 4 3 6を有し、この延出部 4 3 6の底壁に、 流体の 2つの入口 4 3 9、 4 4 1 と、 それらの間に位置する 1つの出口 4 4 1が開いている(入口と出口は逆にしても良い)。 流体が通過する空洞 4 4 7 には、 乱流を生じさせる多数のピン形のフィン(又はリプ) 4 4 9が立ってい る。 また、 空洞 4 4 7内には、 3つのガイ ド壁 4 5 1 a、 4 5 1 b、 4 5 1 cがある。 外側の 2つのガイ ド壁 4 5 1 a、 4 5 1 bは、 入口 4 3 9、 4 4 1からの各流体を、 容器 4 3 7周縁に沿って流体の出入口と反対側の場所 4 The container 437 constituting the stage 435 is a substantially circular flat plate, and has a portion 436 slightly extending outward at one location on the outer periphery, and the bottom of the extension 436. On the wall there are two fluid inlets 439, 441 and one outlet 441 between them (the inlet and outlet may be reversed). In the cavity 447 through which the fluid passes, there are a number of pin-shaped fins (or lips) 449 that create turbulence. In the cavity 447, there are three guide walls 451a, 451b, and 451c. The two outer guide walls 4 5 1 a and 4 5 1 b allow the fluid from the inlets 4 3 9 and 4 4 1 to pass along the periphery of the vessel 4 3 7 and on the opposite side of the fluid inlet and outlet 4
5 3まで案内する 2つの流路 4 5 4 a、 4 5 4 bと、 その場所 4 5 3で合流 した流体を空洞 4 4 7の中央部を通って出口 4 4 3寄りの場所へ案内する流 路 4 5 4 cを形成する。 第 3のガイ ド壁 4 5 1 cは、 略 U字形をしており、 流路 4 5 4 cから出て来る流体を出口 4 4 3付近で折り返させて逆方向へ流 す流路 4 5 4 d、 4 5 4 eと、 折り返させた流体を、 ガイ ド壁 4 5 1 a及び 4 5 1 bにぶつけ更に折り返させて出口 4 4 3に流す流路 4 5 4 f、 4 5 4 g、 4 5 4 hとを形成する。 流路 4 5 4 a〜4 5 4 hの幅は、 空洞全体を均 等の流速で流体が流れるように設定されている。 尚、 参照番号 445 a、 4 45 b, 445 cは、 ステージ 435の上面に載置される基板を昇降させる ためのピン(図示せず)を通すための貫通孔である。 Guides to 5 3 Two flow paths 4 5 4 a and 4 5 4 b and the fluid that merges at that location 4 5 3 is guided through the center of the cavity 4 4 7 to the location near the exit 4 4 3 Channel 4 5 4 c is formed. The third guide wall 45 1 c has a substantially U-shape, and the flow coming out of the flow path 45 54 c is turned around the outlet 44 3 to flow in the opposite direction. 4 d, 4 5 4 e, and the fluid that was turned back is crushed against guide walls 4 5 1 a and 4 5 1 b. To form 4 5 4 h. The width of the flow channel 4 5 4 a to 4 5 4 h is equal to the entire cavity. The fluid is set to flow at such a flow rate. Reference numerals 445 a, 445 b, and 445 c are through holes for passing pins (not shown) for elevating a substrate placed on the upper surface of the stage 435.
この実施形態によれば、 ガイ ド壁 45 1、 454により流体が空洞 447 を蛇行して略均等な流速で全体を巡る。 換言すれば、 空洞 447の周縁を流 れる流体を折り返して強制的に均等な流速でその中央に流す、 又は空洞 44 7の中央を流れる流体を折り返して強制的に均等な流速でその両側に流すこ とで、 均熱性を向上することができる。 また、 多数のフィン 449によって 生じる乱流により、 更に均熱性を向上する。 また、 流体の入口 43 9、 44 1と出口 443を同一の場所に備えるので、 配管を 1箇所に集めることがで き、 配管し易くなる。  According to this embodiment, the guide walls 451 and 454 allow the fluid to meander through the cavity 447 and circulate at a substantially uniform flow rate. In other words, the fluid flowing around the periphery of the cavity 447 is turned back and forced to flow to the center at a uniform flow rate, or the fluid flowing to the center of the cavity 447 is turned back and forced to flow at both sides at an even flow rate. Thereby, the heat uniformity can be improved. Further, the turbulence generated by the large number of fins 449 further improves the heat uniformity. Further, since the fluid inlets 439, 441 and the outlet 443 are provided in the same place, the pipes can be collected at one place, and the pipes can be easily piped.
図 32は、 図 3 1の実施形態の変形例を示す。  FIG. 32 shows a modification of the embodiment of FIG.
この変形例では、 ガイ ド壁 45 1 a、 45 1 b, 45 1 cの間に、 更に補 助的なガイ ド壁 460 a〜 460 dが配置されている。 これらのガイ ド壁 4 5 1 a〜45 1 c及び 460 a〜460 dの数、 形状、 及び配置を適切に設 定することで、 流体の流れを最適化できる。  In this modification, auxiliary guide walls 460a to 460d are further disposed between the guide walls 451a, 451b, and 451c. By appropriately setting the number, shape, and arrangement of these guide walls 451a to 451c and 460a to 460d, fluid flow can be optimized.
図 33は、 本発明の第 18の実施形態にかかる基板温度制御装置のステー ジを構成する容器の断面図である。  FIG. 33 is a cross-sectional view of a container constituting a stage of the substrate temperature control device according to the eighteenth embodiment of the present invention.
ステージ 5 0 1を構成する容器 503には、 例えば第 1の実施形態〜第 1 7の実施形態で使用されるいずれかの容器を採用することができる。 この容 器 503は、 全体が実質的に上下対称に構成されており、 上面 503 A及び 下面 503 Bに、 図 1に示したシート状の薄膜ヒ一夕 505 a、 505 bが 接合されている。 電熱線シ一ト 50 5 a、 5 05 bは、 図示しないウェハに 最も近接することになるので、 加熱の効率が大変良い。 この、 電熱線シート 5 05 a、 5 05 bは、 上面 503 A又は下面 5 03 Bのどちらかの面だけ に接合しても良い。 しかし、 図示のように両面に接合することで、 ステージAs the container 503 constituting the stage 501, for example, any of the containers used in the first to seventeenth embodiments can be adopted. This container 503 is substantially vertically symmetrical as a whole, and the upper surface 503A and the lower surface 503B are joined to the sheet-shaped thin film heaters 505a and 505b shown in FIG. . Since the heating wire sheets 505a and 505b are closest to the wafer (not shown), the heating efficiency is very good. The heating wire sheets 505a and 505b have only one of the upper surface 503A and the lower surface 503B. May be joined. However, by joining to both sides as shown, the stage
5 0 1の上面と下面の温度差を実質的になくすことができるので、 その温度 差によって生じるステージの熱変形を防止することができる。 また、 その観 点から、 流体の入口 5 1 1及び出口 5 1 3は、 図示のように容器周縁部の反 対側端部に設けることが望ましい。 尚、 この図に示す空洞 5 2 5には、 多数 のフィン(又はリブ) 5 0 7が設置されているが、 図 2 7〜 3 2に示したよう な作動流体を巡らせるためのガイ ド壁を配置しても良いのは言うまでもない。 図 3 4は、 本発明の第 1 9の実施形態にかかる基板温度制御装置のステー ジを構成する容器の断面図である。 Since the temperature difference between the upper surface and the lower surface of 501 can be substantially eliminated, thermal deformation of the stage caused by the temperature difference can be prevented. Also, from the viewpoint, it is desirable that the fluid inlet 511 and the fluid outlet 513 are provided at opposite ends of the container peripheral edge as shown in the figure. Although a number of fins (or ribs) 507 are installed in the cavity 525 shown in this figure, guide walls for circulating the working fluid as shown in FIGS. It is needless to say that may be arranged. FIG. 34 is a sectional view of a container constituting a stage of the substrate temperature control device according to the nineteenth embodiment of the present invention.
このステージ 5 0 9を構成する容器 5 2 9にも、 例えば図 3 3と同様に、 第 1の実施形態〜第 1 7の実施形態で使用されるいずれかの容器を採用する ことができ、 その全体が実質的に上下対称に構成されている。 容器 5 2 9内 部の空洞 5 3 1の中央には、 容器 5 2 9の上面及び下面に平行なヒー夕プレ —ト 5 3 3が備えられている。 このヒー夕プレート 5 3 3により、 空洞 5 3 1は 2層に分けられ、 上面側の空洞 5 3 1 aと下面側の空洞 5 3 1 bが構成 される。 各空洞 5 3 1 a、 5 3 1 bには、 同じ流体が流れる。 容器 5 2 9の 周縁部の反対側端部には、 各空洞 5 3 1 a、 5 3 1 bへ流体を供給する各入 口 5 3 5 a、 5 3 5 bと、 各空洞 5 3 1 a、 5 3 1 bから流体を排出する各 出口 5 3 7 a、 5 3 7 bを備える。 各入口 5 3 5 a、 5 3 5 bと各出口 5 3 7 a、 5 3 7 bは、 互いに上下対称に配置される。  Any one of the containers used in the first to seventeenth embodiments can be adopted as the container 529 constituting the stage 509, for example, as in FIG. The whole is substantially vertically symmetrical. At the center of the cavity 531 inside the container 5229, a heat plate 533 parallel to the upper and lower surfaces of the container 5229 is provided. The cavity 531 is divided into two layers by the heater plate 533, and a cavity 531a on the upper surface side and a cavity 531b on the lower surface side are formed. The same fluid flows through each of the cavities 531a and 531b. At the opposite end of the periphery of the container 529, the respective inlets 535a and 535b for supplying fluid to the cavities 531a and 531b, and the respective cavities 531 a, 531b are provided with outlets 537a, 537b for discharging fluid from b. The inlets 535a and 535b and the outlets 537a and 537b are arranged symmetrically with each other.
ヒ一夕プレート 5 3 3は、 載置される基板(図示せず)の加熱又は各空洞 5 3 1 a、 5 3 1 bを流れる流体の温度制御に利用され、 その内部全体に亘っ て、 電熱線ヒ一夕 5 3 9が埋め込まれている。 このヒ一夕プレート 5 3 3は、 空洞 5 3 1の容積を均等に分けるように、 換言すれば、 容器 5 2 9内部の構 成が上下対称になるようにすれば、 複数設置することができる。 ヒー夕プレ ート 5 3 3には、 その上面側及び下面側を流れる流体が互いに往来できるよ うな開口穴(図示せず)を備えても良い。 The heating plate 533 is used for heating a substrate (not shown) to be placed or controlling the temperature of the fluid flowing through each cavity 531a, 531b. The heating wire is embedded 5 3 9. A plurality of the plates 5 3 3 can be installed so that the volume of the cavities 5 3 1 is equally divided, in other words, if the configuration inside the container 5 29 is vertically symmetrical. it can. Hee Yu Pre The port 5333 may be provided with an opening (not shown) through which fluid flowing on the upper surface side and the lower surface side can flow to each other.
尚、 この容器 5 2 9の上面及び下面には、 図 3 3に示した薄膜シート 5 0 5 a、 5 0 5 bを接合することもできる。 また、 各入口 5 3 5 a、 5 3 5 b と各出口 5 3 7 a、 5 3 7 bは、 互いに上下対称になれば、 各機能を逆にし ても良い。 例えば、 空洞 5 3 1 bの入口 5 3 5 bを出口にし、 出口 5 3 7 b を入口にする。 このようにすることで、 上面側の空洞 5 3 1 aと下面側の空 洞 5 3 1 bを流れる流体の向きは、 互いに逆向きなので、 容器 5 2 9全体の 温度分布がより均等になることが期待できる。  Incidentally, the thin film sheets 505a and 505b shown in FIG. 33 can also be joined to the upper and lower surfaces of the container 529. The functions of the inlets 535a and 535b and the outlets 537a and 537b may be reversed as long as they are vertically symmetrical. For example, let the entrance 5 35 b of the cavity 5 3 1 b be the exit and the exit 5 3 7 b be the entrance. In this way, the directions of the fluid flowing through the cavity 531a on the upper surface side and the cavity 531b on the lower surface side are opposite to each other, so that the temperature distribution of the entire vessel 529 becomes more uniform. I can expect that.
この実施形態においては、 例えば上述のようなの容器を 2つ用意し、 それ らの間に薄膜シート 5 0 5又はヒートプレート 5 3 3を介在させても良い。 以上、 本発明の好適な幾つかの実施形態を説明したが、 これらは本発明の説明の ための例示であって、本発明の範囲をこれらの実施例にのみ限定する趣旨ではない。 本発明は、 他の種々の形態でも実施することが可能である。  In this embodiment, for example, two containers as described above may be prepared, and the thin film sheet 505 or the heat plate 533 may be interposed therebetween. As described above, some preferred embodiments of the present invention have been described, but these are exemplifications for describing the present invention, and are not intended to limit the scope of the present invention only to these examples. The present invention can be implemented in other various forms.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板に面する 主面を有 した平板状のステージ を備え、 前記ステージは平板状の容器を有し、 前記容器は、 作動流体を流すための 空洞と、 この空洞に前記作動流体を流入させるための入口と、 前記空洞から 前記作動流体を排出するための出口と、 前記空洞内に前記作動流体の乱流を 生じさせるための乱流機構とを有している基板温度制御装置。  1. A flat stage having a main surface facing a substrate is provided, the stage has a flat container, the container has a cavity for flowing a working fluid, and the working fluid flows into the cavity. And a turbulence mechanism for generating a turbulent flow of the working fluid in the cavity.
2 . 前記乱流機構が、 前記空洞内で前記容器の前記主面の側の壁と逆側 の壁とを繋いでいる複数のリブを有している請求項 1記載の基板温度制御装  2. The substrate temperature control device according to claim 1, wherein the turbulence mechanism has a plurality of ribs connecting the wall on the main surface side and the wall on the opposite side of the container in the cavity.
3 . 前記乱流機構が、 前記作動流体を前記空洞に流入するときにジエツ ト流にするジエツ トロを有する請求項 1記載の基板温度制御装置。 3. The substrate temperature control device according to claim 1, wherein the turbulence mechanism has a jet that makes the working fluid jet flow when flowing into the cavity.
4 . 前記乱流機構が、 前記作動流体を前記空洞に流入するときに所定の 旋回方向へ向けさせる旋回機構を有している請求項 1記載の基板温度制御装  4. The substrate temperature control device according to claim 1, wherein the turbulent flow mechanism has a swirl mechanism that directs the working fluid in a predetermined swirl direction when flowing into the cavity.
5 . 前記入口と出口の配置が次の(1 )、 (2 )及び(3 )、 5. The arrangement of the inlet and outlet is as follows (1), (2) and (3),
( 1 ) 前記入口が前記容器の周縁部に設けられ、 前記出口が前記容器の中央 部に設けられている、  (1) The inlet is provided at a peripheral portion of the container, and the outlet is provided at a central portion of the container.
(2 ) 前記入口が前記容器の中央部に設けられ、 前記出口が前記容器の周縁 部に設けられている、  (2) the inlet is provided at a central portion of the container, and the outlet is provided at a peripheral portion of the container.
( 3 ) 前記入口及び前記出口がそれそれ前記容器の周縁部に設けられている、 のいずれか一方である請求項 1記載の基板温度制御装置。  (3) The substrate temperature control device according to (1), wherein the inlet and the outlet are each provided at a peripheral portion of the container.
6 . 前記入口が前記容器の外周壁に、 前記容器の前記主面側の壁と平行 な方向を向いて設けられた請求項 5記載の基板温度制御装置。  6. The substrate temperature control device according to claim 5, wherein the inlet is provided on an outer peripheral wall of the container in a direction parallel to the wall on the main surface side of the container.
7 . 前記入口が前記周縁部に設けられ、 前記周縁部が、 前記基板の外周 外へ張り出した位置にある請求項 5記載の基板温度制御装置。 7. The substrate temperature control device according to claim 5, wherein the inlet is provided in the peripheral portion, and the peripheral portion is located at a position protruding outside the outer periphery of the substrate.
8 . 前記ステージが、 前記容器の前記主面側の面及び逆側の面に設けら れたシ一ト状のヒー夕を更に有する請求項 1記載の基板温度制御装置。 8. The substrate temperature control device according to claim 1, wherein the stage further includes a sheet-shaped heater provided on the surface on the main surface side and the surface on the opposite side of the container.
9 . 前記作動流体を前記容器に供給するための作動流体システムを更に 備え、 この作動流体システムが、 基板冷却用の作動流体のみを供給する請求 項 8記載の基板温度制御装置。  9. The substrate temperature control device according to claim 8, further comprising a working fluid system for supplying the working fluid to the container, wherein the working fluid system supplies only a working fluid for cooling the substrate.
1 0 . 基板に面する主面を有した平板状のステージを備え、  10. Equipped with a flat stage having a main surface facing the substrate,
前記ステージは平板状の容器を有し、 前記容器は、 作動流体を流すための 空洞と、 この空洞に前記作動流体を流入させるための入口と、 前記空洞から 前記作動流体を排出するための出口とを有し、  The stage has a flat container, the container has a cavity for flowing a working fluid, an inlet for flowing the working fluid into the cavity, and an outlet for discharging the working fluid from the cavity. And
前記入口と出口の配置が次の(1 )、 (2 )及び(3 )、  The arrangement of the inlet and outlet is as follows (1), (2) and (3),
( 1 ) 前記入口が前記容器の周縁部に設けられ、 前記出口が前記容器の中央 部に設けられている、  (1) The inlet is provided at a peripheral portion of the container, and the outlet is provided at a central portion of the container.
( 2 ) 前記入口が前記容器の中央部に設けられ、 前記出口が前記容器の周縁 部に設けられている、  (2) The inlet is provided at a central portion of the container, and the outlet is provided at a peripheral portion of the container.
( 3 ) 前記入口及び前記出口がそれそれ前記容器の周縁部に設けられている、 のいずれか一方である基板温度制御装置。  (3) The substrate temperature control device, wherein the inlet and the outlet are respectively provided at a peripheral portion of the container.
1 1 . 前記容器が、 前記空洞内に前記作動流体の乱流を生じさせるため の乱流機構を更に有している請求項 1 0記載の基板温度制御装置。  11. The substrate temperature control device according to claim 10, wherein the container further has a turbulent flow mechanism for generating a turbulent flow of the working fluid in the cavity.
1 2 . 前記ステージが、 前記容器の前記主面側の面及び逆側の面に設け られたシ一ト状のヒー夕を更に有する請求項 1 0記載の基板温度制御装置。  12. The substrate temperature control device according to claim 10, wherein the stage further includes a sheet-shaped heater provided on the surface on the main surface side and the surface on the opposite side of the container.
1 3 . 前記作動流体を前記容器に供給するための作動流体システムを更 に備え、 この作動流体システムが、 基板冷却用の作動流体のみを供給する請 求項 1 2記載の基板温度制御装置。  13. The substrate temperature control device according to claim 12, further comprising a working fluid system for supplying the working fluid to the container, wherein the working fluid system supplies only a working fluid for cooling the substrate.
1 4 . 基板に面する主面を有した平板状のステージを備え、  1 4. Equipped with a flat stage having a main surface facing the substrate,
前記ステージは平板状の容器を有し、 前記容器は、 作動流体を流すための 空洞と、 前記空洞内で前記容器の前記主面の側の壁と逆側の壁とを繋いでい る複数のリブとを有している基板温度制御装置。 The stage has a flat container, and the container is provided for flowing a working fluid. A substrate temperature control device comprising: a cavity; and a plurality of ribs connecting a wall on the main surface side and an opposite wall of the container in the cavity.
1 5 . 前記容器が、 前記空洞内に前記作動流体の乱流を生じさせるため の乱流機構を更に有している請求項 1 4記載の基板温度制御装置。  15. The substrate temperature control device according to claim 14, wherein the container further has a turbulent flow mechanism for generating a turbulent flow of the working fluid in the cavity.
1 6 . 前記容器が、 前記空洞に前記作動流体を流入させるための入口と、 前記空洞から前記作動流体を排出するための出口とを有し、 前記入口と出口 の配置が次の(1 )、 (2 )及び(3 )、  16. The container has an inlet for allowing the working fluid to flow into the cavity, and an outlet for discharging the working fluid from the cavity, and the arrangement of the inlet and the outlet is as follows (1). , (2) and (3),
( 1 ) 前記入口が前記容器の周縁部に設けられ、 前記出口が前記容器の中央 部に設けられている、  (1) The inlet is provided at a peripheral portion of the container, and the outlet is provided at a central portion of the container.
(2 ) 前記入口が前記容器の中央部に設けられ、 前記出口が前記容器の周縁 部に設けられている、  (2) the inlet is provided at a central portion of the container, and the outlet is provided at a peripheral portion of the container.
( 3) 前記入口及び前記出口がそれそれ前記容器の周縁部に設けられている、 のいずれか一方である請求項 1 4記載の基板温度制御装置。  (3) The substrate temperature control device according to claim 14, wherein the inlet and the outlet are each provided at a peripheral portion of the container.
1 7 . 前記ステージが、 前記容器の前記主面側の面及び逆側の面に設け られたシート状のヒー夕を更に有する請求項 1 4記載の基板温度制御装置。  17. The substrate temperature control device according to claim 14, wherein the stage further includes a sheet-shaped heater provided on the surface on the main surface side and the surface on the opposite side of the container.
1 8 . 前記作動流体を前記容器に供給するための作動流体システムを更 に備え、 この作動流体システムが、 基板冷却用の作動流体のみを供給する請 求項 1 5記載の基板温度制御装置。  18. The substrate temperature control device according to claim 15, further comprising a working fluid system for supplying the working fluid to the container, wherein the working fluid system supplies only a working fluid for cooling the substrate.
1 9 . 基板に面する主面を有した平板状のステージを備え、  1 9. Equipped with a flat stage having a main surface facing the substrate,
前記ステージは、 作動流体を流すための空洞を内部にもった平板状の容器 と、 前記容器の前記主面側の面及び逆側の面の双方に設けられたシート状の ヒー夕とを有している基板温度制御装置。  The stage includes a flat container having a cavity for flowing a working fluid therein, and a sheet-shaped heater provided on both the main surface and the opposite surface of the container. Substrate temperature control device.
2 0 . 前記容器が、 前記空洞内で前記容器の前記主面の側の壁と逆側の 壁とを繋いでいる複数のリブを有している請求項 1 9記載の基板温度制御装 20. The substrate temperature control device according to claim 19, wherein the container has a plurality of ribs connecting the wall on the main surface side and the wall on the opposite side of the container in the cavity.
2 1 . 前記容器が、 前記空洞内に前記作動流体の乱流を生じさせるため の乱流機構を更に有している請求項 1 9記載の基板温度制御装置。 21. The substrate temperature control device according to claim 19, wherein the container further has a turbulence mechanism for causing a turbulence of the working fluid in the cavity.
2 2 . 前記容器が、 前記空洞に前記作動流体を流入させるための入口と、 前記空洞から前記作動流体を排出するための出口とを有し、 前記入口と出口 の配置が次の(1 )、 (2)及び(3 )、  22. The container has an inlet for allowing the working fluid to flow into the cavity, and an outlet for discharging the working fluid from the cavity, and the arrangement of the inlet and the outlet is as follows (1). , (2) and (3),
( 1 ) 前記入口が前記容器の周縁部に設けられ、 前記出口が前記容器の中央 部に設けられている、  (1) The inlet is provided at a peripheral portion of the container, and the outlet is provided at a central portion of the container.
(2) 前記入口が前記容器の中央部に設けられ、 前記出口が前記容器の周縁 部に設けられている、  (2) the inlet is provided at a central portion of the container, and the outlet is provided at a peripheral portion of the container.
( 3) 前記入口及び前記出口がそれそれ前記容器の周縁部に設けられている、 のいずれか一方である請求項 1 9記載の基板温度制御装置。  (3) The substrate temperature control device according to (19), wherein the inlet and the outlet are each provided at a peripheral portion of the container.
2 3 . 前記作動流体を前記容器に供給するための作動流体システムを更 に備え、 この作動流体システムが、 基板冷却用の作動流体のみを供給する請 求項 1 9記載の基板温度制御装置。  23. The substrate temperature control apparatus according to claim 19, further comprising a working fluid system for supplying the working fluid to the container, wherein the working fluid system supplies only a working fluid for cooling the substrate.
2 4 . 基板を載置するためのステージを備え、  2 4. Equipped with a stage for mounting the substrate,
前記ステージが、 前記基板直下の領域に広がった流路を内部にもった容器 を有し、  The stage has a container having a flow path that extends inside a region immediately below the substrate,
前記容器が、 前記流路の周縁部にて作動流体を前記流路に流入させる入口 を有する基板温度制御装置。  The substrate temperature control device, wherein the container has an inlet at a peripheral portion of the flow channel to allow a working fluid to flow into the flow channel.
2 5 . 前記容器が、 前記流路の周縁部にて作動流体を前記流路から流出 させる少なくとも 1つの出口を有する請求項 2 4記載の基板温度制御装置。  25. The substrate temperature control device according to claim 24, wherein the container has at least one outlet for causing a working fluid to flow out of the flow channel at a peripheral portion of the flow channel.
2 6 . 前記入口と出口が前記流路の周縁に沿って交互に配置されている 請求項 2 5記載の基板温度制御装置。  26. The substrate temperature control device according to claim 25, wherein the inlet and the outlet are alternately arranged along a peripheral edge of the flow path.
2 7 . 前記流路が複数の小流路に区分され、 隣り合う小流路では互いに 反対方向に作動流体が流れるように、 前記複数の小流路の各々が前記複数の 入口の各々に繋がっている請求項 2 4記載の基板温度制御装置。 27. Each of the plurality of small passages is divided into a plurality of small passages, and the plurality of small passages are arranged so that the working fluid flows in opposite directions in adjacent small passages. 26. The substrate temperature control device according to claim 24, wherein the device is connected to each of the inlets.
2 8 . 前記流路が、 前記流路の周縁部から中心部へと作動流体を流す複 数の往流路と、 前記流路の中心部から周縁部へと作動流体を流す複数の復流 路とに区分され、 前記往流路と復流路は前記流路の中心部にて連通し且つ交 互に配置され、前記往流路の各々は前記周縁部にて前記入口の各々に繋がり、 前記復流路の各々は前記周縁部にて前記出口の各々に繋がっている請求項 2 6記載の基板温度制御装置。  28. The flow path includes a plurality of outgoing flow paths for flowing a working fluid from a peripheral portion to a central portion of the flow path, and a plurality of return flows for flowing a working fluid from the central portion to the peripheral portion of the flow path. And the outward flow path and the return flow path communicate with each other at the center of the flow path and are arranged alternately, and each of the outward flow paths is connected to each of the inlets at the peripheral edge. 27. The substrate temperature control device according to claim 26, wherein each of said return channels is connected to each of said outlets at said peripheral portion.
2 9 . 前記流路が、 互いに平行に走る複数本の細長い小流路に区分され、 前記小流路は流れ方向が互いに反対である上り流路と下り流路とに分類され、 前記上り流路と前記下り流路は交互に配置され、 前記上り流路の各々は前記 周縁部の一側にて前記入口の各々に繋がり且つ前記周縁部の他側にて前記出 口の各々に繋がり、 前記下り流路の各々は前記周縁部の一側にて前記出口の 各々に繋がり且つ前記周縁部の他側にて前記入口の各々に繋がっている請求 項 2 6記載の基板温度制御装置。  29. The flow path is divided into a plurality of elongated small flow paths that run parallel to each other, and the small flow paths are classified into an upstream flow path and a downstream flow path in which flow directions are opposite to each other, and the upstream flow Roads and the down flow passages are alternately arranged, each of the up flow passages being connected to each of the inlets on one side of the peripheral portion and being connected to each of the outlets on the other side of the peripheral portion, 27. The substrate temperature control device according to claim 26, wherein each of the down flow paths is connected to each of the outlets on one side of the peripheral portion, and is connected to each of the inlets on the other side of the peripheral portion.
3 0 . 前記流路内に多数のフィンが配置されている請求項 2 4記載の基 板温度制御装置。  30. The substrate temperature control device according to claim 24, wherein a number of fins are arranged in the flow path.
3 1 . 前記流路内に綿状又は網状の繊維体が配置されている請求項 2 4 記載の基板温度制御装置。  31. The substrate temperature control device according to claim 24, wherein a flocculent or net-like fibrous body is arranged in the flow path.
3 2 . 前記ステージが、 前記容器の上面に接合された平板形のヒートパ ィプをさらに有する請求項 2 4記載の基板温度制御装置。  32. The substrate temperature control device according to claim 24, wherein the stage further includes a flat heat pipe joined to an upper surface of the container.
3 3 . 前記ステージが、 前記容器の上面及び下面の一方または双方に貼 り付けられた電熱線ヒー夕をさらに有する請求項 2 4記載の基板温度制御装  33. The substrate temperature control device according to claim 24, wherein the stage further includes a heating wire attached to one or both of an upper surface and a lower surface of the container.
3 4 . 前記ステージが、 積層された 2枚の前記容器を有し、 前記 2枚の 容器内での作動流体の流れ方向が容器相互間で反対である請求項 2 4記載の 基板温度制御装置。 34. The stage according to claim 24, wherein the stage has two stacked containers, and a flow direction of a working fluid in the two containers is opposite between the containers. Substrate temperature controller.
3 5 . 基板を載置するためのステージを備え、  3 5. Equipped with a stage for mounting the substrate,
前記ステージが、 前記基板直下の領域に広がった空洞を内部にもった容器 を有し、  The stage has a container having a cavity extending inside a region directly below the substrate,
前記容器が、 前記容器の外周部に設けられた前記空洞に作動流体を供給す る入口と、 前記容器の外周部に設けられた前記空洞から前記作動流体を排出 する出口と、 前記空洞を仕切る 1又は複数のガイ ド壁とを備え、 前記ガイ ド 壁により前記空洞内に屈曲した流路を形成する基板温度制御装置。  An inlet for supplying a working fluid to the cavity provided on an outer peripheral portion of the container, an outlet for discharging the working fluid from the cavity provided on an outer peripheral portion of the container, and a partition for the cavity; A substrate temperature control device, comprising: one or a plurality of guide walls; wherein the guide wall forms a curved flow path in the cavity by the guide walls.
3 6 . 前記空洞内に多数のフィン又はリブが配置されている請求項 3 5 記載の基板温度制御装置。  36. The substrate temperature control device according to claim 35, wherein a number of fins or ribs are arranged in the cavity.
3 7 . 前記ガイ ド壁が、 1又は複数のバイパス穴を備える請求項 3 5記 載の基板温度制御装置。  37. The substrate temperature control device according to claim 35, wherein the guide wall includes one or a plurality of bypass holes.
3 8 . 前記バイパス穴が、 前記複数の流路の屈曲箇所近傍に設けられて いる請求項 3 7記載の基板温度制御装置。  38. The substrate temperature control device according to claim 37, wherein the bypass hole is provided near a bent portion of the plurality of flow paths.
3 9 . 前記ガイ ド壁による前記屈曲した流路の全長を前記作動流体が略 均等な速度で流れる請求項 3 5記載の基板温度制御装置。  39. The substrate temperature control device according to claim 35, wherein the working fluid flows at a substantially uniform speed over the entire length of the curved flow path formed by the guide wall.
4 0 . 前記ガイ ド壁が、 前記入口からの作動流体を、 前記出口付近まで 案内してから前記空洞を巡らせる請求項 3 5記載の基板温度制御装置。  40. The substrate temperature control device according to claim 35, wherein the guide wall guides the working fluid from the inlet to the vicinity of the outlet before circling the cavity.
4 1 . 前記ガイ ド壁が、 前記空洞の中央の流れをその両側へ導く、 又は、 前記空洞の周縁の流れを前記空洞の中央へ導く請求項 4 0記載の基板温度制 御装置。  41. The substrate temperature control device according to claim 40, wherein the guide wall guides a flow at the center of the cavity to both sides thereof, or guides a flow at a peripheral edge of the cavity to the center of the cavity.
4 2 . 前記容器が、 前記入口と前記出口とを略同一の場所に備える請求項 3 5 記載の基板温度制御装置。  42. The substrate temperature control device according to claim 35, wherein the container includes the inlet and the outlet at substantially the same location.
4 3 . 前記容器の上面及び下面に、 シート状のヒー夕が接合されており、 前記ステージの全体が実質的に上下対称に構成されている請求項 3 5記載の基板 温度制御装置。 43. The substrate according to claim 35, wherein a sheet-shaped heater is joined to an upper surface and a lower surface of the container, and the entire stage is substantially vertically symmetric. Temperature control device.
4 4 . 前記容器内には、 シート状のヒー夕を有して、 前記ステージの全 体が実質的に上下対称になっている請求項 1記載の基板温度制御装置。  44. The substrate temperature control device according to claim 1, wherein the container has a sheet-shaped heater in the container, and the whole of the stage is substantially vertically symmetrical.
4 5 . 前記入口又は前記出口は上下対称に設置される請求項 4 6記載の基板温  45. The substrate temperature according to claim 46, wherein the inlet or the outlet is installed vertically symmetrically.
4 6 . 基板を載置するためのステージを備え、 4 6. Equipped with a stage for mounting the substrate,
前記ステージが、 前記基板直下の領域に広がった空洞を内部にもった容器 を 2つ有し、  The stage has two containers each having a cavity extending in a region immediately below the substrate,
いずれか 1つ又は 2つの前記容器が、 前記空洞に作動流体を供給する入口と、 前 記空洞から前記作動流体を排出する出口とを有し、  Any one or two of the containers have an inlet for supplying a working fluid to the cavity, and an outlet for discharging the working fluid from the cavity,
前記 2つの容器の間にシート状のヒー夕を介在する基板温度制御装置。  A substrate temperature control device in which a sheet-shaped heater is interposed between the two containers.
4 7 . 前記入口又は前記出口は上下対称に設置される請求項 4 6記載の基板温 度制御装置。  47. The substrate temperature control device according to claim 46, wherein the inlet or the outlet is installed vertically symmetrically.
PCT/JP1999/000636 1998-02-16 1999-02-15 Apparatus for controlling temperature of substrate WO1999041778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020007006863A KR20010033394A (en) 1998-02-16 1999-02-15 Apparatus for controlling temperature of substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/50138 1998-02-16
JP5013898 1998-02-16
JP10/128581 1998-05-12
JP12858198 1998-05-12

Publications (1)

Publication Number Publication Date
WO1999041778A1 true WO1999041778A1 (en) 1999-08-19

Family

ID=26390584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000636 WO1999041778A1 (en) 1998-02-16 1999-02-15 Apparatus for controlling temperature of substrate

Country Status (3)

Country Link
KR (1) KR20010033394A (en)
TW (1) TW439094B (en)
WO (1) WO1999041778A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176777A (en) * 1999-12-16 2001-06-29 Tokyo Electron Ltd Heating device
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
WO2003103004A2 (en) * 2002-06-03 2003-12-11 Applied Materials, Inc. A cathode pedestal for a plasma etch reactor
JP2006261665A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Gas supply member and processing apparatus employing it
JP2007318120A (en) * 2006-05-15 2007-12-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2008186856A (en) * 2007-01-26 2008-08-14 Hitachi High-Technologies Corp Plasma treatment apparatus and plasma treatment method
JP2009021596A (en) * 2007-07-11 2009-01-29 Semes Co Ltd Plate, device for adjusting temperature of substrate having the plate and apparatus for processing substrate having the device
US7513063B2 (en) 2002-02-28 2009-04-07 Canon Anelva Corporation Substrate processing apparatus
JP2010027675A (en) * 2008-07-15 2010-02-04 Sharp Corp Vapor deposition apparatus
WO2010113875A1 (en) * 2009-03-31 2010-10-07 東京エレクトロン株式会社 Semiconductor fabrication apparatus and temperature adjustment method
JP2012009861A (en) * 2010-06-23 2012-01-12 Asml Netherlands Bv Lithography device and method of cooling lithography device
US8399811B2 (en) 2007-04-26 2013-03-19 Komatsu Ltd. Stage for substrate temperature control apparatus
JP2014011313A (en) * 2012-06-29 2014-01-20 Kyocera Corp Passage member, heat exchanger employing the same and semiconductor manufacturing apparatus
JP2014160790A (en) * 2013-01-24 2014-09-04 Tokyo Electron Ltd Substrate processing apparatus and mounting table
JP2015144242A (en) * 2013-12-24 2015-08-06 東京エレクトロン株式会社 Stage, manufacturing method of stage, and heat exchanger
JP2016186570A (en) * 2015-03-27 2016-10-27 株式会社ニコン Movable body apparatus, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
JP2018201027A (en) * 2012-07-18 2018-12-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pedestal with multi-zone temperature control and multiple purge capabilities
JP2019507500A (en) * 2016-02-08 2019-03-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated System, apparatus and method for chemical polishing
JP2019515506A (en) * 2016-05-06 2019-06-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support for whole area reverse flow heat exchange
JP2019110253A (en) * 2017-12-20 2019-07-04 日本特殊陶業株式会社 Holding device
CN111868510A (en) * 2018-04-03 2020-10-30 株式会社V技术 Temperature adjustment device for stone surface plate and examination device provided with same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794987B1 (en) * 2004-12-14 2008-01-16 김형우 A heating apparatus of wafer deposition substrate
KR101106546B1 (en) * 2008-12-31 2012-01-20 주식회사 청수엔지니어링 A pond water quality purification apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716351U (en) * 1993-08-20 1995-03-17 日新電機株式会社 Workpiece holding device
JPH07130830A (en) * 1993-11-05 1995-05-19 Sony Corp Semiconductor manufacturing appartatus
JPH07263528A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Wafer holding device and holding method
JP2536989B2 (en) * 1991-04-25 1996-09-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Liquid film interface cooling chuck for semiconductor wafer processing
JPH09232415A (en) * 1996-02-16 1997-09-05 Novellus Syst Inc Substrate cooling apparatus, chemical vapor reaction apparatus and substrate temperature control method
JPH10256344A (en) * 1997-03-13 1998-09-25 Tokyo Electron Ltd Method of cooling substrate, substrate treating apparatus and substrate transferring apparatus
JPH10284382A (en) * 1997-04-07 1998-10-23 Komatsu Ltd Temperature control equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536989B2 (en) * 1991-04-25 1996-09-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Liquid film interface cooling chuck for semiconductor wafer processing
JPH0716351U (en) * 1993-08-20 1995-03-17 日新電機株式会社 Workpiece holding device
JPH07130830A (en) * 1993-11-05 1995-05-19 Sony Corp Semiconductor manufacturing appartatus
JPH07263528A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Wafer holding device and holding method
JPH09232415A (en) * 1996-02-16 1997-09-05 Novellus Syst Inc Substrate cooling apparatus, chemical vapor reaction apparatus and substrate temperature control method
JPH10256344A (en) * 1997-03-13 1998-09-25 Tokyo Electron Ltd Method of cooling substrate, substrate treating apparatus and substrate transferring apparatus
JPH10284382A (en) * 1997-04-07 1998-10-23 Komatsu Ltd Temperature control equipment

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176777A (en) * 1999-12-16 2001-06-29 Tokyo Electron Ltd Heating device
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US7513063B2 (en) 2002-02-28 2009-04-07 Canon Anelva Corporation Substrate processing apparatus
KR100892900B1 (en) * 2002-02-28 2009-04-15 캐논 아네르바 가부시키가이샤 A heat exchanger and a substrate processing apparatus having the heat exchanger
WO2003103004A2 (en) * 2002-06-03 2003-12-11 Applied Materials, Inc. A cathode pedestal for a plasma etch reactor
WO2003103004A3 (en) * 2002-06-03 2004-05-13 Applied Materials Inc A cathode pedestal for a plasma etch reactor
JP2006261665A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Gas supply member and processing apparatus employing it
JP4590363B2 (en) * 2005-03-16 2010-12-01 日本碍子株式会社 Gas supply member and processing apparatus using the same
JP2007318120A (en) * 2006-05-15 2007-12-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2010212720A (en) * 2006-05-15 2010-09-24 Asml Netherlands Bv Lithography apparatus
JP2008186856A (en) * 2007-01-26 2008-08-14 Hitachi High-Technologies Corp Plasma treatment apparatus and plasma treatment method
US8955579B2 (en) 2007-01-26 2015-02-17 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method
JP4564973B2 (en) * 2007-01-26 2010-10-20 株式会社日立ハイテクノロジーズ Plasma processing equipment
US8399811B2 (en) 2007-04-26 2013-03-19 Komatsu Ltd. Stage for substrate temperature control apparatus
JP2009021596A (en) * 2007-07-11 2009-01-29 Semes Co Ltd Plate, device for adjusting temperature of substrate having the plate and apparatus for processing substrate having the device
JP2010027675A (en) * 2008-07-15 2010-02-04 Sharp Corp Vapor deposition apparatus
JP2010258404A (en) * 2009-03-31 2010-11-11 Tokyo Electron Ltd Semiconductor manufacturing apparatus and temperature control method
KR101310494B1 (en) 2009-03-31 2013-09-24 도쿄엘렉트론가부시키가이샤 Semiconductor fabrication apparatus and temperature adjustment method
US8818545B2 (en) 2009-03-31 2014-08-26 Tokyo Electron Limited Semiconductor fabrication apparatus and temperature adjustment method
WO2010113875A1 (en) * 2009-03-31 2010-10-07 東京エレクトロン株式会社 Semiconductor fabrication apparatus and temperature adjustment method
JP2012009861A (en) * 2010-06-23 2012-01-12 Asml Netherlands Bv Lithography device and method of cooling lithography device
JP2014011313A (en) * 2012-06-29 2014-01-20 Kyocera Corp Passage member, heat exchanger employing the same and semiconductor manufacturing apparatus
JP2018201027A (en) * 2012-07-18 2018-12-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Pedestal with multi-zone temperature control and multiple purge capabilities
JP2014160790A (en) * 2013-01-24 2014-09-04 Tokyo Electron Ltd Substrate processing apparatus and mounting table
JP2015144242A (en) * 2013-12-24 2015-08-06 東京エレクトロン株式会社 Stage, manufacturing method of stage, and heat exchanger
JP2016186570A (en) * 2015-03-27 2016-10-27 株式会社ニコン Movable body apparatus, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
JP2019507500A (en) * 2016-02-08 2019-03-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated System, apparatus and method for chemical polishing
JP2019515506A (en) * 2016-05-06 2019-06-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support for whole area reverse flow heat exchange
US10648080B2 (en) 2016-05-06 2020-05-12 Applied Materials, Inc. Full-area counter-flow heat exchange substrate support
JP2019110253A (en) * 2017-12-20 2019-07-04 日本特殊陶業株式会社 Holding device
CN111868510A (en) * 2018-04-03 2020-10-30 株式会社V技术 Temperature adjustment device for stone surface plate and examination device provided with same

Also Published As

Publication number Publication date
TW439094B (en) 2001-06-07
KR20010033394A (en) 2001-04-25

Similar Documents

Publication Publication Date Title
WO1999041778A1 (en) Apparatus for controlling temperature of substrate
JP3879032B2 (en) Cooling system
US5019880A (en) Heat sink apparatus
US5230656A (en) Mixer ejector flow distributor
JPH031561A (en) End-section inflow-outflow liquid heat exchanger
RO108538B1 (en) Process and plant for substance exchange between liquid and gaseous mediums
JP2011525051A (en) Cooling device for electronic elements
CN107636317A (en) Fan head and bladeless fan
WO2020034937A1 (en) Falling film evaporator
JP2004317079A (en) Evaporator
EP1703245B1 (en) Heat exchanger
JP4526780B2 (en) Food equipment
US11739760B2 (en) Blower
TWI709203B (en) Chamber cooling device and semiconductor processing equipment
JP3710587B2 (en) Gas injection head
FI107435B (en) Centrifugal separator device and process for separating particles from hot gas of a fluidized bed reactor
KR20240047478A (en) carburetor
KR101236445B1 (en) Air conditioning apparatus having thermoelectric-module
JP2003074892A (en) Air conditioning apparatus
JPH09318017A (en) Gas mixing structure
JPH10246535A (en) Refrigerant distributor
WO2022120947A1 (en) Air conditioner indoor unit and air conditioner
JP2000130795A (en) Air conditioning equipment
CN217399196U (en) Soft finishing machine of cloth
JPS5888206A (en) Flow direction controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007006863

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09622218

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020007006863

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007006863

Country of ref document: KR