WO1999034276A2 - System and method for constructing three-dimensional images using camera-based gesture inputs - Google Patents

System and method for constructing three-dimensional images using camera-based gesture inputs Download PDF

Info

Publication number
WO1999034276A2
WO1999034276A2 PCT/IB1998/002092 IB9802092W WO9934276A2 WO 1999034276 A2 WO1999034276 A2 WO 1999034276A2 IB 9802092 W IB9802092 W IB 9802092W WO 9934276 A2 WO9934276 A2 WO 9934276A2
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
system user
user
image display
video image
Prior art date
Application number
PCT/IB1998/002092
Other languages
French (fr)
Other versions
WO1999034276A3 (en
Inventor
Damian Lyons
Original Assignee
Koninklijke Philips Electronics N.V.
Philips Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V., Philips Ab filed Critical Koninklijke Philips Electronics N.V.
Priority to JP53470599A priority Critical patent/JP2001517345A/en
Priority to EP98959094A priority patent/EP0960368A2/en
Priority to KR1019997007662A priority patent/KR100650296B1/en
Publication of WO1999034276A2 publication Critical patent/WO1999034276A2/en
Publication of WO1999034276A3 publication Critical patent/WO1999034276A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/01 - G06F3/16
    • G06F3/005Input arrangements through a video camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1087Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals comprising photodetecting means, e.g. a camera
    • A63F2300/1093Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals comprising photodetecting means, e.g. a camera using visible light
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/69Involving elements of the real world in the game world, e.g. measurement in live races, real video

Definitions

  • the present invention relates generally to multimedia and virtual reality applications, and, more particularly to a system and method for constructing three-dimensional images using camera-based gesture inputs.
  • Multimedia and virtual reality applications permit exciting interaction between a user and a computer.
  • current computer/user interfaces present a barrier to simplistic user interactivity and thus, consumer acceptance of multimedia and virtual reality applications.
  • computer/user interfaces would combine an intuitive interaction format with a broad range of interaction capabilities. Practically, however, these two features conflict. For example, a computer keyboard offers broad interaction capabilities but is not intuitive, whereas a television remote control is more intuitive but offers limited interaction capabilities. Even more flexible interfaces, such as an instrumented body suit, can be both cumbersome and expensive.
  • Such an interface system 10 comprises a blue wall 12 in which a user 14 stands in front of, permitting two-dimensional silhouette extraction of user 14 and chromakeying of the silhouette.
  • System 10 further includes a video camera 16 for identifying the two-dimensional, user silhouette and for producing a video signal.
  • a microprocessor 18 of a computer identifies the two-dimensional, user silhouette seen by video camera 16, but only as a two-dimensional shape. Thus, motions of user 14 are only understood by microprocessor 18 in terms of the changing image coordinates of the silhouette.
  • Microprocessor 18 displays an image of user 14 on a television display 20.
  • the image displayed on television 20 consists of a two-dimensional scene into which the user's image has been chromakeyed.
  • User 14 can interact with the displayed scene by adopting a specific pose, e.g., hands-over-head, or by moving so that a portion of the user's silhouette touches a designated set of image coordinates making it appear as if user 14 touched a displayed object.
  • the interface system shown in FIG. 1 provides an easy-to-use, inexpensive interface with multimedia and virtual reality applications.
  • the interface system only permits two-dimensional interaction with computer-displayed objects, restricting the capabilities of the interface to two dimensions.
  • all of the computer-displayed objects are at the same depth in the window surrounding the user's silhouette.
  • a conventional two-dimensional silhouette extraction process used by the system shown in FIG. 1 comprises both a hardware process (above the dashed line) and a software process (below the dashed line), wherein computer microprocessor 18 performs the software process steps.
  • the hardware process involves a step 22 of inputting an analog video camera signal, followed by a step 24 of digitizing the analog camera signal to produce a gray-scale binary data signal.
  • the hardware process further comprises a step 26 of adjusting the resolution (high or low) of the video camera, and a step 28 of restricting the camera view to a window of the image of interest, i.e., the user's image.
  • the hardware process next comprises a dynamic threshold step 30 where the gray-scale binary data signal is converted into digital binary data, e.g., "1" or "0.”
  • the hardware process determines the edges (silhouette) of the user's image, and, based on the edge data, adjusts the picture size (step 34) so to adjust the resolution accordingly at step 26.
  • the software process involves a first step 36 of subtracting the background from the edge data of step 34, leaving only an image contour of the user's image.
  • the background is a picture of an empty scene as seen by the camera, and is provided at step 38.
  • the software further comprises a step of joining together all of the edge data of the user's image, providing a single contour around the user's image.
  • the software process also comprises an identification step 42 for determining whether the user image contour represents a person, an animal, etc., and a silhouette feature step 44 for identifying the silhouette features (in x, y coordinates) of the user, e.g., head, hands, feet, arms, legs, etc.
  • the software process utilizes the contour identification data in order to calculate a bounding box around the user.
  • the bounding box data is provided to the window restricting step 28 for restricting the size of the camera window around the user, and thus, increase the speed of the extraction process.
  • Still another approach includes a method for real-time recognition of a human image, as disclosed Japanese Patent Abstract Publication No. 07-038873 ("JP 07-038873").
  • JP 07-038873 describes three-dimensional graphical generation of a person that detects the expression, rotation of the head, motion of the fingers, and rotation of the human body.
  • JP 07-038873 is limited to graphical model generation of the human body.
  • JP 07-38873 focuses on using three-dimensional graphical animation of a user primarily for teleconferencing purposes, wherein the user cannot control objects in a computer-generated scene.
  • the reference discloses using three-dimensional animation of a remote user for teleconferencing purposes, as opposed to a three-dimensional animation of a local user.
  • PCT 96/21321 A final approach, as found in International Patent Application (PCT) WO 96/21321 (“PCT 96/21321”), consists of creating a three-dimensional simulation of an event (e.g., a football game), in real-time or storing it on a CD ROM, using cameras and microphones.
  • the system disclosed in PCT 96/21321 merely replays three- dimensional scenes of the event as they are viewed by the cameras.
  • users of the PCT 96/21321 system can only change their perspective of the three-dimensional scenes and are unable to control objects in the scenes.
  • An object of the present invention is to address the problems encountered by the two-dimensional interface systems and the alternative approaches proposed by the Media Lab at the Massachusetts Institute of Technology and the other related art discussed above. Another object is to provide a three-dimensional display of computer-generated objects so that the objects occupy the three-dimensional space around the computer users and the computer users can interact with and control the objects through normal body movements. A final object is to provide multimedia and virtual reality applications which three- dimensionally displayed computer users can interact and control through normal body movements.
  • the invention comprises a system for constructing three-dimensional images using camera-based gesture inputs of a user of the system, including: a computer-readable memory means; means for generating video signals indicative of the gestures of the system user and an interaction area surrounding the system user; means for displaying video images, the video image display means being positioned in front of the system user; and means for processing the video signals, in accordance with a program stored in the computer-readable memory means, to determine the three-dimensional positions of the body and principle body parts of the system user, wherein the video signal processing means constructs three-dimensional images of the system user and interaction area on the video image display means based upon the three-dimensional positions of the body and principle body parts of the system user, the video image display means displays three-dimensional graphical objects superimposed to appear as if they occupy the interaction area, and movement by the system user causes apparent movement of the superimposed, three-dimensional objects displayed on the video image display means.
  • the present invention comprises a method for constructing three-dimensional images using camera-based gesture inputs of a user of a computer system having a computer-readable memory and video image display connected to a microprocessor using a program stored in the computer-readable memory, the method comprising the steps of: generating video signals indicative of the gestures of the system user and an interaction area surrounding the system user; processing the video signals in the microprocessor to determine the three-dimensional positions of the body and principle body parts of the system user; using the microprocessor to construct three-dimensional images of the system user and interaction area on the video image display based upon the three- dimensional positions of the body and principle body parts of the system user; and utilizing the microprocessor to display on the video image display three-dimensional graphical objects superimposed to appear as if they occupied the interaction area, wherein movement by the system user causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display.
  • the present invention comprises a computer- readable memory device for storing a program that constructs three-dimensional images using camera-based gesture inputs of a user of a computer system having a video image display connected to a microprocessor using instructions stored in the computer-readable memory device, the computer-readable memory device comprising: instructions for processing video signals indicative of gestures of the system user to determine the three-dimensional positions of the body and principle body parts of the system user; instructions for constructing three- dimensional images of the system user and interaction area on the video image display based upon the three-dimensional positions of the body and principle body parts of the system user; and instructions for displaying, on the video image display, three-dimensional graphical objects superimposed to appear as if they occupied the interaction area, wherein movement by the system user causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display.
  • the present invention comprises a computer program product for constructing three-dimensional images using camera-based gesture inputs of a user of a computer system having a video image display connected to a microprocessor, the computer program product comprising: means for processing video signals indicative of gestures of the system user to determine the three-dimensional positions of the body and principle body parts of the system user; means for constructing three-dimensional images of the system user and interaction area on the video image display based upon the three- dimensional positions of the body and principle body parts of the system user; and means for displaying, on the video image display, three-dimensional graphical objects superimposed to appear as if they occupied the interaction area, wherein movement by the system user causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display.
  • FIG. 1 is a block diagram of a conventional system for constructing two- dimensional images using camera-based silhouettes of users
  • FIG. 2 is a flowchart showing the steps involved in a conventional software process for extracting two-dimensional images using silhouettes of users
  • FIG. 3 is a block diagram of a system for constructing three-dimensional images using camera-based gesture inputs of users in accordance with a preferred embodiment of the present invention
  • FIG. 4 is a block diagram of a system for constructing three-dimensional images using camera-based gesture inputs of users in accordance with another preferred embodiment of the present invention
  • FIG. 5 is a flowchart showing the steps involved in a software process for mapping two-dimensional image features of users and an interactive area onto three- dimensional locations within the interactive area in accordance with the preferred embodiments of the present invention shown in FIGs. 3 and 4;
  • FIG. 6 is a block diagram showing the three-dimensional soccer game with the system and method for constructing three-dimensional images using camera-based gesture inputs of the preferred embodiment of the present invention shown in FIG. 3;
  • FIG. 7 is a flowchart showing the steps involved in an application program for a three-dimensional soccer game using the system and method for constructing three- dimensional images using camera-based gesture inputs of the preferred embodiment of the present invention shown in FIG. 6;
  • FIG. 8 is a biometric data table showing the length of body parts as a ratio of the body height (H), wherein the body height (H) is the height of a standing person. DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • the present invention includes a system and method for constructing three-dimensional images using camera-based gesture inputs of system users.
  • the system comprises a computer-readable memory means, means for generating video signals indicative of the gestures of the system users and an interaction area surrounding the system users, and means for displaying video images.
  • the video image display means is positioned in front of the system users.
  • the system further comprises means for processing the video signals, in accordance with a program stored in the computer-readable memory means, to determine the three-dimensional positions of the bodies and principle body parts of the system users, wherein the video signal processing means constructs three- dimensional images of the system users and interaction area on the video image display means based upon the three-dimensional positions of the bodies and principle body parts of the system users, the video image display means displays three-dimensional graphical objects superimposed to appear as if they occupy the interaction area, and movement by the system users causes apparent movement of the superimposed, three-dimensional objects displayed on the video image display means.
  • the present invention is drawn to a natural and intuitive computer/user interface based upon computer vision interaction by system users.
  • "computer vision” is the use of a computer to interpret information received from a video imaging device in terms of what objects the imaging device sees. Computer vision permits recognition of user gestures, body motions, head motions, eye motions, etc. The recognized user motions, in turn, are used to interact with multimedia and virtual reality applications.
  • the present invention takes the system users' silhouettes in two- dimensional image coordinates and projects them into the three-dimensional image coordinates the system users occupy in the interaction area. Such an approach is undemanding upon the system users and inexpensive to make.
  • the computer knows where the system users are looking and pointing, etc., and manipulates the information on the display accordingly. Further, the position and pose of the system users in front of the display screen are extracted and used for interaction with a three-dimensional graphical model.
  • gesture interpretation adds realism to the interaction with the computer. For example, intuitive hand gestures may be used as an interface with the computer system.
  • System 50 comprises a video camera 56, a video display screen 54, and a computer 58 having a Philips® single board image processor (SBIP) 60.
  • SBIP 60 eliminates problems (1) - (3) encountered in the approach proposed by the Media Lab at the Massachusetts Institute of Technology, and thus, also encountered in the two-dimensional systems.
  • Computer 58 also comprises a computer-readable memory 66 encoded with three-dimensional imaging software. SBIP 60 utilizes the software so that system 50 may handle the three-dimensional body motions of the system user.
  • the three-dimensional imaging software of the present invention corrects problems (4) and (5) encountered in the approach proposed by the Media Lab at the Massachusetts Institute of Technology.
  • the present invention provides an interactive video environment ("INE") capable of evaluating several INE paradigms other than the "magic mirror” paradigm proposed by Massachusetts Institute of Technology.
  • INE interactive video environment
  • the present invention is capable of evaluating the following four INE paradigms: (1) the display shows live video of a camera input of a remote site, and the video camera input of the system users is composited with the live video on the display (this is known as "mirror” effect, as in the MIT approach); (2) the display shows live video of the remote site, and the camera input of the users is not composited with the live video on the display (this is known as "window” effect); (3) the display shows graphical images as in virtual reality, and the camera input of the system users is composited with the graphical images on the display; and (4) the display shows graphical images, and the camera input of the system users is not composited with the graphical images on the display.
  • system 50 comprises a means for processing video signals, such as a computer 58, electrically coupled to a means for generating video signals, such as a video camera 56.
  • Computer 58 is electrically coupled to a means for displaying video images, such as a video display screen 54.
  • video display screen 54 is located in front of an interaction area 52 where system users 62 stand.
  • Video camera 56 electronically reads the images of users 62 and interactive area 52, creates video signals corresponding to these images, and provides the video signals to computer 58.
  • computer 58 comprises a typical microprocessor-based computing device such as an IBM-compatible personal computer.
  • Computer 58 further comprises a serial port 64 connected to a microprocessor 60 for receiving the video signals from video camera 56, and a conventional computer-readable memory 66 capable of being encoded with software programs.
  • Microprocessor 60 preferably is a Philips® single board image processor (SBIP).
  • SBIP 60 uses the software (described below), encoded in computer memory 66, for mapping the two-dimensional image features of users 62 and interactive area 52 and calculating the three-dimensional position of system users 62 within interactive area 52.
  • SBIP 60 also preferably uses an application program permanently encoded within computer-readable memory 66, or temporarily encoded therein via an external computer-readable memory, such as for example, a floppy diskette or a CD ROM.
  • Computer 58 further comprises a mode control port 68, connected to SBIP 60 for receiving data from other interactive controls such as a remote control, and a video processor port 70 for delivering video signals to video display screen 54.
  • the software encoded in computer-readable memory 66, and used by SBIP 60 isolates the contours of the system users, determines their body and limb positions in three- dimensional image space, and generates a video signal corresponding to the body and limb position to video display screen 54.
  • Display screen 54 preferably consists of a conventional audio/visual monitor system capable of displaying three-dimensional graphical information.
  • the type of display screen 54 and video camera 56 used in the present invention is arbitrary and may be chosen based only upon the intended application of the system of the present invention.
  • video display screen 34 is a rear-projection Ikegami TPP 1000/1500® projector with a Retroscan RS125SW® screen (six feet in height in the y direction and eight feet in width in the x direction); interaction area 52 is an eleven feet (in the z direction) by twelve feet (in the x direction) area in front of video display screen 54; and video camera 56 is a Sony® NTSC video camera.
  • the alternate embodiment 80 comprises a video camera 56 and computer 58 with SBIP 60 and computer-readable memory 66 similar to those described with reference to FIG. 3.
  • the alternate embodiment further comprises a compact disc reader 84 capable of reading an application program encoded on a CD ROM and providing such application program to SBIP 60.
  • the alternate embodiment also comprises a remote controller 86 for controlling features of the application program.
  • the alternate embodiment includes a conventional television display 82 capable of receiving video signals from SBIP 60 and transmitting information to SBIP 60.
  • FIG. 5 is a flowchart showing the steps involved in the software process for mapping two-dimensional image features of a system user 62 onto three-dimensional locations the room where system user 62 is located in accordance with the preferred embodiments of the present invention shown in FIGs. 3 and 4.
  • the three-dimensional imaging software may be permanently encoded within computer-readable memory 66 or may be temporarily encoded in memory 66 via a diskette, CD ROM, or similar memory storage means.
  • the three- dimensional imaging software process comprises a first step 100 of extracting the two- dimensional head, hands and feet features of a user in image space coordinates (u, v) using the two-dimensional extraction process shown in FIG. 2. Coordinates (u, v) correspond to the two- dimensional x-y plane of the user in front of video camera 56.
  • the three-dimensional imaging process further comprises a step 102 of reading the orientation and location of video camera 36 in three-dimensional coordinates (x, y, z) with respect to the room.
  • the software process projects the two-dimensional, extracted features of the user's feet along a line of view from the camera to three-dimensional coordinates (x, y, z) of the user's feet using the (x, y, z) orientation of camera 36 with respect to the room.
  • the software process projects the two-dimensional, extracted features of the user's head and hands to three-dimensional coordinates (x, y, z) of the user's head and hands, assuming that the head and hands are slightly offset from the position of the feet in the z direction and using the (x, y, z) orientation of camera 36 with respect to the room.
  • the three-dimensional imaging process further comprises a step 108 of using the measured height (h) of the user to access a biometric data (shown at step 110) indexed by height and stored within computer-readable memory 66.
  • a biometric data table capable of use with the present invention is shown in FIG. 8. The present invention is not limited by the biometric data shown in FIG. 8, since other biometric data may be utilized as set forth in D. Chaffin & G. Andersson, Occupational Biomechanics, 2d ed. (1991), L. Farkas, Anthropometry of the Head and Face, 2d ed. (1994), and N.A.S.A., Anthropomet ⁇ c Source Book, vols. 1-3 (1978).
  • the three-dimensional imaging process assumes that the user's shoulders are offset from the top of the user's head to the bottom of the user's neck by a distance of 0.182h in the y-direction, and that the shoulder width from the center of the user's back to the end of the shoulder blade is 0.129h in the x direction, wherein h is the user's height.
  • the imaging process further assumes that the user's arm length is 0.44h, and utilizes the assumed arm length (0.44h) until a measured arm length greater than 0.44h is extracted by video camera 56.
  • the software process further comprises a step 112 of calculating each arm's offset in the z direction from the corresponding foot, using the assumed arm length (0.44h) calculated in step 108.
  • each arm's actual length in the z direction is calculated from the assumed arm length using the principle of foreshortening.
  • the software process comprises a final step 114 of supplying the three-dimensional positions of the user's head, hands and feet to an application program.
  • the invention will be further clarified by the following examples of application programs capable of use with the system and method for constructing three-dimensional images using camera-based inputs of the present invention.
  • the application programs are intended to be purely exemplary of the uses of the preferred embodiments of the present invention, and are not intended to limit the scope of the broad features of the invention.
  • the preferred embodiments of the present invention can be used with any application requiring calculation of a three-dimensional position of a user so that the user may manipulate graphical computer-generated objects in three dimensions.
  • Examples of application programs include a three-dimensional soccer video game, a home shopping application, an information wall for multiple user interaction, a telecommunications application, a gesture-based remote control, and a home exercise application.
  • FIG. 6 is a block diagram showing a three-dimensional soccer (also known as "football" throughout the world) video game application using the system and method of the preferred embodiment shown in FIG. 3.
  • a user 62 of the soccer game stands in front of video display screen 54 on which a graphical image of the virtual soccer game is displayed.
  • Nideo camera 56 views user 62 and SBIP 60 processes data received from camera 56 by extracting the image of user 62 and by identifying the user body motions, such as the three-dimensional positions of the user's head, hands, legs, feet, etc., as described above.
  • Nideo display screen 54 displays the camera image of user 92 and interaction area 52, and also displays a graphical overlay of a soccer field with interaction area 52.
  • Screen 54 displays a graphical image of a goal area 96 on the floor towards one side of interaction area 52, and displays a graphical image of a soccer ball 94 on the floor in the middle of interaction area 52.
  • Goal area 96 and soccer ball 94 are preferably displayed in a scaled and rotated fashion so as to appear as if they were on the floor.
  • the system of the present invention does not actually respond to the "kick.” Rather, the system responds to the direction from which the user approaches soccer ball 94 and to the closeness of the user to soccer ball 94. Soccer ball 94 moves with a velocity dependent upon the direction and speed with which the user approached the "kicked” soccer ball 94. This simulates a "kicking" effect by the user. Whenever soccer ball 94 hits one of the sides of interaction area 52, e.g., the front of display screen 54, a simulated back wall, or two side panels of display screen 54, soccer ball 94 "bounces" back into the playing area. The object of the virtual soccer game is to get soccer ball 94 into goal area 96.
  • the virtual soccer game application program starts at step 200 and comprises a step 202 of setting the soccer ball position (f) in x and z coordinates, as (fx, fz).
  • the video camera 56 orientation with respect to the user is determined and the location of the user is read in from the extracted, three-dimensional image data extracted by the three-dimensional imaging process of FIG. 5.
  • Step 204 further comprises setting up the graphical view of the soccer game (i.e., goal area 96 and soccer ball 94) so it is registered with the camera view, and lumakeying (method of mixing two video streams known in the art) the graphics and video from camera 56 together to yield a meaningful illusion for the user.
  • the virtual soccer game application program further comprises a step 206 of drawing soccer ball 94 and goal area 96 onto the black background of display screen 54, setting the lumakeyer to key the video obtained at step 204 into the black background of display screen 54, and displaying the lumakeyed results onto display screen 54.
  • the virtual soccer game application program also comprises a step 208 of measuring the user's current foot position (p), in x and z coordinates, as (px, pz).
  • a predetermined variable del
  • the user's foot velocity (fv) is set equal to k*(p-f).
  • k is a scaling factor like a spring constant and through experimentation is preferable 1.1.
  • the value "del” represents the foot position from the soccer ball, and through experimentation preferably is five (5) inches.
  • the virtual soccer game application program further comprises a step 212 of moving the ball position (f) according to the foot velocity (fv) for a predetermined number of iterations, e.g., twenty (20) iterations.
  • the foot velocity (fv) is decreased by a predetermined variable (vdel) on each iteration so to slow soccer ball 94 down.
  • the value "vdel” is chosen to decrease foot velocity (fv) by ten percent each iteration. All of the predetermined values (k, del, vdel, iterations) are set to ensure that the soccer ball moves as if it were a real soccer ball.
  • step 212 if soccer ball 94 hits a "wall,” i.e., goes by a predetermined y or z coordinate deemed to be a wall, then soccer ball 94 is bounced from that "wall.” Finally, at step 212, if soccer ball 94 enters the space determined to be goal area 96, a bell is sounded and soccer ball 94 is reset to its initial position.
  • a home shopping application program may also be used with the preferred embodiment of the present invention shown in FIG. 4.
  • the home shopping application utilizes the same concepts discussed above with reference to the three-dimensional soccer video game, but instead of a soccer ball being moved based upon user gestures, clothing is moved as the user tries them on.
  • One reason why home shopping through a television or computer catalog is uncommon is that consumers find it difficult to determine what the product will look like when they wear it.
  • the preferred embodiment of the present invention can address this problem when used with the home shopping application.
  • the home shopping application offers products (such as shirts, shoes, pants, dresses, hats, etc.) for sale through either a television broadcast or a CD ROM catalog.
  • the user With the home shopping application, the user stands in front of their television and sees his/herself on the television wearing a selected product. As the user moves and turns, the preferred embodiment of the present invention determines the body motions and transforms the computer-generated graphical image of the product accordingly. Automatic size generation of a product is also possible with the home shopping application.
  • An information wall application program may also use the system and method of the preferred embodiment shown in FIG. 3.
  • the information wall comprises a large, notice board-like display screen that multiple users can interact with, providing a highly intuitive and interactive information system.
  • Such an application is preferably deployed in shopping malls, museums, libraries, galleries, and other similar environments.
  • the information wall would allow shoppers entering the mall to simply stand within a certain distance of the wall to activate it.
  • the information wall then displays an overall map of the mall at the position and height of the person standing in front of it.
  • a number of information icons are displayed around the map from which the shopper can select by pointing.
  • the information wall displays various pieces of information, such as, the location of certain stores and rest-rooms, and so forth.
  • the information wall may also support forms of advertising. For example, by pointing at a store on the map, the shopper could display a short video sequence describing the products and service offered by the store.
  • the information wall may also permit the display to follow the user as he/she walks along its length, pointing in the correct direction to enable a shopper to get where he/she wants to go.
  • the preferred embodiments of the present invention may also be used with telecommunications applications.
  • bandwidth problems prevent consumer telecommunications via video.
  • users can communicate via a shared virtual reality world, rather than via their actual environments. Only video from the user silhouette needs to be transmitted and shown in the virtual environment, wherein the preferred embodiments of the present invention extracts the user silhouette. This approach could be simplified even more by showing the users with computer-generated bodies (in the correct position and pose, since the present invention can determine that) and only video of the head region is transmitted.
  • Multi-user video conferencing may also be aided by the present invention.
  • a user needs to pan and zoom the camera from user to user of a teleconference.
  • the present invention could be used as part of a commercial teleconferencing system where the camera can be controlled by the gestures of the participants in the teleconference. For example, pointing at a participant causes the camera to focus on that participant, raising your hand attracts the camera to focus on you, etc.
  • Gesture-Based Remote Control The preferred embodiments of the present invention could also be used as part of the infrastructure of an integrated home entertainment and communications system, replacing the functions currently provided by a remote control unit. For example, the user's position within the room, as well as user body pose and gestures, could all be accessed by the present invention. Pointing at a CD player could display the controls for the CD player on the television, and pointing at menu items on the television could select those items.
  • the position of the user could be used to determine which television is employed. If there are more than one user, it is also conceivable that the present invention could enable separate commands issued by different users, or construct a hierarchy of authority for the different commands. Additionally, a conventional remote control could be used with the present invention, wherein the present invention simplifies the functionality of the remote control, e.g., so that it has only four buttons. With the present invention, a user could point the remote control at the CD player (or stand adjacent thereto), and the remote control would function as a CD player remote. Alternatively, the user could sit in front of the television and the remote control would function as a channel changer. Finally, the remote control could be used to establish a hierarchy of authority wherein the preferred embodiments of the present invention will respond only to the user holding remote control. 6. Home Exercise Application
  • the preferred embodiments of the present invention could also be used to support home exercise CD ROM programs, wherein the user buys his/her own celebrity trainer.
  • the present invention provides information on the location of the user in a room to the home exercise program so that the trainer will always look in the direction of the user.
  • the present invention can also determine when the user stops exercising in the middle of an exercise, so that the trainer can recommend an alternate exercise regimen. It is also possible for the trainer to critique the way a user is exercising and offer helpful information.
  • An additional feature of the home exercise application would be to combine video input of the user with the graphically-generated image of the trainer and display both on a television (similar to the way clothing is displayed on users in the home shopping application).
  • Such a feature gives the user the advantage of seeing themselves in action, and permits the trainer to point or touch portions of the video image of the user so to impart advice, e.g., lift your leg this high.
  • system and method could be used with other application programs which require three-dimensional construction of images and users, and require interaction between the users and three- dimensional images.
  • CD reader 84 and remote 86 of the system shown in FIG. 4 may be used with the system shown in FIG. 3.
  • audio features may be incorporated into the preferred embodiments to provide voice-recognized commands from the system user and sound effects to the display screen.

Abstract

A system and method for constructing three-dimensional images using camera-based gesture inputs of a system user. The system comprises a computer-readable memory, a video camera for generating video signals indicative of the gestures of the system user and an interaction area surrounding the system user, and a video image display. The video image display is positioned in front of the system users. The system further comprises a microprocessor for processing the video signals, in accordance with a program stored in the computer-readable memory, to determine the three-dimensional positions of the body and principle body parts of the system user. The microprocessor constructs three-dimensional images of the system user and interaction area on the video image display based upon the three-dimensional positions of the body and principle body parts of the system user. The video image display shows three-dimensional graphical objects superimposed to appear as if they occupy the interaction area, and movement by the system user causes apparent movement of the superimposed, three-dimensional objects displayed on the video image display.

Description

System and method for constructing three-dimensional images using camera-based gesture inputs.
BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates generally to multimedia and virtual reality applications, and, more particularly to a system and method for constructing three-dimensional images using camera-based gesture inputs.
B. Description of the Related Art
Multimedia and virtual reality applications permit exciting interaction between a user and a computer. Unfortunately, current computer/user interfaces present a barrier to simplistic user interactivity and thus, consumer acceptance of multimedia and virtual reality applications. Ideally, computer/user interfaces would combine an intuitive interaction format with a broad range of interaction capabilities. Practically, however, these two features conflict. For example, a computer keyboard offers broad interaction capabilities but is not intuitive, whereas a television remote control is more intuitive but offers limited interaction capabilities. Even more flexible interfaces, such as an instrumented body suit, can be both cumbersome and expensive.
A number of approaches to computer/user interface design have been suggested. One approach uses a video camera in a non-invasive way to measure the gestures of a system user, so to control the images displayed to the system user. As shown in FIG. 1, such an interface system 10 comprises a blue wall 12 in which a user 14 stands in front of, permitting two-dimensional silhouette extraction of user 14 and chromakeying of the silhouette. System 10 further includes a video camera 16 for identifying the two-dimensional, user silhouette and for producing a video signal. A microprocessor 18 of a computer identifies the two-dimensional, user silhouette seen by video camera 16, but only as a two-dimensional shape. Thus, motions of user 14 are only understood by microprocessor 18 in terms of the changing image coordinates of the silhouette. Microprocessor 18 displays an image of user 14 on a television display 20. The image displayed on television 20 consists of a two-dimensional scene into which the user's image has been chromakeyed. User 14 can interact with the displayed scene by adopting a specific pose, e.g., hands-over-head, or by moving so that a portion of the user's silhouette touches a designated set of image coordinates making it appear as if user 14 touched a displayed object.
The interface system shown in FIG. 1 provides an easy-to-use, inexpensive interface with multimedia and virtual reality applications. However, the interface system only permits two-dimensional interaction with computer-displayed objects, restricting the capabilities of the interface to two dimensions. For example, in the two-dimensional system of FIG. 1, all of the computer-displayed objects are at the same depth in the window surrounding the user's silhouette.
As seen in FIG. 2, a conventional two-dimensional silhouette extraction process used by the system shown in FIG. 1 , comprises both a hardware process (above the dashed line) and a software process (below the dashed line), wherein computer microprocessor 18 performs the software process steps. The hardware process involves a step 22 of inputting an analog video camera signal, followed by a step 24 of digitizing the analog camera signal to produce a gray-scale binary data signal. The hardware process further comprises a step 26 of adjusting the resolution (high or low) of the video camera, and a step 28 of restricting the camera view to a window of the image of interest, i.e., the user's image. The hardware process next comprises a dynamic threshold step 30 where the gray-scale binary data signal is converted into digital binary data, e.g., "1" or "0." At step 32, the hardware process determines the edges (silhouette) of the user's image, and, based on the edge data, adjusts the picture size (step 34) so to adjust the resolution accordingly at step 26.
The software process involves a first step 36 of subtracting the background from the edge data of step 34, leaving only an image contour of the user's image. The background is a picture of an empty scene as seen by the camera, and is provided at step 38. The software further comprises a step of joining together all of the edge data of the user's image, providing a single contour around the user's image. The software process also comprises an identification step 42 for determining whether the user image contour represents a person, an animal, etc., and a silhouette feature step 44 for identifying the silhouette features (in x, y coordinates) of the user, e.g., head, hands, feet, arms, legs, etc. At step 46, the software process utilizes the contour identification data in order to calculate a bounding box around the user. The bounding box data is provided to the window restricting step 28 for restricting the size of the camera window around the user, and thus, increase the speed of the extraction process.
An alternative approach, proposed by the Media Lab at the Massachusetts Institute of Technology ("MIT"), allows a user to interact with a computer-generated graphical world by using camera-based body motions and gestures of a system user. Such a system, while being amongst the most versatile of its kind currently available, suffers from the following problems: (1) it is based on a standard graphical interface ("SGI") platform; (2) it is sensitive to lighting conditions around the system user; (3) although it tracks the user's foot position in three dimensions, it treats the remainder of the user's body as a two-dimensional object; (4) it is limited to a single user; (5) it provides too coarse of resolution to see user hand details such as fingers; and (6) it is tied to only the "magic mirror" interactive video environment ("INE") paradigm, described below. Thus, the alternative approach suffers from the same limitations encountered by the conventional two-dimensional approach, as well as many other problems.
Still another approach includes a method for real-time recognition of a human image, as disclosed Japanese Patent Abstract Publication No. 07-038873 ("JP 07-038873"). JP 07-038873 describes three-dimensional graphical generation of a person that detects the expression, rotation of the head, motion of the fingers, and rotation of the human body. However, JP 07-038873 is limited to graphical model generation of the human body.
Furthermore, JP 07-38873 focuses on using three-dimensional graphical animation of a user primarily for teleconferencing purposes, wherein the user cannot control objects in a computer-generated scene. Finally, the reference discloses using three-dimensional animation of a remote user for teleconferencing purposes, as opposed to a three-dimensional animation of a local user.
A final approach, as found in International Patent Application (PCT) WO 96/21321 ("PCT 96/21321"), consists of creating a three-dimensional simulation of an event (e.g., a football game), in real-time or storing it on a CD ROM, using cameras and microphones. The system disclosed in PCT 96/21321, however, merely replays three- dimensional scenes of the event as they are viewed by the cameras. Furthermore, users of the PCT 96/21321 system can only change their perspective of the three-dimensional scenes and are unable to control objects in the scenes.
Unfortunately, none of these proposed approaches described above provides a computer/user interface that combines an intuitive interaction format with a broad range of interaction capabilities. SUMMARY OF THE INVENTION
An object of the present invention is to address the problems encountered by the two-dimensional interface systems and the alternative approaches proposed by the Media Lab at the Massachusetts Institute of Technology and the other related art discussed above. Another object is to provide a three-dimensional display of computer-generated objects so that the objects occupy the three-dimensional space around the computer users and the computer users can interact with and control the objects through normal body movements. A final object is to provide multimedia and virtual reality applications which three- dimensionally displayed computer users can interact and control through normal body movements.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises a system for constructing three-dimensional images using camera-based gesture inputs of a user of the system, including: a computer-readable memory means; means for generating video signals indicative of the gestures of the system user and an interaction area surrounding the system user; means for displaying video images, the video image display means being positioned in front of the system user; and means for processing the video signals, in accordance with a program stored in the computer-readable memory means, to determine the three-dimensional positions of the body and principle body parts of the system user, wherein the video signal processing means constructs three-dimensional images of the system user and interaction area on the video image display means based upon the three-dimensional positions of the body and principle body parts of the system user, the video image display means displays three-dimensional graphical objects superimposed to appear as if they occupy the interaction area, and movement by the system user causes apparent movement of the superimposed, three-dimensional objects displayed on the video image display means.
To further achieve the objects, the present invention comprises a method for constructing three-dimensional images using camera-based gesture inputs of a user of a computer system having a computer-readable memory and video image display connected to a microprocessor using a program stored in the computer-readable memory, the method comprising the steps of: generating video signals indicative of the gestures of the system user and an interaction area surrounding the system user; processing the video signals in the microprocessor to determine the three-dimensional positions of the body and principle body parts of the system user; using the microprocessor to construct three-dimensional images of the system user and interaction area on the video image display based upon the three- dimensional positions of the body and principle body parts of the system user; and utilizing the microprocessor to display on the video image display three-dimensional graphical objects superimposed to appear as if they occupied the interaction area, wherein movement by the system user causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display.
To still further achieve the objects, the present invention comprises a computer- readable memory device for storing a program that constructs three-dimensional images using camera-based gesture inputs of a user of a computer system having a video image display connected to a microprocessor using instructions stored in the computer-readable memory device, the computer-readable memory device comprising: instructions for processing video signals indicative of gestures of the system user to determine the three-dimensional positions of the body and principle body parts of the system user; instructions for constructing three- dimensional images of the system user and interaction area on the video image display based upon the three-dimensional positions of the body and principle body parts of the system user; and instructions for displaying, on the video image display, three-dimensional graphical objects superimposed to appear as if they occupied the interaction area, wherein movement by the system user causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display.
To even further achieve the objects, the present invention comprises a computer program product for constructing three-dimensional images using camera-based gesture inputs of a user of a computer system having a video image display connected to a microprocessor, the computer program product comprising: means for processing video signals indicative of gestures of the system user to determine the three-dimensional positions of the body and principle body parts of the system user; means for constructing three-dimensional images of the system user and interaction area on the video image display based upon the three- dimensional positions of the body and principle body parts of the system user; and means for displaying, on the video image display, three-dimensional graphical objects superimposed to appear as if they occupied the interaction area, wherein movement by the system user causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention. In the drawings:
FIG. 1 is a block diagram of a conventional system for constructing two- dimensional images using camera-based silhouettes of users;
FIG. 2 is a flowchart showing the steps involved in a conventional software process for extracting two-dimensional images using silhouettes of users; FIG. 3 is a block diagram of a system for constructing three-dimensional images using camera-based gesture inputs of users in accordance with a preferred embodiment of the present invention;
FIG. 4 is a block diagram of a system for constructing three-dimensional images using camera-based gesture inputs of users in accordance with another preferred embodiment of the present invention;
FIG. 5 is a flowchart showing the steps involved in a software process for mapping two-dimensional image features of users and an interactive area onto three- dimensional locations within the interactive area in accordance with the preferred embodiments of the present invention shown in FIGs. 3 and 4; FIG. 6 is a block diagram showing the three-dimensional soccer game with the system and method for constructing three-dimensional images using camera-based gesture inputs of the preferred embodiment of the present invention shown in FIG. 3;
FIG. 7 is a flowchart showing the steps involved in an application program for a three-dimensional soccer game using the system and method for constructing three- dimensional images using camera-based gesture inputs of the preferred embodiment of the present invention shown in FIG. 6; and
FIG. 8 is a biometric data table showing the length of body parts as a ratio of the body height (H), wherein the body height (H) is the height of a standing person. DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In accordance with the preferred embodiments, the present invention includes a system and method for constructing three-dimensional images using camera-based gesture inputs of system users. The system comprises a computer-readable memory means, means for generating video signals indicative of the gestures of the system users and an interaction area surrounding the system users, and means for displaying video images. The video image display means is positioned in front of the system users. The system further comprises means for processing the video signals, in accordance with a program stored in the computer-readable memory means, to determine the three-dimensional positions of the bodies and principle body parts of the system users, wherein the video signal processing means constructs three- dimensional images of the system users and interaction area on the video image display means based upon the three-dimensional positions of the bodies and principle body parts of the system users, the video image display means displays three-dimensional graphical objects superimposed to appear as if they occupy the interaction area, and movement by the system users causes apparent movement of the superimposed, three-dimensional objects displayed on the video image display means.
In other words, the present invention is drawn to a natural and intuitive computer/user interface based upon computer vision interaction by system users. As used herein, "computer vision" is the use of a computer to interpret information received from a video imaging device in terms of what objects the imaging device sees. Computer vision permits recognition of user gestures, body motions, head motions, eye motions, etc. The recognized user motions, in turn, are used to interact with multimedia and virtual reality applications. Specifically, the present invention takes the system users' silhouettes in two- dimensional image coordinates and projects them into the three-dimensional image coordinates the system users occupy in the interaction area. Such an approach is undemanding upon the system users and inexpensive to make. If the system users are interacting via a large-screen display, the computer knows where the system users are looking and pointing, etc., and manipulates the information on the display accordingly. Further, the position and pose of the system users in front of the display screen are extracted and used for interaction with a three-dimensional graphical model. The addition of gesture interpretation to the computer vision system of the present invention adds realism to the interaction with the computer. For example, intuitive hand gestures may be used as an interface with the computer system.
Rather than relying on conventional SGI-based software, the present invention utilizes a camera-based user interface system 50, as best shown in FIG. 3. System 50 comprises a video camera 56, a video display screen 54, and a computer 58 having a Philips® single board image processor (SBIP) 60. SBIP 60 eliminates problems (1) - (3) encountered in the approach proposed by the Media Lab at the Massachusetts Institute of Technology, and thus, also encountered in the two-dimensional systems. Computer 58 also comprises a computer-readable memory 66 encoded with three-dimensional imaging software. SBIP 60 utilizes the software so that system 50 may handle the three-dimensional body motions of the system user. The three-dimensional imaging software of the present invention corrects problems (4) and (5) encountered in the approach proposed by the Media Lab at the Massachusetts Institute of Technology. To address problem (6) of the Media Lab approach, the present invention provides an interactive video environment ("INE") capable of evaluating several INE paradigms other than the "magic mirror" paradigm proposed by Massachusetts Institute of Technology. The present invention is capable of evaluating the following four INE paradigms: (1) the display shows live video of a camera input of a remote site, and the video camera input of the system users is composited with the live video on the display (this is known as "mirror" effect, as in the MIT approach); (2) the display shows live video of the remote site, and the camera input of the users is not composited with the live video on the display (this is known as "window" effect); (3) the display shows graphical images as in virtual reality, and the camera input of the system users is composited with the graphical images on the display; and (4) the display shows graphical images, and the camera input of the system users is not composited with the graphical images on the display.
A. Detailed Description Of The System Hardware Of The Preferred
Embodiments As embodied herein, a system and method for constructing three-dimensional images using camera-based gesture inputs of a preferred embodiment of the present invention is shown in FIG. 3. Specifically, system 50 comprises a means for processing video signals, such as a computer 58, electrically coupled to a means for generating video signals, such as a video camera 56. Computer 58 is electrically coupled to a means for displaying video images, such as a video display screen 54. Preferably, video display screen 54 is located in front of an interaction area 52 where system users 62 stand. Video camera 56 electronically reads the images of users 62 and interactive area 52, creates video signals corresponding to these images, and provides the video signals to computer 58. Preferably, computer 58 comprises a typical microprocessor-based computing device such as an IBM-compatible personal computer. Computer 58 further comprises a serial port 64 connected to a microprocessor 60 for receiving the video signals from video camera 56, and a conventional computer-readable memory 66 capable of being encoded with software programs. Microprocessor 60 preferably is a Philips® single board image processor (SBIP). SBIP 60 uses the software (described below), encoded in computer memory 66, for mapping the two-dimensional image features of users 62 and interactive area 52 and calculating the three-dimensional position of system users 62 within interactive area 52. SBIP 60 also preferably uses an application program permanently encoded within computer-readable memory 66, or temporarily encoded therein via an external computer-readable memory, such as for example, a floppy diskette or a CD ROM. Computer 58 further comprises a mode control port 68, connected to SBIP 60 for receiving data from other interactive controls such as a remote control, and a video processor port 70 for delivering video signals to video display screen 54. The software encoded in computer-readable memory 66, and used by SBIP 60, isolates the contours of the system users, determines their body and limb positions in three- dimensional image space, and generates a video signal corresponding to the body and limb position to video display screen 54.
Display screen 54 preferably consists of a conventional audio/visual monitor system capable of displaying three-dimensional graphical information. The type of display screen 54 and video camera 56 used in the present invention is arbitrary and may be chosen based only upon the intended application of the system of the present invention.
In a more preferred embodiment of the system for constructing three- dimensional images using camera-based gesture inputs of the preferred embodiment, video display screen 34 is a rear-projection Ikegami TPP 1000/1500® projector with a Retroscan RS125SW® screen (six feet in height in the y direction and eight feet in width in the x direction); interaction area 52 is an eleven feet (in the z direction) by twelve feet (in the x direction) area in front of video display screen 54; and video camera 56 is a Sony® NTSC video camera.
An alternate embodiment of the system and method for constructing three- dimensional images using camera-based gesture inputs in accordance with the present invention is shown in FIG. 4. As shown, the alternate embodiment 80 comprises a video camera 56 and computer 58 with SBIP 60 and computer-readable memory 66 similar to those described with reference to FIG. 3. However, the alternate embodiment further comprises a compact disc reader 84 capable of reading an application program encoded on a CD ROM and providing such application program to SBIP 60. The alternate embodiment also comprises a remote controller 86 for controlling features of the application program. Furthermore, in contrast to the display screen of the embodiment shown in FIG. 3, the alternate embodiment includes a conventional television display 82 capable of receiving video signals from SBIP 60 and transmitting information to SBIP 60.
B. Description Of The System Software Of The Preferred Embodiments
In accordance with the preferred embodiments of the present invention, the software for mapping two-dimensional image features of system users and an interactive area onto three-dimensional locations within the interactive area, as well as the applications programs for use with the preferred embodiments, will now be described. For ease of reference, the software and applications programs are described with reference to a single system user. However, it is to be understood that the camera-based gesture recognition technology of the present invention can be used with multiple users by identifying each user individually and interacting with each user accordingly. FIG. 5 is a flowchart showing the steps involved in the software process for mapping two-dimensional image features of a system user 62 onto three-dimensional locations the room where system user 62 is located in accordance with the preferred embodiments of the present invention shown in FIGs. 3 and 4. The three-dimensional imaging software may be permanently encoded within computer-readable memory 66 or may be temporarily encoded in memory 66 via a diskette, CD ROM, or similar memory storage means. As shown, the three- dimensional imaging software process comprises a first step 100 of extracting the two- dimensional head, hands and feet features of a user in image space coordinates (u, v) using the two-dimensional extraction process shown in FIG. 2. Coordinates (u, v) correspond to the two- dimensional x-y plane of the user in front of video camera 56. The three-dimensional imaging process further comprises a step 102 of reading the orientation and location of video camera 36 in three-dimensional coordinates (x, y, z) with respect to the room. Assuming the user's feet are on the floor, (in a plane with known coordinates) at step 104 the software process projects the two-dimensional, extracted features of the user's feet along a line of view from the camera to three-dimensional coordinates (x, y, z) of the user's feet using the (x, y, z) orientation of camera 36 with respect to the room. At step 106, the software process projects the two-dimensional, extracted features of the user's head and hands to three-dimensional coordinates (x, y, z) of the user's head and hands, assuming that the head and hands are slightly offset from the position of the feet in the z direction and using the (x, y, z) orientation of camera 36 with respect to the room.
The three-dimensional imaging process further comprises a step 108 of using the measured height (h) of the user to access a biometric data (shown at step 110) indexed by height and stored within computer-readable memory 66. An example of a biometric data table capable of use with the present invention is shown in FIG. 8. The present invention is not limited by the biometric data shown in FIG. 8, since other biometric data may be utilized as set forth in D. Chaffin & G. Andersson, Occupational Biomechanics, 2d ed. (1991), L. Farkas, Anthropometry of the Head and Face, 2d ed. (1994), and N.A.S.A., Anthropometήc Source Book, vols. 1-3 (1978). The three-dimensional imaging process assumes that the user's shoulders are offset from the top of the user's head to the bottom of the user's neck by a distance of 0.182h in the y-direction, and that the shoulder width from the center of the user's back to the end of the shoulder blade is 0.129h in the x direction, wherein h is the user's height. The imaging process further assumes that the user's arm length is 0.44h, and utilizes the assumed arm length (0.44h) until a measured arm length greater than 0.44h is extracted by video camera 56. The software process further comprises a step 112 of calculating each arm's offset in the z direction from the corresponding foot, using the assumed arm length (0.44h) calculated in step 108. At step 112, each arm's actual length in the z direction is calculated from the assumed arm length using the principle of foreshortening. The software process comprises a final step 114 of supplying the three-dimensional positions of the user's head, hands and feet to an application program.
C. Examples Of Application Programs For Use With The Preferred
Embodiments
The invention will be further clarified by the following examples of application programs capable of use with the system and method for constructing three-dimensional images using camera-based inputs of the present invention. The application programs are intended to be purely exemplary of the uses of the preferred embodiments of the present invention, and are not intended to limit the scope of the broad features of the invention. The preferred embodiments of the present invention can be used with any application requiring calculation of a three-dimensional position of a user so that the user may manipulate graphical computer-generated objects in three dimensions. Examples of application programs include a three-dimensional soccer video game, a home shopping application, an information wall for multiple user interaction, a telecommunications application, a gesture-based remote control, and a home exercise application.
1. Three-Dimensional Soccer Video Game
FIG. 6 is a block diagram showing a three-dimensional soccer (also known as "football" throughout the world) video game application using the system and method of the preferred embodiment shown in FIG. 3. A user 62 of the soccer game stands in front of video display screen 54 on which a graphical image of the virtual soccer game is displayed. Nideo camera 56 views user 62 and SBIP 60 processes data received from camera 56 by extracting the image of user 62 and by identifying the user body motions, such as the three-dimensional positions of the user's head, hands, legs, feet, etc., as described above.
Nideo display screen 54 displays the camera image of user 92 and interaction area 52, and also displays a graphical overlay of a soccer field with interaction area 52. Screen 54 displays a graphical image of a goal area 96 on the floor towards one side of interaction area 52, and displays a graphical image of a soccer ball 94 on the floor in the middle of interaction area 52. Goal area 96 and soccer ball 94 are preferably displayed in a scaled and rotated fashion so as to appear as if they were on the floor. When the user approaches a part of interaction area 52 where the graphical soccer ball 94 resides, the user can seemingly "kick" soccer ball 94. The system of the present invention does not actually respond to the "kick." Rather, the system responds to the direction from which the user approaches soccer ball 94 and to the closeness of the user to soccer ball 94. Soccer ball 94 moves with a velocity dependent upon the direction and speed with which the user approached the "kicked" soccer ball 94. This simulates a "kicking" effect by the user. Whenever soccer ball 94 hits one of the sides of interaction area 52, e.g., the front of display screen 54, a simulated back wall, or two side panels of display screen 54, soccer ball 94 "bounces" back into the playing area. The object of the virtual soccer game is to get soccer ball 94 into goal area 96. FIG. 7 is a flowchart showing the steps involved in an application program for a three-dimensional soccer game using the system and method for constructing three- dimensional images using camera-based gesture inputs of the preferred embodiment of the present invention shown in FIG. 3. With reference to FIG. 7, the virtual soccer game application program starts at step 200 and comprises a step 202 of setting the soccer ball position (f) in x and z coordinates, as (fx, fz). At step 204, the video camera 56 orientation with respect to the user is determined and the location of the user is read in from the extracted, three-dimensional image data extracted by the three-dimensional imaging process of FIG. 5. Step 204 further comprises setting up the graphical view of the soccer game (i.e., goal area 96 and soccer ball 94) so it is registered with the camera view, and lumakeying (method of mixing two video streams known in the art) the graphics and video from camera 56 together to yield a meaningful illusion for the user. The virtual soccer game application program further comprises a step 206 of drawing soccer ball 94 and goal area 96 onto the black background of display screen 54, setting the lumakeyer to key the video obtained at step 204 into the black background of display screen 54, and displaying the lumakeyed results onto display screen 54. The virtual soccer game application program also comprises a step 208 of measuring the user's current foot position (p), in x and z coordinates, as (px, pz). At step 210, if the absolute value of the difference between current foot position (p) and soccer ball position (f), i.e., |p - fj, is less than a predetermined variable (del), then the user's foot velocity (fv) is set equal to k*(p-f). The value "k" is a scaling factor like a spring constant and through experimentation is preferable 1.1. The value "del" represents the foot position from the soccer ball, and through experimentation preferably is five (5) inches. The virtual soccer game application program further comprises a step 212 of moving the ball position (f) according to the foot velocity (fv) for a predetermined number of iterations, e.g., twenty (20) iterations. At step 212, the foot velocity (fv) is decreased by a predetermined variable (vdel) on each iteration so to slow soccer ball 94 down. The value "vdel" is chosen to decrease foot velocity (fv) by ten percent each iteration. All of the predetermined values (k, del, vdel, iterations) are set to ensure that the soccer ball moves as if it were a real soccer ball. Further, at step 212, if soccer ball 94 hits a "wall," i.e., goes by a predetermined y or z coordinate deemed to be a wall, then soccer ball 94 is bounced from that "wall." Finally, at step 212, if soccer ball 94 enters the space determined to be goal area 96, a bell is sounded and soccer ball 94 is reset to its initial position.
2. Home Shopping Application A home shopping application program may also be used with the preferred embodiment of the present invention shown in FIG. 4. The home shopping application utilizes the same concepts discussed above with reference to the three-dimensional soccer video game, but instead of a soccer ball being moved based upon user gestures, clothing is moved as the user tries them on. One reason why home shopping through a television or computer catalog is uncommon is that consumers find it difficult to determine what the product will look like when they wear it. The preferred embodiment of the present invention can address this problem when used with the home shopping application. The home shopping application offers products (such as shirts, shoes, pants, dresses, hats, etc.) for sale through either a television broadcast or a CD ROM catalog. With the home shopping application, the user stands in front of their television and sees his/herself on the television wearing a selected product. As the user moves and turns, the preferred embodiment of the present invention determines the body motions and transforms the computer-generated graphical image of the product accordingly. Automatic size generation of a product is also possible with the home shopping application.
3. Information Wall For Multiple User Interaction
An information wall application program may also use the system and method of the preferred embodiment shown in FIG. 3. The information wall comprises a large, notice board-like display screen that multiple users can interact with, providing a highly intuitive and interactive information system. Such an application is preferably deployed in shopping malls, museums, libraries, galleries, and other similar environments.
For example, in a shopping mall the information wall would allow shoppers entering the mall to simply stand within a certain distance of the wall to activate it. The information wall then displays an overall map of the mall at the position and height of the person standing in front of it. A number of information icons are displayed around the map from which the shopper can select by pointing. By pointing at the icons, the information wall displays various pieces of information, such as, the location of certain stores and rest-rooms, and so forth. The information wall may also support forms of advertising. For example, by pointing at a store on the map, the shopper could display a short video sequence describing the products and service offered by the store. The information wall may also permit the display to follow the user as he/she walks along its length, pointing in the correct direction to enable a shopper to get where he/she wants to go.
4. Telecommunications Applications
The preferred embodiments of the present invention may also be used with telecommunications applications. Currently, bandwidth problems prevent consumer telecommunications via video. With the present invention, users can communicate via a shared virtual reality world, rather than via their actual environments. Only video from the user silhouette needs to be transmitted and shown in the virtual environment, wherein the preferred embodiments of the present invention extracts the user silhouette. This approach could be simplified even more by showing the users with computer-generated bodies (in the correct position and pose, since the present invention can determine that) and only video of the head region is transmitted.
Multi-user video conferencing may also be aided by the present invention. Currently, a user needs to pan and zoom the camera from user to user of a teleconference. The present invention could be used as part of a commercial teleconferencing system where the camera can be controlled by the gestures of the participants in the teleconference. For example, pointing at a participant causes the camera to focus on that participant, raising your hand attracts the camera to focus on you, etc.
5. Gesture-Based Remote Control The preferred embodiments of the present invention could also be used as part of the infrastructure of an integrated home entertainment and communications system, replacing the functions currently provided by a remote control unit. For example, the user's position within the room, as well as user body pose and gestures, could all be accessed by the present invention. Pointing at a CD player could display the controls for the CD player on the television, and pointing at menu items on the television could select those items.
If more than one television (or display) is in the room, the position of the user could be used to determine which television is employed. If there are more than one user, it is also conceivable that the present invention could enable separate commands issued by different users, or construct a hierarchy of authority for the different commands. Additionally, a conventional remote control could be used with the present invention, wherein the present invention simplifies the functionality of the remote control, e.g., so that it has only four buttons. With the present invention, a user could point the remote control at the CD player (or stand adjacent thereto), and the remote control would function as a CD player remote. Alternatively, the user could sit in front of the television and the remote control would function as a channel changer. Finally, the remote control could be used to establish a hierarchy of authority wherein the preferred embodiments of the present invention will respond only to the user holding remote control. 6. Home Exercise Application
The preferred embodiments of the present invention could also be used to support home exercise CD ROM programs, wherein the user buys his/her own celebrity trainer. The present invention provides information on the location of the user in a room to the home exercise program so that the trainer will always look in the direction of the user. The present invention can also determine when the user stops exercising in the middle of an exercise, so that the trainer can recommend an alternate exercise regimen. It is also possible for the trainer to critique the way a user is exercising and offer helpful information.
An additional feature of the home exercise application would be to combine video input of the user with the graphically-generated image of the trainer and display both on a television (similar to the way clothing is displayed on users in the home shopping application). Such a feature gives the user the advantage of seeing themselves in action, and permits the trainer to point or touch portions of the video image of the user so to impart advice, e.g., lift your leg this high. It will be apparent to those skilled in the art that various modifications and variations can be made in the system and method for constructing three-dimensional images using camera-based gesture inputs of the present invention and in construction of this system without departing from the scope or spirit of the invention. As an example, the system and method could be used with other application programs which require three-dimensional construction of images and users, and require interaction between the users and three- dimensional images. Further, CD reader 84 and remote 86 of the system shown in FIG. 4 may be used with the system shown in FIG. 3. Finally, audio features may be incorporated into the preferred embodiments to provide voice-recognized commands from the system user and sound effects to the display screen. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims

CLAIMS:
1. A system for constructing three-dimensional images using camera-based gesture inputs of a user (62) of the system, comprising: a computer-readable memory means (68); means for generating video signals (56,58) indicative of the gestures of the system user (62) and an interaction area (52) surrounding the system user (62); means for displaying video images (54,82), the video image display means (54,82) being positioned in front of the system user (62); and means for processing (58) the video signals, in accordance with a program stored in the computer-readable memory means (66), to determine the three-dimensional positions of the body and principle body parts of the system user (62), wherein the video signal processing means (58) constructs three-dimensional images of the system user (62) and interaction area (52) on the video image display means (54,82) based upon the three- dimensional positions of the body and principle body parts of the system user (62), the video image display means (54,82) displays three-dimensional graphical objects superimposed to appear as if they occupy the interaction area (52), and movement by the system user (62) causes apparent movement of the superimposed, three-dimensional objects displayed on the video image display means (54,82).
2. A system for constructing three-dimensional images using camera-based gesture inputs of a user as recited in claim 1 , wherein the video signal processing means constructs the three-dimensional images of the system user by: projecting two-dimensional positions (u, v) of the feet of the system user to three-dimensional coordinates (x, y, z) of the feet (104); mapping the head and/or hands of the system user to three-dimensional coordinates assuming the head and hands are offset from a z position of the feet (106); and supplying the calculated three-dimensional position of the head and/or hands of the system user to the video image display means.
3. A system for constructing three-dimensional images using camera-based gesture inputs of a user as recited in claim 2, wherein the video signal processing means use a height (h) of the system user with biometric statistics to calculate the shoulder offset of the system user from the head, and to calculate the arm length of the system user (108,110); calculating the offset of each arm of the system user from a corresponding foot of the system user (112).
4. A system for constructing three-dimensional images using camera-based gesture inputs of a user as recited in claim 1 or 2, wherein the three-dimensional graphical objects comprise: a soccer ball (94) having a set position (f); and a goal area (96) having a set position on video image display means, wherein video signal processing means compares a foot position (p) of the system user with the set position (f) of the soccer ball (94) so to calculate the foot velocity (fv) of the system user, moves the soccer ball (94) according to the calculated foot velocity (fv), slows the soccer ball (94) down by a predetermined velocity, and soimds a bell if the soccer ball (94) enters the goal area (96).
5. A method for constructing three-dimensional images using camera-based gesture inputs of a user (62) of a computer system having a computer-readable memory (66) and video image display (54,82) connected to a microprocessor (58) using a program stored in the computer-readable memory, the method comprising the steps of: generating video signals indicative of the gestures of the system user (52) and an interaction area (52) surrounding the system user (62); processing the video signals in the microprocessor (58) to determine the three- dimensional positions of the body and principle body parts of the system user (62); using the microprocessor (58) to construct three-dimensional images of the system user (62) and interaction area (52) on the video image display (54,82) based upon the three-dimensional positions of the body and principle body parts of the system user (62); and utilizing the microprocessor (58) to display on the video image display (54,82) three-dimensional graphical objects superimposed to appear as if they occupied the interaction area (52), wherein movement by the system user (62) causes apparent movement by the superimposed, three-dimensional objects displayed on the video image display (54,82).
6. A method for constructing three-dimensional images using camera-based gesture inputs of a user of a computer system, as recited in claim 5, wherein the three- dimensional image construction step comprises the steps of: projecting two-dimensional positions (u, v) of the feet of the system user to three-dimensional coordinates (x, y, z) of the feet (104); mapping the head and hands of the system user to three-dimensional coordinates assuming the head and hands are offset from a z position of the feet (106); using a height (h) of the system user with biometric data to calculate the shoulder offset of the system user from the head, and to calculate the arm length of the system user (108,110); calculating the offset of each arm of the system user from a corresponding foot of the system user (112); and supplying the calculated three-dimensional positions of the head, hands and feet of the system user to the video image display (114).
7. A method for constructing three-dimensional images using camera-based gesture inputs of a user of a computer system, as recited in claim 6, wherein the three- dimensional graphical objects comprise a soccer ball (94) having a set position (f), and a goal area (96) having a set position on the video image display, the method further comprising the steps of: comparing a foot position (p) of the system user with the set position (f) of the soccer ball so to calculate the foot velocity (fV) of the system user; moving the soccer ball (94) according to the calculated foot velocity (fv); slowing the soccer ball (94) down by a predetermined velocity; and sounding a bell if the soccer ball (94) enters the goal area (96).
8. A computer system (66) for constructing three-dimensional images using camera-based gesture inputs of a user (62) of the computer system, the computer system having a video image display (54,82) connected to a microprocessor (58) using instructions stored in the computer-readable memory device (66), the computer system being programmed with: instructions for processing video signals indicative of gestures of the system user (62) to determine the three-dimensional positions of the body and principle body parts of the system user (62); instructions for constructing three-dimensional images of the system user (62) and interaction area (52) on the video image display (54,82) based upon the three-dimensional positions of the body and principle body parts of the system user (62); and instructions for displaying, on the video image display (54), three-dimensional graphical objects superimposed to appear as if they occupied the interaction area (52), wherein movement by the system user (62) causes apparent movement by the superimposed, three- dimensional objects displayed on the video image display (54,82).
9. A computer system as recited in claim 8, wherein the instructions for constructing the three-dimensional image comprise: instructions for projecting two-dimensional positions (u, v) of the feet of the system user to three-dimensional coordinates (x, y, z) of the feet (104); instructions for mapping the head and or hands of the system user to three- dimensional coordinates assuming the head and hands are offset from a z position of the feet (106); instructions for supplying the calculated three-dimensional positions of the head, hands and feet of the system user to the video image display (114).
10. A computer system as recited in claim 9, wherein the instructions for constructing the three-dimensional image comprise instructions for using a height (h) of the system user with biometric statistics to calculate the shoulder offset of the system user from the head and to calculate the arm length of the system user.
11. A computer system as recited in claim 8 or 9, wherein the three-dimensional graphical objects comprise a soccer ball (94) having a set position (f), and a goal area (96) having a set position on the video image display, the computer-readable memory device further comprising: instructions for comparing a foot position (p) of the system user with the set position (f) of the soccer ball (94) so to calculate the foot velocity (fv) of the system user; instructions for moving the soccer ball (94) according to the calculated foot velocity (f ); instructions for slowing the soccer ball (94) down by a predetermined velocity; and instructions for sounding a bell if the soccer ball (94) enters the goal area (96).
PCT/IB1998/002092 1997-12-23 1998-12-21 System and method for constructing three-dimensional images using camera-based gesture inputs WO1999034276A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53470599A JP2001517345A (en) 1997-12-23 1998-12-21 System and method for 3D image construction using camera-based gesture input
EP98959094A EP0960368A2 (en) 1997-12-23 1998-12-21 System and method for constructing three-dimensional images using camera-based gesture inputs
KR1019997007662A KR100650296B1 (en) 1997-12-23 1998-12-21 System and method for constructing three-dimensional images using camera-based gesture inputs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/996,677 1997-12-23
US08/996,677 US6195104B1 (en) 1997-12-23 1997-12-23 System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs

Publications (2)

Publication Number Publication Date
WO1999034276A2 true WO1999034276A2 (en) 1999-07-08
WO1999034276A3 WO1999034276A3 (en) 1999-09-02

Family

ID=25543180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1998/002092 WO1999034276A2 (en) 1997-12-23 1998-12-21 System and method for constructing three-dimensional images using camera-based gesture inputs

Country Status (5)

Country Link
US (1) US6195104B1 (en)
EP (1) EP0960368A2 (en)
JP (2) JP2001517345A (en)
KR (1) KR100650296B1 (en)
WO (1) WO1999034276A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042892A2 (en) * 1999-12-10 2001-06-14 Virtuel Labs Inc. Influencing virtual actors in an interactive environment
WO2002016875A1 (en) * 2000-08-24 2002-02-28 Siemens Aktiengesellschaft Method for querying target information and navigating within a card view, computer program product and navigation device
US6531999B1 (en) 2000-07-13 2003-03-11 Koninklijke Philips Electronics N.V. Pointing direction calibration in video conferencing and other camera-based system applications
WO2006003870A1 (en) * 2004-06-30 2006-01-12 Sony Computer Entertainment Inc. Information processing device for controlling movement of a game character by using a player image and game character movement control method
WO2006003869A1 (en) * 2004-06-30 2006-01-12 Sony Computer Entertainment Inc. Information processing device for controlling object by using player image and object control method in the information processing device
WO2007070733A2 (en) 2005-12-12 2007-06-21 Sony Computer Entertainment Inc. Voice and video control of interactive electronically simulated environment
EP1967941A3 (en) * 2000-07-24 2008-11-19 GestureTek, Inc. Video-based image control system
EP2118840A1 (en) * 2007-03-01 2009-11-18 Sony Computer Entertainment America, Inc. Interactive user controlled avatar animations
US7702130B2 (en) 2004-12-20 2010-04-20 Electronics And Telecommunications Research Institute User interface apparatus using hand gesture recognition and method thereof
WO2010128321A2 (en) 2009-05-08 2010-11-11 Sony Computer Entertainment Europe Limited Entertainment device, system, and method
US8019661B2 (en) 2007-11-26 2011-09-13 International Business Machines Corporation Virtual web store with product images
US8065200B2 (en) 2007-11-26 2011-11-22 International Business Machines Corporation Virtual web store with product images
CN101237915B (en) * 2005-08-12 2012-02-29 皇家飞利浦电子股份有限公司 Interactive entertainment system and method of operation thereof
WO2012064803A1 (en) * 2010-11-12 2012-05-18 At&T Intellectual Property I, L.P. Electronic device control based on gestures
US8253727B2 (en) 2008-03-14 2012-08-28 International Business Machines Corporation Creating a web store using manufacturing data
EP1186162B1 (en) * 2000-01-20 2013-07-31 Koninklijke Philips Electronics N.V. Multi-modal video target acquisition and re-direction system and method

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US6947571B1 (en) * 1999-05-19 2005-09-20 Digimarc Corporation Cell phones with optical capabilities, and related applications
US6610917B2 (en) * 1998-05-15 2003-08-26 Lester F. Ludwig Activity indication, external source, and processing loop provisions for driven vibrating-element environments
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US6753857B1 (en) * 1999-04-16 2004-06-22 Nippon Telegraph And Telephone Corporation Method and system for 3-D shared virtual environment display communication virtual conference and programs therefor
US7760905B2 (en) 1999-06-29 2010-07-20 Digimarc Corporation Wireless mobile phone with content processing
US7261612B1 (en) 1999-08-30 2007-08-28 Digimarc Corporation Methods and systems for read-aloud books
US7406214B2 (en) 1999-05-19 2008-07-29 Digimarc Corporation Methods and devices employing optical sensors and/or steganography
US7224995B2 (en) * 1999-11-03 2007-05-29 Digimarc Corporation Data entry method and system
US8391851B2 (en) 1999-11-03 2013-03-05 Digimarc Corporation Gestural techniques with wireless mobile phone devices
JP2001160959A (en) * 1999-12-02 2001-06-12 Canon Inc Controller and method for virtual system and storage medium
TW559699B (en) * 2000-01-12 2003-11-01 Sony Corp Image display device and method
US6701357B1 (en) * 2000-04-19 2004-03-02 Toshiba America Information Systems, Inc. Server appliance
US20010031081A1 (en) * 2000-04-19 2001-10-18 The One Infinite Inc. Mirror to be formed using digital image processing and medium storing program for a computer to perform the processing
US6753879B1 (en) * 2000-07-03 2004-06-22 Intel Corporation Creating overlapping real and virtual images
US7007236B2 (en) * 2001-09-14 2006-02-28 Accenture Global Services Gmbh Lab window collaboration
DE10159610B4 (en) * 2001-12-05 2004-02-26 Siemens Ag System and method for creating documentation of work processes, especially in the area of production, assembly, service or maintenance
US6990639B2 (en) * 2002-02-07 2006-01-24 Microsoft Corporation System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration
US9959463B2 (en) 2002-02-15 2018-05-01 Microsoft Technology Licensing, Llc Gesture recognition system using depth perceptive sensors
WO2003071410A2 (en) * 2002-02-15 2003-08-28 Canesta, Inc. Gesture recognition system using depth perceptive sensors
US10242255B2 (en) 2002-02-15 2019-03-26 Microsoft Technology Licensing, Llc Gesture recognition system using depth perceptive sensors
US7904826B2 (en) * 2002-03-29 2011-03-08 Microsoft Corporation Peek around user interface
US20030227453A1 (en) * 2002-04-09 2003-12-11 Klaus-Peter Beier Method, system and computer program product for automatically creating an animated 3-D scenario from human position and path data
US7161579B2 (en) * 2002-07-18 2007-01-09 Sony Computer Entertainment Inc. Hand-held computer interactive device
US8947347B2 (en) * 2003-08-27 2015-02-03 Sony Computer Entertainment Inc. Controlling actions in a video game unit
US8797260B2 (en) * 2002-07-27 2014-08-05 Sony Computer Entertainment Inc. Inertially trackable hand-held controller
US7102615B2 (en) * 2002-07-27 2006-09-05 Sony Computer Entertainment Inc. Man-machine interface using a deformable device
US7646372B2 (en) * 2003-09-15 2010-01-12 Sony Computer Entertainment Inc. Methods and systems for enabling direction detection when interfacing with a computer program
US7623115B2 (en) 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7883415B2 (en) 2003-09-15 2011-02-08 Sony Computer Entertainment Inc. Method and apparatus for adjusting a view of a scene being displayed according to tracked head motion
US7854655B2 (en) * 2002-07-27 2010-12-21 Sony Computer Entertainment America Inc. Obtaining input for controlling execution of a game program
US7760248B2 (en) 2002-07-27 2010-07-20 Sony Computer Entertainment Inc. Selective sound source listening in conjunction with computer interactive processing
US8313380B2 (en) * 2002-07-27 2012-11-20 Sony Computer Entertainment America Llc Scheme for translating movements of a hand-held controller into inputs for a system
US7627139B2 (en) * 2002-07-27 2009-12-01 Sony Computer Entertainment Inc. Computer image and audio processing of intensity and input devices for interfacing with a computer program
US7918733B2 (en) * 2002-07-27 2011-04-05 Sony Computer Entertainment America Inc. Multi-input game control mixer
US8570378B2 (en) 2002-07-27 2013-10-29 Sony Computer Entertainment Inc. Method and apparatus for tracking three-dimensional movements of an object using a depth sensing camera
US9474968B2 (en) 2002-07-27 2016-10-25 Sony Interactive Entertainment America Llc Method and system for applying gearing effects to visual tracking
US8233642B2 (en) * 2003-08-27 2012-07-31 Sony Computer Entertainment Inc. Methods and apparatuses for capturing an audio signal based on a location of the signal
US7850526B2 (en) * 2002-07-27 2010-12-14 Sony Computer Entertainment America Inc. System for tracking user manipulations within an environment
US8139793B2 (en) * 2003-08-27 2012-03-20 Sony Computer Entertainment Inc. Methods and apparatus for capturing audio signals based on a visual image
US8686939B2 (en) * 2002-07-27 2014-04-01 Sony Computer Entertainment Inc. System, method, and apparatus for three-dimensional input control
US9393487B2 (en) 2002-07-27 2016-07-19 Sony Interactive Entertainment Inc. Method for mapping movements of a hand-held controller to game commands
US8160269B2 (en) 2003-08-27 2012-04-17 Sony Computer Entertainment Inc. Methods and apparatuses for adjusting a listening area for capturing sounds
US7803050B2 (en) * 2002-07-27 2010-09-28 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US9174119B2 (en) 2002-07-27 2015-11-03 Sony Computer Entertainement America, LLC Controller for providing inputs to control execution of a program when inputs are combined
US9682319B2 (en) * 2002-07-31 2017-06-20 Sony Interactive Entertainment Inc. Combiner method for altering game gearing
US20090143141A1 (en) * 2002-08-06 2009-06-04 Igt Intelligent Multiplayer Gaming System With Multi-Touch Display
US9177387B2 (en) * 2003-02-11 2015-11-03 Sony Computer Entertainment Inc. Method and apparatus for real time motion capture
US7505862B2 (en) * 2003-03-07 2009-03-17 Salmon Technologies, Llc Apparatus and method for testing electronic systems
US7665041B2 (en) * 2003-03-25 2010-02-16 Microsoft Corporation Architecture for controlling a computer using hand gestures
US8745541B2 (en) 2003-03-25 2014-06-03 Microsoft Corporation Architecture for controlling a computer using hand gestures
JP2004334590A (en) * 2003-05-08 2004-11-25 Denso Corp Operation input device
GB0310654D0 (en) * 2003-05-09 2003-06-11 Koninkl Philips Electronics Nv Mirror assembly with integrated display device
AU2003245822A1 (en) * 2003-05-14 2004-12-13 Tbs Holding Ag Method and device for the recognition of biometric data following recording from at least two directions
US8072470B2 (en) 2003-05-29 2011-12-06 Sony Computer Entertainment Inc. System and method for providing a real-time three-dimensional interactive environment
US7038661B2 (en) * 2003-06-13 2006-05-02 Microsoft Corporation Pointing device and cursor for use in intelligent computing environments
US20070223732A1 (en) * 2003-08-27 2007-09-27 Mao Xiao D Methods and apparatuses for adjusting a visual image based on an audio signal
JP4425589B2 (en) * 2003-09-03 2010-03-03 任天堂株式会社 Image generation program, image generation method, and image generation apparatus
US7874917B2 (en) * 2003-09-15 2011-01-25 Sony Computer Entertainment Inc. Methods and systems for enabling depth and direction detection when interfacing with a computer program
US8287373B2 (en) 2008-12-05 2012-10-16 Sony Computer Entertainment Inc. Control device for communicating visual information
US9573056B2 (en) * 2005-10-26 2017-02-21 Sony Interactive Entertainment Inc. Expandable control device via hardware attachment
US8323106B2 (en) 2008-05-30 2012-12-04 Sony Computer Entertainment America Llc Determination of controller three-dimensional location using image analysis and ultrasonic communication
US10279254B2 (en) * 2005-10-26 2019-05-07 Sony Interactive Entertainment Inc. Controller having visually trackable object for interfacing with a gaming system
US7663689B2 (en) * 2004-01-16 2010-02-16 Sony Computer Entertainment Inc. Method and apparatus for optimizing capture device settings through depth information
US7707039B2 (en) 2004-02-15 2010-04-27 Exbiblio B.V. Automatic modification of web pages
US8442331B2 (en) 2004-02-15 2013-05-14 Google Inc. Capturing text from rendered documents using supplemental information
FI117308B (en) * 2004-02-06 2006-08-31 Nokia Corp gesture Control
US20060041484A1 (en) * 2004-04-01 2006-02-23 King Martin T Methods and systems for initiating application processes by data capture from rendered documents
US10635723B2 (en) 2004-02-15 2020-04-28 Google Llc Search engines and systems with handheld document data capture devices
US7812860B2 (en) * 2004-04-01 2010-10-12 Exbiblio B.V. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US20060122983A1 (en) * 2004-12-03 2006-06-08 King Martin T Locating electronic instances of documents based on rendered instances, document fragment digest generation, and digest based document fragment determination
US20060053097A1 (en) * 2004-04-01 2006-03-09 King Martin T Searching and accessing documents on private networks for use with captures from rendered documents
US20060041605A1 (en) * 2004-04-01 2006-02-23 King Martin T Determining actions involving captured information and electronic content associated with rendered documents
US20050215319A1 (en) * 2004-03-23 2005-09-29 Harmonix Music Systems, Inc. Method and apparatus for controlling a three-dimensional character in a three-dimensional gaming environment
US7894670B2 (en) 2004-04-01 2011-02-22 Exbiblio B.V. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US9116890B2 (en) 2004-04-01 2015-08-25 Google Inc. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US8146156B2 (en) 2004-04-01 2012-03-27 Google Inc. Archive of text captures from rendered documents
US20060098900A1 (en) 2004-09-27 2006-05-11 King Martin T Secure data gathering from rendered documents
US20060081714A1 (en) * 2004-08-23 2006-04-20 King Martin T Portable scanning device
US8081849B2 (en) * 2004-12-03 2011-12-20 Google Inc. Portable scanning and memory device
US9143638B2 (en) 2004-04-01 2015-09-22 Google Inc. Data capture from rendered documents using handheld device
US20070300142A1 (en) * 2005-04-01 2007-12-27 King Martin T Contextual dynamic advertising based upon captured rendered text
US20080313172A1 (en) * 2004-12-03 2008-12-18 King Martin T Determining actions involving captured information and electronic content associated with rendered documents
US7990556B2 (en) 2004-12-03 2011-08-02 Google Inc. Association of a portable scanner with input/output and storage devices
US9008447B2 (en) * 2004-04-01 2015-04-14 Google Inc. Method and system for character recognition
US8713418B2 (en) * 2004-04-12 2014-04-29 Google Inc. Adding value to a rendered document
US8620083B2 (en) 2004-12-03 2013-12-31 Google Inc. Method and system for character recognition
US8489624B2 (en) 2004-05-17 2013-07-16 Google, Inc. Processing techniques for text capture from a rendered document
US8874504B2 (en) 2004-12-03 2014-10-28 Google Inc. Processing techniques for visual capture data from a rendered document
US7593593B2 (en) * 2004-06-16 2009-09-22 Microsoft Corporation Method and system for reducing effects of undesired signals in an infrared imaging system
US8346620B2 (en) * 2004-07-19 2013-01-01 Google Inc. Automatic modification of web pages
US8560972B2 (en) 2004-08-10 2013-10-15 Microsoft Corporation Surface UI for gesture-based interaction
US8547401B2 (en) * 2004-08-19 2013-10-01 Sony Computer Entertainment Inc. Portable augmented reality device and method
US7430312B2 (en) 2005-01-07 2008-09-30 Gesturetek, Inc. Creating 3D images of objects by illuminating with infrared patterns
EP1849123A2 (en) * 2005-01-07 2007-10-31 GestureTek, Inc. Optical flow based tilt sensor
US8144118B2 (en) * 2005-01-21 2012-03-27 Qualcomm Incorporated Motion-based tracking
US8009871B2 (en) 2005-02-08 2011-08-30 Microsoft Corporation Method and system to segment depth images and to detect shapes in three-dimensionally acquired data
EP1869639A2 (en) * 2005-04-07 2007-12-26 Nxp B.V. Method and device for three-dimensional rendering
CA2672144A1 (en) * 2006-04-14 2008-11-20 Patrick Levy Rosenthal Virtual video camera device with three-dimensional tracking and virtual object insertion
US20070265075A1 (en) * 2006-05-10 2007-11-15 Sony Computer Entertainment America Inc. Attachable structure for use with hand-held controller having tracking ability
US20110014981A1 (en) * 2006-05-08 2011-01-20 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US7701439B2 (en) 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method
US9696808B2 (en) * 2006-07-13 2017-07-04 Northrop Grumman Systems Corporation Hand-gesture recognition method
US8589824B2 (en) * 2006-07-13 2013-11-19 Northrop Grumman Systems Corporation Gesture recognition interface system
US8180114B2 (en) * 2006-07-13 2012-05-15 Northrop Grumman Systems Corporation Gesture recognition interface system with vertical display
US8972902B2 (en) * 2008-08-22 2015-03-03 Northrop Grumman Systems Corporation Compound gesture recognition
US8234578B2 (en) * 2006-07-25 2012-07-31 Northrop Grumman Systems Corporatiom Networked gesture collaboration system
US7907117B2 (en) * 2006-08-08 2011-03-15 Microsoft Corporation Virtual controller for visual displays
US8432448B2 (en) * 2006-08-10 2013-04-30 Northrop Grumman Systems Corporation Stereo camera intrusion detection system
JP5013773B2 (en) * 2006-08-18 2012-08-29 パナソニック株式会社 In-vehicle image processing apparatus and viewpoint conversion information generation method thereof
EP2067119A2 (en) 2006-09-08 2009-06-10 Exbiblio B.V. Optical scanners, such as hand-held optical scanners
US8310656B2 (en) * 2006-09-28 2012-11-13 Sony Computer Entertainment America Llc Mapping movements of a hand-held controller to the two-dimensional image plane of a display screen
US8781151B2 (en) 2006-09-28 2014-07-15 Sony Computer Entertainment Inc. Object detection using video input combined with tilt angle information
USRE48417E1 (en) 2006-09-28 2021-02-02 Sony Interactive Entertainment Inc. Object direction using video input combined with tilt angle information
US20080147488A1 (en) * 2006-10-20 2008-06-19 Tunick James A System and method for monitoring viewer attention with respect to a display and determining associated charges
US20080231926A1 (en) * 2007-03-19 2008-09-25 Klug Michael A Systems and Methods for Updating Dynamic Three-Dimensional Displays with User Input
US20080252596A1 (en) * 2007-04-10 2008-10-16 Matthew Bell Display Using a Three-Dimensional vision System
US20080295035A1 (en) * 2007-05-25 2008-11-27 Nokia Corporation Projection of visual elements and graphical elements in a 3D UI
CN101952818B (en) 2007-09-14 2016-05-25 智慧投资控股81有限责任公司 The processing of the user interactions based on attitude
US8638363B2 (en) 2009-02-18 2014-01-28 Google Inc. Automatically capturing information, such as capturing information using a document-aware device
US8139110B2 (en) * 2007-11-01 2012-03-20 Northrop Grumman Systems Corporation Calibration of a gesture recognition interface system
US9377874B2 (en) * 2007-11-02 2016-06-28 Northrop Grumman Systems Corporation Gesture recognition light and video image projector
US8159682B2 (en) 2007-11-12 2012-04-17 Intellectual Ventures Holding 67 Llc Lens system
US9171454B2 (en) * 2007-11-14 2015-10-27 Microsoft Technology Licensing, Llc Magic wand
US8542907B2 (en) * 2007-12-17 2013-09-24 Sony Computer Entertainment America Llc Dynamic three-dimensional object mapping for user-defined control device
US8840470B2 (en) * 2008-02-27 2014-09-23 Sony Computer Entertainment America Llc Methods for capturing depth data of a scene and applying computer actions
US8259163B2 (en) 2008-03-07 2012-09-04 Intellectual Ventures Holding 67 Llc Display with built in 3D sensing
US8368753B2 (en) 2008-03-17 2013-02-05 Sony Computer Entertainment America Llc Controller with an integrated depth camera
US8233206B2 (en) * 2008-03-18 2012-07-31 Zebra Imaging, Inc. User interaction with holographic images
US8345920B2 (en) * 2008-06-20 2013-01-01 Northrop Grumman Systems Corporation Gesture recognition interface system with a light-diffusive screen
US8847739B2 (en) * 2008-08-04 2014-09-30 Microsoft Corporation Fusing RFID and vision for surface object tracking
US20100031202A1 (en) * 2008-08-04 2010-02-04 Microsoft Corporation User-defined gesture set for surface computing
US8941691B2 (en) * 2008-08-26 2015-01-27 Pure Depth Limited Multi-layered displays
WO2010030822A1 (en) * 2008-09-10 2010-03-18 Oblong Industries, Inc. Gestural control of autonomous and semi-autonomous systems
JP5260643B2 (en) * 2008-09-29 2013-08-14 パナソニック株式会社 User interface device, user interface method, and recording medium
US20100105479A1 (en) 2008-10-23 2010-04-29 Microsoft Corporation Determining orientation in an external reference frame
US8961313B2 (en) * 2009-05-29 2015-02-24 Sony Computer Entertainment America Llc Multi-positional three-dimensional controller
DE202010018551U1 (en) 2009-03-12 2017-08-24 Google, Inc. Automatically deliver content associated with captured information, such as information collected in real-time
US8447066B2 (en) 2009-03-12 2013-05-21 Google Inc. Performing actions based on capturing information from rendered documents, such as documents under copyright
US9250788B2 (en) * 2009-03-18 2016-02-02 IdentifyMine, Inc. Gesture handlers of a gesture engine
US8527657B2 (en) * 2009-03-20 2013-09-03 Sony Computer Entertainment America Llc Methods and systems for dynamically adjusting update rates in multi-player network gaming
US8342963B2 (en) * 2009-04-10 2013-01-01 Sony Computer Entertainment America Inc. Methods and systems for enabling control of artificial intelligence game characters
US8393964B2 (en) 2009-05-08 2013-03-12 Sony Computer Entertainment America Llc Base station for position location
US8142288B2 (en) 2009-05-08 2012-03-27 Sony Computer Entertainment America Llc Base station movement detection and compensation
US9417700B2 (en) * 2009-05-21 2016-08-16 Edge3 Technologies Gesture recognition systems and related methods
US20110107216A1 (en) * 2009-11-03 2011-05-05 Qualcomm Incorporated Gesture-based user interface
US8843857B2 (en) 2009-11-19 2014-09-23 Microsoft Corporation Distance scalable no touch computing
US9081799B2 (en) 2009-12-04 2015-07-14 Google Inc. Using gestalt information to identify locations in printed information
US9323784B2 (en) 2009-12-09 2016-04-26 Google Inc. Image search using text-based elements within the contents of images
US9098873B2 (en) * 2010-04-01 2015-08-04 Microsoft Technology Licensing, Llc Motion-based interactive shopping environment
US9646340B2 (en) 2010-04-01 2017-05-09 Microsoft Technology Licensing, Llc Avatar-based virtual dressing room
US8396252B2 (en) 2010-05-20 2013-03-12 Edge 3 Technologies Systems and related methods for three dimensional gesture recognition in vehicles
JP2012000165A (en) * 2010-06-14 2012-01-05 Sega Corp Video game apparatus
US8296151B2 (en) * 2010-06-18 2012-10-23 Microsoft Corporation Compound gesture-speech commands
US8582866B2 (en) 2011-02-10 2013-11-12 Edge 3 Technologies, Inc. Method and apparatus for disparity computation in stereo images
WO2012030872A1 (en) 2010-09-02 2012-03-08 Edge3 Technologies Inc. Method and apparatus for confusion learning
US8666144B2 (en) 2010-09-02 2014-03-04 Edge 3 Technologies, Inc. Method and apparatus for determining disparity of texture
US8655093B2 (en) 2010-09-02 2014-02-18 Edge 3 Technologies, Inc. Method and apparatus for performing segmentation of an image
US8970589B2 (en) 2011-02-10 2015-03-03 Edge 3 Technologies, Inc. Near-touch interaction with a stereo camera grid structured tessellations
US9672609B1 (en) 2011-11-11 2017-06-06 Edge 3 Technologies, Inc. Method and apparatus for improved depth-map estimation
KR101601805B1 (en) 2011-11-14 2016-03-11 한국전자통신연구원 Apparatus and method fot providing mixed reality contents for virtual experience based on story
US8811938B2 (en) 2011-12-16 2014-08-19 Microsoft Corporation Providing a user interface experience based on inferred vehicle state
US8693731B2 (en) 2012-01-17 2014-04-08 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging
US8638989B2 (en) 2012-01-17 2014-01-28 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US9070019B2 (en) 2012-01-17 2015-06-30 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US20150253428A1 (en) 2013-03-15 2015-09-10 Leap Motion, Inc. Determining positional information for an object in space
US9501152B2 (en) 2013-01-15 2016-11-22 Leap Motion, Inc. Free-space user interface and control using virtual constructs
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
JP6018707B2 (en) 2012-06-21 2016-11-02 マイクロソフト コーポレーション Building an avatar using a depth camera
WO2014032181A1 (en) 2012-08-27 2014-03-06 Université Du Québec À Chicoutimi Method to determine physical properties of the ground, foot-worn sensor therefore, and method to advise a user of a risk of falling based thereon
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US9696867B2 (en) 2013-01-15 2017-07-04 Leap Motion, Inc. Dynamic user interactions for display control and identifying dominant gestures
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
US10721448B2 (en) 2013-03-15 2020-07-21 Edge 3 Technologies, Inc. Method and apparatus for adaptive exposure bracketing, segmentation and scene organization
US10620709B2 (en) 2013-04-05 2020-04-14 Ultrahaptics IP Two Limited Customized gesture interpretation
US9916009B2 (en) 2013-04-26 2018-03-13 Leap Motion, Inc. Non-tactile interface systems and methods
US9747696B2 (en) 2013-05-17 2017-08-29 Leap Motion, Inc. Systems and methods for providing normalized parameters of motions of objects in three-dimensional space
US10281987B1 (en) 2013-08-09 2019-05-07 Leap Motion, Inc. Systems and methods of free-space gestural interaction
US9721383B1 (en) 2013-08-29 2017-08-01 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9632572B2 (en) 2013-10-03 2017-04-25 Leap Motion, Inc. Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
CN103593519B (en) * 2013-10-31 2016-05-04 中国运载火箭技术研究院 A kind of carrier rocket optimization of Overall Parameters of Muffler method based on experimental design
US9996638B1 (en) 2013-10-31 2018-06-12 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
DE202014103729U1 (en) 2014-08-08 2014-09-09 Leap Motion, Inc. Augmented reality with motion detection
US20160092034A1 (en) * 2014-09-26 2016-03-31 Amazon Technologies, Inc. Kiosk Providing High Speed Data Transfer
US10237329B1 (en) 2014-09-26 2019-03-19 Amazon Technologies, Inc. Wirelessly preparing device for high speed data transfer
KR20170116437A (en) * 2016-04-11 2017-10-19 전자부품연구원 Apparatus and method for recognizing user's posture in ski simulator
CN111610858B (en) 2016-10-26 2023-09-19 创新先进技术有限公司 Interaction method and device based on virtual reality
KR102395030B1 (en) * 2017-06-09 2022-05-09 한국전자통신연구원 Method for remote controlling virtual comtents and apparatus using the same
US10653957B2 (en) * 2017-12-06 2020-05-19 Universal City Studios Llc Interactive video game system
US11132479B1 (en) 2017-12-29 2021-09-28 II John Tyson Augmented reality system for component assembly and archival baseline clone
US11486697B1 (en) 2017-12-29 2022-11-01 II John Tyson Optical structural health monitoring
US11875012B2 (en) 2018-05-25 2024-01-16 Ultrahaptics IP Two Limited Throwable interface for augmented reality and virtual reality environments
US11040262B2 (en) 2019-06-21 2021-06-22 Matthew Moran Sports ball training or simulating device
KR102128535B1 (en) * 2019-11-19 2020-06-30 주식회사 오드래빗미디어 System for providing hologram
WO2022146169A1 (en) * 2020-12-30 2022-07-07 Ringcentral, Inc., (A Delaware Corporation) System and method for noise cancellation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587138A2 (en) * 1992-09-08 1994-03-16 Kabushiki Kaisha Toshiba 3D Human interface apparatus using motion recognition based on dynamic image processing
WO1996021321A1 (en) * 1995-01-06 1996-07-11 Anderson David P Virtual reality television system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534617B2 (en) 1993-07-23 1996-09-18 株式会社エイ・ティ・アール通信システム研究所 Real-time recognition and synthesis method of human image
US5347306A (en) * 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
US5594469A (en) * 1995-02-21 1997-01-14 Mitsubishi Electric Information Technology Center America Inc. Hand gesture machine control system
WO1997018667A1 (en) * 1995-11-14 1997-05-22 Sony Corporation Special effect device, image processing method, and shadow generating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587138A2 (en) * 1992-09-08 1994-03-16 Kabushiki Kaisha Toshiba 3D Human interface apparatus using motion recognition based on dynamic image processing
WO1996021321A1 (en) * 1995-01-06 1996-07-11 Anderson David P Virtual reality television system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN; & JP 7038873 A (ATR TSUSHIN SYST KENKYUSHO: KK) 7 February 1995. *
PATENT ABSTRACTS OF JAPAN; & JP 9179988 A (ATR TSUSHIN SYST KENKYUSHO:KK) 11 July 1997. *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042892A2 (en) * 1999-12-10 2001-06-14 Virtuel Labs Inc. Influencing virtual actors in an interactive environment
WO2001042892A3 (en) * 1999-12-10 2001-11-29 Virtuel Labs Inc Influencing virtual actors in an interactive environment
US6507353B1 (en) 1999-12-10 2003-01-14 Godot Huard Influencing virtual actors in an interactive environment
EP1186162B1 (en) * 2000-01-20 2013-07-31 Koninklijke Philips Electronics N.V. Multi-modal video target acquisition and re-direction system and method
US6531999B1 (en) 2000-07-13 2003-03-11 Koninklijke Philips Electronics N.V. Pointing direction calibration in video conferencing and other camera-based system applications
US8274535B2 (en) 2000-07-24 2012-09-25 Qualcomm Incorporated Video-based image control system
US8963963B2 (en) 2000-07-24 2015-02-24 Qualcomm Incorporated Video-based image control system
EP1967941A3 (en) * 2000-07-24 2008-11-19 GestureTek, Inc. Video-based image control system
US8624932B2 (en) 2000-07-24 2014-01-07 Qualcomm Incorporated Video-based image control system
US7898522B2 (en) 2000-07-24 2011-03-01 Gesturetek, Inc. Video-based image control system
US7126579B2 (en) 2000-08-24 2006-10-24 Siemens Aktiengesellschaft Method for requesting destination information and for navigating in a map view, computer program product and navigation unit
WO2002016875A1 (en) * 2000-08-24 2002-02-28 Siemens Aktiengesellschaft Method for querying target information and navigating within a card view, computer program product and navigation device
WO2006003869A1 (en) * 2004-06-30 2006-01-12 Sony Computer Entertainment Inc. Information processing device for controlling object by using player image and object control method in the information processing device
US7959511B2 (en) 2004-06-30 2011-06-14 Sony Computer Entertainment Inc. Information processing device for controlling movement of a game character by using a player image and game character movement control method
WO2006003870A1 (en) * 2004-06-30 2006-01-12 Sony Computer Entertainment Inc. Information processing device for controlling movement of a game character by using a player image and game character movement control method
US7911447B2 (en) 2004-06-30 2011-03-22 Sony Computer Entertainment Inc. Information processing device for controlling object by using player image and object control method in the information processing device
US7702130B2 (en) 2004-12-20 2010-04-20 Electronics And Telecommunications Research Institute User interface apparatus using hand gesture recognition and method thereof
CN101237915B (en) * 2005-08-12 2012-02-29 皇家飞利浦电子股份有限公司 Interactive entertainment system and method of operation thereof
WO2007070733A2 (en) 2005-12-12 2007-06-21 Sony Computer Entertainment Inc. Voice and video control of interactive electronically simulated environment
US8549442B2 (en) 2005-12-12 2013-10-01 Sony Computer Entertainment Inc. Voice and video control of interactive electronically simulated environment
EP1960990A2 (en) * 2005-12-12 2008-08-27 Sony Computer Entertainment Inc. Voice and video control of interactive electronically simulated environment
EP1960990A4 (en) * 2005-12-12 2012-08-01 Sony Computer Entertainment Inc Voice and video control of interactive electronically simulated environment
EP2118840A1 (en) * 2007-03-01 2009-11-18 Sony Computer Entertainment America, Inc. Interactive user controlled avatar animations
EP2118840A4 (en) * 2007-03-01 2010-11-10 Sony Comp Entertainment Us Interactive user controlled avatar animations
US8065200B2 (en) 2007-11-26 2011-11-22 International Business Machines Corporation Virtual web store with product images
US8019661B2 (en) 2007-11-26 2011-09-13 International Business Machines Corporation Virtual web store with product images
US8253727B2 (en) 2008-03-14 2012-08-28 International Business Machines Corporation Creating a web store using manufacturing data
GB2470072B (en) * 2009-05-08 2014-01-01 Sony Comp Entertainment Europe Entertainment device,system and method
WO2010128321A2 (en) 2009-05-08 2010-11-11 Sony Computer Entertainment Europe Limited Entertainment device, system, and method
US8933968B2 (en) 2009-05-08 2015-01-13 Sony Computer Entertainment Europe Limited Entertainment device, system, and method
WO2010128321A3 (en) * 2009-05-08 2011-03-24 Sony Computer Entertainment Europe Limited Entertainment device, system, and method
WO2012064803A1 (en) * 2010-11-12 2012-05-18 At&T Intellectual Property I, L.P. Electronic device control based on gestures
US9304592B2 (en) 2010-11-12 2016-04-05 At&T Intellectual Property I, L.P. Electronic device control based on gestures

Also Published As

Publication number Publication date
JP2009037594A (en) 2009-02-19
KR100650296B1 (en) 2006-11-28
US6195104B1 (en) 2001-02-27
EP0960368A2 (en) 1999-12-01
JP2001517345A (en) 2001-10-02
WO1999034276A3 (en) 1999-09-02
KR20000075601A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US6195104B1 (en) System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
US6181343B1 (en) System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
Starner et al. The perceptive workbench: Computer-vision-based gesture tracking, object tracking, and 3D reconstruction for augmented desks
US7170492B2 (en) Interactive video display system
US7348963B2 (en) Interactive video display system
US8072470B2 (en) System and method for providing a real-time three-dimensional interactive environment
CN103793060B (en) A kind of user interactive system and method
Leibe et al. The perceptive workbench: Toward spontaneous and natural interaction in semi-immersive virtual environments
US20170352188A1 (en) Support Based 3D Navigation
Leibe et al. Toward spontaneous interaction with the perceptive workbench
US20100259610A1 (en) Two-Dimensional Display Synced with Real World Object Movement
CN102414641A (en) Altering a view perspective within a display environment
EP0961965A2 (en) Method and system for gesture based option selection
EP3116616A1 (en) Gaming device with volumetric sensing
WO2005091651A2 (en) Interactive video display system
KR20120051659A (en) Auto-generating a visual representation
CN102622774A (en) Living room movie creation
EP3252668B1 (en) Apparatus for designing a pattern for a wearable item
Freeman et al. Computer vision for computer interaction
JP3341734B2 (en) Video display device
KR100607046B1 (en) Image processing method for bodily sensitive game and game method using same
Psik et al. The invisible person: advanced interaction using an embedded interface
WO2016057997A1 (en) Support based 3d navigation
CN112245910A (en) Modeling and extreme movement method and system based on Quest head display
von Tenspolde et al. Painting with the Watching Window: Design and Implementation of

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998959094

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 534705

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997007662

Country of ref document: KR

AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998959094

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007662

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997007662

Country of ref document: KR