WO1999031532B1 - Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer - Google Patents

Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer

Info

Publication number
WO1999031532B1
WO1999031532B1 PCT/US1998/026368 US9826368W WO9931532B1 WO 1999031532 B1 WO1999031532 B1 WO 1999031532B1 US 9826368 W US9826368 W US 9826368W WO 9931532 B1 WO9931532 B1 WO 9931532B1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
refractive index
multiplexed
gradient refractive
axial gradient
Prior art date
Application number
PCT/US1998/026368
Other languages
French (fr)
Other versions
WO1999031532A2 (en
WO1999031532A3 (en
Inventor
Robert H Dueck
Robert K Wade
Boyde V Hunter
Joseph R Dempewolf
Original Assignee
Lightchip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lightchip Inc filed Critical Lightchip Inc
Priority to JP2000539371A priority Critical patent/JP2002508532A/en
Priority to IL13661898A priority patent/IL136618A0/en
Priority to BR9814279-8A priority patent/BR9814279A/en
Priority to AU19100/99A priority patent/AU753534B2/en
Priority to EP98963860A priority patent/EP1038192A4/en
Priority to KR1020007006406A priority patent/KR20010033048A/en
Priority to CA002313205A priority patent/CA2313205A1/en
Publication of WO1999031532A2 publication Critical patent/WO1999031532A2/en
Publication of WO1999031532A3 publication Critical patent/WO1999031532A3/en
Publication of WO1999031532B1 publication Critical patent/WO1999031532B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29307Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide components assembled in or forming a solid transparent unitary block, e.g. for facilitating component alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Abstract

A wavelength division multiplexer that integrates an axial gradient refractive index element with a diffraction grating to provide coupling from a plurality of input optical sources (each delivering a single wavelength) which are multiplexed to a single polychromatic beam for output to a single output optical receiver. The device comprises means for accepting optical input from at least one optical source, the means including a planar surface (20a); a coupler element (20) comprising an axial gradient refractive index collimating lens (26) having a planar entrance surface onto which the optical input is incident and a homogeneous index boot lens (24, 28) affixed to the axial gradient refractive index collimating lens and having a planar but tilted exit surface (20b); a diffraction grating (22) on the tilted surface of the homogeneous index boot lens which combines a plurality of spatially separated wavelengths from the optical light; and means to output at least one multiplexed, polychromatic output beam, the means including a planar surface (20a). The device may be operated in the forward or reverse direction as a multiplexer or demultiplexer.

Claims

AMENDED CLAIMS[received by the International Bureau on 24 September 1999 (24.09.99); original claims 1, 3, 5-17 and 19-22 amended; new claims 25-32 added; remaining claims unchanged (6 pages)]
1. An integrated axial gradient refractive index/diffraction grating wavelength division multiplexer device comprising:
(a) means for accepting at least one optical beam containing at least one wavelength from an optical source, said means including a planar front surface onto which said at least one optical beam is incident;
(b) a coupler subsystem comprising (1) an axial gradient refractive index collimating lens operatively associated with said planar front surface,, and (2) a homogeneous index boot lens affixed to said axial gradient refractive index collimating lens and having a planar exit surface from which said at least one optical beam exits;
(c) a diffraction grating formed at said planar exit surface of said coupler subsystem for combining a plurality of spatially separated wavelengths from said at least one optical beam into at least one multiplexed, polychromatic optical beam and for reflecting said at least one multiplexed, polychromatic optical beam back into said coupler subsystem; and
(d) means for outputting said at least one multiplexed, polychromatic output beam to an optical receiver, said means including said planar front surface.
2. The device of Claim 1 wherein said diffraction grating is a Littrow diffraction grating.
3. The device of Claim 1 wherein said planar exit surface is provided with a beveled surface at an angle that is normal to at least one wavelength diffracted by said diffraction grating, said beveled surface being angled so that incident wavelengths from said coupler subsystem are reflected back into said coupler subsystem.
4. The device of Claim 1 further including at least one electrooptical element for refracting either an individual or a plurality of wavelengths to provide channel routing capabilities.
5. The device of Claim 4 further comprising a non-linear electrooptical element between said optical source and said planar front surface.
6. The device of Claim 4 further comprising an array of individually addressable electrooptical elements between said optical source and said planar front surface.
7. The device of Claim 1 wherein said optical source is selected from the group consisting of optical fibers, lasers, and laser diodes.
8. The device of Claim 7 wherein said optical source comprises at least one optical fiber transmitting a plurality of wavelengths.
9. The device of Claim 7 wherein said optical source comprises a one- dimensional array of optical fibers.
10. The device of Claim 7 wherein said optical source comprises a two- dimensional array of optical fibers.
1 1. The device of Claim 7 wherein said optical source comprises a one- dimensional array of laser diodes.
12. The device of Claim 7 wherein said optical source comprises a two- dimensional array of laser diodes.
13. The device of Claim 1 wherein said optical receiver is selected from the group consisting of optical fibers and photodetectors.
14. The device of Claim 13 wherein said optical receiver comprises a one- dimensional array of optical fibers.
15. The device of Claim 13 wherein said optical receiver comprises a two- dimensional array of optical fibers.
16. The device of Claim 13 wherein said optical receiver comprises a one- dimensional array of photodetectors.
17. The device of Claim 13 wherein said optical receiver comprises a two- dimensional array of photodetectors.
18. The device of Claim 1 wherein said at least one optical beam is incident on said coupler subsystem and exits from said coupler subsystem, thereby acting as a multiplexer.
19. The device of Claim 18 wherein more than one of said at least one optical beam is incident on said coupler subsystem and exits from said coupler subsystem as said at least one multiplexed, polychromatic optical beam.
20. The device of Claim 1 wherein said at least one multiplexed, polychromatic optical beam is incident on said coupler subsystem and exits from said coupler subsystem, thereby acting as a demultiplexer.
21. The device of Claim 20 wherein at least one of said at least one multiplexed, polychromatic optical beam is incident on said coupler subsystem and exits from said coupler subsystem as more than one of said at least one optical beam.
22. The device of Claim 1 further comprising at least one homogeneous index element between said accepting means and said coupler subsystem.
23. The device of Claim 1 further including at least one electrooptical element for blocking either an individual or a plurality of wavelengths to provide channel blocking capabilities.
24. The device of Claim 1 wherein said coupler subsystem provides a specifically desired function for channel output intensity as a function of wavelength.
25. An integrated axial gradient refractive index/diffraction grating wavelength division multiplexer device comprising: (a) an axial gradient refractive index collimating/focusing lens for collimating a plurality of monochromatic optical beams traveling along a first direction, and for focusing a multiplexed, polychromatic optical beam traveling along a second direction, the second direction being substantially opposite the first direction;
(b) a homogeneous index boot lens affixed to the axial gradient refractive index collimating/focusing lens for transmitting the plurality of monochromatic optical beams from the axial gradient refractive index collimating/focusing lens along the first direction, and for transmitting the multiplexed, polychromatic optical beam to the axial gradient refractive index collimating/focusing lens along the second direction, the homogeneous index boot lens having a planar interface surface; and
(c) a diffraction grating formed at the planar interface surface of the homogeneous index boot lens for combining the plurality of monochromatic optical beams into the multiplexed, polychromatic optical beam, and for reflecting the multiplexed, polychromatic optical beam back into the homogeneous index boot lens.
26. The device of Claim 25, wherein the homogeneous index boot lens is a first homogeneous index boot lens, the device further comprising: a second homogeneous index boot lens affixed to the axial gradient refractive index collimating/focusing lens for transmitting the plurality of monochromatic optical beams to the axial gradient refractive index collimating/focusing lens along the first direction, and for transmitting the multiplexed, polychromatic optical beam from the axial gradient refractive index collimating/focusing lens along the second direction.
27. The device of Claim 26, wherein the second homogeneous index boot lens has a planar interface surface for accepting the plurality of monochromatic optical beams from an optical source, and for outputting the multiplexed, polychromatic optical beam to an optical receiver.
28. The device of Claim 25, wherein the axial gradient refractive index collimating/focusing lens has a planar interface surface for accepting the plurality of monochromatic optical beams from an optical source, and for outputting the multiplexed, polychromatic optical beam to an optical receiver.
29. An integrated axial gradient refractive index/diffraction grating wavelength division demultiplexer device comprising:
(a) an axial gradient refractive index collimating/focusing lens for collimating a multiplexed, polychromatic optical beam traveling along a first direction, and for focusing a plurality of monochromatic optical beams traveling along a second direction, the second direction being substantially opposite the first direction; (b) a homogeneous index boot lens affixed to the axial gradient refractive index collimating/focusing lens for transmitting the multiplexed, polychromatic optical beam from the axial gradient refractive index collimating/focusing lens along the first direction, and for transmitting the plurality of monochromatic optical beams to the axial gradient refractive index collimating/focusing lens along the second direction, the homogeneous index boot lens having a planar interface surface; and
(c) a diffraction grating formed at the planar interface surface of the homogeneous index boot lens for separating the multiplexed, polychromatic optical beam into the plurality of monochromatic optical beams, and for reflecting the plurality of monochromatic optical beams back into the homogeneous index boot lens.
30. The device of Claim 29, wherein the homogeneous index boot lens is a first homogeneous index boot lens, the device further comprising: a second homogeneous index boot lens affixed to the axial gradient refractive index collimating/focusing lens for transmitting the multiplexed, polychromatic optical beam to the axial gradient refractive index collimating/focusing lens along the first direction, and for transmitting the plurality of monochromatic optical beams from the axial gradient refractive index collimating/focusing lens along the second direction.
31. The device of Claim 30, wherein the second homogeneous index boot lens has a planar interface surface for accepting the multiplexed, polychromatic optical beam from an optical source, and for outputting the plurality of monochromatic optical beams to an optical receiver.
32. The device of Claim 29, wherein the axial gradient refractive index collimating/focusing lens has a planar interface surface for accepting the multiplexed, polychromatic optical beam from an optical source, and for outputting the plurality of monochromatic optical beams to an optical receiver.
. _
STATEMENT UNDER PCT ARTICLE 19
On the replacement sheets, original Claims 1, 3, 5-17, and 19-22 have been amended, original Claims 2, 4 and 18 remain unchanged, and new claims 25-32 have been added. Claims 1 , 3, 5-17, and 19-22 have been amended to correct informalities. Claims 25-32 have been added to address other aspects of the invention. No new matter has been added.
PCT/US1998/026368 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer WO1999031532A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000539371A JP2002508532A (en) 1997-12-13 1998-12-11 Integrated bidirectional axial gradient index / grating wavelength division multiplexer
IL13661898A IL136618A0 (en) 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
BR9814279-8A BR9814279A (en) 1997-12-13 1998-12-11 Integrated bidirectional wavelength division multiplexer with axial gradient refractive index / diffraction grating
AU19100/99A AU753534B2 (en) 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
EP98963860A EP1038192A4 (en) 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
KR1020007006406A KR20010033048A (en) 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
CA002313205A CA2313205A1 (en) 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/990,197 1997-12-13
US08/990,197 US6011884A (en) 1997-12-13 1997-12-13 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer

Publications (3)

Publication Number Publication Date
WO1999031532A2 WO1999031532A2 (en) 1999-06-24
WO1999031532A3 WO1999031532A3 (en) 1999-10-28
WO1999031532B1 true WO1999031532B1 (en) 1999-11-25

Family

ID=25535886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/026368 WO1999031532A2 (en) 1997-12-13 1998-12-11 Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer

Country Status (11)

Country Link
US (1) US6011884A (en)
EP (1) EP1038192A4 (en)
JP (1) JP2002508532A (en)
KR (1) KR20010033048A (en)
CN (1) CN1281555A (en)
AU (1) AU753534B2 (en)
BR (1) BR9814279A (en)
CA (1) CA2313205A1 (en)
IL (1) IL136618A0 (en)
RU (1) RU2191416C2 (en)
WO (1) WO1999031532A2 (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW373083B (en) * 1996-12-20 1999-11-01 Corning Inc Reflective coupling array for optical waveguide
FR2764393B1 (en) * 1997-06-09 1999-08-20 Instruments Sa OPTICAL FIBER WAVELENGTH MULTIPLEXER-DEMULTIPLEXER
US6952504B2 (en) 2001-12-21 2005-10-04 Neophotonics Corporation Three dimensional engineering of planar optical structures
US6298182B1 (en) * 1997-12-13 2001-10-02 Light Chip, Inc. Wavelength division multiplexing/demultiplexing devices using polymer lenses
US6271970B1 (en) * 1997-12-13 2001-08-07 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using dual homogeneous refractive index lenses
US6236780B1 (en) 1997-12-13 2001-05-22 Light Chip, Inc. Wavelength division multiplexing/demultiplexing devices using dual diffractive optic lenses
US6181853B1 (en) * 1997-12-13 2001-01-30 Lightchip, Inc. Wavelength division multiplexing/demultiplexing device using dual polymer lenses
US6404945B1 (en) * 1997-12-13 2002-06-11 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using homogeneous refractive index lenses
US6263135B1 (en) * 1997-12-13 2001-07-17 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using high index of refraction crystalline lenses
US6243513B1 (en) * 1997-12-13 2001-06-05 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using diffractive optic lenses
JP3355489B2 (en) * 1998-03-11 2002-12-09 日本板硝子株式会社 Optical demultiplexer and method of assembling the same
FR2779535B1 (en) * 1998-06-04 2000-09-01 Instruments Sa COMPACT MULTIPLEXER
US6307657B1 (en) * 1998-07-17 2001-10-23 Lucent Technologies Inc. Optomechanical platform
CA2279765C (en) * 1998-07-30 2006-09-19 National Research Council Of Canada Wavelength stabilized planar waveguide optical devices incorporating a dispersive element
JP3909969B2 (en) * 1998-12-09 2007-04-25 日本板硝子株式会社 Optical demultiplexer
US6343169B1 (en) * 1999-02-25 2002-01-29 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing device
US6829096B1 (en) * 1999-02-25 2004-12-07 Confluent Photonics Corporation Bi-directional wavelength division multiplexing/demultiplexing devices
JP3677593B2 (en) * 1999-03-30 2005-08-03 日本板硝子株式会社 Optical demultiplexer and alignment method thereof
US6434299B1 (en) * 1999-06-01 2002-08-13 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices having concave diffraction gratings
US6304692B1 (en) 1999-09-03 2001-10-16 Zolo Technologies, Inc. Echelle grating dense wavelength division multiplexer/demultiplexer with two dimensional single channel array
US6282337B1 (en) * 1999-09-24 2001-08-28 Radiant Photonics, Inc. System and method for wavelength division multiplexing and demultiplexing
USRE41570E1 (en) 2000-03-16 2010-08-24 Greiner Christoph M Distributed optical structures in a planar waveguide coupling in-plane and out-of-plane optical signals
USRE42407E1 (en) 2000-03-16 2011-05-31 Steyphi Services De Llc Distributed optical structures with improved diffraction efficiency and/or improved optical coupling
US7773842B2 (en) * 2001-08-27 2010-08-10 Greiner Christoph M Amplitude and phase control in distributed optical structures
US6879441B1 (en) * 2000-03-16 2005-04-12 Thomas Mossberg Holographic spectral filter
US6987911B2 (en) * 2000-03-16 2006-01-17 Lightsmyth Technologies, Inc. Multimode planar waveguide spectral filter
USRE42206E1 (en) 2000-03-16 2011-03-08 Steyphi Services De Llc Multiple wavelength optical source
US7519248B2 (en) * 2000-03-16 2009-04-14 Lightsmyth Technologies Inc Transmission gratings designed by computed interference between simulated optical signals and fabricated by reduction lithography
US6965464B2 (en) * 2000-03-16 2005-11-15 Lightsmyth Technologies Inc Optical processor
US7194164B2 (en) * 2000-03-16 2007-03-20 Lightsmyth Technologies Inc Distributed optical structures with improved diffraction efficiency and/or improved optical coupling
US6415073B1 (en) 2000-04-10 2002-07-02 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices employing patterned optical components
US6496616B2 (en) 2000-04-28 2002-12-17 Confluent Photonics, Inc. Miniature monolithic optical demultiplexer
US6453087B2 (en) 2000-04-28 2002-09-17 Confluent Photonics Co. Miniature monolithic optical add-drop multiplexer
US6434291B1 (en) 2000-04-28 2002-08-13 Confluent Photonics Corporations MEMS-based optical bench
US6570652B1 (en) 2000-06-02 2003-05-27 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6556297B1 (en) * 2000-06-02 2003-04-29 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6621958B1 (en) * 2000-06-02 2003-09-16 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
US6731838B1 (en) 2000-06-02 2004-05-04 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
US6741408B2 (en) 2000-06-15 2004-05-25 Confluent Photonics Corporation Thermally stable mounting for a diffraction grating device
DK1335829T3 (en) 2000-10-26 2011-12-05 Neophotonics Corp Multilayer optical structures
US7050675B2 (en) * 2000-11-27 2006-05-23 Advanced Interfaces, Llc Integrated optical multiplexer and demultiplexer for wavelength division transmission of information
US6490393B1 (en) 2000-11-27 2002-12-03 Advanced Interfaces, Llc Integrated optical multiplexer and demultiplexer for wavelength division transmission of information
JP2002169022A (en) * 2000-12-04 2002-06-14 Nippon Sheet Glass Co Ltd Optical element, spectroscopic device and integrated optical device using the same
JP2002198544A (en) * 2000-12-26 2002-07-12 Nippon Sheet Glass Co Ltd Photodetector and optical demultiplexer using it
US7006727B2 (en) * 2001-03-15 2006-02-28 Fluisar Corporation Combined multiplexer and demultiplexer for optical communication systems
US6625346B2 (en) 2001-03-19 2003-09-23 Capella Photonics, Inc. Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
DE10127340A1 (en) * 2001-06-06 2003-02-06 Infineon Technologies Ag Optical data transmission device has optical grating provided by plastics block supported by substrate incorporating optically-active components
US6766077B2 (en) 2001-11-13 2004-07-20 Lnl Technologies, Inc. Planar waveguide echelle grating device with astigmatic grating facets
US6879749B2 (en) * 2001-11-27 2005-04-12 Ec-Optics Technology Inc. System and method for multiplexing and demultiplexing optical signals using diffraction gratings
JP4132963B2 (en) * 2002-05-17 2008-08-13 日本板硝子株式会社 Optical element using one-dimensional photonic crystal and spectroscopic device using the same
US7224855B2 (en) 2002-12-17 2007-05-29 Lightsmyth Technologies Inc. Optical multiplexing device
US7260290B1 (en) 2003-12-24 2007-08-21 Lightsmyth Technologies Inc Distributed optical structures exhibiting reduced optical loss
US7181103B1 (en) 2004-02-20 2007-02-20 Lightsmyth Technologies Inc Optical interconnect structures incorporating sets of diffractive elements
US7359597B1 (en) 2004-08-23 2008-04-15 Lightsmyth Technologies Inc Birefringence control in planar optical waveguides
US7120334B1 (en) 2004-08-25 2006-10-10 Lightsmyth Technologies Inc Optical resonator formed in a planar optical waveguide with distributed optical structures
US7330614B1 (en) 2004-12-10 2008-02-12 Lightsmyth Technologies Inc. Integrated optical spectrometer incorporating sets of diffractive elements
US7327908B1 (en) 2005-03-07 2008-02-05 Lightsmyth Technologies Inc. Integrated optical sensor incorporating sets of diffractive elements
US7349599B1 (en) 2005-03-14 2008-03-25 Lightsmyth Technologies Inc Etched surface gratings fabricated using computed interference between simulated optical signals and reduction lithography
US7643400B1 (en) 2005-03-24 2010-01-05 Lightsmyth Technologies Inc Optical encoding of data with distributed diffractive structures
US7190856B1 (en) 2005-03-28 2007-03-13 Lightsmyth Technologies Inc Reconfigurable optical add-drop multiplexer incorporating sets of diffractive elements
US8068709B2 (en) * 2005-09-12 2011-11-29 Lightsmyth Technologies Inc. Transmission gratings designed by computed interference between simulated optical signals and fabricated by reduction lithography
US7796849B2 (en) * 2005-10-25 2010-09-14 Georgia Tech Research Corporation Spatial separation of optical frequency components using photonic crystals
KR100734851B1 (en) * 2005-12-01 2007-07-03 한국전자통신연구원 Multi-wavelength selector
KR100778176B1 (en) * 2006-03-06 2007-11-22 엘에스전선 주식회사 Optical receiver having printed circuit board and Coupling method thereof
TWI510832B (en) * 2014-09-12 2015-12-01 Applied Optoelectronics Inc Transmitting optical sub-assembly and manufacture method thereof
DE102018100622B4 (en) * 2018-01-12 2019-10-10 Ernst-Abbe-Hochschule Jena Simultaneous spectrometer with a plane reflective diffraction grating

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198117A (en) * 1976-12-28 1980-04-15 Nippon Electric Co., Ltd. Optical wavelength-division multiplexing and demultiplexing device
US4111524A (en) * 1977-04-14 1978-09-05 Bell Telephone Laboratories, Incorporated Wavelength division multiplexer
US4153330A (en) * 1977-12-01 1979-05-08 Bell Telephone Laboratories, Incorporated Single-mode wavelength division optical multiplexer
DE2916184A1 (en) * 1979-04-21 1980-10-30 Philips Patentverwaltung OPTICAL POWER DISTRIBUTOR
US4274706A (en) * 1979-08-30 1981-06-23 Hughes Aircraft Company Wavelength multiplexer/demultiplexer for optical circuits
US4299488A (en) * 1979-11-23 1981-11-10 Bell Telephone Laboratories, Incorporated Time-division multiplexed spectrometer
US4279464A (en) * 1979-12-18 1981-07-21 Northern Telecom Limited Integrated optical wavelength demultiplexer
US4836634A (en) * 1980-04-08 1989-06-06 Instruments Sa Wavelength multiplexer/demultiplexer using optical fibers
FR2519148B1 (en) * 1981-12-24 1985-09-13 Instruments Sa WAVELENGTH SELECTOR
US4343532A (en) * 1980-06-16 1982-08-10 General Dynamics, Pomona Division Dual directional wavelength demultiplexer
US4387955A (en) * 1981-02-03 1983-06-14 The United States Of America As Represented By The Secretary Of The Air Force Holographic reflective grating multiplexer/demultiplexer
CA1154987A (en) * 1981-11-27 1983-10-11 Narinder S. Kapany Fiber optics commmunications modules
NL8104123A (en) * 1981-09-07 1983-04-05 Philips Nv OPTICAL MULTIPLEX AND DEMULTIPLEX DEVICE.
NL8104121A (en) * 1981-09-07 1983-04-05 Philips Nv TUNABLE OPTICAL DEMULTIPLEX DEVICE.
DE3213839A1 (en) * 1982-04-15 1983-10-27 Philips Patentverwaltung Gmbh, 2000 Hamburg OPTICAL WAVELENGTH MULTIPLEX OR -DEMULTIPLEX ARRANGEMENT
DE3216516A1 (en) * 1982-05-03 1983-11-03 Siemens AG, 1000 Berlin und 8000 München OPTICAL WAVELENGTH MULTIPLEXER IN ACCORDANCE WITH THE GRILLED PRINCIPLE
US4652080A (en) * 1982-06-22 1987-03-24 Plessey Overseas Limited Optical transmission systems
FR2537808A1 (en) * 1982-12-08 1984-06-15 Instruments Sa OPTICAL COMPONENT WITH SHARED FUNCTION FOR OPTICAL TELETRANSMISSIONS
DE3309349A1 (en) * 1983-03-16 1984-09-20 Fa. Carl Zeiss, 7920 Heidenheim WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER
FR2543768A1 (en) * 1983-03-31 1984-10-05 Instruments Sa WAVE LENGTH MULTIPLEXER-DEMULTIPLEXER AND METHOD OF MAKING SAME
US4522462A (en) * 1983-05-27 1985-06-11 The Mitre Corporation Fiber optic bidirectional wavelength division multiplexer/demultiplexer with total and/or partial redundancy
NL8402931A (en) * 1983-08-12 1985-04-16 Mitsubishi Electric Corp OPTICAL COUPLING BODY.
US4643519A (en) * 1983-10-03 1987-02-17 International Telephone And Telegraph Corporation Wavelength division optical multiplexer/demultiplexer
FR2553243B1 (en) * 1983-10-11 1990-03-30 Lignes Telegraph Telephon WAVELENGTH OPTICAL WAVELENGTH MULTIPLEXER-DEMULTIPLEXER FOR BIDIRECTIONAL LINK
NL8304311A (en) * 1983-12-15 1985-07-01 Philips Nv REFLECTION GRID.
DE3503203A1 (en) * 1985-01-31 1986-08-07 Standard Elektrik Lorenz Ag, 7000 Stuttgart OPTICAL MULTIPLEXER / DEMULTIPLEXER
US4773063A (en) * 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
FR2579044B1 (en) * 1985-03-13 1988-02-26 Commissariat Energie Atomique DEVICE FOR MULTIPLEXING MULTIPLE LIGHT SIGNALS IN INTEGRATED OPTICS
DE3509132A1 (en) * 1985-03-14 1986-09-18 Fa. Carl Zeiss, 7920 Heidenheim WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER
FR2579333B1 (en) * 1985-03-20 1987-07-03 Instruments Sa WAVELENGTH MULTIPLEXER-DEMULTIPLEXER CORRECTED FOR GEOMETRIC AND CHROMATIC ABERRATIONS
JP2601802B2 (en) * 1985-09-17 1997-04-16 日本板硝子株式会社 Graded index collimator lens
EP0226868B1 (en) * 1985-12-10 1992-11-25 Siemens Aktiengesellschaft Integrated-optical multiplex-demultiplex module for optical message transmission
US4749247A (en) * 1986-04-03 1988-06-07 The Mitre Corporation Self-monitoring fiber optic link
FR2609180B1 (en) * 1986-12-31 1989-11-03 Commissariat Energie Atomique MULTIPLEXER-DEMULTIPLEXER USING A CONCAVE ELLIPTICAL NETWORK AND CONDUCTED IN INTEGRATED OPTICS
US4834485A (en) * 1988-01-04 1989-05-30 Pencom International Corporation Integrated fiber optics transmitter/receiver device
US5026131A (en) * 1988-02-22 1991-06-25 Physical Optics Corporation High channel density, broad bandwidth wavelength division multiplexer with highly non-uniform Bragg-Littrow holographic grating
US4926412A (en) * 1988-02-22 1990-05-15 Physical Optics Corporation High channel density wavelength division multiplexer with defined diffracting means positioning
US4857726A (en) * 1988-02-29 1989-08-15 Allied-Signal Inc. Method to decode relative spectral data
US5119454A (en) * 1988-05-23 1992-06-02 Polaroid Corporation Bulk optic wavelength division multiplexer
JPH01306886A (en) * 1988-06-03 1989-12-11 Canon Inc Volume phase type diffraction grating
US4930855A (en) * 1988-06-06 1990-06-05 Trw Inc. Wavelength multiplexing of lasers
US5114513A (en) * 1988-10-27 1992-05-19 Omron Tateisi Electronics Co. Optical device and manufacturing method thereof
JPH02143203A (en) * 1988-11-25 1990-06-01 Ricoh Co Ltd Optical multiplexer/demultiplexer element
US4934784A (en) * 1989-03-20 1990-06-19 Kaptron, Inc. Hybrid active devices coupled to fiber via spherical reflectors
US4923271A (en) * 1989-03-28 1990-05-08 American Telephone And Telegraph Company Optical multiplexer/demultiplexer using focusing Bragg reflectors
US5245404A (en) * 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
GB2251957B (en) * 1990-11-29 1993-12-15 Toshiba Kk Optical coupler
WO1993005619A1 (en) * 1991-09-03 1993-03-18 Scientific-Atlanta, Inc. Fiber optic status monitor and control system
FR2689349B1 (en) * 1992-03-31 1994-05-06 Alcatel Nv WAVELENGTH MULTIPLEXER FOR INTEGRATED OPTICAL SYSTEM.
US5228103A (en) * 1992-08-17 1993-07-13 University Of Maryland Monolithically integrated wavelength division multiplexing laser array
US5440416A (en) * 1993-02-24 1995-08-08 At&T Corp. Optical network comprising a compact wavelength-dividing component
US5457573A (en) * 1993-03-10 1995-10-10 Matsushita Electric Industrial Co., Ltd. Diffraction element and an optical multiplexing/demultiplexing device incorporating the same
US5355237A (en) * 1993-03-17 1994-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
DE4435928A1 (en) * 1993-10-07 1995-04-20 Hitachi Ltd Optical transmitting and receiving module and optical communication system using this
US5526155A (en) * 1993-11-12 1996-06-11 At&T Corp. High-density optical wavelength division multiplexing
US5450510A (en) * 1994-06-09 1995-09-12 Apa Optics, Inc. Wavelength division multiplexed optical modulator and multiplexing method using same
US5606434A (en) * 1994-06-30 1997-02-25 University Of North Carolina Achromatic optical system including diffractive optical element
US5500910A (en) * 1994-06-30 1996-03-19 The Whitaker Corporation Passively aligned holographic WDM
US5657406A (en) * 1994-09-23 1997-08-12 United Technologies Corporation Efficient optical wavelength multiplexer/de-multiplexer
US5541774A (en) * 1995-02-27 1996-07-30 Blankenbecler; Richard Segmented axial gradient lens
US5703722A (en) * 1995-02-27 1997-12-30 Blankenbecler; Richard Segmented axial gradinet array lens
US5583683A (en) * 1995-06-15 1996-12-10 Optical Corporation Of America Optical multiplexing device
FR2738432B1 (en) * 1995-09-01 1997-09-26 Hamel Andre OPTICAL COMPONENT SUITABLE FOR MONITORING A MULTI-WAVELENGTH LENGTH AND INSERTION-EXTRACTION MULTIPLEXER USING THE SAME, APPLICATION TO OPTICAL NETWORKS
US5745612A (en) * 1995-12-18 1998-04-28 International Business Machines Corporation Wavelength sorter and its application to planarized dynamic wavelength routing
US5768450A (en) * 1996-01-11 1998-06-16 Corning Incorporated Wavelength multiplexer/demultiplexer with varied propagation constant
US5777763A (en) * 1996-01-16 1998-07-07 Bell Communications Research, Inc. In-line optical wavelength reference and control module
JP3401134B2 (en) * 1996-03-01 2003-04-28 松下電器産業株式会社 Optical multiplexer / demultiplexer and manufacturing method thereof
US5742416A (en) * 1996-03-28 1998-04-21 Ciena Corp. Bidirectional WDM optical communication systems with bidirectional optical amplifiers
US5745270A (en) * 1996-03-28 1998-04-28 Lucent Technologies Inc. Method and apparatus for monitoring and correcting individual wavelength channel parameters in a multi-channel wavelength division multiplexer system
US5748350A (en) * 1996-06-19 1998-05-05 E-Tek Dynamics, Inc. Dense wavelength division multiplexer and demultiplexer devices
US5745271A (en) * 1996-07-31 1998-04-28 Lucent Technologies, Inc. Attenuation device for wavelength multiplexed optical fiber communications
US5835517A (en) * 1996-10-04 1998-11-10 W. L. Gore & Associates, Inc. WDM multiplexer-demultiplexer using Fabry-Perot filter array

Also Published As

Publication number Publication date
CA2313205A1 (en) 1999-06-24
CN1281555A (en) 2001-01-24
JP2002508532A (en) 2002-03-19
WO1999031532A2 (en) 1999-06-24
EP1038192A4 (en) 2003-05-21
AU753534B2 (en) 2002-10-17
IL136618A0 (en) 2001-06-14
BR9814279A (en) 2000-11-21
EP1038192A2 (en) 2000-09-27
WO1999031532A3 (en) 1999-10-28
US6011884A (en) 2000-01-04
KR20010033048A (en) 2001-04-25
RU2191416C2 (en) 2002-10-20
AU1910099A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
WO1999031532B1 (en) Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
US5999672A (en) Integrated bi-directional dual axial gradient refractive index/diffraction grating wavelength division multiplexer
RU2000118775A (en) INTEGRAL BIDIRECTIONAL MULTIPLEXOR WAVE LENGTHS WITH AXIAL GRADIENT REFRACTION INDICATOR / DIFFRACTION GRILLE
US6011885A (en) Integrated bi-directional gradient refractive index wavelength division multiplexer
CA1193770A (en) Adjustable optical demultiplexer
US4748614A (en) Optical wavelength-multiplexing and/or demultiplexing device
US4723829A (en) Optical wavelength demultiplexer
US8260099B2 (en) Reconfigurable optical add/drop multiplexer
US6246818B1 (en) Tunable optical filter
JP2004531983A5 (en)
FI90289C (en) Optical component
ATE230905T1 (en) MULTIPLEXER AND DEMULTIPLEXER FOR COMMUNICATION CONNECTIONS WITH MONOMODE OPTICAL FIBERS
AU2012261755B2 (en) Optical processing device employing a digital micromirror (DMD) and having reduced wavelength dependent loss
US6788849B1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy
CA2383545A1 (en) Wavelength division multiplexer/demultiplexer using homogeneous refractive index lenses and transmission grating
US6181853B1 (en) Wavelength division multiplexing/demultiplexing device using dual polymer lenses
US6823106B2 (en) Optical multiplexer/demultiplexer and adjustment method thereof
EP1008878B1 (en) Optical wavelength demultiplexer
CA2380504A1 (en) Wavelength division multiplexing/demultiplexing devices using dual diffractive optic lenses
JPS55105211A (en) Photo branching and coupling device
CN111965762A (en) Grating wavelength division multiplexing device
US6404945B1 (en) Wavelength division multiplexing/demultiplexing devices using homogeneous refractive index lenses
CA2391540A1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy
JPS61223810A (en) Optical wavelength multiplexer/demultiplexer
CN117687151A (en) Single-sided free space wavelength division multiplexer device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 136618

Country of ref document: IL

Ref document number: 98812137.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: B1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2313205

Country of ref document: CA

Ref document number: 2313205

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 539371

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/005783

Country of ref document: MX

Ref document number: 1020007006406

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV2000-2184

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1998963860

Country of ref document: EP

Ref document number: 19100/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998963860

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2000-2184

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020007006406

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 19100/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998963860

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV2000-2184

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1020007006406

Country of ref document: KR