WO1999011837A1 - Einrichtung zum aufstäuben von hartstoffschichten - Google Patents

Einrichtung zum aufstäuben von hartstoffschichten Download PDF

Info

Publication number
WO1999011837A1
WO1999011837A1 PCT/DE1998/002376 DE9802376W WO9911837A1 WO 1999011837 A1 WO1999011837 A1 WO 1999011837A1 DE 9802376 W DE9802376 W DE 9802376W WO 9911837 A1 WO9911837 A1 WO 9911837A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
heating device
parts
screens
heating
Prior art date
Application number
PCT/DE1998/002376
Other languages
English (en)
French (fr)
Inventor
Klaus Goedicke
Fred Fietzke
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP98948802A priority Critical patent/EP1017872B1/de
Priority to US09/485,713 priority patent/US6315877B1/en
Priority to DE59808487T priority patent/DE59808487D1/de
Publication of WO1999011837A1 publication Critical patent/WO1999011837A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Definitions

  • the invention relates to a device for dusting hard material layers at high temperatures.
  • a preferred field of application is the hard material coating of forming tools and tools for machining by high rate atomization using magnetrons.
  • the invention relates to devices for coating temperatures from 400 ° C to 800 ° C.
  • PVD physical vapor deposition
  • nitrides nitrides, carbides, carbo- and oxynitrides of the metals chromium, niobium, zirconium, titanium and. a. known as a hard material layer (DE 295 10 545; US 4, 169,913).
  • All of these layers applied by means of PVD are at comparatively low temperatures, i.e. in the range between room temperature and about 400 ° C.
  • Known PVD devices such as those used for coating by means of sputtering sources, have one or more magnetron sources for the layer material.
  • the workpieces to be coated are held in receptacles and rotate around one or more axes during coating. This ensures sufficient layer uniformity.
  • the largest number of workpieces per coating and the highest uniformity of the layer thickness is achieved when the workpieces are on one
  • Rotating device are arranged in brackets, which are components of planetary gears and thereby rotate about the main axis of the planetary gear and additionally about its own axis.
  • the diameter of these holders is chosen to be as large as possible. Their diameter corresponds to about 30 to 40 percent of the diameter of the rotating device.
  • Two-dimensional heating devices are arranged on the periphery of such PVD devices outside the area of the rotating holders. They usually consist of heating elements that are embedded in stainless steel tubes and electrically insulated against them. To ensure workpiece temperatures of 400 ° C during coating, surface temperatures of the heating devices of at least 600 to 700 ° C are required, and a significant part - usually 20 to 30 percent - of the circumference of the rotating device must be enclosed by the heating device . It is inevitable that a large part of the heating power will reach the walls of the vacuum chamber. Therefore the walls are provided with water cooling.
  • Coating the vacuum chamber is ventilated.
  • the coated workpieces are removed from their holders and other workpieces to be coated are used.
  • the rotating device can be detached from the drive elements and removed as a whole from the vacuum chamber.
  • the heaters always remain in the vacuum chamber. The shortest changeover times are achieved when a second rotating device equipped with workpieces is ready and is moved into the vacuum chamber.
  • the disadvantages of such devices are that the power density of the heating elements cannot be increased to such an extent that a workpiece temperature of 800 ° C. is reached. That they cannot be used in the temperature range above approximately 500 ° C. Furthermore, the temperature differences between the workpieces and in each individual workpiece increase with increasing temperature even in temperature ranges up to 500 ° C. At the same time, the temperature of the individual workpiece is subject to large temporal fluctuations. This creates supercritical internal tensions in the growing layers, which lead to the layers flaking off.
  • condensing layers on the heating devices reduce the heating power available for heating the workpieces, and the heat losses towards the walls of the vacuum chamber assume impermissibly high values.
  • the cleaning of the device, especially the heating devices, is difficult.
  • the invention has for its object to provide a device for dusting hard layers at high temperatures up to 800 ° C.
  • the device it should be possible to coat parts - in particular workpieces - in such a way that no major temperature gradients develop between the parts or in each part in order to be able to dust high-quality layers. Internal stresses in the layer are to be prevented and the number of defects is minimized.
  • the facility is also intended to limit the formation of disruptive particles, in particular feeding.
  • the facility is also intended to enable the pretreatment required for the overall dusting process. The times when loading and unloading the parts should be short in order to increase productivity. The effort for cleaning the facility should be reduced.
  • the device according to the invention consists of an evacuable vacuum chamber, inside which there is an exchangeable base plate. Any configuration that is suitable as a mounting base is considered as the base plate. Coaxial screens are arranged on this base plate. These screens have openings which correspond to the exit surfaces of atomization sources arranged on the circumference of the vacuum chamber. A heating device is arranged centrally within the screens and is surrounded by holders for receiving parts to be coated. The brackets are arranged on planet gears of a planetary gear and lead in a known manner Planetary motion through. The axes of the planet gears are on a pitch circle with a diameter of at least% of the diameter of the base plate. Fixed shield plates are arranged above and below the heating device.
  • the design according to the invention and the central position of the heating device in the interior of the screens and shield plates ensure that the heating power is fully used for heating the parts.
  • the rotational symmetry that can be achieved for the heat radiation together with the dimensioning rule for the brackets leads to a reduction in temperature gradients compared to conventional devices.
  • the arrangement of the brackets by means of heat-conducting barriers, preferably as ceramic heat resistors, leads to a further minimization of heat losses.
  • the advantages of the arrangement and design of the heating device are the uniformly high surface temperature and a high heating power density, a high radiation coefficient, the stable operation even under the conditions of permanent coating, the avoidance of tinsel formation and the good suitability for cleaning processes.
  • the diaphragms can be moved radially relative to one another and to the base plate.
  • These screens are designed in such a way that they allow different process steps to be carried out under improved conditions in certain positions.
  • the heating device and the brackets are almost completely enclosed by the corresponding position of the panels. This minimizes the heat losses caused by heat dissipation via the walls of the vacuum chamber.
  • a “pre-treatment” of the parts is possible in a dense magnetic field-enhanced plasma.
  • the screens are moved in such a way that the openings in the screens release corresponding pre-treatment devices for the parts.
  • the screens can be positioned so that openings in the screens are now the atomization sources for coating the parts release.
  • the brackets are arranged in an electrically insulated manner and can be connected to different electrical potentials depending on the respective process step.
  • Shield plates adjust themselves to such values during the coating that they are not themselves a source of knights.
  • the screens and shield plates are designed in such a way that a sufficient pumping speed of the vacuum pumps is also effective inside the device.
  • the base plate with the heating device, the brackets, the panels and the shield plates can be moved out of the vacuum chamber as an integrated assembly. This makes it possible to mechanically treat the screens, the shield plates and, if necessary, the heating device, e.g. by sandblasting - to clean.
  • Another advantage of the exchangeable base plate is that after the sputtering process with the coated parts it can be exchanged for another base plate with parts to be coated. A cleaning process can thus be carried out in parallel with the next sputtering process. This increases the effectiveness of the facility.
  • Advantageous configurations of the device consist in producing the heating device, through which the current flows directly, in a rotationally symmetrical manner from graphite or carbon fiber composite materials.
  • An inexpensive embodiment uses a graphite tube. This is structured to increase the uniformity of the heat radiation and to adapt to the power supply device by suitably dimensioned joints. The separation joints are most advantageously made in a meandering shape. The parting lines are made in the graphite tube using mechanical methods. As an advantageous embodiment, it is possible, depending on the size of the parts to be coated, to arrange the parts to be coated one above the other in several planes on each holder. This further increases the productivity of the facility. It is also advantageous to manufacture the screens and shield plates from heat-resistant material such as stainless steel, titanium or molybdenum.
  • the inner shield plate and the inner panel are preferably provided with a very large surface roughness. It is also expedient to provide the surface with rough, strongly deformed, for example net-like, coverings. In this way, the formation of feed is further reduced.
  • the outer shield plates and the outer panels have very smooth, highly reflective surfaces.
  • the insulated arrangement of the brackets makes it possible to apply different potentials by means of known switching elements in accordance with the process to be carried out.
  • the atomization sources are used not only for the "coating" process step but also for the "pretreatment” process step.
  • a concentration and strengthening of the plasma is achieved. This increases the effect of this process step and shortens the pretreatment time.
  • Fig. 2 a longitudinal section
  • FIG. 1 three double magnetrons 2 are arranged in a vacuum chamber 1 in order to apply electrically insulating oxide layers by reactive pulse magnetron sputtering.
  • a base plate 3 is arranged in the vacuum chamber 1.
  • a planetary gear with ten planet gears (not shown) is arranged below the base plate 3. Every planet gear is connected to a holder 4.
  • On each holder 4 ten parts 5 to be coated are arranged in a known manner.
  • the holders 4 are designed such that each part 5 to be coated rotates about its own axis and about the axis of the holder.
  • the brackets 4 are electrically isolated from the earth potential.
  • the holders 4 are connected to a pole of a power supply 7, the other pole of which is connected to the double magnetrons 2. In this way, a very effective magnetic field-enhanced plasma process for pretreating the parts 5 before coating can be realized.
  • the holders 4 are grounded, and the double magnetrons 2 are connected to an atomizing power supply 8, which generates a bipolar pulsed current.
  • the brackets 4 have a diameter of 150 mm. Their axes are arranged on a pitch circle with a diameter of 525 mm. With a diameter of the base plate 3 of 700 mm, the pitch circle 3 A measures this diameter. In the center of the base plate 3 there is a heating device 9.
  • the heating device 9 consists of a meandering slotted tube made of carbon fiber composite material, which has a diameter of 350 mm.
  • the heating device 9 reaches surface temperatures of 1 100 ° C.
  • the apertures 10 to 10 " can each be individually controlled by means of a motor outside the vacuum chamber 1, a rotating / sliding bushing and a gear transmission.
  • the diaphragms 10 to 10 contain openings, the size and shape of which essentially correspond to the exit surfaces of the atomized particles of the double magnetrons 2.
  • the 2 also shows the vacuum chamber 1 with the double magentrons 2 arranged on the circumference.
  • the heating device 9, the brackets 4 and the diaphragms 10 to 10 " are arranged on the base plate 3.
  • Above and below the heating device 9 are fixed disk-shaped shielding plates 11.
  • the inner screen 10 and the inner shielding plates are made of molybdenum, and on their side facing the heating device 9 they are covered with a sieve-like perforated lining (not shown) After a fixed period of use, the sieve-like perforated lining is renewed.
  • the panels 10 ', 10 "and the outer shield plates are made of stainless steel and are polished on both sides. In this way a very high reflection of the radiated heat from all components within the orifices 10 to 10 ".
  • the design of the orifices 10 to 10" and shielding plates 1 1 prevents the direct path of atomized particles onto the inner walls of the vacuum chamber 1, but ensures a sufficiently high suction capacity of the vacuum pumps of 200 Is '1 in the area of the brackets 4.
  • the brackets 4 are mechanically connected by the base plate 3 with the planet gears, not shown, of the planetary gear. Ceramic thermal resistors 12 are located between the planet gears and the holders 4.
  • the entire base plate 3 can be moved out of the open vacuum chamber 1 on rails by means of rollers 13.
  • a similar base plate with parts 5 to be coated is moved into the vacuum chamber 1 in order to carry out the next coating process. During this time, the coated parts 5 are removed from the holders 4 of the first base plate 3.
  • the covers 10 to 10 "are lifted off. After a cooling phase, the parts 5 are removed, holders 4 and the inner cover 10 are cleaned if necessary there is a replacement.
  • 3a to 3c show the mode of operation of the diaphragms 10 to 10 "without the brackets 4.
  • the diaphragms 10 to 10 are in the position according to FIG. 3a, in which all double magnetrons 2 face each other the parts 5 are covered.
  • the orifices 10 to 10 are in the position according to FIG. 3b.
  • the parts 5 are exposed to a dense, magnetic field-enhanced plasma using a double magnetron 2.
  • the apertures 10 to 10 are positioned in such a way that the openings of the apertures 10 to 10 "release the exit surfaces of two double magnetrons 2 for coating.

Abstract

In der Einrichtung ist auf einer auswechselbaren Grundplatte zentral eine Heizvorrichtung positioniert. Um diese Heizvorrichtung sind planetenartig bewegte Halterungen mit den zu beschichtenden Teilen angeordnet. Die Halterungen sind von koaxialen Blenden umgeben. Die Blenden besitzen Öffnungen, die den Austrittsflächen des von den Zerstäubungsquellen abgestäubten Schichtmaterials entsprechen. Die Blenden sind zueinander radial beweglich und ermöglichen somit in bestimmten Positionierungen zueinander unterschiedliche Prozessschritte, wie Heizen, Ätzen und Beschichten. Die Einrichtung ist zum Aufstäuben von Hartstoffschichten auf Werkzeuge bei Temperaturen von 500 DEG C bis 800 DEG C geeignet.

Description

Einrichtung zum Aufstäuben von Hartstoffschichten
Die Erfindung betrifft eine Einrichtung zum Aufstäuben von Hartstoffschichten bei hohen Temperaturen. Ein bevorzugtes Anwendungsgebiet ist die Hartstoffbeschichtung von Umformwerkzeugen und Werkzeugen zur spanenden Bearbeitung durch Hoch ratezerstäuben mittels Magnetrons. Insbesondere betrifft die Erfindung Einrichtungen für Beschichtungstemperaturen von 400 °C bis 800 °C.
Es ist allgemein bekannt, Werkstücke - insbesondere Werkzeuge zur spanenden Bearbeitung von Metallen - sowie Umformwerkzeuge durch physikalische Dampfabscheidung (PVD) mit harten, verschleißfesten Schutzschichten zu überziehen. Die am häufigsten genutzten PVD- Verfahren für diese Anwendungen sind das Vakuum-Bogenverdampfen und das Magnetron- Zerstäuben. Die weiteste Verbreitung haben nach wie vor Schichten aus Titannitrid (Sue, J.A.; Traue, H.H.; Friction and wear properties of titanium nitride coating in sliding contact with AISI 01 steel; Surf. Coat. Technol. no. 43/44 (1990) p. 709-720).
Darüber hinaus sind eine Vielzahl anderer Schichten wie Nitride, Karbide, Karbo- und Oxynitride der Metalle Chrom, Niob, Zirkon, Titan u. a. als Hartstoffschicht bekannt (DE 295 10 545; US 4, 169,913).
Weiterhin gibt es intensive Bemühungen zum Einsatz diamantähnlicher Kohlenstoffschichten, um harte und verschleißfeste Überzüge auf Werkstücken zu erzielen (EP 0 503 822).
Alle diese mittels PVD aufgebrachten Schichten werden bei vergleichsweise niedrigen Temperaturen, d.h. im Bereich zwischen Zimmertemperatur und etwa 400 °C, abgeschieden.
Bekannte PVD-Einrichtungen, wie sie für das Beschichten mittels Zerstäubungsquelien verwendet werden, besitzen eine oder mehrere Magnetronquellen für das Schichtmaterial. Die zu beschichtenden Werkstücke werden in Aufnahmen gehaltert und rotieren während der Beschichtung um eine oder mehrere Achsen. Auf diese Weise wird eine ausreichende Schichtgleichmäßigkeit gewährleistet. Die größte Zahl von Werkstücken je Beschichtung und die höchste Gleichmäßigkeit der Schichtdicke wird erreicht, wenn die Werkstücke auf einer Dreheinrichtung in Halterungen angeordnet sind, die Bestandteile von Planetengetrieben sind und sich dadurch um die Hauptachse des Planetengetriebes und zusätzlich um ihre eigene Achse drehen. Aus Wirtschaftlichkeitsgründen wird der Durchmesser dieser Halterungen möglichst groß gewählt. So entspricht ihr Durchmesser etwa 30 bis 40 Prozent des Durchmessers der Dreheinrichtung.
Am Umfang derartiger PVD-Einrichtungen sind außerhalb des Bereiches der rotierenden Halterungen flächenhafte Heizvorrichtungen angeordnet. Sie bestehen üblicherweise aus Heizelementen, die in Edelstahlrohre eingebettet und gegen diese elektrisch isoliert sind. Um beim Beschichten Temperaturen der Werkstücke von 400 °C zu gewährleisten, sind Oberflächentemperaturen der Heizvorrichtungen von mindestens 600 bis 700 °C erforderlich, und es muss ein nennenswerter Teil - in der Regel 20 bis 30 Prozent - des Umfangs der Dreheinrichtung von der Heizvorrichtung umschlossen sein. Dabei ist es unvermeidbar, dass ein großer Teil der Heizleistung auf die Wandungen der Vakuumkammer gelangt. Deshalb werden die Wandungen mit Wasserkühlung versehen. Nach erfolgter
Beschichtung wird die Vakuumkammer belüftet. Die beschichteten Werkstücke werden aus ihren Halterungen entnommen und andere zu beschichtende Werkstücke eingesetzt. Dabei lässt sich die Dreheinrichtung von den Antriebselementen lösen und als Ganzes aus der Vakuumkammer entnehmen. Die Heizvorrichtungen verbleiben stets in der Vakuumkammer. Die kürzesten Wechselzeiten werden erreicht, wenn eine zweite, mit Werkstücken bestückte Dreheinrichtung bereitsteht und in die Vakuumkammer eingefahren wird.
Die Nachteile derartiger Einrichtungea bestehen darin, dass die Leistungsdichte der Heizelemente nicht so weit gesteigert werden kann, dass eine Werkstücktemperatur von 800 °C erreicht wird. D.h. sie können im Temperaturbereich oberhalb von etwa 500 °C nicht eingesetzt werden. Desweiteren vergrößern sich schon in Temperaturbereichen bis 500 °C die Temperaturunterschiede sowohl zwischen den Werkstücken als auch in jedem einzelnen Werkstück mit steigender Temperatur. Zugleich ist die Temperatur des einzelnen Werkstückes großen zeitlichen Schwankungen unterworfen. So entstehen in den aufwachsenden Schichten überkritische innere Spannungen, die zum Abplatzen der Schichten führen.
Dadurch, dass außer den Werkstücken auch die Halterungen, die Dreheinrichtung, die Heizvorrichtungen und alle inneren Flächen der Vakuumkammer beschichtet werden, ist ein weiterer wesentlicher Nachteil, dass sich von diesen Flächen Schichtpartikel lösen. Diese z.T. elektrisch aufgeladenen Schichtpartikel - sogenannte Flitter - führen zu großen Problemen, da sie die Qualität der aufgestäubten Hartstoffschichten so stark negativ beeinflussen, dass die Standzeiten derart beschichteter Werkstücke sehr gering sind.
Letztendlich verringert sich durch kondensierende Schichten auf den Heizvorrichtungen die zum Heizen der Werkstücke zur Verfügung stehende Heizleistung, und die Wärmeverluste nehmen in Richtung zu den Wandungen der Vakuumkammer unzulässig hohe Werte an. Die Reinigung der Einrichtung, insbesondere der Heizvorrichtungen, ist mit Schwierigkeiten verbunden.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zum Aufstäuben von Hartstoffschichten bei hohen Temperaturen bis zu 800 °C zu schaffen. Mit der Einrichtung soll es möglich sein, Teile - insbesondere Werkstücke - so zu beschichten, dass sich sowohl zwischen den Teilen als auch in jedem Teil keine größeren Temperaturgradienten ausbilden, um qualitativ hochwertige Schichten aufstäuben zu können. Es sollen innere Spannungen in der Schicht verhindert und die Anzahl von Störstellen minimiert werden. Die Einrichtung soll weiterhin das Entstehen von störenden Partikeln, insbesondere Füttern, begrenzen. Die Einrichtung soll auch die für den Gesamtprozess des Aufstäubens erforderliche Vorbehandlung ermöglichen. Die Zeiten beim Be- und Entstücken der Teile sollen kurz sein, um die Produktivität zu erhöhen. Der Aufwand für die Reinigung der Einrichtung soll verringert werden.
Erfindungsgemäß wird die Aufgabe mit Merkmalen gemäß Anspruch 1 gelöst. Weitere Ausgestaltungen sind in den Ansprüchen 2 bis 6 beschrieben.
Die erfindungsgemäße Einrichtung besteht aus einer evakuierbaren Vakuumkammer, in deren Innerm sich eine auswechselbare Grundplatte befindet. Als Grundplatte wird dabei jede beliebige Ausgestaltung, die als Montagebasis geeignet ist, angesehen. Auf dieser Grundplatte sind koaxial Blenden angeordnet. Diese Blenden besitzen Öffnungen, die den Austrittsflächen von am Umfang der Vakuumkammer angeordneten Zerstäubungsquellen entsprechen. Innerhalb der Blenden ist zentral eine Heizvorrichtung angeordnet, die von Halterungen zur Aufnahme von zu beschichtenden Teilen umgeben ist. Die Halterungen sind auf Planetenrädern eines Planetengetriebes angeordnet und führen in bekannter Weise eine Planetenbewegung durch. Die Achsen der Planetenräder befinden sich auf einem Teilkreis mit einem Durchmesser von mindestens % des Durchmessers der Grundplatte. Über und unter der Heizvorrichtung sind feststehende Schirmbleche angeordnet.
Die erfindungsgemäße Ausgestaltung und zentrale Position der Heizvorrichtung im Inneren der Blenden und Schirmbleche gewährleistet eine vollständige Nutzung der Heizleistung für die Erwärmung der Teile. Die dadurch erreichbare Rotationssymmetrie für die Wärmeabstrahlung führt zusammen mit der Bemessungsregel für die Halterungen zu einer Reduktion von Temperaturgradienten gegenüber herkömmlichen Einrichtungen. Die Anordnung der Halterungen mittels Wärmeleitbarrieren, vorzugsweise als keramische Wärmewiderstände, führt zu einer weiteren Minimierung von Wärmeverlusten. Die Vorteile der Anordnung und Ausbildung der Heizvorrichtung sind die gleichmäßig hohe Oberflächentemperatur und eine hohe Heizleistungsdichte, ein hoher Abstrahlungskoeffizient, der stabile Betrieb auch unter den Bedingungen permanenter Beschichtung, die Vermeidung von Flitterbildung und die gute Eignung für Reinigungsprozesse.
Erfindungsgemäß sind die Blenden relativ zueinander und zur Grundplatte radial bewegbar. Diese Blenden sind so gestaltet, dass sie in bestimmten Stellungen zueinander die Durchführung unterschiedlicher Prozessschritte unter verbesserten Bedingungen ermöglichen.
Für den Prozessschritt „Heizen" werden die Heizvorrichtung und die Halterungen durch die entsprechende Stellung der Blenden nahezu vollständig umschlossen. Somit wird eine Minimierung der Wärmeverluste, die durch Wärmeableitung über die Wandungen der Vakuumkammer entstehen, erreicht.
In einer weiteren Stellung der Blenden ist eine „Vorbehandlung " der Teile in einem dichten magnetfeldverstärkten Plasma möglich. Dazu werden die Blenden so bewegt, dass die Öffnungen in den Blenden entsprechende Vorbehandlungseinrichtungen für die Teile freigeben.
Für den Prozessschritt „Beschichten" lassen sich die Blenden so positionieren, dass Öffnungen in den Blenden nunmehr die Zerstäubungsquellen für das Beschichten der Teile freigeben. Die Halterungen sind elektrisch isoliert angeordnet und in Abhängigkeit vom jeweiligen Prozessschritt auf unterschiedliche elektrische Potentiale legbar.
Die weiteren Vorteile der Blenden bestehen darin, dass eine Beschichtung der inneren Flächen der Vakuumkammer verhindert wird und die Temperatur der Blenden und
Schirmbleche sich während der Beschichtung auf solche Werte einstellt, dass sie selbst keine Quelle von Rittern darstellen.
Andererseits sind die Blenden und Schirmbleche so gestaltet, dass ein ausreichendes Saugvermögen der Vakuumpumpen auch im Inneren der Einrichtung wirksam ist.
Zum Wechseln der Teile lässt sich die Grundplatte mit der Heizvorrichtung, den Halterungen, den Blenden und den Schirmblechen als integrierte Baugruppe aus der Vakuumkammer herausfahren. Dadurch ist es möglich, die Blenden, die Schirmbleche sowie gegebenenfalls die Heizvorrichtung durch mechanische Behandlung - z.B. durch Sandstrahlen - zu reinigen.
Ein weiterer Vorteil der auswechselbaren Grundplatte besteht darin, dass diese nach dem Aufstäubungsprozess mit den beschichteten Teilen gegen eine andere Grundplatte mit zu beschichtenden Teilen gewechselt werden kann. Somit kann ein Reinigungsprozess parallel zum nächsten Aufstäubungsprozess durchgeführt werden. Damit wird die Effektivität der Einrichtung erhöht.
Vorteilhafte Ausgestaltungen der Einrichtung bestehen darin, die Heizvorrichtung, welche direkt vom Strom durchflössen wird, rotationssymmetrisch aus Graphit oder Kohlefaserverbundmaterialien herzustellen. Eine kostengünstige Ausführungsform nutzt ein Graphitrohr. Dieses ist zur Erhöhung der Gleichmäßigkeit der Wärmestrahlung und zur Anpassung an die Stromversorgungseinrichtung durch geeignet dimensionierte Trennfugen strukturiert. Am vorteilhaftesten werden die Trennfugen mäanderförmig eingebracht. Die Trennfugen sind mit mechanischen Methoden in das Graphitrohr eingebracht. Als vorteilhafte Ausgestaltung ist es in Abhängigkeit von der Größe der zu beschichtenden Teile möglich, auf jeder Halterung die zu beschichtenden Teile in mehreren Ebenen übereinander anzuordnen. Dadurch wird die Produktivität der Einrichtung weiter erhöht. Es ist weiterhin vorteilhaft, die Blenden und Schirmbleche aus warmfestem Material wie Edelstahl, Titan oder Molybdän herzustellen. Das innere Schirmblech und die innere Blende werden vorzugsweise mit sehr großer Oberflächenrauheit ausgestattet. Es ist auch zweckmäßig, die Oberfläche mit rauhen, stark verformten, z.B. netzartigen Verkleidungen zu versehen. Auf diese Weise wird die Entstehung von Füttern weiter verringert. Die äußeren Schirmbleche und die äußeren Blenden haben dagegen sehr glatte, hochreflektierende Oberflächen.
Zur Bewegung der Blenden sind diese mit getrennten motorischen Antrieben versehen. Besonders vorteilhaft sind Ausführungen für den Antrieb der Blenden, die nur mechanische Verbindungselemente im Inneren der Vakuumkammer besitzen. Der Motor ist außerhalb der Vakuumkammer angeordnet.
Durch die isolierte Anordnung der Halterungen ist es möglich, entsprechend dem durchzuführenen Prozess unterschiedliche Potentiale mittels bekannter Schaltelemente anzulegen.
Auf diese Weise werden die Zerstäubungsquellen neben dem Prozessschritt „Beschichten" auch für den Prozessschritt „Vorbehandlung " genutzt. Durch die Verwendung der Zerstäubungsquellen für eine Plasmavorbehandlung wird eine Konzentrierung und Verstärkung des Plasmas erreicht. Damit wird die Wirkung dieses Prozessschrittes erhöht und eine Verkürzung der Vorbehandlungszeit erreicht.
Es ist auch möglich, anstatt von Magnetrons Bogenverdampfer als Quellen für das Beschichtungsmaterial zu verwenden.
An einem Ausführungsbeispiel wird die Erfindung erläutert. Dabei zeigen:
Fig. 1 : einen Querschnitt der Einrichtung,
Fig. 2: einen Längsschnitt und
Fig. 3a bis 3c: die prinzipielle Funktion der Blenden.
In Fig. 1 sind in einer Vakuumkammer 1 drei Doppel-Magnetrons 2 angeordnet, um durch reaktives Puls-Magnetronzerstäuben elektrisch isolierende Oxidschichten aufzubringen. In der Vakuumkammer 1 ist eine Grundplatte 3 angeordnet. Unterhalb der Grundplatte 3 ist ein Planetengetriebe mit zehn Planetenrädern (nicht dargestellt) angeordnet. Jedes Planetenrad ist mit einer Halterung 4 verbunden. Auf jeder Halterung 4 sind jeweils zehn zu beschichtende Teile 5 in bekannter Weise angeordnet. Die Halterungen 4 sind so ausgebildet, dass jedes zu beschichtende Teil 5 eine Rotation um seine eigene Achse und um die Achse der Halterung durchführt. Die Halterungen 4 sind gegenüber dem Erdpotential elektrisch isoliert.
Mittels eines Schalters 6 werden die Halterungen 4 mit einem Pol einer Stromversorgung 7 verbunden, deren anderer Pol mit den Doppel-Magnetrons 2 verbunden ist. Auf diese Weise läßt sich ein sehr wirkungsvoller magnetfeldverstärkter Plasmaprozess zur Vorbehandlung der Teile 5 vor der Beschichtung realisieren. In einer anderen Stellung des Schalters 6 sind die Halterungen 4 geerdet, und die Doppel-Magnetrons 2 sind mit einer Zerstäubungs- Stromversorgung 8 verbunden, welche einen bipolaren gepulsten Strom erzeugt. Die Halterungen 4 haben einen Durchmesser von 150 mm. Ihre Achsen sind auf einem Teilkreis von 525 mm Durchmesser angeordnet. Bei einem Durchmesser der Grundplatte 3 von 700 mm misst der Teilkreis 3A dieses Durchmessers. Im Zentrum der Grundplatte 3 befindet sich eine Heizvorrichtung 9. Sie besteht aus einem mäanderförmig geschlitzten Rohr aus Kohlefaser-Verbundwerkstoff, welches einen Durchmesser von 350 mm aufweist. Die Heizvorrichtung 9 erreicht Oberflächentemperaturen von 1 100 °C. Auf der Grundplatte 3 sind Blenden 10 bis 10" konzentrisch angeordnet. Die Blenden 10 bis 10" lassen sich jeweils mittels eines Motors außerhalb des Vakuumkammer 1, einer Dreh- /Schiebedurchführung und eines Zahnradgetriebes einzeln ansteuern. Die Blenden 10 bis 10" enthalten Öffnungen, deren Größe und Form im Wesentlichen den Austrittsflächen der zerstäubten Teilchen der Doppel-Magnetrons 2 entsprechen.
Fig. 2 zeigt ebenfalls die Vakuumkammer 1 mit den am Umfang angeordneten Doppel- Magentrons 2. Auf der Grundplatte 3 sind die Heizvorrichtung 9, die Halterungen 4 und die Blenden 10 bis 10" angeordnet. Ober- und unterhalb der Heizvorrichtung 9 sind feststehende scheibenförmige Schirmbleche 11 angeordnet. Die innere Blende 10 und die inneren Schirmbleche bestehen aus Molybdän. Auf ihrer der Heizvorrichtung 9 zugewandten Seite sind sie mit einer siebartig perforierten Auskleidung (nicht dargestellt) belegt. Diese Auskleidung ist in der Lage, nicht genutzte Anteile der schichtbildenden Partikel mechanisch fest zu binden. Nach einer festgesetzten Nutzungszeit wird die siebartig perforierte Auskleidung erneuert. Die Blenden 10', 10" und die äußeren Schirmbleche bestehen aus Edelstahlblech und sind beidseitig poliert. Auf diese Weise wird eine sehr hohe Reflexion der von allen Bauteilen innerhalb der Blenden 10 bis 10" abgestrahlten Wärme erreicht. Die Gestaltung der Blenden 10 bis 10" und Schirmbleche 1 1 verhindert den direkten Weg zerstäubter Teilchen auf die Innenwände der Vakuumkammer 1 , sichert aber ein ausreichend hohes Saugvermögen der Vakuumpumpen von 200 Is'1 im Bereich der Halterungen 4. Die Halterungen 4 sind durch die Grundplatte 3 mit den nicht dargestellten Planetenrädern des Planetengetriebes mechanisch verbunden. Zwischen den Planetenrädern und den Halterungen 4 befinden sich keramische Wärmewiderstände 12. Mittels Rollen 13 lässt sich die gesamte Grundplatte 3 auf Schienen aus der geöffneten Vakuumkammer 1 herausfahren. Eine gleichartige Grundplatte mit zu beschichtenden Teilen 5 wird in die Vakuumkammer 1 eingefahren, um den nächsten Beschichtungsprozess durchzuführen. Während dieser Zeit erfolgt die Entnahme der beschichteten Teile 5 aus den Halterungen 4 der ersten Grundplatte 3. Dazu werden die Blenden 10 bis 10" abgehoben. Nach einer Abkühlphase werden die Teile 5 entnommen, Halterungen 4 und die innere Blende 10 werden gegebenenfalls gereinigt. Anschließend erfolgt eine Neubestückung.
In den Fig. 3a bis 3c ist die Funktionsweise der Blenden 10 bis 10" ohne die Halterungen 4 dargestellt. Zum Prozessschritt „Heizen" befinden sich die Blenden 10 bis 10" in der Stellung gemäß Figur 3a, in der alle Doppel-Magnetrons 2 gegenüber den Teilen 5 abgedeckt sind. Während des Prozessschrittes „Plasmavorbehandeln" befinden sich die Blenden 10 bis 10" in der Stellung gemäß Figur 3b. Die Teile 5 sind dabei unter Nutzung eines Doppel- Magnetrons 2 einem dichten, magnetfeldverstärkten Plasma ausgesetzt. Während des Prozessschrittes „Beschichten" werden die Blenden 10 bis 10" derart positioniert, dass die Öffnungen der Blenden 10 bis 10" die Austrittsflächen zweier Doppel-Magnetrons 2 zur Beschichtung freigeben.

Claims

Patentansprüche
1. Einrichtung zum Aufstäuben von Hartstoffschichten, bestehend aus einer evakuierbaren Vakuumkammer, mindestens einer Zerstäubungsquelle mit mindestens einem Target aus Zerstäubungsmaterial oder dessen Komponenten, einer Vorrichtung mit mehreren mittels eines Planetengetriebes bewegbaren, zu beschichtenden Teilen in Halterungen auf Planetenrädern, einer Heizvorrichtung, einem Reaktivgaseinlass und beweglichen Blenden zum Abdecken der Zerstäubungsquellen, dadurch gekennzeichnet, dass die Halterungen (4) von koaxial angeordneten Blenden (10 bis 10") umgeben sind, dass die Heizvorrichtung (9) im Zentrum des Planetengetriebes angeordnet ist, dass die Heizvorrichtung (9), die Blenden (10 bis 10") und das Planetengetriebe eine Baugruppe bilden, die zum Be- und Entstücken der Teile (5) auswechselbar ist, dass die Blenden (10 bis 10") Öffnungen im Bereich der Austrittsflächen der von den Zerstäubungsquellen (2) abgestäubten Teilchen besitzen, dass die Blenden (10 bis 10") unabhängig voneinander derart radial beweglich angeordnet sind, dass sie einzelne oder alle Zerstäubungsquellen (2) abdecken, dass über und unter den zu beschichteten Teilen (5) den Bereich der Zerstäubung abschließende Schirmbleche (1 1 ) feststehend angeordnet sind, dass der Durchmesser des Teilkreises der Planetenräder mindestens % des Durchmesser der Grundplatte (3) beträgt und dass die Halterungen (4) elektrisch isoliert angeordnet sind.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Heizvorrichtung (9) aus einem stromdurchflossenen Rohr aus Kohlenstoff besteht.
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Rohr durch Trennfugen, vorzugsweise mäanderförmig, strukturiert ist.
4. Einrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die innere Blende (10) und die inneren Schirmbleche auf der Innenseite aus einem Material mit hoher Rauhigkeit bestehen.
5. Einrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass mindestens die äußere Blende (10") und das äußere Schirmblech eine hoch reflektierende Oberfläche besitzen. Einrichtung nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass Schaltelemente zum Anlegen von unterschiedlichen Potentialen an die Zerstäubungsquellen (2) und die Halterungen (4) angeordnet sind.
PCT/DE1998/002376 1997-09-02 1998-08-12 Einrichtung zum aufstäuben von hartstoffschichten WO1999011837A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98948802A EP1017872B1 (de) 1997-09-02 1998-08-12 Einrichtung zum zerstäuben von hartstoffschichten
US09/485,713 US6315877B1 (en) 1997-09-02 1998-08-12 Device for applying layers of hard material by dusting
DE59808487T DE59808487D1 (de) 1997-09-02 1998-08-12 Einrichtung zum zerstäuben von hartstoffschichten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19738234.7 1997-09-02
DE19738234A DE19738234C1 (de) 1997-09-02 1997-09-02 Einrichtung zum Aufstäuben von Hartstoffschichten

Publications (1)

Publication Number Publication Date
WO1999011837A1 true WO1999011837A1 (de) 1999-03-11

Family

ID=7840894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002376 WO1999011837A1 (de) 1997-09-02 1998-08-12 Einrichtung zum aufstäuben von hartstoffschichten

Country Status (4)

Country Link
US (1) US6315877B1 (de)
EP (1) EP1017872B1 (de)
DE (2) DE19738234C1 (de)
WO (1) WO1999011837A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086187A1 (en) * 2001-04-20 2002-10-31 N.V. Bekaert S.A. Apparatus for the deposition of metal or metal oxide coatings
EP1293587A1 (de) * 2001-09-14 2003-03-19 Kabushiki Kaisha Kobe Seiko Sho Vakuum-Beschichtungsanlage mit Zentralheizung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0222331D0 (en) * 2002-09-26 2002-10-30 Teer Coatings Ltd A method for depositing multilayer coatings with controlled thickness
JP2005029855A (ja) 2003-07-08 2005-02-03 Fuji Electric Device Technology Co Ltd 真空アーク蒸着装置、真空アーク蒸着法、および磁気記録媒体
JP5355382B2 (ja) * 2006-03-28 2013-11-27 スルザー メタプラス ゲーエムベーハー スパッタリング装置
US8273222B2 (en) * 2006-05-16 2012-09-25 Southwest Research Institute Apparatus and method for RF plasma enhanced magnetron sputter deposition
US8277617B2 (en) * 2007-08-14 2012-10-02 Southwest Research Institute Conformal magnetron sputter deposition
CN101368260A (zh) 2007-09-14 2009-02-18 山特维克知识产权股份有限公司 用于在基底上沉积涂层的方法和设备
CN101896633B (zh) * 2007-12-12 2012-11-14 山特维克知识产权股份有限公司 百叶窗系统
DE102008062332A1 (de) * 2008-12-15 2010-06-17 Gühring Ohg Vorrichtung zur Oberflächenbehandlung und/oder -beschichtung von Substratkomponenten
US8747631B2 (en) * 2010-03-15 2014-06-10 Southwest Research Institute Apparatus and method utilizing a double glow discharge plasma for sputter cleaning
EP2868768B1 (de) * 2013-10-29 2021-06-16 Oerlikon Surface Solutions AG, Pfäffikon Verschlussvorrichtung
CN111411331B (zh) * 2020-02-17 2022-05-10 深圳市海铭德科技有限公司 一种用于芯片镀膜工艺的治具拼接结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2656723A1 (de) * 1975-12-18 1977-07-07 Western Electric Co Vorrichtung zur behandlung von werkstuecken im vakuum
DE2815704A1 (de) * 1978-04-12 1979-10-18 Heraeus Gmbh W C Verfahren und vorrichtung zur herstellung von rotationssymmetrischen verlauffiltern
JPH0445265A (ja) * 1990-06-11 1992-02-14 Matsushita Electric Ind Co Ltd スパッタリング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2125085C3 (de) * 1971-05-19 1979-02-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Herstellen von einseitig geschlossenen Rohren aus Halbleitermaterial
US3853091A (en) * 1973-12-03 1974-12-10 Ibm Thin film coating apparatus
US4051010A (en) * 1975-12-18 1977-09-27 Western Electric Company, Inc. Sputtering apparatus
US4169913A (en) * 1978-03-01 1979-10-02 Sumitomo Electric Industries, Ltd. Coated tool steel and machining tool formed therefrom
GB8413776D0 (en) * 1984-05-30 1984-07-04 Dowty Electronics Ltd Sputtering process
US4647361A (en) * 1985-09-03 1987-03-03 International Business Machines Corporation Sputtering apparatus
US5135629A (en) * 1989-06-12 1992-08-04 Nippon Mining Co., Ltd. Thin film deposition system
CA2061944C (en) * 1991-03-08 1999-01-26 Naoya Omori A diamond and/or diamond-like carbon-coated hard material
JP3441002B2 (ja) * 1991-11-22 2003-08-25 アネルバ株式会社 スパッタリング装置
US5690796A (en) * 1992-12-23 1997-11-25 Balzers Aktiengesellschaft Method and apparatus for layer depositions
GB9405442D0 (en) * 1994-03-19 1994-05-04 Applied Vision Ltd Apparatus for coating substrates
DE29510545U1 (de) * 1995-06-29 1995-09-07 Metaplas Oberflaechenveredelun Handwerkzeug mit verschleißfester Arbeitsfläche

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2656723A1 (de) * 1975-12-18 1977-07-07 Western Electric Co Vorrichtung zur behandlung von werkstuecken im vakuum
DE2815704A1 (de) * 1978-04-12 1979-10-18 Heraeus Gmbh W C Verfahren und vorrichtung zur herstellung von rotationssymmetrischen verlauffiltern
JPH0445265A (ja) * 1990-06-11 1992-02-14 Matsushita Electric Ind Co Ltd スパッタリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 228 (C - 0944) 27 May 1992 (1992-05-27) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086187A1 (en) * 2001-04-20 2002-10-31 N.V. Bekaert S.A. Apparatus for the deposition of metal or metal oxide coatings
EP1293587A1 (de) * 2001-09-14 2003-03-19 Kabushiki Kaisha Kobe Seiko Sho Vakuum-Beschichtungsanlage mit Zentralheizung

Also Published As

Publication number Publication date
EP1017872B1 (de) 2003-05-21
EP1017872A1 (de) 2000-07-12
US6315877B1 (en) 2001-11-13
DE59808487D1 (de) 2003-06-26
DE19738234C1 (de) 1998-10-22

Similar Documents

Publication Publication Date Title
DE19738234C1 (de) Einrichtung zum Aufstäuben von Hartstoffschichten
EP0887438B1 (de) Verfahren zur Oberflächenvergütung innerer Oberflächen von Hohlkörpern und Vorrichtung zur Durchführung des Verfahrens
DE10018143B4 (de) DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
EP0306612B1 (de) Verfahren zur Aufbringung von Schichten auf Substraten
EP0888463B1 (de) Einrichtung zum vakuumbeschichten von schüttgut
DE69835324T2 (de) Dampfphasenabscheidungsgerät mit kathodischem Lichtbogen (Ringförmige Kathode)
EP0990061A1 (de) Verfahren und einrichtung zum vakuumbeschichten eines substrates
WO2008067969A1 (de) Vakuumbeschichtungsanlage zur homogenen pvd-beschichtung
DE102006016872A1 (de) Ein Magnetron-Sputtern-Target mit der Funktion der In-Situ-Reinigung
EP0432090B1 (de) Verfahren zur Herstellung einer Beschichtung und Werkstück beschichtet nach dem Verfahren
EP0550003A1 (de) Vakuumbehandlungsanlage und deren Verwendungen
EP3247818A1 (de) Beschichtungskammer zur durchführung eines vakuum gestützten beschichtungsverfahrens, wärmeschild, sowie beschichtungsverfahren
EP1036212B1 (de) Einrichtung zur vakuumbeschichtung von gleitlagern
DE69838937T2 (de) Magnetronsputtervorrichtung in form eines bleches
DE19628102A1 (de) Vakuumbeschichtungsanlage mit einer Beschichtungskammer und zumindest einer Quellenkammer
DE3545636C2 (de)
DE4443740B4 (de) Vorrichtung zum Beschichten von Substraten
DE2146918B2 (de) Roentgenroehren-drehanode
DE2635007A1 (de) Vakuumanlage zum behandeln eines gutes, insbesondere vakuumaufdampfanlage
WO2004024976A1 (de) Korrosionsgeschütztes bauteil und verfahren zu seiner herstellung und einrichtung zur durchführung des verfahrens
EP0434797B1 (de) Gerät zur beschichtung von substraten durch kathodenzerstäubung
WO2020216419A1 (de) Anode für pvd-prozesse
DE10142202B4 (de) Hochvakuumbedampfungsanlage
DE19804751C2 (de) Verfahren zum Beschichten von Folie aus Nickel oder einer Nickellegierung und beschichtete Folie aus Nickel oder einer Nickellegierung
WO1994014996A1 (de) Verfahren und anlage zur schichtabscheidung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998948802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09485713

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998948802

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998948802

Country of ref document: EP